

ENVIRONMENT CONVERGE

997 Millbury Street, Unit G, Worcester, MA 01607 tel 508.756.0151 fax 508.757.7063 www.ecsconsult.com

April 20, 2016 Project No. 03-221324

Ms. Suzanne Warner U.S. Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP06-4) 5 Post Office Square, Suite 100 Boston, MA 02109-3912

RE: Notice of Intent for Dewatering General Permit Cumberland Farms Inc., Store # 0006 68 Main Street Westminster, MA 01473

Dear Ms. Warner:

Environmental Compliance Services, Inc. (ECS) is pleased to provide supporting documentation for the Notice of Intent (NOI) for the Dewatering General Permit (DGP) on behalf of Cumberland Farms, Inc. (CFI), for the above-referenced property. This NOI is being submitted in order to obtain a permit for the operation of a temporary groundwater recovery and treatment system (GWTS) at the Site. The GWTS is required to be operated at the Site in order to allow for the installation of new petroleum underground storage tanks (USTs) during site redevelopment. A Site Locus is provided as Figure 1, and a Site Plan depicting the dewatering discharge location is provided as Figure 2. A copy of the NOI form is provided as Attachment I.

System Design

The groundwater treatment system located on the Site will be composed of the following: Submersible pneumatic pumps that collect groundwater from the UST excavation area, then recovered groundwater will be pumped into a 20,000 gallon frac tank (to settle out solids) and then pumped to a nearby drainage manhole connection prior to the outfall location. The proposed discharge location for the groundwater is a drainage manhole located on the northern boundary of the subject property (refer to Figure 2). This storm water manhole (MH-1) discharges to a storm water drainage outfall in the wetlands area adjacent to the site to the north. This wetlands area discharges into Tophet Swap located approximately 1,500 feet northwest of the Site. Please refer to Figure 1 for a depiction of the wetlands located immediately northwest of the subject property.

Average flow rate of discharge of treated groundwater from the system to the storm drainage line is expected to be approximately 50 gallons per minute (gpm). The design capacity of the groundwater treatment system is 100 gpm based upon data collected from comparable systems installed at other remedial sites operated/designed by ECS.

Influent Sample Analysis

Groundwater samples were collected from monitoring well MW-1 on December 23, 2013 and then again on April 6, 2016. These samples were submitted to Spectrum/Eurofins Analytical, Inc. of Agawam, Massachusetts under standard chain of custody protocol for analysis of total petroleum hydrocarbons (TPH) by EPA method 1664, volatile organic compounds (VOCs) by EPA Method 8260B, semi-volatile organic compounds (SVOCs) by EPA method 8270, PCBs by EPA method 8082, total metals by EPA Method 200.7, pH, and total suspended solids by SM2540D. Copies of the laboratory reports and chains of custody record are provided as Attachment II.

Appendix III of the 2010 RGP under NPDES sets the effluent limitations for treatment system discharges. Groundwater analytical results of the samples collected from MW-1 were compared to the Appendix III effluent limitations (www.epa.gov/region1/npdes/rgp.html). These results indicate that TSS, iron, and pH were detected in the samples at concentrations above the applicable EPA RGP Appendix III effluent limitations. Total suspended solids and total iron are expected to be reduced through pretreatment with the sedimentation/frac tank.

It should also be noted that dichlorodifluoromethane (Freon 12), a refrigerant and aerosol spray repellant was detected in the groundwater sample collected on December 23, 2013 at a trace detection (well below the applicable MassDEP Reportable Concentration). There is no known source or documented release of Freon 12 at the subject property. This constituent was not detected in the groundwater sample collected on April 6, 2016.

<u>Evaluation of Threatened or Endangered Species or Critical Habitat Located within</u> <u>Receiving Waters</u>

According to Massachusetts Geographic Information Systems (MassGIS) online maps for the Natural Heritage Endangered Species Program (NHESP) (2008), no Priority Habitat of Rare Species or Estimated Habitats of Rare Wildlife are located within the proposed at or immediately adjacent to the work zone area. The closest NHESP Estimated Habitats of Rare Wildlife in Wetland Areas Protected Open Spaces are located approximately 2,500 feet north of the Site. Given the fact there will be an on-site dewatering treatment system, the potential discharge will not have an adverse affect on the NHESP Estimated Habitats of Rare Wildlife. A copy of the MassGIS Resource Priority and NHESP Maps of the Site area is included in Attachment III.

Review of National Register of Historic Places

Listings of Historic Places within the Town of Walpole in the vicinity of the Site were obtained from the Massachusetts Cultural Resources Information System (MACRIS) online database at http://mhc-macris.net/towns.aspx (accessed April 14, 2016). Copies of the MACRIS report are provided as Attachment IV. The database indicated that there are no historic places located in close proximity to the Site and proposed discharge area. This project does not involve the demolition or rehabilitation of historic properties.

Should you have any questions or concerns regarding the contents of this letter or the NOI for the DGP, please do not hesitate to contact the undersigned at (508) 756-0151.

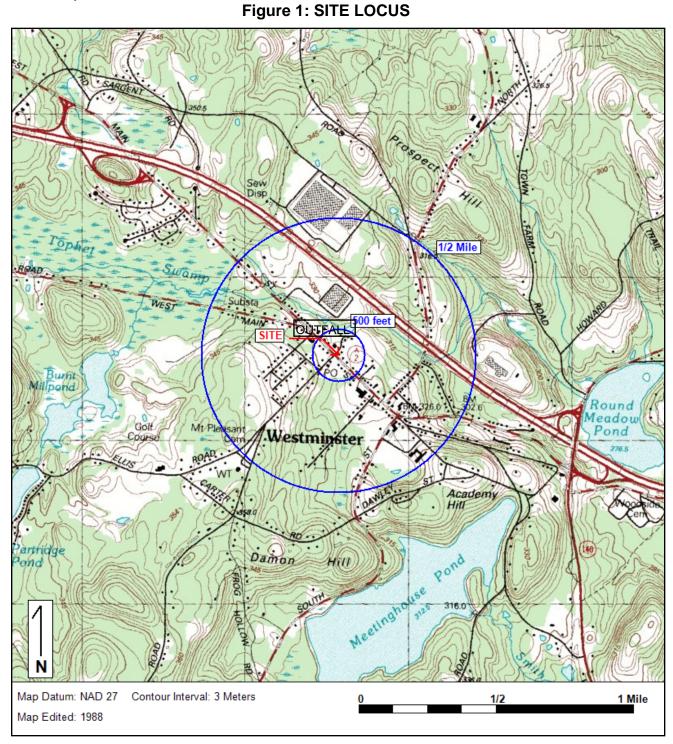
Sincerely, ENVIRONMENTAL COMPLIANCE SERVICES, INC.

Most J. me

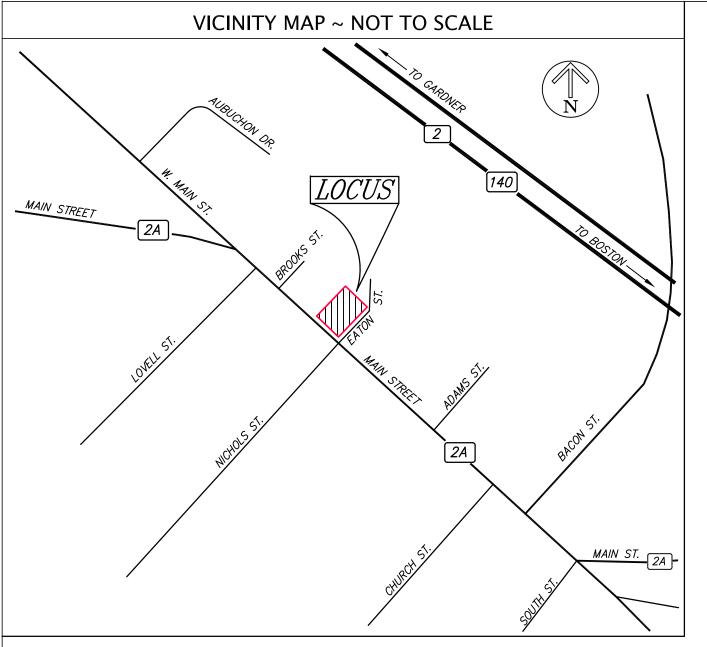
Matthew J. Lyne Senior Project Manager

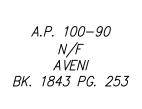
 Matthew Young, Cumberland Farms, Inc., 100 Crossing Blvd, Framingham, MA 01702
 Robert Kubit, MassDEP, Division of Watershed Management, 8 New Bond Street, Worcester, MA 01606
 Town of Westminster Department of Public Works
 Town of Westminster Conservation Commission

LIST OF ATTACHMENTS


NOI for the DGP
Laboratory Analytical Reports and Chain of Custody Records
MassGIS Resource Priority & NHESP Maps
MACRIS Database Search Results
I

FIGURES


Environmental Compliance Services, Inc. 997 Millbury Street, Unit G Worcester, MA 01607 Phone 508.756.0151 Fax 508.757.7063 www.ecsconsult.com

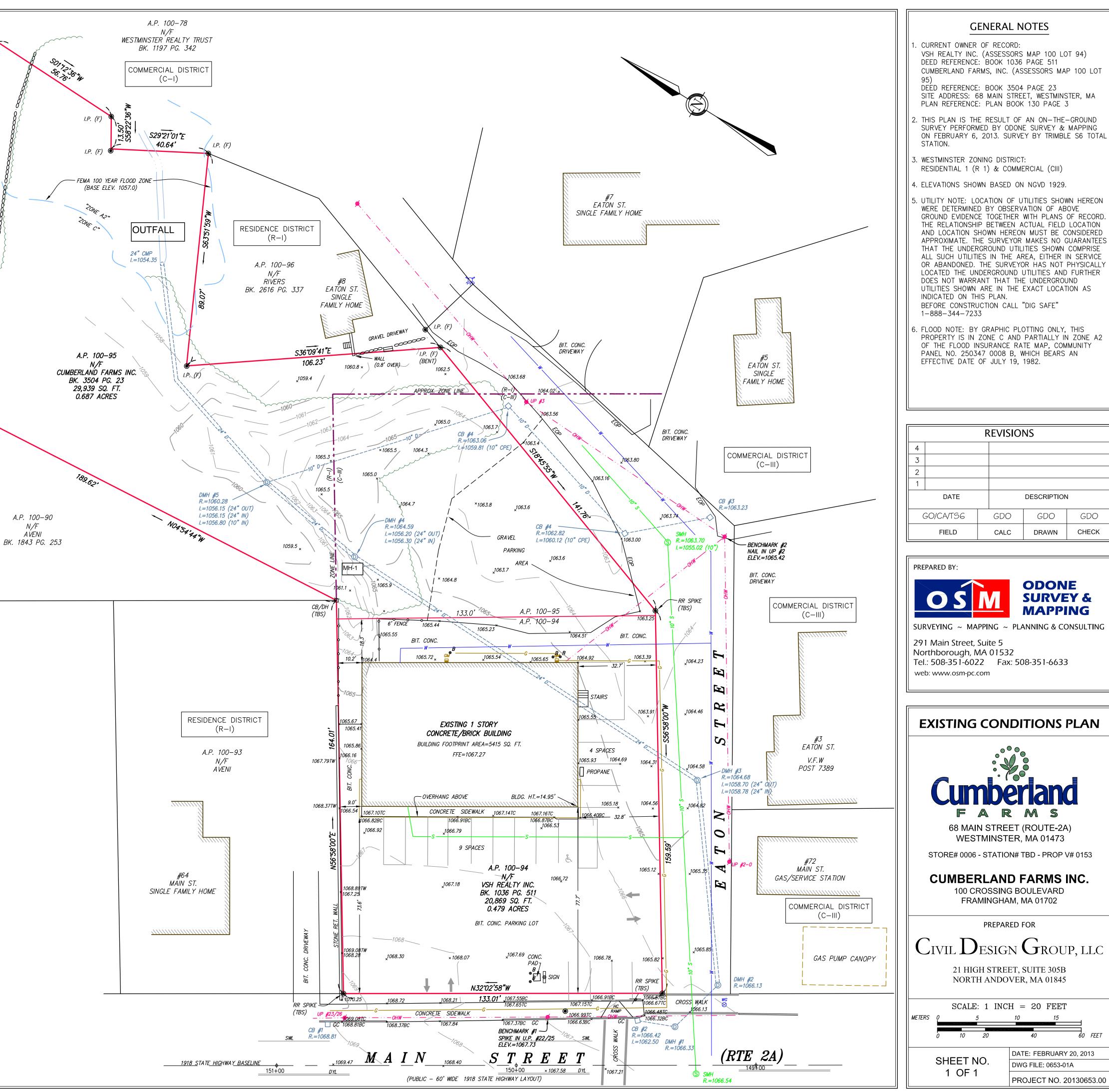

MA Acquistion Property-Westminster 2 Main St 8 Main Street Westminster, MA 01473

Base Map: U.S. Geological Survey; Quadrangle Location: Fitchburg, MA

Lat/Lon: 42 33' 7" NORTH, 71 55' 4" WEST - UTM Coordinates: 19 260619.22 EAST / 4714743.5 NORTH Generated By: Rick Starodoj

RESIDENCE DISTRICT (R-I)

LAWN


I.P. (F)

<u>LEGEND</u>

-© ^{DMH} D
□ ⁶⁶
<i>G</i> <i>OHW</i>
••• ^{WG} W
-© <i>N</i> -© <i>S</i>
WF 100WF 101
1065
ж Ц
stro GM ⊟
_
● ^{I.P.} ☆ LP
VP
- -
A.P.
BK. PG.
BIT. CONC. DYL
GC
CONC. C.L.F.
EOP
(F)
N/F SWL
TBS

EXISTING BUILDING

DRAIN LINE/DRAIN MANHOLE GAS LINE/GAS VALVE OVERHEAD WIRES WATER LINE/WATER GATE SEWER LINE/SEWER MANHOLE FENCE EDGE OF WATER STONEWALL TREE LINE FLAGGED WETLAND LINE MAJOR CONTOUR MINOR CONTOUR BOLLARD CATCH BASIN FIRE HYDRANT GAS METER IRON PIPE/IRON PIN LIGHT POLE UTILITY POLE SIGN ASSESSORS PARCEL DEED BOOK/PAGE BITUMINOUS CONCRETE DOUBLE YELLOW LINE GRANITE CURB CONCRETE SURFACE CHAIN LINK FENCE EDGE OF PAVEMENT FOUND NOW OR FORMERLY SOLID WHITE LINE TO BE SET

TABLES

Table 2 Summary of Groundwater Analytical Data Cumberland Farms #0006/V0153 68 Main Street Westminster, MA

Sampling Date Depth to Groundwater (ft) TPH by EPA 8100M (mg/L) VOCs by 8260 (µg/L) Benzene Toluene Ethylbenzene Xylenes Naphthalene MTBE Tetracholorethylene (PCE) Trichloroethylene (PCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform SVOCs by 8270 (µg/L)	12-23-13 4.12 < 1.1 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	4-6-16 3.86 < 1.1 < < 1.0 < 1.0	0.2	5	5.0
TPH by EPA 8100M (mg/L) VOCs by 8260 (µg/L) Benzene Toluene Ethylbenzene Xylenes Naphthalene MTBE Tetracholorethylene (PCE) Trichloroethylene (TCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform	< 1.1 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.1 < 1.0 < 1.0		5	5.0
VOCs by 8260 (µg/L) Benzene Toluene Ethylbenzene Xylenes Naphthalene MTBE Tetracholorethylene (PCE) Trichloroethylene (TCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0 < 1.0		5	5.0
Benzene Toluene Ethylbenzene Xylenes Naphthalene MTBE Tetracholorethylene (PCE) Trichloroethylene (TCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform	< 1.0 < 1.0 < 1.0	< 1.0	5		
Benzene Toluene Ethylbenzene Xylenes Naphthalene MTBE Tetracholorethylene (PCE) Trichloroethylene (TCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform	< 1.0 < 1.0 < 1.0	< 1.0	5		
Ethylbenzene Xylenes Naphthalene MTBE Tetracholorethylene (PCE) Trichloroethylene (TCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform Chloroform	< 1.0 < 1.0			1,000	NS
Xylenes Naphthalene MTBE Tetracholorethylene (PCE) Trichloroethylene (TCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform	< 1.0		1,000	40,000	100
Naphthalene MTBE Tetracholorethylene (PCE) Trichloroethylene (TCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform		< 1.0	700	5,000	NS
MTBE Tetracholorethylene (PCE) Trichloroethylene (TCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform		< 1.0	3,000	3,000	NS
Tetracholorethylene (PCE) Trichloroethylene (TCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform	< 1.0	< 1.0	140	700	NS
Trichloroethylene (TCE) Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform	< 1.0	< 1.0	70	5,000	NS
Dichlorodifluoromethane (Freon 12) Bromodichloromethane Chloroform	< 1.0	< 1.0	5	50	NS
Bromodichloromethane Chloroform	< 1.0	< 1.0	5	5	NS
Chloroform	2.23	< 1.0	10,000	100,000	NS
	< 1.0	2.3	3	6	
SVOCa by 8270 (ug/L)	< 1.0	10.7	50	50	
SVOCS by 8270 (µg/L)	NS	< 5.95	NS	NS	100
PCBs by 8082 (µg/L)	< 0.225	< 0.206	0.5	0.5	0.5
PP13 Metals (mg/L) by 6010					
Total Iron	1.54	0.261	NS	NS	1.0
Total Barium	NS	0.0436	2	50	NS
Total Zinc	NS	0.0061	0.9	0.9	0.066
рН	6.92	6.07	NS	NS	6.5-8.3
Total Suspended Solids (mg/L)	52	< 5.0	NS	NS	30/50
Total Dissolved Solids (mg/L)	NS	435	NS	NS	NS
Flashpoint	NS	>150 F	NS	NS	NS
Reactivity	NS	< 25.0	NS	NS	NS

NOTES: NA = Not Analyzed. NS = No Standard

RCGW-1: Reportable Concentration for groundwater classified as RCGW-1, promulgated June 20, 2014. Site is classified as RCGW-2.

ATTACHMENT I

II. Suggested Notice of Intent (NOI) Format

1. General facility information. Please provide the following information about the facility.

a) Name of facility:	Mailing Address for the Facility:		
b) Location Address of the Facility (if different from mailing address):	Facility Location	Type of Business:	
	longitude: latitude:	Facility SIC codes:	
c) Name of facility owner:	Owner's email:		
Owner's Tel #:	Owner's Fax #:		
Address of owner (if different from facility address)			
Owner is (check one): 1. Federal2. State 3. Private Legal name of Operator, if not owner: Operator Contact Name: Operator Tel Number: Fax N			
Operator's email: Taxi			
Operator Address (if different from owner)			
d) Attach a topographic map indicating the location of the facility an	d the outfall(s) to the receiving w	ater. Map attached?	
 e) Check Yes or No for the following: 1. Has a prior NPDES permit been granted for the discharge? Yes 2. Is the discharge a "new discharger" as defined by 40 CFR Section 3. Is the facility covered by an individual NPDES permit? Yes 4. Is there a pending application on file with EPA for this discharge 	on 122.2? Yes No No If Yes, Permit Nu		

	charge milor mation. Trease provide milor mation about		auditional sheets as needed)	
a)	Name of receiving water into which discharge will o	occur:		
Sta	Name of receiving water into which discharge will or a care Water Quality Classification:	Freshwater:	Marine Water:	
b)	 Describe the discharge activities for which the own Construction dewatering of groundwater intru Short-term or long-term dewatering of foundat Other. 	sion and/or storm water a		
	5. Other.			
c)	Number of outfalls			
For	or each outfall:			
d)	Estimate the maximum daily and average monthly fl Average Monthly Flow GPD	low of the discharge (in ga	llons per day – GPD). Max Daily Flow	GPD
e.)) What is the maximum and minimum monthly pH of	the discharge (in s.u.)? N	fax pH Min pH	
f.) g.)	required in Section 4.4.5 of the General Permit.	See attached lab report.	n filter with filter stone. Solids settling throug	
h.)) Is the discharge continuous? Yes No not continuous all year) or intermittent (I) (occurs If (P), number of days or months per year of the dis If (I), number of days/year there is a discharge Is the discharge temporary? Yes No If yes, approximate start date of dewatering	o If no, is the di sometimes but not regula charge and the sp	scharge periodic (P) (occurs regularly, i.e rly) or both (B) <u>Intermittent for 1-2 m</u> ecific months of discharge	nonths;
i.)	8 8		<pre>gov/tri/report/siting_tool): Outfall 1: long.</pre>	lat; Outfall
	2: long lat; Outfall 3: long	lat		
j.)	If the source of the discharge is potable water, pleas attach any calculation sheets used to support strear (See Appendix VII for equations and additional infor	n flow and dilution calcula	• •	0) of the receiving water and

MASSACHUSETTS FACILITIES: See Section 3.4 and Appendix 1 of the General Permit for more information on Areas of Critical Environmental Concern (ACEC):

k.) Does the discharge occur in an ACEC? Yes _____ No _____ If yes, provide the name of the ACEC: ______

3. Contaminant Information

a) Are any pH neutralization and/or dechlorination chemicals used in the discharge? If so, include the chemical name and manufacturer; maximum and average daily quantity used as well as the maximum and average daily expected concentrations (mg/l) in the discharge, and the vendor's reported aquatic toxicity (NOAEL and/or LC₅₀ in percent for aquatic organism(s)).

See attached ACEC Map

b) Please report any known remediation activities or water-quality issues in the vicinity of the discharge. None.

4. Determination of Endangered Species Act Eligibility: Provide documentation of ESA eligibility as required at Part 3.4 and Appendix IV. In addition, respond to the following questions.

a)	Which of the three eligibility criteria listed in Appendix IV, Criterion (A, B, or C) have you met?	See attached Phase I Site	
b)	Please attach documentation with your NOI supporting your response. Please see Appendix IV for acceptable documentation	Assessment Map and MassGIS	
		Map.	

