MEMORANDUM

SUBJECT: Review of Toxicology Studies with Metolachlor/S-Metolachlor Metabolites

Updated Executive Summaries for Metolachlor DERs

PC Code: 108801/108800

DP Barcodes: D260000, D260001, D260002, D260003, D260005, D260393, D260394, D260395, D260396, D260400, D260404, D260407, D260409, D260411, D260414, D260415, D262025, D262026 and D262423

FROM: Virginia A. Dobozy, V.M.D., M.P.H., Veterinary Medical Officer
Reregistration Branch I, Health Effects Division (7509C)

THRU: Whang Phang, Ph.D., Branch Senior Scientist
Reregistration Branch I, Health Effects Division (7509C)

TO: Betty Shakleford/Anne Overstreet
Special Review and Reregistration Division (7508C)

Action Requested: Review toxicology studies with Metolachlor/S-Metolachlor Metabolites

Recommendation: Attached are the Data Evaluation Reports (DERs) for the studies. The following table identifies the DP barcode, metabolite and associated MRID number and study type. The Executive Summaries for these studies follow the table. Also included are updated Executive Summaries for MRIDs 00032174, 43244001 (subchronic dog study), 00041283 (developmental rabbit study), 00080897 (reproduction study), 00117597 (mouse carcinogenicity study), 00129377 (rat chronic toxicity/carcinogenicity study), 00151941 (developmental rat study), 40980701, 41164501, 42218601, 42218602 (chronic dog study), 4183301 (21-day dermal study) and 41833102 (dermal penetration study).
<table>
<thead>
<tr>
<th>DP Barcode</th>
<th>MRID Number(s)</th>
<th>Study Type</th>
<th>Metabolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>D260000</td>
<td>44929504, 44929505, 44929506, 44929507</td>
<td>acute oral, acute dermal, acute eye irritation, acute dermal irritation</td>
<td>CGA 51202</td>
</tr>
<tr>
<td>D260001</td>
<td>44929508</td>
<td>dermal sensitization</td>
<td>CGA 51202</td>
</tr>
<tr>
<td>D260002</td>
<td>44929509</td>
<td>subchronic toxicity - rat</td>
<td>CGA 51202</td>
</tr>
<tr>
<td>D260003</td>
<td>44929510</td>
<td>developmental toxicity - rat</td>
<td>CGA 51202</td>
</tr>
<tr>
<td>D260005</td>
<td>44929511, 44929512</td>
<td>micronucleus assay, gene mutation in bacteria</td>
<td>CGA 51202</td>
</tr>
<tr>
<td>D260393</td>
<td>44931704</td>
<td>acute oral</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D260394</td>
<td>44931705</td>
<td>acute dermal</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D260395</td>
<td>44931706</td>
<td>acute eye irritation</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D260396</td>
<td>44931707</td>
<td>acute dermal irritation</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D260400</td>
<td>44931708</td>
<td>dermal sensitization</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D260404</td>
<td>44931709</td>
<td>subchronic toxicity - dog</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D260407</td>
<td>44931710</td>
<td>subchronic toxicity - rat</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D260409</td>
<td>44931711</td>
<td>developmental toxicity - rat</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D260411</td>
<td>44931712, 44931713</td>
<td>gene mutation in bacteria, micronucleus assay</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D260414</td>
<td>44931714</td>
<td>unscheduled DNA synthesis</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D260415</td>
<td>44931715, 44931716, 44931717</td>
<td>metabolism, metabolism, metabolism</td>
<td>CGA 354743, CGA 376944, CGA 376944</td>
</tr>
<tr>
<td>D262025</td>
<td>44991101</td>
<td>acute oral toxicity</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D262026</td>
<td>44991102</td>
<td>gene mutation in mammalian cells</td>
<td>CGA 354743</td>
</tr>
<tr>
<td>D262423</td>
<td>45001201</td>
<td>gene mutation in mammalian cell</td>
<td>CGA 51202</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY: In an acute oral toxicity study (MRID 44929504) groups of five male and five female fasted young adult Tif:RAI f (SPF) rats were given a single oral 2000 mg/kg dose of CGA-51202 Technical (Batch No. JD 7069/3, 100%) in 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80 and observed for 14 days.

Piloerection, hunched posture, exophthalmos, dyspnea, reduced activity, and/or abnormal respiratory sounds were noted on all animals. The surviving animals recovered by day 8. One male was killed for humane reasons on day 13. No other animals died during the study. Mean body weight changes were normal. The euthanized male had a dilated or inflated stomach, small intestine, and typhlon. The remaining animals had no deviations from normal morphology at necropsy.

The oral LD₅₀ for males, females, and combined was > 2000 mg/kg (Toxicity Category III).

This acute oral study is classified as Acceptable/Guideline and satisfies the guideline requirements for an acute oral study [870.1100] in the rat.

EXECUTIVE SUMMARY: In an acute dermal toxicity study (MRID 44929505) approximately 10% of the body surface area of five male and five female young adult Tif:RAI f (SPF) rats was dermally exposed to 1333 mg/kg CGA-51202 Technical (Batch No. JD 7069/3, 100%) diluted with distilled water to create a suspension of 33% (w/w) for 24 hours. The animals were observed for 14 days.

None of the animals died during the study. Piloerection and hunched posture were noted in all animals with recovery within 3 days. The mean body weight changes were normal. The study report states that animals had no deviations from normal morphology at necropsy, but no data were submitted.

The dermal LD₅₀ for males, females, and combined was > 1333 mg/kg (Toxicity Category II).

This acute dermal study is classified as Acceptable/Non-guideline and does not satisfy the guideline.
requirements for an acute dermal study [870.1200 (81-2)] in the rat. A limit dose of at least 2000 mg/kg is required by the guideline. However, another study is not required as there are sufficient data for Toxicity Category classification.

MRID 44929506

EXECUTIVE SUMMARY: In a primary eye irritation study (MRID 44929506) 38 mg (0.1 mL weight equivalent) of CGA-51202 Technical (Batch No. JD 7069/3, 100%) was instilled into the conjunctival sac of the left eye of three male rabbits and the eye lids held together for approximately 1 second. The contralateral eye of all rabbits served as control. The eyes were scored for ocular irritation according to the OECD scoring system 1, 24, 48, and 72 hours and days 7, 10, 14, 17, and 21 after test material instillation.

Corneal opacity was found on 3/3 rabbits one hour after test material instillation that persisted through day 10 with resolution on two rabbits by day 14 and on one rabbit by day 21. Iritis was noted on 3/3 rabbits one hour after test material instillation that persisted through 72 hours with resolution on two rabbits by day 7 and on one rabbit by day 10. All rabbits had evidence of conjunctival chemosis at one hour post-instillation, which cleared by either 7, 10 or 14 days. All rabbits had conjunctival redness by one hour post-instillation, which cleared by either 17 or 21 days.

In this study, CGA-51202 Technical was a severe irritant and is in TOXICITY CATEGORY II for primary eye irritation.

This study is classified as Acceptable/Guideline and satisfies the guideline requirements for a primary eye irritation study [870.2400 (§81-4)] in the rabbit.

MRID 44929507

EXECUTIVE SUMMARY: In a primary dermal irritation study (MRID 44929507) three male adult New Zealand white rabbits were dermally exposed to 0.5 g CGA-51202 Technical (Batch No. JD 7069/3, 100%) on a gauze patch moistened with 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80 for 4 hours on the flank of the animals. The application sites were scored for erythema and edema 1, 24, 48, and 72 hours after patch removal using the OECD scoring system.

Very slight erythema was noted on 2/3 rabbits one hour following patch removal with resolution by
In this study, CGA-51202 Technical was essentially nonirritating and is in TOXICITY CATEGORY IV for primary dermal irritation.

This study is classified as Acceptable/Guideline and satisfies the guideline requirements for a primary dermal irritation study [870.2500 (§81-5)] in the rabbit.

MRID 44929508

EXECUTIVE SUMMARY: In a dermal sensitization study (MRID 44929508) with CGA-51202 Technical (Batch No. JD 7069/3, 100%), 40 young adult male and female guinea pigs were tested using the Optimization Test.

Following ten intradermal inductions with a 0.1% (w/w) solution of the test material, 5/20 test animals showed positive reactions after intradermal challenge; the control group had no positive reactions after intradermal challenge. Twenty-four hours after epidermal challenge, 3/20 animals showed positive reactions and 11/20 animals showed positive reactions at 48 hours. The sites of the test animals treated with the vehicle did not have any positive reaction. One animal in the control group treated with the test material had a positive reaction 48 hours after epidermal challenge. No animals in the control group treated with the vehicle showed positive reactions. The historical control data demonstrated that 1-chlor-2,4-dinitrophenol positive control and vehicle control animals responded appropriately.

In this study, CGA-51202 Technical was a dermal sensitizer.

This study is classified as Acceptable/Guideline and satisfies the guideline requirements for a dermal sensitization study [870.2600 (§81-6)] in the guinea pig.

MRID 44929509

EXECUTIVE SUMMARY: In a subchronic oral feeding study, (MRID 44929509), CGA-51202 technical (100% a.i.; batch No. JD 7069/3) was fed to groups of 10 male and 10 female albino rats at dose levels of 0, 300, 1000, or 15,000 ppm for 3 months. The average achieved doses for the corresponding groups were 0, 18.7, 62.1, and 1000 mg/kg bodyweight for males, and 0, 20.6, 67.3, and 1020 mg/kg for females.
All animals survived to study termination and no treatment-related clinical signs were observed. There were no treatment-related effects on body weight, food consumption, ophthalmoscopic parameters, or urinalysis. Platelet counts were decreased 16% (p<0.01) in high-dose males. Total protein in high-dose males (5% decrease, p<0.01) and females (4% decrease, N.S.) was slightly decreased due to decreased globulin in males and decreased albumin and globulin fractions in females. These effects were not considered biologically significant. There were no treatment-related organ weight effects or macroscopic or microscopic lesions. Under the conditions of this study, the NOAEL is 15,000 ppm in the diet (1000 mg/kg for males, 1020 mg/kg for females, limit dose) based on no biologically significant effects. A LOAEL was not identified.

This subchronic toxicity study in rats (82-1) is classified as Acceptable/Guideline. It satisfies the guideline requirement for a subchronic dietary toxicity study in rodents.

MRID 44929510

EXECUTIVE SUMMARY: In a developmental toxicity study (MRID 44929510), 24 presumed pregnant Tif: RAI f (SPF) (hybrids of RII/1 x RII/2) rats per group were administered CGA 51202 Technical (100%; Batch No. JD 7069/3) by gavage in 0.5% aqueous sodium carboxymethylcellulose solution at doses of 0, 10, 100, or 1000 mg/kg/day on gestation days (GD) 6-15, inclusive. Controls were treated with 0.5% sodium carboxymethylcellulose (vehicle). On GD 21, dams were sacrificed, subjected to gross necropsy, and all fetuses examined externally. Approximately one-half of each litter was processed for visceral examination and the remaining one-half was processed for skeletal examination.

One low-dose animal was sacrificed moribund on GD 20 with a urogenital infection. All other animals survived to terminal sacrifice. No clinical signs of toxicity were observed in any animal. Maternal body weights and body weight gains were similar between the treated and control groups throughout the study. Food consumption was not affected by treatment. Maternal necropsy was unremarkable.

Therefore, the maternal toxicity NOAEL is ≥1000 mg/kg/day and the maternal toxicity LOAEL was not identified.

No differences were observed between the treated and control groups for number of corpora lutea, number of implantation sites, live fetuses/dam, pre- and post-implantation losses, fetal body weights, or fetal sex ratios.

No treatment-related external, visceral, or skeletal malformations/variants were observed in any fetus from any group.
The high dose is equivalent to the limit dose for developmental toxicity studies.

Therefore, the developmental toxicity NOAEL is \(\geq 1000 \text{ mg/kg/day} \) and the developmental toxicity LOAEL was not identified.

This study is classified as **Acceptable/Guideline** and satisfies the requirements for a developmental toxicity study [870.3700 (§83-3a)] in rats.

MRID 44929511

EXECUTIVE SUMMARY: In a Tif: MAGf(SPF) mouse bone marrow micronucleus assay (MRID 44929511), five mice/sex/dose were treated once via oral gavage with CGA-51202 technical (Batch No. JD 7069/3, 100% a.i.) at doses of 600, 1200 and 2400 mg/kg body weight. In an initial micronucleus assay, bone marrow cells were harvested at 16, 24 and 48 hours post-treatment from test material treated mice and at 24 hours post-treatment from solvent and positive control treated mice. In a second assay, harvest times were 24 and 48 hours post-treatment for the high dose and solvent control mice and 24 hours post-treatment for the intermediate and low dose mice and for the positive control. The vehicle was Arachis oil.

There were signs of toxicity during the study. A preliminary toxicity test was conducted with concentrations up to 3000 mg/kg, the solubility limit using one male and one female per dose. Both animals in each group survived the treatments (three day observation period) but both mice receiving 3000 mg/kg showed respiratory sounds. A confirmatory assay was conducted with 3000 mg/kg using one male and one female. Respiratory sounds were heard in both mice and the male mouse died two days after treatment. An upper dose of 2400 mg/kg was thus selected for the micronucleus assay. In the initial micronucleus assay, data from the 24 and 48 hour harvest times were not acceptable because the analytically determined test material concentrations were too low (the results were not shown). Clinical signs of toxicity seen in mice from the 2400 mg/kg 16 hour sampling time group were respiratory sounds, piloerection and dyspnea. The PCE/NCE ratio did not indicate bone marrow cytotoxicity at any test material dose. No statistically significant increase in the number of micronucleated PCEs over the solvent control value was seen at any CGA-51202 technical concentration at the 16 hour sampling time. The mean percentage of micronucleated PCEs (pooled male and female data in the absence of sex differences) was 0.04%, 0.05% and 0.05% in the 600, 1200 and 2400 mg/kg treatment groups, respectively, compared to the solvent control value of 0.02%. The positive control value was 1.15%, significant at \(p<0.05 \). A second micronucleus assay was conducted with doses of 600, 1200 and 2400 mg/kg and a 24 hour harvest time. An additional harvest time of 48 hours was used with the 2400 mg/kg group. At the 24 hour harvest time, three females and two males from the 2400 mg/kg groups had respiratory sounds while all other mice in the upper dose groups and all mice in the lower two dose groups appeared normal. In the 48 hour
harvest time groups, all animals except one male had one or more of the following signs of toxicity: respiratory sounds, reduced locomotor activity, piloerection, tremor and dyspnea. The PCE/NCE ratios did not indicate bone marrow cytotoxicity at any test material dose. A statistically significant increase (p<0.05) in the mean number of micronucleated PCEs (pooled male and female data) over the solvent control value (0.01%) was seen at 600 (0.08%) and 1200 (0.08%) but not at 2400 mg/kg (0.04%). Although statistically significant due to the very low solvent control value, the actual percentages of micronucleated PCEs were well below the laboratory’s criterion for a positive response of 0.20%, thus the results were not considered biologically significant. The positive control value of 0.98% was appropriate. The mean percentage of micronucleated PCEs at the 48 hour harvest time (2400 mg/kg) was 0.05% compared to 0.10% for the solvent control. There was no biologically significant increase in the frequency of micronucleated polychromatic erythrocytes in bone marrow after any dose or treatment time used in the study.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline [OPPTS 870.5395 (§84-2)] for in vivo cytogenetic mutagenicity data.

MRID 44929512

Citation: Hertner, Th. (1992) *Salmonella* and *Escherichia* liver-microsome test. CIBA-GEIGY Limited, Genetic Toxicology, Basle, Switzerland. Laboratory study ID 911342, Novartis No. 411-91, March 20, 1992. MRID 44929512. Unpublished.

EXECUTIVE SUMMARY In a reverse gene mutation assay in bacteria (MRID 44929512), strains TA98, TA100, TA1535 and TA1537 of *S. typhimurium* and strain WP2(uvrA) of *E. coli* were exposed to CGA-51202 technical (Batch No. JD 7069/3, 100% a.i.) in DMSO at concentrations of 312.5, 625.0, 1250.0, 2500.0, 5000.0 µg/plate in the presence and absence of mammalian metabolic activation. Two independent assays were conducted and all plating was in triplicate. The S9-fraction was obtained from Aroclor induced male RAI (Tif:RAIf(SPF)) rat liver.

CGA-51202 technical was tested up to a limit concentration of 5000 µg/plate. Cytotoxicity, as based on a reduction in the number of revertants per plate compared to the solvent control value, was seen in a preliminary cytotoxicity assay using TA100 and WP2(uvrA) only at 5000 µg/plate without S9-mix. The number of revertants per plate was 54% of the solvent control value in TA100 and 53% of the solvent control value in WP2(uvrA). A precipitate was seen on the TA100 plate at 5000 µg/plate without S9-mix. In the mutagenicity assays, no cytotoxicity was evident at any test point and no precipitates were seen. CGA-51202 technical did not increase the number of revertants per plate over solvent control values at any tested concentration in any of the five bacterial strains in either mutagenicity assay, with or without S9-mix. The solvent and positive control values were appropriate for the respective strains and within the laboratory’s historical control ranges. There was no evidence of induced mutant colonies over background.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline 84-2 (OPPTS 870.5100) for in vitro mutagenicity [bacterial reverse gene mutation] data.
EXECUTIVE SUMMARY: In an acute oral toxicity study (MRID 44931704) groups of five male and five female fasted young adult Han\bm:WIST rats were given a single oral 5000 mg/kg dose of CGA-354743 Technical (metabolite of CGA 24705, Batch No. KI-5408/6, 98.0% a.i.) in distilled water and observed for 14 days.

