

September 8, 2015

U.S. Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP 06-4) 5 Post Office Square, Suite 100 Boston, Massachusetts 02109-3912

By Email: GeneralPermit.Dewatering@epa.gov

Subject: Notice of Intent (NOI)

Dewatering General Permit

Mt. Auburn Hospital UST Replacement Project

Cambridge, Massachusetts

Dear Sir/Madam:

On behalf of the property owner, Mt. Auburn Hospital (MAH), and in accordance with the National Pollutant Discharge Elimination System (NPDES) Dewatering General Permit (DGP) in Massachusetts, MAG070000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the U.S. Environmental Protection Agency (EPA) for temporary construction site dewatering under the DGP. Temporary dewatering is planned in support of proposed underground storage tank (UST) removal and replacement activities at 330 Mt. Auburn Street, in Cambridge, Massachusetts (the Site).

MAH has contracted for periodic inspections and tank tightness testing of the two USTs on the site over the past twenty years. Most recently, Cooperstown Environmental LLC (Cooperstown) performed a third party inspection (TPI) of these USTs in September 2014. In accordance with these inspections and based on the life expectancy of the 5,000 gallon UST, MAH has determined that it would be prudent to remove the existing 5,000 gallon diesel fuel tank due to age and pending regulatory changes that will prohibit single-walled USTs. The tank will be replaced with a 5,000 gallon, double-walled fiberglass UST that meets all of the requirements of 310 CMR 80.00 and other DEP, EPA, and City of Cambridge regulations.

Recent testing in the vicinity of the UST has not identified fuel leaks or releases to the environment from the 5,000-gallon UST. While not anticipated, this project might require additional soil excavation, and transport and disposal to an appropriately licensed disposal facility if any soil has been impacted by a fuel release or spill over the life of the UST.

Cooperstown will serve as the engineering consultant and Licensed Site Professional (LSP) during construction. In this capacity, we will work with the selected contractor and represent MAH during preconstruction planning, licensing and permitting oversight, UST removal and replacement, and as the LSP of Record if any aspects of the Massachusetts Contingency Plan (MCP) are initiated.

The location of the Site is in a primarily residential area of Cambridge, Massachusetts. **Figure 1** of **Appendix A** is a site locus showing the Site and the surrounding area. Neighboring properties include commercial and residential properties on Mt. Auburn Street and Memorial Drive bordering the Charles River. The Charles River is approximately 200 feet south of the property. **Figure 2** of **Appendix A** is a site

plan showing the dimensions of the site and the approximate location of the UST that will be replaced.

WATER QUALITY INFORMATION

In support of this NOI, Cooperstown collected a groundwater sample from a monitoring well that has been installed immediately adjacent to the existing UST and within the footprint of the planned excavation subject to dewatering. The sample was submitted to New England Testing Laboratory (NETLab) of North Providence, Rhode Island for analysis of NPDES DGP permit parameters for Construction Dewatering General Permit.

The analytical results for this groundwater sample identified trace concentrations of three metals, one of which exceeds the Remediation General Permit, Appendix III Effluent Limitations (antimony at 0.01 ug/l as compared to the 0.0056 ug/l RGP standard). The results of the water quality testing for this NOI are presented in **Table 1** of **Appendix A**. The laboratory data report is provided in **Appendix B**.

The detection limits for all parameters complied with the ICP/AES Methods 200.7 3010A/6010C minimum detection limits for groundwater sources as shown in Appendix VIII of the DGP, however, these detection limits are greater than the RGP effluent limits for 7 of the metals listed in Appendix III (including antimony), allowing for some uncertainty regarding exceedance conditions.

We believe dilution factors will render this one exceedance acceptable, and with the planned settling and filtration system, present no threat to water quality in the Charles River.

PLANNED DEWATERING AND TREATMENT

Groundwater and precipitation will likely collect within the excavation and will be required to be removed to complete the UST removal and replacement. Water will be transferred from the base of the excavation to the treatment system using sump pumps installed below grade and within the limits of excavation. The location of the sumps will be determined by the excavation contactor.

While the final design of the treatment system will be determined by the water treatment contractor, the dewatering treatment system will include fractionation tank(s) and bag filter(s) as shown in **Figure 3** of **Appendix A**. If needed, additional treatment will be included in order to meet the effluent limits established by the DGP for the site.

After treatment, water will be discharged to the storm drain in Memorial Drive, as shown in **Figure 4** of **Appendix A**. From this discharge point, water will flow through the main in Memorial Drive and discharge into the Charles River at the outfall as shown.

DGP NOTICE OF INTENT FORM

An NOI Form has been prepared in support of this submittal and is provided in **Appendix C**. MAH is the current owner of the site. The site work and treatment system is being completed by Northeast Tank and Environmental Services, Inc. of Stoughton, Massachusetts (Northeast Tank). The treatment system will be operated and maintained in compliance with the DGP by Northeast Tank on the behalf of MAH. Chris Curley, Engineering Manager, Authorized Signatory for MAH, is listed as the "Operator" for this DGP. Mr. Curley has signed the NOI form.