5. Documentation of National Historic Preservation Act requirements: Please respond to the following questions:

a)	See Screening Process in Appendix III and respond to questions regarding your site and any	historic properti	es listed or eligible for listing on the National
	Register of Historic Places. Question 1: Yes No; Question 2: No	Yes	See attached MACRIS Map
b)	How any State on Tribal historic measuration officers been consulted in this determination?	Vac	No. If yos, attach the results of the

- b) Have any State or Tribal historic preservation officers been consulted in this determination? Yes _____ or No _____ If yes, attach the results of the consultation(s).
- c) Which of the three National Historic Preservation Act eligibility criterion listed in Appendix III, Criterion (A, B, or C) have you met?
- d) Is the project located on property of religious or cultural significance to an Indian Tribe? Yes _____ or No _____ If yes, provide that name of the Indian Tribe associated with the property. ______

6. Supplemental Information: Please provide any	supplemental information.	Attach any a	nalytical data used to su	pport the application.	Attach any
certification(s) required by the general permit	See attached lab report				

7. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22 (see below) including the following certification:

I certify under penalty of law that (1) no biocides or other chemical additives except for those used for pH adjustment and/or dechlorination are used in the dewatering system; (2) the discharge consists solely of dewatering and authorized pH adjustment and/or dechlorination chemicals; (3) the discharge does not come in contact with any raw materials, intermediate product, water product or finished product; (4) if the discharge of dewatering subsequently mixes with other permitted wastewater (i.e. stormwater) prior to discharging to the receiving water, any monitoring provided under this permit will be only for dewatering discharge; (5) where applicable, the facility has complied with the requirements of this permit specific to the Endangered Species Act and National Historic Preservation Act; and (6) this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility Name: Cumberland Farms Store #0006	
Operator signature:	The way
Print Full Name and Title: Wark G. Howard	Executive Vice President, Chief Legal and Administrative Officer, General Campel and Secretary
Date:	Ganeral Cansel and Secretary

Federal regulations require this application to be signed as follows:

- 1. For a corporation, by a principal executive officer of at least the level of vice president;
- 2. For partnership or sole proprietorship, by a general partner or the proprietor, respectively, or,
- 3. For a municipality, State, Federal or other public facility, by either a principal executive officer or ranking elected official.

ATTACHMENT II

Report Date: 31-Dec-13 11:05

Final ReportRe-Issued ReportRevised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY Laboratory Report

Environmental Compliance Services 997 Millbury Street, Unit G Worcester, MA 01607 Attn: Matt Lyne

Project: CFI #0006- Westminister, MA Project #: 03-221324

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB82475-01	MW-1	Ground Water	23-Dec-13 12:15	23-Dec-13 15:35

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Juiole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 18 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Sp	bectrum Analytical, Inc.		Project #: 03-221	324	
Proje	ect Location: CFI	#0006- Westminister, M	ЛА	RTN:		
This	form provides ce	ertifications for the follo	owing data set: S	SB82475-01		
Matr	ices: Ground W	ater				
CAM	l Protocol					
/	8260 VOC 7470/7471 Hg MassDEP VPH 8081 Pesticides 7196 Hex Cr		MassDEP APH			
	AM II A	CAM III B	CAM IV A	CAM V B	CAM VI B	CAM IX A
			8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B	
	010 Metals AM III A			6860 Perchlorate CAM VIII B		
		Affirmative response	s to questions A through	F are required for "Presu		
A	Were all samples received in a condition consistent with those described on the Chain of Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?				✓ Yes No	
B	B Were the analytical method(s) and all associated QC requirements specified in the selected CAM ✓ Yes				✓ Yes No	
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?				✓ Yes No	
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?				✓ Yes No	
E	a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? Yes					
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to questions A through E)?				✓ Yes No	
		Responses to que	stions G, H and I below ar	re required for "Presump	tive Certainty" status	
G	Were the reporti	ing limits at or below all	CAM reporting limits spe	cified in the selected CAN	A protocol(s)?	✓ Yes No
		at achieve "Presumptive (in 310 CMR 40. 1056 (2)(k	Certainty" status may not nec and WSC-07-350.	cessarily meet the data usabi	lity and representativeness	
Н	Were all QC per	rformance standards spe	cified in the CAM protoco	l(s) achieved?		Yes 🗸 No
Ι	Were results rep	ported for the complete a	nalyte list specified in the	selected CAM protocol(s))?	Yes 🗸 No
All ne	gative responses ar	re addressed in a case nar	rative on the cover page of th	is report.		
			lities of perjury that, based u cal report is, to the best of my			ing the
					Ariole L	eja
					Nicole Leja Laboratory Director	r

Laboratory Director Date: 12/31/2013

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received -0.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

Cancelled EPH Analysis Case Narrative:

Analysis for PCBs, TPH 1664 and EPH were requested for this work order, however only two amber liters were submitted. The sample was prepared for PCBs and TPH 1664 from the available volume. The EPH analysis has been cancelled due to insufficient volume.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1312093

Analyte quantified by quadratic equation type calibration.

1,1,2,2-Tetrachloroethane
1,1,2-Trichlorotrifluoroethane (Freon 113)
1,2,3-Trichlorobenzene
1,2,4-Trimethylbenzene
1,2-Dibromo-3-chloropropane
1,3,5-Trimethylbenzene
Bromoform
Carbon disulfide
Carbon tetrachloride
cis-1,3-Dichloropropene
Dibromochloromethane
Naphthalene
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
trans-1,3-Dichloropropene
trans-1,4-Dichloro-2-butene
Trichlorofluoromethane (Freon 11)
Vinyl chloride

SW846 8260C

Calibration:

1312093

This affected the following samples:

1331163-BLK1 1331163-BS1 1331163-BSD1 MW-1 S315780-CCV1 S315794-ICV1

Samples:

S315780-CCV1

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Acetone (-21.2%)

This affected the following samples:

1331163-BLK1 1331163-BS1 1331163-BSD1 MW-1

Sample Acceptance Check Form

Client:	Environmental Compliance Services - Worcester, MA
Project:	CFI #0006- Westminister, MA / 03-221324
Work Order:	SB82475
Sample(s) received on:	12/23/2013
Received by:	Jessica Hoffman

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

- 1. Were custody seals present?
- 2. Were custody seals intact?
- 3. Were samples received at a temperature of $\leq 6^{\circ}$ C?
- 4. Were samples cooled on ice upon transfer to laboratory representative?
- 5. Were samples refrigerated upon transfer to laboratory representative?
- 6. Were sample containers received intact?
- 7. Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?
- 8. Were samples accompanied by a Chain of Custody document?
- 9. Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?
- 10. Did sample container labels agree with Chain of Custody document?
- 11. Were samples received within method-specific holding times?

\checkmark	

<u>Sample I</u> MW-1 SB82475	dentification -01			<u>Client F</u> 03-22			<u>Matrix</u> Ground Wa		ection Date 3-Dec-13 12			<u>ceived</u> Dec-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Org	Organic Compounds anic Compounds by SW846 8260 by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00		µg/l	1.00	0.65	1	SW846 8260C	28-Dec-13	28-Dec-13	GMA	1331163	
67-64-1	Acetone	< 10.0		µg/l	10.0	2.56	1	н		н	"		
107-13-1	Acrylonitrile	< 0.50		µg/l	0.50	0.48	1	u		н	"		
71-43-2	Benzene	< 1.00		µg/l	1.00	0.67	1	н		н	"		
108-86-1	Bromobenzene	< 1.00		µg/l	1.00	0.72	1	н		н	"		
74-97-5	Bromochloromethane	< 1.00		µg/l	1.00	0.71	1	н		н	"		
75-27-4	Bromodichloromethane	< 0.50		µg/l	0.50	0.48	1	н		н	"		
75-25-2	Bromoform	< 1.00		µg/l	1.00	0.60	1	н		н	"		
74-83-9	Bromomethane	< 2.00		µg/l	2.00	1.14	1	н		н	"		
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	1.93	1						
104-51-8	n-Butylbenzene	< 1.00		µg/l	1.00	0.56	1	н		н	"		
135-98-8	sec-Butylbenzene	< 1.00		µg/l	1.00	0.82	1						
98-06-6	tert-Butylbenzene	< 1.00		µg/l	1.00	0.74	1	н		н			
75-15-0	Carbon disulfide	< 2.00		µg/l	2.00	1.28	1						
56-23-5	Carbon tetrachloride	< 1.00		µg/l	1.00	0.55	1						
108-90-7	Chlorobenzene	< 1.00		µg/l	1.00	0.65	1						
75-00-3	Chloroethane	< 2.00		µg/l	2.00	1.00	1				"		
67-66-3	Chloroform	< 1.00		µg/l	1.00	0.69	1	н		н	"		
74-87-3	Chloromethane	< 2.00		µg/l	2.00	1.47	1	н		н	"		
95-49-8	2-Chlorotoluene	< 1.00		µg/l	1.00	0.79	1	н		н	"		
106-43-4	4-Chlorotoluene	< 1.00		µg/l	1.00	0.73	1	н		н	"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00		µg/l	2.00	1.20	1				"		
124-48-1	Dibromochloromethane	< 0.50		µg/l	0.50	0.34	1	н		н	"		
106-93-4	1,2-Dibromoethane (EDB)	< 0.50		µg/l	0.50	0.36	1	н		н			
74-95-3	Dibromomethane	< 1.00		µg/l	1.00	0.67	1						
95-50-1	1,2-Dichlorobenzene	< 1.00		µg/l	1.00	0.67	1	н		н	"		
541-73-1	1,3-Dichlorobenzene	< 1.00		µg/l	1.00	0.71	1				"		
106-46-7	1,4-Dichlorobenzene	< 1.00		µg/l	1.00	0.62	1	н		н			
75-71-8	Dichlorodifluoromethane (Freon12)	2.23		µg/I	2.00	0.45	1				"		
75-34-3	1,1-Dichloroethane	< 1.00		µg/l	1.00	0.68	1	н		н	"		
107-06-2	1,2-Dichloroethane	< 1.00		µg/l	1.00	0.78	1	н		н	"		
75-35-4	1,1-Dichloroethene	< 1.00		µg/l	1.00	0.49	1	н		н	"		
156-59-2	cis-1,2-Dichloroethene	< 1.00		µg/l	1.00	0.72	1	н		н	"		
156-60-5	trans-1,2-Dichloroethene	< 1.00		µg/l	1.00	0.83	1	н		н	"		
78-87-5	1,2-Dichloropropane	< 1.00		µg/l	1.00	0.77	1	н		н	"		
142-28-9	1,3-Dichloropropane	< 1.00		µg/l	1.00	0.81	1				"		
594-20-7	2,2-Dichloropropane	< 1.00		µg/I	1.00	0.87	1	н		н	"		
563-58-6	1,1-Dichloropropene	< 1.00		µg/l	1.00	0.64	1				"		
10061-01-5	cis-1,3-Dichloropropene	< 0.50		µg/l	0.50	0.36	1	н			"		
10061-02-6	trans-1,3-Dichloropropene	< 0.50		μg/l	0.50	0.50	1	н			"		
100-41-4	Ethylbenzene	< 1.00		μg/l	1.00	0.95	1				"		
87-68-3	Hexachlorobutadiene	< 0.50		μg/l	0.50	0.49	1				"		
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	0.66	1	I		н	"		

MW-1 SB82475	-01				<u>Project #</u> 21324		<u>Matrix</u> Ground Wa		ection Date 3-Dec-13 12			<u>ceived</u> Dec-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
	Organic Compounds												
	anic Compounds by SW846 8260 by method SW846 5030 V												
8-82-8	Isopropylbenzene	< 1.00		μg/l	1.00	0.62	1	SW846 8260C	28-Dec-13	28-Dec-13	GMA	1331163	
9-87-6	4-Isopropyltoluene	< 1.00		μg/l	1.00	0.61	1	"	"	"	"	"	
634-04-4	Methyl tert-butyl ether	< 1.00		μg/l	1.00	0.65	1	н					
08-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.76	1	n		n			
5-09-2	Methylene chloride	< 2.00		μg/l	2.00	0.95	1				"		
1-20-3	Naphthalene	< 1.00		μg/l	1.00	0.58	1				"		
03-65-1	n-Propylbenzene	< 1.00		μg/l	1.00	0.76	1				"		
00-42-5	Styrene	< 1.00		μg/l	1.00	0.62	1	н			"		
30-20-6	1,1,1,2-Tetrachloroethane	< 1.00		µg/l	1.00	0.67	1	н		н	"		
9-34-5	1,1,2,2-Tetrachloroethane	< 0.50		µg/l	0.50	0.32	1	н		н			
27-18-4	Tetrachloroethene	< 1.00		µg/l	1.00	0.74	1				"		
08-88-3	Toluene	< 1.00		µg/l	1.00	0.81	1				"		
7-61-6	1,2,3-Trichlorobenzene	< 1.00		µg/l	1.00	0.38	1	н			"		
20-82-1	1,2,4-Trichlorobenzene	< 1.00		µg/l	1.00	0.36	1	н		н	"		
08-70-3	1,3,5-Trichlorobenzene	< 1.00		µg/l	1.00	0.78	1	н		н	"		
1-55-6	1,1,1-Trichloroethane	< 1.00		µg/l	1.00	0.58	1			н	"		
9-00-5	1,1,2-Trichloroethane	< 1.00		µg/l	1.00	0.64	1	н			"		
9-01-6	Trichloroethene	< 1.00		µg/l	1.00	0.76	1	н			"		
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00	0.63	1			u	"		
6-18-4	1,2,3-Trichloropropane	< 1.00		μg/l	1.00	0.74	1	н			"		
5-63-6	1,2,4-Trimethylbenzene	< 1.00		µg/l	1.00	0.76	1	н			"		
08-67-8	1,3,5-Trimethylbenzene	< 1.00		μg/l	1.00	0.74	1	н			"		
5-01-4	Vinyl chloride	< 1.00		μg/l	1.00	0.81	1	н		н	"		
79601-23-1	m,p-Xylene	< 2.00		µg/l	2.00	1.64	1			н	"		
5-47-6	o-Xylene	< 1.00		µg/l	1.00	0.88	1			н	"		
09-99-9	Tetrahydrofuran	< 2.00		µg/l	2.00	1.44	1	II		н	"		
0-29-7	Ethyl ether	< 1.00		µg/l	1.00	0.69	1				"		
94-05-8	Tert-amyl methyl ether	< 1.00		µg/l	1.00	0.72	1				"		
37-92-3	Ethyl tert-butyl ether	< 1.00		µg/l	1.00	0.78	1				"		
08-20-3	Di-isopropyl ether	< 1.00		µg/l	1.00	0.73	1				"		
5-65-0	Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0	8.64	1			u	u	•	
23-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	12.0	1	H			"		
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.00		µg/l	5.00	0.74	1	11			"		
4-17-5	Ethanol	< 400		µg/l	400	35.0	1	н		H	"		
Surrogate red	coveries:												
60-00-4	4-Bromofluorobenzene	94			70-13	0 %		н			"		
037-26-5	Toluene-d8	101			70-13	0 %		н					
7060-07-0	1,2-Dichloroethane-d4	103			70-13	0 %		н					
868-53-7	Dibromofluoromethane	102			70-13	0 %		н		н	"		
Semivolat	ile Organic Compounds by (GC											

Prepared by method SW846 3510C

<u>Sample I</u> MW-1 SB82475	dentification -01			<u>Project #</u> 21324		<u>Matrix</u> Ground Wa		ection Date B-Dec-13 12			<u>ceived</u> Dec-13	
CAS No.	Analyte(s)	Result Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC										
Polychlorina	ated Biphenyls											
Prepared	by method SW846 3510C											
12674-11-2	Aroclor-1016	< 0.225	µg/l	0.225	0.0826	1	SW846 8082A	26-Dec-13	27-Dec-13	IMR	1330940	
11104-28-2	Aroclor-1221	< 0.225	µg/l	0.225	0.142	1			н			
11141-16-5	Aroclor-1232	< 0.225	µg/l	0.225	0.117	1						
53469-21-9	Aroclor-1242	< 0.225	µg/l	0.225	0.134	1			н			
12672-29-6	Aroclor-1248	< 0.225	µg/l	0.225	0.117	1			н			
11097-69-1	Aroclor-1254	< 0.225	µg/l	0.225	0.147	1						
11096-82-5	Aroclor-1260	< 0.225	µg/l	0.225	0.123	1			н			
37324-23-5	Aroclor-1262	< 0.225	µg/l	0.225	0.155	1	н					
11100-14-4	Aroclor-1268	< 0.225	µg/l	0.225	0.0927	1	I			"		
Surrogate ree	coveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90		30-15	0 %				n	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100		30-15	i0 %		u			"		
2051-24-3	Decachlorobiphenyl (Sr)	105		30-15	0 %							
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105		30-15	0 %					"		
Extractab	le Petroleum Hydrocarbons											
	Non-polar material (SGT-HEM)	< 1.1	mg/l	1.1	0.6	1	EPA 1664B	26-Dec-13	29-Dec-13	JK	1330937	
Total Met	als by EPA 200/6000 Series N	Methods										
	Preservation	Lab Preserved	N/A			1	EPA 200/6000 methods	24-Dec-13	24-Dec-13	LNB	1330897	
Total Met	als by EPA 6000/7000 Series	Methods										
7439-89-6	Iron	1.54	mg/l	0.0150	0.0074	1	SW846 6010C	27-Dec-13	27-Dec-13	tbc	1331053	
7439-92-1	Lead	< 0.0075	mg/l	0.0075	0.0020	1	"		u	"		
General (Chemistry Parameters											
	Total Suspended Solids	52.0	mg/l	5.0	1.7	1	SM2540D	26-Dec-13	27-Dec-13	CMB	1330957	х

