

May 1, 2016

U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912 ATTN: Dewatering General Permit NOI Processing – Industrial permit Unit

Massachusetts Department of Environmental Protection Division of Watershed Management 8 New Bond Street Worcester, MA 01606

Reference: MWRA Clinton WWTP Phosphorus Reduction Facility Project, 667 High Street Extension, Clinton, Massachusetts 01510 Notice of Intent for Construction Dewatering Discharge under Massachusetts Dewatering General Permit MAG070000

To Whom it May Concern

This letter report provides a summary of the site and groundwater quality information in support of an application for permission from the U.S. Environmental Protection Agency (EPA) and the Massachusetts Department of Environmental Protection (MassDEP) for the temporary dewatering discharge of groundwater into the South Branch of the Nashua River in Clinton, Massachusetts, which is classified by Massachusetts as a Class B waterbody, during construction at the above referenced project under the Dewatering General Permit MAG070000. This NOI is being filed on behalf of the operator: Daniel O'Connell's Sons, Inc. located at 1000 Franklin Village Drive # 106, Franklin, MA 02038 (Phone: 508-520-8900). The discharge meets the applicable requirements of the permit. Refer to **Figure 1** for a Site Locus and **Figure 2** for a Project Plan.

Project Narrative

The Clinton Wastewater Treatment Plant is owned and operated by the Massachusetts Water Resources Authority (MWRA) to provide advanced wastewater treatment, including nutrient removal, for the Towns of Clinton and Lancaster, Massachusetts prior to discharging the treated effluent to the South Branch Nashua River. Clinton WWTP (SIC code: 4952) is located at 667 High Street Ext in Clinton, Massachusetts at 42.4315° N latitude and 71.6788° W longitude. The facility currently discharges under NPDES permit number MA0100404 and an eNOI was filed for the Construction General Permit relating to site activities (MAR12BG93); however, the dewatering discharge will be covered under a separate permit. MWRA is headquartered at

Charlestown Navy Yard, 100 First Avenue, Boston, Massachusetts 02129 and can be reached at (617) 242-6000.

The Clinton WWTP Phosphorus Reduction Facility Project is part of the MWRA's on-going efforts to improve treatment processes and water quality standards for the South Branch Nashua River. This application applies to the dewatering associated with construction of a new phosphorus reduction building foundation, superstructure, and associated infrastructure. Refer to **Figure 3** for plans of existing conditions, limits of work, outfall location, and receiving waters. The project area is approximately 0.5-acres. Currently, the site includes a wastewater treatment facility which is designed to treat an average daily flow of 3.01 million gallons per day (mgd). The treatment facility includes preliminary treatment in the form of grit removal, and screening/comminution followed by primary settling, trickling filtration, aeration tanks, secondary clariflocculators for nutrient removal, and chlorination prior to discharge to the river. The facility also includes an anaerobic digestion system consisting of primary and secondary digester tanks followed by digested sludge storage and sludge dewatering facilities. The facility will remain operational for the duration of the construction.

Excavation within the foundation footprint and associated infrastructure will extend to depths of approximately 15-feet corresponding to design specifications. Groundwater encountered will be discharged via strategically located submersible pumps to maintain a dry excavation. The groundwater encountered across the site is anticipated to be trapped within surficial fill, which is underlain by relatively impermeable firm to very stiff, grey silt. Soil borings were advanced to a maximum depth of 57 feet below graded surface; bedrock was not encountered. Based on sieve and percolation tests, it is estimated that groundwater discharge during the excavations will be on the order of one gallon per minute (GPM).

Groundwater Analytical Results

OHI Engineering, Inc. collected a groundwater sample from groundwater monitoring well OW-1 (Sample identification: Dewatering), located approximately five yards south of the proposed excavation area. The laboratory report is attached as **Appendix A**. A table displaying the results is attached as **Table 1**. Total Suspended Solids (TSS) was detected in the groundwater at levels above the effluent limits set forth in Appendix III of the NPDES Remediation & Miscellaneous Contaminated Sites General Permit (RGP) for freshwater. Arsenic, copper, iron, lead, mercury, nickel, and silver were detected in the groundwater below the effluent limits noted in Appendix III. Chloride was detected; however no effluent limit for chloride is noted in Appendix III.

Treatment for TSS will be provided for on all dewatering effluent.

Treatment System Information

In order to maintain the concentration of TSS below Appendix III effluent limits, groundwater will be pumped out of a ³/₄" crushed stone lined pit, through a silt sack, and into a 21,000-gallon sedimentation and fractionation (frac) tank before being discharged through one outfall overland across newly installed rip-rap prior to entering the South Branch Nashua River. Refer to **Figure 4** for a line diagram of the treatment system. The anticipated discharge will be intermittent

pumping to the frac tank with and discharged from the tank at one outfall location with a maximum daily flow of approximately 5,000 gallons per day (GPD), and an average flow of 1,500 GPD. Based on groundwater sampling results, groundwater at the site has a pH of 6.8. In order to document the effectiveness of the groundwater treatment, samples of discharge water will be obtained and analyzed for TSS. Should the results of testing indicate an exceedance of the DGP effluent limits, appropriate treatment steps will be implemented to address the exceedances.

Historic and Archaeological Properties

Historic and archaeological properties do not exist within the project area. The project is not listed on or adjacent to properties listed in the National Historic Register of Historic Properties. Therefore the discharges do not have the potential to cause effects on historic properties. Please refer to **Appendix B** for documentation.

Endangered Species Habitat

Based on information obtained from the Natural Heritage and Endangered Species Program (NHESP) Database of Massachusetts and the Information, Planning, and Conservation (IPaC) online system report, the proposed project will not adversely impact national heritage areas, Areas of Critical Environmental Concern, Essential Fish Habitats, or endangered species. Pursuant to the NPDES Dewatering General Permit requirements, documentation received from the NHESP and IPaC online system are provided as **Appendix B**.

Conclusions

Sampling and analysis of the effluent will be carried out in accordance with the terms of the DGP. An Erosion and Sediment Control Plan (ESCP) and Storm Water Pollution Prevention Plan (SWPPP) have been developed and will be maintained by the on-Site Environmental Compliance Manager. In conclusion, it is our opinion that groundwater at the site is acceptable for discharge into the South Branch of the Nashua River under a DGP. Please do not hesitate to contact us if you have any questions or concerns.

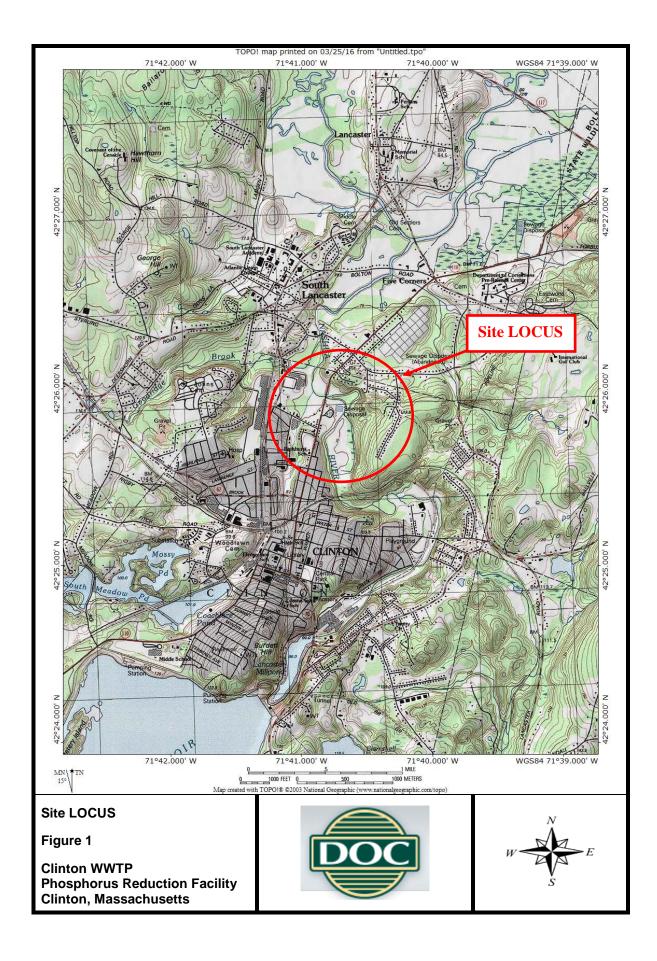
Sincerely,

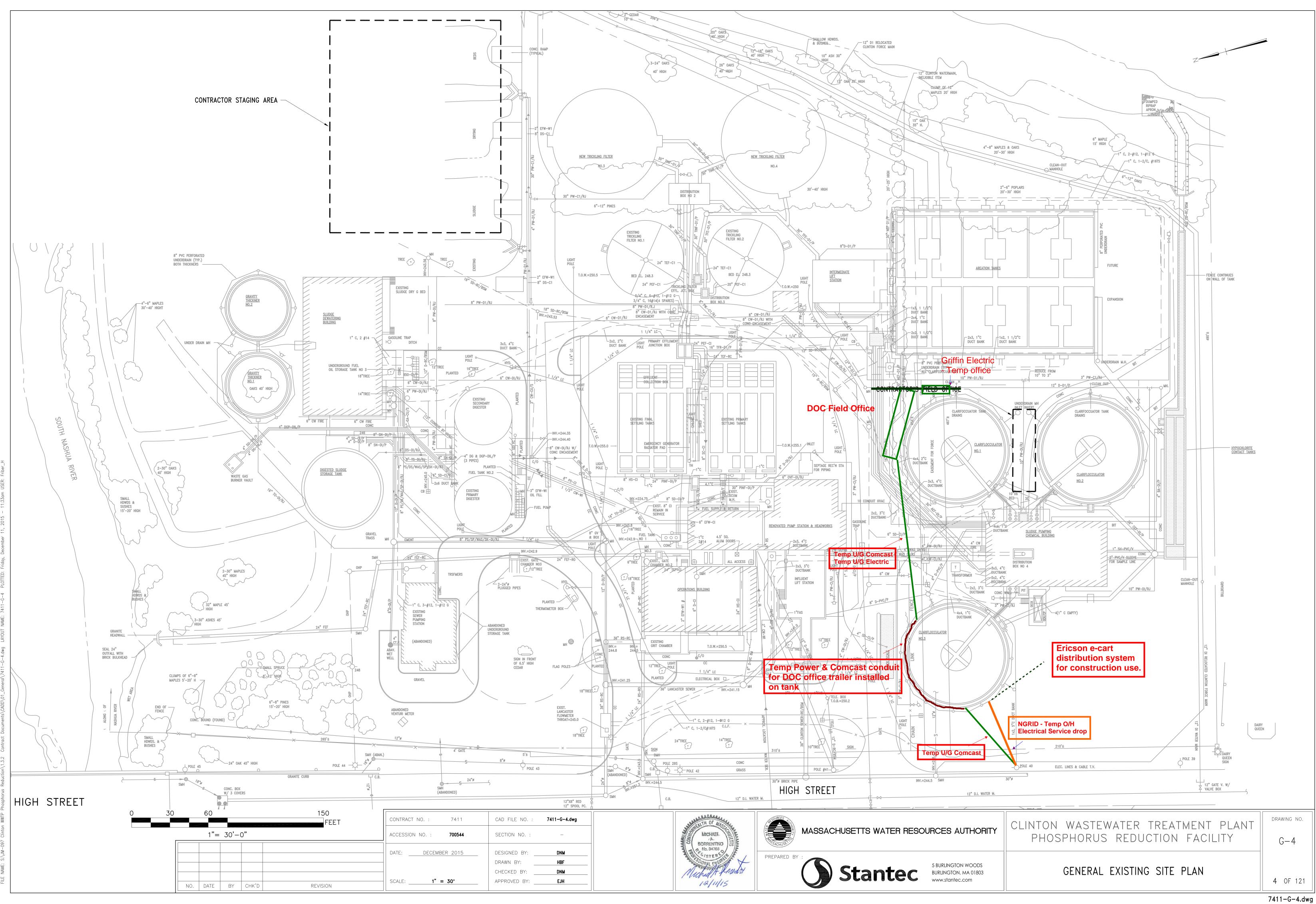
OHI ENGINEERING, INC.