SUPPORTING INFORMATION

In support of this submittal, the following information has also been included:

- Documentation on the absence of Endangered Species in vicinity of the site is provided in Appendix D; and
- Documentation on Historic Places in the vicinity of the site is provided in **Appendix E**. Two of the historic buildings on the MAH campus are listed, but they are well over 500 feet from the location of the UST and will not be impacted by any of the planned activities.

If you have any questions or require additional information, please contact me or Eva Ward at 978-470-4755

Very sincerely yours,

Richard E. Gang Senior Vice President

COOPERSTOWN ENVIRONMENTAL LLC

Attachments

Appendix A — Figures and Table

Figure 1 — Site Locus

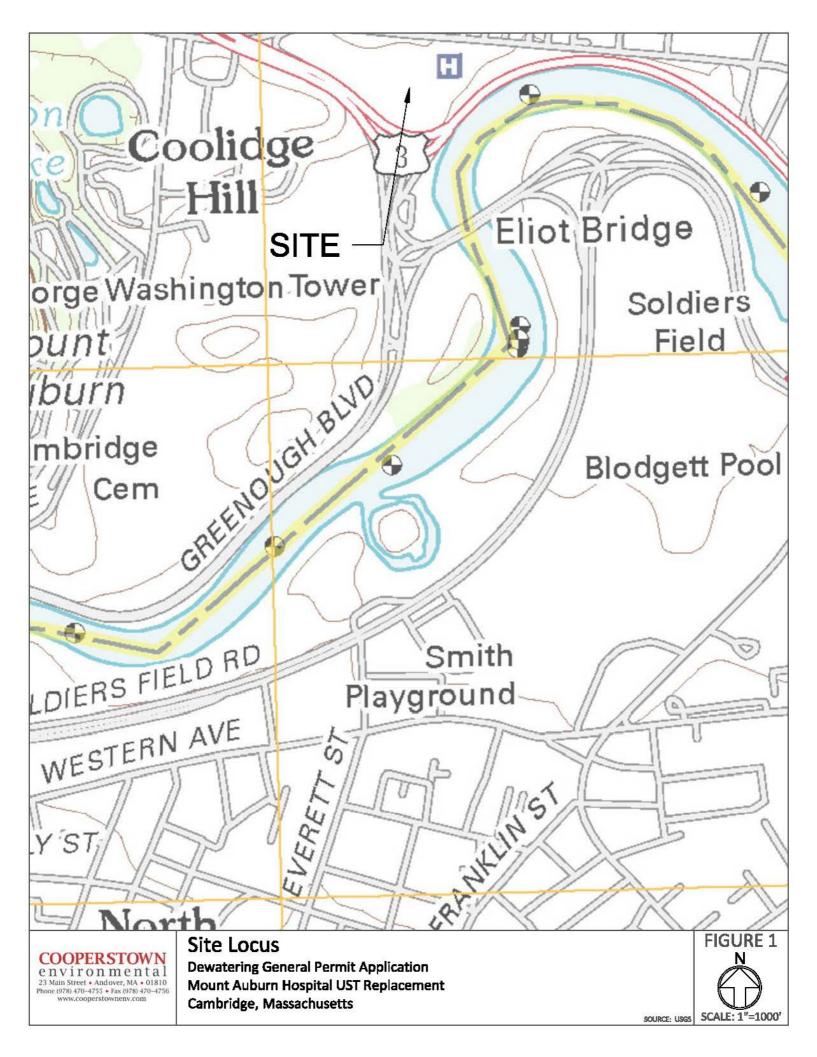
Figure 2 — Site Plan

Figure 3 — Treatment System Design Schematic

Figure 4 — Discharge Flow Path

Table 1 — Water Quality Sampling Results

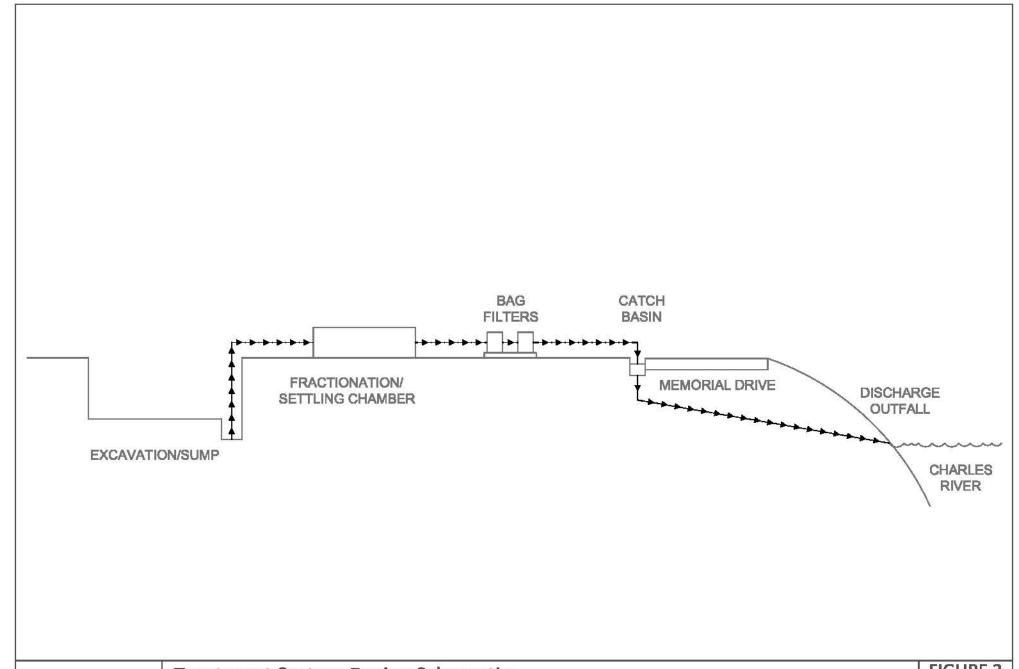