No rats died and all rats had normal body weight gains during the study. No remarkable clinical observations were noted during the study and no remarkable observations were noted at necropsy.

The oral LD$_{50}$ for males, females, and combined was > 5000 mg/kg (Limit Test).

CGA-354743 Technical is in TOXICITY CATEGORY IV based on the LD$_{50}$.

This acute oral study is classified as Acceptable/Guideline and satisfies the guideline requirements for an acute oral study [§870.1100 (§81-1)] in the rat.

EXECUTIVE SUMMARY: In an acute dermal toxicity study (MRID 44931705) approximately 10% of the body surface area of five male and five female young adult rats was dermally exposed to 2000 mg/kg (Limit Test) CGA-354743 Technical (metabolite of CGA 24705, Batch No. KI-5408/6, 98.0% a.i.) moistened with distilled water for 24 hours. The animals were observed for 14 days.

None of the animals died during the study. No remarkable clinical observations or local irritation were noted on any rats. With the exception of one female that lost weight during the first week, all animals had normal body weight gains. No observable abnormalities were noted at necropsy.

The dermal LD$_{50}$ for males, females, and combined was > 2000 mg/kg (Limit Test).

CGA-354743 Technical is in TOXICITY CATEGORY III based on the LD$_{50}$.

This acute dermal study is classified as Acceptable/Guideline and satisfies the guideline requirements for an acute dermal study [§870.1200 (§81-2)] in the rat.
MRID 44931706

EXECUTIVE SUMMARY: In a primary eye irritation study (MRID 44931706) 41 mg (0.1 mL weight equivalent) of CGA-354743 Technical (metabolite of CGA 24705, Batch No. KI-5408/6, 98.0% a.i.) was instilled into the conjunctival sac of the left eye of three male and three female rabbits and the eye lids held together for approximately 1 second. The eyes were washed with distilled water for one minute after the 24 hour reading. The contralateral eye of all rabbits served as control. The eyes were scored for ocular irritation according to the OECD/EEC/MAFF scoring system 1, 24, 48, and 72 hours after instillation.

Corneal opacity (grade 1-2) was found in 5/6 rabbits one hour after test material instillation that persisted through 24 hours in 4/6 animals. By 48 hours, 4/6 rabbits had corneal opacity with resolution in 2/6 rabbits by 72 hours, in 1/6 rabbits by day 7 and in 1/6 rabbits by day 10. Iritis (grade 1) was noted on 3/6, 4/6, 2/6, and 2/6 rabbits 1, 24, 48, and 72 hours, respectively, after test material instillation; resolution occurred by 7 days. The test material induced conjunctival redness (grades 1 or 2) in all rabbits within one hour of treatment with resolution in 5/6 rabbits within 7 days and in 1/6 rabbits within 10 days. Conjunctival chemosis (grade 1 or 2) was noted in 6/6 rabbits one hour after treatment which resolved by day 7.

In this study, CGA-354743 Technical was a moderate irritant and is in TOXICITY CATEGORY II for primary eye irritation.

This study is classified as Acceptable/Guideline and satisfies the guideline requirements for a primary eye irritation study [870.2400 (81-4)] in the rabbit.

MRID 44931707

EXECUTIVE SUMMARY: In a primary dermal irritation study (MRID 44931707) three male and three female adult New Zealand white rabbits were dermally exposed to 0.5 g CGA-354743 Technical (metabolite of CGA 24705, Batch No. KI-5408/6, 98.0% a.i.) on a gauze patch moistened with distilled water for 4 hours on the flank of the animals. The animals were scored 1, 24, 48, and 72 hours after patch removal. Irritation was scored by the method of Draize.

Very slight erythema was noted on 4/6 rabbits (1 male and 3 females) one hour following patch removal with resolution on 2/6 rabbits by 24 hours, on 1/6 rabbits by 48 hours, and on 1/6 rabbits
by 72 hours. There was no edema observed. The primary dermal irritation index was 0.29. The female rabbit which had the longest duration of erythema lost weight during the 72-hour period.

In this study, CGA-354743 Technical was essentially nonirritating and is in TOXICITY CATEGORY IV for primary dermal irritation.

This study is classified as Acceptable/Guideline and satisfies the guideline requirements for a primary dermal irritation study [870.2500 (81-5)] in the rabbit.

MRID 44931708

EXECUTIVE SUMMARY: In a dermal sensitization study (MRID 44931708) with CGA-354743 Technical (metabolite of CGA 24705, Batch No. KI-5408/6, 98.0% a.i.), 10 young adult male and 10 female guinea pigs were tested using the Buehler Test. An additional five animals/sex served as a vehicle control group and five/sex as a naive control group.

After the first induction, irritation (slight or slight to moderate confluent erythema) at the application site was observed in 13/20 and 18/20 animals at the 24-hour and 48-hour evaluations, respectively. After the second induction, irritation was observed in 17/20 and 18/20 animals at the 24-hour and 48-hour examinations, respectively. After the third induction, all animals had evidence of irritation. The vehicle control animals had no reaction. One female test animal had slight confluent erythema at 48 hours and another female test animal had slight confluent erythema 24 hours after challenge that persisted through 48 hours. No rechallenge was conducted. The flanks of the test animals treated with vehicle had no reaction. The vehicle control and naive control animals had no reaction after challenge. The study report included a positive control study carried out within six months of the current study. The 2-mercaptobenzothiazole positive control and vehicle control animals responded appropriately.

In this study, CGA-354743 Technical was a weak dermal sensitizer.

This study is classified as Acceptable/Guideline and satisfies the guideline requirements for a dermal sensitization study [870.2600 (81-6)] in the guinea pig.

MRID 44931709

EXECUTIVE SUMMARY: In a 90-day subchronic oral toxicity study (MRID 44931709), CGA-354743 technical (Batch Nos. KI-5408/4 and KI-5408/5, 99% a.i.) was administered to 4 purebred beagle dogs/sex/dose by capsule at dose levels of 0, 50, 200, 500, and 1000 mg/kg/day for 13 weeks. An additional group of 4 males and 4 females received parent compound (CGA-77102 technical, Batch No. P.501001, 98.5% a.i.) at 200 mg/kg/day for 13 weeks.

There were no significant treatment related effects on mortality, body weight, food consumption, food conversion ratios, ophthalmological findings, hematology and urinalysis parameters, or gross and histopathological findings. Vomiting did occur at a higher incidence in females treated with 1000 mg/kg/day of CGA-354743. Clinical signs in animals treated with CGA-77102 included vomiting, salivation and hematuria. Mean alkaline phosphatase activity was slightly increased in males receiving 1000 mg/kg/day CGA-354743 at weeks 7 and 13 to levels which were less than double the pretest mean for this group. This finding correlated with slightly increased absolute liver weights, but there were no corresponding histopathological findings, or toxicologically significant increases in other biochemistry parameters. In females, mean ALP activities remained within the reference range for untreated animals and mean GGT activity exceeded the reference range only at week 13 and only for the 500 mg/kg/day CGA-354743 group. Absolute liver weights and liver weights relative to body weights were increased in females receiving 500 and 1000 mg/kg/day. In the absence of corresponding histopathological findings or biologically significant increases in biochemistry parameters consistent with adverse hepatic effects, this finding is not considered toxicologically significant.

Mean ALP and GGT activities were significantly increased in both sexes at weeks 7 and 13 given CGA-77102. In addition, ALT activity of males was increased at weeks 7 and 13. Absolute and relative liver weights were significantly increased in males and females. There were small increases in the incidences and severity of bile duct hyperplasia, perilobular fatty change in the livers of both sexes, and cystic hyperplasia of the gallbladder occurred only in the parent compound group.

The results appear to indicate that CGA-354743 may have effects (vomiting, slight increases in ALT and liver weight) similar to those of its parent compound, CGA-77102; however, at the limit dose, 1000 mg/kg/day, the effects observed were so slight and of questionable toxicological significance in CGA-354743-treated dogs that a definitive comparison of the two compounds cannot be made.

Based on the data presented in this study, the LOAEL was not determined, and the NOAEL was greater than or equal to 1000 mg/kg/day.

This subchronic oral toxicity study in dogs is classified as Acceptable/Guideline and satisfies the guideline requirements for a subchronic oral study [OPPTS: 870.3150 (§82-1b)] in dogs since the limit dose was tested.
EXECUTIVE SUMMARY: In a 90-day subchronic oral toxicity limit study (MRID 44931710), groups of 10 male and 10 female Crl: CD BR rats were given CGA-354743 (Lot/Batch # KI-5408/6, 98% a.i.) administered in the diet at concentrations of 0, 360, 1200, 6000, or 20,000 ppm. These concentrations were equivalent to 0, 25.1, 86.2, 427.0 or 1545.0 mg/kg/day for males and 0, 28.4, 98.3, 519.0 and 1685.0 mg/kg/day for females. An additional 10 male and 10 female rats were given CGA-77102 (s-Metolachlor)(Lot/Batch# P.50100 I, 98.5% a.i.) administered in the diet at 5000 ppm (equivalent to 429 mg/kg/day for males and 563 mg/kg/day for females). The study was designed to assess the subchronic oral toxicity of CGA-354743 technical and to compare its toxic effects with those of its parent compound, CGA-77102 technical.

No deaths or clinical signs of toxicity occurred during this study. In addition, no statistically significant changes in body weight, body weight gain, food consumption, food efficiency, ophthalmologic examination, urinalysis, or histopathology was reported for animals fed CGA-354743. Limited and sporadic statistically significant changes in hematology, clinical chemistry, water intake and organ weight data were not dose-dependent, and were of questionable toxicological and biological importance.

Dietary exposure to CGA-77102 produced a statistically significant decreased body weight gain (-20%, p ≤ 0.01) in males during week 1 only. Females exposed to CGA-77102 showed decreased body weight gain (-19%) by week 13, but these changes were not statistically significant. The food efficiency of rats fed CGA-77102 was decreased relative to their respective control animals. Male and female rats had increased absolute and relative liver weights. These results are consistent with a mild liver hypertrophy in females.

Based on the data presented in this study, the NOAEL is ≥20,000 ppm (1543 mg/kg/day and 1685 mg/kg/day for females) for CGA-354743. A LOAEL could not be established. At 5000 ppm (429 mg/kg/day in males and 563 mg/kg/day in females) CGA-77102 , there evidence of decreased body weight gain and food efficiency, increased absolute and relative liver weights and an increased incidence of hepatic centrilobular hypertrophy, although the effects were mild.

This subchronic oral toxicity study in rats is classified as Acceptable/Guideline [OPPTS 870.3100 (§82-1a)] and satisfies the guideline requirements.
EXECUTIVE SUMMARY: In a developmental toxicity study (MRID 44931711), 28 presumed pregnant Wistar B: Hanlbm:WIST rats per group were administered CGA 354743 Technical (98%; Batch No. KI-5408/6) by gavage in 0.5% aqueous sodium carboxymethylcellulose in 0.1% aqueous polysorbate 80 at doses of 0, 250, 500, or 1000 mg/kg/day on gestation days (GD) 6-15, inclusive. Controls were treated with 0.5% sodium carboxymethylcellulose in 0.1% aqueous polysorbate 80 (vehicle). On GD 21, dams were sacrificed, subjected to gross necropsy, and all fetuses examined externally. Approximately one-half of each litter was processed for visceral examination and the remaining one-half was processed for skeletal examination.

All animals survived to terminal sacrifice. No clinical signs of toxicity were observed in any animal. Maternal body weights, body weight gains, and food consumption were similar between the treated and control groups throughout the study. Maternal necropsy was unremarkable.

Therefore, the maternal toxicity NOAEL is ≥1000 mg/kg/day and the maternal toxicity LOAEL was not identified.

No differences were observed between the treated and control groups for number of corpora lutea, number of implantation sites, live fetuses/dam, pre- and post-implantation losses, fetal body weights, or fetal sex ratios.

No treatment-related external, visceral, or skeletal malformations/variations were observed in any fetus from any group.

The high dose is equivalent to the limit dose for developmental toxicity studies.

Therefore, the developmental toxicity NOAEL is ≥1000 mg/kg/day and the developmental toxicity LOAEL was not identified.

This study is classified as Acceptable/Guideline and satisfies the requirements for a developmental toxicity study [870.3700 ($83-3a)] in rats.

MRID 44931712

EXECUTIVE SUMMARY: In a reverse gene mutation assay in bacteria (MRID 44931712), strains TA98, TA100, TA102, TA1535 and TA1537 of S. typhimurium and strain WP2(uvrA) of E. coli
were exposed to CGA-354743 tech. (Batch No. RV-2816/1, 95% a.i.) in DMSO at concentrations of 312.5, 625.0, 1250.0, 2500.0 and 5000.0 µg/plate in the presence and absence of mammalian metabolic activation (S9-mix). The S9-fraction was obtained from Aroclor 1254 induced male RAI (Tif:RAIf (SPF)) rat liver.

CGA-354743 tech. was tested up to a limit concentration of 5000 µg/plate. No cytotoxicity, as measured by thinning or absence of the background lawn of bacteria or by a reduction in the number of revertants per plate compared to the solvent control values, was seen in the preliminary cytotoxicity test or in the mutagenicity tests at concentrations up to 5000 µg/plate, with or without S9-mix. An initial and a confirmatory mutagenicity assay was conducted and all plating was in triplicate. The number of revertants per plate was not increased over solvent control values in any strain at any tested concentration, with or without S9-mix, in either assay. The positive and solvent control values were appropriate in the respective strains and within the laboratory’s historical control ranges. **There was no evidence of induced mutant colonies over background.**

This study is classified as **Acceptable/Guideline.** It satisfies the requirement for FIFRA Test Guideline 84-2 (OPPTS 870.5100) for *in vitro* mutagenicity [bacterial reverse gene mutation] data.

MRID 44931713

EXECUTIVE SUMMARY: In a ICO:CD1 (CRL) mouse bone marrow micronucleus assay (MRID 44931713), five mice/sex/dose were treated once each via oral gavage with CGA-354743 tech. (Batch No. K15408/6, 98 ± 2% a.i.) at doses of 1250, 2500 and 5000 mg/kg body weight. Bone marrow cells were harvested at 16, 24 and 48 post-treatment from the high dose and negative control groups and at 24 hours only from the intermediate and low dose and positive control groups. The vehicle was bidistilled water.

There were no signs of toxicity in the preliminary toxicity assay (5000 mg/kg only) or at any dose or sampling time in the micronucleus assay. The upper dose was the limit dose for this assay and also the solubility limit. No bone marrow cytotoxicity, based on the PCE/NCE ratio was evident. There was no statistically significant increase in the percentage of micronucleated PCEs in any CGA-354743 tech. treated group when compared to the solvent control groups and there were no sex-related differences seen. The mean percentage of micronucleated PCEs (pooled male/female data) was 0.04% in all treatment groups except the 5000 mg/kg, 24 hour harvest time group in which the percentage was 0.07%. The solvent control values were 0.03, 0.03 and 0.01% at 16, 24 and 48 hours, respectively while the positive control value was 1.07% (24 hour harvest time only). The positive and solvent controls induced the appropriate responses. **There was no significant increase in the frequency of micronucleated polychromatic erythrocytes in bone marrow after any dose or treatment time.**
This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline [OPPTS 870.5395 (§84-2)] for in vivo cytogenetic mutagenicity data.

MRID 44931714

EXECUTIVE SUMMARY: In an unscheduled DNA synthesis (UDS) assay (MRID 44931714), primary rat hepatocyte cultures were exposed to CGA-354743 tech. (Batch No. KI-5408/6, 98% a.i.) in bidistilled water at concentrations of 9.77, 39.06, 156.25, 625.00, 2500.00, 5000.00 µg/mL for 16 to 18 hours in an initial assay and to concentrations of 78.13, 156.25, 312.50, 625.00, 1250.00, 2500 µg/mL for 16 to 18 hours in a confirmatory assay. Primary hepatocytes were obtained from healthy male HANlbm:WIST(SPF) rats.

CGA-354743 tech. was tested up to cytotoxic concentrations based on cell morphology changes and reduced cell viability. A cytotoxicity test at concentrations ranging from 4.88 to 5000.00 µg/mL showed a general trend of decreasing cell viability with increasing test material concentration, decreasing from 81% viable cells at 4.88 µg/mL to 57% at 5000.00 µg/mL. Viability of the solvent controls was 88%. Effects on cell morphology were seen at concentrations of 39.06 and higher, although, sufficient cells with good morphology were available for UDS determination at all test material concentrations. One hundred and fifty cells (50/slide) were scored for UDS per treatment group. There was no increase in the net nuclear grain count, the net grain count of cells in repair or in the percentage of cells in repair over solvent control values at any concentration in either assay. The mean net nuclear grain counts remained below 1.0 at all concentrations in both assays. The mean net nuclear grain counts of the solvent controls were 0.5 and -0.4 in the initial and confirmatory assays, respectively, while those of the positive controls were 12.3 and 9.3 in the initial and confirmatory assays, respectively. The positive and solvent controls induced the appropriate response. There was no evidence that unscheduled DNA synthesis, as determined by radioactive tracer procedures (nuclear silver grain counts), was induced.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline (OPPTS 870.5550; 84-2) for other genotoxic mutagenicity data.