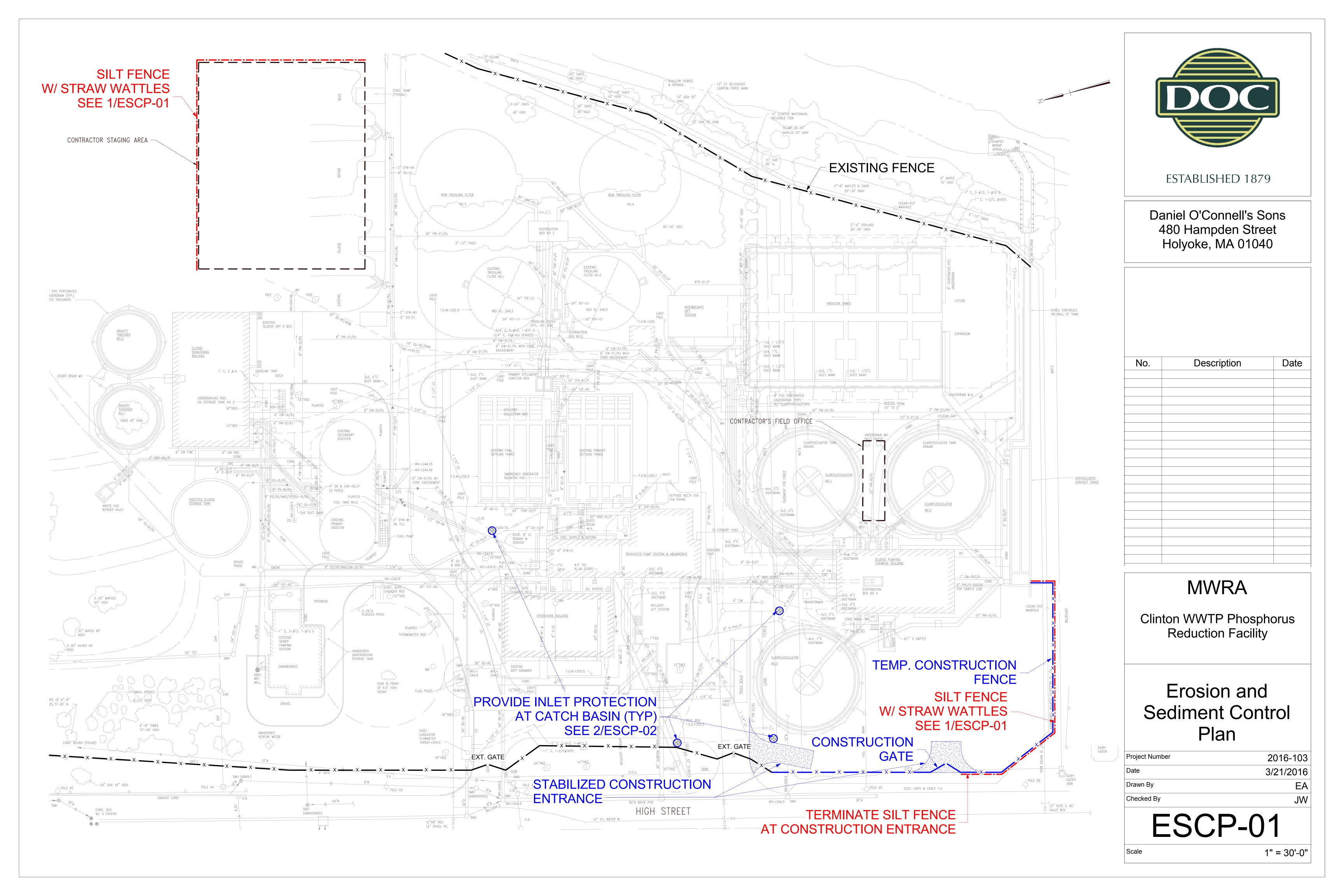
James R. Borrebach, P.E., L.S.P. Principal

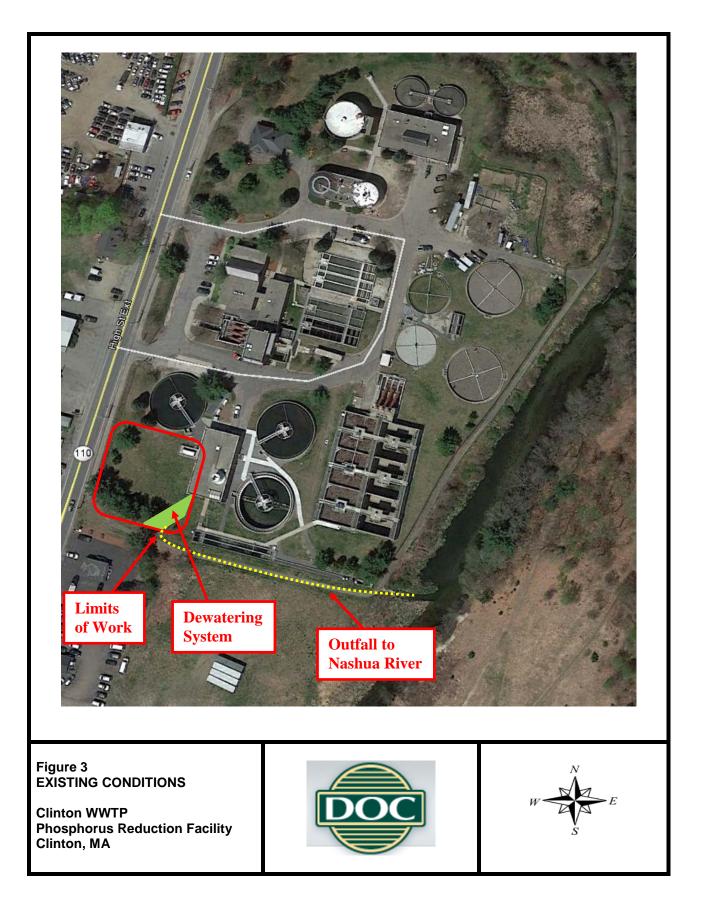
Signature Requirements

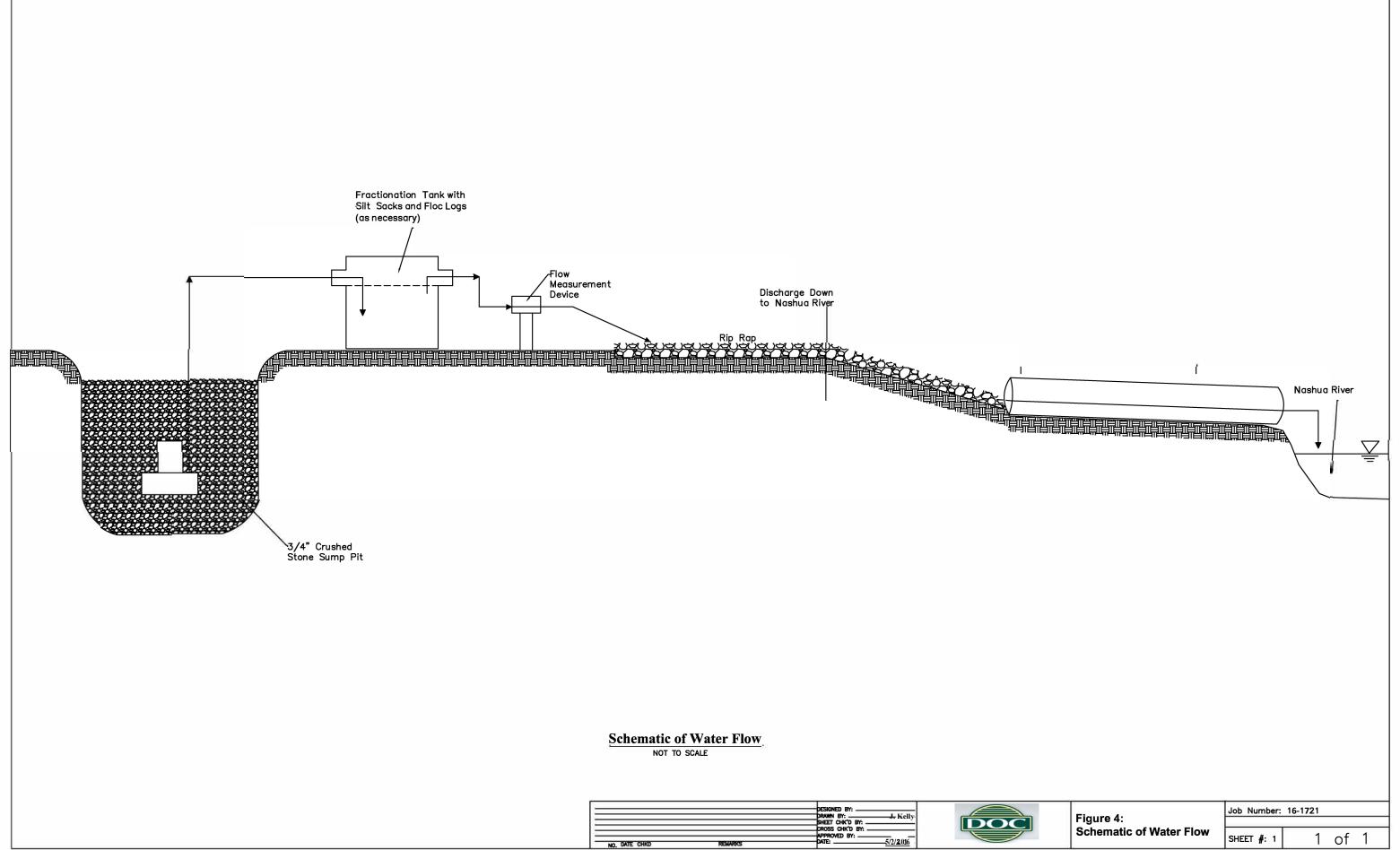
I certify under penalty of law that (1) no biocides or other chemical additives except for those used for pH adjustment and/or dechlorination are used in the dewatering system; (2) the discharge consists solely of dewatering and authorized pH adjustment and/or dechlorination chemicals; (3) the discharge does not come in contact with any raw materials, intermediate product, waste product or finished product; (4) if the discharge of dewatering subsequently mixes with other wastewater (i.e. stormwater) prior to discharging to the receiving water, any monitoring provided under this permit will be only for dewatering discharges: (5) where applicable, the facility has complied with the requirements of this permit specific to the Endangered Species Act and the National Historic Preservation Act; and (6) this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

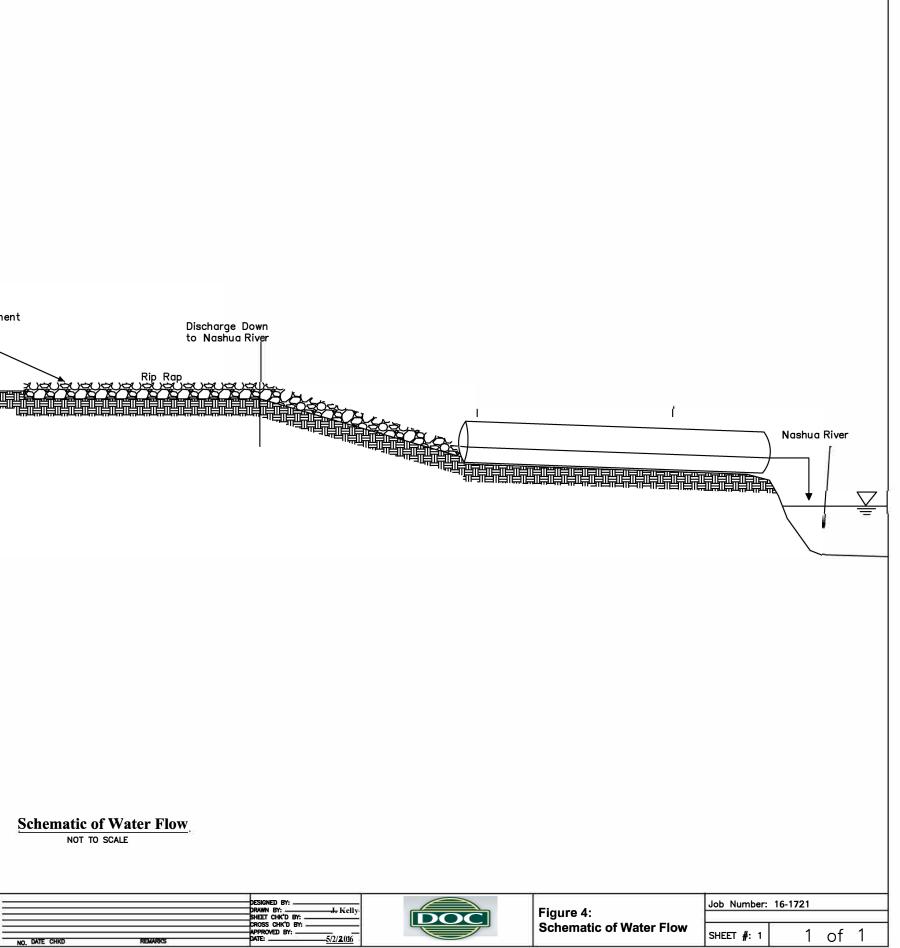

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.


Signature: Falfilin


Date: 5/2/16




FIGURES



TABLES

Table 1: Groundwater Lab Analysis Summary for DGP Criteria

MWRA Clinton WWTP Proposed Phosporus Reduction Facility

SAMPLE ID			DEWATERING
	DGP/RGP Effluent Limit	Units	
Ani	ons by Ion Chroma	atography	
Chloride	12.2		
	General Chemis	stry	
Cyanide, Total	0.0052	mg/l	ND
Chlorine, Total Residual	0.011	mg/l	ND
Solids, Total Suspended	100	mg/l	1600
TPH, SGT-HEM	5	mg/l	ND
Phenolics, Total		mg/l	ND
рН	6 - 9	<u> </u>	6.8
Chromium, Hexavalent	0.0114	mg/l	ND
	Total Metals		
Antimony, Total	0.0056	mg/l	ND
Arsenic, Total	0.01	mg/l	0.00199
Cadmium, Total	0.0002	mg/l	ND
Chromium, Total	0.0488	mg/l	ND
Copper, Total	0.0052	mg/l	0.00228
Iron, Total	1	mg/l	0.38
Lead, Total	0.0013	mg/l	0.00104
Mercury, Total	0.0009	mg/l	0.00031
Nickel, Total	0.029	mg/l	0.00288
Selenium, Total	0.005	mg/l	0.005
Silver, Total	0.0012	mg/l	ND
Zinc, Total	0.0666	mg/l	ND
	Microextractables		
1,2-Dibromo-3-chloropropane		mg/l	ND
1,2-Dibromoethane		mg/l	ND
V	olatile Organics by	GC/MS	
1,1,1,2-Tetrachloroethane		mg/l	ND
1,1,1-Trichloroethane		mg/l	ND
1,1,2,2-Tetrachloroethane		mg/l	ND
1,1,2-Trichloroethane		mg/l	ND
1,1-Dichloroethane		mg/l	ND
1,1-Dichloroethene		mg/l	ND
1,1-Dichloropropene		mg/l	ND
1,2,3-Trichlorobenzene		mg/l	ND

