Appendix G. Ecological Effects Data

a. Toxicity to Terrestrial Animals (see Appendix J for mammalian data)

Birds, Acute and Subacute

An acute oral toxicity study using the technical grade of the active ingredient (TGAI) is required to establish the toxicity of *lambda*-cyhalothrin to birds. The preferred test species is either mallard duck (a waterfowl) or bobwhite quail (an upland gamebird). A single dose oral test with the mallard duck found *lambda*-cyhalothrin to be slightly toxic on an acute oral basis. Sub-lethal effects for MRID 00150854 included a slight loss in weight for the first days after dosing.

Avian Acute Oral Toxicity

Species	Toxicity value	Toxicity	MRID No.	Study
		category		classification
Mallard duck	$LD_{50} = 3950$	Slightly toxic	00151594	Acceptable
(Anas	mg ai/kg-bw			
platyrhynchos)				
Mallard duck	$LD_{50} > 5000$	Practically	00150854	Acceptable
(Anas	mg ai/kg-bw	non-toxic		
platyrhynchos)				

Two subacute dietary studies using the TGAI are required to establish the toxicity of *lambda*-cyhalothrin to birds. The preferred test species are mallard duck and bobwhite quail. In one bobwhite quail study (MRID 00151118), birds exhibited a slight weight loss; the other bobwhite study showed no sub-lethal effects. Sub-lethal effects in the mallard duck studies included: subdued behavior, unsteadiness, and decrease in body weight.

Avian Subacute Dietary Toxicity

Species	Toxicity Value	Toxicity	MRID No.	Study
		Category		Classification
Northern	5-Day LC ₅₀	Slightly toxic	00151118	Supplemental
Bobwhite quail	= 2354 mg			
(Colinus	a.i./kg-diet			EPA re-
virginianus)				calculated the
				LC ₅₀ .
Mallard duck	5-Day LC ₅₀	Slightly toxic	00151595	Acceptable
(Anas	= 3948 mg			
platyrhynchos)	a.i./kg-diet			
Mallard duck	5-Day LC ₅₀ =	Practically	00151117	Acceptable
(Anas	12488 mg	non-toxic		
platyrhynchos)	ai/kg-diet			
Northern	5-Day LC ₅₀ >	Practically	00151596	Acceptable
Bobwhite quail	5300 mg ai/kg-	non-toxic		
(Colinus	diet			
virginianus)				

Birds, Chronic

Avian reproduction studies using the TGAI are required for *lambda*-cyhalothrin because the following conditions are met: (1) birds may be subject to repeated or continuous exposure to the pesticide, especially preceding or during the breeding season, (2) the pesticide is stable in the environment to the extent that potentially toxic amounts may persist in animal feed, (3) the pesticide is stored or accumulated in plant or animal tissues, and, (4) information derived from mammalian reproduction studies indicates reproduction in terrestrial vertebrates may be adversely affected by the anticipated use of the product. The preferred test species are mallard, duck, and bobwhite quail. The most sensitive NOEL (mallard duck MRID 41512101) was based on chemical residues detected in eggs. Other effects in mallard duck were residues in the liver and fat, number of eggs laid and set, egg fertility, and early embryonic mortalities. The bobwhite quail study exhibited no effects.

Avian Chronic Reproduction Toxicity

Avian Chrome Reproduction Toxicity					
Species	NOEL	LOEL	MRID No.	Study	
				Classification	
Mallard duck	5 ppm	15 ppm	41512101	Acceptable	
(Anas					
platyrhynchos)					
Northern	≥ 50 ppm	n/a	00153505	Acceptable	
Bobwhite quail					
(Colinus					
virginianus)					
Mallard duck	5 ppm	50 ppm	00153504	Supplemental	
(Anas					
platyrhynchos)				Effects may have been present at 5	
				ppm (ruptured ovaries), but raw data	
				were not submitted for confirmation	

Terrestrial Insects

Lambda-cyhalothrin is highly toxic to bees on an acute contact basis. A non-guideline study (MRID 40436303) documented possible repellency effects of lambda-cyhalothrin to honey bees through a choice test with simulated honeydew. A honey bee foliage acute toxicity test (MRID 4043602) established that it would be safe for honey bees to re-enter the field from 24 to 96 hours after application of lambda-cyhalothrin, depending on the application rate.

