

NOTICE OF INTENT FOR DISCHARGE -PURSUANT TO MASSACHUSETTS -DEWATERING GENERAL PERMIT -MAG070000 -

121-139 FIRST STREET -

CAMBRIDGE, MASSACHUSETTS -

NOVEMBER 28, 2016 -

Prepared For: -UNITED STATES ENVIRONMENTAL PROTECTION AGENCY -DEWATERING GP PROCESSING -INDUSTRIAL PERMIT UNIT (OEP 06-4) -5 POST OFFICE SQUARE, SUITE 100 -BOSTON, MA 02109-3912 -

On Behalf Of: -

US Parcel A, LLC -111 First Street -Cambridge, MA 02141 -

PROJECT NO. 5863

2269 Massachusetts Avenue -Cambridge, MA 02140 www.mcphailgeo.com -(617) 868 1420 -

November 28, 2016

United States Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP 06-4) 5 Post Office Square, Suite 100 Boston, MA 02109-3912

Attention: To Whom It May Concern

Reference: 121-139 First Street; Cambridge, Massachusetts Notice of Intent for Temporary Construction Dewatering Discharge; Massachusetts Dewatering General Permit MAG070000

Ladies and Gentlemen:

In accordance with the provisions of the Dewatering General Permit MAG070000 (DGP) that was issued to the Commonwealth of Massachusetts, the following is a summary of the site and groundwater quality information in support of a Notice of Intent (NOI) for the discharge of construction dewatering into the Charles River via the City of Cambridge storm drain system. The temporary discharge of construction dewatering will occur during redevelopment of the 121-139 First Street property in Cambridge, Massachusetts (the "subject site"). Refer to **Figure 1**, Project Location Plan for the general site locus.

These services were performed and this permit application was prepared in accordance with our proposal dated October 21, 2016, and the subsequent authorization of Urban Spaces, LLC. These services are subject to the limitations contained in **Appendix A**.

The required Notice of Intent Form contained in the DGP permit and the City of Cambridge Permit to Dewater are included in **Appendix B**.

Applicant/Operator

The applicant for the Notice of Intent-Dewatering General Permit is:

Nauset Construction Corp. 10 Kearney Road; Suite 301 Needham, MA 02494

Attention: Mr. Antony Papantonis

Tel: (781) 453-2220 Email: apapantonis@nausetconstruction.com

Existing Conditions

Fronting onto First Street to the east, the site is bounded by Charles Street to the north, Bent Street to the south, and the Cambridge Electric light Co. property and a paved parking lot to the west.

Prior to the recent demolition operations at the site, a one to two-story, wood-framed building with a footprint of about 4,700 square feet was located within the northern portion of the site. The former building had a basement below a majority of its footprint extending about six feet below the adjacent exterior grades.

The remainder of the site consists of paved parking and driveway areas. An approximate 10-foot wide easement for the Cambridge Electric Light Co. property is located to the west of the former building. The ground surface at the site ranges from about Elevation +20 to about Elevation +21.5.

Proposed Scope of Site Development

The proposed redevelopment is understood to consist of an irregularly-shaped, five-story, office building with a footprint of about 11,500 square feet. The proposed building is planned to include a partial basement adjacent to First Street with a footprint of about 3,000 square feet. It is understood that the elevation of the ground floor and basement slabs will be at about Elevation +20.4 and Elevation +9.9, respectively.

Temporary construction dewatering is anticipated to be required to facilitate excavation to the basement subgrade, which will extend about 14 to 19 feet below the existing ground surface or about 5 to 9 feet below the observed groundwater level at the site.

Site Environmental Setting, Nearby DEP-listed Disposal Sites, Endangered Species and Surrounding Historical Places

Based on an on-line edition of the Massachusetts Geographic Information Systems MassDEP Phase I Site Assessment Map (GIS Map) viewed on July 29, 2015, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site.

The GIS Map indicates that there are no water bodies or wetland areas at the subject site. The nearest water body is the Charles River is located approximately 0.2 miles to the east of the subject site. No areas designated as solid waste sites (landfills) are noted as being

located within 1,000 feet of the site. According to the City of Cambridge municipal GIS database, the Bent Street Open Space, which is located approximately 175 feet to the west of the subject site, is a designated protected open space. A copy of the GIS Map is included in **Appendix C**. In addition, a report prepared by Environmental Database Resource, Inc. (EDR) was reviewed for this study. Based on EDR's search of FEMA Flood Plain Maps, the subject site is not located within a 100 year or 500 year flood plain.

The northern portion of the subject site is listed with the Massachusetts Department of Environmental Protection (DEP) under Release Tracking Number (RTN) 3-23447 due to a release of C11-C22 aromatic hydrocarbons, naphthalene, 2-methylnaphthalene, mercury, arsenic, and lead in soil and phenanthrene in groundwater. Although reportable exceedances were spread out throughout different parcels of land with separate addresses, the releases were filed under one RNF given that the exceedances appeared to be related to historic fill contained within each parcel and the parcels were managed as one development (Bent Street Development). Based on the results of analytical testing of groundwater, the subject site is not considered to have been impacted by the chemical contaminants found in soil or the phenanthrene observed in groundwater at the adjacent parcel. The properties were classified for a Class B-2 RAO in 2004 given that a condition of No Significant Risk exists at the parcels, which is contingent upon maintaining an Activity and Use Limitation (AUL).

Additionally, a recent subsurface exploration program was conducted at the southern portion of the subject site (131 through 139 First Street) on November 2015. As part of the pre-characterization program, representative samples of fill material obtained and tested for the presence of compounds typically required by in-state disposal facilities in accordance with DEP Policy #COMM-97-001 entitled "Reuse and Disposal of Contaminated Soil at Massachusetts Landfills. Exceedances of PAHs, TPH, total lead, total arsenic and total mercury were reported to the DEP, which assigned a new RTN 3-33469 to the subject site. Hence, the subject site has two (2) RTNs, the newly assigned RTN 3-33469 that applies to the entire subject site, and the older RTN 3-23447 that only applies to the 121 First Street portion of the subject site. The results of the chemical analysis on groundwater samples did not identify concentrations of metals, EPH, VOC, and VPH in excess of the applicable RCGW-2 Reportable Concentrations.

The above RTNs at the site are currently being managed in accordance with the provisions of 310 CMR 40.0000, the Massachusetts Contingency Plan. A Release Abatement Measure Plan was filed for subject site related to the excavation and off-site disposal of soils impacted by the release.

A review of information provided in an Information for Planning and Conservation Trust Resource Report (IPaC Report) prepared by the U.S. Fish and Wildlife Service for the subject site did not identify the presence of endangered species at or in the vicinity of the discharge location and/or discharge outfall. Further, the IPaC Report did not identify the presence of a critical habitat in the vicinity of the discharge location and/or discharge outfall. However, the report indicated that the Red Knot bird, which is classified as a "threatened" species,

should be considered with regard to this project. Based on correspondence with Ms. Maria Ter of the New England Field Office for the U.S. Fish and Wildlife Service, groundwater discharge from the subject site to the Charles River is not considered likely to adversely affect the Red Knot bird. Based upon the above, the site is considered a Criterion B pursuant to Appendix IV of the DGP. A copy of the IPaC Report is included in **Appendix C**.

A review of the most recent National Register of Historical Places for Suffolk County in Boston, Massachusetts did not identify records or addresses of historic places that exist in the immediate vicinity of the subject site and/or outfall location.

Construction Site Dewatering

Stabilized groundwater levels observed within the groundwater monitoring wells installed at the site ranged from about Elevation +10.5 to Elevation +11.2. It is anticipated that excavation within the basement portion of the proposed building will extend about 5 to 9 feet below the observed groundwater level. In order to facilitate construction of the basement level, to provide support of the excavation, and to provide an effective groundwater cut-off during construction (to mitigate the volume of construction dewatering effluent), a sheet pile cofferdam will be installed around the perimeter of the basement foundation wall. Thus, construction dewatering will be generally required within the footprint of the cofferdam to facilitate construction of the proposed basement level of the building, but may also be required within other areas of the site during and following precipitation events.

It is anticipated that construction dewatering discharge during removal of the fill and organic soils will initially be on the order about 75 to 100 gallons per minute (gpm). However, once the excavation has been dewatered to the proposed subgrade elevation it is anticipated that rate of construction dewatering will decrease to approximately 25 to 50 gallons per minute as a result of the groundwater cut-off. These estimates do not include surface run-off which will be removed from the excavation during and following precipitation events.

Given that the area of the foundation occupies a majority of the subject site, temporary onsite collection and recharge of groundwater is not feasible. As a result, construction dewatering will require the discharge of collected groundwater into the storm drain system.

A review of stormwater and sewer plans available on the City of Cambridge Sewer and Stormwater database indicates a catch basin adjacent to the site that flows to a dedicated storm drain located beneath First Street. The storm drain flows north beneath First Street to Thorndike Street where it turns east and discharges into the Charles River at outfall D02OF0000. The location of the catch basin in relation to the subject site is indicated on **Figure 2**. The flow path of the discharge is shown on **Figure 3**.

Summary of Groundwater Analysis

In November 2015, a three (3) groundwater samples were obtained from monitoring wells that were installed at the subject site as part of an environmental due diligence assessment. Subsequently, in November 2016, a groundwater sample was obtained from an existing groundwater monitoring well to characterize the groundwater for off-site discharge in anticipation of construction dewatering activities. The following is a summary of the results of the laboratory analyses.

Groundwater Analyses November 2015

On November 13, 2015, groundwater samples were obtained from groundwater monitoring wells B-1(OW) and B-201(OW). The samples were submitted for chemical testing for the presence of volatile organic compounds (VOC), volatile petroleum compounds (VPH), and extractible petroleum hydrocarbons (EPH) with target analytes. Additionally, a sample was collected from groundwater monitoring well B-202(OW) on November 18, 2015 and submitted for laboratory analysis for the presence of VOCs and dissolved MCP-14 metals. A summary of the chemical test results is provided in **Table 1** and chemical test data is included in **Appendix D**.

VOCs, VPHs and EPHs

The results of the laboratory analysis did not detect the presence of VOCs, VPHs and EPHs with target analytes in excess of the laboratory detection limits, which are below the applicable RCGW-2 reporting standards.

Dissolved MCP-14 Metals

The results of laboratory analysis did not identify the presence of dissolved MCP-14 metals above the laboratory method detection limits, with the exception of dissolved barium, which was identified in sample B-202(OW) at a concentration of 0.34 mg/L. The RCGW-2 Reportable Concentration for dissolved barium is 50 mg/L. In summary, the results of laboratory analysis did not identify dissolved RCRA-8 metals above applicable RCGW-2 Reportable Concentrations.

Groundwater Analyses October 21, 2016

On October 21, 2016, a sample of groundwater was obtained from monitoring well B-1(OW) and submitted for laboratory analysis for the presence of total metals, VOCs, semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), total cyanide, total residual chlorine, total phenolics, microextractables, total suspended solids (TSS), pH, ammonia nitrogen, and chloride. A summary of the chemical test results is provided in **Table 2** and chemical test data is included in **Appendix D**.

<u>Total Metals</u>

With the exception of copper, iron, lead, and zinc, the laboratory analytical results did not identify detectable levels of total metals in the submitted sample of groundwater. Total copper, iron, lead, and zinc, were reported at concentrations of 2.1 μ g/l, 4,380 μ g/l, 2 μ g/l, and 58.7 μ g/l, respectively. The detected levels of total copper and zinc are below the respective EPA effluent limits of 5.2 μ g/l and 66.6 μ g/L for discharge to a fresh water body.

The reported concentrations for total iron and lead exceed the respective EPA effluent limits of 1,000 μ g/l and 2 μ g/l for discharge into a fresh water body. As a result, a Dilution Factor (DF) was calculated in accordance with the procedure contained in DGP MAG070000, Appendix VII. The purpose of the DF calculation is to establish Total Recoverable Limits for metals, taking into consideration the anticipated dilution of the detected analytes upon discharge into the Charles River. Using the USGS StreamStats GIS database, the 7Q10 flow was calculated for the receiving water at the outfall location. Based on the calculated value of 7Q10, the DF was determined to be 134. Therefore, in accordance with the dilution range concentrations provided in DGP MAG070000, Appendix VII for the determined DF, the detected levels of total iron and lead are below than the respective dilution concentrations of 5,000 μ g/l and 132 μ g/l for discharge into a freshwater body. The USGS StreamStats GIS database calculations for the discharge location in the Charles River are provided in **Appendix E**.

VOC, SVOC, PCB, Total Cyanide, Total Residual Chlorine, Total Phenolics, Microextractables

The results did not indicate the presence of VOC, SVOC, PCB, total cyanide, total residual chlorine, total phenolics, microextractables at concentrations above the instrument reporting limit, which are below the respective EPA effluent limits for discharge into a fresh water body.

TSS, pH, Ammonia Nitrogen, and Chloride

The TSS concentration of the groundwater was 14,000 μ g/l, which is below the applicable EPA effluent limit of 30,000 μ g/l for discharge into a freshwater body. The pH of the groundwater was 7.05 S.U., which is within the acceptable range of 6.5 S.U to 8.4 S.U. for discharge into a freshwater body. The results indicated concentrations of ammonia nitrogen and chloride in the tested groundwater sample of 2,980 μ g/l and 1,610,000 μ g/l, respectively.

Groundwater Treatment

Based on the results of the above referenced groundwater analyses, it is our opinion that a 10,000-gallon capacity settling tank and bag filter in series will be required to settle out suspended particulates in the discharge during construction dewatering to meet applicable

effluent limits established by the US EPA prior to off-site discharge. A schematic of the treatment system is shown on **Figure 4**.

Summary and Conclusions

The purpose of this report is to assess site environmental conditions and groundwater data to support an application for a Massachusetts Dewatering General Permit for off-site discharge of dewatered groundwater which will be encountered during redevelopment of the 121-139 First Street property in Cambridge, Massachusetts.

Based on the results of the above referenced groundwater analyses, treatment of construction dewatering will be necessary to meet allowable effluent limits by the US EPA prior to off-site discharge. The proposed construction dewatering effluent treatment system will consist of one 10,000-gallon capacity settling tank and bag filters in series to meet the applicable discharge limits of TSS. However, should the effluent monitoring results indicate levels of TSS in excess of the limits established in the Massachusetts DGP, additional mitigative measures will be implemented to meet the allowable discharge limits.

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

Very truly yours,

McPHAIL ASSOCIATES, LLC

Scott S. Smith, P.E.

Thomas J. Fennick, P.E., L.S.P.

SSS/tjf

N:\Working Documents\Reports\5863_DGP 112816.docx

TABLE 1 GROUNDWATER ANALYTICAL DATA

FIRST STREET PUD - PARCEL A PROJECT NO. 5863

LOCATION	RCGW-2	B-201 (OW)	B-1 (OW)	B-202 (OW)
SAMPLING DATE	Reportable	11/13/2015	11/13/2015	11/18/2015
LAB SAMPLE ID	Concentrations	L1529838-01	L1529838-02	L1530323-05
Extractable Petroleum Hydro	ocarbons (mg/L)			
C9-C18 Aliphatics	5	ND(0.1)	ND(0.1)	-
C19-C36 Aliphatics	50	ND(0.1)	ND(0.1)	-
C11-C22 Aromatics		ND(0.1)	ND(0.1)	-
C11-C22 Aromatics, Adjusted	5	ND(0.1)	ND(0.1)	-
Naphthalene	0.7	ND(0.01)	ND(0.01)	-
2-Methylnaphthalene	2	ND(0.01)	ND(0.01)	-
Acenaphthylene	0.04	ND(0.01)	ND(0.01)	-
Acenaphthene	10	ND(0.01)	ND(0.01)	-
Fluorene	0.04	ND(0.01)	ND(0.01)	-
Phenanthrene	10	ND(0.01)	ND(0.01)	-
Anthracene	0.03	ND(0.01)	ND(0.01)	-
Fluoranthene	0.2	ND(0.01)	ND(0.01)	-
Pyrene	0.02	ND(0.01)	ND(0.01)	-
Benzo(a)anthracene	1	ND(0.01)	ND(0.01)	-
Chrysene	0.07	ND(0.01)	ND(0.01)	-
Benzo(b)fluoranthene	0.4	ND(0.01)	ND(0.01)	-
Benzo(k)fluoranthene	0.1	ND(0.01)	ND(0.01)	-
Benzo(a)pyrene	0.5	ND(0.01)	ND(0.01)	-
Indeno(1,2,3-cd)Pyrene	0.1	ND(0.01)	ND(0.01)	-
Dibenzo(a,h)anthracene	0.04	ND(0.01)	ND(0.01)	-
Benzo(ghi)perylene	0.02	ND(0.01)	ND(0.01)	-
MCP Dissolved Metals (mg/L	_)			
Antimony, Dissolved	8	-	-	ND(0.05)
Arsenic, Dissolved	0.9	-	-	ND(0.005)
Barium, Dissolved	50	-	-	0.34
Beryllium, Dissolved	0.2	-	-	ND(0.005)
Cadmium, Dissolved	0.004	-	-	ND(0.004)
Chromium, Dissolved	0.3	-	-	ND(0.01)
Lead, Dissolved	0.01	-	-	ND(0.01)
Mercury, Dissolved	0.02	-	-	ND(0.0002)
Nickel, Dissolved	0.2	-	-	ND(0.025)
Selenium, Dissolved	0.1	-	-	ND(0.01)
Silver, Dissolved	0.007	-	-	ND(0.007)
Thallium, Dissolved	3	-	-	ND(0.02)
Vanadium, Dissolved	4	-	-	ND(0.01)
Zinc, Dissolved	0.9	-	-	ND(0.05)
MCP Volatile Organics (mg/l	_)			· · · · ·
ALL ND	ŕ	ND	ND	ND
Volatile Petroleum Hydrocar	bons (mg/L)			
C5-C8 Aliphatics		ND(0.05)	ND(0.05)	-
C9-C12 Aliphatics		ND(0.05)	ND(0.05)	-
C9-C10 Aromatics	4	ND(0.05)	ND(0.05)	-
C5-C8 Aliphatics, Adjusted	3	ND(0.05)	ND(0.05)	-
C9-C12 Aliphatics, Adjusted	5	ND(0.05)	ND(0.05)	-

ND - Not detected above laboratory reporting limits

(#) - Detection Limit

"-" - Not analyzed

TABLE 2GROUNDWATER ANALYTICAL DATA

FIRST STREET PUD - PARCEL A PROJECT NO. 5863

LOCATION	RCGW-2		DGP Limits		B-1 (OW)
SAMPLING DATE	Reportable	DGP Limits	with Dilution	Units	10/21/2016
LAB SAMPLE ID	Concentrations		Factor		L1634100-01
Anions by Ion Chromatography					
Chloride		Monitor Only		ug/l	1610000
General Chemistry					
Solids, Total Suspended		30000		ug/l	14000
Cyanide, Total	30	5.2		ug/l	ND(5)
Chlorine, Total Residual		11		ug/l	ND(20)
Nitrogen, Ammonia				ug/l	2980
рН (Н)		6.5-8.4		SU	7.05
Phenolics, Total		300		ug/l	ND(30)
Chromium, Hexavalent	300	11.4	1140	ug/l	ND(10)
Microextractables by GC					
1,2-Dibromoethane	2	0.05		ug/l	ND(0.012)
Polychlorinated Biphenyls by G	C				
Total		0.000064		ug/l	ND
Semivolatile Organics by GC/MS	3				
Total				ug/l	ND
Semivolatile Organics by GC/MS	S-SIM				
Total				ug/l	ND
Total Metals					
Antimony, Total	8000	5.6	141	ug/l	ND(4)
Arsenic, Total	900	10	540	ug/l	ND(0.5)
Cadmium, Total	4	0.2	20	ug/l	ND(0.2)
Chromium, Total	300			ug/l	ND(1)
Copper, Total	100000	5.2	520	ug/l	2.1
Iron, Total		1000	5000	ug/l	4380
Lead, Total	10	1.3	132	ug/l	2
Mercury, Total	20	0.9	2.3	ug/l	ND(0.2)
Nickel, Total	200	29	2380	ug/l	ND(2)
Selenium, Total	100	5	408	ug/l	ND(5)
Silver, Total	7	1.2	115	ug/l	ND(0.4)
Zinc, Total	900	66.6	1480	ug/l	58.7
Volatile Organics by GC/MS					
Total					ND
Volatile Organics by GC/MS-SIM					
Total					ND
Total Petroleum Hydrocarbons					
TPH, SGT-HEM	5000	5000		ug/l	ND(4400)

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present a summary of environmental conditions, including the results of testing of groundwater samples obtained from a groundwater monitoring well on the property located at 121-139 First Street in Cambridge, Massachusetts in support of an application for approval of temporary construction dewatering discharge of groundwater into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Dewatering General Permit MAG070000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon laboratory test data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text. However, it should be noted that additional constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of Urban Spaces, LLC. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than submission to relevant governmental agencies, nor used in whole or in part by any other party without the prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT TRANSMITTAL FORM

CITY OF CAMBRIDGE PERMIT TO DEWATER

II. Suggested Notice of Intent (NOI) Format

1. General facility information. Please provide the following information about the facility.

a) Name of facility:	Mailing Address for the Facilit	y:
121-139 First Street	111 First Street Cambridge, MA 02141	
b) Location Address of the Facility (if different from mailing	Facility Location	Type of Business:
address):		Construction Site
121-139 First Street	longitude:	Facility SIC codes:
Cambridge, MA	latitude: 42.366937	
c) Name of facility owner: US Parcel A, LLC	Owner's email: jhirsch@ur	banspacesIIc.com
Owner's Tel #: (617) 868-5558	Owner's Fax #: (801) 99	11-5002
Address of owner (if different from facility address) Same as mailing address		
Owner is (check one): 1. Federal2. State 3. Private 🗸	4. Other(Describe)	
Legal name of Operator, if not owner: Nauset Construction Corp.		
Operator Contact Name: Anthony Papantonis		
Operator Tel Number: (781) 400-8034 Fax No	umber: (781) 453-2250	
Operator's email:		
Operator Address (if different from owner)		
10 Kearney Road, Suite 307 Need	ham, MA 02494	
d) Attach a topographic map indicating the location of the facility and	the outfall(s) to the receiving wa	ter. Map attached? 🖌
 e) Check Yes or No for the following: 1. Has a prior NPDES permit been granted for the discharge? Yes 2. Is the discharge a "new discharger" as defined by 40 CFR Section 3. Is the facility covered by an individual NPDES permit? Yes	No ✓ If Yes, Permit Nu n 122.2? Yes No ✓ No ✓ If Yes, Permit Nu Yes No ✓ If Yes,	mber: nber date of submittal:

a)	Name of receiving water into which discharge will occur:	Charles River)
Sta	te Water Quality Classification: Class B	Freshwater: Yes	Marine Water: No
b)	Describe the discharge activities for which the owner/appli	cant is seeking cove	rage:
	1. Construction dewatering of groundwater intrusion and	Vor storm water acc	umulation.
1	2. Short-term or long-term dewatering of foundation sum	ps.	
	3. Other.		
c)	Number of outfalls		
For	each outfall:		
n			
a)	Estimate the maximum daily and average monthly flow of the	e discharge (in gaile	ons per day – GPD). Max Dally Flow <u>144,000</u> GPD
	Average Monthly Flow 126,000 GFD		
e.)	What is the maximum and minimum monthly pH of the disc	harge (in s.u.)? Ma	x pH_ <u>a.3</u> Min pH_ <u>6.5</u>
f.)	Identify the source of the discharge (i.e. potable water, surfa-	ace water, or ground	water). If groundwater, the facility shall submit effluent test results, as
	required in Section 4.4.5 of the General Fernit. Groundwate		
g.)	What treatment does the wastewater receive prior to discha	rge? See attached re	pport.
h.)	Is the discharge continuous? Yes No 🗸	If no, is the disc	charge periodic (P) (occurs regularly, i.e., monthly or seasonally, but is
,	not continuous all year) or intermittent (I) (occurs sometin	nes but not regular	y) or both (B) B
	If (P), number of days or months per year of the discharge	and the spec	ific months of discharge :
	If (D , number of days/vear there is a discharge 3 to 5 days per week	····· · I	,
	Is the discharge temporary? Yes ✓ No		
	If yes, approximate start date of dewatering December 2016	- appi	oximate end date of dewatering December 2017
		11	0
i.)	Latitude and longitude of each discharge within 100 feet (Second	ee <u>http://www.epa.go</u>	w/tri/report/siting_tool): Outfall 1: long71.076266 lat. 42.369137 ; Outfall
	2: longlat; Outfall 3: longlat.	•	
j.)	If the source of the discharge is potable water, please provid	le the reported or ca	Iculated seven day-ten year low flow (7Q10) of the receiving water and \hat{a}
	attach any calculation sheets used to support stream flow ar	nd dilution calculati	ons 29.7 cfs
	(See Appendix VIII for equations and additional information)		

MASSACHUSETTS FACILITIES: See Section 3.4 and Appendix 1 of the General Permit for more information on Areas of Critical Environmental Concern (ACEC):

k.) Does the discharge occur in an ACEC? Yes _____ No _____ If yes, provide the name of the ACEC: ______

3. Contaminant Information

- a) Are any pH neutralization and/or dechlorination chemicals used in the discharge? If so, include the chemical name and manufacturer; maximum and average daily quantity used as well as the maximum and average daily expected concentrations (mg/l) in the discharge, and the vendor's reported aquatic toxicity (NOAEL and/or LC₅₀ in percent for aquatic organism(s)). No.
- b) Please report any known remediation activities or water-quality issues in the vicinity of the discharge.