677 High Street Ext Clinton, Massachusetts Daniel O'Connell's Sons, Inc.

123 Trichloronnong		ND
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	mg/l	
	mg/l	ND
1,2,4-Trimethylbenzene	mg/l	ND
1,2-Dibromo-3-chloropropane	mg/l	ND
1,2-Dibromoethane	mg/l	ND
1,2-Dichlorobenzene	mg/l	ND
1,2-Dichloroethane	mg/l	ND
1,2-Dichloroethene, Total	mg/l	ND
1,2-Dichloropropane	mg/l	ND
1,3,5-Trimethylbenzene	mg/l	ND
1,3-Dichlorobenzene	mg/l	ND
1,3-Dichloropropane	mg/l	ND
1,3-Dichloropropene, Total	mg/l	ND
1,4-Dichlorobenzene	mg/l	ND
1,4-Dichlorobutane	mg/l	ND
2,2-Dichloropropane	mg/l	ND
2-Butanone	mg/l	ND
2-Hexanone	mg/l	ND
4-Methyl-2-pentanone	mg/l	ND
Acetone	mg/l	ND
Acrylonitrile	mg/l	ND
Benzene	mg/l	ND
Bromobenzene	mg/l	ND
Bromochloromethane	mg/l	ND
Bromodichloromethane	mg/l	ND
Bromoform	mg/l	ND
Bromomethane	mg/l	ND
Carbon disulfide	g mg/l	ND
Carbon tetrachloride	mg/l	ND
Chlorobenzene	mg/l	ND
Chloroethane	mg/l	ND
Chloroform	mg/l	ND
Chloromethane	mg/l	ND
cis-1,2-Dichloroethene	mg/l	ND
cis-1,3-Dichloropropene	mg/l	ND
Dibromochloromethane	mg/l	ND
Dibromomethane	mg/l	ND
Dichlorodifluoromethane	mg/l	ND
Ethyl ether	mg/l	ND
Ethyl methacrylate	mg/l	ND
Ethylbenzene	mg/l	ND
Hexachlorobutadiene	mg/l	ND
Isopropylbenzene	mg/l	ND
Methyl tert butyl ether	mg/l	ND
Methylene chloride	mg/l	ND
n-Butylbenzene	ő	ND
n-Butynbenzene n-Propylbenzene	mg/l	ND ND
Naphthalene	mg/l	ND ND
o-Chlorotoluene	mg/l	
	mg/l	ND
o-Xylene	mg/l	ND
p-Chlorotoluene	mg/l	ND
p-Isopropyltoluene	mg/l	ND
p/m-Xylene	mg/l	ND

and Butulhongono		ND
sec-Butylbenzene	mg/l	ND
Styrene	mg/l	ND
Tert-Butyl Alcohol	mg/l	ND
tert-Butylbenzene	mg/l	ND
Tertiary-Amyl Methyl Ether	mg/l	ND
Tetrachloroethene	mg/l	ND
Tetrahydrofuran	mg/l	ND
Toluene	mg/l	ND
trans-1,2-Dichloroethene	mg/l	ND
trans-1,3-Dichloropropene	mg/l	ND
trans-1,4-Dichloro-2-butene	mg/l	ND
Trichloroethene	mg/l	ND
Trichlorofluoromethane	mg/l	ND
Vinyl acetate	mg/l	ND
Vinyl chloride	mg/l	ND
Xylenes, Total	mg/l	ND
Volatil	e Organics by GC/MS-SIM	
1,4-Dioxane	mg/l	ND
Semiv	olatile Organics by GC/MS	
1,2,4-Trichlorobenzene	mg/l	ND
1,2-Dichlorobenzene	mg/l	ND
1,3-Dichlorobenzene	mg/l	ND
1,4-Dichlorobenzene	mg/l	ND
2,4,5-Trichlorophenol	mg/l	ND
2,4,6-Trichlorophenol	mg/l	ND
2,4-Dichlorophenol	mg/l	ND
2,4-Dimethylphenol	mg/l	ND
2,4-Dinitrophenol	g mg/l	ND
2,4-Dinitrotoluene	mg/l	ND
2,6-Dinitrotoluene	mg/l	ND
2-Chlorophenol	mg/l	ND
2-Methylphenol	mg/l	ND
2-Nitroaniline	mg/l	ND
2-Nitrophenol	mg/l	ND
3,3'-Dichlorobenzidine	mg/l	ND
3-Methylphenol/4-Methylphenol	mg/l	ND
3-Nitroaniline	mg/l	ND
4,6-Dinitro-o-cresol	mg/l	ND
4-Bromophenyl phenyl ether	mg/l	ND ND
4-Bromophenyl phenyl ether 4-Chloroaniline		ND ND
4-Chlorophenyl phenyl ether	mg/l	ND ND
4-Chiorophenyi phenyi ether 4-Nitroaniline	mg/l	
4-Nitroaninne 4-Nitrophenol	mg/l	ND ND
4-Nitrophenol Aniline	mg/l	ND ND
	mg/l	ND ND
Azobenzene	mg/l	ND ND
Benzidine	mg/l	ND
Benzoic Acid	mg/l	ND
Benzyl Alcohol	mg/l	ND
Bis(2-chloroethoxy)methane	mg/l	ND
Bis(2-chloroethyl)ether	mg/l	ND
Bis(2-chloroisopropyl)ether	mg/l	ND

		ND			
Bis(2-ethylhexyl)phthalate	ng/l	ND			
Butyl benzyl phthalate	mg/l	ND			
Carbazole	mg/l	ND			
Di-n-butylphthalate	mg/l	ND			
Di-n-octylphthalate	mg/l	ND			
Dibenzofuran	mg/l	ND			
Diethyl phthalate	mg/l	ND			
Dimethyl phthalate	mg/l	ND			
Hexachlorocyclopentadiene	mg/l	ND			
Isophorone	mg/l	ND			
n-Nitrosodimethylamine	mg/l	ND			
NDPA/DPA	mg/l	ND			
Nitrobenzene	mg/l	ND			
p-Chloro-m-cresol	mg/l	ND			
Phenol	mg/l	ND			
Pyridine	mg/l	ND			
Semivolati	ile Organics by GC/MS-SI	М			
1-Methylnaphthalene	mg/l	ND			
2-Chloronaphthalene	mg/l	ND			
2-Methylnaphthalene	mg/l	ND			
Acenaphthene	mg/l	ND			
Acenaphthylene	mg/l	ND			
Anthracene	mg/l	ND			
Benzo(a)anthracene	mg/l	ND			
Benzo(a)pyrene	mg/l	ND			
Benzo(b)fluoranthene	mg/l	ND			
Benzo(ghi)perylene	mg/l	ND			
Benzo(k)fluoranthene	×	ND			
Chrysene	mg/l mg/l	ND			
Dibenzo(a,h)anthracene		ND			
Fluoranthene	mg/l				
Fluoranthene	mg/l	ND			
	mg/l	ND			
Hexachlorobenzene	mg/l	ND			
Hexachlorobutadiene	mg/l	ND			
Hexachloroethane	mg/l	ND			
Indeno(1,2,3-cd)Pyrene	ng/l	ND			
Naphthalene	mg/l	ND			
Pentachlorophenol	mg/l	ND			
Phenanthrene	mg/l	ND			
Pyrene	mg/l	ND			
Polychlorinated Biphenyls by GC					
Aroclor 1016	mg/l	ND			
Aroclor 1221	mg/l	ND			
Aroclor 1232	mg/l	ND			
Aroclor 1242	mg/l	ND			
Aroclor 1248	mg/l	ND			
Aroclor 1254	mg/l	ND			
Aroclor 1260	mg/l	ND			

ND = Not Detected

Laboratory Reports

ANALYTICAL REPORT

Lab Number:	L1610909
Client:	OHI Engineering Incorporated 44 Wood Avenue Mansfield, MA 02048
ATTN: Phone:	Jared Kelly (508) 339-3929
Project Name:	O'CONNELLS CLINTON WWTP
Project Number:	16-1721
Report Date:	04/22/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04221613:46

Project Name:O'CONNELLS CLINTON WWTPProject Number:16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1610909-01	DEWATERING	WATER	CLINTON, MA	04/13/16 14:00	04/13/16
L1610909-02	TRIP BLANK		CLINTON, MA	04/13/16 00:00	04/13/16

Project Name:O'CONNELLS CLINTON WWTPProject Number:16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: O'CONNELLS CLINTON WWTP Project Number: 16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

Case Narrative (continued)

Report Submission

The sample collection date was provided by the client.

Sample Receipt

A Trip Blank was received in the laboratory, but not listed on the Chain of Custody, and was not analyzed.

Semivolatile Organics

The WG885173-2/-3 LCS/LCSD recoveries, associated with L1610909-01, are below the acceptance criteria for benzidine (1%/1%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

PCBs

WG885081: An LCS/LCSD was performed in lieu of a Matrix Spike and Laboratory Duplicate due to insufficient sample volume available for analysis.

Metals

The WG883710-4 MS recovery for iron (0%), performed on L1610909-01, does not apply because the sample concentration is greater than four times the spike amount added.

The WG883711-4 MS recoveries, performed on L1610909-01, are outside the acceptance criteria for nickel (42%) and zinc (18%). A post digestion spike was performed and yielded unacceptable recoveries for nickel (165%) and zinc (168%). This has been attributed to sample matrix.

The WG883711-4 MS recoveries, performed on L1610909-01, are outside the acceptance criteria for antimony (64%), arsenic (191%), cadmium (137%), chromium (169%), copper (156%), lead (152%) and selenium (201%). A post digestion spike was performed and yielded unacceptable recoveries for arsenic (126%), copper (124%), selenium (129%); all other compounds were within acceptance criteria. This has been attributed to sample matrix.

Chlorine, Total Residual

Project Name:O'CONNELLS CLINTON WWTPProject Number:16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

Case Narrative (continued)

L1610909-01: The sample has an elevated detection limit due to the dilution required by the sample matrix.

Chromium, Hexavalent

L1610909-01: The sample has an elevated detection limit due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 04/22/16

ORGANICS

VOLATILES

		Serial_No:04221613:46
Project Name:	O'CONNELLS CLINTON WWTP	Lab Number: L1610909
Project Number:	16-1721	Report Date: 04/22/16
	SAMPLE RESULTS	S
Lab ID:	L1610909-01	Date Collected: 04/13/16 14:00
Client ID:	DEWATERING	Date Received: 04/13/16
Sample Location:	CLINTON, MA	Field Prep: Not Specified
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	04/18/16 13:35	
Analyst:	MM	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1

					S	Serial_No	p:04221613:46
Project Name:	O'CONNELLS CLINT	ON WWTP			Lab Nu	mber:	L1610909
Project Number:	16-1721				Report	Date:	04/22/16
		SAMPL	E RESULTS	5	•		01/22/10
Lab ID:	L1610909-01				Date Coll	lected:	04/13/16 14:00
Client ID:	DEWATERING				Date Rec	ceived:	04/13/16
Sample Location:	CLINTON, MA				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborou	gh Lab					
				"	0.5		
1,2-Dichlorobenzene		ND		ug/l	2.5		1
1,3-Dichlorobenzene				ug/l			
1,4-Dichlorobenzene		ND		ug/l	2.5		1
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
Xylenes, Total		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	5.0		1
1,4-Dichlorobutane		ND		ug/l	5.0		1
1,2,3-Trichloropropane		ND		ug/l	5.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/l	5.0		1
2-Butanone		ND		ug/l	5.0		1
Vinyl acetate		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Ethyl methacrylate		ND		ug/l	5.0		1
Acrylonitrile		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	2.5		1
Tetrahydrofuran		ND		ug/l	5.0		1
2,2-Dichloropropane		ND		ug/l	2.5		1
1,2-Dibromoethane		ND		ug/l	2.0		1
1,3-Dichloropropane		ND		ug/l	2.5		1
1,1,1,2-Tetrachloroethan	e	ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	2.5		1
n-Butylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	2.5		1
o-Chlorotoluene		ND		ug/l	2.5		1
p-Chlorotoluene		ND		ug/l	2.5		1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	2.5		1
n-Propylbenzene		ND		ug/l	0.50		1
· ·				3			

					:	Serial_N	0:04221613:46
Project Name:	O'CONNELLS CLINT	ON WWTP			Lab Nu	mber:	L1610909
Project Number:	16-1721				Report	Date:	04/22/16
		SAMP	LE RESULTS	5			
Lab ID: Client ID: Sample Location:	L1610909-01 DEWATERING CLINTON, MA				Date Col Date Ree Field Pre	ceived:	04/13/16 14:00 04/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab							
1,2,3-Trichlorobenzene		ND		ug/l	2.5		1
1,2,4-Trichlorobenzene		ND		ug/l	2.5		1
1,3,5-Trimethylbenzene		ND		ug/l	2.5		1
1,2,4-Trimethylbenzene		ND		ug/l	2.5		1
trans-1,4-Dichloro-2-buter	ne	ND		ug/l	2.5		1
Ethyl ether		ND		ug/l	2.5		1
Tert-Butyl Alcohol		ND		ug/l	10		1
				•			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	101		70-130	

		Serial_No:04221613:46
Project Name:	O'CONNELLS CLINTON WWTP	Lab Number: L1610909
Project Number:	16-1721	Report Date: 04/22/16
	SAMPLE RESULTS	
Lab ID:	L1610909-01	Date Collected: 04/13/16 14:00
Client ID:	DEWATERING	Date Received: 04/13/16
Sample Location:	CLINTON, MA	Field Prep: Not Specified
Matrix:	Water	
Analytical Method:	1,8260C-SIM(M)	
Analytical Date:	04/18/16 13:35	
Analyst:	MM	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - Westborough Lab							
1,4-Dioxane	ND		ug/l	3.0		1	

		Serial_No:04221613:46
Project Name:	O'CONNELLS CLINTON WWTP	Lab Number: L1610909
Project Number:	16-1721	Report Date: 04/22/16
	SAMPLE RESULTS	
Lab ID:	L1610909-01	Date Collected: 04/13/16 14:00
Client ID:	DEWATERING	Date Received: 04/13/16
Sample Location:	CLINTON, MA	Field Prep: Not Specified
Matrix:	Water	Extraction Method: EPA 8011
Analytical Method:	14,504.1	Extraction Date: 04/18/16 09:08
Analytical Date:	04/18/16 17:40	
Analyst:	AM	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westbord	ough Lab						
1,2-Dibromoethane	ND		ug/l	0.024		1	А
1,2-Dibromo-3-chloropropane	ND		ug/l	0.024		1	Α

10909
2/16
2.