Acute Contact Toxicity in Terrestrial Insects

Species	Toxicity value	Toxicity category	MRID	Classification
Honey bee (Apis	Performed with	Highly toxic	40052409	Acceptable
mellifera)	<u>Technical</u>		(Accession	
	48-h contact LD ₅₀		number)	
	$= 0.038 \mu g \text{ ai/bee}$			
	48-h oral $LD_{50} =$			

	Performed with Formulation 48-h contact LD ₅₀ = 0.098 μg ai/bee 48-h oral LD ₅₀ = 0.483 μg ai/bee			
Honey bee (Apis mellifera)	n/a	n/a	40436303	Supplemental Non-guideline study
Honey bee (Apis mellifera)	$LT_{50} = 4-12 \text{ hours}$ (at 0.013 lb ai/A) $LT_{50} = 23 \text{ hours}$ (at 0.031 lb ai/A) NOEL = 24-48 hours (at 0.013 lb ai/A) NOEL = 96 hours (at 0.031 lb ai/A)	n/a	40436302	Acceptable

b. Toxicity to Aquatic Animals

Freshwater Fish, Acute

A number of freshwater fish acute toxicity studies using the TGAI or TEP were submitted to establish the toxicity of *lambda*-cyhalothrin to fish. The preferred test species are rainbow trout (a coldwater fish) and bluegill sunfish (a warmwater fish). Overall, *lambda*-cyhalothrin is very highly toxic to freshwater fish. The lowest endpoint was obtained from a study with the golden orfe; sub-lethal effects included quiescence, sounding, erratic swimming, spiraling, loss of balance, rapid respiration, labored respiration, swimming cessation, light discoloration, surfacing, irregular respiration, and gulping air. Similar sub-lethal effects were documented in the other studies as well. For rainbow trout, sub-lethal effects included: loss of equilibrium, quiescence, change in color, spiraling, rapid respiration, weakness, surfacing, coughing, and sounding. Sub-lethal effects to the bluegill sunfish included: sounding, loss of balance, quiescence, darkening of color, spiraling, and rapid and irregular respiration.

Freshwater Fish Acute Toxicity

1 Tebli Water 1 Ib		/		
Species	96-hr LC50	Toxicity	MRID No.	Study
		Category		Classification
Golden orfe	0.078 μg ai/L	Very highly	44584001	Supplemental
(Leuciscus idus)		toxic		
				Non-guideline
				test species
Bluegill sunfish	2.2 μg ai/L	Very highly	00151598	Supplemental
(Lepomis		toxic		
macrochirus)				Performed with
				TEP
Rainbow trout	2.7 μg ai/L	Very highly	43908813	Acceptable

(Oncorrhynchus mykiss)		toxic		Performed with TEP
Rainbow trout (Oncorrhynchus mykiss)	0.24 μg ai/L	Very highly toxic	00151597	Acceptable
Rainbow trout (Oncorrhynchus mykiss)	3.4μ ai/L	Very highly toxic	00151600	Supplemental Performed with TEP
Bluegill sunfish (Lepomis macrochirus)	1.2 μg ai/L	Very highly toxic	43908812	Acceptable Performed with TEP
Bluegill sunfish (Lepomis macrochirus)	0.21 μg ai/L	Very highly toxic	259807 (Accession number)	Acceptable

Freshwater Fish, Chronic

A freshwater fish early life-stage test using the TGAI is required for *lambda*-cyhalothrin because (1) the end-use product is expected to be transported to water from the intended use site, (2) aquatic acute fish LC_{50} s and the waterflea EC_{50} are less than 1 mg/l, and (3) the EEC in water is equal to or greater than 0.01 of acute LC_{50} , and EC_{50} values. The preferred test species is the rainbow trout.

There is one acceptable fish chronic toxicity study available. The NOEL of the full life cycle study was based on F_1 survival at 28 days, F_0 length at 56 days, male length and weigh at 300 days, and F_1 weight and length at 31 days.

Freshwater Fish Full Life Cycle Toxicity

Species	NOEL	LOEL	Effect	MRID No.	Study
					Classification
Fathead minnow (Pimephales promelas)	0.031 μg ai/L	0.062 μg ai/L	F ₁ survival at 28 days F ₀ length at 56 days Male length and weigh at 300 days	41519001	Supplemental Methodology problems
prometas			F ₁ weight and length at 31 days		(including some contamination in the controls)

Freshwater Invertebrates, Acute

A freshwater aquatic invertebrate toxicity test using the TGAI is required to establish the toxicity of *lambda*-cyhalothrin to aquatic invertebrates. The preferred test species is *Daphnia magna*. No sub-lethal effects were noted.

Freshwater Invertebrate Acute Toxicity

1 Tobil water in vertebrate Treate Tokienty						
Species/Test	48-h toxicity	Toxicity	MRID No.	Study		
Type	value	Category		Classification		
Waterflea	$LC_{50} = 0.18 \mu g$	Very highly	43908811	Acceptable		

(Daphnia	ai/L	toxic		
magna)				Performed with TEP
Waterflea	$LC_{50} = 0.09 \mu g$	Very highly	00151599	Supplemental
(Daphnia	ai/L	toxic		
magna)				Performed with TEP
Waterflea	$LC_{50} = 0.36 \mu g$	Very highly	00151599	Acceptable
(Daphnia	ai/L	toxic		
magna)				
Amphipod	$LC_{50} = 0.00668$	Very highly	00152730	Supplemental
(Gammarus	μg ai/L	toxic		
pulex)				Test procedure did not follow the
				guidelines in terms of measuring DO,
				used dechlorinated tap water, and
				extrapolation procedures for the two
				lowest measured concentrations were
				not sound
Scud	$EC_{50} = 1.4 \text{ ng}$	Very highly	48911001	Supplemental
(Hyalella	ai/L	toxic		
azteca)				Open literature study