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
• ()	Result	1 145	0.1160	NDL	Level	result	,	Liinto		LIIII
atch 1331163 - SW846 5030 Water MS					-	00004 0 * .	Tode OO D	0		
Blank (1331163-BLK1)	. 1.00		#	4.00	Pre	pareo & Analy	zed: 28-Dec-1	<u>ی</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone	< 1.00 < 10.0		µg/l	1.00 10.0						
			µg/l	10.0 0.50						
Acrylonitrile Benzene	< 0.50 < 1.00		µg/l	0.50 1.00						
Bromobenzene	< 1.00 < 1.00		μg/l μg/l	1.00						
Bromochloromethane	< 1.00 < 1.00		μg/i μg/l	1.00						
Bromodichloromethane	< 0.50		μg/i μg/i	0.50						
Bromoform	< 1.00		μg/i μg/l	1.00						
Bromomethane	< 2.00		μg/i μg/i	2.00						
2-Butanone (MEK)	< 10.0		μg/i	10.0						
n-Butylbenzene	< 1.00		μg/i	1.00						
sec-Butylbenzene	< 1.00		μg/l	1.00						
tert-Butylbenzene	< 1.00		μg/l	1.00						
Carbon disulfide	< 2.00		μg/l	2.00						
Carbon tetrachloride	< 1.00		µg/l	1.00						
Chlorobenzene	< 1.00		μg/l	1.00						
Chloroethane	< 2.00		μg/I	2.00						
Chloroform	< 1.00		μg/I	1.00						
Chloromethane	< 2.00		μg/I	2.00						
2-Chlorotoluene	< 1.00		μg/I	1.00						
4-Chlorotoluene	< 1.00		μg/l	1.00						
1,2-Dibromo-3-chloropropane	< 2.00		μg/I	2.00						
Dibromochloromethane	< 0.50		μg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50		μg/l	0.50						
Dibromomethane	< 1.00		μg/l	1.00						
1,2-Dichlorobenzene	< 1.00		μg/l	1.00						
1,3-Dichlorobenzene	< 1.00		µg/I	1.00						
1,4-Dichlorobenzene	< 1.00		µg/I	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00						
1,1-Dichloroethane	< 1.00		μg/l	1.00						
1,2-Dichloroethane	< 1.00		µg/l	1.00						
1,1-Dichloroethene	< 1.00		µg/l	1.00						
cis-1,2-Dichloroethene	< 1.00		μg/I	1.00						
trans-1,2-Dichloroethene	< 1.00		μg/l	1.00						
1,2-Dichloropropane	< 1.00		μg/l	1.00						
1,3-Dichloropropane	< 1.00		μg/l	1.00						
2,2-Dichloropropane	< 1.00		μg/l	1.00						
1,1-Dichloropropene	< 1.00		µg/l	1.00						
cis-1,3-Dichloropropene	< 0.50		µg/l	0.50						
trans-1,3-Dichloropropene Ethylbenzene	< 0.50 < 1.00		µg/l	0.50						
Etnyibenzene Hexachlorobutadiene	< 1.00 < 0.50		µg/l	1.00 0.50						
2-Hexanone (MBK)	< 0.50 < 10.0		µg/l	0.50 10.0						
Isopropylbenzene	< 10.0 < 1.00		µg/l	10.0						
4-Isopropyltoluene	< 1.00		µg/l	1.00						
Methyl tert-butyl ether	< 1.00		μg/l μg/l	1.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/I	10.0						
Methylene chloride	< 2.00		μg/i μg/i	2.00						
Naphthalene	< 1.00		μg/i	1.00						
n-Propylbenzene	< 1.00		μg/l	1.00						
Styrene	< 1.00		μg/l	1.00						
1,1,1,2-Tetrachloroethane	< 1.00		μg/l	1.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1331163 - SW846 5030 Water MS										
Blank (1331163-BLK1)					Pre	pared & Analy	zed: 28-Dec-13	3		
1,1,2,2-Tetrachloroethane	< 0.50		µg/l	0.50						
Tetrachloroethene	< 1.00		µg/l	1.00						
Toluene	< 1.00		µg/l	1.00						
1,2,3-Trichlorobenzene	< 1.00		µg/l	1.00						
1,2,4-Trichlorobenzene	< 1.00		µg/l	1.00						
1,3,5-Trichlorobenzene	< 1.00		µg/l	1.00						
1,1,1-Trichloroethane	< 1.00		µg/l	1.00						
1,1,2-Trichloroethane	< 1.00		µg/l	1.00						
Trichloroethene	< 1.00		μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00						
1,2,3-Trichloropropane	< 1.00		μg/l	1.00						
1,2,4-Trimethylbenzene	< 1.00		μg/l	1.00						
1,3,5-Trimethylbenzene	< 1.00		μg/l	1.00						
Vinyl chloride	< 1.00		μg/l	1.00						
m,p-Xylene	< 2.00		μg/l	2.00						
o-Xylene	< 1.00		μg/i μg/i	1.00						
Tetrahydrofuran	< 2.00		μg/i	2.00						
Ethyl ether	< 1.00		μg/l	1.00						
Tert-amyl methyl ether	< 1.00			1.00						
	< 1.00 < 1.00		µg/l	1.00						
Ethyl tert-butyl ether	< 1.00 < 1.00		µg/l	1.00						
Di-isopropyl ether			µg/l							
Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0						
1,4-Dioxane	< 20.0		µg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.00		µg/l	5.00						
Ethanol	< 400		µg/l	400						
Surrogate: 4-Bromofluorobenzene	46.8		µg/l		50.0		94	70-130		
Surrogate: Toluene-d8	50.5		µg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.9		µg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	49.2		µg/l		50.0		98	70-130		
LCS (1331163-BS1)					Pre	pared & Analy	zed: 28-Dec-13	3		
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.9		µg/l		20.0		99	70-130		
Acetone	24.4		µg/l		20.0		122	70-130		
Acrylonitrile	19.7		µg/l		20.0		98	70-130		
Benzene	21.1		µg/l		20.0		105	70-130		
Bromobenzene	20.6		µg/l		20.0		103	70-130		
Bromochloromethane	19.5		µg/l		20.0		98	70-130		
Bromodichloromethane	21.9		µg/l		20.0		110	70-130		
Bromoform	22.5		µg/l		20.0		112	70-130		
Bromomethane	20.8		μg/l		20.0		104	70-130		
2-Butanone (MEK)	21.4		µg/l		20.0		107	70-130		
n-Butylbenzene	20.3		μg/l		20.0		101	70-130		
sec-Butylbenzene	20.2		µg/l		20.0		101	70-130		
tert-Butylbenzene	20.4		μg/l		20.0		102	70-130		
Carbon disulfide	20.3		μg/I		20.0		102	70-130		
Carbon tetrachloride	20.8		μg/l		20.0		104	70-130		
Chlorobenzene	20.7		µg/l		20.0		104	70-130		
Chloroethane	20.0		μg/l		20.0		100	70-130		
Chloroform	20.0		μg/l		20.0		100	70-130		
Chloromethane	19.7		μg/l		20.0		99	70-130		
2-Chlorotoluene	21.8				20.0		99 109	70-130		
			µg/l							
4-Chlorotoluene	22.2		µg/l		20.0		111	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1331163 - SW846 5030 Water MS		-								
LCS (1331163-BS1)					Pre	nared & Analy	zed: 28-Dec-1	3		
1,2-Dibromo-3-chloropropane	21.9		µg/l		20.0	paroa a rinary	110	<u>-</u> 70-130		
Dibromochloromethane	21.1		μg/l		20.0		106	70-130		
1,2-Dibromoethane (EDB)	21.4		μg/l		20.0		107	70-130		
Dibromomethane	21.1		μg/l		20.0		106	70-130		
1,2-Dichlorobenzene	20.6		μg/l		20.0		103	70-130		
1,3-Dichlorobenzene	20.4		µg/l		20.0		102	70-130		
1,4-Dichlorobenzene	20.5		µg/l		20.0		103	70-130		
Dichlorodifluoromethane (Freon12)	21.1		μg/l		20.0		106	70-130		
1,1-Dichloroethane	21.1		μg/l		20.0		105	70-130		
1,2-Dichloroethane	19.9		μg/l		20.0		100	70-130		
1,1-Dichloroethene	21.0		μg/l		20.0		105	70-130		
cis-1,2-Dichloroethene	20.9		µg/l		20.0		105	70-130		
trans-1,2-Dichloroethene	21.0		μg/l		20.0		105	70-130		
1,2-Dichloropropane	20.2		μg/l		20.0		101	70-130		
1,3-Dichloropropane	20.3		μg/l		20.0		101	70-130		
2,2-Dichloropropane	25.0		μg/l		20.0		125	70-130		
1,1-Dichloropropene	22.0		μg/I		20.0		110	70-130		
cis-1,3-Dichloropropene	21.3		μg/I		20.0		107	70-130		
trans-1,3-Dichloropropene	22.1		μg/l		20.0		111	70-130		
Ethylbenzene	21.9		µg/l		20.0		110	70-130		
Hexachlorobutadiene	20.1		μg/l		20.0		100	70-130		
2-Hexanone (MBK)	18.9		µg/l		20.0		95	70-130		
Isopropylbenzene	22.3		μg/l		20.0		111	70-130		
4-Isopropyltoluene	22.4		µg/l		20.0		112	70-130		
Methyl tert-butyl ether	21.4		μg/l		20.0		107	70-130		
4-Methyl-2-pentanone (MIBK)	18.8		μg/l		20.0		94	70-130		
Methylene chloride	20.5		μg/l		20.0		103	70-130		
Naphthalene	20.2		μg/l		20.0		101	70-130		
n-Propylbenzene	22.5		μg/l		20.0		113	70-130		
Styrene	22.4		μg/l		20.0		112	70-130		
1,1,1,2-Tetrachloroethane	23.3		μg/l		20.0		117	70-130		
1,1,2,2-Tetrachloroethane	20.4		μg/l		20.0		102	70-130		
Tetrachloroethene	21.7		μg/l		20.0		109	70-130		
Toluene	20.8		μg/l		20.0		104	70-130		
1,2,3-Trichlorobenzene	22.4		μg/l		20.0		112	70-130		
1,2,4-Trichlorobenzene	22.1		µg/l		20.0		111	70-130		
1,3,5-Trichlorobenzene	21.2		µg/l		20.0		106	70-130		
1,1,1-Trichloroethane	22.6		µg/l		20.0		113	70-130		
1,1,2-Trichloroethane	19.9		µg/l		20.0		100	70-130		
Trichloroethene	20.2		µg/l		20.0		101	70-130		
Trichlorofluoromethane (Freon 11)	19.9		µg/l		20.0		99	70-130		
1,2,3-Trichloropropane	20.9		µg/l		20.0		105	70-130		
1,2,4-Trimethylbenzene	20.4		µg/l		20.0		102	70-130		
1,3,5-Trimethylbenzene	20.5		µg/l		20.0		103	70-130		
Vinyl chloride	20.0		µg/l		20.0		100	70-130		
m,p-Xylene	44.8		µg/l		40.0		112	70-130		
o-Xylene	22.7		µg/l		20.0		114	70-130		
Tetrahydrofuran	20.2		μg/l		20.0		101	70-130		
Ethyl ether	20.4		µg/l		20.0		102	70-130		
Tert-amyl methyl ether	18.6		µg/l		20.0		93	70-130		
Ethyl tert-butyl ether	22.0		µg/l		20.0		110	70-130		
Di-isopropyl ether	21.0		µg/l		20.0		105	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte(s)	Kesuit	Flag	Units	KDL	Level	Kesuit	70KEC	Linns	KFD	LIIIII
Batch 1331163 - SW846 5030 Water MS										
LCS (1331163-BS1)					Pre	pared & Analy	zed: 28-Dec-1	<u>3</u>		
Tert-Butanol / butyl alcohol	202		µg/l		200		101	70-130		
1,4-Dioxane	211		µg/l		200		105	70-130		
trans-1,4-Dichloro-2-butene	21.3		µg/l		20.0		107	70-130		
Ethanol	382		μg/l		400		95	70-130		
Surrogate: 4-Bromofluorobenzene	51.5		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	49.9		µg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.0		µg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	50.4		µg/l		50.0		101	70-130		
LCS Dup (1331163-BSD1)					Pre	pared & Analy	zed: 28-Dec-1	<u>3</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	18.7		µg/l		20.0		93	70-130	6	20
Acetone	24.8		µg/l		20.0		124	70-130	2	20
Acrylonitrile	20.4		µg/l		20.0		102	70-130	4	20
Benzene	20.0		μg/l		20.0		100	70-130	5	20
Bromobenzene	20.0		μg/l		20.0		100	70-130	3	20
Bromochloromethane	19.0		μg/I		20.0		95	70-130	3	20
Bromodichloromethane	21.0		μg/l		20.0		105	70-130	4	20
Bromoform	21.8		μg/l		20.0		109	70-130	3	20
Bromomethane	20.0		μg/l		20.0		100	70-130	4	20
2-Butanone (MEK)	22.7		μg/I		20.0		113	70-130	5	20
n-Butylbenzene	18.9		μg/l		20.0		95	70-130	7	20
sec-Butylbenzene	19.0		μg/l		20.0		95	70-130	6	20
tert-Butylbenzene	18.8		μg/l		20.0		94	70-130	8	20
Carbon disulfide	18.8		μg/l		20.0		94	70-130	8	20
Carbon tetrachloride	19.5		μg/l		20.0		98	70-130	6	20
Chlorobenzene	19.3		μg/l		20.0		97	70-130	7	20
Chloroethane	19.2		μg/l		20.0		96	70-130	4	20
Chloroform	19.3		μg/l		20.0		96	70-130	4	20
Chloromethane	18.6		μg/l		20.0		93	70-130	6	20
2-Chlorotoluene	20.2		μg/l		20.0		101	70-130	8	20
4-Chlorotoluene	20.2		μg/l		20.0		101	70-130	8	20
1,2-Dibromo-3-chloropropane	20.0				20.0		103	70-130	0.7	20
Dibromochloromethane	20.6		µg/l		20.0		103	70-130		
1,2-Dibromoethane (EDB)	20.0		µg/l				103		3	20
Dibromomethane			µg/l		20.0			70-130	3	20
1,2-Dichlorobenzene	20.0		µg/l		20.0		100	70-130	6	20
,	19.7		µg/l		20.0		98	70-130	4	20
1,3-Dichlorobenzene	20.2		µg/l		20.0		101	70-130	0.6	20
1,4-Dichlorobenzene	18.5		µg/l		20.0		93	70-130	10	20
Dichlorodifluoromethane (Freon12)	19.5		µg/l		20.0		97	70-130	8	20
1,1-Dichloroethane	19.9		µg/l		20.0		100	70-130	6	20
1,2-Dichloroethane	19.7		µg/l		20.0		98	70-130	1	20
1,1-Dichloroethene	19.8		µg/l		20.0		99	70-130	6	20
cis-1,2-Dichloroethene	20.1		µg/l		20.0		100	70-130	4	20
trans-1,2-Dichloroethene	20.2		µg/l		20.0		101	70-130	4	20
1,2-Dichloropropane	19.5		μg/l		20.0		98	70-130	4	20
1,3-Dichloropropane	20.2		μg/l		20.0		101	70-130	0.5	20
2,2-Dichloropropane	23.0		µg/l		20.0		115	70-130	9	20
1,1-Dichloropropene	20.4		µg/l		20.0		102	70-130	7	20
cis-1,3-Dichloropropene	20.8		μg/l		20.0		104	70-130	3	20
trans-1,3-Dichloropropene	21.4		µg/l		20.0		107	70-130	3	20
Ethylbenzene	20.4		µg/l		20.0		102	70-130	7	20
Hexachlorobutadiene	19.7		µg/l		20.0		98	70-130	2	20

$1 + \langle \rangle$	D L	E.	TT 1-	*0.51	Spike	Source	0/DEC	%REC	DPD	RPE
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
atch 1331163 - SW846 5030 Water MS										
LCS Dup (1331163-BSD1)					Pre	pared & Analy	zed: 28-Dec-13	<u>3</u>		
2-Hexanone (MBK)	19.0		µg/I		20.0		95	70-130	0.3	20
Isopropylbenzene	20.8		µg/l		20.0		104	70-130	7	20
4-Isopropyltoluene	21.0		µg/l		20.0		105	70-130	6	20
Methyl tert-butyl ether	20.6		µg/l		20.0		103	70-130	4	20
4-Methyl-2-pentanone (MIBK)	20.0		µg/l		20.0		100	70-130	6	20
Methylene chloride	19.8		µg/l		20.0		99	70-130	4	20
Naphthalene	20.0		µg/l		20.0		100	70-130	0.8	20
n-Propylbenzene	20.9		µg/l		20.0		104	70-130	8	20
Styrene	20.8		µg/l		20.0		104	70-130	8	20
1,1,1,2-Tetrachloroethane	21.9		μg/l		20.0		110	70-130	6	20
1,1,2,2-Tetrachloroethane	20.3		μg/l		20.0		102	70-130	0.2	20
Tetrachloroethene	20.0		μg/l		20.0		100	70-130	8	20
Toluene	19.7		µg/l		20.0		99	70-130	5	20
1,2,3-Trichlorobenzene	21.6		μg/l		20.0		108	70-130	4	20
1,2,4-Trichlorobenzene	20.9		μg/I		20.0		105	70-130	6	20
1,3,5-Trichlorobenzene	20.0		μg/l		20.0		100	70-130	6	20
1,1,1-Trichloroethane	21.4		μg/I		20.0		107	70-130	6	20
1,1,2-Trichloroethane	20.3		μg/l		20.0		101	70-130	2	20
Trichloroethene	19.2		μg/l		20.0		96	70-130	5	20
Trichlorofluoromethane (Freon 11)	18.9		µg/l		20.0		95	70-130	5	20
1,2,3-Trichloropropane	20.4		μg/l		20.0		102	70-130	2	20
1,2,4-Trimethylbenzene	19.1		μg/l		20.0		96	70-130	7	20
1,3,5-Trimethylbenzene	18.9		µg/l		20.0		95	70-130	8	20
Vinyl chloride	18.2		μg/l		20.0		91	70-130	9	20
m,p-Xylene	41.7		μg/l		40.0		104	70-130	7	20
o-Xylene	21.2				20.0		106	70-130	7	20
Tetrahydrofuran	19.6		μg/l μg/l		20.0		98	70-130	3	20
Ethyl ether	19.0				20.0		90 99	70-130	3	20
Tert-amyl methyl ether	19.9		µg/l		20.0		99 89	70-130	3	20 20
Ethyl tert-butyl ether	21.4		µg/l		20.0		107	70-130	4	20
Di-isopropyl ether	21.4 20.2		µg/l		20.0		107	70-130	3	20
			µg/l							
Tert-Butanol / butyl alcohol	199		µg/l		200		100	70-130	1	20
1,4-Dioxane	207		μg/l		200		103	70-130	2	20
trans-1,4-Dichloro-2-butene	19.5		µg/l		20.0		97	70-130	9	20
Ethanol	378		µg/l		400		95	70-130	1	20
Surrogate: 4-Bromofluorobenzene	50.2		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	50.3		µg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.7		µg/l		50.0		99	70-130		
Surrogate: Dibromofluoromethane	50.6		µg/l		50.0		101	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
laryte(s)	Kesun	riag	Units	KDL	Level	Result	70KEC	Limits	KPD	Lim
atch 1330940 - SW846 3510C										
<u>Blank (1330940-BLK1)</u>					Pre	pared: 26-Dec	c-13 Analyzed	: 27-Dec-13		
Aroclor-1016	< 0.200		µg/l	0.200						
Aroclor-1016 [2C]	< 0.200		µg/l	0.200						
Aroclor-1221	< 0.200		µg/l	0.200						
Aroclor-1221 [2C]	< 0.200		μg/l	0.200						
Aroclor-1232	< 0.200		μg/l	0.200						
Aroclor-1232 [2C]	< 0.200		µg/l	0.200						
Aroclor-1242	< 0.200		µg/l	0.200						
Aroclor-1242 [2C]	< 0.200		µg/l	0.200						
Aroclor-1248	< 0.200		µg/l	0.200						
Aroclor-1248 [2C]	< 0.200		µg/l	0.200						
Aroclor-1254	< 0.200		µg/l	0.200						
Aroclor-1254 [2C]	< 0.200		µg/l	0.200						
Aroclor-1260	< 0.200		µg/l	0.200						
Aroclor-1260 [2C]	< 0.200		µg/l	0.200						
Aroclor-1262	< 0.200		μg/l	0.200						
Aroclor-1262 [2C]	< 0.200		μg/l	0.200						
Aroclor-1268	< 0.200		μg/l	0.200						
Aroclor-1268 [2C]	< 0.200		µg/l	0.200						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.160		µg/l		0.200		80	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.180		µg/l		0.200		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.180		µg/l		0.200		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.130		µg/l		0.200		65	30-150		
LCS (1330940-BS1)					Pre	pared: 26-Dec	-13 Analyzed	: 27-Dec-13		
Aroclor-1016	2.20		µg/l	0.200	2.50		88	40-140		
Aroclor-1016 [2C]	2.23		μg/l	0.200	2.50		89	40-140		
Aroclor-1260	2.19		μg/l	0.200	2.50		88	40-140		
Aroclor-1260 [2C]	1.92		µg/l	0.200	2.50		77	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.180		µg/l		0.200		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.200		μg/l		0.200		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.210		μg/l		0.200		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.160		µg/l		0.200		80	30-150		
LCS Dup (1330940-BSD1)					Pre	pared: 26-Dec	-13 Analyzed	: 27-Dec-13		
Aroclor-1016	2.19		µg/l	0.200	2.50		88	40-140	0.5	20
Aroclor-1016 [2C]	2.23		μg/l	0.200	2.50		89	40-140	0	20
Aroclor-1260	2.19		μg/l	0.200	2.50		88	40-140	0	20
Aroclor-1260 [2C]	1.98		μg/l	0.200	2.50		79	40-140	3	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.180		µg/l		0.200		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.200		μg/l		0.200		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.200		μg/l		0.200		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.160		μg/l		0.200		80	30-150		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1330937 - SW846 3510C										
Blank (1330937-BLK1)					Pre	pared: 26-Dec	-13 Analyzed	: 29-Dec-13		
Non-polar material (SGT-HEM)	< 1.0		mg/l	1.0						
LCS (1330937-BS1)					Pre	pared: 26-Dec	-13 Analyzed	: 29-Dec-13		
Non-polar material (SGT-HEM)	42.5		mg/l	1.0	49.2		86	83-101		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1331053 - SW846 3005A										
Blank (1331053-BLK1)					Pre	pared & Analy	zed: 27-Dec-1	<u>3</u>		
Iron	< 0.0150		mg/l	0.0150						
Lead	< 0.0075		mg/l	0.0075						
LCS (1331053-BS1)					Pre	pared & Analy	zed: 27-Dec-1	<u>3</u>		
Iron	1.31		mg/l	0.0150	1.25		105	85-115		
Lead	1.22		mg/l	0.0075	1.25		97	85-115		
LCS Dup (1331053-BSD1)					Pre	pared & Analy	zed: 27-Dec-1	<u>3</u>		
Iron	1.31		mg/l	0.0150	1.25		105	85-115	0	20
Lead	1.21		mg/l	0.0075	1.25		97	85-115	0.7	20
Duplicate (1331053-DUP1)			Source: SI	382475-01	Pre	pared & Analy	zed: 27-Dec-1	<u>3</u>		
Iron	1.69		mg/l	0.0150		1.54			9	20
Lead	0.0029	J	mg/l	0.0075		0.0030			3	20
<u>Matrix Spike (1331053-MS1)</u>			Source: SI	382475-01	Pre	pared & Analy	zed: 27-Dec-1	3		
Iron	2.99		mg/l	0.0150	1.25	1.54	116	75-125		
Lead	1.20		mg/l	0.0075	1.25	0.0030	95	75-125		
Matrix Spike Dup (1331053-MSD1)			Source: SI	382475-01	Pre	pared & Analy	zed: 27-Dec-1	3		
Iron	2.87		mg/l	0.0150	1.25	1.54	106	75-125	4	20
Lead	1.18		mg/l	0.0075	1.25	0.0030	94	75-125	2	20
Post Spike (1331053-PS1)			Source: SI	382475-01	Pre	pared & Analy	zed: 27-Dec-1	3		
Iron	3.00		mg/l	0.0150	1.25	1.54	116	80-120		
Lead	1.17		mg/l	0.0075	1.25	0.0030	94	80-120		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1330957 - General Preparation										
Blank (1330957-BLK1)					Pre	pared: 26-Dec-	-13 Analyzed	l: 27-Dec-13		
Total Suspended Solids	< 5.0		mg/l	5.0						
LCS (1330957-BS1)					Pre	pared: 26-Dec-	-13 Analyzed	l: 27-Dec-13		
Total Suspended Solids	94.0		mg/l	10.0	100		94	90-110		

Notes and Definitions

dry	Sample results reported on a dry weight basis
NR	Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc. Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel Fuel Oil #4 - includes #4 fuel oil Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil Motor Oil - includes virgin and waste automobile oil Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha Aviation Fuel - includes kerosene, Jet A and JP-4 Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly Wisk

$\begin{array}{c c} & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	Lab Id: Sample Id: Date: Time: 36533475-01 10/23/13 10/23/13 10/21/5 36533475 10/23/13 10/21/5 36533475 10/23/13 10/21/5 36533475 10/23/13 10/21/5 36533475 10/23/13 10/21/5 36533475 10/23/13 10/21/5 36533475 10/23/13 10/21/5 36533475 10/23/13 10/21/5 3653347 10/23/13 10/21/5 3653347 10/23/13 10/21/5 3653347 10/23/13 10/21/5 365347 10/23/13 10/21/5 365347 10/23/13 10/21/5 365347 10/23/13 10/21/5 365347 10/23/13 10/21/5 365347 10/23/13 10/21/5 365347 10/23/14 10/23/14 365347 10/23/14 10/23/14 365347 10/23/14 10/23/14 365347 10/23/14 10/23/14 365347 10/23/14 10/23/14 365347 10/23/14 10/23/14 365347 10/23/14 10/23/14 365347 10/23/14 10/23/14 365347<
$ \begin{array}{c} $	Sample Id: Date: c1 /1W-1 13/23/13 13: 13: 13: 14: 13: 13: 14: 13: 14: 14: 14: 14: 14: 14: 14: 14
$\begin{array}{c} & & & & \\ & & &$	Sample Id: Date: c1 /1W-1 13/23/13 13: 13:
Image: State of the state	Sample Id: Date: cy //W-1 13/23/13 13:
Matriz # of V # of A # of C # of P VOL'S TPH TSS TOTAL TOTAL PLI E R	Sample Id: Date:
TOA Vi mber (lear Gl lastic 826(b) 16(Lear St N Lear	G=Grab C=Composite
Glass lass D SYGC N C	IS
12= 2 2 3 * additional charges may apply 12= 2 2 3 * additional charges may apply MA DEP MCP CAM Report: Yest No Yest No	8= NaHSO ₄ 9= Deionized Water 10=H ₃ PO ₄ 11= DW=Drinking Water GW=Groundwater WW=Wastewater
	$S2O_3$ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH
48761 RQN: Location: 08 Mark of Westerney State: 176 Sampler(s): N. Holmes	Telephone #: 508-756-6151 Project Mgr. Provide Note
03-221324 154 40006	Report To: £(5 Workester, Mc Invoice To:
IN OF CUSTODY RECORD Special Handling: Page 1 of 1 Standard TAT - 7 to 10 business days Page 1 of 1 All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	SPECTRUM ANALYTICAL, INC. Featuring HANBAL TECHNOLOGY