Analytical Method:	14,504.1	Extraction Method:	EPA 8011
Analytical Date:	04/18/16 14:30	Extraction Date:	04/18/16 09:08
Analyst:	AM		

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab fo	or sample(s)	: 01	Batch: WG884	648-1	
1,2-Dibromoethane	ND		ug/l	0.020		А
1,2-Dibromo-3-chloropropane	ND		ug/l	0.020		А

Project Name:	O'CONNELLS CLINTON WWTP	Lab Number:	L1610909
Project Number:	16-1721	Report Date:	04/22/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C-SIM(M)
Analytical Date:	04/18/16 07:37
Analyst:	MM

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG884894-3	
1,4-Dioxane	ND		ug/l		3.0		

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 1

16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 01	Batch:	WG884895-3
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
2-Chloroethylvinyl ether	ND	ug/l	10	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	2.5	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	

L1610909

04/22/16

Lab Number:

Report Date:

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 1

16-1721

Method Blank Analysis Batch Quality Control

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s): 01	Batch:	WG884895-3
1,2-Dichloroethene, Total	ND	ug/l	0.50	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dibromomethane	ND	ug/l	5.0	
1,4-Dichlorobutane	ND	ug/l	5.0	
1,2,3-Trichloropropane	ND	ug/l	5.0	
Styrene	ND	ug/l	1.0	
Dichlorodifluoromethane	ND	ug/l	5.0	
Acetone	ND	ug/l	5.0	
Carbon disulfide	ND	ug/l	5.0	
2-Butanone	ND	ug/l	5.0	
Vinyl acetate	ND	ug/l	5.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	
2-Hexanone	ND	ug/l	5.0	
Ethyl methacrylate	ND	ug/l	5.0	
Acrylonitrile	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	2.5	
Tetrahydrofuran	ND	ug/l	5.0	
2,2-Dichloropropane	ND	ug/l	2.5	
1,2-Dibromoethane	ND	ug/l	2.0	
1,3-Dichloropropane	ND	ug/l	2.5	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 1

16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

Method Blank Analysis Batch Quality Control

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	stborough La	b for sample(s): 01	Batch:	WG884895-3
Bromobenzene	ND	ug/l	2.5	
n-Butylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,3,5-Trichlorobenzene	ND	ug/l	2.0	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Methyl Acetate	ND	ug/l	10	
Ethyl Acetate	ND	ug/l	10	
Isopropyl Ether	ND	ug/l	2.0	
Cyclohexane	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	10	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/l	10	
Methyl cyclohexane	ND	ug/l	10	
p-Diethylbenzene	ND	ug/l	2.0	

L1610909

04/22/16

Lab Number:

Report Date:

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 16-1721

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - V	Vestborough Lal	o for sample	e(s): 01	Batch:	WG884895-3
4-Ethyltoluene	ND		ug/l	2.0	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	100		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

	LCS		LCSD		%Recovery					
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column	
Microextractables by GC - Westborough Lab Associated sample(s): 01 Batch: WG884648-2 WG884648-3										
1,2-Dibromoethane	109		80		70-130	31	Q	20	А	
1,2-Dibromo-3-chloropropane	99		102		70-130	3		20	А	

Lab Control Sample Analysis

Project Name:	O'CONNELLS CLINTON WWTP	Batch Quality Control	Lab Number:	L1610909
Project Number:	16-1721		Report Date:	04/22/16

Parameter	LCS %Recovery	Qual	-	CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westborou	ugh Lab Associate	ed sample(s):	: 01	Batch:	WG884894-1	WG884894-2				
1,4-Dioxane	87			93		70-130	7		25	

Project Number: 16-1721 Lab Number: L1610909 04/22/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 0 ⁻	1 Batch: WG8	384895-1	WG884895-2			
Methylene chloride	110		104		70-130	6	20	
1,1-Dichloroethane	113		106		70-130	6	20	
Chloroform	108		103		70-130	5	20	
Carbon tetrachloride	108		103		63-132	5	20	
1,2-Dichloropropane	109		107		70-130	2	20	
Dibromochloromethane	101		96		63-130	5	20	
1,1,2-Trichloroethane	120		109		70-130	10	20	
2-Chloroethylvinyl ether	102		102		70-130	0	20	
Tetrachloroethene	106		101		70-130	5	20	
Chlorobenzene	107		99		75-130	8	25	
Trichlorofluoromethane	108		100		62-150	8	20	
1,2-Dichloroethane	114		104		70-130	9	20	
1,1,1-Trichloroethane	110		102		67-130	8	20	
Bromodichloromethane	106		103		67-130	3	20	
trans-1,3-Dichloropropene	98		93		70-130	5	20	
cis-1,3-Dichloropropene	104		100		70-130	4	20	
1,1-Dichloropropene	107		101		70-130	6	20	
Bromoform	95		86		54-136	10	20	
1,1,2,2-Tetrachloroethane	118		104		67-130	13	20	
Benzene	111		104		70-130	7	25	
Toluene	108		105		70-130	3	25	

Project Number: 16-1721 Lab Number: L1610909 04/22/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough I	•							
Ethylbenzene	111	,	104		70-130	7	20	
Chloromethane	103		100		64-130	3	20	
Bromomethane	101		108		39-139	7	20	
Vinyl chloride	113		112		55-140	1	20	
Chloroethane	100		96		55-138	4	20	
1,1-Dichloroethene	108		103		61-145	5	25	
trans-1,2-Dichloroethene	110		102		70-130	8	20	
Trichloroethene	109		104		70-130	5	25	
1,2-Dichlorobenzene	113		104		70-130	8	20	
1,3-Dichlorobenzene	108		102		70-130	6	20	
1,4-Dichlorobenzene	110		103		70-130	7	20	
Methyl tert butyl ether	116		102		63-130	13	20	
p/m-Xylene	107		102		70-130	5	20	
o-Xylene	108		101		70-130	7	20	
cis-1,2-Dichloroethene	114		106		70-130	7	20	
Dibromomethane	108		102		70-130	6	20	
1,4-Dichlorobutane	117		108		70-130	8	20	
1,2,3-Trichloropropane	116		107		64-130	8	20	
Styrene	109		104		70-130	5	20	
Dichlorodifluoromethane	108		99		36-147	9	20	
Acetone	122		104		58-148	16	20	

Project Number: 16-1721 Lab Number: L1610909 04/22/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 01	Batch: WG8	884895-1	WG884895-2				
Carbon disulfide	104		98		51-130	6		20	
2-Butanone	128		112		63-138	13		20	
Vinyl acetate	117		106		70-130	10		20	
4-Methyl-2-pentanone	108		97		59-130	11		20	
2-Hexanone	108		87		57-130	22	Q	20	
Ethyl methacrylate	112		96		70-130	15		20	
Acrylonitrile	116		113		70-130	3		20	
Bromochloromethane	109		104		70-130	5		20	
Tetrahydrofuran	124		102		58-130	19		20	
2,2-Dichloropropane	117		107		63-133	9		20	
1,2-Dibromoethane	112		100		70-130	11		20	
1,3-Dichloropropane	118		113		70-130	4		20	
1,1,1,2-Tetrachloroethane	111		102		64-130	8		20	
Bromobenzene	112		103		70-130	8		20	
n-Butylbenzene	113		102		53-136	10		20	
sec-Butylbenzene	109		100		70-130	9		20	
tert-Butylbenzene	107		101		70-130	6		20	
o-Chlorotoluene	105		100		70-130	5		20	
p-Chlorotoluene	105		100		70-130	5		20	
1,2-Dibromo-3-chloropropane	122		112		41-144	9		20	
Hexachlorobutadiene	128		125		63-130	2		20	

Project Number: 16-1721 Lab Number: L1610909 04/22/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated s	sample(s): 0 ²	1 Batch: WG8	84895-1	WG884895-2				
Isopropylbenzene	108		101		70-130	7		20	
p-Isopropyltoluene	108		100		70-130	8		20	
Naphthalene	124		112		70-130	10		20	
n-Propylbenzene	106		100		69-130	6		20	
1,2,3-Trichlorobenzene	123		112		70-130	9		20	
1,2,4-Trichlorobenzene	119		114		70-130	4		20	
1,3,5-Trimethylbenzene	106		102		64-130	4		20	
1,3,5-Trichlorobenzene	121		111		70-130	9		20	
1,2,4-Trimethylbenzene	107		100		70-130	7		20	
trans-1,4-Dichloro-2-butene	102		105		70-130	3		20	
Ethyl ether	111		101		59-134	9		20	
Methyl Acetate	120		106		70-130	12		20	
Ethyl Acetate	118		100		70-130	17		20	
Isopropyl Ether	111		101		70-130	9		20	
Cyclohexane	107		102		70-130	5		20	
Tert-Butyl Alcohol	114		91		70-130	22	Q	20	
Ethyl-Tert-Butyl-Ether	112		101		70-130	10		20	
Tertiary-Amyl Methyl Ether	113		97		66-130	15		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	114		112		70-130	2		20	
Methyl cyclohexane	110		103		70-130	7		20	
p-Diethylbenzene	116		106		70-130	9		20	

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

Parameter	LCS %Recoverv	Qual	LCSD %Recoverv	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
	/incource y	Quui	/0110001019	Quai	Emility	NPD	Quai	Emilio	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG8	384895-1	WG884895-2				
4-Ethyltoluene	107		100		70-130	7		20	
1,2,4,5-Tetramethylbenzene	122		108		70-130	12		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	102		95		70-130	
Toluene-d8	97		98		70-130	
4-Bromofluorobenzene	97		93		70-130	
Dibromofluoromethane	99		97		70-130	

Matrix Spike Analysis

Project Name:	O'CONNELLS CLINTON WWTP	Batch Quality Control	Lab Number:	L1610909
Project Number:	16-1721		Report Date:	04/22/16

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	<u>Column</u>
Microextractables by GC - \	Nestborough Lat	Associated	sample(s): 01	QC Batch II	D: WG884	648-4 (QC Sample: L1	610606-	01 Client	ID: MS	Sample)	
1,2-Dibromoethane	ND	0.275	0.306	111		-	-		70-130	-		20	А
1,2-Dibromo-3-chloropropane	ND	0.275	0.279	102		-	-		70-130	-		20	А

SEMIVOLATILES

		Serial_N	0:04221613:46
Project Name:	O'CONNELLS CLINTON WWTP	Lab Number:	L1610909
Project Number:	16-1721	Report Date:	04/22/16
	SAMPLE RESULTS		
Lab ID:	L1610909-01	Date Collected:	04/13/16 14:00
Client ID:	DEWATERING	Date Received:	04/13/16
Sample Location:	CLINTON, MA	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D	Extraction Date:	04/19/16 15:41
Analytical Date:	04/21/16 23:24		
Analyst:	JB		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	/estborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
	ND		-			1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		
1,2-Dichlorobenzene			ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
			0			

					;	Serial_N	0:04221613:46
Project Name:	O'CONNELLS CLINT	ON WWTP			Lab Nu	ımber:	L1610909
Project Number:	16-1721				Report	Date:	04/22/16
		SAMP	LE RESULTS	5			
Lab ID:	L1610909-01				Date Co	llected:	04/13/16 14:00
Client ID:	DEWATERING				Date Re	ceived:	04/13/16
Sample Location:	CLINTON, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westbo	orough Lab					
n-Nitrosodimethylamine		ND		ug/l	2.0		1
2,4,6-Trichlorophenol		ND		ug/l	5.0		1
p-Chloro-m-cresol		ND		ug/l	2.0		1
2-Chlorophenol		ND		ug/l	2.0		1
2,4-Dichlorophenol		ND		ug/l	5.0		1
2,4-Dimethylphenol		ND		ug/l	5.0		1
2-Nitrophenol		ND		ug/l	10		1
4-Nitrophenol		ND		ug/l	10		1
2,4-Dinitrophenol		ND		ug/l	20		1
4,6-Dinitro-o-cresol		ND		ug/l	10		1
Phenol		ND		ug/l	5.0		1
2-Methylphenol		ND		ug/l	5.0		1
3-Methylphenol/4-Methylp	henol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol		ND		ug/l	5.0		1
Benzoic Acid		ND		ug/l	50		1
Benzyl Alcohol		ND		ug/l	2.0		1
Carbazole		ND		ug/l	2.0		1
Pyridine		ND		ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	48		21-120	
Phenol-d6	33		10-120	
Nitrobenzene-d5	73		23-120	
2-Fluorobiphenyl	84		15-120	
2,4,6-Tribromophenol	84		10-120	
4-Terphenyl-d14	100		41-149	

		Serial_No:04221613:46		
Project Name:	O'CONNELLS CLINTON WWTP	Lab Number:	L1610909	
Project Number:	16-1721	Report Date:	04/22/16	
	SAMPLE RESULTS			
Lab ID:	L1610909-01	Date Collected:	04/13/16 14:00	
Client ID:	DEWATERING	Date Received:	04/13/16	
Sample Location:	CLINTON, MA	Field Prep:	Not Specified	
Matrix:	Water	Extraction Metho	d:EPA 3510C	
Analytical Method:	1,8270D-SIM	Extraction Date:	04/19/16 15:47	
Analytical Date:	04/20/16 22:00			
Analyst:	KV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/N	1S-SIM - Westborough La	b				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.20		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.20		1
Benzo(a)anthracene	ND		ug/l	0.20		1
Benzo(a)pyrene	ND		ug/l	0.20		1
Benzo(b)fluoranthene	ND		ug/l	0.20		1
Benzo(k)fluoranthene	ND		ug/l	0.20		1
Chrysene	ND		ug/l	0.20		1
Acenaphthylene	ND		ug/l	0.20		1
Anthracene	ND		ug/l	0.20		1
Benzo(ghi)perylene	ND		ug/l	0.20		1
Fluorene	ND		ug/l	0.20		1
Phenanthrene	ND		ug/l	0.20		1
Dibenzo(a,h)anthracene	ND		ug/l	0.20		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20		1
Pyrene	ND		ug/l	0.20		1
1-Methylnaphthalene	ND		ug/l	0.20		1
2-Methylnaphthalene	ND		ug/l	0.20		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

						Serial_N	0:04221613:46
Project Name:	O'CONNELLS CLINT	ON WWTP			Lab Nu	umber:	L1610909
Project Number:	16-1721				Report	Date:	04/22/16
SAMPLE RESULTS							
Lab ID:	L1610909-01				Date Co	llected:	04/13/16 14:00
Client ID:	DEWATERING				Date Re	ceived:	04/13/16
Sample Location:	CLINTON, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab							

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	52		21-120	
Phenol-d6	37		10-120	
Nitrobenzene-d5	99		23-120	
2-Fluorobiphenyl	106		15-120	
2,4,6-Tribromophenol	91		10-120	
4-Terphenyl-d14	121		41-149	

Project Name:	O'CONNELLS CLINTON WWTP	Lab Number:	L1610909
Project Number:	16-1721	Report Date:	04/22/16
	Method Blank Analysis		