Appendix B — Laboratory Data Report


Appendix C — Notice of Intent (NOI) for Remediation General Permit (RGP)

Appendix D — Endangered Species Documentation

Appendix E — Historical Documentation

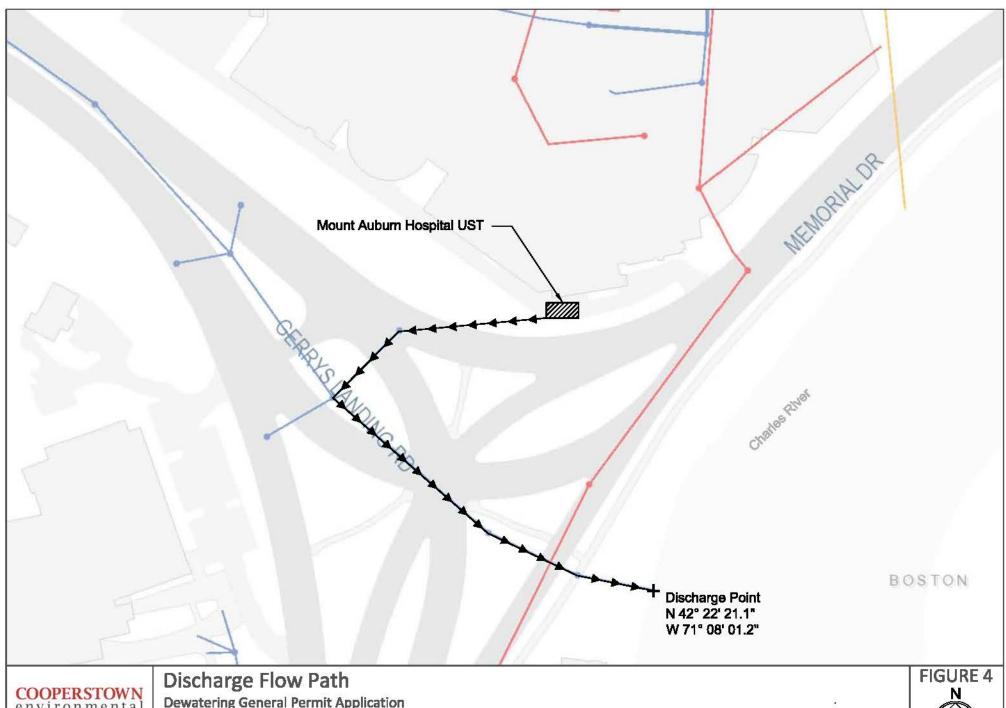
Cc: Massachusetts Department of Environmental Protection Division of Watershed Management



COOPERSTOWN
e nv ir on me nt al
23 Main Street • Andover, MA • 01810
Phone (978) 470-4755 • Fax (978) 470-4756
www.cooperstownenv.com

Site Plan

Dewatering General Permit Application Mount Auburn Hospital UST Replacement Cambridge, Massachusetts



Treatment System Design Schematic

Dewatering General Permit Application Mouth Auburn Hospital UST Replacement Cambridge, Massachusetts

environmental 23 Main Street • Andover, MA • 01810 Phone (978) 470-4755 • Fax (978) 470-4756 www.cooperstownenv.com Dewatering General Permit Application Mount Auburn Hospital UST Replacement Cambridge, Massachusetts

SCALE: 1"=100"