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

Revised Feb 2013

A DOT A DOT A DOT ADDRESS OF ADDRESS		-	Condition upon receipt Custody Seals: Present			-						C			×
mynereus consult. com	nat mlyne) Forn ail to	□ EDD Format	Temp [°] C	Ten	Time: 1330 1595	313	Date:	Ger I		Received by: R M	Recei	And	And by:	In Contraction
0.7 1-1 0.3 H															
for cover up 1 ~															
hatte Ett welle															
* XCanvalled, NO	×	x	2	X	X	ىع	2	a	52	R	12:15		10/23/13	MULT	SP2 Sound
C Other State-specific reporting standards:	PLI	Tota	Total		Voc's	# of P			Matri	Туре	Time:	See 19	Date:	Sample Id:	Lab Id:
<u></u>	3'3	I I re	Leg	by 166	8260	lastic	lmber G	'OA Via					C=Composite	G=Grab C=C	
CT DPH RCP Report: Yes No	*	2	2	466)						e A=Air	SL=Sludge X3=	SO=Soil SL	SW= Surface Water SO: X2=	O=Oil SW= Sun X1=
MA		Analyses:	An			ers:	Containers:		p		WW=Wastewater	WW=W	ater	ater GW=Groundwater	DW=Drinking Water
W: QA/QC Reporting Notes: * additional charges may apply	List preservative code below: Q I Q I	tive co	reserva	List p	ø	HC	7=CH ₃ OH		6=Ascorbic Acid 12=		5=NaOH 11=	4=HNO ₃ 10=H ₃ PO ₄	44	2=HCl 3=H ₂ SO ₄ 9= Deionized Water	1=Na ₂ S2O ₃ 8= NaHSO ₄
	N. Holmes	N	Sampler(s):	Samp			RQN:		18261		P.O. No.:		4ne 151	108-156- Matt lyne	Telephone #: Project Mgr.
Westminssler State: MG	Location: 68 Main H	8 M	ion: 6	Locat						3.2			· · Jeal	2	
6	CFT #0006	2	Site Name:	Site N		2	m / /4a	Shar	Framing ham					WOILCOAR, /19	
Jay .	he {/ee-{0		Project No.:	Proie				CFT	C	e To:	Invoice To:				Report To:
 Standard TAT - 7 to 10 business days Rush TAT - Date Needed: <u>Settys</u> All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed. 	□ Stan	D	OR	C	RE	DY	roj of 1	S. T	F CU Page_	0	CHAIN OF CUSTODY RECORD	CH		SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	SPECTRU
Special Handling:															

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

Revised Feb 2013

Spectrum Analytical

Final Report
 Re-Issued Report
 Revised Report

Report Date: 15-Apr-16 15:20

Laboratory Report

Environmental Compliance Services 997 Millbury Street, Unit G Worcester, MA 01607 Attn: Matt Lyne

Project: CFI - Westminster, MA

Project #: 03-221324

Laboratory ID	<u>Client Sample ID</u>	<u>Matrix</u>	Date Sampled	Date Received
SC19886-01	MW-1	Ground Water	06-Apr-16 09:45	07-Apr-16 14:24

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00098 USDA # S-51435

Authorized by:

June O'Connor Laboratory Director

Eurofins Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 35 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Eu	arofins Spectrum Analyti	cal, Inc.	Project #: 03-221	324	
Proje	ect Location: CFI	- Westminster, MA		RTN:		
This	form provides ce	ertifications for the follo	wing data set:	SC19886-01		
Matr	ices: Ground W	ater				
CAM	l Protocol					
/	260 VOC AM II A	✓ 7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A
/	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B
/	010 Metals AM III A	6020 Metals CAM III D	✓ 8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B
		Affirmative respons	es to questions A through	F are required for Presu	mptive Certainty'status	
A			consistent with those dese field or laboratory, and pr			✓ Yes No
B	Were the analytic protocol(s) follo		sociated QC requirements	specified in the selected (CAM	✓ Yes No
С	· · ·		analytical response action d performance standard no	-	CAM	✓ Yes No
D			all the reporting requirements for the Acquisition and			✓ Yes No
E		-	Vas each method conducte he complete analyte list re	-	lification(s)?	Yes No Yes No
F			nd performance standard 1 ding all "No" responses to			✓ Yes No
		Responses to que	estions G, H and I below	are required for P resump	tive Certainty'status	·
G	Were the reporti	ing limits at or below all	CAM reporting limits spe	cified in the selected CAN	A protocol(s)?	✓ Yes No
		at achieve P resumptive Ce in 310 CMR 40. 1056 (2)(k,	rtainty'status may not neces.) and WSC-07-350.	sarily meet the data usabilit	v and representativeness	
Н	Were all QC per	formance standards spec	ified in the CAM protoco	l(s) achieved?		Yes 🗸 No
I	Were results rep	oorted for the complete a	halyte list specified in the	selected CAM protocol(s)?	Yes 🗸 No
All ne	gative responses a	re addressed in a case narr	ative on the cover page of th	nis report.		
			lties of perjury that, based u al report is, to the best of my			ning the
					Jozi	e ()
					June O'Connor Laboratory Directo	r
					Laboratory Directo	1

Laboratory Direc Date: 4/15/2016

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 1.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

Reactivity (40 CFR 261.23) Case Narrative:

These samples do not exhibit the characteristics of reactivity as defined in 40 CFR 261.23, sections (1), (2) and (4); however, Eurofins Spectrum Analytical, Inc. does not test for detonation, explosive reaction or potential, or forbidden explosives as defined in 40 CFR 261.23, sections (3), (6), (7) and (8).

Reactive sulfide and cyanide are tested at a pH of 2 and not tested at all conditions between pH 2 and 12.5 as stated in 40 CFR 261.23, section (5); thus reactive cyanide and sulfide results as reported in this document can not be used to support the nonreactive properties of these samples.

The responsibility falls on the generator to use knowledge of the waste to determine if the waste meets or does not meet the descriptive, prose definition of reactivity.

April 15, 2016 Report Revision Case Narrative:

This report has been revised to include analyses added as listed in the appendix at the end of this report.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 300.0

Samples:

SC19886-01 MW-1

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SW846 6010C

Duplicates:

SW846 6010C

Duplicates:

1605811-DUP1 Source: SC19886-01

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Arsenic

SW846 8260C

Calibration:

1603046

Analyte quantified by quadratic equation type calibration.

1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,3,5-Trimethylbenzene 1,4-Dioxane 2-Butanone (MEK) 2-Hexanone (MBK) 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) Bromoform Carbon tetrachloride cis-1,3-Dichloropropene Ethylbenzene Isopropylbenzene m,p-Xylene Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene sec-Butylbenzene Styrene tert-Butylbenzene trans-1,3-Dichloropropene

This affected the following samples:

1605843-BLK1 1605843-BS1 1605843-BSD1 MW-1 S602442-ICV1 S602832-CCV1

S602442-ICV1

Analyte percent recovery is outside individual acceptance criteria.

2-Chlorotoluene (131%)

SW846 8260C

Calibration:

S602442-ICV1

This affected the following samples:

1605843-BLK1 1605843-BS1 1605843-BSD1 MW-1 S602832-CCV1

Laboratory Control Samples:

1605843 BS/BSD 2,2-Dichloropropane percent recoveries (153/148) are outside individual acceptance criteria, but within overall method

allowances. All reported results of the following samples are considered to have a potentially high bias:

MW-1

Samples:

S602832-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,1,2-Tetrachloroethane (25.5%)
1,1,1-Trichloroethane (30.6%)
2,2-Dichloropropane (56.0%)
2-Chlorotoluene (26.4%)
Dibromochloromethane (25.4%)
Trichlorofluoromethane (Freon 11) (28.8%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Bromoform (25.9%) Carbon tetrachloride (27.6%)

This affected the following samples:

1605843-BLK1 1605843-BS1 1605843-BSD1 MW-1

SW846 8270D

Calibration:

1602028

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol Benzidine Benzoic acid

This affected the following samples:

1605782-BLK1 1605782-BSD1 1605782-BSD1 MW-1 S601180-ICV1 S602948-CCV1

SW846 8270D

Laboratory Control Samples:

1605782 BS/BSD

4-Nitrophenol percent recoveries (143/147) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

MW-1

Benzoic acid percent recoveries (20/22) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-1

Pyridine percent recoveries (26/35) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-1

1605782 BSD

Pyridine RPD 27% (20%) is outside individual acceptance criteria.

Samples:

S602948-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,2-Dichlorobenzene (-21.2%) 2,4,5-Trichlorophenol (23.8%) 2,4,6-Trichlorophenol (20.6%) 2,6-Dinitrotoluene (23.4%) 2-Nitroaniline (27.4%) 4-Nitroaniline (26.7%) 4-Nitrophenol (156%) Indeno (1,2,3-cd) pyrene (25.9%) Pyridine (-22.7%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

2,4-Dinitrophenol (28.2%) Benzoic acid (24.2%)

This affected the following samples:

1605782-BLK1 1605782-BS1 1605782-BSD1 MW-1

Sample Acceptance Check Form

Client:Environmental Compliance Services - Worcester, MAProject:CFI - Westminster, MA / 03-221324Work Order:SC19886Sample(s) received on:4/7/2016

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes
Were custody seals present?	
Were custody seals intact?	
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark
Were samples refrigerated upon transfer to laboratory representative?	\checkmark
Were sample containers received intact?	\checkmark
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark
Were samples accompanied by a Chain of Custody document?	\checkmark
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	
Did sample container labels agree with Chain of Custody document?	\checkmark

Were samples received within method-specific holding times?

지 지 지	
\checkmark	
\checkmark	

<u>No</u>

 \checkmark

<u>N/A</u>

 \checkmark

Summary of Hits

Lab ID: SC19886-01			Client ID: MW-1		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Chloride	212	D, GS	519.00	mg/l	EPA 300.0
Hardness	51.7		0.291	mg/l CaCO3	SM 2340B
Total Dissolved Solids	435		5	mg/l	SM2540C
Barium	0.0436		0.0050	mg/l	SW846 6010C
Barium (dissolved)	0.0418		0.0050	mg/l	SW846 6010C
Calcium	16.8		0.100	mg/l	SW846 6010C
Iron	0.261		0.0150	mg/l	SW846 6010C
Magnesium	2.35		0.0100	mg/l	SW846 6010C
Zinc	0.0061		0.0050	mg/l	SW846 6010C
Zinc (dissolved)	0.0056		0.0050	mg/l	SW846 6010C
Bromodichloromethane	2.3		0.5	µg/l	SW846 8260C
Chloroform	10.7		1.0	µg/l	SW846 8260C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

ne (From 13) year 3.4 1 2 2 67.44 Actone <10.0 µg1 0.0 3.4 1 -	<u>ved</u> r-16
Note: Commonde by SWR46 2000Preserve1.1.2.Trichlocoffluored 5000000000000000000000000000000000000	atch Cert
Pathal1.1.2 Train continuove has a state of the interpretation	
Accord 101-14Accord 101-10IpplIo <th>05843</th>	05843
NationalNationalNationalNationalNationalNationalNationalNational11442Bornochoromethane<1.0	"
Process Barache C 10 PP To C 2 T 1984-8 Bromochbromethane <1.0	"
Norman Norma Norma Norma <td>"</td>	"
No.5. Distributionination of a log in part of a log	"
NALP and individuality and 2.5 pup 0.3 0.2 1 75252 Bromoform <10	"
Notes Bundholm 1.0 pgl 1.0 0.4 I 74839 Bomomethane <10.0	"
No.00 Informetiation C.0 ppi D.0 D.0 <thd.0< th=""> D.0 D.0</thd.0<>	"
Noss Description Noss Description Noss Description Noss Description Noss	"
Inclusion Inclusion <t< td=""><td>"</td></t<>	"
Horsey Sciency weigned	"
Backore International part International part International part International part 54-10 Carbon disulfide <1.0	"
17.41.50 Callob it solutice 1.2.0 0.3.0 1	"
108-90-7 Chlorobenzene 4.10 µg/l 1.0 0.2 1 - - - - 75-0-3 Chlorobenzene 4.10 µg/l 2.0 0.5 1 -<	"
No.0000 Display No.00000 Display No.00000 Display No.000000 Display No.0000000000 Display No.000000000000000000000000000000000000	"
Notes Colume Vision	"
Order Chloromethane <	"
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	"
106434 4-Chlorotoluene <1.0	"
100-12-8 1,2-Dibromo-3-chloroprop 2.0 µg/I 1.0 0.3 1 " <td>"</td>	"
36-12-6n.g. 1.2-Diablinito-S-childpipp2.0pg/l2.00.91124-48-1Dibromochloromethane< 0.5	"
106-93-41,2-Dibromoethane (EDB)< 0.5µg/l0.50.31""""""74-95-3Dibromomethane< 1.0	"
102-50-41,2-Didvincentatie (EDB)< 0.5µµ/I0.60.5174-95-3Dibromomethane<1.0	"
95-50-11,2-Dichlorobenzene< 1.0µg/l1.00.21""" <td>"</td>	"
541-73-11,3-Dichlorobenzene< 1.0µg/l1.00.21""" <td>"</td>	"
106-46-71,4-Dichlorobenzene< 1.0µg/l1.00.21"""""75-71-8Dichlorodifluoromethane (Freon12)< 2.0	"
100-40-11,4-Dichlorodelizerie< 1.0jg/l1.00.2175-71-8Dichlorodifluoromethane (Freon12)< 2.0	"
Normal (Freon12)CompositionPg/l2.00.8175-34-31,1-Dichloroethane< 1.0	"
107-06-21,2-Dichloroethane< 1.0µg/l1.00.31"""""75-35-41,1-Dichloroethene< 1.0	
10-50-2 1,2-Dichloroethane < 1.0	"
156-59-2 cis-1,2-Dichloroethene < 1.0	"
156-60-5 trans-1,2-Dichloropethene < 1.0	"
78-87-5 1,2-Dichloropropane < 1.0	"
142-28-9 1,3-Dichloropropane < 1.0 μg/l 1.0 0.2 1 " "	"
	"
	"
594-20-7 2,2-Dichloropropane < 1.0 µg/l 1.0 0.7 1 " " " "	"
563-58-6 1,1-Dichloropropene < 1.0 μg/l 1.0 0.4 1 " " " "	"
10061-01-5 cis-1,3-Dichloropropene < 0.5 μg/l 0.5 0.3 1 " " " "	"
10061-02-6 trans-1,3-Dichloropropene < 0.5 μg/l 0.5 0.5 1 " " " "	
100-41-4 Ethylbenzene < 1.0 µg/l 1.0 0.2 1 " " " "	
87-68-3 Hexachlorobutadiene < 0.5 μg/l 0.5 0.4 1 " " " "	
591-78-6 2-Hexanone (MBK) < 10.0 μg/l 10.0 1.2 1 " " " "	

<u>Sample Ic</u> MW-1 SC19886-	lentification -01				<u>Project #</u> 21324		<u>Matrix</u> Ground Wa					<u>Received</u> 7-Apr-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW												
	by method SW846 5030 V							014/0 / 0 00000				1005010	
98-82-8 99-87-6	Isopropylbenzene	< 1.0		µg/l	1.0	0.3	1	SW846 8260C	08-Apr-16	08-Apr-16	GMA "	1605843 "	
1634-04-4	4-Isopropyltoluene	< 1.0		µg/l	1.0 1.0	0.4 0.3	1 1	"					
108-10-1	Methyl tert-butyl ether	< 1.0 < 10.0		µg/l	10.0	0.9	1						
100-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	0.9	I						
75-09-2	Methylene chloride	< 2.0		µg/l	2.0	0.8	1		"	"	"	"	
91-20-3	Naphthalene	< 1.0		µg/l	1.0	0.3	1		"	"	"	"	
103-65-1	n-Propylbenzene	< 1.0		µg/l	1.0	0.3	1	"	"	"	"	"	
100-42-5	Styrene	< 1.0		µg/l	1.0	0.4	1		"	"	"	"	
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		µg/l	1.0	0.6	1		"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5	0.3	1		"	"	"		
127-18-4	Tetrachloroethene	< 1.0		µg/l	1.0	0.6	1	"	"	"	"		
108-88-3	Toluene	< 1.0		µg/l	1.0	0.3	1	"	"	"	"		
87-61-6	1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0	0.5	1	"	"	"	"		
120-82-1	1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0	0.4	1	"		"	"	"	
108-70-3	1,3,5-Trichlorobenzene	< 1.0		µg/l	1.0	0.3	1	"		"	"		
71-55-6	1,1,1-Trichloroethane	< 1.0		µg/l	1.0	0.5	1	"		"	"		
79-00-5	1,1,2-Trichloroethane	< 1.0		µg/l	1.0	0.2	1	"	"	"	"	"	
79-01-6	Trichloroethene	< 1.0		µg/l	1.0	0.4	1	"		"	"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		µg/l	1.0	0.6	1	"	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	< 1.0		µg/l	1.0	0.3	1	"	"	"	"		
95-63-6	1,2,4-Trimethylbenzene	< 1.0		µg/l	1.0	0.3	1	"	"	"	"		
108-67-8	1,3,5-Trimethylbenzene	< 1.0		µg/l	1.0	0.2	1		"	"	"		
75-01-4	Vinyl chloride	< 1.0		µg/l	1.0	0.5	1		"	"	"		
179601-23-1	m,p-Xylene	< 2.0		µg/l	2.0	0.3	1		"	"	"		
95-47-6	o-Xylene	< 1.0		µg/l	1.0	0.5	1	"	"	"	"		
109-99-9	Tetrahydrofuran	< 2.0		µg/l	2.0	0.9	1	"	"	"	"		
60-29-7	Ethyl ether	< 1.0		µg/l	1.0	0.4	1		"	"	"		
994-05-8	Tert-amyl methyl ether	< 1.0		µg/l	1.0	0.5	1		"	"	"		
637-92-3	Ethyl tert-butyl ether	< 1.0		µg/l	1.0	0.2	1			"	"	"	
108-20-3	Di-isopropyl ether	< 1.0		µg/l	1.0	0.2	1	"		"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0	6.0	1	"		"	"		
123-91-1	1,4-Dioxane	< 20.0		µg/l	20.0	12.7	1	"	"	"	"	"	
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		µg/l	5.0	3.1	1	"	"	"	"	"	
64-17-5	Ethanol	< 400		µg/l	400	23.6	1	н		"	"	"	
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	89			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	96			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	119			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	113			70-13	0 %		"	"	"	"	"	
Semivolati	ile Organic Compounds by (GCMS											
	tile Organic Compounds by method SW846 3510C												
83-32-9	Acenaphthene	< 5.95		µg/l	5.95	1.40	1	SW846 8270D	08-Apr-16	12-Apr-16	NAA	1605782	

Sample Id MW-1 SC19886	dentification				<u>Project #</u> 21324		<u>Matrix</u> Ground Wa		ection Date -Apr-16 09			<u>ceived</u> Apr-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
	tile Organic Compounds by method SW846 3510C												
208-96-8	Acenaphthylene	< 5.95		µg/l	5.95	1.30	1	SW846 8270D	08-Apr-16	12-Apr-16	NAA	1605782	-
62-53-3	Aniline	< 5.95		µg/l	5.95	1.68	1			"	"	"	
120-12-7	Anthracene	< 5.95		µg/l	5.95	1.38	1	"		"	"	"	
103-33-3	Azobenzene/Diphenyldiaz ene	< 5.95		µg/l	5.95	1.23	1	"	"	"	"	"	
92-87-5	Benzidine	< 5.95		µg/l	5.95	3.40	1	"		"	"	"	
56-55-3	Benzo (a) anthracene	< 5.95		µg/l	5.95	1.35	1		"	"	"	"	
50-32-8	Benzo (a) pyrene	< 5.95		µg/l	5.95	1.20	1		"	"	"	"	
205-99-2	Benzo (b) fluoranthene	< 5.95		µg/l	5.95	1.21	1		"	"	"	"	
191-24-2	Benzo (g,h,i) perylene	< 5.95		µg/l	5.95	1.58	1		"	"	"	"	
207-08-9	Benzo (k) fluoranthene	< 5.95		µg/l	5.95	1.61	1		"	"	"		
65-85-0	Benzoic acid	< 5.95		µg/l	5.95	2.37	1		"	"	"		
100-51-6	Benzyl alcohol	< 5.95		µg/l	5.95	2.07	1		"	"	"	"	
111-91-1	Bis(2-chloroethoxy)metha ne	< 5.95		µg/l	5.95	1.18	1	"	"	"	"	"	
111-44-4	Bis(2-chloroethyl)ether	< 5.95		µg/l	5.95	1.33	1		"	"	"		
108-60-1	Bis(2-chloroisopropyl)ethe r	< 5.95		µg/l	5.95	1.43	1	"	"	"	"	"	
117-81-7	Bis(2-ethylhexyl)phthalate	< 5.95		µg/l	5.95	1.67	1	"	"	"	"		
101-55-3	4-Bromophenyl phenyl ether	< 5.95		µg/l	5.95	1.40	1	"	"	"	"	"	
85-68-7	Butyl benzyl phthalate	< 5.95		µg/l	5.95	1.57	1			"	"		
86-74-8	Carbazole	< 5.95		µg/l	5.95	1.48	1			"	"		
59-50-7	4-Chloro-3-methylphenol	< 5.95		µg/l	5.95	1.46	1			"	"		
106-47-8	4-Chloroaniline	< 5.95		µg/l	5.95	1.56	1		"	"	"	"	
91-58-7	2-Chloronaphthalene	< 5.95		µg/l	5.95	1.42	1			"	"		
95-57-8	2-Chlorophenol	< 5.95		µg/l	5.95	1.50	1			"	"		
7005-72-3	4-Chlorophenyl phenyl ether	< 5.95		µg/l	5.95	1.37	1	"	"	"	"	"	
218-01-9	Chrysene	< 5.95		µg/l	5.95	1.24	1	"	"	"	"		
53-70-3	Dibenzo (a,h) anthracene	< 5.95		µg/l	5.95	1.42	1		"	"	"		
132-64-9	Dibenzofuran	< 5.95		µg/l	5.95	1.29	1		"	"	"	"	
95-50-1	1,2-Dichlorobenzene	< 5.95		µg/l	5.95	1.89	1		"	"	"		
541-73-1	1,3-Dichlorobenzene	< 5.95		µg/l	5.95	1.43	1		"	"	"		
106-46-7	1,4-Dichlorobenzene	< 5.95		µg/l	5.95	1.35	1		"	"	"	"	
91-94-1	3,3'-Dichlorobenzidine	< 5.95		µg/l	5.95	1.85	1	"	"	"	"		
120-83-2	2,4-Dichlorophenol	< 5.95		µg/l	5.95	1.44	1		"	"	"		
84-66-2	Diethyl phthalate	< 5.95		µg/l	5.95	1.81	1		"	"	"		
131-11-3	Dimethyl phthalate	< 5.95		µg/l	5.95	1.76	1	"	"	"	"	"	
105-67-9	2,4-Dimethylphenol	< 5.95		µg/l	5.95	1.68	1	"	"	"	"	"	
84-74-2	Di-n-butyl phthalate	< 5.95		µg/l	5.95	1.32	1	"	"		"	"	
534-52-1	4,6-Dinitro-2-methylphenol	< 5.95		µg/l	5.95	2.23	1	"	"		"	"	
51-28-5	2,4-Dinitrophenol	< 5.95		µg/l	5.95	2.56	1	"	"		"	"	
121-14-2	2,4-Dinitrotoluene	< 5.95		µg/l	5.95	2.18	1	"	"	"	"	"	
606-20-2	2,6-Dinitrotoluene	< 5.95		µg/l	5.95	1.95	1	"	"	"	"	"	
117-84-0	Di-n-octyl phthalate	< 5.95		µg/l	5.95	1.51	1		"		"	"	