Batch Quality Control

Analytical Method: Analytical Date: Analyst:	1,8270D 04/21/16 19:36 JB	Extraction Method: Extraction Date:	EPA 3510C 04/19/16 15:41
--	---------------------------------	--	-----------------------------

rameter	Result	Qualifier Units	RL	MDL
mivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	01 Batch:	WG885173-1
Acenaphthene	ND	ug/l	2.0	
Benzidine	ND	ug/l	20	
1,2,4-Trichlorobenzene	ND	ug/l	5.0	
Hexachlorobenzene	ND	ug/l	2.0	
Bis(2-chloroethyl)ether	ND	ug/l	2.0	
2-Chloronaphthalene	ND	ug/l	2.0	
1,2-Dichlorobenzene	ND	ug/l	2.0	
1,3-Dichlorobenzene	ND	ug/l	2.0	
1,4-Dichlorobenzene	ND	ug/l	2.0	
3,3'-Dichlorobenzidine	ND	ug/l	5.0	
2,4-Dinitrotoluene	ND	ug/l	5.0	
2,6-Dinitrotoluene	ND	ug/l	5.0	
Azobenzene	ND	ug/l	2.0	
Fluoranthene	ND	ug/l	2.0	
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	
4-Bromophenyl phenyl ether	ND	ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	
Hexachlorobutadiene	ND	ug/l	2.0	
Hexachlorocyclopentadiene	ND	ug/l	20	
Hexachloroethane	ND	ug/l	2.0	
Isophorone	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.0	
Nitrobenzene	ND	ug/l	2.0	
NDPA/DPA	ND	ug/l	2.0	
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	
Butyl benzyl phthalate	ND	ug/l	5.0	
Di-n-butylphthalate	ND	ug/l	5.0	

Project Name:	O'CONNELLS CLINTON WWTP	Lab Number:	L1610909
Project Number:	16-1721	Report Date:	04/22/16
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8270D	Extraction Met
Analytical Date:	04/21/16 19:36	Extraction Date
Analyst:	JB	

Extraction Method: EPA 3510C Extraction Date: 04/19/16 15:41

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS -	Westborough	n Lab for s	sample(s):	01	Batch:	WG885173-1
Di-n-octylphthalate	ND		ug/l		5.0	
Diethyl phthalate	ND		ug/l		5.0	
Dimethyl phthalate	ND		ug/l		5.0	
Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(a)pyrene	ND		ug/l		2.0	
Benzo(b)fluoranthene	ND		ug/l		2.0	
Benzo(k)fluoranthene	ND		ug/l		2.0	
Chrysene	ND		ug/l		2.0	
Acenaphthylene	ND		ug/l		2.0	
Anthracene	ND		ug/l		2.0	
Benzo(ghi)perylene	ND		ug/l		2.0	
Fluorene	ND		ug/l		2.0	
Phenanthrene	ND		ug/l		2.0	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	
Pyrene	ND		ug/l		2.0	
Biphenyl	ND		ug/l		2.0	
Aniline	ND		ug/l		2.0	
4-Chloroaniline	ND		ug/l		5.0	
1-Methylnaphthalene	ND		ug/l		2.0	
2-Nitroaniline	ND		ug/l		5.0	
3-Nitroaniline	ND		ug/l		5.0	
4-Nitroaniline	ND		ug/l		5.0	
Dibenzofuran	ND		ug/l		2.0	
2-Methylnaphthalene	ND		ug/l		2.0	
Acetophenone	ND		ug/l		5.0	
n-Nitrosodimethylamine	ND		ug/l		2.0	
2,4,6-Trichlorophenol	ND		ug/l		5.0	
p-Chloro-m-cresol	ND		ug/l		2.0	

Project Name:	O'CONNELLS CLINTON WWTP	Lab Number:	L1610909
Project Number:	16-1721	Report Date:	04/22/16
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/21/16 19:36	Extraction Date:	04/19/16 15:41
Analyst:	JB		

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	6 - Westboroug	h Lab for s	ample(s):	01	Batch:	WG885173-1
2-Chlorophenol	ND		ug/l		2.0	
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Pentachlorophenol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		5.0	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	55	21-120
Phenol-d6	38	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	92	15-120
2,4,6-Tribromophenol	92	10-120
4-Terphenyl-d14	98	41-149

Project Name:	O'CONNELLS CLINTON WWTP	Lab Number:	L1610909
Project Number:	16-1721	Report Date:	04/22/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	04/20/16 18:23	Extraction Date:	04/19/16 15:47
Analyst:	KV		

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC	MS-SIM - Westbo	orough Lab for sample	e(s): 01	Batch: WG885175-1
Acenaphthene	ND	ug/l	0.10	
2-Chloronaphthalene	ND	ug/l	0.20	
Fluoranthene	ND	ug/l	0.20	
Hexachlorobutadiene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	0.20	
Benzo(a)anthracene	ND	ug/l	0.20	
Benzo(a)pyrene	ND	ug/l	0.20	
Benzo(b)fluoranthene	ND	ug/l	0.20	
Benzo(k)fluoranthene	ND	ug/l	0.20	
Chrysene	ND	ug/l	0.20	
Acenaphthylene	ND	ug/l	0.20	
Anthracene	ND	ug/l	0.20	
Benzo(ghi)perylene	ND	ug/l	0.20	
Fluorene	ND	ug/l	0.20	
Phenanthrene	ND	ug/l	0.20	
Dibenzo(a,h)anthracene	ND	ug/l	0.20	
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20	
Pyrene	ND	ug/l	0.20	
1-Methylnaphthalene	ND	ug/l	0.20	
2-Methylnaphthalene	ND	ug/l	0.20	
Pentachlorophenol	ND	ug/l	0.80	
Hexachlorobenzene	ND	ug/l	0.80	
Hexachloroethane	ND	ug/l	0.80	

Project Name:	O'CONNELLS CLINTON WWTP	Lab Number:	L1610909
Project Number:	16-1721	Report Date:	04/22/16
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	04/20/16 18:23	Extraction Date:	04/19/16 15:47
Analyst:	KV		

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - Westbo	orough Lab	for sampl	e(s): 01	Batch: WG885175-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	105	23-120
2-Fluorobiphenyl	109	15-120
2,4,6-Tribromophenol	93	10-120
4-Terphenyl-d14	118	41-149

Project Number: 16-1721 Lab Number: L1610909

Report Date: 04/22/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbo	orough Lab Assoc	ated sample(s):	01 Batch:	WG885173-2	WG885173-3			
Acenaphthene	90		89		37-111	1	30	
Benzidine	1	Q	1	Q	10-75	8	30	
1,2,4-Trichlorobenzene	81		78		39-98	4	30	
Hexachlorobenzene	95		91		40-140	4	30	
Bis(2-chloroethyl)ether	85		83		40-140	2	30	
2-Chloronaphthalene	89		89		40-140	0	30	
1,2-Dichlorobenzene	75		72		40-140	4	30	
1,3-Dichlorobenzene	71		70		40-140	1	30	
1,4-Dichlorobenzene	72		69		36-97	4	30	
3,3'-Dichlorobenzidine	54		51		40-140	6	30	
2,4-Dinitrotoluene	106	Q	106	Q	24-96	0	30	
2,6-Dinitrotoluene	101		101		40-140	0	30	
Azobenzene	93		92		40-140	1	30	
Fluoranthene	98		98		40-140	0	30	
4-Chlorophenyl phenyl ether	93		92		40-140	1	30	
4-Bromophenyl phenyl ether	96		92		40-140	4	30	
Bis(2-chloroisopropyl)ether	86		84		40-140	2	30	
Bis(2-chloroethoxy)methane	90		88		40-140	2	30	
Hexachlorobutadiene	77		74		40-140	4	30	
Hexachlorocyclopentadiene	64		65		40-140	2	30	
Hexachloroethane	71		68		40-140	4	30	

Lab Control Sample Analysis

Batch Quality Control

Project Number: 16-1721

Lab Number: L1610909 Report Date: 04/22/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG885173-2 WG885173-3 93 89 40-140 30 Isophorone 4 Naphthalene 84 82 40-140 2 30 Nitrobenzene 87 40-140 30 87 0 NDPA/DPA 30 93 90 40-140 3 n-Nitrosodi-n-propylamine 92 91 29-132 30 1 Bis(2-ethylhexyl)phthalate 40-140 30 99 98 1 Butyl benzyl phthalate 98 100 40-140 2 30 Di-n-butylphthalate 97 97 40-140 0 30 Di-n-octylphthalate 40-140 30 103 104 1 Diethyl phthalate 93 40-140 30 96 3 Dimethyl phthalate 93 40-140 30 96 3 Benzo(a)anthracene 94 94 40-140 0 30 Benzo(a)pyrene 103 101 40-140 2 30 Benzo(b)fluoranthene 97 40-140 30 98 1 Benzo(k)fluoranthene 40-140 30 98 100 2 Chrysene 92 40-140 30 94 2 Acenaphthylene 92 91 45-123 1 30 Anthracene 93 93 40-140 0 30 Benzo(ghi)perylene 97 40-140 30 96 1 Fluorene 93 40-140 30 94 1 Phenanthrene 93 92 40-140 30 1

Lab Control Sample Analysis

Batch Quality Control

Project Number: 16-1721

Lab Number: L1610909 Report Date: 04/22/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG885173-2 WG885173-3 Dibenzo(a,h)anthracene 101 99 40-140 2 30 Indeno(1,2,3-cd)pyrene 100 102 40-140 2 30 96 26-127 30 Pyrene 96 0 30 Biphenyl 91 89 40-140 2 Aniline Q 40-140 28 30 41 31 4-Chloroaniline 40-140 30 68 62 9 1-Methylnaphthalene 87 86 41-103 1 30 2-Nitroaniline 105 106 52-143 30 1 3-Nitroaniline 25-145 30 75 70 7 4-Nitroaniline 96 51-143 30 99 3 Dibenzofuran 90 40-140 30 93 3 2-Methylnaphthalene 88 86 40-140 2 30 1,2,4,5-Tetrachlorobenzene 85 2-134 2 30 87 39-129 30 Acetophenone 96 93 3 n-Nitrosodimethylamine 22-74 30 52 53 2 2,4,6-Trichlorophenol 95 30-130 30 97 2 p-Chloro-m-cresol 97 97 23-97 0 30 2-Chlorophenol 83 83 27-123 0 30 2,4-Dichlorophenol 94 30 94 30-130 0 2,4-Dimethylphenol 30-130 30 76 74 3 2-Nitrophenol 97 92 30-130 30 5

Project Number: 16-1721 Lab Number: L1610909 Report Date: 04/22/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - We	stborough Lab Associa	ated sample(s):	01 Batch:	WG885173-2	WG885173-3				
4-Nitrophenol	64		64		10-80	0		30	
2,4-Dinitrophenol	89		90		20-130	1		30	
4,6-Dinitro-o-cresol	100		96		20-164	4		30	
Pentachlorophenol	94		96		9-103	2		30	
Phenol	43		42		12-110	2		30	
2-Methylphenol	77		75		30-130	3		30	
3-Methylphenol/4-Methylphenol	77		75		30-130	3		30	
2,4,5-Trichlorophenol	96		96		30-130	0		30	
Benzoic Acid	42		39		10-164	7		30	
Benzyl Alcohol	78		76		26-116	3		30	
Carbazole	96		96		55-144	0		30	
Pyridine	12		14		10-66	15		30	
Parathion, ethyl	116		112		40-140	4		30	
Atrazine	111		109		40-140	2		30	
Benzaldehyde	88		83		40-140	6		30	
Caprolactam	30		30		10-130	0		30	
2,3,4,6-Tetrachlorophenol	96		93		40-140	3		30	

O'CONNELLS CLINTON WWTP

Project Name: O'CONNELLS CLINTON W

Project Number: 16-1721

Lab Number: L1610909

Report Date: 04/22/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbord	ough Lab Associa	ited sample(s): 01 Batch:	WG885173-2	2 WG885173-3				

LCS %Recovery	LCSD Qual %Recovery	Acceptance Qual Criteria
58	57	21-120
42	42	10-120
91	88	23-120
92	89	15-120
99	100	10-120
96	94	41-149
	%Recovery 58 42 91 92 99	%Recovery Qual %Recovery 58 57 42 42 91 88 92 89 99 100

Lab Control Sample Analysis

Batch Quality Control

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 16-1721

Lab Number: L1610909 Report Date: 04/22/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG885175-2 WG885175-3 Acenaphthene 94 37-111 0 94 40 2-Chloronaphthalene 99 99 40-140 0 40 Fluoranthene 112 40-140 40 111 1 Hexachlorobutadiene 87 84 40-140 4 40 Naphthalene 94 40-140 0 40 94 Benzo(a)anthracene 40-140 40 101 103 2 Benzo(a)pyrene 105 106 40-140 1 40 Benzo(b)fluoranthene 104 106 40-140 2 40 Benzo(k)fluoranthene 40-140 40 95 98 3 40-140 40 Chrysene 100 100 0 Acenaphthylene 104 40-140 40 105 1 Anthracene 96 97 40-140 1 40 Benzo(ghi)perylene 40-140 40 89 89 0 Fluorene 40-140 40 108 108 0 Phenanthrene 40-140 40 93 95 2 Dibenzo(a,h)anthracene 91 40-140 40 91 0 Indeno(1,2,3-cd)Pyrene 91 91 40-140 0 40 Pyrene 101 103 26-127 2 40 1-Methylnaphthalene 40-140 40 98 98 0 2-Methylnaphthalene 40-140 40 96 95 1 Pentachlorophenol 82 9-103 40 78 5

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

	LCS LCSD		%Recovery		RPD		
Parameter	%Recovery	Qual	%Recovery	Qual Limits	RPD	Qual Limits	
Semivolatile Organics by GC/MS-SIM - V	Westborough Lab Asso	ociated sample	e(s): 01 Batch	: WG885175-2 WG885175	-3		
Hexachlorobenzene	79		80	40-140	1	40	
Hexachloroethane	92		91	40-140	1	40	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	59		57		21-120	
Phenol-d6	42		41		10-120	
Nitrobenzene-d5	104		102		23-120	
2-Fluorobiphenyl	113		111		15-120	
2,4,6-Tribromophenol	99		103		10-120	
4-Terphenyl-d14	125		125		41-149	