MRID 44931715

EXECUTIVE SUMMARY: In a metabolism study (MRID 44931715), groups of three male and three female rats were each given [phenyl-U-14C] CGA 77102 (batch no. ILS-143.1; purity 98.9%) and non-radiolabeled CGA 77102 (batch no. AMS 757-101; purity 99.8%) to provide a total single oral dose of 0.5 or 100 mg/kg. Urinary and fecal excretion were monitored over 72 hours and major metabolites identified and quantified. The study focused on evaluating the presence of the metabolites CGA 354743, CGA 368208, and CGA 357704 in the excreta of rats. There were no deaths or overt signs of toxicity attributed to the test material. Actual administered doses were 3-8% greater than nominal. Overall recovery of administered radioactivity was an acceptable 93.83-99.18%. Urinary excretion and carcass burden data implied that absorption was approximately 38-49% of the administered dose. Most (86.5-91.7%) of the radioactivity recovered at 72 hours post was associated with the urine and feces. The available data suggested that urinary excretion was slightly greater in female rats than male rats (42% for low- and high-dose females as compared to 30% and 32% of low- and high-dose males, respectively), and fecal elimination was expectedly less (approximately 13-15%) for females than for males. However, the small sample size (three rats per sex) precludes a definitive assessment of gender-specific differences in excretory pattern. Time-course data for absorption and excretion were not provided. Based upon the residual radioactivity in the carcasses, accumulation in the tissues was less than 10% of the administered dose at 72 hours after administration.

Both urinary and fecal metabolites were identified and quantified. For both routes of elimination, three major metabolites were identified but none represented more than 0.25% of the administered dose. Characterization of these metabolites and comparison to known reference standards revealed them to be CGA 357704, CGA 354743, and CGA 368208. In the feces, CGA 357704 and CGA 354743 represented a notably greater percent of the administered dose than in the urine. The amounts of CGA 368208 were similar in the feces and urine. Biliary excretion experiments were not performed and, therefore, no assessment can be made regarding biliary or gut microflora as the source of these biotransformation products in the feces.

This metabolism study in rats is Acceptable/Non-guideline. Although not satisfying the requirements for a Metabolism and Pharmacokinetics study [OPPTS 870.7485 (85-1)], the study was well designed and conducted, and provided supplemental data regarding the quantitation and identification of urinary and fecal metabolites in rats given a single oral dose of CGA 77102.

MRIDs 44931716 and 44931717

Hassler, S. (1999). Disposition of [Phenyl-U-14C]-CGA-376944, a sulfonic acid soil metabolite of CGA-77102, in bile-duct cannulated rats after oral administration. Novartis Crop Protection AG,
EXECUTIVE SUMMARY: In a metabolism study (MRIDs 44931716 and 44931717), groups of four male and female and six male Tif: RAI f (SPF) rats were given single oral doses of [Phenyl-U-14C]-CGA-376944 (0.5 mg/kg nominal; Batch No. ILS-125.4 radiochemical purity >95.5%), for the metabolism and bile-duct cannulation studies, respectively.

There were no deaths or overt signs of toxicity that could be attributed to the test material. Weight loss in bile-duct cannulated rats was attributed to surgical trauma. Radioactivity inventory indicated an acceptable 96.46-99.01% recovery of the administered dose among the experimental groups.

Based on urinary excretion, biliary excretion, and carcass burden, 17.35% of the administered radioactivity was absorbed following a single oral dose of 0.5 mg/kg of [Phenyl-U-14C]-CGA-376944. Absorption was rapid but limited and most of the absorbed radioactivity (92.3%) was excreted within 24 hours; primarily in the bile. At 72 hours, measurable radioactivity was found only in the liver of non-cannulated rats. Carcass burdens accounted for <0.01% of the administered dose at necropsy.

Fecal elimination was the major route of excretion, accounting for most of the administered oral dose in non-cannulated rats (94.24-96.27%). Fecal excretion was rapid with 98.8-99.2% of the fecal excretion occurring within 24 hours post-dosing. Urinary excretion, accounted for only 2.1-4.4% of the dose in non-cannulated rats and 5.3% in bile-duct cannulated rats. Urinary excretion was rapid and nearly complete within 24 hours of dosing. Biliary excretion represented 11.5% of the administered dose at 48 hours. The majority of biliary excretion (99.2%) occurred within 24 hours after dosing. In bile-duct cannulated animals, an additional 76.8% of the administered dose was excreted in the feces. Based on these data, biliary excretion is a contributor to fecal elimination of the test material. This appears consistent with the occurrence of enterohepatic circulation via the hepatic portal system and bile-duct. Only a minor percentage of the dose (5.3%) appeared to enter the systemic circulation where it was rapidly excreted by the kidneys. No biologically relevant gender-related differences were detected in the oral dose groups.

Blood pharmacokinetic parameters could not be calculated due to low blood concentrations and rapid clearance of the administered dose. Blood levels of radioactivity peaked in both sexes within one hour post-dosing.

It is evident from the results of this study that the test material undergoes limited but rapid absorption and nearly complete excretion within 24 hours. The primary route of excretion is via the feces with biliary excretion products representing about 15.0% of the fecal excretion products. At the dose tested, [14C]-CGA-376944 exhibits little potential for accumulation in the tissues. There were no significant gender-related differences in absorption and disposition of the test material. The unchanged test material accounted for >90% of the dose in both males and females. The unknown metabolites of urine and feces, separated by TLC accounted for 0.2-2.8% of the administered radioactivity and were not characterized further.
This combined metabolism study in rats is **Acceptable/Guideline** and satisfies the requirements for a Metabolism and Pharmacokinetics study [OPPTS 870.7485 (§85-1)].

MRID 44991101

Citation: Winkler, G. (1995) Acute oral toxicity in the rat (limit test). Short-term Toxicology, Novartis Crop Protection, Inc. (Formerly Ciba-Geigy Limited), 4332 Stein, Switzerland. Laboratory study identification 816-95, December 5, 1995. MRID 44991101. Unpublished.

EXECUTIVE SUMMARY: In an acute oral toxicity study (MRID 44991101) five male and five female fasted young adult Tif:RAI f (SPF) rats were given a single oral 2000 mg/kg dose of CGA-354743 Tech. (95%, a.i., Batch No. RV-2816/1) in 0.5% w/v Carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80 and observed for 14 days.

No animals died during the study. Piloerection and hunched posture were noted from all rats one hour post dosing with recovery by day 3. With the exception of one female that lost weight during the second week, all rats had normal body weight gains. No observable abnormalities were noted at necropsy.

The oral LD_{50} for males, females, and combined was > 2000 mg/kg.

CGA-354743 Tech. is in TOXICITY CATEGORY III based on the LD_{50}

This acute oral study is classified as **Acceptable/Guideline** and satisfies the guideline requirements for an acute oral study [870.1100 (81-1)] in the rat.

MRID 44991102

EXECUTIVE SUMMARY: In a mammalian cell gene mutation assay at the HPRT locus (MRID 44991102), Chinese hamster V79 cells in culture were exposed to CGA-354743 tech. in bidistilled water at concentrations of 185.19, 555.56, 1666.67, 5000.00 µg/mL in the presence and absence of mammalian metabolic activation (S9-mix). The S9-fraction was obtained from Aroclor 1254 induced male Tif:RAI/SPF rat liver.

CGA-354743 tech. was tested up to a weakly cytotoxic limit concentration of 5000 µg/mL. In a preliminary cytotoxicity test, the number of viable cells was reduced approximately 27% and 32%, compared to the solvent control group, at 5000.00 µg/mL with and without S9-mix, respectively. An initial and a confirmatory assay were conducted using two cultures per dose, four dishes per
culture. In the presence of S9-mix, small but statistically significant increases in mean mutant frequencies over the solvent control value were seen in the initial mutation assay at concentrations of 555.56 µg/mL (4.10 per 10^6 viable cells, 0.002<p<0.01) and 5000.00 µg/mL (5.35 per 10^6 viable cells, p<0.001) but not at 1666.67 µg/mL (3.17 per 10^6 viable cells). The mutant frequency of the solvent control was 2.80 x 10^6 viable cells. Results in the confirmatory assay with S9-mix were similar with small but statistically significant increases in mean mutant frequencies over the solvent control value of 1.58 per 10^6 viable cells seen at 555.56 µg/mL (2.60 per 10^6 viable cells, 0.02<p<0.05), 1666.67 (3.40 per 10^6 viable cells, 0.002<p<0.01) and 5000.00 µg/mL (2.91 per 10^6 viable cells, 0.002<p<0.01). The mean mutant frequency of the DMN positive control was 118.27 per 10^6 viable cells in the initial assay and 116.68 per 10^6 viable cells in the confirmatory assays. In the absence of S9-mix, statistically significant increases in mutant frequencies were seen at 555.56 and 5000.00 µg/mL CGA-35473 but not at 1666.67 µg/mL in both the initial and the first confirmatory assays. In the initial assay, the mean mutant frequency at 5000.00 µg/mL was 19.7 per 10^6 viable cells (p<0.001) compared to the solvent control value of 3.66 per 10^6 viable cells and the normalized mean number of mutants per flask was 39.41 compared to the solvent control value of 7.33. The results at 5000.00 µg/mL met the laboratory’s criteria for a positive response. In the first confirmatory assay, the statistically significant increase in the mutant frequency over the solvent control value seen at 5000.00 µg/mL (0.001 <p<0.002) was not accompanied by a normalized mean number of mutants per flask of at least 20 more than the solvent control (18.63 vs 6.63 for the solvent control), thus not meeting the criteria for a positive response. A second confirmatory assay was performed without S9-mix and small but statistically significant increases in mutant frequency were seen at 555.56 and 1666.67 µg/mL but not at 5000.00 µg/mL; therefore, the positive result seen in the initial assay could not be confirmed. There was a statistically significant relationship between dose and mutant frequency in the initial and first confirmatory assay (p<0.001) but not in the second confirmatory assay. Although the increases in mutant frequencies over solvent control values seen in this study were statistically significant, all mutant frequencies in test material treated cultures were well within the laboratory’s historical solvent control range of 1.01 to 15.68 per 10^6 viable cells and below the historical solvent control mean mutant frequency of 5.46 per 10^6 viable cells (with the one exception at 5000.00 µg/mL without S9-mix). In addition, the solvent control values seen in both the initial and confirmatory assays were near the bottom of the historical control range. The normalized mean number of mutants per flask did not meet the laboratory criterion of 20 or more greater than the solvent control value at any dose with S9-mix or at any dose without S9-mix except at 5000.00 µg/mL as described. The statistically significant differences seen are thus unlikely to be biologically significant. It is of note that none of the assay results satisfied the generally accepted criteria for a positive response in this test system (i.e., reproducibility, dose response and/or minimum of 3-fold increase over background). The positive and solvent controls induced the appropriate response. **There was suggestive (statistical) evidence of a possible induction of mutant colonies over background; however, the results are unlikely to be biologically**

significant because the absolute numbers of mutant colonies were low and within the testing laboratory’s historical solvent control ranges.

This study is classified as **Acceptable/Guideline**. It satisfies the requirement for FIFRA Test Guideline OPPTS 870.5300[§84-2] OPPTS 870.5300 for in vitro mutagenicity (mammalian forward gene mutation) data.

MRID 45001201

EXECUTIVE SUMMARY: In a mammalian cell gene mutation assay at the HPRT locus (MRID 45001201), Chinese hamster V79 cells cultured in vitro were exposed to CGA 51202 tech. (Batch No. JD 7069/3, 100% a.i.) in DMSO at concentrations of 500, 1000, 2000 and 4000 µg/mL in the presence and absence of mammalian metabolic activation (S9-mix). A confirmatory assay was conducted at test material concentrations of 375, 750, 1500 and 3000 µg/mL. The S9-fraction was obtained from Aroclor 1254 induced male Tiff:RAI/SPF rat liver.

CGA 51202 tech. was tested up to cytotoxic concentrations. The upper concentrations in both the initial and confirmatory assays, with and without S9-mix, killed virtually all the cells. Statistically significant increases in mean mutant frequency were seen in the initial assay with S9-mix at 500 µg/mL (6.66 x 10^{-6}) and 1000 µg/mL (5.56 x 10^{-6}) compared to the solvent control value of 4.02 x 10^{-6} and without S9-mix at 500 µg/mL (15.35 x 10^{-6}) compared to the solvent control value of 12.90 x 10^{-6}. The increases were small and the actual mean mutant frequencies were within the range of historical solvent control values. No positive dose-response was seen and no statistically significant increases in mean mutant frequencies were seen in the confirmatory assay. The solvent and positive controls induced the appropriate response. **There was no evidence of a biologically significant induction of mutant colonies over background.**

This study is classified as **Acceptable/Guideline**. It satisfies the requirement for FIFRA Test Guideline [OPPTS 870.5300 (§84-2)] for in vitro mutagenicity (mammalian forward gene mutation) data.

Updated Executive Summaries for Metolachlor DERs

MRIDs 00032174 and 43244001

EXECUTIVE SUMMARY:

In a subchronic oral toxicity study (MRIDs 00032174 and 43244001), metolachlor (96.8% ai) was administered in the diet to Beagle dogs (8/sex/group for control and high dose groups; 6/sex/group for low- and mid-dose groups) at dose levels of 0, 100, 300 or 1000 ppm (males: 0, 2.92, 9.71 and 29.61 mg/kg/day, respectively; females: 0, 2.97, 8.77 and 29.42 mg/kg/day, respectively) for six months.

There were no deaths or clinical signs of toxicity. Mean body weight gain was decreased during weeks 0-13 and 0-26 in the 1000 ppm group males (55-63% decrease) and females (44-50% decrease), although the changes were not statistically significant. Mean overall food consumption was not affected in the 1000 ppm group males but was slightly decreased (9%) in the 1000 ppm females. There was a significant decrease in the activated partial thromboplastin time (APTT) in the 300 and 1000 ppm group males and 300 ppm group females but the findings were not considered toxicologically significant because the decrease was slight and not dose-related. Alkaline phosphatase was significantly increased in the 300 ppm and 1000 ppm group males and females at week 26; however, the effect was not considered toxicologically significant due to the small magnitude of the increase and the lack of accompanying necropsy findings.

The LOAEL was 1000 ppm (males/females: 29.61/29.42 mg/kg/day) based on decreased body weight gain. The NOAEL was 300 ppm (males/females: 9.71/8.77 mg/kg/day).

The study is classified as Acceptable/guideline and satisfies the guideline requirements for a subchronic toxicity study in dogs (82-1; OPPTS 870.3150). The study was conducted for six months, whereas the guidelines require 90 days of dosing. However, toxicity parameters, with the exception of necropsy, were also evaluated at 90 days in the study.

MRID 00041283

EXECUTIVE SUMMARY:

In a prenatal developmental toxicity study (MRID 00041283), CGA-24705 (metolachlor) (95.4% a.i.) in 0.75% aqueous hydroxy methylcellulose was administered by gavage (10 ml/kg) to 16 pregnant New Zealand White rabbits/group from gestation days (GD) 6 through 18, inclusive, at dose levels of 0, 36, 120 or 360 mg/kg/day. The animals were sacrificed on GD 30 and the fetuses examined for evidence of developmental effects.

One doe at 36 mg/kg/day and another at 360 mg/kg/day died on GDs 24 and 29, respectively. The cause of death in both animals was attributed to persistent anorexia. Two rabbits aborted, one at 120
mg/kg/day (GD 25) and another at 360 mg/kg/day (GD 17). The high-dose animal had persistent anorexia. One rabbit in each group delivered prior to GD 30; the control, low- and high-dose animals on GD 29 and the mid-dose animal on GD 30. There was a treatment-related increase in the incidence of persistent anorexia in the does treated at 360 mg/kg/day, which was defined as less than one-half of the daily food allotment consumed. However, food consumption data were not provided to support this finding. There was a treatment-related decrease in body weight gain in the 360 mg/kg/day group for GD 6-18 (-0.16 kg vs +0.04 kg in controls; p<0.01) and GD 6-30 (-0.01 kg vs +0.03 kg in controls). There was no treatment-related increase in gross pathological findings in maternal animals at necropsy.

No treatment-related increase in external, visceral or skeletal developmental effects was observed.

The maternal toxicity LOAEL was 360 mg/kg/day based on an increased incidence of clinical observations (persistent anorexia) and decreased body weight gain. The NOAEL was 120 mg/kg/day.

The developmental toxicity LOAEL was not established. The NOAEL was 360 mg/kg/day.

The study is classified as Acceptable/guideline and satisfies the guideline requirements for a prenatal developmental toxicity study in rabbits (83-3b; OPPTS 870.3700).

MRID 00080897

EXECUTIVE SUMMARY:

In a two-generation reproduction study (MRID 00080897), metolachlor (95.4% a.i.) was administered in the diet to two consecutive generations of 15 male/30 female CD albino rats at dose levels of 0, 30, 300 or 1000 ppm (F₀ males: 0, 2.4, 23.5 and 75.8 mg/kg/day; F₀ females: 0, 2.5, 26.0 and 85.7 mg/kg/day; F₁ males: 0, 2.3, 23.7 and 76.6 mg/kg/day; F₁ females: 0, 2.6, 25.7 and 84.5 mg/kg/day).

There were no deaths in the F₀ generation. Two females of the F₁ generation died during the pre-mating period, one in the 300 ppm group at 32 days and the other in the 1000 ppm group at 52 days. One female in the 300 ppm group was found dead on gestation day 19 and a control group female was sacrificed in a moribund condition on lactation day 1. Based on necropsy examinations, none of the deaths was treatment-related. There were no treatment-related clinical signs of toxicity in either generation. Body weight, body weight gain and food consumption were unaffected in the F₀ generation. In the F₁ generation, food consumption was significantly decreased in females of the 1000 ppm group at several timepoints; however, there was no effect on body weight/body weight
gain. Therefore, this finding was not considered toxicologically significant. There were no treatment-related effects on organ weights or gross/microscopic necropsy examinations in either generation.