Sample Identification MW-1 SC19886-01					<u>Project #</u> 21324		<u>Matrix</u> Ground Wa						
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (tile Organic Compounds by method SW846 3510C												
206-44-0	Fluoranthene	< 5.95		µg/l	5.95	1.42	1	SW846 8270D	08-Apr-16	12-Apr-16	NAA	1605782	
86-73-7	Fluorene	< 5.95		µg/l	5.95	1.42	1				"	"	
118-74-1	Hexachlorobenzene	< 5.95		µg/l	5.95	1.25	1	"	"	"	"	"	
87-68-3	Hexachlorobutadiene	< 5.95		µg/l	5.95	1.40	1	"	"	"	"	"	
77-47-4	Hexachlorocyclopentadien e	< 5.95		µg/l	5.95	2.48	1	"	"			"	
67-72-1	Hexachloroethane	< 5.95		µg/l	5.95	1.80	1	"			"	"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 5.95		µg/l	5.95	1.54	1	"			"		
78-59-1	Isophorone	< 5.95		µg/l	5.95	1.26	1	"	"	"	"	"	
91-57-6	2-Methylnaphthalene	< 5.95		µg/l	5.95	1.44	1	"	"	"	"	"	
95-48-7	2-Methylphenol	< 5.95		µg/l	5.95	1.73	1	"	"		"	"	
108-39-4, 106-44-5	3 & 4-Methylphenol	< 11.9		µg/l	11.9	1.73	1	"	"	"	"	"	
91-20-3	Naphthalene	< 5.95		µg/l	5.95	1.25	1	"			"	"	
88-74-4	2-Nitroaniline	< 5.95		µg/l	5.95	1.65	1	"			"		
99-09-2	3-Nitroaniline	< 5.95		µg/l	5.95	1.83	1	"	"	"	"	"	
100-01-6	4-Nitroaniline	< 5.95		µg/l	5.95	2.55	1	"	"	"	"	"	
98-95-3	Nitrobenzene	< 5.95		µg/l	5.95	1.21	1	"			"		
88-75-5	2-Nitrophenol	< 5.95		µg/l	5.95	1.73	1	"			"	"	
100-02-7	4-Nitrophenol	< 23.8		µg/l	23.8	3.48	1	"	"	"	"	"	
62-75-9	N-Nitrosodimethylamine	< 5.95		µg/l	5.95	1.64	1	"			"	"	
621-64-7	N-Nitrosodi-n-propylamine	< 5.95		µg/l	5.95	1.56	1	"	"	"	"	"	
86-30-6	N-Nitrosodiphenylamine	< 5.95		µg/l	5.95	1.74	1	"			"		
87-86-5	Pentachlorophenol	< 23.8		µg/l	23.8	2.23	1	"			"		
85-01-8	Phenanthrene	< 5.95		µg/l	5.95	1.48	1	"			"		
108-95-2	Phenol	< 5.95		µg/l	5.95	1.17	1	"			"	"	
129-00-0	Pyrene	< 5.95		µg/l	5.95	1.70	1	"			"	"	
110-86-1	Pyridine	< 5.95		µg/l	5.95	1.83	1	"			"		
120-82-1	1,2,4-Trichlorobenzene	< 5.95		µg/l	5.95	1.51	1	"			"		
90-12-0	1-Methylnaphthalene	< 5.95		µg/l	5.95	1.30	1				"	"	
95-95-4	2,4,5-Trichlorophenol	< 5.95		µg/l	5.95	1.42	1				"	"	
88-06-2	2,4,6-Trichlorophenol	< 5.95		µg/l	5.95	1.29	1				"		
82-68-8	Pentachloronitrobenzene	< 5.95		µg/l	5.95	1.52	1				"		
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 5.95		µg/l	5.95	1.24	1	"	"		"	"	
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	72			30-13	80 %		"	"		"	"	
367-12-4	2-Fluorophenol	49			15-11	0%		"			"	"	
4165-60-0	Nitrobenzene-d5	71			30-13	80 %		"			"	"	
4165-62-2	Phenol-d5	33			15-11	0%		"			"	"	
1718-51-0	Terphenyl-dl4	61			30-13	80 %		"			"	"	
118-79-6	2,4,6-Tribromophenol	82			15-11	0%		"			"	"	
Polychlori	ile Organic Compounds by (inated Biphenyls												
	by method SW846 3510C Aroclor-1016	< 0.206		µg/l	0.206	0.0741	1	SW846 8082A	11-Apr-16	11-Apr-16	TNS	1605945	

<u>Sample Id</u> MW-1 SC19886-	entification 01				<u>Project #</u> 21324		<u>Matrix</u> Ground Wa		ection Date -Apr-16 09			<u>cceived</u> Apr-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	le Organic Compounds by C nated Biphenyls	GC											
	by method SW846 3510C												
11104-28-2	Aroclor-1221	< 0.206		µg/l	0.206	0.100	1	SW846 8082A	11-Apr-16	11-Apr-16	TNS "	1605945	
11141-16-5	Aroclor-1232	< 0.206		µg/l	0.206	0.139	1						
53469-21-9	Aroclor-1242	< 0.206		µg/l	0.206	0.113	1						
12672-29-6	Aroclor-1248	< 0.206		µg/l	0.206	0.0913	1						
11097-69-1	Aroclor-1254	< 0.206		µg/l	0.206	0.122	1						
11096-82-5	Aroclor-1260	< 0.206		µg/l	0.206	0.0721	1						
37324-23-5	Aroclor-1262	< 0.206		µg/l	0.206	0.103	1						
11100-14-4	Aroclor-1268	< 0.206		µg/l	0.206	0.0886	1	"	"			"	
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	55			30-15	0 %		u	"	"	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	55			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	40			30-15	0 %			"		"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	50			30-15	0 %		"	"	u	"		
Extractabl	e Petroleum Hydrocarbons												
	Non-polar material (SGT-HEM)	< 1.1		mg/l	1.1	0.3	1	EPA 1664B	08-Apr-16	11-Apr-16	SAL	1605850	
Total Meta	lls by EPA 200/6000 Series N	lethods											
	Preservation	Lab Preserved		N/A			1	EPA 200/6000 methods	07-Apr-16		BK	1605829	
Total Meta	lls by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0008	1	SW846 6010C	08-Apr-16	11-Apr-16	BJW	1605806	
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0016	1		"		"	"	
7440-39-3	Barium	0.0436		mg/l	0.0050	0.0002	1		"		"	"	
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0002	1		"		"	"	
7440-70-2	Calcium	16.8		mg/l	0.100	0.0115	1		"		"	"	
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0002	1		"		"	"	
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0007	1		"		"	"	
7440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0012	1		"		"	"	
7439-89-6	Iron	0.261		mg/l	0.0150	0.0045	1		"		"	"	
7439-95-4	Magnesium	2.35		mg/l	0.0100	0.0016	1		"		"	"	
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0021	1	"	"		"	"	
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0022	1	"	"		"	"	
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0011	1	"	"		"	"	
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0036	1	"	"		"	"	
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0021	1	"	"		"	"	
7440-66-6	Zinc	0.0061		mg/l	0.0050	0.0024	1	"	"		"	"	
Total Meta	ls by EPA 200 Series Metho	ds											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00009	1	EPA 245.1/7470A	08-Apr-16	11-Apr-16	TBC	1605810	х
Soluble M	etals by EPA 200/6000 Series	Methods											
	Filtration	Field Filtered		N/A			1	EPA 200.7/3005A/601			LNB	1605825	
Soluble M	etals by EPA 6000/7000 Serie	es Methods						0					

Soluble Metals by EPA 6000/7000 Series Methods

<u>Sample Id</u> MW-1 SC19886-	lentification 01			<u>Client F</u> 03-22	<u>Project #</u> 21324		<u>Matrix</u> Ground Wa		ection Date -Apr-16 09			<u>ceived</u> Apr-16	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Soluble M	etals by EPA 6000/7000 Ser	ies Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0008	1	SW846 6010C	08-Apr-16	11-Apr-16	BJW	1605811	
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0016	1		"		"	"	
7440-39-3	Barium	0.0418		mg/l	0.0050	0.0002	1		"		"	"	
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0002	1		"		"	"	
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0002	1		"		"		
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0007	1		"		"	"	
7440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0012	1		"		"	"	
7439-89-6	Iron	< 0.0150		mg/l	0.0150	0.0045	1	"	"		"	"	
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0021	1	"	"		"	"	
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0022	1	"	"		"	"	
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0011	1	"	"		"	"	
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0036	1	"	"	"	"	"	
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0021	1	"	"	"	"	"	
7440-66-6	Zinc	0.0056		mg/l	0.0050	0.0024	1	"	"		"	"	
Soluble M	etals by EPA 200 Series Me	thods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00009	1	EPA 245.1/7470A	08-Apr-16	11-Apr-16	TBC	1605812	х
General C	hemistry Parameters												
	Flashpoint	>150		°F			1	SW846 1010A	08-Apr-16	08-Apr-16	VK	1605874	
	Hardness	51.7	HD	mg/l CaCO3	0.291	0.0351	1	SM 2340B	08-Apr-16	11-Apr-16	BJW	[CALC]	
16887-00-6	Chloride	212	D, GS1	mg/l	9.00	0.706	9	EPA 300.0	14-Apr-16	14-Apr-16	AHK	1606242	Х
	рН	6.07	рН	pH Units			1	ASTM D 1293-99B	07-Apr-16 19:24	11-Apr-16 11:51	TDD	1605834	Х
	Cyanide/Sulfide by method General Prepa	aration											
	Reactivity	See Narrative		mg/l			1	SW846 Ch. 7.3	12-Apr-16	12-Apr-16	EEM	1606041	
57-12-5	Reactive Cyanide	< 25.0		mg/l	25.0	25.0	1	"	"		"	"	
18496-25-8	Reactive Sulfide	< 50.0		mg/l	50.0	50.0	1	"	"		"	"	
	Total Dissolved Solids	435		mg/l	5	3	1	SM2540C	08-Apr-16	12-Apr-16	CMB	1605859	Х
	Total Suspended Solids	< 5.0		mg/l	5.0	2.8	1	SM2540D	08-Apr-16	12-Apr-16	CMB	1605857	Х

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1605843 - SW846 5030 Water MS		··· <i>o</i>		_			-			1
Blank (1605843-BLK1)					Pré	epared & Ar	nalyzed: 08-	-Apr-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0		µg/l	1.0	<u></u>		, 00-			
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.5		μg/l	0.5						
Benzene	< 1.0		µg/l	1.0						
Bromobenzene	< 1.0		μg/l	1.0						
Bromochloromethane	< 1.0		μg/l	1.0						
Bromodichloromethane	< 0.5		µg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						
n-Butylbenzene	< 1.0		µg/l	1.0						
sec-Butylbenzene	< 1.0		µg/l	1.0						
tert-Butylbenzene	< 1.0		µg/l	1.0						
Carbon disulfide	< 2.0		µg/l	2.0						
Carbon tetrachloride	< 1.0		µg/l	1.0						
Chlorobenzene	< 1.0		µg/l	1.0						
Chloroethane	< 2.0		µg/l	2.0						
Chloroform	< 1.0		µg/l	1.0						
Chloromethane	< 2.0		µg/l	2.0						
2-Chlorotoluene	< 1.0		µg/l	1.0						
4-Chlorotoluene	< 1.0		µg/l	1.0						
1,2-Dibromo-3-chloropropane	< 2.0		µg/l	2.0						
Dibromochloromethane	< 0.5		µg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		µg/l	0.5						
Dibromomethane	< 1.0		µg/l	1.0						
1,2-Dichlorobenzene	< 1.0		µg/l	1.0						
1,3-Dichlorobenzene	< 1.0		µg/l	1.0						
1,4-Dichlorobenzene	< 1.0		µg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		µg/l	2.0						
1,1-Dichloroethane	< 1.0		µg/l	1.0						
1,2-Dichloroethane	< 1.0		µg/l	1.0						
1,1-Dichloroethene	< 1.0		µg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		µg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		µg/l	1.0						
1,2-Dichloropropane	< 1.0		µg/l	1.0						
1,3-Dichloropropane	< 1.0		µg/l	1.0						
2,2-Dichloropropane	< 1.0		µg/l	1.0						
1,1-Dichloropropene	< 1.0		µg/l	1.0						
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	< 0.5 < 0.5		µg/l	0.5 0.5						
Ethylbenzene	< 0.5 < 1.0		µg/l	0.5 1.0						
Hexachlorobutadiene	< 0.5		µg/l µg/l	0.5						
2-Hexanone (MBK)	< 0.5 < 10.0		μg/i μg/l	10.0						
Isopropylbenzene	< 10.0		μg/l	1.0						
4-Isopropyltoluene	< 1.0 < 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 2.0		μg/l	2.0						
Naphthalene	< 1.0		μg/l	1.0						
n-Propylbenzene	< 1.0		μg/l	1.0						
Styrene	< 1.0		μg/l	1.0						
1,1,1,2-Tetrachloroethane	< 1.0		µg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1605843 - SW846 5030 Water MS										
<u>Blank (1605843-BLK1)</u>					Pre	epared & Ar	nalyzed: 08-	-Apr-16		
1,1,2,2-Tetrachloroethane	< 0.5		µg/l	0.5						
Tetrachloroethene	< 1.0		µg/l	1.0						
Toluene	< 1.0		µg/l	1.0						
1,2,3-Trichlorobenzene	< 1.0		µg/l	1.0						
1,2,4-Trichlorobenzene	< 1.0		µg/l	1.0						
1,3,5-Trichlorobenzene	< 1.0		µg/l	1.0						
1,1,1-Trichloroethane	< 1.0		µg/l	1.0						
1,1,2-Trichloroethane	< 1.0		µg/l	1.0						
Trichloroethene	< 1.0		µg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						
1,2,3-Trichloropropane	< 1.0		μg/l	1.0						
1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		µg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		µg/l	1.0						
Tetrahydrofuran	< 2.0		μg/l	2.0						
Ethyl ether	< 1.0		μg/l	1.0						
Tert-amyl methyl ether	< 1.0		μg/l	1.0						
Ethyl tert-butyl ether	< 1.0 < 1.0			1.0						
Di-isopropyl ether	< 1.0 < 1.0		µg/l	1.0						
	< 10.0		µg/l							
Tert-Butanol / butyl alcohol			µg/l	10.0						
1,4-Dioxane	< 20.0		µg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.0		µg/l	5.0						
Ethanol	< 400		µg/l	400						
Surrogate: 4-Bromofluorobenzene	42.4		µg/l		50.0		85	70-130		
Surrogate: Toluene-d8	48.8		µg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	58.6		µg/l		50.0		117	70-130		
Surrogate: Dibromofluoromethane	56.8		µg/l		50.0		114	70-130		
LCS (1605843-BS1)					Pre	epared & Ar	nalyzed: 08-	-Apr-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	24.0		µg/l		20.0		120	70-130		
Acetone	19.2		µg/l		20.0		96	70-130		
Acrylonitrile	20.0		µg/l		20.0		100	70-130		
Benzene	22.0		µg/l		20.0		110	70-130		
Bromobenzene	22.0		µg/l		20.0		110	70-130		
Bromochloromethane	20.8		µg/l		20.0		104	70-130		
Bromodichloromethane	22.8		µg/l		20.0		114	70-130		
Bromoform	23.0		µg/l		20.0		115	70-130		
Bromomethane	22.6		µg/l		20.0		113	70-130		
2-Butanone (MEK)	20.0		μg/l		20.0		100	70-130		
n-Butylbenzene	19.5		μg/l		20.0		98	70-130		
sec-Butylbenzene	21.7		μg/l		20.0		108	70-130		
tert-Butylbenzene	20.4		μg/l		20.0		102	70-130		
Carbon disulfide	21.5		µg/l		20.0		108	70-130		
Carbon tetrachloride	25.6		μg/l		20.0		128	70-130		
Chlorobenzene	21.4		μg/l		20.0		107	70-130		
Chloroethane	21.4		μg/l		20.0		107	70-130		
Chloroform	21.5		μg/l		20.0		108	70-130		
Chloromethane	22.0				20.0		115	70-130		
			µg/l							
2-Chlorotoluene	24.0		µg/l		20.0		120	70-130		
4-Chlorotoluene	21.1		µg/l		20.0		106	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1605843 - SW846 5030 Water MS										
LCS (1605843-BS1)					Pre	epared & Ar	nalyzed: 08	-Apr-16		
1,2-Dibromo-3-chloropropane	20.8		µg/l		20.0		104	70-130		
Dibromochloromethane	23.5		µg/l		20.0		117	70-130		
1,2-Dibromoethane (EDB)	21.2		µg/l		20.0		106	70-130		
Dibromomethane	20.6		µg/l		20.0		103	70-130		
1,2-Dichlorobenzene	20.5		µg/l		20.0		102	70-130		
1,3-Dichlorobenzene	23.6		µg/l		20.0		118	70-130		
1,4-Dichlorobenzene	18.5		µg/l		20.0		93	70-130		
Dichlorodifluoromethane (Freon12)	23.3		µg/l		20.0		116	70-130		
1,1-Dichloroethane	21.5		µg/l		20.0		108	70-130		
1,2-Dichloroethane	21.8		µg/l		20.0		109	70-130		
1,1-Dichloroethene	21.8		µg/l		20.0		109	70-130		
cis-1,2-Dichloroethene	20.9		µg/l		20.0		104	70-130		
trans-1,2-Dichloroethene	21.5		µg/l		20.0		108	70-130		
1,2-Dichloropropane	21.0		µg/l		20.0		105	70-130		
1,3-Dichloropropane	20.6		µg/l		20.0		103	70-130		
2,2-Dichloropropane	30.6	QC2	µg/l		20.0		153	70-130		
1,1-Dichloropropene	20.2		µg/l		20.0		101	70-130		
cis-1,3-Dichloropropene	22.0		µg/l		20.0		110	70-130		
trans-1,3-Dichloropropene	23.2		µg/l		20.0		116	70-130		
Ethylbenzene	20.1		µg/l		20.0		100	70-130		
Hexachlorobutadiene	21.2		µg/l		20.0		106	70-130		
2-Hexanone (MBK)	18.8		µg/l		20.0		94	70-130		
lsopropylbenzene	21.0		µg/l		20.0		105	70-130		
4-Isopropyltoluene	19.6		µg/l		20.0		98	70-130		
Methyl tert-butyl ether	22.0		µg/l		20.0		110	70-130		
4-Methyl-2-pentanone (MIBK)	22.5		µg/l		20.0		112	70-130		
Methylene chloride	20.9		µg/l		20.0		105	70-130		
Naphthalene	17.6		µg/l		20.0		88	70-130		
n-Propylbenzene	20.0		µg/l		20.0		100	70-130		
Styrene	19.0		µg/l		20.0		95	70-130		
1,1,1,2-Tetrachloroethane	24.0		µg/l		20.0		120	70-130		
1,1,2,2-Tetrachloroethane	19.7		µg/l		20.0		98	70-130		
Tetrachloroethene	21.3		µg/l		20.0		106	70-130		
Toluene	21.8		μg/l		20.0		109	70-130		
1,2,3-Trichlorobenzene	18.9		µg/l		20.0		94 05	70-130 70-130		
1,2,4-Trichlorobenzene	18.9		µg/l		20.0		95			
1,3,5-Trichlorobenzene 1,1,1-Trichloroethane	19.5 25.5		µg/l		20.0 20.0		98 128	70-130 70-130		
1,1,2-Trichloroethane	25.5		µg/l µg/l		20.0		126	70-130		
Trichloroethene	21.1		μg/l		20.0		108	70-130		
Trichlorofluoromethane (Freon 11)	21.6		μg/l		20.0		128	70-130		
1,2,3-Trichloropropane	23.0		μg/l		20.0		110	70-130		
1,2,4-Trimethylbenzene	20.7		μg/l		20.0		104	70-130		
1,3,5-Trimethylbenzene	20.1		μg/l		20.0		100	70-130		
Vinyl chloride	23.0		μg/l		20.0		115	70-130		
m,p-Xylene	19.6		μg/l		20.0		98	70-130		
o-Xylene	20.6		μg/l		20.0		103	70-130		
Tetrahydrofuran	20.7		μg/l		20.0		103	70-130		
Ethyl ether	19.7		μg/l		20.0		98	70-130		
Tert-amyl methyl ether	19.9		μg/l		20.0		100	70-130		
Ethyl tert-butyl ether	22.4		μg/l		20.0		112	70-130		
Di-isopropyl ether	21.4		μg/l		20.0		107	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1605843 - SW846 5030 Water MS										
LCS (1605843-BS1)					Pre	epared & Ar	nalyzed: 08-	Apr-16		
Tert-Butanol / butyl alcohol	207		µg/l		200		103	70-130		
1,4-Dioxane	199		μg/l		200		100	70-130		
trans-1,4-Dichloro-2-butene	19.2		μg/l		20.0		96	70-130		
Ethanol	398		µg/l		400		99	70-130		
Surrogate: 4-Bromofluorobenzene	54.6		µg/l		50.0		109	70-130		
Surrogate: Toluene-d8	51.1		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.8		µg/l		50.0		108	70-130		
Surrogate: Dibromofluoromethane	52.0		μg/l		50.0		104	70-130		
LCS Dup (1605843-BSD1)					Pre	epared & Ar	nalyzed: 08-	Apr-16		
1,1,2-Trichlorotrifluoroethane (Freon 113)	24.0		µg/l		20.0	•	120	70-130	0.2	20
Acetone	19.6		μg/l		20.0		98	70-130	2	20
Acrylonitrile	20.0		μg/l		20.0		100	70-130	0.1	20
Benzene	21.9		μg/l		20.0		109	70-130	0.5	20
Bromobenzene	21.9		μg/l		20.0		110	70-130	0.5	20
Bromochloromethane	21.4		μg/l		20.0		107	70-130	3	20
Bromodichloromethane	23.2		μg/l		20.0		116	70-130	2	20
Bromoform	23.2		µg/l		20.0		116	70-130	0.8	20
Bromomethane	21.6		µg/l		20.0		108	70-130	5	20
2-Butanone (MEK)	17.6		µg/l		20.0		88	70-130	13	20
n-Butylbenzene	19.8		µg/l		20.0		99	70-130	1	20
sec-Butylbenzene	21.8		µg/l		20.0		109	70-130	0.3	20
tert-Butylbenzene	20.3		µg/l		20.0		102	70-130	0.2	20
Carbon disulfide	21.1		µg/l		20.0		106	70-130	2	20
Carbon tetrachloride	25.1		µg/l		20.0		125	70-130	2	20
Chlorobenzene	21.8		µg/l		20.0		109	70-130	2	20
Chloroethane	21.6		µg/l		20.0		108	70-130	0.5	20
Chloroform	22.0		µg/l		20.0		110	70-130	0.3	20
Chloromethane	22.5		µg/l		20.0		112	70-130	2	20
2-Chlorotoluene	24.2		µg/l		20.0		121	70-130	0.8	20
4-Chlorotoluene	21.4		µg/l		20.0		107	70-130	1	20
1,2-Dibromo-3-chloropropane	23.0		µg/l		20.0		115	70-130	10	20
Dibromochloromethane	23.9		µg/l		20.0		119	70-130	2	20
1,2-Dibromoethane (EDB)	21.0		µg/l		20.0		105	70-130	1	20
Dibromomethane	20.5		µg/l		20.0		103	70-130	0.2	20
1,2-Dichlorobenzene	20.8		µg/l		20.0		104	70-130	2	20
1,3-Dichlorobenzene	23.8		µg/l		20.0		119	70-130	1	20
1,4-Dichlorobenzene	18.9		µg/l		20.0		94	70-130	2	20
Dichlorodifluoromethane (Freon12)	22.7		µg/l		20.0		113	70-130	3	20
1,1-Dichloroethane	18.7		µg/l		20.0		93	70-130	14	20
1,2-Dichloroethane	21.9		µg/l		20.0		109	70-130	0.4	20
1,1-Dichloroethene	22.3		µg/l		20.0		111	70-130	2	20
cis-1,2-Dichloroethene	21.4		µg/l		20.0		107	70-130	3	20
trans-1,2-Dichloroethene	20.4		µg/l		20.0		102	70-130	5	20
1,2-Dichloropropane	21.4		µg/l		20.0		107	70-130	2	20
1,3-Dichloropropane	20.9		µg/l		20.0		105	70-130	2	20
2,2-Dichloropropane	29.6	QC2	µg/l		20.0		148	70-130	3	20
1,1-Dichloropropene	20.3		µg/l		20.0		102	70-130	0.8	20
cis-1,3-Dichloropropene	22.4		µg/l		20.0		112	70-130	2	20
trans-1,3-Dichloropropene	23.0		µg/l		20.0		115	70-130	0.8	20
Ethylbenzene	20.4		µg/l		20.0		102	70-130	2	20
Hexachlorobutadiene	21.8		µg/l		20.0		109	70-130	2	20