4. Determination of Endangered Species Act Eligibility: Provide documentation of ESA eligibility as required at Part 3.4 and Appendix IV. In addition, respond to the following questions.

- a) Which of the three eligibility criteria listed in Appendix IV, Criterion (A, B, or C) have you met? **B**
- b) Please attach documentation with your NOI supporting your response. Please see Appendix IV for acceptable documentation

5. Documentation of National Historic Preservation Act requirements: Please respond to the following questions:

- a) See Screening Process in Appendix III and respond to questions regarding your site and any historic properties listed or eligible for listing on the National Register of Historic Places. Question 1: Yes <u>V</u> No <u>;</u> Question 2: No <u>Yes</u> See attached report.
- b) Have any State or Tribal historic preservation officers been consulted in this determination? Yes _____ or No 🗸 If yes, attach the results of the consultation(s).
- c) Which of the three National Historic Preservation Act eligibility criterion listed in Appendix III, Criterion (A, B, or C) have you met? 🔺
- d) Is the project located on property of religious or cultural significance to an Indian Tribe? Yes _____ or No 🖌 If yes, provide that name of the Indian Tribe associated with the property. ______

6. Supplemental Information: Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit

7. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22 (s ee below) including the following certification:

I certify under penalty of law that (1) no biocides or other chemical additives except for those used for pH adjustment and/or dechlorination are used in the dewatering system; (2) the discharge consists solely of dewatering and authorized pH adjustment and/or dechlorination chemicals; (3) the discharge does not come in contact with any raw materials, intermediate product, water product or finished product; (4) if the discharge of dewatering subsequently mixes with other permitted wastewater (i.e. stormwater) prior to discharging to the receiving water, any monitoring provided under this permit will be only for dewatering discharge; (5) where applicable, the facility has complied with the requirements of this permit specific to the Endangered Species Act and National Historic Preservation Act; and (6) this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility Name: 121-139 First Street	
Operator signature:	
Print Full Name and Title: Anthony Papantonis, President	
Date: 11/21/16	

Federal regulations require this application to be signed as follows:

- 1. For a corporation, by a principal executive officer of at least the level of vice president;
- 2. For partnership or sole proprietorship, by a general partner or the proprietor, respectively, or,
- 3. For a municipality, State, Federal or other public facility, by either a principal executive officer or ranking elected official.

PERMIT TO DEWATER

Location:	121-139 First Street		XTemporary
			Permanent
Owner:	US Parcel A, LLC	Contractor: _	Nauset Construction Corp.

- I. The property owner, <u>US Parcel A, LLC</u> agrees to hold harmless and indemnify the City of Cambridge for any liability on the part of the City directly or indirectly arising out of the dewatering operation.
- II. The issuance of this permit is based in part on the submission packet of the applicant with documentation as follows: Notice of Intent for Discharge Pursuant to Massachusetts Dewatering General Permit MAG070000
- III. In addition, the application has been reviewed by the City under third party agreement as documented in the following reports:

IV. All activities conducted in conjunction with the issuance of this permit must be in accordance with the provisions of the aforementioned reports. Any deviations in conditions must be reported to and approved by the Commissioner of Public Works.

- V. This permit is in addition to any other street permit issued by the Department in connection with any street excavation or obstruction; and all conditions as specified in the Discharge Permit for Dewatering.
- VI. For the entire period of time the groundwater is being discharged to a storm drain, the property owner shall provide copies of each Discharge Monitoring Report Form submitted to the EPA, pursuant to the owner's discharge permit.
- VII. If in the future the EPA requires the City of Cambridge to bring existing stormwater drainage into compliance with EPA quality standards, as a condition to the continuation of discharge of that stormwater (also including groundwater) into an EPA regulated system into which the <u>US Parcel A, LLC</u> (property owner) drains, the owner will agree to maintain its water discharge with such EPA water quality standards.
- VIII. The property owner and contractor shall at all times meet the conditions specified in the requisite legal agreement/affidavits.
- IX. All groundwater pumped from the work shall be disposed of without damage to pavements, other surfaces or property.

- X. Where material or debris has washed or flowed into or has been placed in existing gutters, drains, pipes or structures, such material or debris shall be entirely removed and satisfactorily disposed of by the Contractor during the progress of work as directed by the Public Works Department.
- XI. Any flooding or damage of property and possessions caused by siltation of existing gutters, pipes or structures shall be the responsibility of the Contractor.
- XII. Provisions shall be made to insure that no material, water or solid, will freeze on any pavement or in any location which will cause inconvenience or hazard to the general public.
- XIII. Upon completion of the work, existing gutters, drains, pipes and structures shall be (bucket) cleaned and material disposed of satisfactorily prior to release by the Public Works Department.
- XIV. Any permit issued by the City of Cambridge shall be revoked upon transfer of any ownership interest unless and until subsequent owner(s) or parties of interest agree to the foregoing terms.
- XV. This permit shall remain in effect for one year and shall be renewable thereafter at the agreement of the parties.
- XVI. The following special conditions as set forth below are part of the permit.

City	Manager

Date

City Solicitor

Date

Commissioner of Public Works

All

Jeff Hirsch <u>Vice Preside</u>nt of Operations Urban Spaces, LLC

Property Manager: Corporate Entity Urban Spaces, LLC President, General Partner or Trustee US-Parcel A, LLC Trustee with Instrument of Authority

11/28/16

Date

Contractor ANTHONY N. PAPMNTONIS NOVSET CONSTRUCTION CORP.

11-21-16

Date

Contractor

Date

Date

Supervisor of Sewer Maintenance and Engineering Superintendent of Streets Commissioner of Inspectional Services

APPENDIX C:

MASSACHUSETTS PHASE I SITE ASSESSMENT MAP

IPAC TRUST RESOURCE REPORT

U.S. Fish & Wildlife Service

121-139 First Street

IPaC Trust Resources Report

Generated November 15, 2016 07:57 AM MST, IPaC v3.0.9

This report is for informational purposes only and should not be used for planning or analyzing project level impacts. For project reviews that require U.S. Fish & Wildlife Service review or concurrence, please return to the IPaC website and request an official species list from the Regulatory Documents page.

IPaC - Information for Planning and Conservation (<u>https://ecos.fws.gov/ipac/</u>): A project planning tool to help streamline the U.S. Fish & Wildlife Service environmental review process.

Table of Contents

PaC Trust Resources Report	<u>1</u>
Project Description	<u>1</u>
Endangered Species	<u>2</u>
Migratory Birds	<u>3</u>
Refuges & Hatcheries	<u>5</u>
Wetlands	<u>6</u>

U.S. Fish & Wildlife Service IPaC Trust Resources Report

NAME

121-139 First Street

LOCATION

Middlesex and Suffolk counties, Massachusetts

DESCRIPTION

Temporary construction dewatering for proposed 5 story building with footprint of about 4,700 square feet.

IPAC LINK

https://ecos.fws.gov/ipac/project/ 37X36-JX3WJ-HSTEG-WGS6E-6RTAXY

U.S. Fish & Wildlife Service Contact Information

Trust resources in this location are managed by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Endangered Species

Proposed, candidate, threatened, and endangered species are managed by the <u>Endangered Species Program</u> of the U.S. Fish & Wildlife Service.

This USFWS trust resource report is for informational purposes only and should not be used for planning or analyzing project level impacts.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list from the Regulatory Documents section.

<u>Section 7</u> of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency.

A letter from the local office and a species list which fulfills this requirement can only be obtained by requesting an official species list either from the Regulatory Documents section in IPaC or from the local field office directly.

The list of species below are those that may occur or could potentially be affected by activities in this location:

Birds

Red Knot Calidris canutus rufa CRITICAL HABITAT No critical habitat has been designated for this species. http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0DM

Threatened

Critical Habitats

There are no critical habitats in this location

Migratory Birds

Birds are protected by the <u>Migratory Bird Treaty Act</u> and the <u>Bald and Golden Eagle</u> <u>Protection Act</u>.

Any activity that results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish & Wildlife Service.^[1] There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and implementing appropriate conservation measures.

1. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

Additional information can be found using the following links:

- Birds of Conservation Concern <u>http://www.fws.gov/birds/management/managed-species/</u> <u>birds-of-conservation-concern.php</u>
- Conservation measures for birds <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>conservation-measures.php</u>
- Year-round bird occurrence data <u>http://www.birdscanada.org/birdmon/default/datasummaries.jsp</u>

The following species of migratory birds could potentially be affected by activities in this location:

American Oystercatcher Haematopus palliatus On Land Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0G8	Bird of conservation concern
American Bittern Botaurus lentiginosus On Land Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0F3	Bird of conservation concern
Bald Eagle Haliaeetus leucocephalus On Land Season: Year-round http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B008	Bird of conservation concern
Black-billed Cuckoo Coccyzus erythropthalmus On Land Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HI	Bird of conservation concern

On Land Season: Breeding Bird of conservation concern On Land Season: Breeding Bird of conservation concern Hudsonian Godwit Limosa haemastica Bird of conservation concern At Sea Season: Migrating Bird of conservation concern Least Bittern Ixobrychus exilis Dn Land Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B092 Bird of conservation concern On Land Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0AN Peregrine Falcon Falco peregrinus Bird of conservation concern On Land Season: Breeding Bird of conservation concern No Land Season: Breeding Bird of conservation concern On Land Season: Breeding Bird of conservation concern Purple Sandpiper Calidris maritima Bird of conservation concern On Land Season: Breeding
Canada Warbler Wilsonia canadensis Bird of conservation concern On Land Season: Breeding Bird of conservation concern At Sea Season: Migrating Bird of conservation concern Least Bittern Ixobrychus exilis Bird of conservation concern On Land Season: Breeding Bird of conservation concern http://ecos.fws.gov/tess public/profile/speciesProfile.action?spcode=B092 Bird of conservation concern On Land Season: Breeding Bird of conservation concern Prairie Warbler Dendroica discolor Bird of conservation concern On Land Season: Breeding Bird of conservation concern Puland Season: Breeding Bird of conservation concern On Land Season: Breeding <
On Land Season:BreedingHudsonian GodwitLimosa haemastica At Sea Season:Bird of conservation concernAt Sea Season:MigratingLeast BitternIxobrychus exilis On Land Season:Bird of conservation concernOn Land Season:Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B092Bird of conservation concernOlive-sided FlycatcherContopus cooperi On Land Season:Bird of conservation concernOn Land Season:Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0ANPeregrine FalconFalco peregrinus On Land Season:Bird of conservation concernOn Land Season:Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FUBird of conservation concernPied-billed GrebePodilymbus podiceps On Land Season:Bird of conservation concernOn Land Season:BreedingBird of conservation concernPurple SandpiperCalidris maritima On Land Season:Bird of conservation concernOn Land Season:BreedingBird of conservation concern </th
Hudsonian Godwit Limosa haemastica Bird of conservation concern At Sea Season: Migrating Least Bittern Ixobrychus exilis Bird of conservation concern On Land Season: Breeding Bird of conservation concern Dhubit Season: Bird of conservation concern Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Wintering Bird of conservation concern On Land Season:<
At Sea Season: Migrating Least Bittern Ixobrychus exilis On Land Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B092 Olive-sided Flycatcher Contopus cooperi Bird of conservation concern On Land Season: Breeding Bird of conservation concern Pregrine Falcon Falco peregrinus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Prairie Warbler Dendroica discolor Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Wintering Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern On Land Season: Breeding Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Breeding Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering Nu Land Season: Wintering Bird
Least Bittern Ixobrychus exilis On Land Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B092 Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Wintering Bird of conservation concern On Land Season: Wintering Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Breeding Bird of conservation concern On L
On Land Season: Bredding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B092 Bird of conservation concern On Land Season: Bredding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0AN Bird of conservation concern Peregrine Falcon Falco peregrinus Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Wintering Bird of conservation concern On Land Season: Wintering Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season:
http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B092 Olive-sided Flycatcher Contopus cooperi Bird of conservation concern On Land Season: Breeding Bird of conservation concern Peregrine Falcon Falco peregrinus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Pried-billed Grebe Podilymbus podiceps Bird of conservation concern On Land Season: Breeding Bird of conservation concern Prairie Warbler Dendroica discolor Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Wintering Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern On Land Season: Breeding Seaside Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Short-eared Owl Asio flammeus Bird of conservation concern Bird of conservation concern On Land Season: Wintering Bird of conservation concern Bird of conservation concern On Land Season: Breeding Bird of conservat
Olive-sided FlycatcherContopus cooperi On Land Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0ANBird of conservation concernPeregrine FalconFalco peregrinus Dendroica discolorBird of conservation concernOn Land Season:Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FUBird of conservation concernPied-billed GrebePodilymbus podiceps Dendroica discolorBird of conservation concernOn Land Season:BreedingBird of conservation concernPrairie WarblerDendroica discolor Dendroica discolorBird of conservation concernOn Land Season:BreedingBird of conservation concernPurple SandpiperCalidris maritima On Land Season:Bird of conservation concernOn Land Season:BreedingBird of conservation concernSaltmarsh SparrowAmmodramus caudacutus Mondramus maritimus On Land Season:Bird of conservation concernOn Land Season:BreedingShort-eared OwlAsio flammeus Asio flammeus On Land Season:Bird of conservation concernOn Land Season:BreedingShort-eared OwlAsio flammeus Asio flammeus On Land Season:Bird of conservation concern
On Land Season:Breedinghttp://ecos.fws.gov/tesspublic/profile/speciesProfile.action?spcode=B0ANPeregrine FalconFalco peregrinusOn Land Season:Breedinghttp://ecos.fws.gov/tesspublic/profile/speciesProfile.action?spcode=B0FUPied-billed GrebePodilymbus podicepsOn Land Season:BreedingPrairie WarblerDendroica discolorOn Land Season:BreedingPurple SandpiperCalidris maritimaOn Land Season:WinteringSaltmarsh SparrowAmmodramus caudacutusOn Land Season:BreedingSeaside SparrowAmmodramus maritimusOn Land Season:BreedingShort-eared OwlAsio flammeusOn Land Season:WinteringShort-eared OwlAsio flammeusOn Land Season:WinteringBird of conservation concern
http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0AN Peregrine Falcon Falco peregrinus On Land Season: Breeding http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FU Bird of conservation concern Pied-billed Grebe Podilymbus podiceps On Land Season: Breeding Bird of conservation concern Prairie Warbler Dendroica discolor On Land Season: Breeding Bird of conservation concern Purple Sandpiper Calidris maritima On Land Season: Wintering Bird of conservation concern Saltmarsh Sparrow Ammodramus caudacutus On Land Season: Breeding Bird of conservation concern Seaside Sparrow Ammodramus maritimus On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus On Land Season: Wintering Bird of conservation concern Bird of conservation concern Bird of conservation concern On Land Season: Breeding Bird of conservation concern
Peregrine Falcon Falco peregrinus Bird of conservation concern On Land Season: Breeding bird of conservation concern Pied-billed Grebe Podilymbus podiceps Bird of conservation concern On Land Season: Breeding Bird of conservation concern Prairie Warbler Dendroica discolor Bird of conservation concern On Land Season: Breeding Bird of conservation concern Bird of conservation concern Purple Sandpiper Calidris maritima Bird of conservation concern On Land Season: Wintering Bird of conservation concern Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Seaside Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering Bird of conservation concern On Land
On Land Season: Breeding Bird of conservation concern Pied-billed Grebe Podilymbus podiceps Bird of conservation concern On Land Season: Breeding Bird of conservation concern Prairie Warbler Dendroica discolor Bird of conservation concern On Land Season: Breeding Bird of conservation concern Purple Sandpiper Calidris maritima Bird of conservation concern On Land Season: Wintering Bird of conservation concern On Land Season: Wintering Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern On Land Season: Breeding Seaside Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering Bird of conservation concern In Land Season: Wintering Bird of conservation concern On Land Season: Wintering Bird of conservation concern On Land Season: Wintering Bird of conservation concern In Land Season: Wintering Bird of conservation concern Inttri//ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD Bird of conservation concern
http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FU Pied-billed Grebe Podilymbus podiceps Bird of conservation concern On Land Season: Breeding Bird of conservation concern Prairie Warbler Dendroica discolor Bird of conservation concern On Land Season: Breeding Bird of conservation concern Purple Sandpiper Calidris maritima Bird of conservation concern On Land Season: Wintering Bird of conservation concern Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Seaside Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering Bird of conservation concern No Land Season: Breeding Bird of conservation concern No Land Season: Wintering Bird of conservation concern No Land Season: Wintering Bird of conservation concern No Land Season: Wintering Bird of cons
Pied-billed Grebe Podilymbus podiceps Bird of conservation concern On Land Season: Breeding Prairie Warbler Dendroica discolor Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Breeding Bird of conservation concern Purple Sandpiper Calidris maritima Bird of conservation concern On Land Season: Wintering Bird of conservation concern Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Saltmarsh Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Wintering Bird of conservation concern
On Land Season: Breeding Prairie Warbler Dendroica discolor Bird of conservation concern On Land Season: Breeding Bird of conservation concern On Land Season: Wintering Bird of conservation concern On Land Season: Wintering Bird of conservation concern Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Seaside Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering Bird of conservation concern Inttp://ecos.fws.gov/tess public/profile/speciesProfile.action?spcode=B0HD Bird of conservation concern
Prairie Warbler Dendroica discolor Bird of conservation concern On Land Season: Breeding Bird of conservation concern Purple Sandpiper Calidris maritima On Land Season: Wintering Bird of conservation concern Saltmarsh Sparrow Ammodramus caudacutus On Land Season: Breeding Bird of conservation concern Seaside Sparrow Ammodramus maritimus On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus On Land Season: Wintering Bird of conservation concern Bird of conservation concern Bird of conservation concern
On Land Season: Breeding Bird of conservation concern Purple Sandpiper Calidris maritima On Land Season: Wintering Bird of conservation concern Saltmarsh Sparrow Ammodramus caudacutus On Land Season: Breeding Bird of conservation concern Seaside Sparrow Ammodramus maritimus On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus On Land Season: Wintering Bird of conservation concern In Land Season: Wintering Bird of conservation concern
Purple Sandpiper Calidris maritima Bird of conservation concern On Land Season: Wintering Bird of conservation concern Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Seaside Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering Bird of conservation concern http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD Bird of conservation concern
On Land Season: Wintering Bird of conservation concern Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Seaside Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering Bird of conservation concern http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD Bird of conservation concern
Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Seaside Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering Bird of conservation concern http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD Bird of conservation concern
On Land Season: Breeding Bird of conservation concern Seaside Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering Bird of conservation concern http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD Bird of conservation concern
Seaside Sparrow Ammodramus maritimus Bird of conservation concern On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering Bird of conservation concern http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD Bird of conservation concern
On Land Season: Breeding Bird of conservation concern Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD
Short-eared Owl Asio flammeus Bird of conservation concern On Land Season: Wintering http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD
On Land Season: Wintering <u>http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD</u>
http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD
Snowy Egret Egretta thula Bird of conservation concern
On Land Season: Breeding
Upland Sandpiper Bartramia longicauda Bird of conservation concern
On Land Season: Breeding
http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HC
Willow Flycatcher Empidonax traillii Bird of conservation concern
On Land Season: Breeding
http://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0F6
Wood Thrush Hylocichla mustelina
On Land Season: Breeding
Worm Fating Warbler Helmitheros vermivorum
On Land Season: Breeding

Wildlife refuges and fish hatcheries

There are no refuges or fish hatcheries in this location

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army</u> <u>Corps of Engineers District</u>.

DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

DATA EXCLUSIONS

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

This location overlaps all or part of the following wetlands:

Estuarine And Marine Deepwater

Lake L1UBH A full description for each wetland code can be found at the National Wetlands Inventory website: <u>http://107.20.228.18/decoders/wetlands.aspx</u>

APPENDIX D:

LABORATORY ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number:	L1529838
Client:	McPhail Associates 2269 Massachusetts Avenue Cambridge, MA 02140
ATTN: Phone:	Ambrose Donovan (617) 868-1420
Project Name:	FIRST STREET PUD
Project Number:	5863.9.01
Report Date:	11/20/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:FIRST STREET PUDProject Number:5863.9.01

 Lab Number:
 L1529838

 Report Date:
 11/20/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1529838-01	B-201 (OW)	WATER	CAMBRIDGE, MA	11/13/15 13:30	11/13/15
L1529838-02	B-1 (OW)	WATER	CAMBRIDGE, MA	11/13/15 14:00	11/13/15
L1529838-03	B-202	WATER	CAMBRIDGE, MA	11/13/15 15:00	11/13/15

L1529838

Project Name: FIRST STREET PUD

Report Date: 11/20/15

Lab Number:

Project Number: 5863.9.01

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: FIRST STREET PUD Project Number: 5863.9.01
 Lab Number:
 L1529838

 Report Date:
 11/20/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: FIRST STREET PUD Project Number: 5863.9.01
 Lab Number:
 L1529838

 Report Date:
 11/20/15

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1529838-01 and -02, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.00348), as well as the average response factor for 1,4-dioxane.