SOURCE: City of Cambridge

TABLE 1
GROUNDWATER ANALYTICAL RESULTS
MOUNT AUBURN HOSPITAL
CAMBRIDGE, MA
AUGUST 2015

			ı	MW-01	
				RGP Approx.	ICP/AES
		Sample	Reporting	Effluent	Methods 200.7,
Compound Name	Units	Result	Limit	Limits	3010A/6010C
Antimony	mg/L	0.01	0.01	0.0056	0.01
Arsenic	mg/L	ND	0.01	0.01	0.02
Cadmium	mg/L	ND	0.005	0.0002	0.01
Chromium III	mg/L	ND	0.005	0.0488	0.015
Hexavalent Chromium VI	mg/L	ND	0.01	0.0114	NA
Copper	mg/L	ND	0.015	0.0052	0.015
Iron	mg/L	0.60	0.05	1	0.02
Lead	mg/L	ND	0.005	0.0013	0.02
Mercury	mg/L	ND	0.0002	0.0009	NA
Nickel	mg/L	ND	0.005	0.029	0.02
Selenium	mg/L	ND	0.01	0.005	0.02
Silver	mg/L	ND	0.005	0.0012	0.01
Zinc	mg/L	0.015	0.015	0.0666	0.015
pH	S.U.	6.09	NA	NA	NA
Chloride	mg/L	1112	1	NA	NA
Hardness	mg/L	388.5	0.33	NA	NA
Oil & Grease SGT	mg/L	ND	2	NA	NA
Total Residual Chlorine	mg/L	36	2	0.011	NA
Total Suspended Solids	mg/L	0.04	0.01	30	NA

KEY:

Exceeds effluent limit

Reporting limit is greater than effluent

limit

REPORT OF ANALYTICAL RESULTS

NETLAB Case Number B0825-17

Prepared for:

Cooperstown Environmental 23 Main Street Andover, MA 01810

Report Date: August 26, 2015

Director

Bich Ohlas

New England Testing Laboratory, Inc. Lab # RI010

NEW ENGLAND TESTING LABORATORY, INC.

1254 Douglas Avenue, North Providence, RI 02904 (401) 353-3420

MassDEP Analytical Protocol Certification Form											
Labo	ratory Na	ame: New England	Testing Laboratory	y, Inc.	Project #:						
Proje											
This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): B0825-17											
Matrices: x Groundwater/Surface Water □ Soil/Sediment □ Drinking Water □ Air □ Other:											
CAM	CAM Protocol (check all that apply below):										
8260 CAM		7470/7471 Hg CAM III B x	MassDEP VPH CAM IV A □	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP CAM IX A	APH				
	SVOC II B 🗆	7010 Metals CAM III C □	MassDEP EPH CAM IV B □	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VO CAM IX B	С				
	Metals III A x	6020 Metals CAM III D	8082 PCB CAM V A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B □	Other x					
	\ffirmati\	ve Responses to 0	Questions A throu	ıgh F are required f	for "Presumptive Certa	ainty" stat	us				
A	Were all samples received in a condition consistent with those described on the Chain-of-										
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?										
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?										
D		Assurance and Qu			specified in CAM VII A, sition and Reporting of	x Yes	No				
E	a. VPH, modificat	tion(s)? (Refer to the	lethods only: Was individual method(s)	e each method condu) for a list of significant ete analyte list reported		Yes Yes	No No				
F	Were all	applicable CAM pro	otocol QC and perfo	rmance standard non-	-conformances identified Questions A through E)?	x Yes	No				
Res	sponses	to Questions G, H	l and I below are i	required for "Presu	mptive Certainty" stat	tus					
G	Were the protocol(, ,	r below all CAM repo	orting limits specified in	the selected CAM	x Yes	No ¹				
				iinty" status may not ne R 40. 1056 (2)(k) and WS	ecessarily meet the data us SC-07-350.	ability and					
Н	<u>-</u>			the CAM protocol(s) ac		x Yes	No ¹				
I	Were res	sults reported for the	complete analyte list	t specified in the select	ted CAM protocol(s)?	x Yes	No ¹				
¹ All r	negative r	esponses must be a	addressed in an atta	ached laboratory narra	ative.						
respor	nsible for o				sed upon my personal in al report is, to the best of						
Sign	ature: 😥	Mulad		Positic	on: Laboratory Director		_				
Print	ted Name	e: Richard Warila		Date:_ [{]	8/26/2015						

SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on August 25, 2015. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is B0825-17.

Custody records are included in this report.

Site: Mt. Auburn Hospital - Dewatering

TABLE I, Samples Submitted

Sample ID	Date Sampled	Matrix	Analysis Requested	
MW-01	8/25/15	Water	Table II	

TABLE II, Analysis and Methods

ANALYSIS	PREPARATION METHOD	DETERMINATIVE METHOD
pH	NA	4500-H+B
Chloride	NA	4500-CL B
Hexavalent Chromium	NA	3500-Cr-B
Total Residual Chlorine	NA	4500-CL G
Total Suspended Solids	NA	2540D
Oil & Grease	NA	1664
Total Metals		
Antimony	3010A	200.7
Arsenic	3010A	200.7
Cadmium	3010A	200.7
Chromium	3010A	200.7
Hardness	3010A	200.7
Copper	3010A	200.7
Iron	3010A	200.7
Lead	3010A	200.7
Mercury	NA	7470A
Nickel	3010A	200.7
Selenium	3010A	200.7
Silver	3010A	200.7
Zinc	3010A	200.7

These methods are documented in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, USEPA/OSW.

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Wet Chemistry

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures.