nalvte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
	Result	Tiug	Onts	RDL	Level	Result	JuitLe	Linits	МЪ	Liin
atch 1605843 - SW846 5030 Water MS					_					
LCS Dup (1605843-BSD1)						epared & Ai	nalyzed: 08-			
2-Hexanone (MBK)	19.2		µg/l		20.0		96	70-130	2	20
Isopropylbenzene	21.1		µg/l		20.0		105	70-130	0.3	20
4-Isopropyltoluene	20.0		µg/l		20.0		100	70-130	2	20
Methyl tert-butyl ether	22.6		µg/l		20.0		113	70-130	3	20
4-Methyl-2-pentanone (MIBK)	19.6		µg/l		20.0		98	70-130	14	20
Methylene chloride	21.3		µg/l		20.0		106	70-130	2	20
Naphthalene	18.8		µg/l		20.0		94	70-130	7	20
n-Propylbenzene	20.0		µg/l		20.0		100	70-130	0.2	20
Styrene	19.4		µg/l		20.0		97	70-130	2	20
1,1,1,2-Tetrachloroethane	24.1		µg/l		20.0		121	70-130	0.4	20
1,1,2,2-Tetrachloroethane	20.0		µg/l		20.0		100	70-130	2	20
Tetrachloroethene	21.0		µg/l		20.0		105	70-130	2	20
Toluene	20.8		µg/l		20.0		104	70-130	5	20
1,2,3-Trichlorobenzene	19.8		µg/l		20.0		99	70-130	5	20
1,2,4-Trichlorobenzene	19.3		µg/l		20.0		97	70-130	2	20
1,3,5-Trichlorobenzene	19.8		µg/l		20.0		99	70-130	2	20
1,1,1-Trichloroethane	25.2		µg/l		20.0		126	70-130	1	20
1,1,2-Trichloroethane	21.8		µg/l		20.0		109	70-130	3	20
Trichloroethene	21.7		µg/l		20.0		108	70-130	0.4	20
Trichlorofluoromethane (Freon 11)	25.4		µg/l		20.0		127	70-130	0.8	20
1,2,3-Trichloropropane	23.1		μg/l		20.0		116	70-130	5	20
1,2,4-Trimethylbenzene	20.6		μg/l		20.0		103	70-130	0.5	20
1,3,5-Trimethylbenzene	20.1		µg/l		20.0		100	70-130	0.05	20
Vinyl chloride	23.1		μg/l		20.0		115	70-130	0.3	20
m,p-Xylene	19.8		μg/l		20.0		99	70-130	0.7	20
o-Xylene	20.6		μg/l		20.0		103	70-130	0.1	20
Tetrahydrofuran	21.6		μg/l		20.0		108	70-130	4	20
Ethyl ether	20.5		μg/l		20.0		103	70-130	4	20
Tert-amyl methyl ether	20.9		µg/l		20.0		105	70-130	5	20
Ethyl tert-butyl ether	20.3		μg/l		20.0		114	70-130	2	20
Di-isopropyl ether	22.4		μg/l		20.0		112	70-130	4	20
Tert-Butanol / butyl alcohol	22.4		μg/l		20.0		114	70-130	9	20
1,4-Dioxane	217		μg/l		200		108	70-130	8	20
trans-1,4-Dichloro-2-butene	217		μg/l		200		114	70-130	17	20
Ethanol	408		μg/l		400		102	70-130	2	20
Surrogate: 4-Bromofluorobenzene	53.5		-		50.0		102	70-130	-	20
-	53.5 50.2		µg/l							
Surrogate: Toluene-d8			µg/l		50.0		100 106	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	53.1 50.8		µg/l µg/l		50.0 50.0		106 102	70-130 70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1605782 - SW846 3510C		_								
Blank (1605782-BLK1)					Pre	epared: 08-	Apr-16 Ana	alyzed: 12-A	pr-16	
Acenaphthene	< 5.00		µg/l	5.00						
Acenaphthylene	< 5.00		μg/l	5.00						
Aniline	< 5.00		μg/l	5.00						
Anthracene	< 5.00		μg/l	5.00						
Azobenzene/Diphenyldiazene	< 5.00		μg/l	5.00						
Benzidine	< 5.00		μg/l	5.00						
Benzo (a) anthracene	< 5.00		μg/l	5.00						
Benzo (a) pyrene	< 5.00		μg/l	5.00						
Benzo (b) fluoranthene	< 5.00		μg/l	5.00						
Benzo (g,h,i) perylene	< 5.00		μg/l	5.00						
Benzo (k) fluoranthene	< 5.00		μg/l	5.00						
Benzoic acid	< 5.00		μg/l	5.00						
Benzyl alcohol	< 5.00		μg/l	5.00						
Bis(2-chloroethoxy)methane	< 5.00		µg/l	5.00						
Bis(2-chloroethyl)ether	< 5.00		μg/l	5.00						
Bis(2-chloroisopropyl)ether	< 5.00		μg/l	5.00						
Bis(2-ethylhexyl)phthalate	< 5.00		µg/l	5.00						
4-Bromophenyl phenyl ether	< 5.00		μg/l	5.00						
Butyl benzyl phthalate	< 5.00		µg/l	5.00						
Carbazole	< 5.00		µg/l	5.00						
4-Chloro-3-methylphenol	< 5.00		μg/l	5.00						
4-Chloroaniline	< 5.00		µg/l	5.00						
2-Chloronaphthalene	< 5.00		μg/l	5.00						
2-Chlorophenol	< 5.00		µg/l	5.00						
4-Chlorophenyl phenyl ether	< 5.00		μg/l	5.00						
Chrysene	< 5.00		µg/l	5.00						
Dibenzo (a,h) anthracene	< 5.00		μg/l	5.00						
Dibenzofuran	< 5.00		µg/l	5.00						
1,2-Dichlorobenzene	< 5.00		μg/l	5.00						
1,3-Dichlorobenzene	< 5.00		µg/l	5.00						
1,4-Dichlorobenzene	< 5.00		μg/l	5.00						
3,3'-Dichlorobenzidine	< 5.00		μg/l	5.00						
2,4-Dichlorophenol	< 5.00		μg/l	5.00						
Diethyl phthalate	< 5.00		μg/l	5.00						
Dimethyl phthalate	< 5.00			5.00						
2,4-Dimethylphenol	< 5.00		µg/l µg/l	5.00						
Di-n-butyl phthalate	< 5.00			5.00						
4,6-Dinitro-2-methylphenol	< 5.00		µg/l µg/l	5.00						
2,4-Dinitrophenol	< 5.00		µg/i µg/l	5.00						
2,4-Dinitrophenol	< 5.00 < 5.00		µg/i µg/l	5.00 5.00						
2,6-Dinitrotoluene	< 5.00		µg/i µg/l	5.00						
Di-n-octyl phthalate	< 5.00 < 5.00		µg/i µg/l	5.00						
Fluoranthene	< 5.00		µg/i µg/l	5.00						
Fluorene	< 5.00 < 5.00		µg/i µg/l	5.00						
Hexachlorobenzene	< 5.00			5.00						
Hexachlorobutadiene	< 5.00 < 5.00		µg/l	5.00						
Hexachlorocyclopentadiene	< 5.00 < 5.00		µg/l	5.00 5.00						
	< 5.00 < 5.00		µg/l							
Hexachloroethane	< 5.00 < 5.00		µg/l	5.00						
Indeno (1,2,3-cd) pyrene			µg/l	5.00						
Isophorone	< 5.00		µg/l	5.00						
2-Methylnaphthalene 2-Methylphenol	< 5.00 < 5.00		µg/l µg/l	5.00 5.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1605782 - SW846 3510C										
<u>Blank (1605782-BLK1)</u>					Pre	epared: 08-	Apr-16 Ana	alyzed: 12-A	pr-16	
3 & 4-Methylphenol	< 10.0		µg/l	10.0						
Naphthalene	< 5.00		µg/l	5.00						
2-Nitroaniline	< 5.00		µg/l	5.00						
3-Nitroaniline	< 5.00		µg/l	5.00						
4-Nitroaniline	< 5.00		µg/l	5.00						
Nitrobenzene	< 5.00		µg/l	5.00						
2-Nitrophenol	< 5.00		µg/l	5.00						
4-Nitrophenol	< 20.0		µg/l	20.0						
N-Nitrosodimethylamine	< 5.00		µg/l	5.00						
N-Nitrosodi-n-propylamine	< 5.00		µg/l	5.00						
N-Nitrosodiphenylamine	< 5.00		µg/l	5.00						
Pentachlorophenol	< 20.0		µg/l	20.0						
Phenanthrene	< 5.00		µg/l	5.00						
Phenol	< 5.00		µg/l	5.00						
Pyrene	< 5.00		µg/l	5.00						
Pyridine	< 5.00		µg/l	5.00						
1,2,4-Trichlorobenzene	< 5.00		µg/l	5.00						
1-Methylnaphthalene	< 5.00		µg/l	5.00						
2,4,5-Trichlorophenol	< 5.00		µg/l	5.00						
2,4,6-Trichlorophenol	< 5.00		µg/l	5.00						
Pentachloronitrobenzene	< 5.00		µg/l	5.00						
1,2,4,5-Tetrachlorobenzene	< 5.00		µg/l	5.00						
Surrogate: 2-Fluorobiphenyl	25.7		µg/l		50.0		51	30-130		
Surrogate: 2-Fluorophenol	16.9		µg/l		50.0		34	15-110		
Surrogate: Nitrobenzene-d5	24.4		µg/l		50.0		49	30-130		
Surrogate: Phenol-d5	11.0		µg/l		50.0		22	15-110		
Surrogate: Terphenyl-dl4	28.5		µg/l		50.0		57	30-130		
Surrogate: 2,4,6-Tribromophenol	34.1		µg/l		50.0		68	15-110		
LCS (1605782-BS1)						epared: 08-		alyzed: 12-A	pr-16	
Acenaphthene	33.0		µg/l	5.00	50.0		66	40-140		
Acenaphthylene	33.7		µg/l	5.00	50.0		67	40-140		
Aniline	27.0		µg/l	5.00	50.0		54	40-140		
Anthracene	37.6		µg/l	5.00	50.0		75	40-140		
Azobenzene/Diphenyldiazene	30.1		µg/l	5.00	50.0		60	40-140		
Benzidine	32.5		µg/l	5.00	50.0		65	40-140		
Benzo (a) anthracene	37.4		µg/l	5.00	50.0		75	40-140		
Benzo (a) pyrene	37.7		µg/l	5.00	50.0		75	40-140		
Benzo (b) fluoranthene	36.3		µg/l	5.00	50.0		73	40-140		
Benzo (g,h,i) perylene	38.9		µg/l	5.00	50.0		78	40-140		
Benzo (k) fluoranthene	35.9	000	µg/l	5.00	50.0		72	40-140		
Benzoic acid	10.0	QC2	µg/l	5.00	50.0		20	30-130		
Benzyl alcohol	29.6		µg/l	5.00	50.0		59	40-140		
Bis(2-chloroethoxy)methane	32.4		µg/l	5.00	50.0		65 50	40-140		
Bis(2-chloroethyl)ether	29.4		µg/l	5.00	50.0		59 58	40-140		
Bis(2-chloroisopropyl)ether	28.9		µg/l	5.00	50.0		58	40-140		
Bis(2-ethylhexyl)phthalate	46.2		µg/l	5.00	50.0		92 74	40-140		
4-Bromophenyl phenyl ether	36.9		µg/l	5.00	50.0		74 85	40-140 40 140		
Butyl benzyl phthalate	42.6		µg/l	5.00	50.0		85 70	40-140 40 140		
Carbazole 4-Chloro-3-methylphenol	39.7		µg/l µg/l	5.00 5.00	50.0 50.0		79 74	40-140 30 130		
4-011010-3-111811101181101	37.2		ud/l	5.00	JU.UC		74	30-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
3atch 1605782 - SW846 3510C										
LCS (1605782-BS1)					Pre	epared: 08-	Apr-16 An	alyzed: 12-A	or-16	
2-Chloronaphthalene	32.2		µg/l	5.00	50.0		64	40-140		
2-Chlorophenol	32.4		µg/l	5.00	50.0		65	30-130		
4-Chlorophenyl phenyl ether	36.0		µg/l	5.00	50.0		72	40-140		
Chrysene	39.2		µg/l	5.00	50.0		78	40-140		
Dibenzo (a,h) anthracene	29.0		µg/l	5.00	50.0		58	40-140		
Dibenzofuran	35.0		µg/l	5.00	50.0		70	40-140		
1,2-Dichlorobenzene	29.3		µg/l	5.00	50.0		59	40-140		
1,3-Dichlorobenzene	27.4		µg/l	5.00	50.0		55	40-140		
1,4-Dichlorobenzene	26.6		µg/l	5.00	50.0		53	40-140		
3,3'-Dichlorobenzidine	38.5		µg/l	5.00	50.0		77	40-140		
2,4-Dichlorophenol	35.5		µg/l	5.00	50.0		71	30-130		
Diethyl phthalate	38.8		μg/l	5.00	50.0		78	40-140		
Dimethyl phthalate	37.9		μg/l	5.00	50.0		76	40-140		
2,4-Dimethylphenol	31.6		μg/l	5.00	50.0		63	30-130		
Di-n-butyl phthalate	41.5		μg/l	5.00	50.0		83	40-140		
4,6-Dinitro-2-methylphenol	34.9		μg/l	5.00	50.0		70	30-130		
2,4-Dinitrophenol	34.0		μg/l	5.00	50.0		68	30-130		
2,4-Dinitrotoluene	41.7		μg/l	5.00	50.0		83	40-140		
2,6-Dinitrotoluene	39.9		μg/l	5.00	50.0		80	40-140		
Di-n-octyl phthalate	40.0		μg/l	5.00	50.0		80	40-140		
Fluoranthene	40.0		μg/l	5.00	50.0		80	40-140		
Fluorene	35.1		μg/l	5.00	50.0		70	40-140		
Hexachlorobenzene	37.3		μg/l	5.00	50.0		75	40-140		
Hexachlorobutadiene	28.5		μg/l	5.00	50.0		57	40-140		
Hexachlorocyclopentadiene	32.9		μg/l	5.00	50.0		66	40-140		
Hexachloroethane	27.8		μg/l	5.00	50.0		56	40-140		
Indeno (1,2,3-cd) pyrene	44.3		μg/l	5.00	50.0		89	40-140		
Isophorone	29.6		μg/l	5.00	50.0		59	40-140		
2-Methylnaphthalene	29.7		μg/l	5.00	50.0		59	40-140		
2-Methylphenol	31.2		μg/l	5.00	50.0		62	30-130		
3 & 4-Methylphenol	29.3		μg/l	10.0	50.0		59	30-130 30-130		
Naphthalene	30.1			5.00	50.0		60	40-140		
2-Nitroaniline	40.2		µg/l	5.00	50.0		80	40-140		
3-Nitroaniline	39.0		µg/l	5.00	50.0		80 78	40-140 40-140		
			µg/l							
4-Nitroaniline Nitrobenzene	44.3		µg/l	5.00	50.0		89	40-140		
	31.2		µg/l	5.00	50.0		62	40-140		
2-Nitrophenol	34.5	002	µg/l	5.00	50.0		69	30-130		
4-Nitrophenol	71.7	QC2	µg/l	20.0	50.0		143	30-130		
N-Nitrosodimethylamine	24.1		µg/l	5.00	50.0		48	40-140		
N-Nitrosodi-n-propylamine	31.6		µg/l	5.00	50.0		63	40-140		
N-Nitrosodiphenylamine	38.2		µg/l	5.00	50.0		76	40-140		
Pentachlorophenol	22.9		µg/l	20.0	50.0		46	30-130		
Phenanthrene	35.4		µg/l	5.00	50.0		71	40-140		
Phenol	17.0		µg/l	5.00	50.0		34	30-130		
Pyrene	39.6		µg/l	5.00	50.0		79	40-140		
Pyridine	13.2	QC2	µg/l	5.00	50.0		26	40-140		
1,2,4-Trichlorobenzene	30.1		µg/l	5.00	50.0		60	40-140		
1-Methylnaphthalene	37.4		µg/l	5.00	50.0		75	40-140		
2,4,5-Trichlorophenol	37.2		µg/l	5.00	50.0		74	30-130		
2,4,6-Trichlorophenol	34.2		µg/l	5.00	50.0		68	30-130		
Pentachloronitrobenzene	45.7		µg/l	5.00	50.0		91	40-140		
1,2,4,5-Tetrachlorobenzene	35.1		µg/l	5.00	50.0		70	40-140		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1605782 - SW846 3510C										
LCS (1605782-BS1)					Pre	epared: 08-	Apr-16 An	alyzed: 12-A	pr-16	
Surrogate: 2-Fluorobiphenyl	32.9		µg/l		50.0		66	30-130		
Surrogate: 2-Fluorophenol	21.2		μg/l		50.0		42	15-110		
Surrogate: Nitrobenzene-d5	31.1		μg/l		50.0		62	30-130		
Surrogate: Phenol-d5	15.3		μg/l		50.0		31	15-110		
Surrogate: Terphenyl-dl4	39.6		μg/l		50.0		79	30-130		
Surrogate: 2,4,6-Tribromophenol	44.8		μg/l		50.0		90	15-110		
LCS Dup (1605782-BSD1)					Pre	epared: 08-	Apr-16 An	alyzed: 12-A	pr-16	
Acenaphthene	31.9		µg/l	5.00	50.0		64	40-140	3	20
Acenaphthylene	33.4		μg/l	5.00	50.0		67	40-140	0.9	20
Aniline	30.7		μg/l	5.00	50.0		61	40-140	13	20
Anthracene	37.0		μg/l	5.00	50.0		74	40-140	2	20
Azobenzene/Diphenyldiazene	28.5		μg/l	5.00	50.0		57	40-140	5	20
Benzidine	38.1		μg/l	5.00	50.0		76	40-140	16	20
Benzo (a) anthracene	38.3		μg/l	5.00	50.0		77	40-140	3	20
Benzo (a) pyrene	39.1		μg/l	5.00	50.0		78	40-140	4	20
Benzo (b) fluoranthene	39.8		μg/l	5.00	50.0		80	40-140	9	20
Benzo (g,h,i) perylene	40.2		μg/l	5.00	50.0		80	40-140	3	20
Benzo (k) fluoranthene	33.6		μg/l	5.00	50.0		67	40-140	7	20
Benzoic acid	10.8	QC2	μg/l	5.00	50.0		22	30-130	7	20
Benzyl alcohol	32.1		μg/l	5.00	50.0		64	40-140	8	20
Bis(2-chloroethoxy)methane	31.9		μg/l	5.00	50.0		64	40-140	2	20
Bis(2-chloroethyl)ether	27.2		μg/l	5.00	50.0		54	40-140	8	20
Bis(2-chloroisopropyl)ether	27.7		μg/l	5.00	50.0		55	40-140	4	20
Bis(2-ethylhexyl)phthalate	43.1		μg/l	5.00	50.0		86	40-140	7	20
4-Bromophenyl phenyl ether	36.9		μg/l	5.00	50.0		74	40-140	0.007	20
Butyl benzyl phthalate	43.1		μg/l	5.00	50.0		86	40-140	1	20
Carbazole	41.0		μg/l	5.00	50.0		82	40-140	3	20
4-Chloro-3-methylphenol	40.6		μg/l	5.00	50.0		81	30-130	9	20
4-Chloroaniline	37.6		μg/l	5.00	50.0		75	40-140	9	20
2-Chloronaphthalene	30.6		μg/l	5.00	50.0		61	40-140	5	20
2-Chlorophenol	32.2		μg/l	5.00	50.0		64	30-130	0.6	20
4-Chlorophenyl phenyl ether	33.3		μg/l	5.00	50.0		67	40-140	8	20
Chrysene	38.9		μg/l	5.00	50.0		78	40-140	0.7	20
Dibenzo (a,h) anthracene	32.7		μg/l	5.00	50.0		65	40-140	12	20
Dibenzofuran	33.9		μg/l	5.00	50.0		68	40-140	3	20
1,2-Dichlorobenzene	27.4		μg/l	5.00	50.0		55	40-140	7	20
1,3-Dichlorobenzene	26.5		μg/l	5.00	50.0		53	40-140	3	20
1,4-Dichlorobenzene	25.0		μg/l	5.00	50.0		50	40-140	6	20
3,3'-Dichlorobenzidine	35.4		μg/l	5.00	50.0		71	40-140	8	20
2,4-Dichlorophenol	36.6		μg/l	5.00	50.0		73	30-130	3	20
Diethyl phthalate	40.1		μg/l	5.00	50.0		80	40-140	3	20
Dimethyl phthalate	41.6		μg/l	5.00	50.0		83	40-140	9	20
2,4-Dimethylphenol	33.3		μg/l	5.00	50.0		67	30-130	5	20
Di-n-butyl phthalate	40.9		μg/l	5.00	50.0		82	40-140	1	20
4,6-Dinitro-2-methylphenol	41.3		µg/l	5.00	50.0		83	30-130	17	20
2,4-Dinitrophenol	41.5		μg/l	5.00	50.0		83	30-130	20	20
2,4-Dinitrotoluene	46.0		µg/l	5.00	50.0		92	40-140	10	20
2,6-Dinitrotoluene	43.2		μg/l	5.00	50.0		86	40-140	8	20
Di-n-octyl phthalate	39.2		µg/l	5.00	50.0		78	40-140	2	20
Fluoranthene	39.1		µg/l	5.00	50.0		78	40-140	2	20
Fluorene	33.3		μg/l	5.00	50.0		67	40-140	5	20