Freshwater Invertebrates, Chronic

A freshwater aquatic invertebrate life-cycle test using the TGAI is required for *lambda*-cyhalothrin because the end-use product is expected to be transported to water from the intended use site, aquatic acute fish LC₅₀s and the waterflea EC₅₀ are less than 1 mg/l, and the EEC in water is equal to or greater than 0.01 of acute LC₅₀ and EC₅₀ values. The preferred test species is *Daphnia magna*.

A toxicity endpoints derived from the chronic daphnid study were based on the number young per female and adult survival.

Species	NOEL	LOEL	MRID No.	Study Classification
Waterflea	0.00198 μg ai/L	0.0035 μg ai/L	41217501	Supplemental
(Daphnia magna)				
				Only one test vessel was
				sampled per treatment and
				chemical is known to adsorb to
				surfaces, making it difficult to
				maintain constant
				concentrations

Estuarine/Marine Fish, Acute

There is one registrant-submitted study testing the toxicity of *lambda*-cyhalothrin to marine/estuarine fish. Based on the study, *lambda*-cyhalothrin is very highly toxic to estuarine/marine fish. Sub-lethal effects included quiescence, loss of balance, weakness, hyperexcitability, and rapid respiration. Many of these effects were also documented for freshwater fish.

Estuarine/Marine Fish Acute Toxicity

Species	96-hr LC ₅₀	Toxicity	MRID No.	Study
		Category		Classification
Sheepshead minnow	$= 0.807 \mu g$	Very highly	00153506	Acceptable
(Cyprinodon variegatus)	a.i./L	toxic		

Estuarine/Marine Fish, Chronic

There is one registrant-submitted study testing the chronic toxicity of *lambda*-cyhalothrin to marine/estuarine fish. The endpoints derived in the study were based on weight.

Estuarine/Marine Fish Acute Toxicity

Species	NOEC	LOEC	MRID No.	Study Classification
Sheepshead minnow	0.25 μg ai/L	0.38 μg ai/L	00152732	Acceptable
(Cyprinodon variegatus)				

Estuarine/Marine Invertebrates, Acute

An acute toxicity study evaluating the effects of *lambda*-cyhalothrin to mysid shrimp determined it is very highly toxic. Another study on oyster larvae resulted in no effects and a toxicity classification of highly toxic.

Estuarine/Marine Invertebrate Acute Toxicity

Species	Toxicity Value	Toxicity	MRID No.	Study
		Category		Classification
Mysid	96-h LC ₅₀ =	Very highly	00152729	Acceptable
(Americamysis bahia)	0.0049 μg	toxic		_
	ai/L			
Pacific oyster larvae	48-h LC ₅₀ >	Highly toxic	00152728	Acceptable
(Crassostrea gigas)	0.59 mg ai/L			•

Estuarine/Marine Invertebrates, Chronic

A chronic life cycle toxicity study evaluated the effects of *lambda*-cyhalothrin on the mysid shrimp. Toxicity values were based on reproduction endpoints.

Estuarine/Marine Invertebrate Chronic Toxicity

Species	NOEL	LOEL	MRID No.	Study
				Classification
Mysid	0.22 ng ai/L	0.49 ng ai/L	073989	Supplemental
(Americamysis bahia)			(Accession	
			number)	Reproductive success could not
				be calculated because raw data
				were not provided.

c. Toxicity to Plants

Toxicity to Terrestrial Plants

There are no registrant-submitted studies for terrestrial plants. The reservoir of open literature was consulted for information. Two studies were identified as providing qualitative information about the effects of *lambda*-cyhalothrin on plants. Both studies were efficacy studies; thus the information on plant is secondary to the main purpose of the experiments. Additionally, the introduction of pests adds an extra factor to the study, potentially reducing the reliability of its results.

Terrestrial Plant Studies

Species	Parameter	NOAEC (lb a.i./A)	Citation	Study Classification
Wheat (Triticum	Yield	0.02	Patton and	Qualitative
aestivum)			Dively, 1999	
Groundnut	Yield	0.004	van Eeden et. al,	Qualitative
(Arachis			1995	
hypogaea)				

Toxicity to Aquatic Plants

One study is available for aquatic plants. The EC_{50} was based on the growth rate of the algae.

Aquatic Plant Toxicity

riquatio Figure 1 Oxioney			
Species	EC ₅₀	MRID No.	Study
			Classification
Green algae	> 310 μg ai/L	00152731	Supplemental
(Pseudokirchneriella subcapitata)			
			Low recovery rates at the end of the
			experiment (3-11%) possibly
			because of solubility issues.