PCBS

			Serial_No	p:04221613:46
Project Name:	O'CONNELLS CLINTON WWTP		Lab Number:	L1610909
Project Number:	16-1721		Report Date:	04/22/16
	SAMP	LE RESULTS		
Lab ID:	L1610909-01		Date Collected:	04/13/16 14:00
Client ID:	DEWATERING		Date Received:	04/13/16
Sample Location:	CLINTON, MA		Field Prep:	Not Specified
Matrix:	Water		Extraction Method	d:EPA 608
Analytical Method:	5,608		Extraction Date:	04/19/16 11:56
Analytical Date:	04/20/16 12:19		Cleanup Method:	EPA 3665A
Analyst:	JW		Cleanup Date:	04/20/16
			Cleanup Method:	EPA 3660B
			Cleanup Date:	04/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/l	0.250		1	A				
Aroclor 1221	ND		ug/l	0.250		1	А				
Aroclor 1232	ND		ug/l	0.250		1	А				
Aroclor 1242	ND		ug/l	0.250		1	А				
Aroclor 1248	ND		ug/l	0.250		1	А				
Aroclor 1254	ND		ug/l	0.250		1	А				
Aroclor 1260	ND		ug/l	0.200		1	А				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68		30-150	А
Decachlorobiphenyl	57		30-150	А

L1610909

04/22/16

Lab Number:

Report Date:

04/20/16

Project Name:

O'CONNELLS CLINTON WWTP

Project Number: 16-1721

Method Blank Analysis Batch Quality Control

Analytical Method:5Analytical Date:0Analyst:0

5,608 04/20/16 12:31 JW Extraction Method:EPA 608Extraction Date:04/19/16 11:56Cleanup Method:EPA 3665ACleanup Date:04/20/16Cleanup Method:EPA 3660BCleanup Date:04/20/16

Westborough					
•	h Lab for s	ample(s):	01 Bat	ch: WG885081-1	l
ND		ug/l	0.250		А
ND		ug/l	0.250		А
ND		ug/l	0.250		А
ND		ug/l	0.250		А
ND		ug/l	0.250		А
ND		ug/l	0.250		А
ND		ug/l	0.200		А
	ND ND ND ND ND ND	ND ND ND ND ND ND ND	NDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/l	ND ug/l 0.250 ND ug/l 0.250	ND ug/l 0.250 ND ug/l 0.250

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria	Column		
				_		
2,4,5,6-Tetrachloro-m-xylene	70		30-150	A		
Decachlorobiphenyl	71		30-150	А		

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

	LCS	LCS			%Recovery		RPD			
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column	
Polychlorinated Biphenyls by GC - We	estborough Lab Associa	ted sample(s):	01 Batch:	WG885081-2	WG885081-3					
Aroclor 1016	80		81		40-140	1		50	А	
Aroclor 1260	72		71		40-140	1		50	А	

	LCS			Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4.5,6-Tetrachloro-m-xylene	74		73		30-150	А
Decachlorobiphenyl	75		74		30-150	А

METALS

Serial_No:04291615:19

1,6020A

1,6020A

19,200.7

1,6020A

1,6020A

1,6020A

1,6020A

KL

KL

FB

KL

KL

KL

KL

Project Name:	Not Sp	pecified					Lab Nu	mber:	L16124	61	
Project Number:	Not Sp	pecified					Report	Date:	04/29/1	6	
				SAMPL	E RES	ULTS					
Lab ID:	L1612	461-01					Date Co	ollected:	04/27/1	6 14:00	
Client ID:	DEWA	TERING (METALS	5)			Date Re	eceived:	04/27/1	6	
Sample Location:	Not Sp	becified					Field Pr	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Westb	orough L	_ab									
Arsenic, Total	0.00199		mg/l	0.00050		1	04/27/16 15:4	0 04/28/16 12:09	EPA 3005A	1,6020A	KL
Cadmium, Total	ND		mg/l	0.00020		1	04/27/16 15:4	0 04/28/16 12:09	EPA 3005A	1,6020A	KL

--

--

--

--

1

1

1

1

1

1

1

04/27/16 15:40 04/28/16 12:09 EPA 3005A

04/27/16 15:40 04/28/16 12:09 EPA 3005A

04/27/16 15:40 04/29/16 01:34 EPA 3005A

04/27/16 15:40 04/28/16 12:09 EPA 3005A

0.00200

0.00100

0.05

0.00050

0.00200

0.00500

0.01000

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

Chromium, Total

Copper, Total

Iron, Total

Lead, Total

Nickel, Total

Zinc, Total

Selenium, Total

ND

0.38

0.00228

0.00104

0.00288

ND

ND

 Lab Number:
 L1612461

 Report Date:
 04/29/16

Project Name:Not SpecifiedProject Number:Not Specified

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westbo	rough Lab for sample	e(s): 01 E	Batch: W	G88793	36-1				
Arsenic, Total	ND	mg/l	0.00050		1	04/27/16 15:40	04/28/16 11:50	1,6020A	KL
Cadmium, Total	ND	mg/l	0.00020		1	04/27/16 15:40	04/28/16 11:50	1,6020A	KL
Chromium, Total	ND	mg/l	0.00200		1	04/27/16 15:40	04/28/16 11:50	1,6020A	KL
Copper, Total	ND	mg/l	0.00100		1	04/27/16 15:40	04/28/16 11:50	1,6020A	KL
Lead, Total	ND	mg/l	0.00050		1	04/27/16 15:40	04/28/16 11:50	1,6020A	KL
Nickel, Total	ND	mg/l	0.00200		1	04/27/16 15:40	04/28/16 11:50	1,6020A	KL
Selenium, Total	ND	mg/l	0.00500		1	04/27/16 15:40	04/28/16 11:50	1,6020A	KL
Zinc, Total	ND	mg/l	0.01000		1	04/27/16 15:40	04/28/16 11:50	1,6020A	KL

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Q	ualifier l	Jnits	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Westborough Lab for sample(s): 01 Batch: WG888222-1										
Iron, Total	ND		mg/l	0.05		1	04/27/16 15:40	04/29/16 02:01	19,200.7	FB

Prep Information

Digestion Method: EPA 3005A

Lab Number: L1612461 Report Date: 04/29/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Westborough Lab Associated sa	mple(s): 01 Bat	tch: WG88	7936-2					
Arsenic, Total	103		-		80-120	-		
Cadmium, Total	106		-		80-120	-		
Chromium, Total	96		-		80-120	-		
Copper, Total	100		-		80-120	-		
Lead, Total	96		-		80-120	-		
Nickel, Total	101		-		80-120	-		
Selenium, Total	108		-		80-120	-		
Zinc, Total	105		-		80-120	-		
otal Metals - Westborough Lab Associated sa	mple(s): 01 Bat	tch: WG88	8222-2					
Iron, Total	97		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: Not Specified **Project Number:** Not Specified Lab Number: L1612461 **Report Date:** 04/29/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qu	RPD al Limits
Total Metals - Westborough L	ab Associated	sample(s): 01	QC Bat	tch ID: WG887	'936-4	QC Sam	ple: L1612461-01	Client ID: DE	WATERING	G (METALS)
Arsenic, Total	0.00199	0.12	0.1196	98		-	-	75-125	-	20
Cadmium, Total	ND	0.051	0.05121	100		-	-	75-125	-	20
Chromium, Total	ND	0.2	0.1841	92		-	-	75-125	-	20
Copper, Total	0.00228	0.25	0.2420	96		-	-	75-125	-	20
Lead, Total	0.00104	0.51	0.4779	94		-	-	75-125	-	20
Nickel, Total	0.00288	0.5	0.4828	96		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.124	103		-	-	75-125	-	20
Zinc, Total	ND	0.5	0.5012	100		-	-	75-125	-	20
Total Metals - Westborough L	ab Associated	sample(s): 01	QC Bat	tch ID: WG888	3222-4	QC Sam	ple: L1612461-01	Client ID: DE	WATERING	G (METALS)
Iron, Total	0.38	1	1.3	92		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:Not SpecifiedProject Number:Not Specified

 Lab Number:
 L1612461

 Report Date:
 04/29/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Westborough Lab Associated sample(s): 0	01 QC Batch ID: WG88	7936-3 QC Sample:	L1612461-01	Client ID:	DEWATERING (METALS)
Arsenic, Total	0.00199	0.00223	mg/l	11	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	ND	ND	mg/l	NC	20
Copper, Total	0.00228	0.00214	mg/l	6	20
Lead, Total	0.00104	0.00098	mg/l	6	20
Nickel, Total	0.00288	0.00353	mg/l	20	20
Selenium, Total	ND	ND	mg/l	NC	20
Zinc, Total	ND	ND	mg/l	NC	20
Total Metals - Westborough Lab Associated sample(s): 0	01 QC Batch ID: WG88	8222-3 QC Sample:	L1612461-01	Client ID:	DEWATERING (METALS)
Iron, Total	0.38	0.32	mg/l	17	20

INORGANICS & MISCELLANEOUS

Project Name:	O'CONNELLS CLINTON WWTP	Lab Number:	L1610909
Project Number:	16-1721	Report Date:	04/22/16

SAMPLE RESULTS

Lab ID:	L1610909-01	Date Collected:	04/13/16 14:00
Client ID:	DEWATERING	Date Received:	04/13/16
Sample Location:	CLINTON, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La)								
Cyanide, Total	ND		mg/l	0.005		1	04/14/16 21:00	04/15/16 15:25	121,4500CN-CE	JO
Chlorine, Total Residual	ND		mg/l	0.20		10	-	04/13/16 21:30	121,4500CL-D	ML
TPH, SGT-HEM	ND		mg/l	4.00		1	04/19/16 17:30	04/19/16 22:20	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	04/15/16 10:45	04/15/16 16:16	4,420.1	MP
Chromium, Hexavalent	ND		mg/l	0.050		5	04/14/16 00:05	04/14/16 00:23	121,3500CR-B	LH
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	12.2		mg/l	0.500		1	_	04/14/16 23:52	44,300.0	AU

Project Name:O'CONNELLS CLINTON WWTPProject Number:16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	porough Lab for sam	ple(s): 01	Batch:	WG88	3443-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	04/13/16 21:30	121,4500CL-D	ML
General Chemistry - Westh	porough Lab for sam	ple(s): 01	Batch:	WG88	3453-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	04/14/16 00:05	04/14/16 00:23	121,3500CR-B	LH
General Chemistry - Westh	porough Lab for sam	ple(s): 01	Batch:	WG88	3843-1				
Cyanide, Total	ND	mg/l	0.005		1	04/14/16 21:00	04/15/16 15:09	121,4500CN-CI	E JO
General Chemistry - Westh	porough Lab for sam	ple(s): 01	Batch:	WG88	3976-1				
Phenolics, Total	ND	mg/l	0.030		1	04/15/16 10:45	04/15/16 15:43	4,420.1	MP
Anions by Ion Chromatogra	aphy - Westborough	Lab for sa	mple(s):	01 B	atch: WG8	84196-1			
Chloride	ND	mg/l	0.500		1	-	04/15/16 02:04	44,300.0	AU
General Chemistry - Westh	porough Lab for sam	ple(s): 01	Batch:	WG88	5219-1				
TPH, SGT-HEM	ND	mg/l	4.00		1	04/19/16 17:30	04/19/16 22:20	74,1664A	ML

Lab Control Sample Analysis Batch Quality Control

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 16-1721 Lab Number: L1610909 Report Date: 04/22/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG883443-2					
Chlorine, Total Residual	101		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG883453-2					
Chromium, Hexavalent	96		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG883843-2					
Cyanide, Total	99		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG883976-2					
Phenolics, Total	90		-		70-130	-		
Anions by Ion Chromatography - Westb	orough Lab Associated	l sam	nple(s): 01 Batch: W	G884196-	2			
Chloride	101		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG885219-2					
ТРН	80		-		64-132	-		34

Matrix Spike Analysis

Project Name:	O'CONNELLS CLINTON WWTP	Batch Quality Control	Lab Number:	L1610909
Project Number:	16-1721		Report Date:	04/22/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD		RPD Limits
General Chemistry - Westbo	prough Lab Assoc	ciated samp	ple(s): 01	QC Batch ID:	WG8834	53-4 QC	Sample: L161	0909-0	1 Client ID	: DEV	VATERI	NG
Chromium, Hexavalent	ND	0.1	0.103	103		-	-		85-115	-		20
General Chemistry - Westbo Sample	prough Lab Assoc	ciated samp	ple(s): 01	QC Batch ID:	WG8838	43-4 WG8	83843-5 QC	Sample	: L1610904-	03 C	Client ID:	MS
Cyanide, Total	0.027	0.2	0.184	78	Q	0.215	94		90-110	16		30
General Chemistry - Westbo	prough Lab Assoc	ciated samp	ple(s): 01	QC Batch ID:	WG8839	76-4 QC	Sample: L161	0606-0	1 Client ID	: MS	Sample	
Phenolics, Total	ND	0.4	0.42	104		-	-		70-130	-		20
Anions by Ion Chromatogra ID: MS Sample	phy - Westboroug	h Lab Asso	ociated san	nple(s): 01 Q	C Batch	ID: WG884	196-3 WG884	196-4	QC Sample	: L161	0904-03	B Clien
Chloride	49.4	100	155	106		155	106		40-151	0		18
General Chemistry - Westbo	prough Lab Assoc	ciated samp	ple(s): 01	QC Batch ID:	WG8852	19-4 QC	Sample: L161	1242-0	1 Client ID	: MS	Sample	
ТРН	ND	21.1	16.7	79		-	-		64-132	-		34

Lab Duplicate Analysis Batch Quality Control

Project Name:O'CONNELLS CLINTON WWTPProject Number:16-1721

 Lab Number:
 L1610909

 Report Date:
 04/22/16

Parameter	Native S	Sample	Duplicate Sa	mple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough La	b Associated sample(s): 01	QC Batch ID:	WG883443-3	QC Sample: L1610	875-06 Clie	nt ID: Dl	JP Sample
Chlorine, Total Residual	NE	0	ND	mg/l	NC		20
General Chemistry - Westborough La	b Associated sample(s): 01	QC Batch ID:	WG883453-3	QC Sample: L1610	909-01 Clie	nt ID: DI	EWATERING
Chromium, Hexavalent	NE)	ND	mg/l	NC		20
General Chemistry - Westborough La	b Associated sample(s): 01	QC Batch ID:	WG883843-3	QC Sample: L1610	904-03 Clie	nt ID: Dl	JP Sample
Cyanide, Total	0.02	27	0.020	mg/l	33	Q	30
General Chemistry - Westborough La	b Associated sample(s): 01	QC Batch ID:	WG883976-3	QC Sample: L1610	606-01 Clie	nt ID: Dl	JP Sample
Phenolics, Total	NE)	ND	mg/l	NC		20
General Chemistry - Westborough La	b Associated sample(s): 01	QC Batch ID:	WG885219-3	QC Sample: L1611	242-01 Clie	nt ID: DI	JP Sample
ТРН	NE	C	ND	mg/l	NC		34