Semivolatile Organic	Compounds by	GCMS - Quality Control
----------------------	--------------	------------------------

1 (()	D L	E1	T T '4	*0.01	Spike	Source	0/DEC	%REC	DDD	RPD
analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1605782 - SW846 3510C										
LCS Dup (1605782-BSD1)					Pre	epared: 08-	Apr-16 Ana	alyzed: 12-A	pr-16	
Hexachlorobenzene	37.6		µg/l	5.00	50.0		75	40-140	0.8	20
Hexachlorobutadiene	27.1		µg/l	5.00	50.0		54	40-140	5	20
Hexachlorocyclopentadiene	35.8		µg/l	5.00	50.0		72	40-140	9	20
Hexachloroethane	26.7		µg/l	5.00	50.0		53	40-140	4	20
Indeno (1,2,3-cd) pyrene	47.9		µg/l	5.00	50.0		96	40-140	8	20
Isophorone	30.7		µg/l	5.00	50.0		61	40-140	3	20
2-Methylnaphthalene	28.4		µg/l	5.00	50.0		57	40-140	4	20
2-Methylphenol	31.9		µg/l	5.00	50.0		64	30-130	2	20
3 & 4-Methylphenol	30.0		µg/l	10.0	50.0		60	30-130	3	20
Naphthalene	28.0		µg/l	5.00	50.0		56	40-140	7	20
2-Nitroaniline	45.7		µg/l	5.00	50.0		91	40-140	13	20
3-Nitroaniline	40.8		µg/l	5.00	50.0		82	40-140	4	20
4-Nitroaniline	49.7		µg/l	5.00	50.0		99	40-140	11	20
Nitrobenzene	31.0		µg/l	5.00	50.0		62	40-140	0.8	20
2-Nitrophenol	35.5		µg/l	5.00	50.0		71	30-130	3	20
4-Nitrophenol	73.7	QC2	µg/l	20.0	50.0		147	30-130	3	20
N-Nitrosodimethylamine	26.9		µg/l	5.00	50.0		54	40-140	11	20
N-Nitrosodi-n-propylamine	34.5		µg/l	5.00	50.0		69	40-140	9	20
N-Nitrosodiphenylamine	38.8		µg/l	5.00	50.0		78	40-140	1	20
Pentachlorophenol	25.0		µg/l	20.0	50.0		50	30-130	9	20
Phenanthrene	34.4		µg/l	5.00	50.0		69	40-140	3	20
Phenol	18.0		µg/l	5.00	50.0		36	30-130	6	20
Pyrene	40.3		µg/l	5.00	50.0		81	40-140	2	20
Pyridine	17.4	QC2	μg/l	5.00	50.0		35	40-140	27	20
1,2,4-Trichlorobenzene	28.7		μg/l	5.00	50.0		57	40-140	4	20
1-Methylnaphthalene	36.4		μg/l	5.00	50.0		73	40-140	3	20
2,4,5-Trichlorophenol	40.1		μg/l	5.00	50.0		80	30-130	7	20
2,4,6-Trichlorophenol	35.8		μg/l	5.00	50.0		72	30-130	5	20
Pentachloronitrobenzene	48.6		μg/l	5.00	50.0		97	40-140	6	20
1,2,4,5-Tetrachlorobenzene	32.8		μg/l	5.00	50.0		66	40-140	7	20
Surrogate: 2-Fluorobiphenyl	30.9		µg/l		50.0		62	30-130		
Surrogate: 2-Fluorophenol	22.2		μg/l		50.0		44	15-110		
Surrogate: Nitrobenzene-d5	31.3		μg/l		50.0		63	30-130		
Surrogate: Phenol-d5	16.4		μg/l		50.0		33	15-110		
Surrogate: Terphenyl-dl4	39.9		μg/l		50.0		80	30-130		
Surrogate: 2,4,6-Tribromophenol	47.4		μg/l		50.0		95	15-110		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
laryte(3)	Result	1 lag	Onits	KDL	Level	Kesun	70REC	Linits	KI D	
atch 1605945 - SW846 3510C										
<u>Blank (1605945-BLK1)</u>					Pre	epared & A	nalyzed: 11-	<u>Apr-16</u>		
Aroclor-1016	< 0.200		µg/l	0.200						
Aroclor-1016 [2C]	< 0.200		µg/l	0.200						
Aroclor-1221	< 0.200		µg/l	0.200						
Aroclor-1221 [2C]	< 0.200		µg/l	0.200						
Aroclor-1232	< 0.200		µg/l	0.200						
Aroclor-1232 [2C]	< 0.200		µg/l	0.200						
Aroclor-1242	< 0.200		µg/l	0.200						
Aroclor-1242 [2C]	< 0.200		µg/l	0.200						
Aroclor-1248	< 0.200		µg/l	0.200						
Aroclor-1248 [2C]	< 0.200		µg/l	0.200						
Aroclor-1254	< 0.200		µg/l	0.200						
Aroclor-1254 [2C]	< 0.200		µg/l	0.200						
Aroclor-1260	< 0.200		µg/l	0.200						
Aroclor-1260 [2C]	< 0.200		µg/l	0.200						
Aroclor-1262	< 0.200		µg/l	0.200						
Aroclor-1262 [2C]	< 0.200		µg/l	0.200						
Aroclor-1268	< 0.200		µg/l	0.200						
Aroclor-1268 [2C]	< 0.200		µg/l	0.200						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.170		µg/l		0.200		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.190		µg/l		0.200		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.190		µg/l		0.200		95	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.210		µg/l		0.200		105	30-150		
LCS (1605945-BS1)					Pre	epared & A	nalyzed: 11-	<u>Apr-16</u>		
Aroclor-1016	1.83		µg/l	0.200	2.50		73	40-140		
Aroclor-1016 [2C]	1.76		µg/l	0.200	2.50		70	40-140		
Aroclor-1260	1.53		µg/l	0.200	2.50		61	40-140		
Aroclor-1260 [2C]	1.81		µg/l	0.200	2.50		72	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.110		µg/l		0.200		55	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.120		µg/l		0.200		60	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.120		µg/l		0.200		60	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.130		µg/l		0.200		65	30-150		
LCS Dup (1605945-BSD1)					Pre	epared & A	nalyzed: 11-	Apr-16		
Aroclor-1016	1.79		µg/l	0.200	2.50		72	40-140	2	20
Aroclor-1016 [2C]	1.79		µg/l	0.200	2.50		72	40-140	2	20
Aroclor-1260	1.43		µg/l	0.200	2.50		57	40-140	7	20
Aroclor-1260 [2C]	1.91		µg/l	0.200	2.50		76	40-140	5	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.110		µg/l		0.200		55	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.120		µg/l		0.200		60	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0900		µg/l		0.200		45	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.130		µg/l		0.200		65	30-150		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1605850 - SW846 3510C										
<u>Blank (1605850-BLK1)</u>					Pre	epared: 08-	Apr-16 Ana	alyzed: 11-A	or-16	
Non-polar material (SGT-HEM)	< 1.0		mg/l	1.0						
LCS (1605850-BS1)					Pre	epared: 08-	Apr-16 Ana	alyzed: 11-A	<u>or-16</u>	
Non-polar material (SGT-HEM)	45.0		mg/l	1.0	53.6		84	83-101		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1605806 - SW846 3005A										
Blank (1605806-BLK1)					Pre	epared: 08-	Apr-16 An	alyzed: 11-A	or-16	
Magnesium	< 0.0100		mg/l	0.0100						
Iron	< 0.0150		mg/l	0.0150						
Lead	< 0.0075		mg/l	0.0075						
Nickel	< 0.0050		mg/l	0.0050						
Copper	< 0.0050		mg/l	0.0050						
Chromium	< 0.0050		mg/l	0.0050						
Calcium	< 0.100		mg/l	0.100						
Arsenic	< 0.0040		mg/l	0.0040						
Antimony	< 0.0060		mg/l	0.0060						
Barium	< 0.0050		mg/l	0.0050						
Zinc	< 0.0050		mg/l	0.0050						
Beryllium	< 0.0020		mg/l	0.0020						
Cadmium	< 0.0025		mg/l	0.0025						
Thallium	< 0.0020		mg/l	0.0020						
Silver	< 0.0050		mg/l	0.0050						
Selenium	< 0.0150		mg/l	0.0050						
	< 0.0150		ing/i	0.0150	D					
LCS (1605806-BS1)	4.00		ma/l	0.0100		epared: 08-	-	alyzed: 11-Ap	<u>or-16</u>	
Magnesium	1.32		mg/l	0.0100	1.25		106	85-115		
Iron	1.30		mg/l	0.0150	1.25		104	85-115		
Chromium	1.33		mg/l	0.0050	1.25		106	85-115		
Nickel	1.29		mg/l	0.0050	1.25		103	85-115		
Antimony	1.29		mg/l	0.0060	1.25		103	85-115		
Selenium	1.34		mg/l	0.0150	1.25		107	85-115		
Thallium	1.27		mg/l	0.0050	1.25		102	85-115		
Zinc	1.31		mg/l	0.0050	1.25		105	85-115		
Beryllium	1.34		mg/l	0.0020	1.25		107	85-115		
Cadmium	1.23		mg/l	0.0025	1.25		98	85-115		
Copper	1.29		mg/l	0.0050	1.25		103	85-115		
Arsenic	1.30		mg/l	0.0040	1.25		104	85-115		
Barium	1.35		mg/l	0.0050	1.25		108	85-115		
Lead	1.36		mg/l	0.0075	1.25		109	85-115		
Silver	1.28		mg/l	0.0050	1.25		102	85-115		
Calcium	6.60		mg/l	0.100	6.25		106	85-115		
LCS Dup (1605806-BSD1)						epared: 08-		alyzed: 11-A		
Magnesium	1.30		mg/l	0.0100	1.25		104	85-115	1	20
Iron	1.27		mg/l	0.0150	1.25		101	85-115	3	20
Nickel	1.26		mg/l	0.0050	1.25		101	85-115	2	20
Lead	1.33		mg/l	0.0075	1.25		106	85-115	2	20
Arsenic	1.26		mg/l	0.0040	1.25		101	85-115	4	20
Silver	1.30		mg/l	0.0050	1.25		104	85-115	2	20
Beryllium	1.34		mg/l	0.0020	1.25		107	85-115	0.3	20
Calcium	6.58		mg/l	0.100	6.25		105	85-115	0.5	20
Cadmium	1.22		mg/l	0.0025	1.25		97	85-115	0.7	20
Chromium	1.34		mg/l	0.0050	1.25		107	85-115	0.7	20
Copper	1.29		mg/l	0.0050	1.25		103	85-115	0.04	20
Antimony	1.25		mg/l	0.0060	1.25		100	85-115	3	20
Barium	1.30		mg/l	0.0050	1.25		104	85-115	4	20
Selenium	1.29		mg/l	0.0150	1.25		103	85-115	3	20
Thallium	1.26		mg/l	0.0050	1.25		101	85-115	0.9	20
Zinc	1.29		mg/l	0.0050	1.25		103	85-115	1	20

					Spike	Source		%REC		RPD		
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit		
Batch 1605810 - EPA200/SW7000 Series												
<u>Blank (1605810-BLK1)</u>				Prepared: 08-Apr-16 Analyzed: 11-Apr-16								
Mercury	< 0.00020		mg/l	0.00020								
LCS (1605810-BS1)					Pre	<u>or-16</u>						
Mercury	0.00461		mg/l	0.00020	0.00500		92	85-115				
Duplicate (1605810-DUP1)			Source: S	C19886-01	Prepared: 08-Apr-16 Analyzed: 11-Apr-16							
Mercury	< 0.00020		mg/l	0.00020		BRL				20		
<u>Matrix Spike (1605810-MS1)</u>			Source: S	C19886-01	Pre	epared: 08-	Apr-16 An	alyzed: 11-A	or-16			
Mercury	0.00482		mg/l	0.00020	0.00500	BRL	96	80-120				
Matrix Spike Dup (1605810-MSD1)			Source: S	C19886-01	Pre	epared: 08-	Apr-16 An	alyzed: 11-A	or-16			
Mercury	0.00451		mg/l	0.00020	0.00500	BRL	90	80-120	7	20		
Post Spike (1605810-PS1)			Source: S	C19886-01	Pre	epared: 08-	Apr-16 An	alyzed: 11-A	or-16			
Mercury	0.00443		mg/l	0.00020	0.00500	BRL	89	85-115				

Soluble Metals	by EPA 6000/7	000 Series Methods -	Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1605811 - SW846 3005A										
<u>Blank (1605811-BLK1)</u>					Pre	epared: 08-	Apr-16 An	alyzed: 11-A	or-16	
Iron	< 0.0150		mg/l	0.0150						
Nickel	< 0.0050		mg/l	0.0050						
Zinc	< 0.0050		mg/l	0.0050						
Arsenic	< 0.0040		mg/l	0.0040						
Thallium	< 0.0050		mg/l	0.0050						
Selenium	< 0.0150		mg/l	0.0150						
Lead	< 0.0075		mg/l	0.0075						
Copper	< 0.0050		mg/l	0.0050						
Chromium	< 0.0050		mg/l	0.0050						
Cadmium	< 0.0025		mg/l	0.0025						
Silver	< 0.0023		-	0.0025						
Barium	< 0.0050		mg/l	0.0050						
			mg/l	0.0050						
Beryllium	< 0.0020		mg/l							
Antimony	< 0.0060		mg/l	0.0060						
<u>LCS (1605811-BS1)</u>						epared: 08-		alyzed: 11-A	<u>or-16</u>	
Iron	1.23		mg/l	0.0150	1.25		99	85-115		
Chromium	1.32		mg/l	0.0050	1.25		106	85-115		
Arsenic	1.31		mg/l	0.0040	1.25		105	85-115		
Silver	1.30		mg/l	0.0050	1.25		104	85-115		
Barium	1.33		mg/l	0.0050	1.25		107	85-115		
Cadmium	1.20		mg/l	0.0025	1.25		96	85-115		
Copper	1.26		mg/l	0.0050	1.25		101	85-115		
Nickel	1.28		mg/l	0.0050	1.25		102	85-115		
Lead	1.36		mg/l	0.0075	1.25		109	85-115		
Antimony	1.29		mg/l	0.0060	1.25		103	85-115		
Selenium	1.35		mg/l	0.0150	1.25		108	85-115		
Thallium	1.26		mg/l	0.0050	1.25		101	85-115		
Zinc	1.30		mg/l	0.0050	1.25		104	85-115		
Beryllium	1.31		mg/l	0.0020	1.25		105	85-115		
LCS Dup (1605811-BSD1)			5			enared: 08-		alyzed: 11-A	or-16	
Iron	1.20		ma/l	0.0150	1.25		96	85-115	2	20
Cadmium	1.20		mg/l						2	20
			mg/l	0.0025	1.25		94	85-115		
Copper	1.23		mg/l	0.0050	1.25		98	85-115	3	20
Barium	1.31		mg/l	0.0050	1.25		105	85-115	2	20
Zinc	1.29		mg/l	0.0050	1.25		103	85-115	1	20
Thallium	1.23		mg/l	0.0050	1.25		98	85-115	2	20
Selenium	1.31		mg/l	0.0150	1.25		105	85-115	3	20
Antimony	1.25		mg/l	0.0060	1.25		100	85-115	3	20
Nickel	1.25		mg/l	0.0050	1.25		100	85-115	2	20
Chromium	1.31		mg/l	0.0050	1.25		105	85-115	1	20
Beryllium	1.29		mg/l	0.0020	1.25		103	85-115	1	20
Arsenic	1.27		mg/l	0.0040	1.25		102	85-115	3	20
Silver	1.28		mg/l	0.0050	1.25		103	85-115	0.9	20
Lead	1.33		mg/l	0.0075	1.25		106	85-115	2	20
Duplicate (1605811-DUP1)			Source: SC	<u> 219886-01</u>	Pre	epared: 08-	Apr-16 An	alyzed: 11-A	or-16	
Iron	0.0076	J	mg/l	0.0150		0.0066			14	20
Beryllium	< 0.0020		mg/l	0.0020		BRL				20
Chromium	< 0.0050		mg/l	0.0050		BRL				20
Barium	0.0412		mg/l	0.0050		0.0418			1	20
			-							
Silver	< 0.0050		mg/l	0.0050		BRL				20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1605811 - SW846 3005A										
Duplicate (1605811-DUP1)			Source: SO	C19886-01	Pre	epared: 08-	Apr-16 Ana	alyzed: 11-Ap	or-16	
Zinc	0.0056		mg/l	0.0050		0.0056			2	20
Thallium	< 0.0050		mg/l	0.0050		BRL				20
Selenium	< 0.0150		mg/l	0.0150		BRL				20
Antimony	0.0014	J	mg/l	0.0060		BRL				20
Lead	< 0.0075		mg/l	0.0075		BRL				20
Nickel	< 0.0050		mg/l	0.0050		BRL				20
Copper	< 0.0050		mg/l	0.0050		BRL				20
Arsenic	0.0020	J,QR8	mg/l	0.0040		0.0026			24	20
<u>Matrix Spike (1605811-MS1)</u>			Source: SC	C19886-01	Pre	epared: 08-	Apr-16 Ana	alyzed: 11-Ap	or-16	
Iron	1.20		mg/l	0.0150	1.25	0.0066	96	75-125		
Barium	1.33		mg/l	0.0050	1.25	0.0418	103	75-125		
Nickel	1.21		mg/l	0.0050	1.25	BRL	96	75-125		
Copper	1.25		mg/l	0.0050	1.25	BRL	100	75-125		
Chromium	1.33		mg/l	0.0050	1.25	BRL	106	75-125		
Cadmium	1.18		mg/l	0.0025	1.25	BRL	94	75-125		
Beryllium	1.34		mg/l	0.0020	1.25	BRL	107	75-125		
Arsenic	1.31		mg/l	0.0040	1.25	0.0026	105	75-125		
Zinc	1.30		mg/l	0.0050	1.25	0.0056	104	75-125		
Thallium	1.20		mg/l	0.0050	1.25	BRL	96	75-125		
Lead	1.28		mg/l	0.0075	1.25	BRL	102	75-125		
Silver	1.35		mg/l	0.0050	1.25	BRL	108	75-125		
Selenium	1.33		mg/l	0.0150	1.25	BRL	106	75-125		
Antimony	1.25		mg/l	0.0060	1.25	BRL	100	75-125		
<u>Matrix Spike Dup (1605811-MSD1)</u>			Source: SC	C19886-01	Pre	epared: 08-	Apr-16 Ana	alyzed: 11-Ap	or-16	
Iron	1.20		mg/l	0.0150	1.25	0.0066	96	75-125	0.2	20
Zinc	1.32		mg/l	0.0050	1.25	0.0056	105	75-125	2	20
Copper	1.24		mg/l	0.0050	1.25	BRL	100	75-125	0.7	20
Nickel	1.23		mg/l	0.0050	1.25	BRL	98	75-125	2	20
Selenium	1.37		mg/l	0.0150	1.25	BRL	109	75-125	3	20
Antimony	1.28		mg/l	0.0060	1.25	BRL	103	75-125	2	20
Lead	1.30		mg/l	0.0075	1.25	BRL	104	75-125	2	20
Chromium	1.32		mg/l	0.0050	1.25	BRL	106	75-125	0.5	20
Silver	1.34		mg/l	0.0050	1.25	BRL	107	75-125	0.9	20
Thallium	1.21		mg/l	0.0050	1.25	BRL	97	75-125	0.7	20
Beryllium	1.35		mg/l	0.0020	1.25	BRL	108	75-125	0.2	20
Arsenic	1.35		mg/l	0.0040	1.25	0.0026	108	75-125	3	20
Barium	1.37		mg/l	0.0050	1.25	0.0418	106	75-125	3	20
Cadmium	1.19		mg/l	0.0025	1.25	BRL	95	75-125	0.4	20
Post Spike (1605811-PS1)			Source: SO	C19886-01	Pre	epared: 08-	Apr-16 Ana	alyzed: 11-Ap	or-16	
Iron	1.18		mg/l	0.0150	1.25	0.0066	94	80-120		
Selenium	1.30		mg/l	0.0150	1.25	BRL	104	80-120		
Zinc	1.30		mg/l	0.0050	1.25	0.0056	103	80-120		
Thallium	1.19		mg/l	0.0050	1.25	BRL	95	80-120		
Antimony	1.23		mg/l	0.0060	1.25	BRL	98	80-120		
Lead	1.26		mg/l	0.0075	1.25	BRL	101	80-120		
Nickel	1.19		mg/l	0.0050	1.25	BRL	95	80-120		
Copper	1.22		mg/l	0.0050	1.25	BRL	97	80-120		
Chromium	1.32		mg/l	0.0050	1.25	BRL	106	80-120		
Beryllium	1.33		mg/l	0.0020	1.25	BRL	106	80-120		
Barium	1.31		mg/l	0.0050	1.25	0.0418	102	80-120		
Dallulli										