MW-01

Parameter	Result	Reporting Limit	Date Analyzed		
W G W	6.00	NA	0/05/15 0 17 00		
pH, S.U.	6.09	NA	8/25/15 @ 17:00		
Chloride, mg/l	1112	1	8/26/15		
Hardness, mg/l	388.5	0.33	8/26/15		
Hexavalent Chromium, mg/l	ND	0.01	8/25/15 @ 15:45		
Oil & Grease, mg/l	ND	2	8/26/15		
Total Suspended Solids, mg/l	36	2	8/26/15		
Total Residual Chlorine, mg/l	0.04	0.01	8/25/15 @ 15:45		

NA = Not Applicable ND = Not Detected

METALS RESULTS

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Metals Analysis Department certifies that the results included in this section have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

New England Testing Laboratory, Inc.

Case Number: B0825-17

Sample ID: MW-01

Date collected: 08/25/15

Matrix WATER Am/NC

Sample Type: TOTAL

	CAS	Preparative	Analytical		Reporting		Date of	Date
Parameter	Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3010A	6010C	0.01	0.01	mg/l	8/26/15	8/26/15
Arsenic	7440-38-2	3010A	6010C	ND	0.01	mg/l	8/26/15	8/26/15
Cadmium	7440-43-9	3010A	6010C	ND	0.005	mg/l	8/26/15	8/26/15
Chromium	7440-47-3	3010A	6010C	ND	0.005	mg/l	8/26/15	8/26/15
Copper	7440-50-8	3010A	6010C	ND	0.015	mg/l	8/26/15	8/26/15
Iron	7439-89-6	3010A	6010C	0.60	0.05	mg/l	8/26/15	8/26/15
Lead	7439-92-1	3010A	6010C	ND	0.005	mg/l	8/26/15	8/26/15
Mercury	7439-97-6	NA	7470A	ND	0.0002	mg/l	8/26/15	8/26/15
Nickel	7440-02-0	3010A	6010C	ND	0.005	mg/l	8/26/15	8/26/15
Selenium	7782-49-2	3010A	6010C	ND	0.01	mg/l	8/26/15	8/26/15
Silver	7440-22-4	3010A	6010C	ND	0.005	mg/l	8/26/15	8/26/15
Zinc	7440-66-6	3010A	6010C	0.015	0.015	mg/l	8/26/15	8/26/15

ND indicates Not Detected.

Sample ID: METHOD BLANK

Matrix WATER Analyst AM/NC/PH

Sample Type: Preparation Blank

	CAS	Preparative	Analytical		Reporting		Date of	Date
Parameter	Number	Method	Method	Result	Limit	Units	Preparation	Analyzed
Antimony	7440-36-0	3010A	6010C	ND	0.01	mg/l	8/26/15	8/26/15
Arsenic	7440-38-2	3010A	6010C	ND	0.01	mg/l	8/26/15	8/26/15
Cadmium	7440-43-9	3010A	6010C	ND	0.005	mg/l	8/26/15	8/26/15
Chromium	7440-47-3	3010A	6010C	ND	0.005	mg/l	8/26/15	8/26/15
Copper	7440-50-8	3010A	6010C	ND	0.015	mg/l	8/26/15	8/26/15
Iron	7439-89-6	3010A	6010C	ND	0.05	mg/l	8/26/15	8/26/15
Lead	7439-92-1	3010A	6010C	ND	0.005	mg/l	8/26/15	8/26/15
Mercury	7439-97-6	NA	7470A	ND	0.0002	mg/l	8/26/15	8/26/15
Nickel	7440-02-0	3010A	6010C	ND	0.005	mg/l	8/26/15	8/26/15
Selenium	7782-49-2	3010A	6010C	ND	0.01	mg/l	8/26/15	8/26/15
Silver	7440-22-4	3010A	6010C	ND	0.005	mg/l	8/26/15	8/26/15
Zinc	7440-66-6	3010A	6010C	ND	0.015	mg/l	8/26/15	8/26/15

ND indicates Not Detected.

LABORATORY CONTROL SAMPLE RECOVERY

					Inte	rnal	
Parameter	True Value	Result	Units	Recovery, %	LCL, %	UCL, %	Date Analyzed
Antimony	1.00	1.08	mg/l	108	85	115	8/26/15
Arsenic	0.20	0.21	mg/l	107	85	115	8/26/15
Cadmium	1.00	1.08	mg/l	108	85	115	8/26/15
Chromium	1.00	1.06	mg/l	106	85	115	8/26/15
Copper	1.00	1.07	mg/l	107	85	115	8/26/15
Iron	10.00	10.73	mg/l	107	85	115	8/26/15
Lead	1.00	1.03	mg/l	103	85	115	8/26/15
Mercury	0.001	0.001	mg/l	96	85	115	8/26/15
Nickel	1.00	1.06	mg/l	106	85	115	8/26/15
Selenium	0.20	0.21	mg/l	103	85	115	8/26/15
Silver	0.40	0.40	mg/l	100	85	115	8/26/15
Zinc	1.00	1.09	mg/l	109	85	115	8/26/15

New England Testing Laboratory, Inc.