Serial_No:04221613:46

Project Name: O'CONNELLS CLINTON WWTP Project Number: 16-1721

Lab Number: L1610909 Report Date: 04/22/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	Container Information Temp											
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)					
L1610909-01A	Vial HCI preserved	А	N/A	4.8	Y	Absent	8260-SIM(14),8260(14)					
L1610909-01B	Vial HCI preserved	А	N/A	4.8	Y	Absent	8260-SIM(14),8260(14)					
L1610909-01C	Vial HCI preserved	А	N/A	4.8	Y	Absent	8260-SIM(14),8260(14)					
L1610909-01D	Vial Na2S2O3 preserved	А	N/A	4.8	Y	Absent	504(14)					
L1610909-01E	Vial Na2S2O3 preserved	А	N/A	4.8	Y	Absent	504(14)					
L1610909-01F	Plastic 950ml unpreserved	А	7	4.8	Y	Absent	CL-300(28),HEXCR- 3500(1),TRC-4500(1)					
L1610909-01G	Plastic 250ml NaOH preserved	А	>12	4.8	Y	Absent	TCN-4500(14)					
L1610909-01H	Plastic 250ml HNO3 preserved	A	<2	4.8	Y	Absent	SE-6020T(180),CR- 6020T(180),NI-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180),HG- U(28),AS-6020T(180),SB- 6020T(180),AG-6020T(180),CD- 6020T(180)					
L1610909-01J	Amber 950ml H2SO4 preserved	А	<2	4.8	Y	Absent	TPHENOL-420(28)					
L1610909-01K	Amber 1000ml Na2S2O3	А	7	4.8	Y	Absent	PCB-608(7)					
L1610909-01L	Amber 1000ml Na2S2O3	А	7	4.8	Y	Absent	PCB-608(7)					
L1610909-01M	Amber 1000ml unpreserved	А	7	4.8	Y	Absent	8270TCL(7),8270TCL-SIM(7)					
L1610909-01N	Amber 1000ml unpreserved	А	7	4.8	Y	Absent	8270TCL(7),8270TCL-SIM(7)					
L1610909-01O	Amber 1000ml HCI preserved	А	N/A	4.8	Y	Absent	TPH-1664(28)					
L1610909-01P	Amber 1000ml HCl preserved	А	N/A	4.8	Y	Absent	TPH-1664(28)					
L1610909-02A	Vial HCI preserved	А	N/A	4.8	Y	Absent	ARCHIVE(0)					
L1610909-02B	Vial HCI preserved	А	N/A	4.8	Y	Absent	ARCHIVE(0)					
L1610909-02C	Vial Na2S2O3 preserved	А	N/A	4.8	Y	Absent	ARCHIVE()					
L1610909-02D	Vial Na2S2O3 preserved	А	N/A	4.8	Y	Absent	ARCHIVE()					

Serial_No:04221613:46

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 16-1721

Lab Number: L1610909

Report Date: 04/22/16

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Serial_No:04221613:46

Project Name: O'CONNELLS CLINTON WWTP

Project Number: 16-1721

Lab Number: L1610909

Report Date: 04/22/16

Data Qualifiers

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

 Lab Number:
 L1610909

 Report Date:
 04/22/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

											1			Sei	rial_N	lo:04221613:46	
Алрна	CHAIN OF	- CU	STO	DY ,	AGE	OF	Date Re	ec'd in L	ab:	4	13	114	AL	PHA J	ob #:	2161090	19
8 Walkup Drive	320 Forbes Blvd	Project	Informat	ion			Repor	t Inforn	nation	- Data	Delive	rables	Bi	ling In	forma	tion	
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project N	Name: 01	annelles	Clinton	WIGTP		Ξx	DE	MAIL			🗆 S	ame as	Client i	info PO #:	
Client Informatio	on	Project L			r, mA			atory R	equire	ments	&	Projec	t Inforn	nation I	Requi	rements	
Client: OHI	Engineering	Project #	# 16-1	271	0,000			No MA					(🗆 Yes 🗓	No C	CT RCP Analytical Meth	ods
Address: 44	1 1 how Breed			ARED	Vo	1.1		No Ma								Inorganics) argets)	
m	hop not		Quote #:	INFEL) rec	LY	Yes L	No NP	DES R	GP						- 3 - 107	
Phone:	nsfield, Inviv		Around Tir	10			C Other	State /F			1 1	1	1 1	Crite	eria	1 1 7	
Email: JKelly (OHFergineting.com		dard 🗆		confirmed if pre-app	vroved!)		U524.2 РАН	DMCP 14 DRCP 15	~ ~	's [] Ranges Only	DFingerner	The state	.		SAMPLE INF	
ALPHA Lab ID			Colle	otion	Sample			METALS: DMCD.	METALS: DRCRAS DACP 14	UPH: LRanges & Targets D R	D PCB DFST Brargets D R	RGD . DF				Filtration Field Lab to do Preservation Lab to do	L # 0 T T L
(Lab Use Only)	Sample ID		Date	Time	Matrix	Sampler Initials	Voc:	MET	ME) EPH	Hay /	Har Har	A		/ /	/ /	Sample Comments	E
10909-01	DEWATERING	<u>ר</u> ל	4 12 16	1400	GW	JHK.			_			×				TSS will be dr.	/
		8				2											
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NAOH	Relinqui	ished By:			ner Type servative									1211	615:05	
C= Cube O= Other E= Encore D= BOD Bottle	F= MeOH G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	B	the by		4/12/16	1535	The	E	ived By	l L	1	4/3/ 1/3/10	te/Time 1960 1920	All All Se	l sampl pha's T e reve	6 S oS erms and Conditions. rse side. 01-01 (rev. 12-Mar-2012)	et to

ANALYTICAL REPORT

Lab Number:	L1611999
Client:	OHI Engineering Incorporated 44 Wood Avenue Mansfield, MA 02048
ATTN: Phone:	Jared Kelly (508) 339-3929
Project Name:	O'CONNELL'S CLINTON WWTP
Project Number:	16-1721
Report Date:	04/27/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04271613:29

Project Name:O'CONNELL'S CLINTON WWTPProject Number:16-1721

 Lab Number:
 L1611999

 Report Date:
 04/27/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1611999-01	DEWATERING	WATER	CLINTON, MA	04/22/16 12:00	04/22/16

Project Name: O'CONNELL'S CLINTON WWTP Project Number: 16-1721

 Lab Number:
 L1611999

 Report Date:
 04/27/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:O'CONNELL'S CLINTON WWTPProject Number:16-1721

 Lab Number:
 L1611999

 Report Date:
 04/27/16

Case Narrative (continued)

Sample Receipt

The sample was received at the laboratory above the required temperature range. The sample was handdelivered directly from the sampling site but was not on ice.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 04/27/16

INORGANICS & MISCELLANEOUS

Serial No:04271613:29

Project Name: Project Number:	O'CONNELL'S CLINTON WWTP 16-1721	Lab Number: Report Date:	L1611999 04/27/16									
SAMPLE RESULTS												
Lab ID: Client ID: Sample Location: Matrix:	L1611999-01 DEWATERING CLINTON, MA Water	Date Collected: Date Received: Field Prep:	04/22/16 12:00 04/22/16 Not Specified									

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total Suspended	1600		mg/l	30	NA	6	-	04/27/16 02:00	121,2540D	RP

Project Name:O'CONNELL'S CLINTON WWTPProject Number:16-1721

 Lab Number:
 L1611999

 Report Date:
 04/27/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sar	nple(s): 01	Batch:	WG88	37624-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	04/27/16 02:00	121,2540D	RP

29

Project Name: Project Number:	O'CONNELL'S CLINTON WWT 16-1721		B Duplicate Analys Batch Quality Control	SIS	-	ab Number eport Date	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Wes	stborough Lab Associated samp	le(s): 01 QC Batch II	D: WG887624-2 QC Sar	nple: L1611	999-01 Clie	ent ID: DE	WATERING

1600

mg/l

0

1600

Solids, Total Suspended

Project Name: O'CONNELL'S CLINTON WWTP Project Number: 16-1721 Lab Number: L1611999 Report Date: 04/27/16

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information Custody Seal

Cooler

A Absent

Container Information Temp deg C Pres Seal Container ID **Container Type** Analysis(*) Cooler рΗ L1611999-01A Plastic 950ml unpreserved А 7 18.8 TSS-2540(7) Y Absent

Serial_No:04271613:29

Project Name: O'CONNELL'S CLINTON WWTP

Project Number: 16-1721

Lab Number: L1611999

Report Date: 04/27/16

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Serial_No:04271613:29

Project Name: O'CONNELL'S CLINTON WWTP

Project Number: 16-1721

Lab Number: L1611999

Report Date: 04/27/16

Data Qualifiers

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name:O'CONNELL'S CLINTON WWTPProject Number:16-1721

 Lab Number:
 L1611999

 Report Date:
 04/27/16

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

												1	,		Se	rial_N	o:042716′	13:29
Агрна	CHAIN OI	FCUS	STOE)Y		OF /	Date I	Rec'd i	n Lab:		4	12	all	ØAL	РНА	Job #	: 410	all 99°
8 Walkup Drive	320 Forbes Blvd	Project I	nformatio	on			Repo	ort Info	ormati	on - D	ata De	eliver	ables	Bil	ling li	nforma	ntion	
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project Nar	me: 0/(onnelle	s Clinto	nWWT		DEx			IL			🗆 s	ame as	S Client	info PO #	
Client Information	on	Project Loc							Requ	iireme	nts a	8. P	roject	Inform	nation	Requ	irements	
Client: OHT	Engineering	Project #:	16-1				□ Yes	2-No	MA MC	P Anal	vtical N	lethoo	s	(Yes	No No	CT RCP Ana	lytical Methods
	Wood Are	Project Mar		ARED	Ka	1.1										or MCP I with Ta	Inorganics) argets)	
	isfield, MA	ALPHA Qu	V	ands	na	ug	Ves			S RGP Prograr	n				Cri	teria	in de	
Phone:	1	Turn-Arc	ound Tim	е					1	15	m/2	./.	11	K	XI	/ /	111	/
J	Project Information:	C Standar		RUSH (only	confirmed if pre-ap	pproved!)		D 524.2	DMCD.	RCRA8 DRCP	ts [] Ranges On	S D Ranges Only	Fingerprint	L RGPD			SA	
ALPHA Lab ID			Collec	412-2	Sample		38260 D.	WETAL C ABN D I	METALS: CIMCP 13	EPH: LIRanges & T. L. RCRAB	UPH: DRanges & Targers D Ranges Only	Doundest	TSS Driv DFingerprint	+ Pareto				tration Field # Lab to do Field Fiel
(Lab Use Only)	Sample ID		Date	Time	Matrix	Sampler Initials		MET	ME	Hai / 4		Hai	IH	/ /	/ /	/	Sample	Comments S
11999-01	Dewstering	4	122/16	1200	GN	HE		_					×					
													-					
Container Type P= Plastic	Preservative A= None				Contai	iner Type												
A= Amber glass V= Vial G= Glass	$B = HCI$ $C = HNO_3$ $D = H_2SO_4$	~ /			Pre	servative						1	7					
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	$E = NaOH$ $F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$ $I = Ascorbic Acid$ $J = NH_4CI$ $K = Zn A Acetate$	Relinguísh	ed By:		Date 5/22/16	/Time 1215	d.e	Re	eceived	I By: NCC			1 1	e/Time Le (2(SAS	lpha's T ee reve	erms and Co rse side.	
	O= Other				-		8								F	UKM NO:	01-01 (rev. 12-M	ar-2012)

Supporting Documentation

1. General facility information. Please provide the following information about the facility.

a) Name of facility:	Mailing Address for the Facility:					
b) Location Address of the Facility (if different from mailing address):	Facility Location	Type of Business:				
	longitude: latitude:	Facility SIC codes:				
c) Name of facility owner:	Owner's email:					
Owner's Tel #:	Owner's Fax #:					
Address of owner (if different from facility address) Charlestow	n Navy Yard, 100 First Avenu	ie, Boston, Massachusetts 02129				
Owner is (check one): 1. Federal2. State3. Private Legal name of Operator, if not owner: Operator Contact Name:						
Operator Tel Number: Fa						
Operator's email:						
Operator Address (if different from owner)						
d) Attach a topographic map indicating the location of the facility	and the outfall(s) to the receivi	ing water. Map attached?				
 e) Check Yes or No for the following: 1. Has a prior NPDES permit been granted for the discharge? 2. Is the discharge a "new discharger" as defined by 40 CFR Sec 3. Is the facility covered by an individual NPDES permit? Yes 4. Is there a pending application on file with EPA for this discharge 	ction 122.2? Yes No No If Yes, Perm					

	harge information. Please provide information abo		· · · · · · · · · · · · · · · · · · ·	
a)	Name of receiving water into which discharge wil	l occur:		
Sta	Name of receiving water into which discharge wil te Water Quality Classification:	Freshwater:	Marine Water:	
	Describe the discharge activities for which the ov			
b)				
	1. Construction dewatering of groundwater intr		cumulation.	
	2. Short-term or long-term dewatering of found	ation sumps.		
	3. Other.			
c)	Number of outfalls			
For	· each outfall:			
d)	Estimate the maximum daily and average monthly	flow of the discharge (in gal	lons per day – GPD). Max Daily Flow	GPD
)	Average Monthly Flow GPD			
e.)	What is the maximum and minimum monthly pH o	of the discharge (in s.u.)? M	ax pH Min pH	
f.)	Identify the source of the discharge (i.e. potable w required in Section 4.4.5 of the General Permit.	ater, surface water, or grou	ndwater). If groundwater, the facility shall subr	nit effluent test results, as
g.)	What treatment does the wastewater receive prior	r to discharge?		
h.)	Is the discharge continuous? Yes	No If no, is the dis	scharge periodic (P) (occurs regularly, i.e., mo	nthly or seasonally, but is
	not continuous all year) or intermittent (I) (occur	s sometimes but not regular	ly) or both (B)	
	If (P), number of days or months per year of the d	ischarge and the spe	ecific months of discharge	;
	If (I), number of days/year there is a discharge			
	Is the discharge temporary? Yes N	0		
	If yes, approximate start date of dewatering	apj	proximate end date of dewatering	
i.)	Latitude and longitude of each discharge within 1	00 feet (See http://www.epa.g	ov/tri/report/siting_tool): Outfall 1: long.	lat. : Outfall
)	2: long lat; Outfall 3: long		<u> </u>	,,,
j.)	If the source of the discharge is potable water, ple	ase provide the reported or a	alculated seven day-ten year low flow (7010) of	the receiving water and
J•)	attach any calculation sheets used to support stre			the receiving water and
	(See Appendix VII for equations and additional info	ormation)		

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as needed)

MASSACHUSETTS FACILITIES: See Section 3.4 and Appendix 1 of the General Permit for more information on Areas of Critical Environmental Concern (ACEC):

k.) Does the discharge occur in an ACEC? Yes _____ No _____ If yes, provide the name of the ACEC: _____

3. Contaminant Information

- a) Are any pH neutralization and/or dechlorination chemicals used in the discharge? If so, include the chemical n ame and manufacturer; maximum and average daily quantity used as well as the maximum and average daily expected concentrations (mg/l) in the discharge, and the vendor's reported aquatic toxicity (NOAEL and/or LC₅₀ in percent for aquatic organism(s)).
- b) Please report any known remediation activities or water-quality issues in the vicinity of the discharge.