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1605811 - SW846 3005A										
Post Spike (1605811-PS1)			Source: SC	C19886-01	Pre	epared: 08-	Apr-16 Ana	alyzed: 11-Ap	or-16	
Silver	1.33		mg/l	0.0050	1.25	BRL	106	80-120		
Cadmium	1.16		mg/l	0.0025	1.25	BRL	93	80-120		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1605812 - EPA200/SW7000 Series										
Blank (1605812-BLK1)					Pre	pared: 08-	Apr-16 A	nalyzed: 11-Ap	or-16	
Mercury	< 0.00020		mg/l	0.00020						
LCS (1605812-BS1)					Pre	pared: 08-	Apr-16 A	nalyzed: 11-Ap	or-16	
Mercury	0.00423		mg/l	0.00020	0.00500		85	85-115		
Duplicate (1605812-DUP1)			Source: S	C19886-01	Pre	pared: 08-	Apr-16 A	nalyzed: 11-Ap	or-16	
Mercury	< 0.00020		mg/l	0.00020		BRL				20
Matrix Spike (1605812-MS1)			Source: S	C19886-01	Pre	pared: 08-	Apr-16 A	nalyzed: 11-Ap	or-16	
Mercury	0.00426		mg/l	0.00020	0.00500	BRL	85	80-120		
Matrix Spike Dup (1605812-MSD1)			Source: S	C19886-01	Pre	pared: 08-	Apr-16 A	nalyzed: 11-Ap	or-16	
Mercury	0.00425		mg/l	0.00020	0.00500	BRL	85	80-120	0.2	20
Post Spike (1605812-PS1)			Source: S	C19886-01	Pre	pared: 08-	Apr-16 A	nalyzed: 11-Ap	or-16	
Mercury	0.00446		mg/l	0.00020	0.00500	BRL	89	85-115		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1605834 - General Preparation										
Reference (1605834-SRM1)					Pre	epared: 07-	Apr-16 An	alyzed: 11-Ap	or-16	
pH	5.94		pH Units		6.00		99	97.5-102.		
					_			5		
Reference (1605834-SRM2)						epared: 07-		alyzed: 11-Ap	<u>or-16</u>	
рН	6.01		pH Units		6.00		100	97.5-102. 5		
Batch 1605857 - General Preparation										
<u>Blank (1605857-BLK1)</u>					Pre	epared: 08-	Apr-16 An	alyzed: 12-A	or-16	
Total Suspended Solids	< 5.0		mg/l	5.0						
LCS (1605857-BS1)					Pre	epared: 08-	Apr-16 An	alyzed: 12-A	or-16	
Total Suspended Solids	94.0		mg/l	10.0	100		94	90-110		
Batch 1605859 - General Preparation										
Blank (1605859-BLK1)					Pre	epared: 08-	Apr-16 An	alyzed: 12-A	or-16	
Total Dissolved Solids	< 5		mg/l	5						
LCS (1605859-BS1)					Pre	epared: 08-	Apr-16 An	alyzed: 12-A	or-16	
Total Dissolved Solids	1000		mg/l	10	1000		100	90-110		
Batch 1605874 - General Preparation										
Reference (1605874-SRM1)					Pre	epared & Ar	nalyzed: 08	-Apr-16		
Flashpoint	80		°F		81.0		99	95-105		
Batch 1606041 - General Preparation										
<u>Blank (1606041-BLK1)</u>					Pre	epared & Ar	nalyzed: 12	-Apr-16		
Reactivity	See Narrative		mg/l							
Reactive Cyanide	< 25.0		mg/l	25.0						
Reactive Sulfide	< 50.0		mg/l	50.0						
Duplicate (1606041-DUP1)			Source: SC	<u>19886-01</u>	Pre	epared & Ar	nalyzed: 12	-Apr-16		
Reactivity	See Narrative		mg/l			ee Narrativ				200
Reactive Cyanide	< 25.0		mg/l	25.0		BRL				20
Reactive Sulfide	< 50.0		mg/l	50.0		BRL				20
Reference (1606041-SRM1)					Pre	epared & Ar	nalyzed: 12	-Apr-16		
Reactive Cyanide	< 25.0		mg/l	25.0	100		0	0-200		
Reference (1606041-SRM2)					Pre	epared & Ar	nalyzed: 12	-Apr-16		
Reactive Sulfide	< 50.0		mg/l	50.0	6700		0	0-200		
Batch 1606242 - General Preparation										
Blank (1606242-BLK1)					Pre	epared & Ar	nalyzed: 14	-Apr-16		
Chloride	< 1.00		mg/l	1.00						
LCS (1606242-BS1)					Pre	epared & Ar	nalyzed: 14	-Apr-16		
Chloride	20.1		mg/l	1.00	20.0		101	90-110		
Reference (1606242-SRM1)					Pre	epared & Ar	nalyzed: 14	-Apr-16		
Chloride	25.2		mg/l	1.00	25.0		101	90-110		

Notes and Definitions

- D Data reported from a dilution
- GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.
- QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
- QR8 Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- pHThe method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as
soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis.
Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.
All soil samples are analyzed as soon as possible after sample receipt.
- HD Total Hardness is a calculation based on the reported values of Ca and Mg.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc. Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel Fuel Oil #4 - includes #4 fuel oil Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil Motor Oil - includes virgin and waste automobile oil Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha Aviation Fuel - includes kerosene, Jet A and JP-4 Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Christina White Derek Swist Emily Kinney Erica Troy June O'Connor Raquel Thomas Thomas Dunn

		296 milling	Relinquished by:					Sc1988601 MW-1	Lab ID: Sample ID:	G= Grab	X1=X2=	O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air	DW=Dinking Water GW=Groundwater SW=S	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	Project Mgr: $\mathcal{M} = \mathcal{M} = \mathcal$		Variation the Angling 16	Report To: ECS	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY		
	(ON IN	Received by:					46116 9:45 6	Date: Time: T	C =Compsite	X3=	nbient Air SG=Soil Gas	SW=Surface Water WW=Waste Water	SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid PO ₄ 11= 12=	P.O No.:			Invoice To:	1	CHAIN	
		Halle 1303	4 Date: 16 -13 Time@3	- T				2	# of # of # of	atrix VOA Ambe Clear Plastic	r Glass Glass	5	Containers	bic Acid	Adding_ Quote/RQN:			(F)	Page of	HAIN OF CUSTODY RE	
R ID# O U Ambient I Iced Ora	Condition upon receipt:	The second secon	Temp °C EDD format:					XXXXXXX	VI RU RU RU RU RU RU RU RU RU RU RU RU RU		166 Tov 3 Dis 5/12 45/12 826 82		Analysised	List Preservative order below:	Sampler(s):	Location: 67 ream St	site Name: Westminste	Project No: 03-2	Ali 1 Min Samj		
CARefrigerated DI VOA Frozen Soil Jar Frozen	Custody Seals: Present Intact Broken	Crechconfult.con	v							and the	hlorin	ated	leport? Yes	QA/QC Reporting Notes: * additional charges may appply	in Clearta	1 St, Weshipster State: MA	1200 CEI # 0006	-221324	Ali TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	$\square \text{ Standard TAT - 7 to 10 business days}$ $\square \text{ Rush TAT - Date Needed: } 3 \text{ Days}$	Special Handling:

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

Rev. Jan 2014

11 Almen			NO 240 Martin	the state	Relinquished by:					4/6/16 HW-1 4/6/16	Lab ID: Sample ID: Date:	G=Grab C=Cor	X1=X2=	O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air SO	DW=Dinking Water GW=Groundwater SW=Surface Water	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	Project Mgr: Mattlync	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/10 the state and	Report To: ECS	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY			
ron Drive • Acowam MA 01001 • 413-789-9018 • FAX 413-789-40		1.1.		A HAT	equed by: 4 Date: 16-13 Time 03					C E M9 9 54:6	Time: Ty Ma # of ' # of ' # of (Ambe	Vials Glass c	SG=Soil Gas	WW=Waste Water Containers	3 5=NaOH 6=Ascorbic Acid 11=12=	P.O No .: Dordowy Quote/RQN:	73522 En 4/8		Invoice To:	Page of	CHAIN OF CUSTODY RECORD		
al.com Rev. Jan	IR ID#	Corrected Greek Condition upon receipt: Custody Seals: Present Intact Broken		Observed J E-mail to: Myne CLECSCarry H. Con	Temp °C EDD format:							AB BA ID ID C C C C C C C C C C C C C C C C C	schlorin NI Reduced*	ter 1 1 Stolver CBS Point To Standard Ino oc	Analysis MA DEP MCP CAM Report? Ves 0 No	List Preservative Crice below: QA/QC Reporting Notes: 2 48 * additional charges may apply	sampuer(s): Andrew Cleur	67 ren 54 h	Site Name: Westminther CEI # 0006		All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	ECORD NRush TAT - Date Needed: 3 Day	Special Handling:	1 20 (188) DC

1076 wave spacetering analytical com		11 Almaron Deixo & Arawam MA 01001 • 413 780 0018 • EAV 412 780	
	IR ID#		
Condition upon receipt: Custody Seals: Present Intact Broken	Corrected		
TE-mail to: Myne Creckconjult. Con	16 1303 /13	A CALL	All willy
EDD format:	Date: 16 -13 Time@3 Temp °C	thereived by:	Relinquished by:
		1	
	T	0 00	
	5	6W	4 1-7886-1 MW-1 4
	# of . # of 9	. Ma	Lab ID: Sample ID:
rol		C=Compsite ype atrix VOA	G ≡ Grab
hlorina	r Glass Glass	X3=	X1= X2=
ated	4	ir SG=Soil Gas	O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air
Analysis	Containers	Water WW=Waste Water	DW=Dinking Water GW=Groundwater SW=Surface Water
List Preservative Other below: QA/QC Reporting Notes: * additional charges may apply	12	4=HNO ₃ 5=NaOH 6=Ascorbic Acid 11= 12=	$ F=Field Filtered 1=Na_2S2O_3 2=HCI 3=H_2SO_4 \\ 7=CH3OH 8=NaHSO_4 9=Deionized Water 10=H_3PO_4 $
Sampler(s): Andrew Cleathe	Quote/RQN:	P.O.No.: Perdoug	Telephone #: 507 756 0151 Project Mgr: Mattlyn
Location: 67 res 54 wester 1 stor State MA	Sn 4/2	73522	
Site Name: Westworther CEI # 0006			Variation for Anglia the
Project No: 03-221324	121	Invoice To:	Report To: FCS
All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	of	Page	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY
Special Handling: Standard TAT - 7 to 10 business days	USTODY RECORD	CHAIN OF CUST	3
V SC (9886 Br)			

Superial Handling: Superial Handling: Standard TAT - 7 to 10 business days Markin TAT - Date Needed: A consistent to illustation meetider approval Markin TAT - Date Needed: A consistent on allowed approval Markin TAT - Date Needed: A consistent on allowed approval Markin TAT - Date Needed: A consistent on allowed approval Markin TAT - Date Needed: A consistent on allowed approval Markin TAT - Date Needed: A consistent on allowed approval Markin TAT - Date Needed: A consistent on allowed approval Markin TAT - Date Needed: A consistent on allowed approval Markin TAT - Date Needed: A consistent on allowed approval Markin TAT - Date Needed: State: Markin TAT - Date Needed: Note: "additional charges may applied approve the constant of the Date of the constant of the constant of the Date of the constant of the Date of the constant o	Rev. Jan 2014	11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com	076 • www.spee	8 • FAX 413-789-4)1 • 413-789-9018	am, MA 0100	Drive • Agaw	11 Almgren		*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DI VOA Frozen	Iced								
Sector Records Sector Function Instrumentation The three bases Sector Function Instrumentation Instrumentation Sector Function Instrumentation Sector Function Sector Function Instrumentation <td>Present Intact</td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td>(</td> <td></td> <td></td>	Present Intact				~			(
Special list of the second			Corecction Factor	16:12	4-8-16		S	D	780	
Section Answer (no.) Section (no.) Sectio	Decriminit. con	E-mail to: My	No construct	1431	4-2-16	Z	R	Q SX	M ()	- U trank
Section			Temp °C		Date:		ed by:	Receiv	ished by:	Relinqu
Section Mathematical Network Section Mathe										
Sector Handle New Lett										
Section CHAIN OF CUSTODY RECORD Section Hundling: Part Lord Part Lord Part Lord Section Hundling: Part Lord Part Lord Part Lord Part Lord Part Lord EGS - More color Part Lord Part Lord Part Lord Part Lord Part Lord Part Lord Pa										A
Sector Reservative Galaxies Sector Reservative G										
Section										
Sector Induction CHAIN OF CUSTODY RECORD Special funding: Special funding: Page 1 of 1 Page 1 of 1 Page 1 of 1 Special funding: Page 1 of 1 Page 1 of 1 Page 1 of 1 Special funding: Page 1 of 1 Page 1 of 1 Page 1 of 1 Special funding: Page 1 of 1 Page 1 of 1 Page 1 of 1 Special funding: Page 1 Page 1 of 1 Page 1 of 1 Special funding: Page 1 Page 1 of 1 Page 1 of 1 Special funding: Page 1 Page 1 of 1 Page 1 Special funding: Page 1 Page 1 of 1 Page 1 Special funding: Page 1 Page 1 Page 1 Page 1 Page 1 Page 2 Page 2 Page 1 Page 2 Page 2 Page 2 Page 2 Page 2 Page 3 Page 2 Page 2 Page 3 Page 2 Page 2 Page 3 Page 2 Page 2 Page 4 Page 2 Page 2 Page 2 <										•
Special Handling: Special Handling: PBC LL of L Par L of L Par L of L Par L of L <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Section of the sectin of the section of the section of the section of the secti	the									
Special Handling: Special Handling: VECTRON ANAUTICAL, NC. Page 1 of 1 FECTRON ANAUTICAL, NC. FECTRON ANAUTICAL, NC. FECTRON ANAUTICAL, NC. FECTRON ANAUTICAL, NC. FECTRON ANAUTICAL, NC. FECTRON ANAUTICAL, NC. Secter FECTRON ANAUTICAL, NC. FECTRON ANAUTICAL, NC. S	with other collect									
Supple ID: Date: Time:	Combine this se		×			6	Pilit	4-6-16	MWJ	C19826-01
Special Handling: Special Handling: Page: L of L Page: L of L ECS - WD reactive: Invoice To: Page: L of L Page: L of L Page			P		# of		Time:	Date:	Sample ID:	Lab ID:
Special Handling: Special Handling: Special Handling: Properties ECS - More sheet Involve To: ECS - More sheet Involve To: CFL Involve To: Involve To: CFL Involve To: CFL Involve To: Involve To: Involve To:]	27 42 27 4 27 4	'CB		VOA		ite	C=Comps	Grab	G=
Special Handling: Product NULL Product NULL ECS - More Sub-recorrection Math Lune Non- CFL Provertion Math Lune Math Lune Provertion Math Lune Provertion Math Lune Provertion Proveron Proveron <	ASP A* ·		5		-			X	X2=	X1=
Special Handling: Speci							TOTI Class			
Special Handling: PRECTRUM AVALYTICAL, INC.	CT DPH RCP Report?						oil Gas	SC	iuwaici A=Indo	0=0il S0=Soil
Special Handling: Speci	Yes	Analysis		ontainers	0	ater	WW=Waste W			nw=Dinking Water
Special Handling: Speci	QA/QC Reporting Notes: * additional charges may appply	st Preservative Code below:	E		Acid	6=Ascorbic	5=NaOH	4=HNO ₃	a ₂ S2O ₃ 2 =HCl 9 =Deionized Water	NaH
Special Handling: Special Handling: Special Handling: Page L of L ECS - Ware syle Invoice To: Standard To: Page L of L Invoice To: Standard To: Display Standard To: Standard To: Standard To: Display Standard To: Standard To: <td>000</td> <td>1</td> <td></td> <td>e/RQN:</td> <td></td> <td>to</td> <td>P.O]</td> <td></td> <td>With Ly</td> <td>Project Mgr:</td>	000	1		e/RQN:		to	P.O]		With Ly	Project Mgr:
Special Handling: Speci	IT WEITHINGTER State:	68			2522					Telephone #:
$\frac{CHAIN OF CUSTODY RECORD}{Page \perp of \perp}$	HAT-CAT # CODE									
SPECTRUM ANALYTICAL, INC. SPECTRUM ANALYTICAL, INC. Page 1 of 1	an Aran is	1 00-			S T	10:	Invoice		1	L
CHAIN OF CUSTODY RECORD	MC211	- 20			100				·r I la alla	
D D D G TO Special Handling:	noject to taboratory approva r notification needed for rushes isposed after 60 days unless otherwise instructed.	Min. 24-hr Samples di		-	1	Pa			A ANALYTICAL, INC.	SPECTRU
Special Handling:	Sd		CORI	ODY RI	CUST	IO NI	CHA		~/	1
(110001 /	Special Handling: TAT - 7 to 10 business days	Standard							イレ	
		000	C							

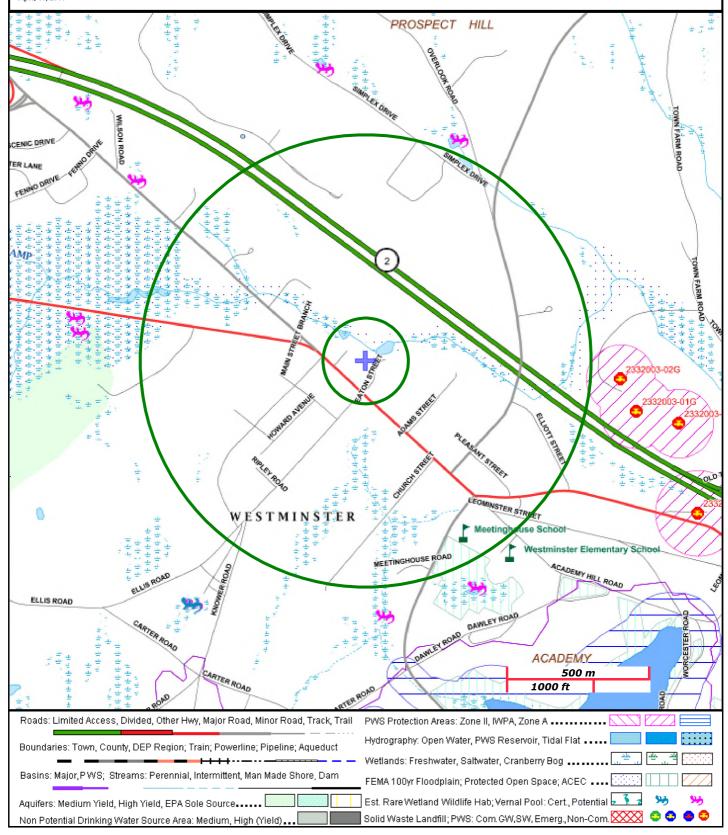
Spectrum Analytical

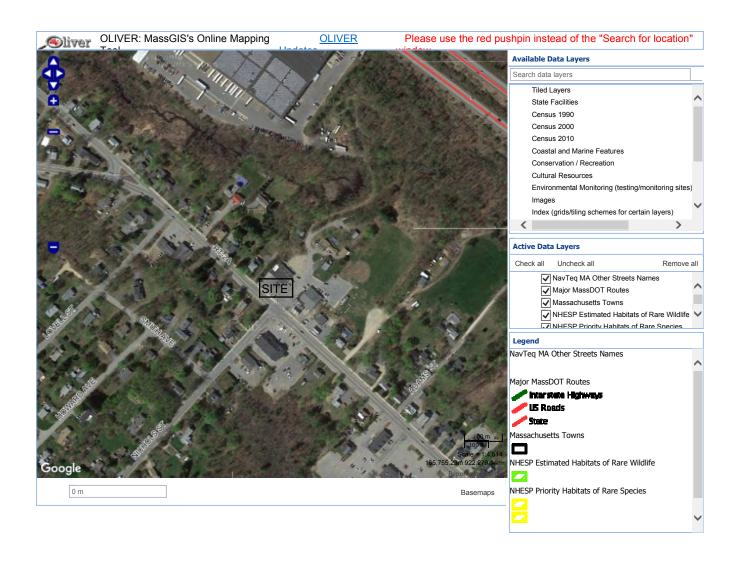
11 Almgren Drive Agawam, MA 01001 (413) 789-9018

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SC19886-01	MW-1	Polychlorinated Biphenyls	4/8/2016
SC19886-01	MW-1	Semivolatile Organic Compounds	4/8/2016
SC19886-01	MW-1	Chloride	4/13/2016
SC19886-01	MW-1	Soluble Antimony by ICP	4/13/2016
SC19886-01	MW-1	Soluble Beryllium by ICP	4/13/2016
SC19886-01	MW-1	Soluble Copper by ICP	4/13/2016
SC19886-01	MW-1	Soluble Iron by ICP	4/13/2016
SC19886-01	MW-1	Soluble Nickel by ICP	4/13/2016
SC19886-01	MW-1	Soluble Thallium by ICP	4/13/2016
SC19886-01	MW-1	Soluble Zinc by ICP	4/13/2016
SC19886-01	MW-1	Total Antimony by ICP	4/13/2016
SC19886-01	MW-1	Total Beryllium by ICP	4/13/2016
SC19886-01	MW-1	Total Calcium by ICP	4/13/2016
SC19886-01	MW-1	Total Copper by ICP	4/13/2016
SC19886-01	MW-1	Total Hardness	4/13/2016
SC19886-01	MW-1	Total Iron by ICP	4/13/2016
SC19886-01	MW-1	Total Magnesium by ICP	4/13/2016
SC19886-01	MW-1	Total Nickel by ICP	4/13/2016
SC19886-01	MW-1	Total Thallium by ICP	4/13/2016
SC19886-01	MW-1	Total Zinc by ICP	4/13/2016

ATTACHMENT III


MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information:

68 MAIN STREET WESTMINSTER, MA

NAD83 UTM Meters: 4714860mN , 260612mE (Zone: 19) April 13, 2016 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: <u>http://www.mass.gov/mgis/</u>.

ATTACHMENT IV

Massachusetts Cultural Resource Information

MHC Home | MACRIS Home

Results

Get Results in Report Format • PDF • Spreadsheet

Below are the results of your search, using the following search criteria: **Town(s):** Westminster **Street No:** 68 **Street Name:** Main **Resource Type(s):** Area, Building

For more information about this page and how to use it, click here

No Results Found.