There was no evidence of a treatment-related effect on any of the reproductive parameters for either generation. Offspring body weight was significantly decreased in the F₁ litter on lactation days 14 and 21 (91-96% of control value) and in the F₂ litter on lactation days 4, 7, 14 and 21 (92-95% of control value). Although the magnitude of the decrease is small, the finding is regarded as toxicologically significant.

The parental toxicity LOAEL was not established. The NOAEL was 1000 ppm (F₀ males/females: 75.8/85.7 mg/kg/day; F₁ males/females: 76.6/84.5 mg/kg/day).

The reproductive toxicity LOAEL was not established. The NOAEL was 1000 ppm (F₀ males/females: 75.8/85.7 mg/kg/day; F₁ males/females: 76.6/84.5 mg/kg/day).

The offspring LOAEL was conservatively established at 1000 ppm (F₀ males/females: 75.8/85.7 mg/kg/day; F₁ males/females: 76.6/84.5 mg/kg/day) based on decreased body weight in F₁ and F₂ litters. The NOAEL is 300 ppm (F₀ males/females: 23.5/26.0 mg/kg/day; F₁ males/females: 23.7/25.7 mg/kg/day).

The study is classified as Acceptable/guideline and satisfies the guideline requirements for a multi-generation reproduction study in rats (83-4; OPPTS 870.3800).

MRID 00117597

EXECUTIVE SUMMARY:

In a carcinogenicity study (MRID 00117597), metolachlor (reported to be 95% a.i.) was administered in the diet to 68 CD-1 mice/sex/group at doses of 0, 300, 1000 or 3000 ppm (0, 45, 150 or 450 mg/kg/day, based on 1 ppm equals 0.150 mg/kg/day). Eight mice/sex/group were sacrificed at 12 and 18 months.

High dose females had a significant increased mortality rate due to a number of deaths during the first few weeks of treatment (control: 24/52; high dose females: 34/52 at termination). Although the deaths were possibly attributable to a viral infection, the contribution of the test material can’t be dismissed. Body weight was statistically significantly decreased (91-95% of control value) throughout the study in the 3000 ppm males and during the latter half of the study in the 3000 ppm females (93-95%). Body weight gain was consistently decreased in the 3000 ppm males (48-88%) and females (59-86%). Food consumption was comparable between treated and control groups until
week 90 of treatment, at which time the 3000 ppm males consumed 10% less than controls. The decrease was statistically significant at weeks 98, 102 and 104. There was no significant effect on female food consumption. There was no evidence of a treatment-related effect on hematology or clinical chemistry parameters. Organ weight was not affected except for a dose-related decrease in the absolute and relative weight of the seminal vesicles of males which was statistically significant at the high dose. However, there was no effect on testes weight and no accompanying histological changes in the seminal vesicles; therefore, the toxicological significance of the finding is questionable. There were no treatment-related microscopic changes. There was no treatment-related increase in tumor incidence in the study.

The LOAEL was 3000 ppm (450 mg/kg/day) based on possible treatment-related deaths in females and decreased body weight/body weight gain in males and females. The NOAEL was 1000 ppm (150 mg/kg/day).

The HED Cancer Peer Review Committee evaluated the carcinogenic potential of metolachlor on several occasions. At the 4th Committee meeting on July 27, 1994, it was metolachlor was classified as a Group C, possible human carcinogen based on liver tumors in the rat with risk quantitated using a Margin of Exposure approach.

The study is classified as acceptable/guideline and satisfies the guideline requirements for a carcinogenicity toxicity study in mice (83-5; OPPTS 870.4200).

MRID 00129377

EXECUTIVE SUMMARY:

In a chronic toxicity/carcinogenicity study (MRID 00129377), metolachlor (95.3% a.i.) was administered in the diet to 60 CD-Crl:CD (SD)BR albino rats/sex/group at dose levels of 0, 30, 300 or 3000 ppm (0, 1.5, 15 or 150 mg/kg/day based on 1 ppm in food equals 0.05 mg/kg/day) for two years. An additional 10 rats/sex/group were administered either 0 (control) or 3000 ppm in the diet for 12 months; five rats/sex/group were sacrificed after the treatment and the remaining five/sex/group were allowed to recover for four weeks and then sacrificed.

This summary applies only to the chronic toxicity portion of the study. The HED Cancer Peer Review Committee evaluated the carcinogenic potential of metolachlor on several occasions. At the 4th Committee meeting on July 27, 1994, metolachlor was classified as a Group C, possible human carcinogen based on liver tumors in rats with risk quantitated using a Margin of Exposure approach.

Comparable mortality rates were observed in the treated and control animals. There were no
treatment-related clinical signs of toxicity. Mean body weight gain was slightly decreased in the 3000 ppm females (6 - 17% decrease) throughout the study; the changes were not statistically significant. Mean food consumption was slightly decreased (4 - 9%) in the 3000 ppm females; the decrease was not statistically significant. Absolute, relative and liver-to-brain weight were increased (7%, 13% and 5%, respectively) in the 3000 ppm males. These increases were also observed in the 3000 ppm males after the four-week recovery period. However, the toxicological significance of the finding is questionable as there were no accompanying clinical pathology or histological changes.

The LOAEL was 3000 ppm (150 mg/kg/day) for females based on slightly decreased body weight gain and food consumption. The NOAEL was 300 ppm (15 mg/kg/day) for females. The LOAEL was not established for males. The NOAEL was 3000 ppm (150 mg/kg/day).

The study is classified as acceptable/guideline and satisfies the guideline requirements for a chronic toxicity study in rats (83-1; OPPTS 870.4100).

MRID 00151941

EXECUTIVE SUMMARY:

In a prenatal developmental toxicity study (MRID 00151941), CGA-24705 (metolachlor) (96.4% a.i.) in 0.5% (w/v) aqueous hydroxymethylcellulose was administered by gavage (10 ml/kg) to 25 presumed pregnant Crl:COBS®CD®(SD)BR rats from gestation days (GD) 6 through 15, inclusive, at dose levels of 0, 30, 100, 300 or 1000 mg/kg/day. The animals were sacrificed on GD 20 and the fetuses examined for evidence of developmental effects.

There were four treatment-related deaths [GD 7, 8 and 10 (2 rats)] in animals treated at 1000 mg/kg/day. Clinical signs of toxicity, including clonic and/or toxic convulsions, excessive salivation, urine-stained abdominal fur and/or excessive lacrimation, were observed in animals treated at 1000 mg/kg/day. There was also an increase in excessive salivation in the 300 mg/kg/day group. However, as this effect was most likely due to gastric irritation and there was no other evidence of treatment-related toxicity, the finding is not considered toxicologically significant. Body weight gain was significantly decreased in the 1000 mg/kg/day group during GD 6-16 (83% of control value; p<0.05), GD 6-20 (88% of control value; p<0.05) and GD 0-20 (88% of control value; p<0.01). Food consumption was not affected.

In the 1000 mg/kg/day group, there was a slightly decreased number of implantations per dam (14.6 vs 15.8 in controls), decreased live fetuses/dam (13.8 vs 15.2 in controls) and increased number of
resorptions/dam (0.8 vs 0.5 in controls). There was also a statistically significant decrease (p<0.05; 96% of control value) in mean fetal body weight.

The maternal toxicity LOAEL was 1000 mg/kg/day based on an increased incidence of death, clinical signs of toxicity (clonic and/or toxic convulsions, excessive salivation, urine-stained abdominal fur and/or excessive lacrimation) and decreased body weight gain. The NOAEL was 300 mg/kg/day.

The developmental toxicity LOAEL was conservatively established at 1000 mg/kg/day based on slightly decreased number of implantations per dam, decreased number of live fetuses/dam, increased number of resorptions/dam and significant decrease in mean fetal body weight. The NOAEL was 300 mg/kg/day.

The study is classified as Acceptable/guideline and satisfies the guideline requirements for a prenatal developmental toxicity study in rats (83-3a; OPPTS 870.3700).

MRIDs 40980701, 41164501, 42218601 and 42218602

EXECUTIVE SUMMARY:

In a chronic toxicity study (MRIDs 40980701, 41164501, 42218601 and 42218602), metolachlor (97% a.i.) was administered in the diet to Beagle dogs (6/sex/group for control and high dose groups; 4/sex/group for low- and mid-dose groups) at dose levels of 0, 100, 300 or 1000 ppm (males: 0, 3.5, 9.7 and 32.7 mg/kg/day, respectively; females: 0, 3.6, 9.7 and 33.0 mg/kg/day, respectively) for one year. Two dogs of each sex in the control and high-dose group designated as recovery animals were treated for 52 weeks and were then allowed a 4-week recovery period. An additional 4 dogs/sex/group were treated at the same dose levels and sacrificed at 13 weeks.

There were no treatment-related deaths or clinical signs of toxicity. Mean body weight gain was decreased in the 1000 ppm group females, considering both all animals (5-17% decrease) and only those treated for 52 weeks (5-17% decrease). Alkaline phosphatase was significantly increased in the 1000 ppm females at weeks 12, 26 and 40; however, the increase was not considered toxicologically significant due to the small magnitude of the effect and the lack of accompanying necropsy findings.

The LOAEL was 1000 ppm for females (33.0 mg/kg/day) based on decreased body weight gain. The NOAEL was 300 ppm (9.7 mg/kg/day). The LOAEL for males was not established. The NOAEL for males was 1000 ppm (32.7 mg/kg/day).
The study is classified as **Acceptable/guideline** and **satisfies** the guideline requirements for a chronic toxicity study in dogs (83-1; OPPTS 870.4100).

MRID 41833101

EXECUTIVE SUMMARY:

In a 21-day dermal toxicity study (MRID 41833101), metolachlor (96.4% a.i.) was applied topically once daily for 21 days to the intact skin of five New Zealand rabbits/sex/group at doses of 0, 10, 100 or 1000 mg/kg/day.

All animals survived the treatment. There were no treatment-related effects on clinical signs, body weight/body weight gain, food consumption, ophthalmoscopic examinations, hematology or necropsy examinations. Significant increases in total bilirubin were observed only in females treated at 100 mg/kg/day (68% increase) and 1000 mg/kg/day (72% increase). However, these increases were not considered toxicologically significant as there was no other evidence of organ effects at these doses and hyperbilirubinemia has not been reported in other toxicity studies with metolachlor. Absolute and relative liver weight were significantly increased in the 1000 mg/kg/day males and relative kidney weight was significantly increased in 1000 mg/kg/day females. These effects are not considered toxicologically significant as there were no accompanying laboratory or necropsy findings.

There was evidence of skin irritation in all treated groups. Very slight erythema and dry skin were observed in all animals of the 10 mg/kg/day group; one female at this dose had fissuring. With increasing doses, more animals were observed to have fissuring and wrinkling of the skin. On histopathology, hyperkeratosis, parakeratosis, congestion of the dermis, edema and subacute lymphocytic infiltration were reported in some or all of the treated animals.

The systemic **LOAEL** was not established. The **NOAEL** was 1000 mg/kg/day (HDT).

The dermal irritation **LOAEL** was 10 mg/kg/day (LDT) based on very slight erythema, dry skin and fissuring (one animal). The **NOAEL** was not established.

The study is classified as **Acceptable/guideline** and **satisfies** the guideline requirements for a 21-day dermal toxicity study in rabbits (82-2; OPPTS 870.3200).

MRID 41833102

Citation: Murphy, T. (1987). Dermal Absorption of Metolachlor in Rats. CIBA-GEIGY Corporation,
EXECUTIVE SUMMARY:

In a dermal penetration study (MRID 41833102), \(^{14}\)C-CGA 24705 (% a.i. unknown) suspended in deionized water was applied to a 10 cm\(^2\) area of the backs of 4 male Crl:CD\(^{®}\)BR rats/group at doses of 0.01, 0.1 or 1.0 mg/cm\(^2\). Each dose group was exposed for either 2, 4, 10 or 24 hours and then the area was washed and the animals sacrificed. Another 4 animals/dose group were treated for either 10 or 24 hours, the skin was washed and they were placed in a metabolism cage for collection of urine and feces. Sacrifice was 72 hours later. The amount of radioactivity in the blood, urine, feces, carcass, skin and cage wash was determined for all animals.

CGA 24705 was rapidly absorbed with significant bioaccumulation. The total percentage of the applied dose which was found in the blood, urine, feces, carcass and cage wash (or absorbed) after 10 hours was 32.93, 20.26 and 6.98 at 0.01, 0.1 and 1.0 mg/cm\(^2\), respectively. The percentage remaining on the skin was 24.66, 20.89 and 12.69 at the respective doses. The total percentage of the applied dose in the blood, urine, feces, carcass and cage wash (or absorbed) after 24 hours was 62.84, 26.85 and 16.15 at 0.01, 0.1 and 1.0 mg/cm\(^2\), respectively. The percentage remaining on the skin was 11.09, 19.14 and 15.49 at the respective doses.

For rats with skin washings at 10 hours and sacrifice 72 hours after washing, the total percentage of the applied dose found in the blood, urine, feces, carcass and cage wash was 50, 38.61 and 15.46 at 0.01, 0.1 and 1.0 mg/cm\(^2\), respectively. The percentage remaining on the skin was 5.30, 3.48 and 3.54 at the respective doses. For rats with skin washings at 24 hours and sacrifice 72 hours after washing, the percentage of the applied dose found in the blood, urine, feces, carcass and cage wash was 67.32, 43.46 and 30.49 at 0.01, 0.1 and 1.0 mg/cm\(^2\), respectively. The percentage remaining on the skin was 3.39, 1.36 and 1.42 at the respective doses.

The study is classified as Acceptable/guideline and satisfies the guideline requirements for a dermal penetration study in rats (85-3; OPPTS 870.7600).
DATA EVALUATION REPORT

METOLACHLOR OA
(CGA-51202 TECHNICAL)

STUDY TYPE: ACUTE ORAL TOXICITY - RAT [870.1100 (81-1)]
MRID 44929504

Prepared for
Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by
Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-10A

Primary Reviewer:
Susan Chang, M.S.

Secondary Reviewers:
Robert H. Ross, M.S., Group Leader

Quality Assurance:
Lee Ann Wilson, M.A.

Signatures:
JAN 26 2000
JAN 26 2000
JAN 26 2000
JAN 26 2000

Disclaimer

This review may have been altered subsequent to the contractor's signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
DATA EVALUATION RECORD

STUDY TYPE: Acute Oral Toxicity - Rat; [OPPTS 870.1100]

DP BARCODE: D260000 SUBMISSION CODE: S569354
P.C. CODE: 108801 (Metolachlor) TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-51202 Technical (100%)

SYNONYMS: not reported

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In an acute oral toxicity study (MRID 44929504) groups of five male and five female fasted young adult Tif:RAI f (SPF) rats were given a single oral 2000 mg/kg dose of CGA-51202 Technical (Batch No. JD 7069/3, 100%) in 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80 and observed for 14 days.

Piloerection, hunched posture, exophthalmos, dyspnea, reduced activity, and/or abnormal respiratory sounds were noted on all animals. The surviving animals recovered by day 8. One male was killed for humane reasons on day 13. No other animals died during the study. Mean body weight changes were normal. The euthanized male had a dilated or inflated stomach, small intestine, and typhlon. The remaining animals had no deviations from normal morphology at necropsy.

The oral LD₅₀ for males, females, and combined was > 2000 mg/kg (Toxicity Category III).

This acute oral study is classified as Acceptable/Guideline and satisfies the guideline requirements for an acute oral study [870.1100] in the rat.

COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-51202 Technical
 Description: beige crystalline
 Lot/Batch #: JD 7069/3
 Purity: 100%
 CAS #: 51218-45-2 (Metolachlor)
 Structure:

 ![Structure Diagram]

2. Vehicle and/or positive control
 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80

3. Test animals
 Species: rat
 Strain: Tif:RAI f (SPF)
 Age and/or weight at dosing: young adult; males and females: 189-249 g; males: 243±3.5 g, females: 197±7.6 g
 Source: Ciba-Geigy Limited, Animal Production, 4332 Stein, Switzerland
 Acclimation period: at least 5 days
 Diet: NAFAG 890 Tox (NAFAG, Gossau/SG, Switzerland), ad libitum
 Water: ad libitum
 Housing: Macrolon cages Type 4 (number of animal per cage not reported)
 Environmental conditions:
 Temperature: 22±2°C
 Humidity: 55±10%
 Air changes: approximately 15/hour
 Photoperiod: 12 hour light/12 hour dark

B. STUDY DESIGN AND METHODS

1. In life dates
 Start: November 12, 1991; end: November 26, 1991
2. **Animal assignment and treatment**

Following an overnight fast, groups of five rats/sex were given by gavage a single 2000 mg/kg dose of the test material in 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80. The animals were observed for clinical signs of toxicity daily for 14 days. Mortality checks were performed twice daily on week days and once on the weekend. They were weighed on study days 0, 7, and 14. All rats were necropsied.

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>Males</th>
<th>Females</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1/5</td>
<td>0/5</td>
<td>1/10</td>
</tr>
</tbody>
</table>

Data taken from p. 13, MRID 44929504.

3. **Statistics**

Calculation of the oral LD₅₀ was not required.

II. RESULTS AND DISCUSSION

A. MORTALITY

Mortality is given in Table 1. One male was killed for humane reasons on day 13. No other animals died as a result of CGA-51202 Technical toxicity.

The oral LD₅₀ for males, females, and combined was > 2000 mg/kg.