The continuing calibration standard, associated with L1529838-01 and -02, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

EPH

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Elly Stendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 11/20/15

ORGANICS

VOLATILES

			Serial_N	o:11201512:21
Project Name:	FIRST STREET PUD		Lab Number:	L1529838
Project Number:	5863.9.01		Report Date:	11/20/15
		SAMPLE RESULTS		
Lab ID:	L1529838-01		Date Collected:	11/13/15 13:30
Client ID:	B-201 (OW)		Date Received:	11/13/15
Sample Location:	CAMBRIDGE, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	97,8260C			
Analytical Date:	11/19/15 07:56			
Analyst:	MM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab)					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

					S	Serial_N	o:11201512:21	
Project Name:	FIRST STREET PUD				Lab Nu	mber:	L1529838	
Project Number:	5863.9.01				Report	Date:	11/20/15	
,		SAMP	LE RESULTS	5			11/20/10	
Lab ID:	L1529838-01				Date Col	lected:	11/13/15 13:30	
Client ID:	B-201 (OW)				Date Red	ceived:	11/13/15	
Sample Location:	CAMBRIDGE, MA				Field Pre	p:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough Lab							
1.3-Dichlorobenzene		ND		ug/l	1.0		1	
1.4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ua/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylene (Total)		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	1.0		1	
1,2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane		ND		ug/l	2.0		1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	2.0		1	
1,2-Dibromoethane		ND		ug/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethan	e	ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Butylbenzene		ND		ug/l	2.0		1	
sec-Butylbenzene		ND		ug/l	2.0		1	
tert-Butylbenzene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
p-Chlorotoluene		ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
Isopropylbenzene		ND		ug/l	2.0		1	
p-Isopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ug/l	2.0		1	
n-Propylbenzene		ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1	
1,2,4- I richlorobenzene		ND		ug/l	2.0		1	
1,3,5-1 rimethylbenzene		ND		ug/l	2.0		1	
1,2,4- I rimethylbenzene		ND		uq/l	2.0		1	

						Serial_No:11201512:21		
Project Name:	FIRST STREET PUD				Lab Nu	mber:	L1529838	
Project Number:	5863.9.01				Report	Date:	11/20/15	
		SAMP	LE RESULT	S				
Lab ID:	L1529838-01				Date Co	llected:	11/13/15 13:30	
Client ID:	B-201 (OW)				Date Re	ceived:	11/13/15	
Sample Location:	CAMBRIDGE, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough Lab							
Ethyl ether		ND		ug/l	2.0		1	
Isopropyl Ether		ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1	
1,4-Dioxane		ND		ug/l	250		1	
				A	cceptance			

Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	100		70-130	

			Serial_N	o:11201512:21
Project Name:	FIRST STREET PUD		Lab Number:	L1529838
Project Number:	5863.9.01		Report Date:	11/20/15
		SAMPLE RESULTS		
Lab ID:	L1529838-02		Date Collected:	11/13/15 14:00
Client ID:	B-1 (OW)		Date Received:	11/13/15
Sample Location:	CAMBRIDGE, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	97,8260C			
Analytical Date:	11/19/15 08:29			
Analyst:	MM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou	ugh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ua/l	1.0		1

					5	Serial_N	o:11201512:21	
Project Name:	FIRST STREET PUD				Lab Nu	mber:	L1529838	
Project Number:	5863.9.01				Report	Date:	11/20/15	
,		SAMP	LE RESULTS	5			11/20/10	
Lab ID: Client ID:	L1529838-02 B-1 (OW)				Date Coll Date Rec	lected: ceived:	11/13/15 14:00 11/13/15	
Sample Location:	CAMBRIDGE, MA				Field Pre	p:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough Lab							
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylene (Total)		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	1.0		1	
1,2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane		ND		ug/l	2.0		1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	2.0		1	
1,2-Dibromoethane		ND		ug/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.0		1	
1,1,1,2- I etrachloroethan	le	ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Butylbenzene		ND		ug/I	2.0		1	
tort Butulbonzono				ug/i	2.0		1	
				ug/i	2.0		1	
p-Chlorotoluene				ug/l	2.0		1	
1 2-Dibromo-3-chloropro	nane	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
Isopropylbenzene		ND		ug/l	2.0		1	
p-lsopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ua/l	2.0		1	
n-Propylbenzene		ND		ua/l	2.0		1	
1,2,3-Trichlorobenzene		ND		ua/l	2.0		1	
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene		ND		ug/l	2.0		1	

	Serial_No:1120151				o:11201512:21			
Project Name:	FIRST STREET PUD				Lab Nu	mber:	L1529838	
Project Number:	5863.9.01				Report	Date:	11/20/15	
		SAMP	LE RESULTS	5				
Lab ID:	L1529838-02				Date Co	llected:	11/13/15 14:00	
Client ID:	B-1 (OW)				Date Re	ceived:	11/13/15	
Sample Location:	CAMBRIDGE, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough Lab							
Ethyl ether		ND		ug/l	2.0		1	
Isopropyl Ether		ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1	
1,4-Dioxane		ND		ug/l	250		1	
				Α	cceptance			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	112		70-130	

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:11/19/15 05:47Analyst:MM

Parameter	Result	Qualifier	Units	RL	MDL
MCP Volatile Organics - Westborou	ugh Lab for	sample(s):	01-02	Batch: V	VG842311-3
Methylene chloride	ND		ug/l	2.0	
1,1-Dichloroethane	ND		ug/l	1.0	
Chloroform	ND		ug/l	1.0	
Carbon tetrachloride	ND		ug/l	1.0	
1,2-Dichloropropane	ND		ug/l	1.0	
Dibromochloromethane	ND		ug/l	1.0	
1,1,2-Trichloroethane	ND		ug/l	1.0	
Tetrachloroethene	ND		ug/l	1.0	
Chlorobenzene	ND		ug/l	1.0	
Trichlorofluoromethane	ND		ug/l	2.0	
1,2-Dichloroethane	ND		ug/l	1.0	
1,1,1-Trichloroethane	ND		ug/l	1.0	
Bromodichloromethane	ND		ug/l	1.0	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
1,3-Dichloropropene, Total	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	2.0	
Bromoform	ND		ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	1.0	
Ethylbenzene	ND		ug/l	1.0	
Chloromethane	ND		ug/l	2.0	
Bromomethane	ND		ug/l	2.0	
Vinyl chloride	ND		ug/l	1.0	
Chloroethane	ND		ug/l	2.0	
1,1-Dichloroethene	ND		ug/l	1.0	
trans-1,2-Dichloroethene	ND		ug/l	1.0	
Trichloroethene	ND		ug/l	1.0	

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:11/19/15 05:47Analyst:MM

Parameter	Result	Qualifier	Units	RL	. MDL
MCP Volatile Organics - Westboro	ugh Lab for	sample(s):	01-02	Batch:	WG842311-3
1,2-Dichlorobenzene	ND		ug/l	1.0)
1,3-Dichlorobenzene	ND		ug/l	1.0)
1,4-Dichlorobenzene	ND		ug/l	1.0)
Methyl tert butyl ether	ND		ug/l	2.0)
p/m-Xylene	ND		ug/l	2.0)
o-Xylene	ND		ug/l	1.0)
Xylene (Total)	ND		ug/l	1.0)
cis-1,2-Dichloroethene	ND		ug/l	1.0)
1,2-Dichloroethene (total)	ND		ug/l	1.0)
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.0)
Dichlorodifluoromethane	ND		ug/l	2.0)
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0)
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0)
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:11/19/15 05:47Analyst:MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westbo	brough Lab for	sample(s):	01-02	Batch: V	VG842311-3	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	106		70-130	

Lab Control Sample Analysis

Batch Quality Control

Project Number: 5863.9.01

Lab Number: L1529838 Report Date: 11/20/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual MCP Volatile Organics - Westborough Lab Associated sample(s): 01-02 Batch: WG842311-1 WG842311-2 Methylene chloride 97 91 70-130 20 6 1,1-Dichloroethane 98 96 70-130 2 20 Chloroform 94 70-130 20 96 2 Carbon tetrachloride 20 96 96 70-130 0 1,2-Dichloropropane 90 70-130 20 94 4 Dibromochloromethane 70-130 20 84 84 0 1,1,2-Trichloroethane 89 88 70-130 1 20 Tetrachloroethene 101 94 70-130 20 7 Chlorobenzene 70-130 20 99 95 4 Trichlorofluoromethane 70-130 20 98 97 1 101 70-130 20 1.2-Dichloroethane 98 3 1,1,1-Trichloroethane 100 94 70-130 6 20 Bromodichloromethane 92 95 70-130 20 3 trans-1,3-Dichloropropene 70-130 20 91 89 2 cis-1,3-Dichloropropene 92 70-130 20 89 3 1,1-Dichloropropene 70-130 20 98 97 1 Bromoform 83 84 70-130 1 20 1,1,2,2-Tetrachloroethane 87 83 70-130 5 20 70-130 20 Benzene 98 93 5 Toluene 70-130 20 96 94 2 Ethylbenzene 101 94 70-130 20 7

Project Number: 5863.9.01

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated sample(s): 01-0	2 Batch: WG842	311-1 WG842311-2		
Chloromethane	95	87	70-130	9	20
Bromomethane	88	86	70-130	2	20
Vinyl chloride	96	84	70-130	13	20
Chloroethane	101	95	70-130	6	20
1,1-Dichloroethene	100	95	70-130	5	20
trans-1,2-Dichloroethene	100	101	70-130	1	20
Trichloroethene	100	95	70-130	5	20
1,2-Dichlorobenzene	97	92	70-130	5	20
1,3-Dichlorobenzene	101	92	70-130	9	20
1,4-Dichlorobenzene	99	90	70-130	10	20
Methyl tert butyl ether	86	87	70-130	1	20
p/m-Xylene	102	96	70-130	6	20
o-Xylene	103	95	70-130	8	20
cis-1,2-Dichloroethene	99	93	70-130	6	20
Dibromomethane	93	95	70-130	2	20
1,2,3-Trichloropropane	86	82	70-130	5	20
Styrene	100	96	70-130	4	20
Dichlorodifluoromethane	93	91	70-130	2	20
Acetone	87	92	70-130	6	20
Carbon disulfide	86	87	70-130	1	20
2-Butanone	83	89	70-130	7	20

Project Number: 5863.9.01

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recove Qual Limits	ery RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-02	Batch: WG84	2311-1 WG842311-2			
4-Methyl-2-pentanone	78		82	70-130	5	20	
2-Hexanone	74		80	70-130	8	20	
Bromochloromethane	94		88	70-130	7	20	
Tetrahydrofuran	80		86	70-130	7	20	
2,2-Dichloropropane	101		96	70-130	5	20	
1,2-Dibromoethane	90		85	70-130	6	20	
1,3-Dichloropropane	87		84	70-130	4	20	
1,1,1,2-Tetrachloroethane	95		91	70-130	4	20	
Bromobenzene	99		91	70-130	8	20	
n-Butylbenzene	102		92	70-130	10	20	
sec-Butylbenzene	99		92	70-130	7	20	
tert-Butylbenzene	103		94	70-130	9	20	
o-Chlorotoluene	101		95	70-130	6	20	
p-Chlorotoluene	101		95	70-130	6	20	
1,2-Dibromo-3-chloropropane	82		84	70-130	2	20	
Hexachlorobutadiene	103		98	70-130	5	20	
Isopropylbenzene	102		94	70-130	8	20	
p-lsopropyltoluene	99		92	70-130	7	20	
Naphthalene	66	Q	76	70-130	14	20	
n-Propylbenzene	101		95	70-130	6	20	
1,2,3-Trichlorobenzene	73		89	70-130	20	20	

Project Number: 5863.9.01

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab As	ssociated samp	ole(s): 01-02	Batch: WG84	2311-1 WG	842311-2				
1,2,4-Trichlorobenzene	76		84		70-130	10		20	
1,3,5-Trimethylbenzene	102		93		70-130	9		20	
1,2,4-Trimethylbenzene	105		97		70-130	8		20	
Ethyl ether	88		88		70-130	0		20	
Isopropyl Ether	94		93		70-130	1		20	
Ethyl-Tert-Butyl-Ether	90		91		70-130	1		20	
Tertiary-Amyl Methyl Ether	86		88		70-130	2		20	
1,4-Dioxane	78		104		70-130	29	Q	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1.2-Dichloroethane-d4	95		96		70-130	
Toluene-d8	99 100		96		70-130	
4-Bromofluorobenzene	98		95		70-130	
Dibromofluoromethane	102		103		70-130	

PETROLEUM HYDROCARBONS

		SAMPLE F	RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1529838-01 B-201 (OW) CAMBRIDGE, MA Water 100,VPH-04-1.1 11/18/15 13:10 KD				Date Collec Date Receir Field Prep:	ted: ved:	11/13/15 13:30 11/13/15 Not Specified
		Quality Contro	I Informatio	on			
Condition of sample rece	ived:				Ş	Satisfactory	
Aqueous Preservative: Sample Temperature upo	on receipt:				L C F	aboratory Pro Container Received on Io	ovided Preserved
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum	Hydrocarbons - Wes	tborough Lab					
C5-C8 Aliphatics		ND		ug/l	50.0		1
C9-C12 Aliphatics		ND		ug/l	50.0		1
C9-C10 Aromatics		ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjuste	ed	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjus	ted	ND		ug/l	50.0		1
Benzene		ND		ug/l	2.00		1
Toluene		ND		ug/l	2.00		1
Ethylbenzene		ND		ug/l	2.00		1
p/m-Xylene		ND		ug/l	2.00		1
o-Xylene		ND		ug/l	2.00		1
Methyl tert butyl ether		ND		ug/l	3.00		1
Naphthalene		ND		ug/l	4.00		1
Surre	ogate	% Recove	ry Qua	alifier	Acceptance Criteria		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	96		70-130	
2,5-Dibromotoluene-FID	96		70-130	

Serial_No:11201512:21

L1529838

11/20/15

Lab Number:

Report Date:

Project Name:

Project Number:

FIRST STREET PUD

5863.9.01

Serial_N
Lab Number:
Report Date:

 Serial_No:11201512:21

 Lab Number:
 L1529838

 Report Date:
 11/20/15

L1529838-01
B-201 (OW)
CAMBRIDGE, MA
Water
98,EPH-04-1.1
11/19/15 18:03
SR

FIRST STREET PUD

5863.9.01

Project Name:

Project Number:

11/13/15 13:30 11/13/15
11/13/15
Not Specified
EPA 3510C
11/19/15 07:49
EPH-04-1
11/19/15

Quality Control Information

SAMPLE RESULTS

Condition of sample received: Aqueous Preservative: Sample Temperature upon receipt: Sample Extraction method: Satisfactory Laboratory Provided Preserved Container Received on Ice Extracted Per the Method

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor					
Extractable Petroleum Hydrocarbons - Westborough Lab										
C9-C18 Aliphatics	ND	ug/l	100		1					
C19-C36 Aliphatics	ND	ug/l	100		1					
C11-C22 Aromatics	ND	ug/l	100		1					
C11-C22 Aromatics, Adjusted	ND	ug/l	100		1					
Naphthalene	ND	ug/l	10.0		1					
2-Methylnaphthalene	ND	ug/l	10.0		1					
Acenaphthylene	ND	ug/l	10.0		1					
Acenaphthene	ND	ug/l	10.0		1					
Fluorene	ND	ug/l	10.0		1					
Phenanthrene	ND	ug/l	10.0		1					
Anthracene	ND	ug/l	10.0		1					
Fluoranthene	ND	ug/l	10.0		1					
Pyrene	ND	ug/l	10.0		1					
Benzo(a)anthracene	ND	ug/l	10.0		1					
Chrysene	ND	ug/l	10.0		1					
Benzo(b)fluoranthene	ND	ug/l	10.0		1					
Benzo(k)fluoranthene	ND	ug/l	10.0		1					
Benzo(a)pyrene	ND	ug/l	10.0		1					
Indeno(1,2,3-cd)Pyrene	ND	ug/l	10.0		1					
Dibenzo(a,h)anthracene	ND	ug/l	10.0		1					
Benzo(ghi)perylene	ND	ug/l	10.0		1					

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Location:	CAMBRIDGE, MA				Field Prep:		Not Specified
Client ID:	B-201 (OW)				Date Receive	ed:	11/13/15
Lab ID:	L1529838-01				Date Collecte	ed:	11/13/15 13:30
		SAMPLE	RESULTS				
Project Number:	5863.9.01				Report Dat	e:	11/20/15
Project Name:	FIRST STREET PUD				Lab Numbe	er:	L1529838
		Serial_No:11201512:21					201512:21

Extractable Petroleum Hydrocarbons - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Chloro-Octadecane	62		40-140
o-Terphenyl	79		40-140
2-Fluorobiphenyl	84		40-140
2-Bromonaphthalene	86		40-140

		SAMPLE	RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1529838-02 B-1 (OW) CAMBRIDGE, MA Water 100,VPH-04-1.1 11/18/15 13:51 KD				Date Collect Date Receiv Field Prep:	ed: ed:	11/13/15 14:00 11/13/15 Not Specified
		Quality Contr	ol Informatio	on			
Condition of sample rece Aqueous Preservative: Sample Temperature upo	Condition of sample received:SatisfactoryAqueous Preservative:Laboratory Provided Preserved ContainerSample Temperature upon receipt:Received on Ice					vided Preserved	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum	Hydrocarbons - West	borough Lab					
C5-C8 Aliphatics		ND		ug/l	50.0		1
C9-C12 Aliphatics		ND		ug/l	50.0		1
C9-C10 Aromatics		ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjuste	ed	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjus	ted	ND		ug/l	50.0		1
Benzene		ND		ug/l	2.00		1
Toluene		ND		ug/l	2.00		1
Ethylbenzene		ND		ug/l	2.00		1
p/m-Xylene		ND		ug/l	2.00		1
o-Xylene		ND		ug/l	2.00		1
Methyl tert butyl ether		ND		ug/l	3.00		1
Naphthalene		ND		ug/l	4.00		1
					Acceptance		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	97		70-130	
2,5-Dibromotoluene-FID	98		70-130	

Serial_No:11201512:21

L1529838

11/20/15

Lab Number:

Report Date:

Project Name:

Project Number:

FIRST STREET PUD

5863.9.01

Project Name:	FIRST STREET PUD
Project Number:	5863.9.01

 Serial_No:11201512:21

 Lab Number:
 L1529838

 Report Date:
 11/20/15

SAMPLE RESULTS

Lab ID:	L1529838-02
Client ID:	B-1 (OW)
Sample Location:	CAMBRIDGE, MA
Matrix:	Water
Analytical Method:	98,EPH-04-1.1
Analytical Date:	11/19/15 18:41
Analyst:	SR

Date Collected:	11/13/15 14:00
Date Received:	11/13/15
Field Prep:	Not Specified
Extraction Method:	EPA 3510C
Extraction Date:	11/19/15 07:49
Cleanup Method1:	EPH-04-1
Cleanup Date1:	11/19/15

Satisfactory

Laboratory Provided Preserved

Quality Control Information

Result

Condition of sample received: Aqueous Preservative: Sample Temperature upon receipt:

Sample Extraction method:

Parameter

Container Received on Ice Extracted Per the Method Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND	ug/l	100		1			
C19-C36 Aliphatics	ND	ug/l	100		1			
C11-C22 Aromatics	ND	ug/l	100		1			
C11-C22 Aromatics, Adjusted	ND	ug/l	100		1			
Naphthalene	ND	ug/l	10.0		1			
2-Methylnaphthalene	ND	ug/l	10.0		1			
Acenaphthylene	ND	ug/l	10.0		1			
Acenaphthene	ND	ug/l	10.0		1			
Fluorene	ND	ug/l	10.0		1			
Phenanthrene	ND	ug/l	10.0		1			
Anthracene	ND	ug/l	10.0		1			
Fluoranthene	ND	ug/l	10.0		1			
Pyrene	ND	ug/l	10.0		1			
Benzo(a)anthracene	ND	ug/l	10.0		1			
Chrysene	ND	ug/l	10.0		1			
Benzo(b)fluoranthene	ND	ug/l	10.0		1			
Benzo(k)fluoranthene	ND	ug/l	10.0		1			
Benzo(a)pyrene	ND	ug/l	10.0		1			
Indeno(1,2,3-cd)Pyrene	ND	ug/l	10.0		1			
Dibenzo(a,h)anthracene	ND	ug/l	10.0		1			
Benzo(ghi)perylene	ND	ug/l	10.0		1			

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Location:	CAMBRIDGE, MA				Field Prep:		Not Specified
Client ID:	B-1 (OW)				Date Received	d:	11/13/15
Lab ID:	L1529838-02				Date Collected	d:	11/13/15 14:00
		SAMPLE	RESULTS				
Project Number:	5863.9.01				Report Date):	11/20/15
Project Name:	FIRST STREET PUD				Lab Numbe	r:	L1529838
		Serial_No:11201512:21					201512:21

Extractable Petroleum Hydrocarbons - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Chloro-Octadecane	66		40-140
o-Terphenyl	69		40-140
2-Fluorobiphenyl	69		40-140
2-Bromonaphthalene	69		40-140

Method Blank Analysis Batch Quality Control

Analytical Method:	98,EPH-04-1.1
Analytical Date:	11/19/15 16:10
Analyst:	SR

Extraction Method:EPA 3510CExtraction Date:11/19/15 07:49Cleanup Method:EPH-04-1Cleanup Date:11/19/15

Parameter	Result	Qualifier	Units	RL	MDI	-
Extractable Petroleum Hydrocarbo	ons - Westbor	ough Lab	for sample(s):	01-02	Batch:	WG842247-1
C9-C18 Aliphatics	ND		ug/l	100		
C19-C36 Aliphatics	ND		ug/l	100		
C11-C22 Aromatics	ND		ug/l	100		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		
Naphthalene	ND		ug/l	10.0		
2-Methylnaphthalene	ND		ug/l	10.0		
Acenaphthylene	ND		ug/l	10.0		
Acenaphthene	ND		ug/l	10.0		
Fluorene	ND		ug/l	10.0		
Phenanthrene	ND		ug/l	10.0		
Anthracene	ND		ug/l	10.0		
Fluoranthene	ND		ug/l	10.0		
Pyrene	ND		ug/l	10.0		
Benzo(a)anthracene	ND		ug/l	10.0		
Chrysene	ND		ug/l	10.0		
Benzo(b)fluoranthene	ND		ug/l	10.0		
Benzo(k)fluoranthene	ND		ug/l	10.0		
Benzo(a)pyrene	ND		ug/l	10.0		
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		
Dibenzo(a,h)anthracene	ND		ug/l	10.0		
Benzo(ghi)perylene	ND		ug/l	10.0		

Surrogate	%Recovery	ر Qualifier	Acceptance Criteria
Chloro-Octadecane	66		40-140
o-Terphenyl	64		40-140
2-Fluorobiphenyl	63		40-140
2-Bromonaphthalene	42		40-140

Project Name:	FIRST STREET PUD	Lab Number:	L1529838
Project Number:	5863.9.01	Report Date:	11/20/15

