Appendix A – Environmental Fate Evaluation

Chlorothalonil is expected to possess some degree of mobility in the open environment. Chlorothalonil degrades through both photolytic (t $_{1/2} = 10$ hr) and microbial processes (t $_{1/2} = 7 - 68$ days). Chlorothalonil degrades rapidly in clear, shallow water through aqueous photolysis. Chlorothalonil is not susceptible to hydrolysis in waters below pH 9, but does hydrolyze in waters at or above pH 9 (t $_{1/2} = 40-60$ days). Although photolytic transformation of chlorothalonil is more rapid than biotic metabolism, aqueous photolysis is limited to environmental compartments where clear, shallow waters are exposed to direct sunlight. Therefore, the main route of dissipation for chlorothalonil in the environment is expected to be through aqueous, biotic degradation (t $_{1/2} = 7-29$ days). Chlorothalonil degrades under both aerobic aquatic conditions (t $_{1/2} = 7-16$ days), and aerobic terrestrial conditions (t $_{1/2} = 22-68$ days), and through anaerobic degradation (t $_{1/2} = 21-29$ days).

Figure A-1 Chlorothalonil

Figure A-2 4-Hydroxy-2,5,6-trichloro-1,3-dicyanobenzene (SDS-3701)

The major metabolite considered for terrestrial effects in this assessment, SDS-3701 (4-hydroxy-2,5,6-trichloro-1,3-dicyanobenzene), forms under differing test conditions, and appears to be more mobile and more persistent than chlorothalonil. In submitted aerobic soil metabolism studies (MRID 00137232+) conducted with chlorothalonil, up to 32% of the applied radiation was

present as 3701. In submitted anaerobic metabolism studies (MRID 00147975) conducted with chlorothalonil, up to 43% of the applied radiation was present as 3701. In the available aerobic soil metabolism study (MRID 00040547), also conducted with chlorothalonil, up to 32% of the applied radiation was present as SDS-3701. Only 4% of SDS-3701 formed in the submitted aqueous photolysis study while chlorothalonil dissipated rapidly. In clear shallow waters exposed to direct sunlight, the degradate SDS-1301 is not expected to form in significant amounts. In aquatic metabolism studies conducted with chlorothalonil, a comparison of the ratio of residues reported in water and sediment for chlorothalonil and SDS-3701 indicated that a greater percent of the degradate was present in the water compartment than for chlorothalonil. The degree of persistence exhibited by the chlorothalonil metabolites is sufficient to allow their possible appearance in ground water.

Both chlorothalonil and the degradate of concern for terrestrial organisms have simple chemical structures with simple substituents (including multiple chlorine atoms) attached to a single benzene ring. A comparison of the estimated values for the parent, chlorothalonil, and the degradate, SDS- 3701, through structural analysis modeling indicating roughly similar fate properties for both the parent and degradate is discussed in Section 3.3.1, Potential Exposure to SDS-3701.

In different soils, chlorothalonil mobility is expected to range from slightly mobile to moderately mobile, with laboratory K_d values ranging from 3 to 30. Depending upon soil/sediment composition, concentrations of chlorothalonil in benthic sediments could exceed concentrations found in runoff waters. The vapor pressure and Henry's Law values for the chlorothalonil indicates a slight degree of volatility from both soil and water.

It has been demonstrated that chlorothalonil did bioconcentrate in oysters (BCF = 2660X) and bluegill sunfish (BCF = 3000X). Recalcitrant metabolites did concentrate somewhat in the biochemical (carbon) pool of the organisms, and were slow to be eliminated. Evolution of volatile compounds, including carbon dioxide, was not significant in laboratory testing. However, local ambient air monitoring data demonstrated that chlorothalonil was present in the air.

Study Type	Value	Test System	Source / MRID Number
Hydrolysis	half-life = stable	pH 5 and 7; (half-life 30-60 days @ pH9 -may be	0040539, 00147975
		concentration dependant)	
Photodegradation in	half-life = 10 hours	pH 7	45710223
Water			
Photodegradation on	half-life = stable		00040541,
Soil			00040542,
			00040543,
			00143751
Aerobic Soil	half-life = 68 days;	silt loam soil	00087351
Metabolism	half-life = 24 days;	loam soil	
	half-life = 22 days;	TX sandy loam soil	
	half-life = 24 days	OH sandy loam soil	
Aerobic Aquatic	total system half-life	Running ditch water-clay sediment, UK	45908001
Metabolism	= 21 days,		
	total system half-life	Pond water-clay loam sediment, UK	
	= 13 days		

 Table A-1 Summary of Environmental Fate Properties of Chlorothalonil Used in Assessment.

Anaerobic Aquatic	total system half-life	silt loam soil;	00147975
Metabolism	= 21 days;	sandy loam soil	
	total system half-life		
	= 29 days		
Adsorption/Desorption	26 (K _d)	silty clay loam soil;	00115105
	29 (K _d)	silt soil;	00153730 for aged
	20 (K _d)	sandy loam soil;	column
	3 (K _d)	sand soil	
Laboratory Volatility	$5.72 \text{ x } 10^{-7} \text{ torr}$	25 °C	00153732
Bioaccumulation in	2700X	Whole fish	45710224
Fish			
Bioaccumulation in	2660 X		42070601
Bivalves			
Terrestrial Field	total system half-life	sandy loam soil	00087296;
Dissipation	= 1-2 months		42433813
-			