1254 D	ouglas A	Aven	ue	ESTINC	i LA	BOR	KATOI	₹Ÿ, II	NC.												* /		\$ 60825-17
North F 1-888-8			KI UZ	904						CH	IAIN	OF	CU	ST	ODY RE	ECO	RD				\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
PROJ. NO		PROJ	ECT NA	ME/LOCATION LATURA L	1 #15	(Pi	ral -	. Dé	UAT	FEW	9					P R					38	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3// 3//
CLIENT	peert	لمرة	. চ	ול זכנו לא	45×	m					1	A			NO.	ESERV		S. S. /			/ LL/	(3) (1)	' / /
INVOICE TO: LAURA						AQUEOUS	S O L	OTHER	OF CONTAINERS	A T I V		7		5/-i./	ار ارس السار	 / /	REMARKS						
DATE	TIME	COMP	G R A B				SAMPLE	I.D.				š				Ý E		\F\		5/1			
25/15			/		ν	14/	-0	1	• •	. •	•		\perp		5	Y		✓ 、	/ /	· /			* TRC DETECTION LIMIT
													_						+				TO O. Ollmg/1
																							44 (EE MIN, DESELLAN)
													_										LIMITS
													-							-			
				 									+						+				
			\sqcup									_	\downarrow					\perp	1				
										-		_	+					+	+				
Sampled t	oy: (Signatu	.)	i En	رج (8/2		11:0C		ved by: (Sig						Date/Time		abora Temp. Cooled	tory Rereceive	emarks d:	<u>ا</u>	_		Special Instructions: List Specific Detection Limit Requirements:
Relingvis	ed by: (Signed by:	nature)	<u> </u>			Sate/T	1332		red by: (Signor) Color (Signor) red for Lab	oratory by:	(Signature	1	<u>, </u>	8	Date/Time	332	_						
1/4	flu	1	\mathcal{L}	u	8/2	5/5	1500		elle	WP a	:			8/	25/15/15	CC							Turnaround (Business Days) 24 HZ

16 02 MARK PRESERVED) THE METHODS - PLATTIC [X]

TEST METHODS AND MINIMUM LEVELS1 FOR GROUNDWATER SOURCES

	Minimum Levels (ug/l) and Test Methods											
Parameters ·	CAS Numbers	ICP/AES ² Methods 200.7,3010A/6010C	ICP/MS ³ ,200.8, 310A/6020A	GFAA ⁴ Method 200.9, 7010	Notes Digestion Methods No.							
1. Antimony	7440360	10 ug/L	0.5 ug/L	3 ug/l	200							
2. Arsenic	7440382	20 ug/l ·	1.0 ug/L	3 ug/l	206.5							
3. Cadmium	7440439	10 ug/l	0.2 ug/L	0.5 ug/l	200							
4. Chromium Total	7440473	15ug/l	1.0 ug/L	1 ug/l	200							
(5. Chromium VI 7	18540299											
6. Copper	7440508	15 ug/l	0.5 ug/L	3 ug/l	200							
7. Lead	7439921	20 ug/l	0.2 ug/L	3 ug/l	200							
8. Mercury	7439976											
9. Nickel	7440020	20 ug/l	0.2 ug/L	5 ug/l	200							
10. Selenium	7782492	20 ug/l	2 ug/L	5 ug/l	200							
11. Silver	7740224	10 ug/l	0.2 ug/L	1 ug/l	200							
12. Zinc	7440666	15 ug/l	5 ug/L		200							
13. Iron	7439896	20 ug/L	50 ug/L		200							
14. Hardness					Approved Part 136 Methods ²							
15.Chloride	16887006				Approved Part 136 Methods ²							
. 16. pH					Approved Part 136 Methods ²							

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence.

Inductively Couple Plasmas/ Atomic (optical) emissions Spectrometry 2.

3. Inductively Couple Plasma/Mass Spectrometry

4. Graphite Furnace Atomic Absorption

Standard Method

Took Perinum chulant

Y- Took resilum chulant

Page 1 of 1 0.015 my/L.

Appendix VIII - NPDES Dewatering General Permit

II. Suggested Notice of Intent (NOI) Format

1. General facility information. Please provide the following information about the facility.

	·								
a) Name of facility:	Mailing Address for the Facility:								
Mt. Auburn Hospital	330 Mt. Auburn Street, Cambridge, MA 02138								
b) Location Address of the Facility (if different from mailing address):	Facility Location	Type of Business: Hospital							
South access drive of hospital complex	longitude: <u>W 7</u> 1 08' 03" latitude: <u>N 42</u> 22' 25"	Facility SIC codes: 8062							
c) Name of facility owner: Mt. Auburn Hospital	Owner's email: _cdc	curley@mah.harvard.edu							
Owner's Tel #: (617) 499-5006	Owner's Fax #: (6	<u>17</u>) 499-5053							
Address of owner (if different from facility address)									
Legal name of Operator, if not owner: Mt. Auburn Hospital Operator Contact Name: Chris Curley Operator Tel Number: (617) 499-5006 Operator's email: cdcurley@mah.harvard.edu Operator Address (if different from owner)	Operator Contact Name: Chris Curley Operator Tel Number: (617) 499-5006 Operator's email: cdcurley@mah.harvard.edu Fax Number: (617) 499-5053								
d) Attach a topographic map indicating the location of the facility a	na the outiali(s) to the receiving	g water. Map attached?							
e) Check Yes or No for the following:									
1. Has a prior NPDES permit been granted for the discharge? Y		t Number:							
2. Is the discharge a "new discharger" as defined by 40 CFR Section 122.2? Yes _ ✓ _ No No									
4. Is there a pending application on file with EPA for this discharg		Yes, date of submittal:							