Method Blank Analysis Batch Quality Control

Analytical Method:	100,VPH-04-1.1
Analytical Date:	11/18/15 10:16
Analyst:	KD

Parameter	Result	Qualifier	Units	RL		MDL
/olatile Petroleum Hydrocarbons -	Westboroug	h Lab for s	ample(s):	01-02	Batch:	WG842404-3
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		
Benzene	ND		ug/l	2.00		
Toluene	ND		ug/l	2.00		
Ethylbenzene	ND		ug/l	2.00		
p/m-Xylene	ND		ug/l	2.00		
o-Xylene	ND		ug/l	2.00		
Methyl tert butyl ether	ND		ug/l	3.00		
Naphthalene	ND		ug/l	4.00		

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	95		70-130	
2,5-Dibromotoluene-FID	94		70-130	

Project Name: FIRST STREET PUD

Project Number: 5863.9.01

Parameter	LCS %Recovery Qua	LCSD I %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons -	Westborough Lab Associated	d sample(s): 01-02 E	Batch: WG842247-2 WG8	342247-3	
C9-C18 Aliphatics	49	54	40-140	10	25
C19-C36 Aliphatics	70	75	40-140	7	25
C11-C22 Aromatics	84	87	40-140	4	25
Naphthalene	66	73	40-140	10	25
2-Methylnaphthalene	72	78	40-140	8	25
Acenaphthylene	72	77	40-140	7	25
Acenaphthene	77	81	40-140	5	25
Fluorene	79	82	40-140	4	25
Phenanthrene	82	85	40-140	4	25
Anthracene	84	87	40-140	4	25
Fluoranthene	78	80	40-140	3	25
Pyrene	81	84	40-140	4	25
Benzo(a)anthracene	76	78	40-140	3	25
Chrysene	80	84	40-140	5	25
Benzo(b)fluoranthene	78	79	40-140	1	25
Benzo(k)fluoranthene	77	79	40-140	3	25
Benzo(a)pyrene	80	83	40-140	4	25
Indeno(1,2,3-cd)Pyrene	76	77	40-140	1	25
Dibenzo(a,h)anthracene	76	80	40-140	5	25
Benzo(ghi)perylene	79	80	40-140	1	25
Nonane (C9)	40	46	30-140	14	25

Project Number: 5863.9.01

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Extractable Petroleum Hydrocarbons	s - Westborough Lab Ass	sociated sample	(s): 01-02	Batch: W	G842247-2 WG842	247-3			
Decane (C10)	48		55		40-140	14		25	
Dodecane (C12)	55		60		40-140	9		25	
Tetradecane (C14)	58		63		40-140	8		25	
Hexadecane (C16)	61		66		40-140	8		25	
Octadecane (C18)	64		69		40-140	8		25	
Nonadecane (C19)	64		69		40-140	8		25	
Eicosane (C20)	64		69		40-140	8		25	
Docosane (C22)	63		68		40-140	8		25	
Tetracosane (C24)	64		68		40-140	6		25	
Hexacosane (C26)	65		69		40-140	6		25	
Octacosane (C28)	67	_	72		40-140	7		25	
Triacontane (C30)	68	_	73		40-140	7		25	
Hexatriacontane (C36)	75		82		40-140	9		25	

	LCS		LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria		
	00		05		10 1 10		
Chloro-Octadecane	60		65		40-140		
o-Terphenyl	78		80		40-140		
2-Fluorobiphenyl	76		78		40-140		
2-Bromonaphthalene	77		81		40-140		
% Naphthalene Breakthrough	0		0				
% 2-Methylnaphthalene Breakthrough	0		0				

Project Name: FIRST STREET PUD

Project Number: 5863.9.01

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Petroleum Hydrocarbons - Westboro	ugh Lab Assoc	iated sample(s):	01-02 Batch	n: WG842404	4-1 WG842404-2				
C5-C8 Aliphatics	101		98		70-130	3		25	
C9-C12 Aliphatics	103		101		70-130	2		25	
C9-C10 Aromatics	103		102		70-130	1		25	
Benzene	105		102		70-130	3		25	
Toluene	105		102		70-130	3		25	
Ethylbenzene	106		104		70-130	2		25	
p/m-Xylene	106		104		70-130	2		25	
o-Xylene	105		103		70-130	2		25	
Methyl tert butyl ether	100		99		70-130	1		25	
Naphthalene	96		97		70-130	1		25	
1,2,4-Trimethylbenzene	103		102		70-130	1		25	
Pentane	100		97		70-130	3		25	
2-Methylpentane	102		99		70-130	3		25	
2,2,4-Trimethylpentane	101		98		70-130	3		25	
n-Nonane	97		94		30-130	3		25	
n-Decane	93		91		70-130	2		25	
n-Butylcyclohexane	98		96		70-130	2		25	

Project Name: FIRST STREET PUD

Project Number: 5863.9.01

Lab Number: L1529838

Report Date: 11/20/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Qual Limits		Qual	RPD Limits	
Volatile Petroleum Hydrocarbons - Westborou	ugh Lab Associa	ted sample(s):	: 01-02 Batc	h: WG8424	04-1 WG842404-3	2			

Surrogato	LCS % Pocovory	Qual	LCSD % Pocovory	Qual	Acceptance Criteria	
Surroyate	/anecovery	Quai	/%Recovery	Quai	Cintonia	
2,5-Dibromotoluene-PID	103		103		70-130	
2,5-Dibromotoluene-FID	102		101		70-130	

Serial_No:11201512:21

Project Name: FIRST STREET PUD Project Number: 5863.9.01

Lab Number: L1529838 Report Date: 11/20/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Information							
Container ID	Container Type	Cooler	рН	deg Ċ	Pres	Seal	Analysis(*)
L1529838-01A	Vial HCI preserved	А	N/A	3.9	Y	Absent	MCP-8260-10(14)
L1529838-01B	Vial HCI preserved	А	N/A	3.9	Y	Absent	MCP-8260-10(14)
L1529838-01D	Vial HCI preserved	А	N/A	3.9	Y	Absent	VPH-DELUX-10(14)
L1529838-01E	Vial HCI preserved	А	N/A	3.9	Y	Absent	VPH-DELUX-10(14)
L1529838-01G	Amber 1000ml HCl preserved	А	<2	3.9	Y	Absent	EPH-DELUX-10(14)
L1529838-01H	Amber 1000ml HCl preserved	А	<2	3.9	Y	Absent	EPH-DELUX-10(14)
L1529838-02A	Vial HCI preserved	А	N/A	3.9	Y	Absent	MCP-8260-10(14)
L1529838-02B	Vial HCI preserved	А	N/A	3.9	Y	Absent	MCP-8260-10(14)
L1529838-02D	Vial HCI preserved	А	N/A	3.9	Y	Absent	VPH-DELUX-10(14)
L1529838-02E	Vial HCI preserved	А	N/A	3.9	Y	Absent	VPH-DELUX-10(14)
L1529838-02G	Amber 1000ml HCl preserved	А	<2	3.9	Y	Absent	EPH-DELUX-10(14)
L1529838-02H	Amber 1000ml HCl preserved	А	<2	3.9	Y	Absent	EPH-DELUX-10(14)
L1529838-03A	Vial HCI preserved	А	N/A	3.9	Y	Absent	HOLD-8260(14)
L1529838-03B	Vial HCI preserved	А	N/A	3.9	Y	Absent	HOLD-8260(14)
L1529838-03D	Plastic 250ml HNO3 preserved	А	<2	3.9	Y	Absent	HOLD-METAL(180)
L1529838-03E	Plastic 250ml unpreserved	А	7	3.9	Y	Absent	HOLD-METAL(180)

Serial_No:11201512:21

Project Name: FIRST STREET PUD

Project Number: 5863.9.01

Lab Number: L1529838

Report Date: 11/20/15

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Project Name: FIRST STREET PUD

Project Number: 5863.9.01

Lab Number: L1529838

Report Date: 11/20/15

Data Qualifiers

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- ${\bf S}$ Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: FIRST STREET PUD Project Number: 5863.9.01
 Lab Number:
 L1529838

 Report Date:
 11/20/15

REFERENCES

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- 100 Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 8260C: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; lodomethane (methyl iodide) (soil); Methyl methacrylate (soil); Azobenzene.
EPA 8270D: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA 2540D:** TSS **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil. **Microbiology**: **SM9223B-Colilert-QT**; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

mg 11/18/15 updated COC

	CHAIN OF	CUSTO	DY	PAGE 1 OF	= 1	Dat	te Rec'o	d in Lat) ;	11	11:	3/19	5	AL	PHA .	Job #	: /	152983	8
ALPHA	λ	Project Infor	mation			Re	port	Inform	natio	n Data	a Del	iveral	bles	Bill	ing Ir	form	ation	1 33	
ANALYTICA WORCOCJ	y .						FAX				EMAIL			\boxtimes	Same a	as Clier	it info	PO #:	
Westborough, MA	Mansfield, MA	Project Name:	First Street	PUD			ADEx			\Box	Add'i D	Deliveral	bles						
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	r toject Name.	r not offeet			Re	gulat	ory R	equir	ement	ts/Re	eport l	Limits	5					
Client Informati	on	Project Locatio	n: Cambridg	ge, MA		<u>Sta</u>	te/Fed I MCP	Prograi	<u>m</u>					Crite	ria W_2				
Client: McPhail Ass	sociates, LLC	Project #: 5863	.9.01											noc					
Address: 2269 Mas	ssachusetts Avenue	Project Manage	er: Scott Sm	ith															
Cambridge, MA 02	2140	ALPHA Quote	#:																
Phone: 617-868-14	20	Turn-Around	Time			_AN	ALYS	SIS	_	T			1	r	1		1		O T
Fax: 617-868-1423		Standard	🗆 R	USh (ONLY IF PF	RE-APPROVED)													Filtration	Å
Email: ssmith@mc	phailgeo.com	_																Done Done	#
These samples have	been Previously analyzed by Alpha	Due Date:	Time	:		s												Lab to do	В
Other Project Spe	ecific Requirements/Comments	s/Detection Limit	ts:			/etal												Lab to do	T
						ed N												(Please specify below)	LE
						solv													s
-	•					4 Dis	260		eluxe	eluxe									
ALPHA Lab ID	Sample ID	Colle	ection	Sample	Sampler's		C 82		ЙН	ЙН									
(Lab Use Only)	-	Date	Time	Matrix	Initials	N N	2		В	Ч								Sample Specific Comments	
29838 27	B-201 (0W)	11/13/15	1330	MW	Tre		X		X										6
~	0 1 (
02	B-1 COW)		1400				X		X	X									6
	0.0.07		1 787																
05	B.WC		1200			HÅ-													4
						⊢-													<u> </u>
											님		井		H		님		
										\exists	H		岩	님	+ + + + + + + + + + + + + + + + + + +		=		+
						- - -				\exists	님		∺⊦	\exists	\exists		\exists	ΤΟΤΑΙ	+
				Co	ntainer Type	P	v	-		v	-	-	-	-	<u> </u>			TOTAL	
				0	Preservative	A	В	-	В	в	-	-	-	-	-	-	-	Please print clearly, legib	yly
			Relig	quished By:		Da	te/Time	•		F	Receiv	ed By:			D	ate/Tim	e	not be logged in and turnaround time clock will	s can
		1/a	~ Ć	v -		11/13/	515	25	1	11L	d		AAL	_	11/12/	\$ 15	15	start until any ambiguities resolved. All samples	sare
FORM NO: 01-01(I-NJ)			110	hall	-	11/13/1	5 18	23	Ú.	M	1	M	X		1/13/	MI	123	submitted are subject to Alpha's Payment Terms	
(rev. 5-JAN-12)															1.1	-	-1		

1

	CHAIN OF	CUSTO	DY	PAGE 1 OF	1	Da	te Rec'o	l in Lat	o:	11	11:	3/10	5	AL	PHA .	Job #	: /	152983	8
ALPHA		Project Infor	mation			Re	port l	nfor	natio	n Dat	a Del	livera	bles	Bil	ling Ir	nform	ation		
/ WC - C - C - F	39						FAX				EMAIL	-			Same	as Clier	nt info	PO #:	
Westborough, MA	Mansfield, MA	Project Name:	First Street	PUD			ADEx				Add'l E	Delivera	bles						
FAX: 508-898-9220	FAX: 508-822-9300					Re	gulat	ory R	lequir	emen	ts/Re	eport	Limite	5					
Client Informati	on	Project Location	n: Cambridg	je, MA		<u>Sta</u> MA	MCP	Prograi	<u>m</u>					Crite RCG	eria SW-2				
Client: McPhail As	sociates, LLC	Project #: 5863	.9.01										-						
Address: 2269 Ma	ssachusetts Avenue	Project Manage	er: Scott Sm	ith															
Cambridge, MA 02	2140	ALPHA Quote #	<i>‡</i> :													_] T
Phone: 617-868-14	120	Turn-Around	Time				ALYS	515		T		Т		1	T	1	1	SAMPLE HANDLING	Ö T
Fax: 617-868-1423		_ 🛛 Standard		USh (ONLY IF PR	E-APPROVED)													Filtration	A L
Email: ssmith@mc	phailgeo.com	_																Not Needed	#
These samples have	been Previously analyzed by Alpha	Due Date:	Time	:		<u>s</u>												Lab to do	B O
Other Project Sp	ecific Requirements/Comment	s/Detection Limit	s:			Meta												Lab to do	T T
						ved 1												(Please specify below)	LEe
						issol			e	ø									3
				1		14 D	3260		Delux	Selux									
ALPHA Lab ID (Lab Use Only)	Sample ID		Time	Sample Matrix	Sampler's	1CP-	oc		PH	PHI								Sample Specific	
20026 ~~	R 201(10.20	8		2												Comments	
0 000 01	p-wr(ow)	11 13 15	1500	MW	Tre	╎┝┥													6
P	B-1 COW)		1400								\square						片는		
											Ħ								6
B	B. 202	V	1500			X	X												W
and the second second																			
- Andrewski - A																			
	-																		
															Ш			TOTAL	
				Co	ntainer Type	A	V B	-	A	V B	-	-	-	-	-	•	-	Please print clearly legibl	v
Relinquish			quished By:	-reservative		to/Time		5		-	-	-	-	-	-	-	and completely. Samples not be logged in and	can	
			guisneu by.		11/12/		25		111	Teceiv	ea By:	A0)		Di II (n i	ate/lim	e Si S	turnaround time clock will not start until any ambiguities are		
FORM NO: 01-01(I-NJ)			MA	han	-	11/13/1	5 18	23	Ű.	all	1 h	Ma	11		1/13/	INI	122	submitted are subject to Alpha's Payment Terms	
(rev 5-JAN-12)										000	~				4121	<u></u>	-7		

k

7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1529838

Instrument ID: Jack.i	Calibration Date: 19-NOV-2015 Time: 0)4:10
Lab File ID: 1119A01	Init. Calib. Date(s): 17-NOV-2 18-NC)V-2
Sample No: 8260 CCAL	Init. Calib. Times : 21:16 00:	29

			MIN		MAX	
Compound	RRF	RRF	RRF	%D	%D	
=======================================	======	======	=====	======	====	
dichlorodifluoromethane	.40003	.37049	.1	-7	20	
chloromethane	.83023	.78691	.1	-5	20	
vinyl chloride	.69288	.66668	.1	-4	20	
bromomethane	.27086	.23893	.1	-12	20	
chloroethane	.43531	.43821	.1	1	20	
trichlorofluoromethane	.97611	.95291	.1	-2	20	
ethyl ether	.36391	.32203	.05	-12	20	
1,1,-dichloroethene	.57678	.57934	.1	0	20	
carbon disulfide	1.6151	1.3888	.1	-14	20	
freon-113	.63853	.63822	.1	0	20	
iodomethane	100	124	.05	24	20	F
acrolein	.07815	.07682	.05	-2	20	
methylene chloride	.72679	.70766	.1	-3	20	
acetone	.16666	.145	.1	-13	20	
trans-1,2-dichloroethene	.6996	.69722	.1	0	20	
methyl acetate	.50602	.42218	.1	-17	20	
methyl tert butyl ether	1.8440	1.5938	.1	-14	20	
tert butyl alcohol	.04351	.02865	.05	-34	20	F
Diisopropyl Ether	3.9584	3.7136	.01	-6	20	
1,1-dichloroethane	1.6864	1.6479	.2	-2	20	
acrylonitrile	.27926	.23457	.05	-16	20	
Halothane	.63827	.61784	.05	-3	20	
Ethyl-Tert-Butyl-Ether	2.8348	2.5381	.05	-10	20	
vinyl acetate	2.263	1.9893	.05	-12	20	
cis-1,2-dichloroethene	.85452	.84656	.1	-1	20	
2,2-dichloropropane	1.2162	1.2340	.05	1	20	
cyclohexane	1.7975	1.6977	.01	-6	30	
bromochloromethane	.38953	.3653	.05	-6	20	
chloroform	1.5383	1.4783	.2	-4	20	
carbontetrachloride	1.1339	1.0919	.1	-4	20	
tetrahydrofuran	.27656	.22154	.05	-20	20	
ethyl acetate	.81542	65755	.05	-19	20	
1,1,1-trichloroethane	1.2785	1.2735	.1	0	20	
1,1-dichloropropene	1.1048	1.0872	.05	-2	20	
2-butanone	.32003	.2668	.1	-17	20	
benzene	3.3931	3.3210	.5	-2	20	
Tertiary-Amyl Methyl Ether	1.9766	1.6923	.05	-14	20	
1,2-dichloroethane	1.1554	1.1633	.1	1	20	

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1529838

Instrument ID: Jack.i	Calibration Date: 19-NOV-2015 Time: 0)4:10
Lab File ID: 1119A01	Init. Calib. Date(s): 17-NOV-2 18-NC)V-2
Sample No: 8260 CCAL	Init. Calib. Times : 21:16 00:	:29

Compound	<u> </u>	RRF	MIN RRF	&D	MAX %D	
	======	======	=====	======	====	
methyl cyclohexane trichloroethene	1.4158	1.3533	.01	-4 1	30 20	
dibromomethane	.43351	.40347	.05	-7	20	
1,2-dichloropropane	1.0084	.94376	.1	-6	20	
bromodichloromethane	1.0944	1.0041	.2	-8	20	
1,4-dioxane	.00382	.00297	.05	-22	20	F
2-chloroethylvinyl ether	.47022	.37078	.05	-21	20	F
cis-1,3-dichloropropene	1.3186	1.1755	.2	-11	20	
toluene	2.7880	2.6839	.4	-4	20	
tetrachloroethene	1.2759	1.2891	.2	1	20	
4-methyl-2-pentanone	.24963	.19581	.1	-22	20	F
trans-1,3-dichloropropene	1.3306	1.2065	.1	-9	20	
1,1,2-trichloroethane	.65929	.58483	.1	-11	20	
ethyl-methacrylate	1.0770	.85616	.01	-21	30	
chlorodibromomethane	.91019	.76941	.1	-15	20	
1,3-dichloropropane	1.4555	1.2678	.05	-13	20	
1,2-dibromoethane	.7818	.70772	.1	-9	20	
2-hexanone	.58932	.4365	.1	-26	20	F
chlorobenzene	3.1473	3.1124	.5	-1	20	
ethyl benzene	5.3926	5.4317	.1	1	20	
1,1,1,2-tetrachloroethane	1.0941	1.0379	.05	-5	20	
p/m xylene	2.1671	2.2176	.1	2	20	
o xylene	2.0670	2.1272	.3	3	20	
bromoform	.90913	.75427	.1	-17	20	
styrene	3.4267	3.4361	.3	0	20	
isopropylbenzene	10.672	10.839	.1	2	20	
bromobenzene	2.4617	2.4309	.05	-1	20	
1,4-dichlorobutane	3.5564	3.4008	.01	-4	30	
n-propylbenzene	8.329	8.3982	.05	1	20	
1,1,2,2,-tetrachloroethane	1.6172	1.4104	.3	-13	20	
4-ethyltoluene	11.412	11.768	.05	3	20	
2-chlorotoluene	8.329	8.3982	.05	1	20	
1,2,3-trichloropropane	1.4008	1.2106	.05	-14	20	
1,3,5-trimethybenzene	8.9125	9.0647	.05	2	20	
trans-1,4-dichloro-2-butene	.67467	.54401	.05	-19	20	
4-chorotoluene	7.2859	7.3930	.05	1	20	
tert-butylbenzene	7.4406	7.6546	.05	3	20	
1,2,4-trimethylbenzene	8.3839	8.7907	.05	5	20	

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1529838

Instrument ID: Jack.i	Calibration Date: 19-NOV-2015 Time: (04:10
Lab File ID: 1119A01	Init. Calib. Date(s): 17-NOV-2 18-NO	0V-2
Sample No: 8260 CCAL	Init. Calib. Times : 21:16 00	:29

Compound		ססס	MIN	<u>م</u> و	MAX SD	
				~D	~D 	
Compound sec-butylbenzene	RRF ===== 10.933 9.1126 4.6961 4.6979 5.2079 7.1508 4.1307 6.7106 .22199 1.1529 1.6607 .71979 100 = .24349 .33016 1.2269 .88446	RRF ====== 10.794 9.0073 4.7324 4.5790 5.2936 7.2676 3.9966 6.4997 .18232 1.0392 1.2591 .73946 66.004 72.699 ===== .24768 .31345 1.2317 .86325	MIN RRF ===== .01 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	<pre>%D ====== -1 -1 -1 2 2 -3 -3 -3 -18 -10 -24 3 -34 -27 ==== 2 -5 0 -2</pre>	MAX %D ==== 20 20 20 20 20 20 20 20 20 20 20 20 20	F FF

FORM VII MCP-8260-10

ANALYTICAL REPORT

Lab Number:	L1530323
Client:	McPhail Associates 2269 Massachusetts Avenue Cambridge, MA 02140
ATTN:	Ambrose Donovan
Phone:	(617) 868-1420
Project Name:	FIRST STREET PUD
Project Number:	5863.9.01
Report Date:	11/30/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:FIRST STREET PUDProject Number:5863.9.01

 Lab Number:
 L1530323

 Report Date:
 11/30/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1530323-01	GP-1	WATER	CAMBRIDGE, MA	11/18/15 11:00	11/18/15
L1530323-02	B-205 (OW)	WATER	CAMBRIDGE, MA	11/10/15 12:30	11/18/15
L1530323-03	D-204 (OW)	WATER	CAMBRIDGE, MA	11/18/15 13:30	11/18/15
L1530323-04	B-207 (OW)	WATER	CAMBRIDGE, MA	11/18/15 13:45	11/18/15
L1530323-05	B-202 (OW)	WATER	CAMBRIDGE, MA	11/18/15 14:30	11/18/15

L1530323

Project Name: FIRST STREET PUD

Report Date: 11/30/15

Lab Number:

Project Number: 5863.9.01

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status							
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES						
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES						
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES						
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES						
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES						
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A						
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES						
A res	A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO						
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO						

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: FIRST STREET PUD Project Number: 5863.9.01
 Lab Number:
 L1530323

 Report Date:
 11/30/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: FIRST STREET PUD Project Number: 5863.9.01
 Lab Number:
 L1530323

 Report Date:
 11/30/15

Case Narrative (continued)

MCP Related Narratives

Sample Receipt

L1530323-02: One of the sample containers was received above the appropriate pH for the EPH analysis. The laboratory added additional HCl to a pH <2.

L1530323-04: The sample was received above the appropriate pH for the EPH analysis. The laboratory added additional HCl to a pH <2.