B. CLINICAL OBSERVATIONS

Piloerection, hunched posture, exophthalmos, dyspnea, reduced activity, abnormal respiratory sounds were noted on all animals. One euthanized male developed a distended abdomen on day 9 and was killed on day 13. The other animals recovered by day 8.

C. BODY WEIGHT

Mean body weight changes were normal.

D. NECROPSY

The euthanized male had dilated or inflated stomach, small intestine, and typhlon. The remaining animals had no deviations from normal morphology.
E. DEFICIENCIES

The study was carried out in 1991 and used only 2000 mg/kg test material for the limit test; however, it is acceptable according the OPPTS 870.1100 guidelines.
DATA EVALUATION REPORT

METOLACHLOR OA
(CGA-51202 TECHNICAL)

STUDY TYPE: ACUTE DERMAL TOXICITY - RAT [870.1200 (81-2)]
MRID 44929505

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-10B

Primary Reviewer:
Susan Chang, M.S.

Signature:
Date:

Secondary Reviewers:

Signature:
Date:

Robert H. Ross, M.S., Group Leader

Signature:
Date:

Quality Assurance:
Lee Ann Wilson, M.A.

Signature:
Date:

Disclaimer

This review may have been altered subsequent to the contractor's signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
DATA EVALUATION RECORD

STUDY TYPE: Acute Dermal Toxicity - Rat; [OPPTS 870.1200 ($81-2)]]

DP BARCODE: D260000 SUBMISSION CODE: S569354
P.C. CODE: 108801 (Metolachlor) TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-51202 Technical (100%)

SYNONYMS: not reported

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In an acute dermal toxicity study (MRID 44929505) approximately 10% of the body surface area of five male and five female young adult Tif:RAI f (SPF) rats was dermally exposed to 1333 mg/kg CGA-51202 Technical (Batch No. JD 7069/3,100%) diluted with distilled water to create a suspension of 33% (w/w) for 24 hours. The animals were observed for 14 days.

None of the animals died during the study. Piloerection and hunched posture were noted in all animals with recovery within 3 days. The mean body weight changes were normal. The study report states that animals had no deviations from normal morphology at necropsy, but no data were submitted.

The dermal LD$_{50}$ for males, females, and combined was > 1333 mg/kg (Toxicity Category II).

This acute dermal study is classified as Acceptable/Non-guideline and does not satisfy the guideline requirements for an acute dermal study [870.1200 (81-2)] in the rat. A limit dose of at least 2000 mg/kg is required by the guideline. However, another study is not required as there are sufficient data for Toxicity Category classification.

January 2000
COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-51202 Technical
 Description: beige crystalline
 Lot/Batch #: JD 7069/3
 Purity: 100%.
 CAS #: 51218-45-2 (Metolachlor)
 Structure:

 ![Structure](attachment://structure.png)

2. Vehicle

 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80

3. Test animals

 Species: rat
 Strain: Tif:RAI f (SPF)
 Age and/or weight at dosing: young adult; males and females: 215-289 g; males: 270±15.7 g, females: 223±7.6 g
 Source: Ciba-Geigy Limited, Animal Production, 4332 Stein, Switzerland
 Acclimation period: at least 5 days
 Diet: NAFAG 890 Tox (NAFAG, Gossau/SG, Switzerland), ad libitum
 Water: ad libitum
 Housing: individually in Macrolon cages type 3
 Environmental conditions:
 Temperature: 22±2°C
 Humidity: 55±10%
 Air changes: approximately 15/hour
 Photoperiod: 12 hour light/dark

B. STUDY DESIGN AND METHODS

1. In life dates

 Start: November 12, 1991; end: November 26, 1991
2. **Animal assignment and treatment**

Five male and five female rats were given a single 1333 mg/kg dose of 33% w/w CGA-51202 Technical in 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80 applied to a shaved area (approximately 10% of the body surface) on the back. The study report states that due to the high adsorption of the test material, it was necessary to dilute the test suspension to 33% (w/w). As the limit application volume was 4 ml/kg body weight, the highest dose achievable was 1333 mg/kg. The application site was covered with a gauze-lined semiocclusive dressing and fastened with an adhesive elastic bandage. The covering was removed 24 hours later and the site cleaned with lukewarm water. The animals were observed for clinical signs of toxicity daily for 14 days. Mortality was checked twice daily on weekdays and once on weekends. The animals were weighed prior to test material application, and on study days 7 and 14. All rats were sacrificed and necropsied.

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>Males</th>
<th>Females</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>1333</td>
<td>0/5</td>
<td>0/5</td>
<td>0/10</td>
</tr>
</tbody>
</table>

Data taken from p. 13, MRID 44929505.

3. **Statistics**

Calculation of the dermal LD₅₀ was not required.

II. **RESULTS AND DISCUSSION**

A. **Mortality**

Mortality is given in Table 1. None of the rats died during the study.

The dermal LD₅₀ for males, females, and combined was > 1333 mg/kg. This places CGA-51202 Technical in TOXICITY CATEGORY II.

B. **Clinical Observations**

Piloerection and hunched posture were noted from all animals with recovery within 3 days.

C. **Body Weight**

The mean body weight changes were normal.
D. NECROPSY

The study report states that animals had no deviations from normal morphology, although no data were submitted.

E. DEFICIENCIES

The study used 1333 mg/kg test material for limit test; however, a limit dose of 2000 mg/kg is required by the guideline.
DATA EVALUATION REPORT

METOLACHLOR OA
(CGA-51202 TECHNICAL)

STUDY TYPE: PRIMARY EYE IRRITATION - RABBIT [870.2400 (81-4)]
MRID 44929506

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-10C

Primary Reviewer:
Susan Chang, M.S.

Secondary Reviewers:
Robert H. Ross, M.S., Group Leader

Quality Assurance:
Lee Ann Wilson, M.A.

Signature:
Date: JAN 2 6 2000

Disclaimer

This review may have been altered subsequent to the contractor's signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
STUDY TYPE: Primary Eye Irritation – Rabbit; [OPPTS 870.2400 (§81-4)]

DP BARCODE: D260000
P.C. CODE: 108801 (Metolachlor)
SUBMISSION CODE: S569354
TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-51202 Technical (100%)

SYNONYMS: not reported

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a primary eye irritation study (MRID 44929506) 38 mg (0.1 mL weight equivalent) of CGA-51202 Technical (Batch No. JD 7069/3, 100%) was instilled into the conjunctival sac of the left eye of three male rabbits and the eye lids held together for approximately 1 second. The contralateral eye of all rabbits served as control. The eyes were scored for ocular irritation according to the OECD scoring system 1, 24, 48, and 72 hours and days 7, 10, 14, 17, and 21 after test material instillation.

Corneal opacity was found on 3/3 rabbits one hour after test material instillation that persisted through day 10 with resolution on two rabbits by day 14 and on one rabbit by day 21. Iritis was noted on 3/3 rabbits one hour after test material instillation that persisted through 72 hours with resolution on two rabbits by day 7 and on one rabbit by day 10. All rabbits had evidence of conjunctival chemosis at one hour post-instillation, which cleared by either 7, 10 or 14 days. All rabbits had conjunctival redness by one hour post-instillation, which cleared by either 17 or 21 days.

In this study, CGA-51202 Technical was a severe irritant and is in TOXICITY CATEGORY II for primary eye irritation.

This study is classified as Acceptable/Guideline and satisfies the guideline requirements for a primary eye irritation study [870.2400 (§81-4)] in the rabbit.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-51202 Technical
 Description: beige crystalline
 Lot/Batch #: JD 7069/3
 Purity: 100%
 CAS #: 51218-45-2 (Metolachlor)
 Structure:

2. Vehicle

 None

3. Test animals

 Species: rabbit
 Strain: New Zealand White (Chbb:NZW)
 Age and weight at dosing: age not reported, but assumed to be young adults according to the body weights; males: 2480-2630 g
 Source: Dr. K. Thomae GMBH, Chemisch-pharmazeutische Fabrik, D-7950 Biberach, Riss
 Acclimation period: at least 5 days
 Diet: NAFAG No. 814 (Gossau, Switzerland), ad libitum
 Water: fresh water, ad libitum
 Housing: individually in metal cages
 Environmental conditions:
 Temperature: 20±3°C
 Humidity: 30-70%
 Air changes: not reported
 Photoperiod: 12 hour light/dark
B. STUDY DESIGN AND METHODS

1. In life dates

Start: November 26, 1991; end: February 25, 1992

2. Animal assignment and treatment

The test material (0.1 mL weighing 38 mg) was instilled into the conjunctival sac of the left eye of three male rabbits and the eye lids held together for approximately 1 second. The contralateral eye of all rabbits served as control. The animals were scored for ocular irritation 1, 24, 48, and 72 hours and 7, 14, 17, and 21 days after instillation according to the OECD scoring system. The eyes were examined using a slit-lamp.

3. Body weight - body weights were measured at the start of the test and on days 3, 7, 14 and 21.

II. RESULTS AND DISCUSSION

A. Corneal opacity was found on 3/3 rabbits one hour after test material instillation that persisted through day 10 with resolution on two rabbits by day 14 and on one rabbit by day 21. This rabbit had a corroded conjunctiva with hemorrhagic parts on day 3, minimal corneal bulging on days 7-14, and vascularization of the lower marginal zone of the cornea on days 7-17. Iritis was noted on 3/3 rabbits one hour after test material instillation that persisted through 72 hours with resolution on two rabbits by day 7 and on one rabbit by day 10. All rabbits had evidence of conjunctival chemosis at one hour post-instillation, which cleared by either 7, 10 or 14 days. All rabbits had conjunctival redness by one hour post-instillation, which cleared by either 17 or 21 days.

This classifies the test material as a severe irritant. CGA-51202 Technical is in TOXICITY CATEGORY II.

B. Body weight - all animals gained weight during the study.

B. DEFICIENCIES

The study author did not state why the experiment took 3 months to complete (November 26, 1991 to February 25, 1992).

The study report stated that the ocular reactions were according to the OECD scoring system (Appendix 1) and the irritant/corrosive potency of the test material was classified according to the Commission Directive 83/467/EEC (Appendix 2). The reviewer did not find the Appendices in the study report.
The frequency of air changes of the animal room was not reported. This would not affect the study results.
DATA EVALUATION REPORT

METOLACHLOR OA
(CGA-51202 TECHNICAL)

STUDY TYPE: PRIMARY DERMAL IRRITATION - RABBIT [870.2500 (81-5)]
MRID 44929507

Prepared for
Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by
Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-10D

Primary Reviewer:
Susan Chang, M.S.

Signature:
Date: JAN 26 2000

Secondary Reviewers:

Signature:
Date: JAN 26 2000

Robert H. Ross, M.S., Group Leader

Signature:
Date: JAN 26 2000

Quality Assurance:
Lee Ann Wilson, M.A.

Signature:
Date: JAN 26 2000

Disclaimer

This review may have been altered subsequent to the contractor’s signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
STUDY TYPE: Primary Dermal Irritation - Rabbit; [OPPTS 870.2500 (§81-5)]

DP BARCODE: D260000
P.C. CODE: 108801 (Metolachlor)

TEST MATERIAL (PURITY): CGA-51202 Technical (100%)

SYNONYMS: not reported

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a primary dermal irritation study (MRID 44929507) three male adult New Zealand white rabbits were dermally exposed to 0.5 g CGA-51202 Technical (Batch No. JD 7069/3, 100%) on a gauze patch moistened with 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80 for 4 hours on the flank of the animals. The application sites were scored for erythema and edema 1, 24, 48, and 72 hours after patch removal using the OECD scoring system.

Very slight erythema was noted on 2/3 rabbits one hour following patch removal with resolution by 24-hours.

In this study, CGA-51202 Technical was essentially nonirritating and is in TOXICITY CATEGORY IV for primary dermal irritation.

This study is classified as Acceptable/Guideline and satisfies the guideline requirements for a primary dermal irritation study [870.2500 (§81-5)] in the rabbit.

COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-51202 Technical

 Description: beige crystalline
 Lot/Batch #: JD 7069/3
 Purity: 100%
 CAS #: 51218-45-2 (Metolachlor)
 Structure:

2. Vehicle

 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80

3. Test animals

 Species: rabbit
 Strain: New Zealand White
 Age and weight at dosing: age not reported, but assumed to be young adults according
 the body weights; males: 2690-2960 g
 Source: Dr. K. Thomae GMBH, Chemisch-pharmazeutische Fabrik, D-7950
 Biberach, Riss
 Acclimation period: at least 5 days
 Diet: NAFAG No. 814 (Gossau, Switzerland), ad libitum
 Water: fresh water, ad libitum
 Housing: individually in metal cages
 Environmental conditions:
 Temperature: 20±3°C
 Humidity: 30-70%
 Air changes: not reported
 Photoperiod: 12 hour light/dark

B. STUDY DESIGN AND METHODS

1. In life dates

 Start: November 19, 1991; end: November 22, 1991

2. Animal assignment and treatment
Three male animals were given a single 0.5 g dose of CGA-51202 Technical applied to an approximately 12-16 cm² gauze patch (moistened with 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80) and placed on the shaved right flank. A gauze patch moistened with 0.5% w/v carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80 was placed on the contralateral flank as a control. The patches were loosely covered with aluminum foil and held in place with adhesive tape. The dressing was removed after four hours. The site was scored for erythema and edema 1, 24, 48, and 72 hours after patch removal according to the OECD scoring system.

II. RESULTS AND DISCUSSION

A. Very slight erythema was noted on 2/3 rabbits one hour following patch removal with resolution by 24 hours.

CGA-51202 Technical was essentially nonirritating and is in TOXICITY CATEGORY IV.

B. DEFICIENCIES

The frequency of air changes of the animal room was not reported. This would not affect the study results.
DATA EVALUATION REPORT

METOLACHLOR OA
(CG-51202 TECHNICAL)

STUDY TYPE: DERMAL SENSITIZATION - GUINEA PIG [870.2600 (81-6)]
MRID 44929508

Prepared for
Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by
Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-10E

Primary Reviewer:
Susan Chang, M.S.

Secondary Reviewers:

Robert H. Ross, M.S., Group Leader

Quality Assurance:
Lee Ann Wilson, M.A.

Signature: [Signature]
Date: JAN 26 2000

Disclaimer
This review may have been altered subsequent to the contractor’s signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
STUDY TYPE: Dermal Sensitization - Guinea Pig; [OPPTS 870.2600 (§81-6)]

TEST MATERIAL (PURITY): CGA-51202 Technical (100%)

EXECUTIVE SUMMARY: In a dermal sensitization study (MRID 44929508) with CGA-51202 Technical (Batch No. JD 7069/3, 100%), 40 young adult male and female guinea pigs were tested using the Optimization Test.

Following ten intradermal inductions with a 0.1% (w/w) solution of the test material, 5/20 test animals showed positive reactions after intradermal challenge; the control group had no positive reactions after intradermal challenge. Twenty-four hours after epidermal challenge, 3/20 animals showed positive reactions and 11/20 animals showed positive reactions at 48 hours. The sites of the test animals treated with the vehicle did not have any positive reaction. One animal in the control group treated with the test material had a positive reaction 48 hours after epidermal challenge. No animals in the control group treated with the vehicle showed positive reactions. The historical control data demonstrated that 1-chlor-2,4-dinitrophenol positive control and vehicle control animals responded appropriately.

In this study, CGA-51202 Technical was a dermal sensitizer.

This study is classified as Acceptable/Guideline and satisfies the guideline requirements for a dermal sensitization study [870.2600 (§81-6)] in the guinea pig.

COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-51202 Technical

 Description: beige crystalline
 Lot/Batch #: JD 7069/3
 Purity: 100%
 CAS #: 51218-45-2 (Metolachlor)
 Structure:

 ![Chemical Structure](image)

2. Vehicle and positive control

 Vehicle: physiological saline; positive control: 1-chlor-2,4-dinitrophenol

3. Test animals

 Species: guinea pig
 Strain: Pirbright White Strain (Tif:DHP)
 Age and weight at start of treatment: age not reported; but assumes to be adult according to
 the body weights; males: 360-432 g; females: 360-430 g
 Source: Ciba-Geigy Limited, Animal Production, 4332 Stein, Switzerland
 Acclimation period: 5 days
 Diet: NAFAG No. 845 (Gossau/SG, Switzerland), ad libitum
 Water: fresh water, ad libitum
 Housing: individually in Macrolon type 3 cages
 Environmental conditions:
 Temperature: 22±3°C
 Humidity: 30-70%
 Air changes: not reported
 Photoperiod: 12 hour light/dark

B. STUDY DESIGN AND METHODS

1. In life dates

 Start: January 13, 1992; end: March 5, 1992
2. Animal assignment and treatment

The animals were induced and challenged according to the Optimization Test. **Induction:** Ten male and ten female animals received one injection on the shaved right flank and back every other day (except weekends) for a total of 10 intradermal injections of 0.1 mL of freshly prepared 0.1% w/w test material solution in physiological saline. Ten male and ten female animals were treated with the vehicle alone as controls. During the second and third week of induction the test material was incorporated w/v in a mixture of the normal vehicle with complete Bacto adjuvant (vehicle : adjuvant - 1:1 v/v, 0.1 mL per injection). No treatments were performed during weeks 4 and 5. **Intradermal challenge:** The animals were challenged by injection of freshly prepared solution of 0.1% w/w test material in physiological saline on the left flank during week 6. The control group was treated with the vehicle alone. The sites were evaluated 24 hours post exposure. No treatments were performed during week 7. **Epidermal challenge:** During week 8, the animals were challenged epidermally under occlusive dressings with 10% w/w test material in vaseline and vaseline alone. The control group was treated with the vehicle as well as with the test material to check the maximum subirritation concentration of the test material in adjuvant treated animals. The dressing was left in place for 24 hours. Reactions were scored 24 and 48 hours after inductions and challenge.