2. Discharge informati	on. Please provide information about the dis	charge, (attachi	ng additio	onal sheets as needed)
a) Name of recei	ving water into which discharge will occur:	Charles River		
State Water Quali	ty Classification: B+	Freshwater:	Χ	Marine Water:
-	lischarge activities for which the owner/appli			
✓ 1. Construc	tion dewatering of groundwater intrusion an	d/or storm wate	r accumu	lation.
2. Short-ter	m or long-term dewatering of foundation sun	nps.		
3. Other.				
c) Number of out	falls 1			
For each outfall:				
-	naximum daily and average monthly flow of th	ne discharge (in	gallons p	per day – GPD). Max Daily Flow 30,000
Average Mont	thly Flow 14,400 GPD			
e.) What is the m	aximum and minimum monthly pH of the disc	charge (in s.u.)	? Max pH	6.0 Min pH 7.0
•	ource of the discharge (i.e. potable water, surfection 4.4.5 of the General Permit.	face water, or g	roundwate	er). If groundwater, the facility shall subm
g.) What treatme	nt does the wastewater receive prior to disch	arge?		
,	ge continuous? Yes No ✓			ge periodic (P) (occurs regularly, i.e., mo
	s all year) or intermittent (I) (occurs sometime		• /	
	of days or months per year of the discharge	NA and the	especific	months of discharge NA
	of days/year there is a discharge 10			
	ge temporary? Yes ✓ No			
If yes, approxii	mate start date of dewatering 9/15/2015		approxir	nate end date of dewatering 11/15/2015
i.) Latitude and l	ongitude of each discharge within 100 feet (S	See <u>http://www.e</u>	pa.gov/tri	i/report/siting tool): Outfall 1: long. W71 08'
2: long. W 7108' 0	1.2" lat. N 42 22' 21.2"; Outfall 3: long.			
attach any cal	of the discharge is potable water, please provi culation sheets used to support stream flow a VII for equations and additional information)	nd dilution calc		

MASSACHUSETTS FACILITIES: See Section 3.4 and Appendix 1 of the General Permit for more information on Areas of Critical En (ACEC):
k.) Does the discharge occur in an ACEC? Yes No ✓ If yes, provide the name of the ACEC:
3. Contaminant Information
a) Are any pH neutralization and/or dechlorination chemicals used in the discharge? If so, include the chemical name and manuf
average daily quantity used as well as the maximum and average daily expected concentrations (mg/l) in the discharge, and th
toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
b) Please report any known remediation activities or water-quality issues in the vicinity of the discharge.
4. Determination of Endangered Species Act Eligibility: Provide documentation of ESA eligibility as required at Part 3.4 and Appendix to the following questions.
a) Which of the three eligibility criteria listed in Appendix IV, Criterion (A, B, or C) have you met?
b) Please attach documentation with your NOI supporting your response. Please see Appendix IV for acceptable documentation
5. Documentation of National Historic Preservation Act requirements: Please respond to the following questions:
a) See Screening Process in Appendix III and respond to questions regarding your site and any historic properties listed or eligible f Register of Historic Places. Question 1: Yes ✓ No ; Question 2: No ✓ Yes
b) Have any State or Tribal historic preservation officers been consulted in this determination? Yes or No ✓ If yes, at consultation(s).
c) Which of the three National Historic Preservation Act eligibility criterion listed in Appendix III, Criterion (A, B, or C) have you m
d) Is the project located on property of religious or cultural significance to an Indian Tribe? Yes or No ✓ If yes, provide t Tribe associated with the property. NA
6. Supplemental Information: Please provide any supplemental information. Attach any analytical data used to support the application. certification(s) required by the general permit
7. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 C below) including the following certification:

I certify under penalty of law that (1) no biocides or other chemical additives except for those used for pH adjustment and/or dechlorination are used in the dewatering system; (2) the discharge consists solely of dewatering and authorized pH adjustment and/or dechlorination chemicals; (3) the discharge does not come in contact with any raw materials, intermediate product, water product or finished product; (4) if the discharge of dewatering subsequently mixes with other permitted wastewater (i.e. stormwater) prior to discharging to the receiving water, any monitoring provided under this permit will be only for dewatering discharge; (5) where applicable, the facility has complied with the requirements of this permit specific to the Endangered Species Act and National Historic Preservation Act; and (6) this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility Name: Mt. Auburn Hospital

Operator signature: Christophyl Cully

Print Full Name and Title: Chris Curley, Engineering Manager

Date: 9/2/15

Federal regulations require this application to be signed as follows:

1. For a corporation, by a principal executive officer of at least the level of vice president;

2. For partnership or sole proprietorship, by a general partner or the proprietor, respectively, or,

3. For a municipality, State, Federal or other public facility, by either a principal executive officer or ranking elected official.