Volatile Organics

In reference to question H:

The initial calibration, associated with L1530323-02 through -05, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.00431), as well as the average response factor for 1,4-dioxane. The initial calibration verification is outside acceptance criteria for dichlorodifluoromethane (166%), but within overall method criteria.

The continuing calibration standard, associated with L1530323-02 through -05, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

EPH

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

604 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 11/30/15

ORGANICS

VOLATILES

			Serial_No:11301512:07			
Project Name:	FIRST STREET PUD		Lab Number:	L1530323		
Project Number:	5863.9.01		Report Date:	11/30/15		
		SAMPLE RESULTS				
Lab ID:	L1530323-05		Date Collected:	11/18/15 14:30		
Client ID:	B-202 (OW)		Date Received:	11/18/15		
Sample Location:	CAMBRIDGE, MA		Field Prep:	Not Specified		
Matrix:	Water					
Analytical Method:	97,8260C					
Analytical Date:	11/22/15 12:10					
Analyst:	MM					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

					5	Serial_N	o:11301512:07	
Project Name:	FIRST STREET PUD				Lab Nu	mber:	L1530323	
Project Number:	5863.9.01				Report	Date:	11/30/15	
•		SAMP	LE RESULTS	5	•		11/00/10	
Lab ID:	L1530323-05				Date Col	lected:	11/18/15 14:30	
Client ID:	B-202 (OW)				Date Rec	eived:	11/18/15	
Sample Location:	CAMBRIDGE, MA				Field Pre	p:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough Lab							
1.3-Dichlorobenzene		ND		ug/l	1.0		1	
1.4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xvlene		ND		ug/l	2.0		1	
o-Xvlene		ND		ug/l	1.0		1	
Xvlene (Total)		ND		ug/l	1.0		1	
cis-1.2-Dichloroethene		ND		ug/l	1.0		1	
1.2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane	,	ND		ug/l	2.0		1	
1.2.3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.0		1	
Tetrahydrofuran		ND		ua/l	2.0		1	
2,2-Dichloropropane		ND		ua/l	2.0		1	
1,2-Dibromoethane		ND		ua/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethan	le	ND		ua/l	1.0		1	
Bromobenzene		ND		ua/l	2.0		1	
n-Butylbenzene		ND		ua/l	2.0		1	
sec-Butylbenzene		ND		ug/l	2.0		1	
tert-Butylbenzene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
p-Chlorotoluene		ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
Isopropylbenzene		ND		ug/l	2.0		1	
p-Isopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ug/l	2.0		1	
n-Propylbenzene		ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene		ND		ug/l	2.0		1	

						Serial_No:11301512			
Project Name:	FIRST STREET PUD				Lab Nu	umber:	L1530323		
Project Number:	5863.9.01				Report	Date:	11/30/15		
		SAMPLE	RESU	LTS					
Lab ID:	L1530323-05				Date Co	llected:	11/18/15 14:30		
Client ID:	B-202 (OW)				Date Re	ceived:	11/18/15		
Sample Location:	CAMBRIDGE, MA				Field Pre	ep:	Not Specified		
Parameter		Result	Qualifier	r Units	RL	MDL	Dilution Factor		
MCP Volatile Orga	anics - Westborough Lab								
Ethyl ether		ND		ug/l	2.0		1		
Isopropyl Ether		ND		ug/l	2.0		1		
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1		
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1		
1,4-Dioxane		ND		ug/l	250		1		
Surrog	ate	% Recovery	, (Qualifier	Acceptance				

Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	114		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	115		70-130	
Dibromofluoromethane	135	Q	70-130	

_

 Project Name:
 FIRST STREET PUD
 Lab Number:
 L1530323

 Project Number:
 5863.9.01
 Report Date:
 11/30/15

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:11/22/15 08:56Analyst:MM

Parameter	Result	Qualifier	Units	RL	MDL
MCP Volatile Organics - Westboro	ugh Lab for :	sample(s):	02-05	Batch: WO	G843340-3
Methylene chloride	ND		ug/l	2.0	
1,1-Dichloroethane	ND		ug/l	1.0	
Chloroform	ND		ug/l	1.0	
Carbon tetrachloride	ND		ug/l	1.0	
1,2-Dichloropropane	ND		ug/l	1.0	
Dibromochloromethane	ND		ug/l	1.0	
1,1,2-Trichloroethane	ND		ug/l	1.0	
Tetrachloroethene	ND		ug/l	1.0	
Chlorobenzene	ND		ug/l	1.0	
Trichlorofluoromethane	ND		ug/l	2.0	
1,2-Dichloroethane	ND		ug/l	1.0	
1,1,1-Trichloroethane	ND		ug/l	1.0	
Bromodichloromethane	ND		ug/l	1.0	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
1,3-Dichloropropene, Total	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	2.0	
Bromoform	ND		ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	1.0	
Ethylbenzene	ND		ug/l	1.0	
Chloromethane	ND		ug/l	2.0	
Bromomethane	ND		ug/l	2.0	
Vinyl chloride	ND		ug/l	1.0	
Chloroethane	ND		ug/l	2.0	
1,1-Dichloroethene	ND		ug/l	1.0	
trans-1,2-Dichloroethene	ND		ug/l	1.0	
Trichloroethene	ND		ug/l	1.0	

 Project Name:
 FIRST STREET PUD
 Lab Number:
 L1530323

 Project Number:
 5863.9.01
 Report Date:
 11/30/15

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:11/22/15 08:56Analyst:MM

Parameter	Result	Qualifier	Units	RL	. MDL
MCP Volatile Organics - W	estborough Lab for	sample(s):	02-05	Batch:	WG843340-3
1,2-Dichlorobenzene	ND		ug/l	1.0)
1,3-Dichlorobenzene	ND		ug/l	1.0)
1,4-Dichlorobenzene	ND		ug/l	1.0)
Methyl tert butyl ether	ND		ug/l	2.0)
p/m-Xylene	ND		ug/l	2.0)
o-Xylene	ND		ug/l	1.0)
Xylene (Total)	ND		ug/l	1.0)
cis-1,2-Dichloroethene	ND		ug/l	1.0)
1,2-Dichloroethene (total)	ND		ug/l	1.0)
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.0)
Dichlorodifluoromethane	ND		ug/l	2.0)
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0)
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0)
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)

 Project Name:
 FIRST STREET PUD
 Lab Number:
 L1530323

 Project Number:
 5863.9.01
 Report Date:
 11/30/15

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:11/22/15 08:56Analyst:MM

Parameter	Result	Qualifier	Units	RL	. MDL	
MCP Volatile Organics - Westbo	brough Lab for	sample(s):	02-05	Batch:	WG843340-3	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60)	
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0)	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250)	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	117		70-130	
Toluene-d8	89		70-130	
4-Bromofluorobenzene	116		70-130	
Dibromofluoromethane	114		70-130	

Lab Control Sample Analysis

Batch Quality Control

Project Number: 5863.9.01

Lab Number: L1530323 Report Date: 11/30/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual MCP Volatile Organics - Westborough Lab Associated sample(s): 02-05 Batch: WG843340-1 WG843340-2 Methylene chloride 92 89 70-130 20 3 1,1-Dichloroethane 95 99 70-130 20 4 Chloroform 103 70-130 20 96 7 Carbon tetrachloride 20 93 103 70-130 10 1,2-Dichloropropane 92 98 70-130 20 6 Dibromochloromethane 70-130 20 96 98 2 1,1,2-Trichloroethane 94 96 70-130 2 20 Tetrachloroethene 90 101 70-130 12 20 Chlorobenzene 95 70-130 20 90 5 Trichlorofluoromethane 70-130 20 92 101 9 109 70-130 20 1.2-Dichloroethane 108 1 1,1,1-Trichloroethane 98 104 70-130 6 20 Bromodichloromethane 104 70-130 20 96 8 trans-1,3-Dichloropropene 70-130 20 96 99 3 cis-1,3-Dichloropropene 70-130 20 96 102 6 1,1-Dichloropropene 104 70-130 20 95 9 Bromoform 90 104 70-130 14 20 1,1,2,2-Tetrachloroethane 93 102 70-130 9 20 70-130 20 Benzene 88 92 4 Toluene 70-130 20 86 90 5 Ethylbenzene 95 70-130 20 88 8

Lab Control Sample Analysis Batch Quality Control

Project Number: 5863.9.01 Lab Number: L1530323 Report Date: 11/30/15

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated sample(s): 02-0	05 Batch: WG843	340-1 WG843340-2		
Chloromethane	79	89	70-130	12	20
Bromomethane	99	89	70-130	11	20
Vinyl chloride	78	86	70-130	10	20
Chloroethane	84	81	70-130	4	20
1,1-Dichloroethene	84	87	70-130	4	20
trans-1,2-Dichloroethene	90	96	70-130	6	20
Trichloroethene	89	96	70-130	8	20
1,2-Dichlorobenzene	86	101	70-130	16	20
1,3-Dichlorobenzene	92	103	70-130	11	20
1,4-Dichlorobenzene	87	104	70-130	18	20
Methyl tert butyl ether	101	104	70-130	3	20
p/m-Xylene	93	99	70-130	6	20
o-Xylene	94	100	70-130	6	20
cis-1,2-Dichloroethene	91	99	70-130	8	20
Dibromomethane	94	102	70-130	8	20
1,2,3-Trichloropropane	90	99	70-130	10	20
Styrene	96	100	70-130	4	20
Dichlorodifluoromethane	92	93	70-130	1	20
Acetone	124	136	Q 70-130	9	20
Carbon disulfide	73	78	70-130	7	20
2-Butanone	99	104	70-130	5	20

Lab Control Sample Analysis

Batch Quality Control

Project Number: 5863.9.01

Lab Number: L1530323 Report Date: 11/30/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual MCP Volatile Organics - Westborough Lab Associated sample(s): 02-05 Batch: WG843340-1 WG843340-2 4-Methyl-2-pentanone 112 115 70-130 3 20 2-Hexanone 106 105 70-130 20 1 Bromochloromethane 102 107 70-130 20 5 Tetrahydrofuran 20 102 105 70-130 3 2,2-Dichloropropane 109 70-130 10 20 99 1.2-Dibromoethane 70-130 20 96 97 1 1,3-Dichloropropane 93 91 70-130 2 20 1,1,1,2-Tetrachloroethane 93 103 70-130 10 20 Bromobenzene 70-130 20 83 100 19 n-Butylbenzene 104 70-130 20 89 16 sec-Butylbenzene 104 70-130 Q 20 84 21 tert-Butylbenzene 84 102 70-130 19 20 o-Chlorotoluene 107 70-130 Q 20 85 23 70-130 Q 20 p-Chlorotoluene 83 103 22 1,2-Dibromo-3-chloropropane 70-130 Q 20 83 108 26 Hexachlorobutadiene 114 70-130 Q 20 89 25 Isopropylbenzene 83 101 70-130 20 20 p-Isopropyltoluene 88 105 70-130 18 20 Naphthalene 70-130 20 90 94 4 n-Propylbenzene 70-130 20 83 97 16 1,2,3-Trichlorobenzene 105 97 70-130 20 8

Lab Control Sample Analysis Batch Quality Control

Project Number: 5863.9.01 Lab Number: L1530323 Report Date: 11/30/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab As	sociated samp	le(s): 02-05	Batch: WG84	3340-1 WG	G843340-2				
1,2,4-Trichlorobenzene	96		104		70-130	8		20	
1,3,5-Trimethylbenzene	88		102		70-130	15		20	
1,2,4-Trimethylbenzene	86		103		70-130	18		20	
Ethyl ether	93		91		70-130	2		20	
Isopropyl Ether	92		98		70-130	6		20	
Ethyl-Tert-Butyl-Ether	96		100		70-130	4		20	
Tertiary-Amyl Methyl Ether	99		102		70-130	3		20	
1,4-Dioxane	103		87		70-130	17		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	108		113		70-130	
Toluene-d8	99		92		70-130	
4-Bromofluorobenzene	88		94		70-130	
Dibromofluoromethane	116		117		70-130	

METALS

Breject Number	5000						Donort	Dete:	L1000	L100020	
Project Number:	5863.	9.01					Report	Date:	11/30/	15	
				SAMP	LE RES	ULTS					
Lab ID:	L1530)323-05					Date Co	ollected:	11/18/	/15 14:30	
Client ID:	B-202	B-202 (OW)					Date Re	Date Received:		11/18/15	
Sample Location:	CAME	CAMBRIDGE, MA					Field Prep:		Not Sp	pecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

INCP DISSOlved Me	lais - westbolo	ugh Lab				
Antimony, Dissolved	ND	mg/l	0.050	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Arsenic, Dissolved	ND	mg/l	0.005	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Barium, Dissolved	0.340	mg/l	0.010	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Beryllium, Dissolved	ND	mg/l	0.005	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Cadmium, Dissolved	ND	mg/l	0.004	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Chromium, Dissolved	ND	mg/l	0.01	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Lead, Dissolved	ND	mg/l	0.010	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Mercury, Dissolved	ND	mg/l	0.0002	 1	11/20/15 11:08 11/20/15 18:42 EPA 7470A 97,7470A	DB
Nickel, Dissolved	ND	mg/l	0.025	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Selenium, Dissolved	ND	mg/l	0.010	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Silver, Dissolved	ND	mg/l	0.007	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Thallium, Dissolved	ND	mg/l	0.020	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Vanadium, Dissolved	ND	mg/l	0.010	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH
Zinc, Dissolved	ND	mg/l	0.050	 1	11/19/15 11:45 11/20/15 16:46 EPA 3005A 97,6010C	JH

Project Name:FIRST STREET PUDProject Number:5863.9.01

 Lab Number:
 L1530323

 Report Date:
 11/30/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	Westborough Lab	for sample	(s): 03,0	5 Bat	ch: WG842	335-1			
Antimony, Dissolved	ND	mg/l	0.050		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Arsenic, Dissolved	ND	mg/l	0.005		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Barium, Dissolved	ND	mg/l	0.010		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Beryllium, Dissolved	ND	mg/l	0.005		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Cadmium, Dissolved	ND	mg/l	0.004		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Chromium, Dissolved	ND	mg/l	0.01		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Lead, Dissolved	ND	mg/l	0.010		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Nickel, Dissolved	ND	mg/l	0.025		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Selenium, Dissolved	ND	mg/l	0.010		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Silver, Dissolved	ND	mg/l	0.007		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Thallium, Dissolved	ND	mg/l	0.020		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Vanadium, Dissolved	ND	mg/l	0.010		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH
Zinc, Dissolved	ND	mg/l	0.050		1	11/19/15 11:45	11/20/15 13:13	97,6010C	JH

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	Westborough Lab f	or sample	e(s): 03,0	5 Bat	ch: WG842	809-1			
Mercury, Dissolved	ND	mg/l	0.0002		1	11/20/15 11:08	11/20/15 18:31	97,7470A	DB

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: FIRST STREET PUD

Project Number: 5863.9.01 Lab Number: L1530323 Report Date: 11/30/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Dissolved Metals - Westborough Lab Asso	ciated sample(s): 03,05	Batch: WG842335	5-2 WG84	2335-3				
Antimony, Dissolved	82		82		80-120	0		20	
Arsenic, Dissolved	108		105		80-120	3		20	
Barium, Dissolved	98		98		80-120	0		20	
Beryllium, Dissolved	98		95		80-120	3		20	
Cadmium, Dissolved	111		110		80-120	1		20	
Chromium, Dissolved	95		95		80-120	0		20	
Lead, Dissolved	104		102		80-120	2		20	
Nickel, Dissolved	98		97		80-120	1		20	
Selenium, Dissolved	112		113		80-120	1		20	
Silver, Dissolved	101		99		80-120	2		20	
Thallium, Dissolved	107		107		80-120	0		20	
Vanadium, Dissolved	100		100		80-120	0		20	
Zinc, Dissolved	100		99		80-120	1		20	
MCP Dissolved Metals - Westborough Lab Asso	ciated sample(s): 03,05	Batch: WG842809)-2 WG84	2809-3				
Mercury, Dissolved	113		115		80-120	2		20	

Project Name: FIRST STREET PUD

Project Number: 5863.9.01

Lab Number: L1530323 **Report Date: 11/30/15**

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1530323-01A	Vial HCI preserved	А	N/A	4.3	Y	Absent	VPH-DELUX-10(14)
L1530323-01B	Vial HCI preserved	А	N/A	4.3	Y	Absent	VPH-DELUX-10(14)
L1530323-01C	Amber 1000ml HCl preserved	А	<2	4.3	Y	Absent	EPH-DELUX-10(14)
L1530323-01D	Amber 1000ml HCl preserved	А	<2	4.3	Y	Absent	EPH-DELUX-10(14)
L1530323-02A	Vial HCI preserved	А	N/A	4.3	Y	Absent	MCP-8260-10(14)
L1530323-02B	Vial HCI preserved	А	N/A	4.3	Y	Absent	MCP-8260-10(14)
L1530323-02C	Vial HCI preserved	А	N/A	4.3	Y	Absent	VPH-DELUX-10(14)
L1530323-02D	Vial HCI preserved	А	N/A	4.3	Y	Absent	VPH-DELUX-10(14)
L1530323-02E	Amber 1000ml HCl preserved	А	<2	4.3	Y	Absent	EPH-DELUX-10(14)
L1530323-02F	Amber 1000ml HCl preserved	А	<2	4.3	Y	Absent	EPH-DELUX-10(14)
L1530323-03A	Vial HCI preserved	А	N/A	4.3	Y	Absent	MCP-8260-10(14)
L1530323-03B	Vial HCI preserved	А	N/A	4.3	Y	Absent	MCP-8260-10(14)
L1530323-03C	Vial HCI preserved	А	N/A	4.3	Y	Absent	VPH-DELUX-10(14)
L1530323-03D	Vial HCI preserved	А	N/A	4.3	Y	Absent	VPH-DELUX-10(14)
L1530323-03E	Amber 1000ml HCl preserved	А	<2	4.3	Y	Absent	EPH-DELUX-10(14)
L1530323-03F	Amber 1000ml HCl preserved	А	<2	4.3	Y	Absent	EPH-DELUX-10(14)
L1530323-03G	Plastic 500ml unpreserved	А	7	4.3	Y	Absent	-
L1530323-03X	Plastic 120ml HNO3 preserved spl	A	<2	4.3	Y	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-TL-6010S- 10(180),MCP-ZN-6010S- 10(180),MCP-AS-6010S- 10(180),MCP-BA-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-PB-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S-10(180)
L1530323-04A	Vial HCI preserved	А	N/A	4.3	Y	Absent	MCP-8260-10(14)
L1530323-04B	Vial HCI preserved	А	N/A	4.3	Y	Absent	MCP-8260-10(14)
L1530323-04C	Vial HCI preserved	А	N/A	4.3	Y	Absent	VPH-DELUX-10(14)
L1530323-04D	Vial HCI preserved	А	N/A	4.3	Y	Absent	VPH-DELUX-10(14)
L1530323-04E	Amber 1000ml HCl preserved	А	<2	4.3	Y	Absent	EPH-DELUX-10(14)

Project Name: FIRST STREET PUD Project Number: 5863.9.01

Lab Number: L1530323 Report Date: 11/30/15

Analysis(*)

EPH-DELUX-10(14) MCP-8260-10(14) MCP-8260-10(14)

Container Information

Container Info	rmation			Temp		
Container ID	Container Type	Cooler	рΗ	deg Ċ	Pres	Seal
L1530323-04F	Amber 1000ml HCI preserved	А	<2	4.3	Y	Absent
L1530323-05A	Vial HCI preserved	А	N/A	4.3	Y	Absent
L1530323-05B	Vial HCI preserved	А	N/A	4.3	Y	Absent
L1530323-05C	Plastic 500ml unpreserved	А	7	4.3	Y	Absent
L1530323-05X	Plastic 120ml HNO3 preserved spl	А	<2	4.3	Y	Absent

-MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-TL-6010S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-AS-6010S-10(180), MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-BE-6010S-10(180), MCP-SB-6010S-10(180),MCP-PB-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180)

Project Name: FIRST STREET PUD

Project Number: 5863.9.01

Lab Number: L1530323

Report Date: 11/30/15

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Project Name: FIRST STREET PUD

Project Number: 5863.9.01

Lab Number: L1530323

Report Date: 11/30/15

Data Qualifiers

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- ${\bf S}$ Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: FIRST STREET PUD Project Number: 5863.9.01

 Lab Number:
 L1530323

 Report Date:
 11/30/15

REFERENCES

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- 100 Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 8260C: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; lodomethane (methyl iodide) (soil); Methyl methacrylate (soil); Azobenzene.
EPA 8270D: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA 2540D:** TSS **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil. **Microbiology**: **SM9223B-Colilert-QT**; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN OF	CUSTO	DY	PAGE 1 OF	= 1	Da	ate Rec'	d in La	ıb:	11/	slis	_		A	PHA	Job	#: /	(C2 (3) 2	1.1.25	
ALPHA Pr			Project Information				Report Information Data Deliverables							Bi	Billing Information					
World Class Chomist] FAX				EMAIL	L			Same	as Clie	ent info	PO #:		
Westborough, MA	Mansfield, MA	Project Names First Obs. (PUP					ADEx				Add'l [Delivera	ables							
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Floject Name:	First Street I	PUD		R	egulat	tory F	Requi	remer	nts/Re	eport	Limit	is	1000	25				
Client Informati	ion	Project Locatio	on: Cambrido	e. MA		Sta	ate/Fed	Progra	m					Crit	eria					
Client: McPhail As	sociates, LLC	Project #: 586	3.9.01	0,		M/	A MCP						11 1 A. A.	RC	GW-2	TICL				
Address: 2269 Ma	ssachusetts Avenue	Project Manag	er: Scott Smi	th						1	I									
Cambridge, MA 0	2140	ALPHA Quote	#:																	
Phone: 617-868-14	420	Turn-Around	d Time	State State		A	ALYS	SIS								-		1	T	
Fax: 617-868-1423	3	Standard	□ Ru	ISh (ONLY IF PR														SAMPLE HANDLING	T	
Email: ssmith@mc	phailgeo.com				C-ALLINGVED)													Done	L	
These samples have	been Previously analyzed by Alpha	- Due Date:	Time:															Not Needed Lab to do	# B	
Other Project Sp	ecific Requirements/Comments	Detection Limi	ts:			etals												Preservation	O T	
						W p												(Please specify	T	
						solve												below)	E S	
						Dise	00		nxe	nxe									-	
ALPHA Lab ID	Sample ID	Coll	lection	Sample	Sampler's	-14	82(Del	Del										
(Lab Use Only)		Date	Time	Matrix Initials		MCI	NOV	9		VPF EPF								Sample Specific Comments		
30323 -01	GP-10111	1/18/15	11:00	GW	SGH		\Box		X	X	Π	\square	ίπ	Iп	\square	h	+-		L	
															T		H			
-02	B-205(0W)		12:30				X		X	X									6	
	0																		0	
-03	B-204 (OW)		13:30			X	X		X	X									7	
	P 207 (aui)		1																1	
-04	B-207(0W)		13:45				X		X	X									6	
	B-202(04)		111:20																	
	10 AUAIUW)		19.50																3	
				~	V			Ц			Ц		Ш					TOTAL		
				Con	Itainer Type	P	V B	-	A	V	-	-	-	-	-	-	-	Please print shared a to the		
			Paling	uished Pur	reservative			-	D	A	-	-	-	-	-	-	-	and completely. Samples	s can	
		ata	No. All	naneu By:		Da	e ///	CIA	X		Receive	ed/By:	120	1	1 Da	ate/Tim	e	turnaround time clock will start until any ambiguities	not	
FORM NO: 01-01(I-NJ)		X	LIM	LAN	1 . 1.	101	5/100	SID	en	YU	100	1.1	-IHA	- 11	18/1	5/4	250	resolved. All samples submitted are subject to		
(rev. 5-JAN-12)				000		10/1	1 10	,	m	anan	t p	nell	yes		11/8/	15 (810	Alpha's Payment Terms.		
- .