II. RESULTS AND DISCUSSION

A. INDUCTION REACTIONS AND DURATION

No data were reported.

B. CHALLENGE REACTIONS AND DURATION

Five out of twenty test animals showed positive reactions after intradermal challenge as compared to 0/20 control animals. Twenty-four hours after epidermal challenge, 3/20 animals showed positive reactions and eleven animals showed positive reactions at 48 hours. The sites of the test animals treated with the vehicle did not have any positive reactions. One animal in the control group treated with the test material had a positive reaction 48 hours after epidermal challenge. No animals in the control group treated with the vehicle showed positive reaction.

CGA-51202 Technical was a dermal sensitizer.

C. POSITIVE CONTROL

The study report included a positive control study which was completed June 13, 1991, approximately 9 months prior to the current study. The 1-chlor-2,4-dinitrophenol positive control and vehicle control animals responded appropriately.
D. **ADDITIONAL TESTING**

Although the positive control study was beyond six months of the current study, the test material was a sensitizer. There is no need for additional studies.

E. **DEFICIENCIES**

The positive control study was not done within six months of the current study. The frequency of air changes of the animal room was not reported. These would not affect the study results.
DATA EVALUATION REPORT

CGA-51202
(METOCHLOR OA) (DEGREDATE OF METOCHLOR)

STUDY TYPE: SUBCHRONIC ORAL TOXICITY FEEDING - RAT [OPPTS 870.3100 (82-1)]
MRID 44929509

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-10F

Primary Reviewer:
Cheryl B. Bast, Ph.D., D.A.B.T.
Signature: [Signature]
Date: [JAN 1 2 2000]

Secondary Reviewers:
H. Tim Borges, Ph.D., D.A.B.T., MT(ASCP)
Signature: [Signature]
Date: [JAN 1 2 2000]

Robert H. Ross, M.S., Group Leader
Signature: [Signature]
Date: [JAN 1 2 2000]

Quality Assurance:
Lee Ann Wilson, M.A.
Signature: [Signature]
Date: [JAN 1 2 2000]

Disclaimer

This review may have been altered subsequent to the contractor's signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
DATA EVALUATION RECORD

STUDY TYPE: Subchronic Oral Toxicity Feeding - Rat [OPPTS 870.3100 (§82-1)]

DP BARCODE: D260000
P.C. CODE: 108801 (parent)
SUBMISSION CODE: S569354
TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-51202 (Metochlor OA, degredate of metochlor, 100% a.i.)

SYNONYMS: Not provided

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, Post Office Box 18300, Greensboro, NC 27419.

EXECUTIVE SUMMARY: In a subchronic oral feeding study, (MRID 44929509), CGA-51202 technical (100% a.i.; batch No. JD 7069/3) was fed to groups of 10 male and 10 female albino rats at dose levels of 0, 300, 1000, or 15,000 ppm for 3 months. The average achieved doses for the corresponding groups were 0, 18.7, 62.1, and 1000 mg/kg bodyweight for males, and 0, 20.6, 67.3, and 1020 mg/kg for females.

All animals survived to study termination and no treatment-related clinical signs were observed. There were no treatment-related effects on body weight, food consumption, ophthalmoscopic parameters, or urinalysis. Platelet counts were decreased 16% (p<0.01) in high-dose males. Total protein in high-dose males (5% decrease, p<0.01) and females (4% decrease, N.S.) was slightly decreased due to decreased globulin in males and decreased albumin and globulin fractions in females. These effects were not considered biologically significant. There were no treatment-related organ weight effects or macroscopic or microscopic lesions. Under the conditions of this study, the NOAEL is 15,000 ppm in the diet (1000 mg/kg for males, 1020 mg/kg for females, limit dose) based on no biologically significant effects. A LOAEL was not identified.

This subchronic toxicity study in rats (82-1) is classified as Acceptable/Guideline. It satisfies the guideline requirement for a subchronic dietary toxicity study in rodents.

COMPLIANCE: Signed and dated GLP, Data Confidentiality, and Quality Assurance, and Flagging statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. **Test material**: CGA-51202 technical

 Description: beige, crystalline
 Lot/Batch #: JD 7069/3
 Purity: 100%
 Stability of compound: study report states “September, 1995”
 CAS #: not provided

2. **Vehicle and/or positive control**

 Vehicle: Diet, Nafag No. 890 Tox.

3. **Test animals**

 Species: albino rat
 Strain: Tif: RAIf (SPF) hybrids of RII/1 x RII/2
 Age and weight at study initiation: approximately 5-6 weeks old; males: 112.5-132.0 g; females: 105.2-124.3 g
 Source: CIBA-GEIGY Limited, 4332 Stein, Switzerland
 Housing: housed 5/macrolon type 4 cage with wire mesh tops
 Diet: Nafag No. 890 Tox., *ad libitum*
 Water: drinking water (tap) available, *ad libitum*
 Environmental conditions:
 - Temperature: 22 ± 2°C
 - Humidity: 55 ± 10
 - Air changes: 16-20 changes/hour
 - Photoperiod: 12 hours light/dark cycle
 Acclimation period: 7 days

B. STUDY DESIGN

1. **In life dates**

 Start: December 10, 1991; end: March 11, 1992

2. **Animal assignment**

 Rats were assigned randomly to the study using a computer-generated program. The study design is shown in Table 1.
3. **Test material preparation and analysis**

CGA-51202 technical was weighed and appropriate amounts were homogeneously mixed with pulverized food. The food was pelleted by adding ~25% drinking water to ensure necessary quality. Pellets were then air dried. Test diets were prepared at monthly intervals and stored in stainless steel containers at room temperature. Homogeneity analysis was performed by HPLC on food samples containing the test article at concentrations of 100, 1000 and 15000 ppm from three different segments of feed preparation (beginning, middle, end). Stability analyses of test diets were performed by HPLC on days 0 and 35. Concentration analyses were performed by HPLC on test diets prepared on December 4, 1991 and January 27, 1992.

Results

Homogeneity analysis: The range of the test compound concentration from the sample’s beginning, middle, and end varied in the range of -3% to +4% of the mean concentration.

Stability analysis: The CGA 51202 was found to be stable in rodent feed at room temperature over a period of 5 weeks. Percentages of the initial values after 35 days were: 102.6% at 100 ppm, 99.2% at 1000 ppm, and 97.7% at 15000 ppm.

Concentration analysis: CGA 51202 concentration ranges were 86.6-92.3% (300 ppm), 89.5-89.6% (1000 ppm), and 88.3-90.6% (15000 ppm). No test compound was detected in the control sample.

The analytical data indicated that the mixing procedure was adequate and that the variance between nominal and actual dosage to the animals was acceptable.

4. **Statistics**

“For each time point and parameter an univariate statistical analysis was performed. Nonparametric methods were applied, to allow for non normal as well as normal data...
distribution. Each treated group was compared to the control group by Lepage’s two-sample test and tested for increasing or decreasing trends from control up to the respective dose group by Jonckheere’s test for ordered alternatives.”

C. METHODS

1. Observations

All animals were observed twice daily (morning and afternoon) for mortality and signs of overt toxicity. All animals received a detailed physical at least weekly.

2. Body weight

All animals were weighed weekly beginning during the acclimation period.

3. Food consumption and compound intake

Food consumption was recorded weekly. Food consumption ratios were calculated as the mean of individual weekly ratios as follows:

\[
\frac{\text{Weekly food consumption (g)}}{\text{midweek bodyweight (g)}} \times \frac{1000}{7} = \text{g food/kg bodyweight/day}
\]

Compound intake was calculated (mg/kg/day) for corresponding food consumption intervals as follows:

4. Ophthalmoscopic examination

Ophthalmologic examinations were conducted on control and high-dose animals using an ophthalmoscope. Examinations were performed prior to study initiation (day -6) and after 85 days of treatment.

5. Blood was collected from the orbital sinus of ether anesthetized animals at the end of the study. The animals were fasted overnight prior to sample collection. The CHECKED (X) parameters were examined.
a. Hematology

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required for subchronic studies based on Subdivision F Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit (HCT)*</td>
<td>X</td>
</tr>
<tr>
<td>Hemoglobin (HGB)*</td>
<td>X</td>
</tr>
<tr>
<td>Leukocyte count (WBC)*</td>
<td>X</td>
</tr>
<tr>
<td>Erythrocyte count (RBC)*</td>
<td>X</td>
</tr>
<tr>
<td>Platelet count*</td>
<td>X</td>
</tr>
<tr>
<td>Blood clotting measurements*</td>
<td>X</td>
</tr>
<tr>
<td>(Thromboplastin time)</td>
<td>X</td>
</tr>
<tr>
<td>(Clotting time)</td>
<td>X</td>
</tr>
<tr>
<td>(Prothrombin time)</td>
<td>X</td>
</tr>
</tbody>
</table>

b. Clinical Chemistry

ELECTROLYTES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required for subchronic studies based on Subdivision F Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium*</td>
<td>X</td>
</tr>
<tr>
<td>Chloride*</td>
<td>X</td>
</tr>
<tr>
<td>Phosphorus*</td>
<td>X</td>
</tr>
<tr>
<td>Potassium*</td>
<td>X</td>
</tr>
<tr>
<td>Sodium*</td>
<td>X</td>
</tr>
</tbody>
</table>

ENZYMES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required for subchronic studies based on Subdivision F Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase (ALK)</td>
<td>X</td>
</tr>
<tr>
<td>Cholinesterase (ChE)</td>
<td>X</td>
</tr>
<tr>
<td>Creatine phosphokinase</td>
<td>X</td>
</tr>
<tr>
<td>Lactic acid dehydrogenase (LDH)</td>
<td>X</td>
</tr>
<tr>
<td>Serum aspartate amino-transferase (also SGPT)*</td>
<td>X</td>
</tr>
<tr>
<td>Gamma glutamyl transferase (GGT)</td>
<td>X</td>
</tr>
<tr>
<td>Glutamate dehydrogenase</td>
<td>X</td>
</tr>
</tbody>
</table>

OTHER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required for subchronic studies based on Subdivision F Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin*</td>
<td>X</td>
</tr>
<tr>
<td>Blood creatinine*</td>
<td>X</td>
</tr>
<tr>
<td>Blood urea nitrogen*</td>
<td>X</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>X</td>
</tr>
<tr>
<td>Globulins</td>
<td>X</td>
</tr>
<tr>
<td>Glucose*</td>
<td>X</td>
</tr>
<tr>
<td>Total bilirubin</td>
<td>X</td>
</tr>
<tr>
<td>Total serum protein (TP)*</td>
<td>X</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>X</td>
</tr>
<tr>
<td>Serum protein electrophoresis</td>
<td>X</td>
</tr>
</tbody>
</table>

6. Urinalysis*

Urine was collected from individual animals in metabolism cages overnight. Food and water were withheld during the sample collection period. The CHECKED (X) parameters were examined.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required for subchronic studies by Subdivision F Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>X</td>
</tr>
<tr>
<td>Volume</td>
<td>X</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>X</td>
</tr>
<tr>
<td>pH</td>
<td>X</td>
</tr>
<tr>
<td>Sediment (microscopic)</td>
<td>X</td>
</tr>
<tr>
<td>Protein</td>
<td>X</td>
</tr>
<tr>
<td>Glucose</td>
<td>X</td>
</tr>
<tr>
<td>Ketones</td>
<td>X</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>X</td>
</tr>
<tr>
<td>Blood</td>
<td>X</td>
</tr>
<tr>
<td>Nitrite</td>
<td>X</td>
</tr>
<tr>
<td>Urobilinogen</td>
<td>X</td>
</tr>
</tbody>
</table>

*Not required for subchronic studies by Subdivision F Guidelines.
7. **Sacrifice and pathology**

All animals survived the treatment period and were sacrificed under ether anesthesia on schedule by exsanguination. Gross pathological examination was performed on all rats, and the CHECKED (X) tissues were preserved in 4% neutral buffered formalin. The (XX) organs were weighed. The X* organs were embedded in paraplast, sectioned at 3-5 microns, stained with hematoxylin and eosin, and examined microscopically.

<table>
<thead>
<tr>
<th>X</th>
<th>DIGESTIVE SYSTEM</th>
<th>X</th>
<th>CARDIOVASC./HEMAT</th>
<th>X</th>
<th>NEUROLOGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Tongue</td>
<td>x</td>
<td>Aorta**</td>
<td>xx</td>
<td>Brain**</td>
</tr>
<tr>
<td>x*</td>
<td>Salivary glands*</td>
<td>x</td>
<td>Heart**</td>
<td>x</td>
<td>Periph. nerve**</td>
</tr>
<tr>
<td>x*</td>
<td>Esophagus**</td>
<td>x</td>
<td>Bone marrow**</td>
<td>x</td>
<td>Spinal ed. (3 levels)*</td>
</tr>
<tr>
<td>x*</td>
<td>Stomach**</td>
<td>x</td>
<td>Lymph nodes**</td>
<td>x</td>
<td>Pituitary**</td>
</tr>
<tr>
<td>x*</td>
<td>Duodenum**</td>
<td>x</td>
<td>Spleen**</td>
<td>x</td>
<td>Eyes (optic n.)T</td>
</tr>
<tr>
<td>x*</td>
<td>Jejunum**</td>
<td>x</td>
<td>Thymus**</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>x*</td>
<td>Ileum**</td>
<td>xx</td>
<td>Brain**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x*</td>
<td>Cecum**</td>
<td>x</td>
<td>Cervical spine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x*</td>
<td>Colon**</td>
<td>xx</td>
<td>Kidneys**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x*</td>
<td>Rectum**</td>
<td>x</td>
<td>Urinary bladder**</td>
<td>x*</td>
<td></td>
</tr>
<tr>
<td>xx</td>
<td>Liver**</td>
<td>xx</td>
<td>Testes**</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x*</td>
<td>Gall bladder</td>
<td>x</td>
<td>Epididymides</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x*</td>
<td>Pancreas**</td>
<td>x</td>
<td>Prostate</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seminal vesicle</td>
<td>xx</td>
<td>Bone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ovaries</td>
<td></td>
<td>Skeletal muscle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uterus**</td>
<td>x*</td>
<td>Skin</td>
</tr>
<tr>
<td></td>
<td>RESPIRATORY</td>
<td></td>
<td>Vagina</td>
<td>x*</td>
<td>All gross lesions and masses**</td>
</tr>
<tr>
<td>x*</td>
<td>Trachea**</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x*</td>
<td>Lung**</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Nose</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pharynx</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larynx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** = Required for subchronic studies based on Subdivision F Guidelines

+ = Organ weight required in subchronic and chronic studies.

T = Required only when toxicity or target organ

l = Cervical spine only

II. **RESULTS**

A. **OBSERVATIONS**

1. **Toxicity**

There were no compound-related clinical observations observed.
2. Mortality

 All animals survived to study termination.

B. BODY WEIGHT

 No treatment-related body weight effects were noted. Data are summarized in Table 2.
Table 2. Group mean body weights (g) in rats fed CGA51202 for 13 weeks

<table>
<thead>
<tr>
<th>Week of study</th>
<th>Exposure concentration (ppm)</th>
<th>0</th>
<th>300</th>
<th>1000</th>
<th>15,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>122.0</td>
<td>123.6</td>
<td>122.2</td>
<td>122.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>184.4</td>
<td>184.6</td>
<td>181.1</td>
<td>179.4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>248.7</td>
<td>245.3</td>
<td>242.2</td>
<td>240.9</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>309.0</td>
<td>302.2</td>
<td>297.6</td>
<td>302.7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>353.8</td>
<td>340.6</td>
<td>344.0</td>
<td>344.4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>384.8</td>
<td>377.5</td>
<td>382.8</td>
<td>381.4</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>416.3</td>
<td>406.4</td>
<td>412.2</td>
<td>410.1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>444.1</td>
<td>431.2</td>
<td>438.2</td>
<td>434.1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>468.1</td>
<td>453.1</td>
<td>460.1</td>
<td>458.2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>485.1</td>
<td>466.7</td>
<td>476.6</td>
<td>474.1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>503.1</td>
<td>480.4</td>
<td>489.4</td>
<td>481.8</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>515.4</td>
<td>495.5</td>
<td>503.2</td>
<td>492.4</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>526.5</td>
<td>507.4</td>
<td>516.0</td>
<td>504.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>114.6</td>
<td>113.9</td>
<td>114.4</td>
<td>114.5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>154.9</td>
<td>153.5</td>
<td>154.3</td>
<td>152.3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>181.7</td>
<td>188.0</td>
<td>186.7</td>
<td>185.3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>205.7</td>
<td>215.7</td>
<td>217.4</td>
<td>210.9</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>234.3</td>
<td>239.6</td>
<td>245.5</td>
<td>237.3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>249.3</td>
<td>260.3</td>
<td>262.8</td>
<td>254.4</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>257.5</td>
<td>269.9</td>
<td>267.4</td>
<td>268.8</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>269.4</td>
<td>287.1</td>
<td>282.7</td>
<td>278.4</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>283.0</td>
<td>301.9</td>
<td>294.5</td>
<td>288.6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>288.1</td>
<td>310.6</td>
<td>305.6</td>
<td>293.4</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>294.7</td>
<td>312.4</td>
<td>309.8</td>
<td>297.2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>300.4</td>
<td>321.8</td>
<td>320.1</td>
<td>306.0</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>305.2</td>
<td>325.3</td>
<td>320.4</td>
<td>312.9</td>
</tr>
</tbody>
</table>

Data taken from pp. 38-39, MRID 44929509.
No Statistical significance was achieved.
C. FOOD CONSUMPTION AND COMPOUND INTAKE

1. Food consumption

No treatment-related, biologically significant food consumption effects were observed. Food consumption was decreased (p<0.05) 6.8% in mid-dose males and 9.8% in high-dose males compared to controls during week 1 only. Food consumption was increased (p<0.05) 17% in mid-dose females compared to controls during week 3 only.