4. Determination of Endangered Species Act Eligibility: Provide documentation of ESA eligibility as required at Part 3.4 and Appendix IV. In addition, respond to the following questions.

a) Which of the three eligibility criteria listed in Appendix IV, Criterion (A, B, or C) have you met? _____

b) Please attach documentation with your NOI supporting your response. Please see Appendix IV for acceptable documentation

5. Documentation of National Historic Preservation Act requirements: Please respond to the following questions:

- a) See Screening Process in Appendix III and respond to questions regarding your site and any historic properties listed or eligible for listing on the National Register of Historic Places. Question 1: Yes _____ No ____; Question 2: No _____ Yes _____
- b) Have any State or Tribal historic preservation officers been consulted in this determination? Yes _____ or No _____ If yes, attach the results of the consultation(s).
- c) Which of the three National Historic Preservation Act eligibility criterion listed in Appendix III, Criterion (A, B, or C) have you met?
- d) Is the project located on property of religious or cultural significance to an Indian Tribe? Yes _____ or No _____ If yes, provide that name of the Indian Tribe associated with the property. ______

6. Supplemental Information: Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit

7. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22 (s ee below) including the following certification:

I certify under penalty of law that (1) no biocides or other chemical additives except for those used for pH adjustment and/or dechlorination are used in the dewatering system; (2) the discharge consists solely of dewatering and authorized pH adjustment and/or dechlorination chemicals; (3) the discharge does not come in contact with any raw materials, intermediate product, water product or finished product; (4) if the discharge of dewatering subsequently mixes with other permitted wastewater (i.e. stormwater) prior to discharging to the receiving water, any monitoring provided under this permit will be only for dewatering discharge; (5) where applicable, the facility has compiled with the requirements of this permit specific to the Endangered Species Act and National Historic Preservation Act; and (6) this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility Name: CLINTON W/WTP - PHOSPHEROUS ROUGTON FACILITY. Operator signature: Four for the Print Full Name and Title: PAUL PRADERIO - DIRECTER OF FIRD OPERATIONS Date:

Federal regulations require this application to be signed as follows:

1. For a corporation, by a principal executive officer of at least the level of vice president;

2. For partnership or sole proprietorship, by a general partner or the proprietor, respectively, or,

3. For a municipality, State, Federal or other public facility, by either a principal executive officer or ranking elected official.

NPDES Dewatering General Permit

Page 4 of 4

NATIONAL PARK SERVICE NATIONAL REGISTER NOF HISTORIC PLACES

Jewett-Gt-

Allen-St

70

Olive St

Laurel St

inder Ave-

Roma-St

11

111

11

1 111

14

not

677 High St Ext

10

Worcester-St

110

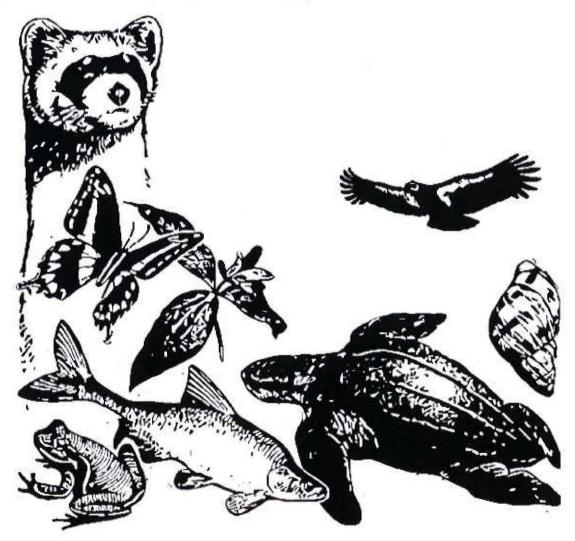
Hamiltong

Ross-St

eq

NATIONAL PARK SERVICE

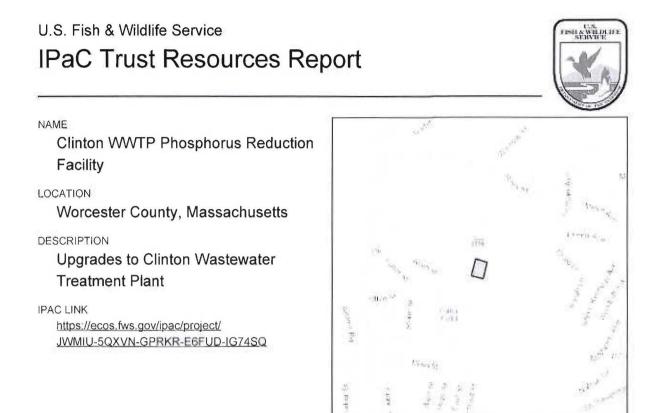
Car


U.S. Fish & Wildlife Service

Clinton WWTP Phosphorus Reduction Facility

IPaC Trust Resources Report

Generated April 27, 2016 07:02 AM MDT, IPaC v3.0.2


This report is for informational purposes only and should not be used for planning or analyzing project level impacts. For project reviews that require U.S. Fish & Wildlife Service review or concurrence, please return to the IPaC website and request an official species list from the Regulatory Documents page.

IPaC - Information for Planning and Conservation (<u>https://ecos.fws.gov/ipac/</u>): A project planning tool to help streamline the U.S. Fish & Wildlife Service environmental review process.

Table of Contents

IF	PaC Trust Resources Report	1
	Project Description	1
	Endangered Species	2
	Migratory Birds .	3
	Refuges & Hatcheries	5
	Wetlands	6

U.S. Fish & Wildlife Service Contact Information

Trust resources in this location are managed by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Endangered Species

Proposed, candidate, threatened, and endangered species are managed by the <u>Endangered Species Program</u> of the U.S. Fish & Wildlife Service.

This USFWS trust resource report is for informational purposes only and should not be used for planning or analyzing project level impacts.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list from the Regulatory Documents section.

<u>Section 7</u> of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency.

A letter from the local office and a species list which fulfills this requirement can only be obtained by requesting an official species list either from the Regulatory Documents section in IPaC or from the local field office directly.

The list of species below are those that may occur or could potentially be affected by activities in this location:

Mammals

Northern Long-eared Bat Myotis septentrionalis

Threatened

CRITICAL HABITAT No critical habitat has been designated for this species. http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=A0JE

Critical Habitats

There are no critical habitats in this location

Migratory Birds

Birds are protected by the <u>Migratory Bird Treaty Act</u> and the <u>Bald and Golden Eagle</u> <u>Protection Act</u>.

Any activity that results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish & Wildlife Service.^[1] There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and implementing appropriate conservation measures.

1. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

Additional information can be found using the following links:

- Birds of Conservation Concern
 <u>http://www.fws.gov/birds/management/managed-species/</u>
 <u>birds-of-conservation-concern.php</u>
- Conservation measures for birds <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>conservation-measures.php</u>
- Year-round bird occurrence data http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/ akn-histogram-tools.php

The following species of migratory birds could potentially be affected by activities in this location:

American Oystercatcher Haematopus palliatus Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0G8	Bird of conservation concern
American Bittern Botaurus lentiginosus Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0F3	Bird of conservation concern
Bald Eagle Haliaeetus leucocephalus Year-round http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B008	Bird of conservation concern
Black-billed Cuckoo Coccyzus erythropthalmus Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HI	Bird of conservation concern

 Blue-winged Warbler Vermivora pinus Season: Breeding Canada Warbler Wilsonia canadensis Season: Breeding Least Bittern Ixobrychus exilis Season: Breeding 	Bird of conservation concern Bird of conservation concern
http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B092 Olive-sided Flycatcher Contopus cooperi Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0AN	Bird of conservation concern
Peregrine Falcon Falco peregrinus Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FU	Bird of conservation concern
Pied-billed Grebe Podilymbus podiceps Season: Breeding Prairie Warbler Dendroica discolor Season: Breeding	Bird of conservation concern Bird of conservation concern
Purple Sandpiper Calidris maritima Season: Wintering Short-eared Owl Asio flammeus	Bird of conservation concern Bird of conservation concern
Season: Wintering http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD Upland Sandpiper Bartramia longicauda	Bird of conservation concern
Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HC Willow Flycatcher Empidonax traillii	Bird of conservation concern
Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0F6	Bird of conservation concern
 Wood Thrush Hylocichla mustelina Season: Breeding Worm Eating Warbler Helmitheros vermivorum Season: Breeding 	Bird of conservation concern Bird of conservation concern

Wildlife refuges and fish hatcheries

There are no refuges or fish hatcheries in this location

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army</u> <u>Corps of Engineers District</u>.

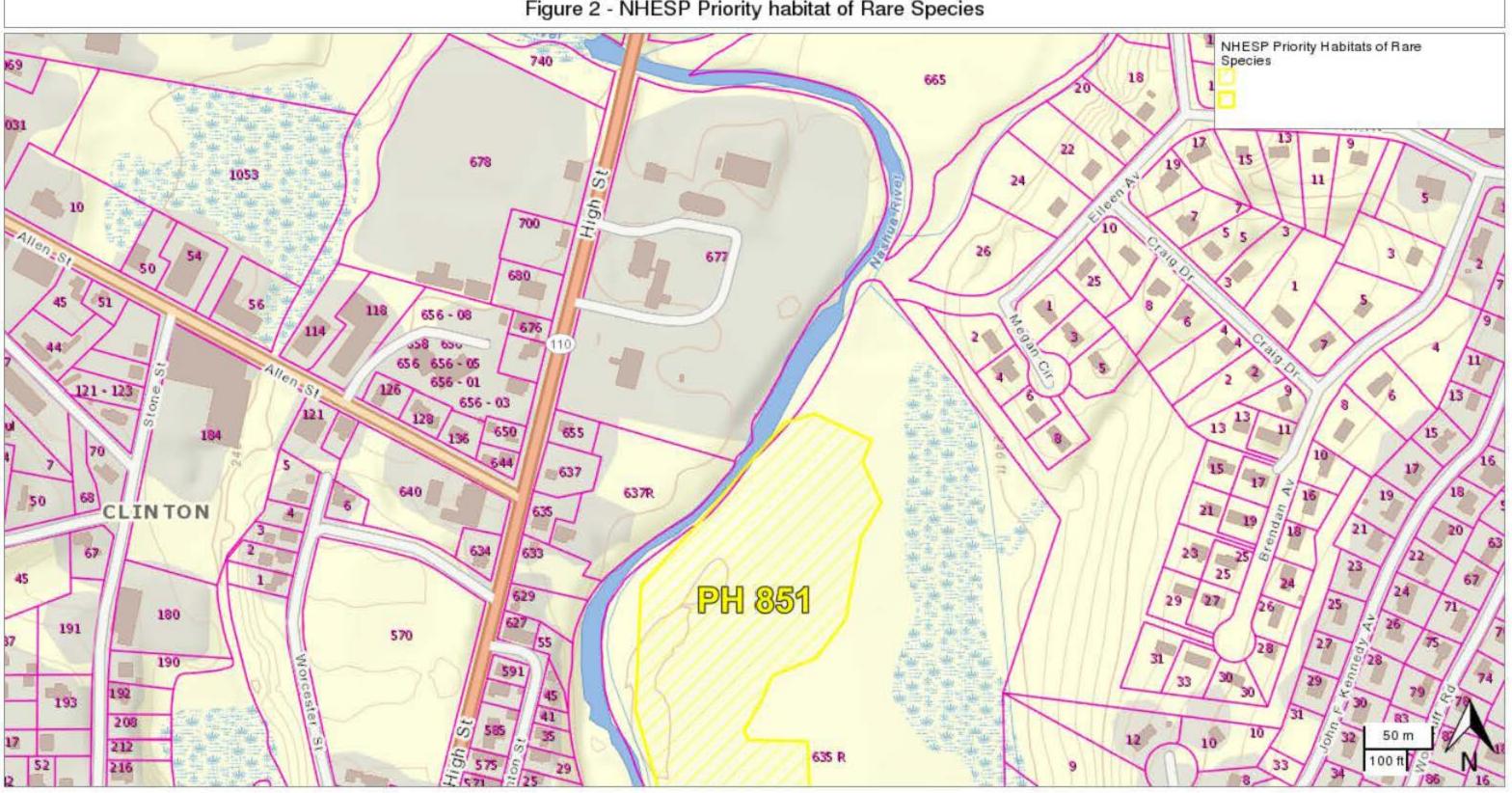
DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

DATA EXCLUSIONS


Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

Wetland data is unavailable at this time.

Figure 2 - NHESP Priority habitat of Rare Species

44 Wood Avenue Mansfield, MA 02048 *Tel (508) 339-3929 Fax (508) 339-3140*

110 Pulpit Hill Road Amherst, MA 01002 *Tel (413) 835-0780 Fax (413) 549-7918*

www.OHIengineering.com