Mt. Auburn Hospital DGP

IPaC Trust Resource Report

Generated August 25, 2015 09:20 AM MDT

US Fish & Wildlife Service

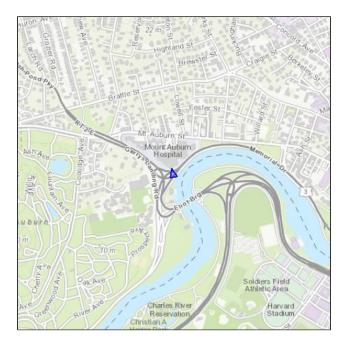
IPaC Trust Resource Report

Project Description

NAME

Mt. Auburn Hospital DGP

PROJECT CODE


B2BIB-RNHHR-D67MV-5UCND-OMXBNQ

LOCATION

Middlesex County, Massachusetts

DESCRIPTION

Dewatering permit for Mt. Auburn Hospital UST replacement project

U.S. Fish & Wildlife Contact Information

Species in this report are managed by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Endangered Species

Proposed, candidate, threatened, and endangered species that are managed by the <u>Endangered Species Program</u> and should be considered as part of an effect analysis for this project.

This unofficial species list is for informational purposes only and does not fulfill the requirements under <u>Section 7</u> of the Endangered Species Act, which states that Federal agencies are required to "request of the Secretary of Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action." This requirement applies to projects which are conducted, permitted or licensed by any Federal agency.

A letter from the local office and a species list which fulfills this requirement can be obtained by returning to this project on the IPaC website and requesting an Official Species List from the regulatory documents section.

There are no endangered species identified for this project area

Critical Habitats

Potential effects to critical habitat(s) within the project area must be analyzed along with the endangered species themselves.

There is no critical habitat within this project area

Migratory Birds

Birds are protected by the Migratory Bird Treaty Act and the Bald and Golden Eagle Protection Act.

Any activity which results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish and Wildlife Service (1). There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

You are responsible for complying with the appropriate regulations for the protection of birds as part of this project. This involves analyzing potential impacts and implementing appropriate conservation measures for all project activities.

American Oystercatcher Haematopus palliatus

Bird of conservation concern

Season: Breeding

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B0G8

American Bittern Botaurus lentiginosus

Bird of conservation concern

Season: Breeding

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B0F3

Bald Eagle Haliaeetus leucocephalus

Bird of conservation concern

Year-round

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B008

Black-billed Cuckoo Coccyzus erythropthalmus

Bird of conservation concern

Season: Breeding

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B0HI

Blue-winged Warbler Vermivora pinus

Bird of conservation concern

Bird of conservation concern

Season: Breeding

Canada Warbler Wilsonia canadensis

Season: Breeding

Hudsonian Godwit Limosa haemastica

Season: Migrating

Least Bittern Ixobrychus exilis

Bird of conservation concern

Bird of conservation concern

Season: Breeding

Peregrine Falcon Falco peregrinus

Bird of conservation concern

Season: Breeding

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B0FU

Pied-billed Grebe Podilymbus podiceps Bird of conservation concern

Season: Breeding

Prairie Warbler Dendroica discolor Bird of conservation concern

Season: Breeding

Purple Sandpiper Calidris maritima Bird of conservation concern

Season: Wintering

Saltmarsh Sparrow Ammodramus caudacutus Bird of conservation concern

Season: Breeding

Seaside Sparrow Ammodramus maritimus Bird of conservation concern

Season: Breeding

Short-eared Owl Asio flammeus

Bird of conservation concern

Season: Wintering

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B0HD

Snowy Egret Egretta thula

Bird of conservation concern

Season: Breeding

Upland Sandpiper Bartramia longicauda

Bird of conservation concern

Season: Breeding

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B0HC

Wood Thrush Hylocichla mustelina

Bird of conservation concern

Season: Breeding

Worm Eating Warbler Helmitheros vermivorum

Bird of conservation concern

Season: Breeding

Refuges

Any activity proposed on <u>National Wildlife Refuge</u> lands must undergo a 'Compatibility Determination' conducted by the Refuge. If your project overlaps or otherwise impacts a Refuge, please contact that Refuge to discuss the authorization process.

There are no refuges within this project area

Wetlands

Impacts to <u>NWI wetlands</u> and other aquatic habitats from your project may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes.

Project proponents should discuss the relationship of these requirements to their project with the Regulatory Program of the appropriate <u>U.S. Army Corps of Engineers District</u>.

DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

DATA EXCLUSIONS

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

There are no wetlands identified in this project area