2. Compound consumption

Animals were offered diets containing the compound ad libitum for 90 days. Achieved doses are shown in Table 1.

3. Food consumption ratios

Food consumption ratios were 2.1-11.7% higher than controls in high-dose males from weeks 3 through 13. No other effects were noted.

D. OPHTHALMOSCOPIC EXAMINATION

There were no treatment-related findings.

E. BLOOD WORK

1. Hematology

Platelet counts were decreased (p<0.01) 16% in high-dose males compared to controls. This change is not considered biologically relevant.

2. Clinical chemistry

Clinical chemistry parameter effects were noted in high-dose animals. Total protein in high-dose males (5% decrease, p<0.01) and females (4% decrease, N.S.) was slightly decreased due to decreased globulin in males and decreased albumin and globulin fractions in females. Other observations (p<0.01) included a 23% decrease in total bilirubin and a 22% decrease in cholesterol in high-dose males, and a 21% decrease in alanine amino transferase in high-dose females compared to controls. These effects are not considered biologically relevant as they are all within historical control ranges.
F. URINALYSIS

No treatment-related effects were noted.

G. SACRIFICE AND PATHOLOGY

1. Organ weight

No biologically significant, treatment-related effects were noted. Mean absolute liver weight was decreased (p<0.01) 10-16% in all male treatment groups compared to the control. However, a dose-response was not observed and the author attributes the apparent effect to a comparatively high mean value for the control group (compared to historical controls). The mean relative adrenal weight was increased (p<0.01) 6% in high-dose females and 11% in high-dose males compared to controls; however, no corroborative pathology was observed. No other organ weight effects were observed.

2. Gross pathology

There were no treatment-related gross lesions.

3. Microscopic pathology

There were no treatment-related microscopic lesions.

III. DISCUSSION

A. DISCUSSION

All animals survived to study termination and no treatment-related clinical signs were observed. There were no treatment-related effects on body weight, food consumption, ophthalmological parameters, or urinalysis. Platelet counts were decreased 16% (p<0.01) in high-dose males. Total protein in high-dose males (5% decrease, p<0.01) and females (4% decrease, N.S.) was slightly decreased due to decreased globulin in males and decreased albumin and globulin fractions in females. The observed hematology and clinical chemistry changes are not considered biologically relevant since they are within historical control ranges and/or are of small magnitude. There were no treatment-related organ weight effects or macroscopic or microscopic lesions.

It is probable that the minor hematological and clinical chemistry changes in observed high-dose animals are treatment-related, and can be considered a LOEL. However, in light of the small magnitude and biological insignificance of the changes, they do not, in the reviewer's opinion, define a LOAEL. It should be noted that the study author did consider the high dose to be a LOAEL.
Under the conditions of this study, the NOAEL is 15,000 ppm (1000 mg/kg for males, 1020 mg/kg for females, limit dose) based on a lack of biologically significant effects. A LOAEL was not identified.

This subchronic toxicity study in rats [870.3100 (82-1)] is classified as Acceptable/Guideline. It satisfies the guideline requirement for a subchronic dietary toxicity study in rodents.

B. STUDY DEFICIENCIES

Although a LOAEL was not determined, CGA-51202 was tested up to the limit dose. A minor deficiency is the lack of histopathological evaluation of the rectum. This does not compromise the study.
DATA EVALUATION REPORT

Metolachlor OA (CGA-51202 TECHNICAL)

STUDY TYPE: DEVELOPMENTAL TOXICITY - RAT [870.3700 (§83-3a)]

MRID 44929510

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Biomedical and Environmental Information Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-10G

Primary Reviewer:
Carol S. Forsyth, Ph.D., D.A.B.T.

Signature: [Signature]
Date: JAN 27 2000

Secondary Reviewers:
Kowetha A. Davidson, Ph.D., D.A.B.T.

Signature: [Signature]
Date: JAN 27 2000

Robert H. Ross, M.S., Group Leader

Signature: [Signature]
Date: JAN 27 2000

Quality Assurance:
Lee Ann Wilson, M.A.

Signature: [Signature]
Date: JAN 27 2000

Disclaimer

This review may have been altered subsequent to the contractor’s signatures above.
CGA 51202 Technical Developmental Toxicity Study [870.3700 (§83-3a)]

EPA Reviewer: Virginia A. Dobozy, VMD, MPH Date: 4/10/01
Reregistration Branch I, Health Effects Division (7509C)
EPA Work Assignment Manager: Joycelyn Stewart, PhD Date: 4/26/01
 Toxicology Branch, Health Effects Division (7509C)

DATA EVALUATION RECORD

STUDY TYPE: Developmental Toxicity - Rat; OPPTS 870.3700 (§83-3a)]

DP BARCODE: D260000 SUBMISSION CODE: S569354
P.C. CODE: 108801 (parent) TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-51202 Technical (100% a.i.)

SYNONYMS: none; degradate of metolachlor

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, Post Office Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a developmental toxicity study (MRID 44929510), 24 presumed pregnant Tlf: RAI f (SPF) (hybrids of RII/1 × RII/2) rats per group were administered CGA 51202 Technical (100%; Batch No. JD 7069/3) by gavage in 0.5% aqueous sodium carboxymethylcellulose solution at doses of 0, 10, 100, or 1000 mg/kg/day on gestation days (GD) 6-15, inclusive. Controls were treated with 0.5% sodium carboxymethylcellulose (vehicle). On GD 21, dams were sacrificed, subjected to gross necropsy, and all fetuses examined externally. Approximately one-half of each litter was processed for visceral examination and the remaining one-half was processed for skeletal examination.

One low-dose animal was sacrificed moribund on GD 20 with a urogenital infection. All other animals survived to terminal sacrifice. No clinical signs of toxicity were observed in any animal. Maternal body weights and body weight gains were similar between the treated and control groups throughout the study. Food consumption was not affected by treatment. Maternal necropsy was unremarkable.

Therefore, the maternal toxicity NOAEL is ≥1000 mg/kg/day and the maternal toxicity LOAEL was not identified.

No differences were observed between the treated and control groups for number of corpora lutea, number of implantation sites, live fetuses/dam, pre- and post-implantation losses, fetal body weights, or fetal sex ratios.
No treatment-related external, visceral, or skeletal malformations/variations were observed in any fetus from any group.

The high dose is equivalent to the limit dose for developmental toxicity studies.

Therefore, the developmental toxicity NOAEL is ≥1000 mg/kg/day and the developmental toxicity LOAEL was not identified.

This study is classified as **Acceptable/Guideline** and satisfies the requirements for a developmental toxicity study [870.3700 (§83-3a)] in rats.

COMPLIANCE: Signed and dated Quality Assurance, Good Laboratory Practice, Flagging, and Data Confidentiality statements were included.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test Material: CGA-51202 Technical

 Description: beige crystals
 Batch No.: JD 7069/3
 Purity: 100% a.i.
 Stability of compound: not stated
 CAS No.: not given
 Structure: not given

2. Vehicle and/or positive control

 A 0.5% aqueous solution of sodium carboxymethylcellulose (CMC, Hercules Powder
 Company, Pharmacopeia quality, high viscosity, Prod. 7HF) was used as the vehicle
 and negative control. No positive control was used in this study.

3. Test animals

 Species: rat
 Strain: Tif: RAI f (SPF), hybrids of RII/1 × RII/2
 Age and weight at study initiation: minimum of 8 weeks; 173.7-220.4 g
 Source: Animal Production, WST-455, Ciba-Geigy Limited, 4332 Stein, Switzerland
 Housing: Animals were individually housed in Macrolon cages with wire mesh tops
 and standardized granulated soft wood bedding material.
 Diet: Pelleted certified standard feed (Nafag No. 890, Tex; Nafag, Nachr- und
 Futtermittel AG, Gossau, Switzerland) was available ad libitum.
 Water: Tap water was available ad libitum.
 Environmental conditions:
 Temperature: 22 ± 3°C
 Humidity: 50 ± 20%
 Air changes: about 16/hour
 Photoperiod: 12 hr light/dark
 Acclimation period: at least 7 days between delivery from animal production
 (in house) and the first day of treatment

B. PROCEDURES AND STUDY DESIGN

 This study was designed to assess the developmental toxicity potential of CGA-51202
 Technical when administered by gavage to rats on GD 6-15, inclusive.

 1. In life dates
Start: April 7, 1992; end: April 28, 1992 (start of necropsy)

2. **Mating**

Females were mated to a male of the same stock and proven fertility at a ratio of three females to one male. Each cage was divided into two parts by a guillotine door, separating the sexes until 3 a.m. on the mating day, when the door opened automatically. Successful mating was assessed by the presence of a vaginal plug or of spermatozoa in a vaginal smear. The day of successful mating was designated as gestation day (GD) 0.

3. **Animal assignment** and dose selection are presented in Table 1. Animals were assigned to a control or treatment group using a method of randomization based on weight stratification.

<table>
<thead>
<tr>
<th>Test Group</th>
<th>Dose Level (mg/kg/day)</th>
<th>Number Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Low Dose</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>Mid Dose</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>High Dose</td>
<td>1000</td>
<td>24</td>
</tr>
</tbody>
</table>

Data taken from text tables pp. 16 and 17, MRID 44929510.

4. **Dose selection rationale**

Doses were selected on the basis of a range-finding study (Laboratory No. 911361) in pregnant rats. In this study, no maternal or developmental toxicity was observed at doses of 500 or 1000 mg/kg/day. Further details of this study were not included in the report.

5. **Dose solution preparation and analysis**

The test substance was mixed in a 0.5% aqueous solution of sodium carboxymethylcellulose. Solutions were prepared daily with a high-speed homogenizer. Homogeneity during administration was maintained with a magnetic stirrer. Samples of the dosing solutions were analyzed for concentration, homogeneity, and stability twice during the study. Samples from the top, middle, and bottom of the dosing solutions were analyzed for concentration and homogeneity. Stability was determined after 2 hours at room temperature from samples taken from the middle of the solutions.
Results -

Concentration analysis: Absence of test article was confirmed in the vehicle. Concentrations of the dosing solutions ranged from 92.0% to 102.8% of nominal.

Homogeneity analysis: Concentrations of the top, middle, and bottom of the dosing solutions differed by <4%.

Stability analysis: After 2 hours, concentrations of the dosing solutions ranged from 94.4% to 105.9% of their initial measured concentrations.

Analyses of the dosing solutions indicated that the test article could be adequately mixed in the vehicle, was stable for the duration of use, and that actual doses to the animals were acceptable.

6. **Dosing**

All doses were administered in a volume of 10 mL/kg of body weight.

C. **OBSERVATIONS**

1. **Maternal observations and evaluations**

 The animals were checked daily for clinical signs and mortality. Body weights were measured daily and food consumption was measured on days 6, 11, 16, and 21. Dams were sacrificed on GD 21 by carbon dioxide inhalation and examined grossly. The number of corpora lutea on each ovary was counted. Gravid uteri were weighed and examined for number and location of live and dead fetuses, early and late resorptions, and abortion sites. Uteri that appeared nongravid were placed in ammonium sulfide to visualize possible implantation sites. Dams found dead or sacrificed early were subjected to gross necropsy.

2. **Fetal evaluations**

 At necropsy, each live fetus was weighed, sexed, and examined for external abnormalities. Fetuses were killed by subcutaneous injection of a barbiturate anesthetic. Approximately one-half of each litter was processed for visceral examination and the remaining one-half was processed for skeletal examination. In the case of a gross external anomaly or malformation, fetuses were allocated to one technique depending on the type and incidence of the finding. For the visceral examinations, fetuses were fixed in Bouin's solution for at least two weeks and then micro-dissected. For the skeletal examinations, fetuses were cleared with potassium hydroxide and stained with alizarin red S.
D. DATA ANALYSIS

1. Statistical analysis

Continuous data were analyzed by the Analysis of Variance (ANOVA) followed by Dunnett’s t-test to separate the means. The Chi-Square and Fisher’s Exact tests were used for the analysis of categorical data. Non-parametric data were analyzed with the Kruskal-Wallis test followed by the Mann-Whitney U test.

2. Historical control data from January 1, 1988 to March 1, 1992 on 624 mated females were provided to allow comparison with concurrent controls and treatment groups.

II. RESULTS

A. MATERNAL TOXICITY

1. Mortality and clinical signs

One low-dose dam was sacrificed on GD 20 following observations of weight loss and inflammation of the vulva. All remaining animals survived to scheduled sacrifice. Necropsy showed a congested, dilated bladder and a white-yellowish discharge indicative of a uro-genital infection. No treatment-related clinical signs of toxicity were observed in any animal.

2. Body weight

Selected maternal body weights during gestation are given in Table 2. No statistically significant differences in absolute body weights occurred at any time between the treated groups and the control group. Body weight gains were also similar between the treated and control groups throughout the study.
TABLE 2: Maternal body weights during gestation (g)

<table>
<thead>
<tr>
<th>GD</th>
<th>0 mg/kg/day</th>
<th>10 mg/kg/day</th>
<th>100 mg/kg/day</th>
<th>1000 mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>196.3 ± 10.6</td>
<td>195.8 ± 11.5</td>
<td>195.1 ± 10.5</td>
<td>196.1 ± 12.8</td>
</tr>
<tr>
<td>6</td>
<td>225.2 ± 13.6</td>
<td>226.3 ± 13.6</td>
<td>226.9 ± 11.9</td>
<td>227.4 ± 13.4</td>
</tr>
<tr>
<td>10</td>
<td>245.3 ± 13.2</td>
<td>246.7 ± 14.6</td>
<td>249.7 ± 14.0</td>
<td>246.1 ± 15.9</td>
</tr>
<tr>
<td>16</td>
<td>289.3 ± 15.0</td>
<td>295.4 ± 17.3</td>
<td>296.4 ± 18.0</td>
<td>288.0 ± 19.8</td>
</tr>
<tr>
<td>21</td>
<td>360.9 ± 25.1</td>
<td>372.8 ± 27.6</td>
<td>369.4 ± 33.0</td>
<td>364.6 ± 31.4</td>
</tr>
<tr>
<td></td>
<td>263.2</td>
<td>265.5</td>
<td>274.1</td>
<td>263.1</td>
</tr>
</tbody>
</table>

Data taken from Tables 2 and 7, pp. 32-34 and 47, respectively, MRID 44929510.

3. **Food consumption**

 There were no dose- or treatment-related differences in food consumption between treated and control groups at any time during gestation. High-dose dams ate significantly (91.9% of control; p ≤ 0.05) less food than the controls on GD 6-11, but no other differences were noted either during or after the treatment interval.

4. **Gross pathology**

 No treatment-related gross abnormalities were observed at maternal necropsy. Evidence of a urogenital infection was seen in the low-dose dam sacrificed on GD 20.

5. **Cesarean section data**

 Data collected at cesarean section are summarized in Table 3. No differences were observed between the treated and control groups for number of corpora lutea, number of implantation sites, live fetuses/dam, resorptions, pre- and post-implantation losses, fetal body weights, or fetal sex ratios. All pregnant dams had live fetuses at necropsy.
TABLE 3: Cesarean section observations

<table>
<thead>
<tr>
<th>Observation</th>
<th>0 mg/kg/day</th>
<th>10 mg/kg/day</th>
<th>100 mg/kg/day</th>
<th>1000 mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Animals Assigned</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>No. Animals Pregnant</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Pregnancy Rate (%)</td>
<td>87.5</td>
<td>91.7</td>
<td>91.7</td>
<td>95.8</td>
</tr>
<tr>
<td>Maternal Mortality</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Delivered Early/Aborted</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gravid Uterine Wt (g)</td>
<td>97.6</td>
<td>107.3</td>
<td>95.3</td>
<td>101.4</td>
</tr>
<tr>
<td>Corpora Lutea/Dam</td>
<td>14.3</td>
<td>16.5</td>
<td>14.8</td>
<td>15.3</td>
</tr>
<tr>
<td>Implantation/Dam</td>
<td>13.3</td>
<td>15.2</td>
<td>13.6</td>
<td>14.0</td>
</tr>
<tr>
<td>Preimplantation Loss (mean %)</td>
<td>7.5</td>
<td>8.0</td>
<td>9.0</td>
<td>10.2</td>
</tr>
<tr>
<td>Postimplantation Loss (mean %)</td>
<td>3.9</td>
<td>4.7</td>
<td>8.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Total Live Fetuses</td>
<td>268</td>
<td>321</td>
<td>279</td>
<td>312</td>
</tr>
<tr>
<td>Live Fetuses/Litter</td>
<td>12.8</td>
<td>14.6</td>
<td>12.7</td>
<td>13.6</td>
</tr>
<tr>
<td>Mean Fetal Weight (g)</td>
<td>5.5</td>
<td>5.4</td>
<td>5.3</td>
<td>5.6</td>
</tr>
<tr>
<td>Sex Ratio (% Male)</td>
<td>50.4</td>
<td>49.8</td>
<td>44.1</td>
<td>51.6</td>
</tr>
<tr>
<td>Total Dead Fetuses</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dams With All Resorptions</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resorptions/Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Resorptions</td>
<td>0.6</td>
<td>0.5</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Late Resorptions</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Data taken from Tables 5, 6, and 7, pp. 41, 43-45, and 47, respectively, MRID 44929510.
*Calculated by reviewer.

