Appendix M. Example output from analysis of likelihood of individual mortality

Example from analysis of individual mortality to aquatic-phase CRLF acutely exposed to dicofol (total residues of concern) resulting from aerial applications to strawberries.

	IEC V1.1 - Individual Effect Chance Model Version 1.1
ı	Predictor of chance of individual effect using probit dose-response curve slope and median lethal
ı	estimate

Enter LC ₅₀ or LD ₅₀	53
Enter desired threshold	0.71
Enter slope of dose-response	4.5
	-
	0.6693374
z score result	3
Probability associated with z	2.52E-01
Chance of individual effect,	
~1 in	3.97E+00

Is this a default slope estimate? Yes or No yes

z is the standard normal deviate

Uses Excel NORMDIST function to estimate P with lower reporting limit of 1.0 E-16

Calculated as 1/P

Note: Effects probability is based of default slope estimate of 4.5

This is based on the formula $logLC_k = logLC_{50} + (z/b)$ where: z is the standard normal deviate and b equals

Works for dose-response models based on a probit assumption (i.e. log normal distribution of individual sensitivity)

Note: Excel cannot calculate probabilities for

extremes in z scores beyond -8.2

Probability is defaulted to 10⁻¹⁶, which is the

limit of Excel reporting.

Ed Odenkirchen, June 22, 2004 EFED/OPP/USEPA