7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1530323

Instrument ID: Jack.i	Calibration Date: 22-NOV-2015 Time: 06	5:31
Lab File ID: 1122A02	Init. Calib. Date(s): 17-NOV-2 18-NOV	7-2
Sample No: 8260 CCAL	Init. Calib. Times : 21:32 00:4	15

Come come d			MIN	0.5	MAX	
Compound	RRF	RRF	RRF	∛D	8D	
dichlouodifluouomothono			=====	======		
	0.30/05	. 35543				Ţ.
	.82/04	.05202				r T
vinyi chioride	1.68671	1.53412		-22		F.
bromomethane	.26284	1.26U31	.1			
chioroethane	.44366	.3/382	· 1	-10		
trichlorofluoromethane	.98894	1.9T098		-8		
ethyi ether	.353/1	.33	.05	-/		
1,1,-dichloroethene	1.61/44	1.51594	.1	-16		-
carbon disulfide	11.68/3	1.2363	· 1	-2/		F.
Ireon-113	1.64/45	1.60181		- /		-
10dometnane			.05	20		F.
acroiein	1.0/608	0/795	.05		20	
methylene chloride	1.71891	1.66519	.1	- /		-
acetone			. <u> </u>	24	20	F.
trans-1,2-dichioroethene	./21/	1.65021	· 1	-10		
methyl acetate	.46383	.47196	· 1		20	
methyl tert butyl ether	1.6453	1.6637			20	_
tert butyl alconol	04431	.05877	.05	33	20	F.
Diisopropyl Ether	3.6643	3.3827	.01	-8	20	
1,1-dichloroethane	11.7001	11.6165	.2	-5	20	
acrylonitrile	.25719	.25459	.05	<u> </u>	20	
Halothane	.66954	.62085	.05	- /	20	
Ethyl-Tert-Butyl-Ether	2.5266	2.4306	.05	-4	20	
vinyl acetate		1.9820	.05	0	20	
cis-1, 2-dichloroethene	.86914	. 79331		-9	20	
2,2-dichloropropane			.05		20	
cyclonexane	1.7649	11.5000	.01	-12	30	
bromochloromethane	.3819	.388	.05	2	20	
chloroform	1.5560	1.4918	.2	-4	20	
carbontetrachloride	11.1680	1.0832		-7	20	
tetranydroturan	.24518	.25155	.05	3	20	
ethyl acetate	.6652	.66221	.05	0	20	
1,1,1-trichloroethane	1.3212	1.2911		-2	20	
1,1-dichloropropene	11.0330	.98493	.05	-5	20	
2-butanone	28108	27748	$ \cdot 1$	-1	20	
benzene	3.4034	2.9929	.5	-12	20	
Tertiary-Amyl Methyl Ether	1.7392	1.7246	.05	-1	20	
1,2-dichloroethane	1.1193	1.2126	.1	8	20	

FORM VII MCP-8260-10

- .

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1530323

Instrument ID: Jack.i	Calibration Date: 22-NOV-2015 T	'ime: 06:31
Lab File ID: 1122A02	<pre>Init. Calib. Date(s): 17-NOV-2</pre>	18-NOV-2
Sample No: 8260 CCAL	Init. Calib. Times : 21:32	00:45

Compound			MIN	୧୦	MAX SD	
				~D 	~D	
methyl gygloheyane	1 3841	1 1807	01		30	
trichloroethene	89377	79157		11	20	
dibromomethane	47403	44715	05	-6	20	
1 2-dichloropropane	96834	89428	.05	-8	20	
bromodichloromethane	1 0608	1 0170	.1	_4	20	
1 4-diovane	00413	00426		3		┎
2-chloroethylyinyl ether	100	116	05	16	20	Т.
cis-1 3-dichloropropene	1 2229			_4	20	
toluene	2 8286	2 4458		_14	20	
tetrachloroethene	1 2734	1 1426	. 1	_10	20	
4-methyl-2-pentanone	21403	24056	1	12	20	
trang-1 3-dichloropropene	1 2420	1 1 9 2 1	• <u>+</u> 1	_4	20	
1 1 2-trichloroethane	62195	5,812	· 1	_7	20	
ethyl-methacrylate	95516	91269		_4	20	
chlorodibromomethane	8559	82046		-4	20	
1 3-dichloropropane	1 3746	1 2840		-7	20	
1 2-dibromoethane	74346	71351	.05	_4	20	
2-hexanone	49658	52753		Ġ	20	
chlorobenzene	3 1584	2 8502	·	-10	20	
ethyl benzene	5 3928	4 7347		-12	20	
1 1 1 2-tetrachloroethane	1 0483	97567		-7	20	
p/m_xylene	2 1558	2 0044	1	-7	20	
o xvlene	2.0250	1,9063	3	-6	20	
bromoform	83281	75241	.1	-10	20	
stvrene	3,2995	3,1573	3	-4	20	
isopropylbenzene	10.384	8.6041		-17	20	
bromobenzene	2.4135	2.0104	.05	-17	20	
1.4-dichlorobutane	3.3995	2.9375	.01	-14	30	
n-propylbenzene	11.811	9.8409	.05	-17	20	
1,1,2,2,-tetrachloroethane	1.4968	1.3906	.3	-7	20	
4-ethyltoluene	11.229	9.4705	.05	-16	20	
2-chlorotoluene	8.0296	6.8219	.05	-15	20	
1,2,3-trichloropropane	1.2808	1.1545	.05	-10	20	
1,3,5-trimethybenzene	8.5829	7.5451	.05	-12	20	
trans-1,4-dichloro-2-butene	.53719	.51946	.05	-3	20	
4-chorotoluene	7.1298	5.9467	.05	-17	20	
tert-butylbenzene	7.3975	6.2525	.05	-15	20	
1,2,4-trimethylbenzene	8.4137	7.2547	.05	-14	20	
					[

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1530323

Instrument ID: Jack.i	Calibration Date: 22-NOV-2015 Time:	06:31
Lab File ID: 1122A02	Init. Calib. Date(s): 17-NOV-2 18-N	iov-2
Sample No: 8260 CCAL	Init. Calib. Times : 21:32 00	:45

Compound	RRF	RRF	MIN RRF	۶D	MAX %D
Compound sec-butylbenzene p-isopropyltoluene 1,3-dichlorobenzene p-diethylbenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene hexachlorobutadiene naphthalene 1,2,3-trichlorobenzene ===============================	RRF ====== 10.790 8.8262 4.6062 4.5315 5.0934 7.0115 4.1959 6.4747 .20673 1.0853 1.0853 100 .81223 .8981	RRF ====== 9.0581 7.7627 4.2250 3.9625 4.2745 6.2209 3.6131 5.8762 .17177 1.2625 96.469 .72389 90.519 105 ===== .29589 .34712 1.2100 .79336	RRF ===== .01 .05 .05 .05 .05 .05 .05 .05 .05	<pre>%D ===== -16 -12 -8 -13 -16 -11 -14 -9 -17 16 -4 -11 -9 5 ==== 16 8 -1 -12</pre>	<pre>%D ==== 20 20 20 20 20 20 20 20 20 20 20 20 20</pre>
· · ·					

FORM VII MCP-8260-10

ANALYTICAL REPORT

Lab Number:	L1634100
Client:	McPhail Associates 2269 Massachusetts Avenue Cambridge, MA 02140
ATTN: Phone:	Ambrose Donovan (617) 868-1420
Project Name:	FIRST ST. P.U.D PARCEL A
Project Number:	5863
Report Date:	10/28/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10281611:45

Project Name:	FIRST ST. P.U.D PARCEL A
Project Number:	5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1634100-01	B-1 (OW)	WATER	121 FIRST ST. CAMBRIDGE	10/21/16 15:00	10/21/16

Project Name: FIRST ST. P.U.D PARCEL A Project Number: 5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:FIRST ST. P.U.D PARCEL AProject Number:5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

Case Narrative (continued)

Volatile Organics

L1634100-01 The analysis of Ethanol was quantitated from a one-point calibration.

Semivolatile Organics

The WG945198-2/-3 LCS/LCSD recoveries, associated with L1634100-01, are below the acceptance criteria for benzidine (9%/8%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juna L Jung Lura L Troy

Title: Technical Director/Representative

Date: 10/28/16

ORGANICS

VOLATILES

	Serial_N	o:10281611:45
FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
5863	Report Date:	10/28/16
SAMPLE RESULTS		
L1634100-01	Date Collected:	10/21/16 15:00
B-1 (OW)	Date Received:	10/21/16
121 FIRST ST. CAMBRIDGE	Field Prep:	Not Specified
Water		
1,8260C		
10/26/16 18:20		
MM		
	FIRST ST. P.U.D PARCEL A 5863 L1634100-01 B-1 (OW) 121 FIRST ST. CAMBRIDGE Water 1,8260C 10/26/16 18:20 MM	FIRST ST. P.U.D PARCEL A 5863 L1634100-01 B-1 (OW) 121 FIRST ST. CAMBRIDGE Water 1,8260C 10/26/16 18:20 MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1

				Serial_No:10281611:45			
Project Name:	FIRST ST. P.U.D PARC	EL A			Lab Nu	mber:	L1634100
Project Number:	5863				Report	Date:	10/28/16
		SAMP	LE RESULTS	S			10/20/10
Lab ID: Client ID: Sample Location:	L1634100-01 B-1 (OW) 121 FIRST ST. CAMBI	RIDGE			Date Coll Date Rec Field Pre	lected: ceived: p:	10/21/16 15:00 10/21/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics I	by GC/MS - Westborough I	_ab					
1 3-Dichlorobenzene		ND		ug/l	2.5		1
1.4-Dichlorobenzene		ND		ug/l	2.5		1
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
Xylenes, Total		ND		ug/l	1.0		1
cis-1.2-Dichloroethene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	5.0		1
1,4-Dichlorobutane		ND		ua/l	5.0		1
1,2,3-Trichloropropane		ND		ua/l	5.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/l	5.0		1
2-Butanone		ND		ug/l	5.0		1
Vinyl acetate		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Ethyl methacrylate		ND		ug/l	5.0		1
Acrylonitrile		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	2.5		1
Tetrahydrofuran		ND		ug/l	5.0		1
2,2-Dichloropropane		ND		ug/l	2.5		1
1,2-Dibromoethane		ND		ug/l	2.0		1
1,3-Dichloropropane		ND		ug/l	2.5		1
1,1,1,2-Tetrachloroethan	е	ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	2.5		1
n-Butylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	2.5		1
o-Chlorotoluene		ND		ug/l	2.5		1
p-Chlorotoluene		ND		ug/l	2.5		1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-lsopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	2.5		1
n-Propylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ua/l	2.5		1

				Serial_No:10281611:45			p:10281611:45
Project Name:	FIRST ST. P.U.D PAR	CEL A			Lab Nu	umber:	L1634100
Project Number:	5863				Report	Date:	10/28/16
		SAMP	LE RESULTS	6			
Lab ID:	L1634100-01				Date Co	llected:	10/21/16 15:00
Client ID:	B-1 (OW)				Date Re	ceived:	10/21/16
Sample Location:	121 FIRST ST. CAM	BRIDGE			Field Prep: N		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
1,2,4-Trichlorobenzene		ND		ug/l	2.5		1
1,3,5-Trimethylbenzene		ND		ug/l	2.5		1
1,2,4-Trimethylbenzene		ND		ug/l	2.5		1
trans-1,4-Dichloro-2-bute	ne	ND		ug/l	2.5		1
Ethyl ether		ND		ug/l	2.5		1
Tert-Butyl Alcohol		ND		ug/l	10		1
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1

Surrogate	% Recovery	Accep Qualifier Crit	otance teria
1,2-Dichloroethane-d4	110	7	0-130
Toluene-d8	100	7	0-130
4-Bromofluorobenzene	96	7	0-130
Dibromofluoromethane	111	7	0-130

		Serial_No	0:10281611:45
Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date:	L1634100-01 B-1 (OW) 121 FIRST ST. CAMBRIDGE Water 1,8260C-SIM(M) 10/26/16 18:20	Date Collected: Date Received: Field Prep:	10/21/16 15:00 10/21/16 Not Specified
Analyst:	IVIIVI		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westborough Lab						
1,4-Dioxane	ND		ug/l	3.0		1

		Serial_No	0:10281611:45
Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16
	SAMPLE RESULTS		
Lab ID:	L1634100-01	Date Collected:	10/21/16 15:00
Client ID:	B-1 (OW)	Date Received:	10/21/16
Sample Location:	121 FIRST ST. CAMBRIDGE	Field Prep:	Not Specified
Matrix:	Water	Extraction Method	d:EPA 504.1
Analytical Method:	14,504.1	Extraction Date:	10/26/16 13:08
Analytical Date:	10/26/16 15:42		
Analyst:	NS		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.012		1	А

		Serial_N	o:10281611:45
Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16
	SAMPLE RESULTS		
Lab ID:	L1634100-01 R	Date Collected:	10/21/16 15:00
Client ID:	B-1 (OW)	Date Received:	10/21/16
Sample Location:	121 FIRST ST. CAMBRIDGE	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/28/16 08:21		
Analyst:	MM		

Parameter		Result	Qualifier Units	s RL	MDL	Dilution Factor	
Volatile Or	rganics by GC/MS - Westboro	ugh Lab					
Ethanol		ND	ug/l	250		1	
	Surrogate	% Recovery	Qualifier	Acceptance Criteria		_	
	1,2-Dichloroethane-d4	118		70-130			
	Toluene-d8	89		70-130			
	4-Bromofluorobenzene	87		70-130			
	Dibromofluoromethane	102		70-130			

Project Name: Project Number:	FIRST ST. P.U.D PARC 5863	CEL A	Lab Number: Report Date:	L1634100 10/28/16
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	14,504.1 10/26/16 14:34 NS		Extraction Method: Extraction Date:	EPA 504.1 10/26/16 13:08

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbor	ough Lab fo	or sample(s)	: 01	Batch: WG945	966-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100		
Project Number:	5863	Report Date:	10/28/16		
Method Blank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C-SIM(M)
Analytical Date:	10/26/16 10:33
Analyst:	MM

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM - \	Nestborough	Lab for sa	mple(s):	01	Batch:	WG945967-5	
1,4-Dioxane	ND		ug/l		3.0		

Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100		
Project Number:	5863	Report Date:	10/28/16		
Mothod Plank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	10/28/16 06:17
Analyst:	MM

Parameter	Result	Qualifier U	nits	RL	MDL	
Volatile Organics by GC/MS - W	/estborough Lab	for sample(s): 01	Batch:	WG945968-10	
Ethanol	ND	ι	ug/l	250		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	83		70-130	
Dibromofluoromethane	101		70-130	

L1634100

10/28/16

Lab Number:

Report Date:

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

-.U.D FARGEL F

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:10/26/16 10:33Analyst:MM

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS -	· Westborough Lab	for sample(s): 01	Batch:	WG945968-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	2.5	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
1,2-Dichloroethene, Total	ND	ug/l	0.50	
Trichloroethene	ND	ug/l	0.50	

L1634100

10/28/16

Lab Number:

Report Date:

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

U.D FARCELA

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:10/26/16 10:33Analyst:MM

Parameter	Result	Qualifier Uni	ts	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	o for sample(s):	01 Ba	tch:	WG945968-5
1,2-Dichlorobenzene	ND	ug	ŋ∕l	2.5	
1,3-Dichlorobenzene	ND	ug	j/l	2.5	
1,4-Dichlorobenzene	ND	ug	j/l	2.5	
Methyl tert butyl ether	ND	ug	j/l	1.0	
p/m-Xylene	ND	ug	j/l	1.0	
o-Xylene	ND	ug	j/l	1.0	
Xylenes, Total	ND	ug	j/l	1.0	
cis-1,2-Dichloroethene	ND	ug	j/l	0.50	
Dibromomethane	ND	ug	j/l	5.0	
1,4-Dichlorobutane	ND	ug	j/l	5.0	
1,2,3-Trichloropropane	ND	ug	j/l	5.0	
Styrene	ND	ug	j/l	1.0	
Dichlorodifluoromethane	ND	ug	j/l	5.0	
Acetone	ND	ug	j/l	5.0	
Carbon disulfide	ND	ug	j/l	5.0	
2-Butanone	ND	ug	j/l	5.0	
Vinyl acetate	ND	uç	j/l	5.0	
4-Methyl-2-pentanone	ND	uç	j/l	5.0	
2-Hexanone	ND	ug	j/l	5.0	
Ethyl methacrylate	ND	ug	j/l	5.0	
Acrylonitrile	ND	ug	j/l	5.0	
Bromochloromethane	ND	ug	j/l	2.5	
Tetrahydrofuran	ND	uç	j/l	5.0	
2,2-Dichloropropane	ND	ug	j/l	2.5	
1,2-Dibromoethane	ND	ug	j/l	2.0	
1,3-Dichloropropane	ND	ug	j/l	2.5	
1,1,1,2-Tetrachloroethane	ND	ug	j/l	0.50	
Bromobenzene	ND	ug	j/l	2.5	
n-Butylbenzene	ND	ug	j/l	0.50	

L1634100

10/28/16

Lab Number:

Report Date:

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:10/26/16 10:33Analyst:MM

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	Batch:	WG945968-5
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Tert-Butyl Alcohol	ND	ug/l	10	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100		
Project Number:	5863	Report Date:	10/28/16		
Method Diank Analysia					

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	10/26/16 10:33
Analyst:	MM

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	b for sample	e(s): 01	Batch:	WG945968-5	

		A	cceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	103		70-130
Toluene-d8	102		70-130
4-Bromofluorobenzene	100		70-130
Dibromofluoromethane	102		70-130

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Microextractables by GC - Westborough La	b Associated san	nple(s): 01	Batch: WG9459	966-2					
1,2-Dibromoethane	113		-		70-130	-		20	A
1,2-Dibromo-3-chloropropane	110		-		70-130	-		20	А

Project Name:	FIRST ST. P.U.D PARCEL A
---------------	--------------------------

Project Number: 5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

	LCS		L	CSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS-SIM - Westborou	ıgh Lab Associa	ted sample(s):	01	Batch:	WG945967-3	WG945967-4				
1,4-Dioxane	110			120		70-130	9		25	
1,1,2,2-Tetrachloroethane	100			110		70-130	10		25	

Lab Number: L1634100 Report Date: 10/28/16

FIRST ST. P.U.D PARCEL A **Project Name:**

Project Number: 5863

-	LCS	o 1	LCSD	.	%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 01	I Batch: WG	945968-3	WG945968-4			
Methylene chloride	98		100		70-130	2	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	110		100		70-130	10	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	100		110		70-130	10	20	
Dibromochloromethane	87		91		63-130	4	20	
1,1,2-Trichloroethane	94		94		70-130	0	20	
2-Chloroethylvinyl ether	100		100		70-130	0	20	
Tetrachloroethene	96		95		70-130	1	20	
Chlorobenzene	97		95		75-130	2	25	
Trichlorofluoromethane	110		110		62-150	0	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	100		100		67-130	0	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	89		93		70-130	4	20	
cis-1,3-Dichloropropene	96		97		70-130	1	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	81		82		54-136	1	20	
1,1,2,2-Tetrachloroethane	90		100		67-130	11	20	
Benzene	110		100		70-130	10	25	
Toluene	97		98		70-130	1	25	

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

Report Date: 10/28/16

	LCS		LCSD		%Recovery		RP	D
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Lim	nits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 07	1 Batch: WG	945968-3	WG945968-4			
Ethylbenzene	97		96		70-130	1	2	0
Chloromethane	110		110		64-130	0	2	0
Bromomethane	96		100		39-139	4	2	0
Vinyl chloride	110		110		55-140	0	2	0
Chloroethane	120		120		55-138	0	2	0
1,1-Dichloroethene	110		100		61-145	10	2	5
trans-1,2-Dichloroethene	100		100		70-130	0	2	0
Trichloroethene	100		100		70-130	0	2	5
1,2-Dichlorobenzene	94		97		70-130	3	2	0
1,3-Dichlorobenzene	94		94		70-130	0	2	0
1,4-Dichlorobenzene	92		92		70-130	0	2	0
Methyl tert butyl ether	100		110		63-130	10	2	0
p/m-Xylene	95		95		70-130	0	2	D
o-Xylene	95		90		70-130	5	2	0
cis-1,2-Dichloroethene	110		110		70-130	0	2	0
Dibromomethane	100		100		70-130	0	2	0
1,4-Dichlorobutane	92		98		70-130	6	2	0
lodomethane	87		93		70-130	7	2	0
1,2,3-Trichloropropane	96		99		64-130	3	2	0
Styrene	95		95		70-130	0	2	0
Dichlorodifluoromethane	110		110		36-147	0	2	0

Project Number: 5863 Lab Number: L1634100 Report Date: 10/28/16

Parameter	LCS %Recovery G	lual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated sam	ple(s): 01	Batch: WG9	45968-3	WG945968-4			
Acetone	100		110		58-148	10		20
Carbon disulfide	100		100		51-130	0		20
2-Butanone	100		91		63-138	9		20
Vinyl acetate	98		100		70-130	2		20
4-Methyl-2-pentanone	89		92		59-130	3		20
2-Hexanone	86		91		57-130	6		20
Ethyl methacrylate	91		100		70-130	9		20
Acrolein	94		100		70-130	6		20
Acrylonitrile	100		110		70-130	10		20
Bromochloromethane	100		100		70-130	0		20
Tetrahydrofuran	120		100		58-130	18		20
2,2-Dichloropropane	100		100		63-133	0		20
1,2-Dibromoethane	94		94		70-130	0		20
1,3-Dichloropropane	96		98		70-130	2		20
1,1,1,2-Tetrachloroethane	90		92		64-130	2		20
Bromobenzene	91		90		70-130	1		20
n-Butylbenzene	100		100		53-136	0		20
sec-Butylbenzene	92		92		70-130	0		20
tert-Butylbenzene	90		88		70-130	2		20
o-Chlorotoluene	95		95		70-130	0		20
p-Chlorotoluene	92		94		70-130	2		20

Lab Number: L1634100

Project Name:

FIRST ST. P.U.D PARCEL A

Project Number: 5863

Report Date: 10/28/16

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
Volatile Organics by GC/MS - Westborou	ugh Lab Associated	sample(s): 0	1 Batch: WG	945968-3	WG945968-4			
1,2-Dibromo-3-chloropropane	88		87		41-144	1	20	
Hexachlorobutadiene	99		95		63-130	4	20	
Isopropylbenzene	96		94		70-130	2	20	
p-Isopropyltoluene	93		95		70-130	2	20	
Naphthalene	97		100		70-130	3	20	
n-Propylbenzene	92		96		69-130	4	20	
1,2,3-Trichlorobenzene	92		95		70-130	3	20	
1,2,4-Trichlorobenzene	94		97		70-130	3	20	
1,3,5-Trimethylbenzene	95		92		64-130	3	20	
1,3,5-Trichlorobenzene	92		92		70-130	0	20	
1,2,4-Trimethylbenzene	96		95		70-130	1	20	
trans-1,4-Dichloro-2-butene	48	Q	55	Q	70-130	14	20	
Halothane	100		100		70-130	0	20	
Ethyl ether	110		110		59-134	0	20	
Methyl Acetate	100		110		70-130	10	20	
Ethyl Acetate	99		100		70-130	1	20	
Isopropyl Ether	100		110		70-130	10	20	
Cyclohexane	100		110		70-130	10	20	
Tert-Butyl Alcohol	98		94		70-130	4	20	
Ethyl-Tert-Butyl-Ether	98		100		70-130	2	20	
Tertiary-Amyl Methyl Ether	96		100		66-130	4	20	

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863 Lab Number: L1634100 Report Date: 10/28/16

Parameter	LCS %Recovery	Qual	LCSD %Recove	ery Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	b Associated	sample(s):	01 Batch:	WG945968-3	WG945968-4				
1,4-Dioxane	100		102		56-162	2		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		110		70-130	0		20	
Methyl cyclohexane	100		100		70-130	0		20	
p-Diethylbenzene	97		92		70-130	5		20	
4-Ethyltoluene	94		93		70-130	1		20	
1,2,4,5-Tetramethylbenzene	98		99		70-130	1		20	

	LCS	LCS			Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	99		107		70-130	
Toluene-d8	99		97		70-130	
4-Bromofluorobenzene	97		100		70-130	
Dibromofluoromethane	104		106		70-130	

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 0	1 Batch: WG	945968-8	WG945968-9				
Vinyl chloride	120		110		55-140	9		20	
Trichloroethene	100		96		70-130	4		25	
cis-1,2-Dichloroethene	100		97		70-130	3		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	113		116		70-130	
Toluene-d8	99		98		70-130	
4-Bromofluorobenzene	88		86		70-130	
Dibromofluoromethane	106		107		70-130	

Matrix Spike Analysis

Project Name:	FIRST ST. P.U.D PARCEL A	Batch Quality Control	Lab Number:	L1634100
Project Number:	5863		Report Date:	10/28/16

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	<u>Column</u>
Microextractables by GC -	Westborough Lab	Associate	ed sample(s): 0 ²	1 QC Batch	ID: WG94	15966-3	QC Sample: L	1634100)-01 Clier	nt ID: B-	1 (OW)		
1,2-Dibromoethane	ND	0.283	0.314	111		-	-		70-130	-		20	А
1,2-Dibromo-3-chloropropane	ND	0.283	0.291	103		-	-		70-130	-		20	А

SEMIVOLATILES

		Serial_N	o:10281611:45
Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16
	SAMPLE RESULTS		
Lab ID:	L1634100-01	Date Collected:	10/21/16 15:00
Client ID:	B-1 (OW)	Date Received:	10/21/16
Sample Location:	121 FIRST ST. CAMBRIDGE	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D	Extraction Date:	10/24/16 15:40
Analytical Date:	10/26/16 13:38		
Analyst:	PS		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1

						Serial_N	o:10281611:45	
Project Name:	FIRST ST. P.U.D PA	RCEL A			Lab Nu	mber:	L1634100	
Project Number:	5863				Report	Date:	10/28/16	
-		SAMP		S	-			
Lab ID: Client ID: Sample Location:	L1634100-01 B-1 (OW) 121 FIRST ST. CAM	1BRIDGE			Date Co Date Re Field Pre	llected: ceived: ep:	10/21/16 15:00 10/21/16 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westbo	orough Lab						
4-Nitroaniline		ND		ug/l	5.0		1	
Dibenzofuran		ND		ug/l	2.0		1	
n-Nitrosodimethylamine		ND		ug/l	2.0		1	
2,4,6-Trichlorophenol		ND		ug/l	5.0		1	
p-Chloro-m-cresol		ND		ug/l	2.0		1	
2-Chlorophenol		ND		ug/l	2.0		1	
2,4-Dichlorophenol		ND		ug/l	5.0		1	
2,4-Dimethylphenol		ND		ug/l	5.0		1	
2-Nitrophenol		ND		ug/l	10		1	
4-Nitrophenol		ND		ug/l	10		1	
2,4-Dinitrophenol		ND		ug/l	20		1	
4,6-Dinitro-o-cresol		ND		ug/l	10		1	
Phenol		ND		ug/l	5.0		1	
2-Methylphenol		ND		ug/l	5.0		1	
3-Methylphenol/4-Methylp	phenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol		ND		ug/l	5.0		1	
Benzoic Acid		ND		ug/l	50		1	
Benzyl Alcohol		ND		ug/l	2.0		1	
Carbazole		ND		ug/l	2.0		1	
Pyridine		ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	59	21-120
Phenol-d6	39	10-120
Nitrobenzene-d5	91	23-120
2-Fluorobiphenyl	89	15-120
2,4,6-Tribromophenol	100	10-120
4-Terphenyl-d14	88	41-149

		Serial_N	o:10281611:45
Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16
	SAMPLE RESULTS		
Lab ID:	L1634100-01	Date Collected:	10/21/16 15:00
Client ID:	B-1 (OW)	Date Received:	10/21/16
Sample Location:	121 FIRST ST. CAMBRIDGE	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date:	10/24/16 15:49
Analytical Date:	10/27/16 02:55		
Analyst:	KV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S-SIM - Westborough La	b				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.20		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.20		1
Benzo(a)anthracene	ND		ug/l	0.20		1
Benzo(a)pyrene	ND		ug/l	0.20		1
Benzo(b)fluoranthene	ND		ug/l	0.20		1
Benzo(k)fluoranthene	ND		ug/l	0.20		1
Chrysene	ND		ug/l	0.20		1
Acenaphthylene	ND		ug/l	0.20		1
Anthracene	ND		ug/l	0.20		1
Benzo(ghi)perylene	ND		ug/l	0.20		1
Fluorene	ND		ug/l	0.20		1
Phenanthrene	ND		ug/l	0.20		1
Dibenzo(a,h)anthracene	ND		ug/l	0.20		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20		1
Pyrene	ND		ug/l	0.20		1
1-Methylnaphthalene	ND		ug/l	0.20		1
2-Methylnaphthalene	ND		ug/l	0.20		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

					Se	erial_No	o:10281611:45
Project Name:	FIRST ST. P.U.D PARCE	EL A			Lab Num	nber:	L1634100
Project Number:	5863				Report D	Date:	10/28/16
		SAMP	LE RESULTS	5			
Lab ID:	L1634100-01				Date Colle	ected:	10/21/16 15:00
Client ID:	B-1 (OW)				Date Rece	eived:	10/21/16
Sample Location:	121 FIRST ST. CAMBR	IDGE			Field Prep	:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Comivalatila Orman	ing hy CC/MC CIMA Manth		- h-				

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	53		21-120	
Phenol-d6	26		10-120	
Nitrobenzene-d5	81		23-120	
2-Fluorobiphenyl	97		15-120	
2,4,6-Tribromophenol	181	Q	10-120	
4-Terphenyl-d14	113		41-149	

Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8270D	
Analytical Date:	10/25/16 12:05	
Analyst:	PS	

Extraction Method: EPA 3510C Extraction Date: 10/24/16 15:40

Parameter	Result	Qualifier U	nits	RL	MDL
Semivolatile Organics by GC/MS	- Westboroug	h Lab for sam	ple(s): 01	Batch:	WG945198-1
Benzidine	ND		ug/l	20	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	
1,2-Dichlorobenzene	ND		ug/l	2.0	
1,3-Dichlorobenzene	ND		ug/l	2.0	
1,4-Dichlorobenzene	ND		ug/l	2.0	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	
2,4-Dinitrotoluene	ND		ug/l	5.0	
2.6-Dinitrotoluene	ND		ua/l	5.0	
Azobenzene	ND		ua/l	2.0	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	
Hexachlorocyclopentadiene	ND		ug/l	20	
Isophorone	ND		ug/l	5.0	
Nitrobenzene	ND		ua/l	2.0	
NDPA/DPA	ND		ug/l	2.0	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	
Butyl benzyl phthalate	ND		ug/l	5.0	
Di-n-butylphthalate	ND		ug/l	5.0	
Di-n-octylphthalate	ND		ug/l	5.0	
Diethyl phthalate	ND		ug/l	5.0	
Dimethyl phthalate	ND		ug/l	5.0	
Biphenyl	ND		ug/l	2.0	
4-Chloroaniline	ND		ug/l	5.0	
2-Nitroaniline	ND		ug/l	5.0	
3-Nitroaniline	ND		ug/l	5.0	

Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	
Analytical Date:	10/25/16 12:05	
Analyst:	PS	

Extraction Method: EPA 3510C Extraction Date: 10/24/16 15:40

Result	Qualifier	Units		RL	MDL
Westborough	h Lab for s	ample(s):	01	Batch:	WG945198-1
ND		ug/l		5.0	
ND		ug/l		2.0	
ND		ug/l		2.0	
ND		ug/l		5.0	
ND		ug/l		2.0	
ND		ug/l		2.0	
ND		ug/l		5.0	
ND		ug/l		5.0	
ND		ug/l		10	
ND		ug/l		10	
ND		ug/l		20	
ND		ug/l		10	
ND		ug/l		5.0	
ND		ug/l		5.0	
ND		ug/l		5.0	
ND		ug/l		5.0	
ND		ug/l		50	
ND		ug/l		2.0	
ND		ug/l		2.0	
	Result Westborough ND ND	Result Qualifier Westborough Lab for so ND Image: Some some some some some some some some s	ResultQualifierUnitsWestboroughLab for sample(s):NDug/ <t< td=""><td>ResultQualifierUnitsWestborough Lab for sample(s):01NDug/l</td><td>Result Qualifier Units RL Westborough Lab for sample(s): 01 Batch: ND ug/l 5.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 <t< td=""></t<></td></t<>	ResultQualifierUnitsWestborough Lab for sample(s):01NDug/l	Result Qualifier Units RL Westborough Lab for sample(s): 01 Batch: ND ug/l 5.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 <t< td=""></t<>

Tentatively Identified Compounds

Unknown

ug/l

J

Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16
	Method Blank Analysis Batch Quality Control		
Analytical Method:	1 8270D	Extraction Method	· FPA 3510C

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	10/25/16 12:05	Extraction Date:	10/24/16 15:40
Analyst:	PS		

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS - V	Vestborough	Lab for sa	mple(s): 01	Batch:	WG945198-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	25	21-120
Phenol-d6	17	10-120
Nitrobenzene-d5	45	23-120
2-Fluorobiphenyl	51	15-120
2,4,6-Tribromophenol	55	10-120
4-Terphenyl-d14	72	41-149

Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	10/25/16 11:42	Extraction Date:	10/24/16 15:45
Analyst:	KV		

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab	for sample	e(s): 01 E	Batch: WG945200-1
Acenaphthene	ND		ug/l	0.10	
2-Chloronaphthalene	ND		ug/l	0.20	
Fluoranthene	ND		ug/l	0.20	
Hexachlorobutadiene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.20	
Benzo(a)anthracene	ND		ug/l	0.20	
Benzo(a)pyrene	ND		ug/l	0.20	
Benzo(b)fluoranthene	ND		ug/l	0.20	
Benzo(k)fluoranthene	ND		ug/l	0.20	
Chrysene	ND		ug/l	0.20	
Acenaphthylene	ND		ug/l	0.20	
Anthracene	ND		ug/l	0.20	
Benzo(ghi)perylene	ND		ug/l	0.20	
Fluorene	ND		ug/l	0.20	
Phenanthrene	ND		ug/l	0.20	
Dibenzo(a,h)anthracene	ND		ug/l	0.20	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	
Pyrene	ND		ug/l	0.20	
1-Methylnaphthalene	ND		ug/l	0.20	
2-Methylnaphthalene	ND		ug/l	0.20	
Pentachlorophenol	ND		ug/l	0.80	
Hexachlorobenzene	ND		ug/l	0.80	
Hexachloroethane	ND		ug/l	0.80	

Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100	
Project Number:	5863	Report Date:	10/28/16	
	Method Blank Analysis Batch Quality Control			
Analytical Method: Analytical Date:	1,8270D-SIM 10/25/16 11:42	Extraction Method: Extraction Date:	EPA 3510C 10/24/16 15:45	

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-SI	M - Westbord	ough Lab f	or sample(s):	01	Batch: WG945200-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	30	21-120
Phenol-d6	21	10-120
Nitrobenzene-d5	54	23-120
2-Fluorobiphenyl	62	15-120
2,4,6-Tribromophenol	64	10-120
4-Terphenyl-d14	87	41-149

Analyst:

ΚV

Lab Number: L1634100 Report Date: 10/28/16

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

	LCS	LCSD		%Recovery		RPD	
Parameter	%Recovery Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
Semivolatile Organics by GC/MS	- Westborough Lab Associated sample(s): 01 Batch:	WG945198-2	WG945198-3			
Benzidine	9 Q	8	Q	10-75	10	30	
1,2,4-Trichlorobenzene	59	57		39-98	3	30	
Bis(2-chloroethyl)ether	71	69		40-140	3	30	
1,2-Dichlorobenzene	57	55		40-140	4	30	
1,3-Dichlorobenzene	55	52		40-140	6	30	
1,4-Dichlorobenzene	54	54		36-97	0	30	
3,3'-Dichlorobenzidine	67	68		40-140	1	30	
2,4-Dinitrotoluene	74	72		24-96	3	30	
2,6-Dinitrotoluene	76	74		40-140	3	30	
Azobenzene	79	78		40-140	1	30	
4-Chlorophenyl phenyl ether	70	69		40-140	1	30	
4-Bromophenyl phenyl ether	72	71		40-140	1	30	
Bis(2-chloroisopropyl)ether	66	63		40-140	5	30	
Bis(2-chloroethoxy)methane	74	74		40-140	0	30	
Hexachlorocyclopentadiene	65	63		40-140	3	30	
Isophorone	78	76		40-140	3	30	
Nitrobenzene	75	72		40-140	4	30	
NDPA/DPA	70	70		40-140	0	30	
n-Nitrosodi-n-propylamine	78	76		29-132	3	30	
Bis(2-ethylhexyl)phthalate	85	86		40-140	1	30	
Butyl benzyl phthalate	84	78		40-140	7	30	

Project Number: 5863

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS -	Westborough Lab Associated s	ample(s): 01 Batch:	WG945198-2 WG945198-3		
Di-n-butylphthalate	80	77	40-140	4	30
Di-n-octylphthalate	88	85	40-140	3	30
Diethyl phthalate	74	73	40-140	1	30
Dimethyl phthalate	75	75	40-140	0	30
Biphenyl	75	73	40-140	3	30
4-Chloroaniline	53	49	40-140	8	30
2-Nitroaniline	73	76	52-143	4	30
3-Nitroaniline	54	55	25-145	2	30
4-Nitroaniline	66	64	51-143	3	30
Dibenzofuran	69	68	40-140	1	30
1,2,4,5-Tetrachlorobenzene	73	70	2-134	4	30
Acetophenone	84	80	39-129	5	30
n-Nitrosodimethylamine	40	40	22-74	0	30
2,4,6-Trichlorophenol	74	77	30-130	4	30
p-Chloro-m-cresol	80	80	23-97	0	30
2-Chlorophenol	67	66	27-123	2	30
2,4-Dichlorophenol	75	75	30-130	0	30
2,4-Dimethylphenol	87	82	30-130	6	30
2-Nitrophenol	69	70	30-130	1	30
4-Nitrophenol	54	58	10-80	7	30
2,4-Dinitrophenol	62	62	20-130	0	30

Project Number: 5863

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - We	estborough Lab Associated sample(s)	: 01 Batch:	WG945198-2	2 WG945198-3				
4,6-Dinitro-o-cresol	71	70		20-164	1		30	
Phenol	32	35		12-110	9		30	
2-Methylphenol	66	66		30-130	0		30	
3-Methylphenol/4-Methylphenol	60	66		30-130	10		30	
2,4,5-Trichlorophenol	78	77		30-130	1		30	
Benzoic Acid	27	26		10-164	4		30	
Benzyl Alcohol	61	60		26-116	2		30	
Carbazole	74	70		55-144	6		30	
Parathion, ethyl	104	98		40-140	6		30	
Atrazine	104	101		40-140	3		30	
Caprolactam	23	27		10-130	16		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	51		52		21-120	
Phenol-d6	37		38		10-120	
Nitrobenzene-d5	76		73		23-120	
2-Fluorobiphenyl	74		71		15-120	
2,4,6-Tribromophenol	69		68		10-120	
4-Terphenyl-d14	72		67		41-149	

Project Number: 5863

Parameter	LCS %Recovery	L Qual %Re	CSD ecovery	%Rec Qual Lir	covery nits RPD	RPD Qual Limit	s
Semivolatile Organics by GC/MS-SIM	- Westborough Lab Ass	ociated sample(s):	01 Batc	h: WG945200-2	WG945200-3		
Acenaphthene	96		99	37-	111 3	40	
2-Chloronaphthalene	93		95	40-	140 2	40	
Fluoranthene	106		109	40-	140 3	40	
Hexachlorobutadiene	73		76	40-	140 4	40	
Naphthalene	87		88	40-	140 1	40	
Benzo(a)anthracene	107		107	40-	140 0	40	
Benzo(a)pyrene	98		99	40-	140 1	40	
Benzo(b)fluoranthene	90		89	40-	140 1	40	
Benzo(k)fluoranthene	100		103	40-	140 3	40	
Chrysene	99		100	40-	140 1	40	
Acenaphthylene	103		105	40-	140 2	40	
Anthracene	108		111	40-	140 3	40	
Benzo(ghi)perylene	112		113	40-	140 1	40	
Fluorene	102		104	40-	140 2	40	
Phenanthrene	96		99	40-	140 3	40	
Dibenzo(a,h)anthracene	103		102	40-	140 1	40	
Indeno(1,2,3-cd)pyrene	102		102	40-	140 0	40	
Pyrene	96		98	26-	127 2	40	
1-Methylnaphthalene	88		92	40-	140 4	40	
2-Methylnaphthalene	91		94	40-	140 3	40	
Pentachlorophenol	84		85	9-1	103 1	40	

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

	LCS		LCSD	%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual Limits	RPD	Qual Limits	
Semivolatile Organics by GC/MS-SIM - West	orough Lab As	sociated samp	le(s): 01 Batch	n: WG945200-2 WG94520	0-3		
	05		20	10,110	0	10	
Hexachiorobenzene	95		98	40-140	3	40	
Hexachloroethane	77		81	40-140	5	40	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Eluorophenol	47		50		21-120	
Phenol-d6	33		34		10-120	
Nitrobenzene-d5	91		92		23-120	
2-Fluorobiphenyl	77		80		15-120	
2,4,6-Tribromophenol	80		81		10-120	
4-Terphenyl-d14	82		86		41-149	

PCBS

		Serial_No	0:10281611:45
Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16
	SAMPLE RESULTS		
Lab ID:	L1634100-01	Date Collected:	10/21/16 15:00
Client ID:	B-1 (OW)	Date Received:	10/21/16
Sample Location:	121 FIRST ST. CAMBRIDGE	Field Prep:	Not Specified
Matrix:	Water	Extraction Method	1:EPA 608
Analytical Method:	5,608	Extraction Date:	10/26/16 08:49
Analytical Date:	10/27/16 00:54	Cleanup Method:	EPA 3665A
Analyst:	JW	Cleanup Date:	10/26/16
		Cleanup Method:	EPA 3660B
		Cleanup Date:	10/26/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by C	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	A
Aroclor 1221	ND		ug/l	0.250		1	А
Aroclor 1232	ND		ug/l	0.250		1	А
Aroclor 1242	ND		ug/l	0.250		1	А
Aroclor 1248	ND		ug/l	0.250		1	А
Aroclor 1254	ND		ug/l	0.250		1	А
Aroclor 1260	ND		ug/l	0.200		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	96		30-150	А
Decachlorobiphenyl	68		30-150	А

Project Name:	FIRST ST. P.U.D PARCEL A	Lab Number:	L1634100
Project Number:	5863	Report Date:	10/28/16

Method Blank Analysis Batch Quality Control

Analytical Method:
Analytical Date:
Analyst:

5,608 10/27/16 01:34 JW Extraction Method:EPA 608Extraction Date:10/26/16 08:49Cleanup Method:EPA 3665ACleanup Date:10/26/16Cleanup Method:EPA 3660BCleanup Date:10/26/16

Parameter	Result	Qualifier Units	RL	MDL	Column
Polychlorinated Biphenyls	by GC - Westborough	Lab for sample(s)	: 01 Batch:	WG945889-	1
Aroclor 1016	ND	ug/l	0.250		А
Aroclor 1221	ND	ug/l	0.250		А
Aroclor 1232	ND	ug/l	0.250		А
Aroclor 1242	ND	ug/l	0.250		А
Aroclor 1248	ND	ug/l	0.250		А
Aroclor 1254	ND	ug/l	0.250		А
Aroclor 1260	ND	ug/l	0.200		А

			Acceptance	;
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	88		30-150	A
Decachlorobiphenyl	80		30-150	А

Matrix Spike Analysis

Project Name:	FIRST ST. P.U.D PARCEL A	Batch Quality Control	Lab Number:	L1634100
Project Number:	5863		Report Date:	10/28/16

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	y Qual	Found	%Recovery	/ Qual	Limits	RPD	Qual	Limits	<u>Column</u>
Polychlorinated Biphenyls by C	GC - Westbor	ough Lab	Associated san	nple(s): 01	QC Batch I	D: WG9458	889-3 QC S	Sample:	L1600010-1 ²	17 Clie	ent ID:	MS Samp	le
Aroclor 1016	ND	1	0.725	72		-	-		40-140	-		50	А
Aroclor 1260	ND	1	0.513	51		-	-		40-140	-		50	А

	MS	;	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	89				30-150	А
Decachlorobiphenyl	70				30-150	А

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

	LCS		LCSD		%Recovery			RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column	
Polychlorinated Biphenyls by GC - Westboro	igh Lab Associa	ited sample(s)	: 01 Batch:	WG945889-2						
A 1 1010	100				10.1.10			50		
Aroclor 1016	108		-		40-140	-		50	A	
Aroclor 1260	79		-		40-140	-		50	А	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	99				30-150	А
Decachlorobiphenyl	83				30-150	А

Lab Duplicate Analysis Batch Quality Control

Project Name: FIRST ST. P.U.D PARCEL A

Lab Number: L1634100 10/28/16 Report Date:

Project Number: 5863

Parameter	Native Sample	Duplicate Samp	le Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s):	01 QC Batch ID:	WG945889-4	QC Sample:	L1600010-117	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		50	А
Aroclor 1221	ND	ND	ug/l	NC		50	А
Aroclor 1232	ND	ND	ug/l	NC		50	А
Aroclor 1242	ND	ND	ug/l	NC		50	А
Aroclor 1248	ND	ND	ug/l	NC		50	А
Aroclor 1254	ND	ND	ug/l	NC		50	А
Aroclor 1260	ND	ND	ug/l	NC		50	А

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	92		96		30-150	А
Decachlorobiphenyl	84		74		30-150	А

METALS

Serial_No:10281611:45

Project Name:	FIRST ST. P.U.D PARCEL A		Lab Num	ber:	L1634	100		
Project Number:	5863		Report Da	ate:	10/28/	16		
SAMPLE RESULTS								
Lab ID:	L1634100-01		Date Colle	ected:	10/21/	16 15:00		
Client ID:	B-1 (OW)		Date Rece	eived:	10/21/	16		
Sample Location:	121 FIRST ST. CAMBRIDGE		Field Prep):	Not Sp	ecified		
Matrix:	Water							
		Dilution	Date	Date	Prep	Analytical		

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Ma	nsfield Lab										
Antimony, Total	ND		mg/l	0.0040		1	10/26/16 15:30	10/27/16 09:31	EPA 3005A	1,6020A	AM
Arsenic, Total	ND		mg/l	0.0005		1	10/26/16 15:30	10/27/16 09:31	EPA 3005A	1,6020A	AM
Cadmium, Total	ND		mg/l	0.0002		1	10/26/16 15:30	10/27/16 09:31	EPA 3005A	1,6020A	AM
Chromium, Total	ND		mg/l	0.0010		1	10/26/16 15:30	10/27/16 09:31	EPA 3005A	1,6020A	AM
Copper, Total	0.0021		mg/l	0.0010		1	10/26/16 15:30	10/27/16 09:31	EPA 3005A	1,6020A	AM
Iron, Total	4.38		mg/l	0.050		1	10/26/16 15:30	10/27/16 03:54	EPA 3005A	19,200.7	FB
Lead, Total	0.002		mg/l	0.0005		1	10/26/16 15:30	10/27/16 09:31	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020		1	10/26/16 11:41	10/26/16 19:02	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.0020		1	10/26/16 15:30	10/27/16 09:31	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	10/26/16 15:30	10/27/16 09:31	EPA 3005A	1,6020A	AM
Silver, Total	ND		mg/l	0.0004		1	10/26/16 15:30	10/27/16 09:31	EPA 3005A	1,6020A	AM
Zinc, Total	0.0587		mg/l	0.0100		1	10/26/16 15:30	10/27/16 09:31	EPA 3005A	1,6020A	AM

Project Name:FIRST ST. P.U.D PARCEL AProject Number:5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s): 0	1 Batch	: WG94	5926-1					
Mercury, Total	ND	mg/l	0.0002		1	10/26/16 11:41	10/26/16 18:14	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG94	6032-1					
Antimony, Total	ND	mg/l	0.0040		1	10/26/16 15:30	10/27/16 09:07	1,6020A	AM
Arsenic, Total	ND	mg/l	0.0005		1	10/26/16 15:30	10/27/16 09:07	1,6020A	AM
Cadmium, Total	ND	mg/l	0.0002		1	10/26/16 15:30	10/27/16 09:07	1,6020A	AM
Chromium, Total	ND	mg/l	0.0010		1	10/26/16 15:30	10/27/16 09:07	1,6020A	AM
Copper, Total	ND	mg/l	0.0010		1	10/26/16 15:30	10/27/16 09:07	1,6020A	AM
Lead, Total	ND	mg/l	0.0005		1	10/26/16 15:30	10/27/16 09:07	1,6020A	AM
Nickel, Total	ND	mg/l	0.0020		1	10/26/16 15:30	10/27/16 09:07	1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	10/26/16 15:30	10/27/16 09:07	1,6020A	AM
Silver, Total	ND	mg/l	0.0004		1	10/26/16 15:30	10/27/16 09:07	1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	10/26/16 15:30	10/27/16 09:07	1,6020A	AM

Prep	Information
1 ICP	mormation

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield I	Lab for sample(s): 0	1 Batch:	: WG94	6034-1					
Iron, Total	ND	mg/l	0.050		1	10/26/16 15:30	10/27/16 04:15	19,200.7	FB

Prep Information

Digestion Method: EPA 3005A

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG945926-2				
Mercury, Total	111	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG946032-2				
Antimony, Total	106	-	80-120	-		
Arsenic, Total	101	-	80-120	-		
Cadmium, Total	104	-	80-120	-		
Chromium, Total	102	-	80-120	-		
Copper, Total	107	-	80-120	-		
Lead, Total	104	-	80-120	-		
Nickel, Total	108	-	80-120	-		
Selenium, Total	100	-	80-120	-		
Silver, Total	105	-	80-120	-		
Zinc, Total	100	-	80-120	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG946034-2				
Iron, Total	99	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch ID:	WG945926-3	3 Q	C Sample:	L1633732-01	Client I	D: MS Sar	nple		
Mercury, Total	ND	0.005	0.0052	104		-	-		70-130	-		20
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch ID:	WG945926-	5 Q	C Sample:	L1634366-01	Client I	D: MS Sar	nple		
Mercury, Total	0.00105	0.005	0.0060	98		-	-		70-130	-		20
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch ID:	WG946032-	3 Q	C Sample:	L1634031-01	Client I	D: MS Sar	nple		
Antimony, Total	ND	0.5	0.5673	113		-	-		75-125	-		20
Arsenic, Total	ND	0.12	0.1201	100		-	-		75-125	-		20
Cadmium, Total	ND	0.051	0.0504	99		-	-		75-125	-		20
Chromium, Total	ND	0.2	0.1924	96		-	-		75-125	-		20
Copper, Total	0.0029	0.25	0.2561	101		-	-		75-125	-		20
Lead, Total	ND	0.51	0.5064	99		-	-		75-125	-		20
Nickel, Total	ND	0.5	0.5049	101		-	-		75-125	-		20
Selenium, Total	ND	0.12	0.118	98		-	-		75-125	-		20
Silver, Total	ND	0.05	0.0497	99		-	-		75-125	-		20
Zinc, Total	ND	0.5	0.4855	97		-	-		75-125	-		20
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch ID:	WG946034-	3 Q	C Sample:	L1634031-01	Client I	D: MS Sar	nple		
Iron, Total	ND	1	0.962	96		-	-		75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: FIRST ST. P.U.D PARCEL A

5863

Project Number:

Lab Number: Report Date:

L1634100 10/28/16

Native Sample Duplicate Sample RPD Limits Units RPD Qual Parameter QC Batch ID: WG945926-4 QC Sample: L1633732-01 Client ID: DUP Sample Total Metals - Mansfield Lab Associated sample(s): 01 Mercury, Total ND ND mg/l NC 20 Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG945926-6 QC Sample: L1634366-01 Client ID: DUP Sample Mercury, Total 0.00105 0.0011 20 mg/l 8 Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG946032-4 QC Sample: L1634031-01 Client ID: DUP Sample NC 20 Antimony, Total ND ND mg/l ND ND NC 20 Arsenic, Total mg/l NC Cadmium, Total ND ND mg/l 20 NC 20 Chromium, Total ND ND mg/l Copper, Total 0.0029 0.0024 16 20 mg/l Lead, Total ND ND NC 20 mg/l Nickel, Total ND ND NC 20 mg/l Selenium, Total ND NC 20 ND mg/l Silver, Total NC 20 ND ND mg/l Zinc, Total ND ND NC 20 mg/l Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG946034-4 QC Sample: L1634031-01 Client ID: DUP Sample Iron, Total ND ND mg/l NC 20

INORGANICS & MISCELLANEOUS

Serial_No:10281611:45

Project Name:	FIRST ST. P.U.D PARCEL A
Project Number:	5863

Lab Number: L1634100 Report Date: 10/28/16

SAMPLE RESULTS

Lab ID:	L1634100-01	Date Collected:	10/21/16 15:00
Client ID:	B-1 (OW)	Date Received:	10/21/16
Sample Location:	121 FIRST ST. CAMBRIDGE	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Solids, Total Suspended	14.		mg/l	5.0	NA	1	-	10/26/16 13:35	121,2540D	SG
Cyanide, Total	ND		mg/l	0.005		1	10/24/16 14:25	10/25/16 12:56	121,4500CN-CE	JO
Chlorine, Total Residual	ND		mg/l	0.02		1	-	10/21/16 22:30	121,4500CL-D	AS
Nitrogen, Ammonia	2.98		mg/l	0.075		1	10/25/16 21:30	10/26/16 22:35	121,4500NH3-BH	I AT
TPH, SGT-HEM	ND		mg/l	4.40		1.1	10/25/16 17:00	10/25/16 22:40	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	10/25/16 09:34	10/25/16 13:39	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010		1	10/22/16 00:56	10/22/16 01:14	121,3500CR-B	JC
Anions by Ion Chromato	graphy - West	borough	Lab							
Chloride	1610		mg/l	25.0		50	-	10/24/16 20:41	44,300.0	AU

Project Name:FIRST ST. P.U.D PARCEL AProject Number:5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG94	14649-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	10/21/16 22:30	121,4500CL-D	AS
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG94	44656-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	10/22/16 00:56	10/22/16 01:14	121,3500CR-B	JC
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG94	44735-1				
Cyanide, Total	ND		mg/l	0.005		1	10/24/16 14:25	10/25/16 12:40	121,4500CN-CE	JO
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG94	45455-1				
Phenolics, Total	ND		mg/l	0.030		1	10/25/16 09:34	10/25/16 13:23	4,420.1	AW
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG94	45640-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	10/25/16 17:00	10/25/16 22:40	74,1664A	ML
Anions by Ion Chrom	atography - Westb	orough	Lab for sar	nple(s):	01 E	Batch: WG9	45711-1			
Chloride	ND		mg/l	0.500		1	-	10/24/16 17:11	44,300.0	AU
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG94	45718-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	10/25/16 21:30	10/26/16 22:12	121,4500NH3-BH	H AT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG94	45853-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	10/26/16 13:35	121,2540D	SG

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

Parameter	LCS %Recovery	Qual	LCSD NRecovery Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 01	Batch: WG944649-2					
Chlorine, Total Residual	105		-	90-110	-			
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 01	Batch: WG944656-2					
Chromium, Hexavalent	103			85-115	-		20	
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 01	Batch: WG944735-2					
Cyanide, Total	91		-	90-110	-			
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 01	Batch: WG945455-2					
Phenolics, Total	94		-	70-130	-			
General Chemistry - Westborough Lab Asso	ociated sample(s)	: 01	Batch: WG945640-2					
ТРН	85			64-132	-		34	
Anions by Ion Chromatography - Westborou	gh Lab Associate	d san	nple(s): 01 Batch: WG945711	-2				
Chloride	100		-	90-110	-			
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 01	Batch: WG945718-2					
Nitrogen, Ammonia	98		-	80-120	-		20	

Matrix Spike Analysis

Project Name:	FIRST ST. P.U.D PARCEL A	Batch Quality Control	Lab Number:	L1634100
Project Number:	5863		Report Date:	10/28/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Foun	MSD d %Recov	ery Qual	Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG944656-3	QC Sample: I	_1634100-0	1 Client II	D: B-1 (OW)	
Chromium, Hexavalent	ND	0.1	0.104	104	-	-		85-115	-	20
General Chemistry - Westboro Sample	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG944735-4 \	VG944735-5	QC Sample	: L1633441	-03 Client I	D: MS
Cyanide, Total	0.020	0.2	0.211	95	0.2	03 91		90-110	4	30
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG945455-4	QC Sample: I	_1600010-1	13 Client	ID: MS Sam	ple
Phenolics, Total	ND	0.4	0.41	103	-	-		70-130	-	20
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG945640-4	QC Sample: I	_1633867-0	1 Client II	D: MS Samp	е
ТРН	ND	20	17.9	90	-	-		64-132	-	34
Anions by Ion Chromatography	/ - Westboroug	h Lab Assc	ciated sar	nple(s): 01 Q	C Batch ID: WO	945711-3 G	C Sample:	L1634081-0	02 Client ID	: MS Sam
Chloride	221	100	323	103	-	-		40-151	-	18
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG945718-4	QC Sample: I	_1633732-0	1 Client II	D: MS Samp	le
Nitrogen, Ammonia	0.218	4	4.09	97	-	-		80-120	-	20

29

QC Sample: L1633867-01 Client ID: DUP Sample

3

mg/l

38

Lab Duplicate Analysis Batch Quality Control

Project Name: FIRST ST. P.U.D PARCEL A Project Number:

5863

Lab Number: L1634100 **Report Date:** 10/28/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG944649-3 QC	Sample: L16341	00-01 Client	ID: B-1 (OW)
Chlorine, Total Residual	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG944656-4 QC	Sample: L16341	00-01 Client	ID: B-1 (OW)
Chromium, Hexavalent	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG944735-3 QC	Sample: L16334	41-01 Client	ID: DUP Sample
Cyanide, Total	ND	0.020	mg/l	NC	30
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG945455-3 QC	Sample: L16000)10-113 Clier	nt ID: DUP Sample
Phenolics, Total	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG945640-3 QC	Sample: L16338	67-01 Client	ID: DUP Sample
ТРН	ND	ND	mg/l	NC	34
Anions by Ion Chromatography - Westborough Lab Sample	Associated sample(s): 01 0	QC Batch ID: WG945	711-4 QC Sam	ple: L163408	31-02 Client ID: DUP
Chloride	221	221	mg/l	0	18
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG945718-3 QC	Sample: L16337	32-01 Client	ID: DUP Sample
Nitrogen, Ammonia	0.218	0.214	mg/l	2	20

General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG945853-2

37

Solids, Total Suspended

Serial_No:10281611:45

Project Name: FIRST ST. P.U.D PARCEL A Project Number: 5863

Lab Number: L1634100 Report Date: 10/28/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg Ċ	Pres	Seal	Analysis(*)
L1634100-01A	Vial HCI preserved	А	N/A	2.2	Y	Absent	8260-SIM(14),8260(14)
L1634100-01B	Vial HCI preserved	А	N/A	2.2	Y	Absent	8260-SIM(14),8260(14)
L1634100-01C	Vial HCI preserved	А	N/A	2.2	Y	Absent	8260-SIM(14),8260(14)
L1634100-01D	Vial Na2S2O3 preserved	А	N/A	2.2	Y	Absent	504(14)
L1634100-01E	Vial Na2S2O3 preserved	А	N/A	2.2	Y	Absent	504(14)
L1634100-01F	Plastic 250ml HNO3 preserved	A	<2	2.2	Y	Absent	SE-6020T(180),CR- 6020T(180),NI-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180),HG- U(28),AS-6020T(180),SB- 6020T(180),AG-6020T(180),CD- 6020T(180)
L1634100-01G	Amber 1000ml Na2S2O3	А	8	2.2	Y	Absent	PCB-608(7)
L1634100-01H	Amber 1000ml Na2S2O3	А	8	2.2	Y	Absent	PCB-608(7)
L1634100-01I	Amber 1000ml unpreserved	А	8	2.2	Y	Absent	8270TCL(7),8270TCL-SIM(7)
L1634100-01J	Amber 1000ml unpreserved	А	8	2.2	Y	Absent	8270TCL(7),8270TCL-SIM(7)
L1634100-01K	Plastic 950ml unpreserved	A	8	2.2	Y	Absent	CL-300(28),HEXCR- 3500(1),TRC-4500(1)
L1634100-01L	Plastic 250ml NaOH preserved	А	>12	2.2	Y	Absent	TCN-4500(14)
L1634100-01M	Amber 1000ml HCI preserved	А	N/A	2.2	Y	Absent	TPH-1664(28)
L1634100-01N	Amber 1000ml HCI preserved	А	N/A	2.2	Y	Absent	TPH-1664(28)
L1634100-01P	Amber 950ml H2SO4 preserved	А	<2	2.2	Y	Absent	TPHENOL-420(28)
L1634100-01Q	Plastic 950ml unpreserved	А	8	2.2	Y	Absent	TSS-2540(7)
L1634100-01X	Plastic 500ml H2SO4 preserved sp	А	<2	2.2	Y	Absent	NH3-4500(28)

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

Lab Number: L1634100

Report Date: 10/28/16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TIC	Tentetively Identified Compound: A compound that has been identified to be present and is not not of the target compound

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected

Report Format: Data Usability Report

Serial_No:10281611:45

Project Name: FIRST ST. P.U.D PARCEL A

Project Number: 5863

Lab Number: L1634100

Report Date: 10/28/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:FIRST ST. P.U.D PARCEL AProject Number:5863

 Lab Number:
 L1634100

 Report Date:
 10/28/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B*

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

												e.				Seri	al_No	o:1028	1611:45	
Дерна	CHAI	N OF CI	JSTO	DY	PAGE	_OF_1	- Date	e Rec'd	in Lat	p: L(sla	211	16		ALP	HA J	ob #:	11	3410	D
8 Walkup Drive	320 Forbes Blvd	Proje	ct Informa	tion			Rep	oort In	forma	tion	- Data	n Deliv	erable	es	Billir	ng Inf	orma	tion		
Westboro, MA 0 Tel: 508-898-92	11581 Mansfield, MA 0204 220 Tel: 508-822-9300	⁸ Project	Name: Fr	3751.8	U.D. Pa	ruel A		DEx		ΠE	MAIL				⊐ Sam	ne as (Client i	nfo PO	D #:	
Client Informatio	n	Project	Location: 12	1 first	of Ca	mbridge	Reg	gulator	ry Red	quire	nents	s &	Proje	ect Inf	orma	tion F	Requi	rement	s	
Client: McPh	a) Associate	5 Project	#: 58	63		0		es 🗆 No	MAN	ACP A	nalytic	al Meth	ods	000		Yes 🗆	No C	TRCP	Analytical Met	nods
Address: 2269	1 MAOSA	Project	Manager:	Scott	Smit	h			GW1	Stand	lards (Info Re	quired	for Me	Requir tals &	rea for EPH v	vith Ta	inorgani rgets)	cs)	
Cambred	ae MA	ALPH	A Quote #:			-	- □ Ye ⊠ Ot	es 🗆 No her Sta	o NPD ite /Fec	ES RO	3P Jram	EP	A	26	P	Crite	ria			
Phone: 617- 8	368-1410	Turn	-Around Ti	me			5	/	1	/ 4		1.1	1	1	/ /		/	11	/	
Email:							1	/	/	RCP	pp13	hino /	SES /	/ ,	/ /	/				
Additional Pi	roject Informatio	n: Date	Due:	I RUSH (only	confirmed il pre-aµ	oproved!)	CB260 ANALYSIC	: D ABN 054 D524.2	LS: DMCP 13 C.	LS: D RCRAS DACP 14 C	Ranges & Targets [] B.	B DPEST Ranges Range	DQuant Only DFin	6 Rap "gerprint					SAMPLE INI Filtration Field Lab to do Preservation Lab to do	= 0 T A B B O T T
ALPHA Lab ID (Lab Use Only)	Sample	e ID	Coll	ection	Sample Matrix	Sampler		SVOC	IETA	Ha	Ha	Dec		7 /	/					E
34100-01	B-1 (m)		Jolei	15200	1	M//S	/ /		- / ~			-/-		/_/		+	$\frac{1}{1}$	San	ple Commen	ts S
			10/21	10,00	6 VU	MGS			+				X			+	+	-		16
									+		_									
									-											
			~																	
																				_
	64 - S																			
													+							
															-					+
Container Tree	Proconcitivo	1 400																		
P= Plastic A= Amber glass	A= None B= HCI				Conta	iner Type						_								
V= Vial G= Glass B= Bacteria cup	$C = HNO_3$ $D = H_2SO_4$ $F = N_2OH$	- 1. P. C.			Pre	servative														
C= Cube O= Other	F= MeOH G= NaHSO4	Reling	uished By:		Date	Time		F	Receive	ed By:	0		D	ate/Tir	ne	All	samole	es subm	tted are subje	ect to
D= BOD Bottle	$H = Na_2S_2O_3$ I= Ascorbic Acid J = NH_4CI	N Jon	AAL		10/21	1815	7.	the	The	PAP	tf -	H	10/2	SI	1.40	Alp	ha's Te	erms and	Conditions.	
Page 67 of 67	K= Zn Acetate O= Other	1			1 10			- W		10-3	and g	8Y	1.1	~/	6	FOR	MNO	1-01 (rev. 1	2-Mar-2012)	

APPENDIX E:

USGS STREAMSTATS DATA

Flow Statistics Ungaged Site Report

Date: Wed Nov 16, 2016 11:37:13 AM GMT-5 Study Area: Massachusetts NAD 1983 Latitude: 42.368 (42 22 05) NAD 1983 Longitude: -71.068 (-71 04 05) Drainage Area: 313 mi2

Low Flows Basin Characteristics										
100% Statewide Low Flow WRIR00 4135 (313 mi2)										
ParameterRegression Equation ValidRange										
		Min	Max							
Drainage Area (square miles)	313 (above max value 149)	1.61	149							
Mean Basin Slope from 250K DEM (percent)	2.315	0.32	24.6							
Stratified Drift per Stream Length (square mile per mile)	0.25	0	1.29							
Massachusetts Region (dimensionless)	0	0	1							

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Probability of Perennial Flow Basin Characteristics										
100% Perennial Flow Probability (313 mi2)										
Parameter Value Regression Equation Valid Range										
		Min	Max							
Drainage Area (square miles)	313 (above max value 1.99)	0.01	1.99							
Percent Underlain By Sand And Gravel (percent)	47.18	0	100							
Percent Forest (percent)	38.76	0	100							
Massachusetts Region (dimensionless)	0	0	1							

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Bankfull Flows Basin Characteristics										
100% Bankfull Statewide SIR2013 5155 (313 mi2)										
Regression Equation Valid Range										
	value	Min	Max							
Drainage Area (square miles)	313	0.6	329							
Mean Basin Slope from 10m DEM (percent)	5.469	2.2	23.9							

Low Flows Statistics						
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval	
					Min	Max
--------	------	-------	------	------		
D60	280	ft3/s				
D70	195	ft3/s				
D75	160	ft3/s				
D80	127	ft3/s				
D85	102	ft3/s				
D90	80.8	ft3/s				
D95	54.8	ft3/s				
D98	36.7	ft3/s				
D99	30.6	ft3/s				
M7D2Y	58.3	ft3/s				
AUGD50	110	ft3/s				
M7D10Y	29.7	ft3/s				

http://pubs.usgs.gov/wri/wri004135/ (http://pubs.usgs.gov/wri/wri004135/) Ries_ K.G._ III_ 2000_ Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135_ 81 p.

Probability of Perennial Flow Statistics								
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of	90-Percent Prediction Interval			
				record	Min	Max		
PROBPEREN	1	dim						

http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf (http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf) Bent_G.C._ and Steeves_P.A._ 2006_ A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006-5031_107 p.

Bankfull Flows Statistics							
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval		
					Min	Max	
BFWDTH	138	ft	21				
BFDPTH	4.8	ft	20				
BFAREA	663	ft2	29				
BFFLOW	2310	ft3/s	55				

http://pubs.usgs.gov/sir/2013/5155/ (http://pubs.usgs.gov/sir/2013/5155/) Bent_ G.C._ and Waite_ A.M._ 2013_ Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013-5155_ 62 p._

Accessibility FOIA **Privacy Policies and Notices** U.S. Department of the Interior | U.S. Geological Survey URL: http://streamstatsags.cr.usgs.gov/v3_beta/FTreport.htm Page Contact Information: StreamStats Help Page Last Modified: 11/24/2015 14:32:58 (Web2)

Streamstats Status News