B. DEVELOPMENTAL TOXICITY

No treatment-related external, visceral, or skeletal malformations/variations were observed in any fetus from any group. A summary of these findings is given in Table 4.

1. External examination

The number of fetuses(litters) examined for external malformations/variations in the 0, 10, 100, and 1000 mg/kg/day groups was 268(21), 321(22), 279(22), and 312(23), respectively. A protruding tongue was seen in one control fetus. One low-dose litter
contained a fetus with a position anomaly of the hindlimb and another fetus with generalized edema.

2. **Visceral examination**

The number of fetuses (litters) examined for visceral malformations/ variations in the 0, 10, 100, and 1000 mg/kg/day groups was 129(21), 153(22), 135(22), and 150(23), respectively. Anomalies such as hypertrophy of the left heart ventricle, renal pelvic dilatation, blood stained fluid in the abdominal cavity, enlarged thymus, and accessory lobulets on the liver were seen in one to two fetuses per group including controls.

3. **Skeletal examination**

The number of fetuses (litters) examined for skeletal malformations/ variations in the 0, 10, 100, and 1000 mg/kg/day groups was 139(21), 167(22), 144(22), and 162(23), respectively. Skeletal anomalies of the sternebrae, vertebrae, and ribs were observed at low incidences in fetuses from the treated and control groups. Variations in ossification rates of the cranial bones, metatarsals, sternebrae, calcaneus, vertebrae, ribs, and phalanges were also common to fetuses from all groups.

| TABLE 4: Fetal external, visceral, and skeletal observations (no. fetuses [no. litters] affected) |
|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Observation | 0 mg/kg/day | 10 mg/kg/day | 100 mg/kg/day | 1000 mg/kg/day |
| **External** | | | | |
| Total external findings | 1 (1) | 2 (1) | 0 (0) | 0 (0) |
| **Visceral** | | | | |
| Total visceral findings | 4 (3) | 1 (1) | 2 (2) | 2 (2) |
| Enlarged thymus | 1 (1) | 0 (0) | 1 (1) | 1 (1) |
| Hypertrophy left ventricle | 1 (1) | 0 (0) | 0 (0) | 0 (0) |
| Blood stained fluid in abdominal cavity | 0 (0) | 0 (0) | 0 (0) | 1 (1) |
| Renal pelvic dilatation | 0 (0) | 1 (1) | 0 (0) | 0 (0) |
| Accessory liver lobulet | 2 (2) | 0 (0) | 1 (1) | 0 (0) |
| **Skeletal** | | | | |
| Total skeletal malformations | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Total skeletal anomalies | 5 (5) | 2 (2) | 7 (7) | 7 (6) |
| Total skeletal variations | 139 (21) | 167 (22) | 144 (22) | 162 (23) |

Data taken from Tables 9, 10, and 14, pp. 51-52, 54-55, and 78, respectively, MRID 44931710.
III. DISCUSSION

A. INVESTIGATORS’ CONCLUSIONS

The study author concluded that CGA 51202 Technical resulted in maternal toxicity as evidenced by reduced food consumption in the 1000 mg/kg/day group on GD 6-11. The maternal toxicity NOEL was 100 mg/kg/day.

No test article related effects in the reproductive parameters were noted. No evidence of a “teratogenic potential” was apparent. Therefore, the developmental toxicity NOEL was 1000 mg/kg/day.

B. REVIEWER’S DISCUSSION

1. MATERNAL TOXICITY

Maternal toxicity was not evident in any treated group. No clinical signs were observed and body weights and body weight gains were similar between the treated and control groups. The lower food consumption by the high-dose group during GD 6-11 was within 9% of the control level, was not accompanied by reductions in body weight gains by these dams, was not dose-related, and is not considered to be biologically significant. Therefore, the transient reduction in food consumption by the high-dose dams is not considered by the reviewer to be an adverse effect of treatment.

Therefore, the maternal toxicity NOAEL is ≥1000 mg/kg/day and the maternal toxicity LOAEL was not identified.

2. DEVELOPMENTAL TOXICITY

a. Deaths/resorptions

Maternal treatment with the test article did not result in increases in either pre- or postimplantation loss or fetal death.

b. Altered growth

No treatment-related effects on fetal body weights or ossification rates were observed.

c. Developmental variations

Developmental variations were common to both treated and control fetuses and the incidence rates of specific variations were not affected by treatment.
d. Malformations

Malformations did not increase with exposure to the test article. The only major malformation described was generalized edema in one low-dose fetus.

Therefore, the developmental toxicity NOAEL is ≥1000 mg/kg/day and the developmental toxicity LOAEL was not identified.

It should be noted that although neither maternal nor developmental toxicity were apparent, the high dose is equivalent to the limit dose for developmental toxicity studies.

C. STUDY DEFICIENCIES

No deficiencies were identified that would compromise the integrity of this study.

D. CORE CLASSIFICATION

This study is classified as Acceptable/Guideline and satisfies the requirements for a developmental toxicity study [870.3700 (§83-3a)] in rats.
DATA EVALUATION REPORT
CGA-51202

STUDY TYPE: IN VIVO MAMMALIAN CYTOGENETICS - MICRONUCLEUS ASSAY
IN MOUSE BONE MARROW CELLS [OPPTS. 870.5395(§84-2)]
MRID 44929511

Prepared for
Health Effects Division
Office of Pesticides Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by
Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory*
Oak Ridge, TN 37831
Task Order No. 00-10H

Primary Reviewer:
B.L. Whitfield, Ph.D.

Secondary Reviewers:
Cheryl B. Bast, Ph.D., D.A.B.T.

Robert H. Ross, Group Leader, M.S.

Quality Assurance:
Lee Ann Wilson, M.A.

Signature:
Date: FEB 01 2000

Signature: Cheryl B. Bast
Date: FEB 01 2000

Signature: Robert H. Ross
Date: FEB 01 2000

Signature: Lee Ann Wilson
Date: FEB 01 2000

Disclaimer
This review may have been altered subsequent to the contractor's signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
DATA EVALUATION RECORD

STUDY TYPE: *In vivo* mammalian cytogenetics - micronucleus assay in mouse bone marrow cells [OPPTS 870.5395 (§84-2)]

DP BARCODE: D260000 SUBMISSION CODE: S569354
P.C. CODE: 108801 (parent) TOX. CHEM. NO.:188DD

TEST MATERIAL (PURITY): CGA-51202 technical (CGA-51202, 100% a.i.)

SYNONYMS: Metochlor OA

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, Post Office Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a Tif: MAGf (SPF) mouse bone marrow micronucleus assay (MRID 44929511), five mice/sex/dose were treated once via oral gavage with CGA-51202 technical (Batch No. JD 7069/3, 100% a.i.) at doses of 600, 1200 and 2400 mg/kg body weight. In an initial micronucleus assay, bone marrow cells were harvested at 16, 24 and 48 hours post-treatment from test material treated mice and at 24 hours post-treatment from solvent and positive control treated mice. In a second assay, harvest times were 24 and 48 hours post-treatment for the high dose and solvent control mice and 24 hours post-treatment for the intermediate and low dose mice and for the positive control. The vehicle was Arachis oil.

There were signs of toxicity during the study. A preliminary toxicity test was conducted with concentrations up to 3000 mg/kg, the solubility limit using one male and one female per dose. Both animals in each group survived the treatments (three day observation period) but both mice receiving 3000 mg/kg showed respiratory sounds. A confirmatory assay was conducted with 3000 mg/kg using one male and one female. Respiratory sounds were heard in both mice and the male mouse died two days after treatment. An upper dose of 2400 mg/kg was thus selected for the micronucleus assay. In the initial micronucleus assay, data from the 24 and 48 hour harvest times were not acceptable because the analytically determined test material concentrations were too low (the results were not shown). Clinical signs of toxicity seen in mice from the 2400 mg/kg 16 hour sampling time group were respiratory sounds, piloerection and dyspnea. The PCE/NCE ratios did not indicate bone marrow cytotoxicity at any test material dose. No statistically significant increase in the number of micronucleated PCEs over the solvent control.
value was seen at any CGA-51202 technical concentration at the 16 hour sampling time. The mean percentage of micronucleated PCEs (pooled male and female data in the absence of sex differences) was 0.04%, 0.05% and 0.05% in the 600, 1200 and 2400 mg/kg treatment groups, respectively, compared to the solvent control value of 0.02%. The positive control value was 1.15%, significant at p<0.05. A second micronucleus assay was conducted with doses of 600, 1200 and 2400 mg/kg and a 24 hour harvest time. An additional harvest time of 48 hours was used with the 2400 mg/kg group. At the 24 hour harvest time, three females and two males from the 2400 mg/kg groups had respiratory sounds while all other mice in the upper dose groups and all mice in the lower two dose groups appeared normal. In the 48 hour harvest time groups, all animals except one male had one or more of the following signs of toxicity: respiratory sounds, reduced locomotor activity, piloerection, tremor and dyspnea. The PCE/NCE ratios did not indicate bone marrow cytotoxicity at any test material dose. A statistically significant increase (p<0.05) in the mean number of micronucleated PCEs (pooled male and female data) over the solvent control value (0.01%) was seen at 600 (0.08%) and 1200 (0.08%) but not at 2400 mg/kg (0.04%). Although statistically significant due to the very low solvent control value, the actual percentages of micronucleated PCEs were well below the laboratory’s criterion for a positive response of 0.20%, thus the results were not considered biologically significant. The positive control value of 0.98% was appropriate. The mean percentage of micronucleated PCEs at the 48 hour harvest time (2400 mg/kg) was 0.05% compared to 0.10% for the solvent control. **There was no biologically significant increase in the frequency of micronucleated polychromatic erythrocytes in bone marrow after any dose or treatment time used in the study.**

This study is classified as **Acceptable/Guideline**. It satisfies the requirement for FIFRA Test Guideline [OPPTS 870.5395 (§84-2)] for in vivo cytogenetic mutagenicity data.

COMPLIANCE: Signed and dated GLP, Quality Assurance and Data Confidentiality statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-51202 technical
 Description: beige crystalline material
 Lot/Batch #: JD 7069/3
 Purity: 100% a.i.
 Stability of compound: responsibility of sponsor
 CAS #: not provided
 Structure: not provided
 Solvent used: Arachis oil
 Other comments: none

2. Control materials
 Negative (if not vehicle)/Route of administration: none
 Vehicle/Final volume/Route of administration: Arachis oil / 10 mL/kg / oral gavage
 Positive/Final dose/Route of administration: Cyclophosphamide / 64 mg/kg / oral gavage

3. Test compound administration
 Volume of test substance administered: 10 mL/kg body weight
 Route of administration: oral gavage
 Dose levels used:
 Preliminary toxicity test: 187.5, 750, 3000 mg/kg
 Micronucleus test: 600, 1200, 2400 mg/kg

4. Test animals
 Species: mouse
 Strain: Tif: MAGf (SPF)
 Age: “young”
 Weight (micronucleus test): male 29-39 g, female 26-36 g
 Weight (toxicity test) male: 23-27 g, female 25-28 g
 Source: CIBA-GEIGY Animal Farm, Sisseln, Switzerland
 No. animals used per dose: 5 males, 5 females
 Properly maintained? Y
B. TEST PERFORMANCE

1. Treatment and sampling times

a. Test compound

Dosing: _x_ once _ twice (24 hr apart)
Sampling (after last dose): _ 6 hr _ 12 hr _x_ 24 hr _x_ 48 hr _ 72 hr,
x other _x_ 16 hr

b. Negative and/or vehicle control

Dosing: _x_ once _ twice (24 hr apart)
Sampling (after last dose): _ 6 hr _ 12 hr
x 24 hr _x_ (second assay only) _ 48 hr _ 72 hr, other

c. Positive control

Dosing: _x_ once _ twice (24 hr apart)
Sampling (after last dose): _ 6 hr _ 12 hr
x 24 hr _x_ 48 hr _ 72 hr

2. Tissues and cells examined

x bone marrow _ other:
No. of polychromatic erythrocytes (PCE) examined per animal: 1000
No. of normochromatic erythrocytes (NCE; more mature RBCs) examined per animal: the number found while scoring 1000 PCEs

3. Details of slide preparation

Mice were killed by cervical dislocation and the bone marrow harvested from both femurs of each mouse using fetal calf serum. Nucleated cells were removed using a cellulose column. A 10 \,\mu\,m filter was attached to a syringe filled with 0.3-1.0 g of a mixture (1:1 w/w) of microcrystalline cellulose (Sigmacell type 50) and \(\alpha\)-cellulose fibers. The bone marrow suspension was placed on top of the column and eluted with Hank’s BSS buffer. The eluate containing the erythrocytes was centrifuged and the cells resuspended in fetal calf serum. A sample of the cell suspension was placed on a slide, smeared, air-dried and stained with May-Grünwald/Giemsa solution. The slides were rinsed with distilled water, air-dried, cleared in Xylene and mounted. Prior to scoring, the slides were coded.
4. Statistical methods

The significance of differences was assessed by the Chi-Square test (p<0.05).

5. Evaluation criteria

Micronuclei were identified as uniform, darkly stained, roundish bodies in the cytoplasm. One-thousand PCE per mouse were scored and the results reported as the number of micronucleated PCEs/1000 PCEs. A micronucleated PCE could contain one or more micronuclei. The PCE/NCE ratio was also recorded.

Results were considered positive if the mean number of micronucleated PCEs in a test material treated group was greater than 0.20% and if there was a statistically significant (Chi Squared < 3.84) increase in the mean number of micronucleated PCEs in the treated group compared to the solvent control. If the positive result was seen in a minority of mice in a group and if the number of micronucleated NCEs was also increased, the effects were considered unrelated to the test material.

II. REPORTED RESULTS

A. PRELIMINARY TOXICITY ASSAY

Three doses of CGA-51202 technical (187.5, 750 and 3000 mg/kg) were tested in an initial toxicity assay using one male and one female for each dose. The upper dose was limited by solubility. All animals survived the treatments (three day observation period) but both mice receiving 3000 mg/kg showed respiratory sounds. A confirmatory assay was conducted with 3000 mg/kg using one male and one female. Respiratory sounds were heard in both mice and the male mouse died two days after treatment. An upper dose of 2400 mg/kg was selected for the micronucleus assay.

B. MICRONUCLEUS ASSAY

Three doses of CGA-51202 technical (600, 1200 and 2400 mg/kg) were tested in the initial micronucleus assay using five mice/sex/dose. Bone marrow cells were harvested at 16, 24 and 48 hours post-treatment. Data from the 24 and 48 hour harvest times were not acceptable because the analytically determined test material concentrations were too low (the results not shown). Clinical signs of toxicity seen in mice from the 2400 mg/kg 16 hour sampling time group were respiratory sounds, piloerection and dyspnea. The PCE/NCE ratios did not indicate bone marrow cytotoxicity at any test material dose. No statistically significant increase in the number of micronucleated PCEs over the solvent control value was seen at any CGA-51202 technical concentration at the 16 hour sampling time. The mean percentage of micronucleated PCEs (pooled male and female data in the absence of sex differences) was 0.04%, 0.05% and 0.05% in the 600, 1200 and 2400 mg/kg treatment groups, respectively, compared to the solvent control value of 0.02%. The positive control value was 1.15%, significant at p<0.05. Results of the initial
micronucleus assay are summarized in Appendix Tables 1 and 2 (MRID 44929511, pp. 27 and 28).

A second micronucleus assay was conducted with doses of 600, 1200 and 2400 mg/kg and a 24 hour harvest time. An additional harvest time of 48 hours was used with the 2400 mg/kg group. At the 24 hour harvest time, three females and two males from the 2400 mg/kg groups had respiratory sounds while all other mice in the upper dose groups and all mice in the lower two dose groups appeared normal. In the 48 hour harvest time groups, all animals except one male had one or more of the following signs of toxicity: respiratory sounds, reduced locomotor activity, piloerection, tremor and dyspnea. The PCE/NCE ratios did not indicate bone marrow cytotoxicity at any test material dose. A statistically significant increase (p<0.05) in the mean number of micronucleated PCEs (pooled male and female data) over the solvent control value (0.01%) was seen at 600 (0.08%) and 1200 (0.08%) but not at 2400 mg/kg (0.04%). Although statistically significant due to the very low solvent control value, the actual percentages of micronucleated PCEs were well below the laboratory’s criterion for a positive response of 0.20%, thus the results were not considered biologically significant. The positive control value of 0.98% was appropriate. The mean percentage of micronucleated PCEs at the 48 hour harvest time (2400 mg/kg) was 0.05% compared to 0.10% for the solvent control. Results of the second micronucleus are summarized in Appendix Tables 3 and 4 (MRID 44929511, pp. 29 and 30).

CGA-51202 technical did not increase the number of micronucleated PCEs over solvent control values as tested in this study.

III. REVIEWER'S DISCUSSION/CONCLUSIONS

A. This is an acceptable study. CGA-51202 technical was tested to a dose limited by solubility and toxicity, proper experimental protocol was followed and the solvent and positive control values were appropriate. The reviewers agree with the author’s conclusion that the statistically significant increases in the number of micronucleated PCEs seen in the second experiment at the two lower doses were not biologically significant. As tested in this study, CGA-51202 technical did not increase the incidence of micronucleated bone marrow PCEs.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline [OPPTS 870.5395 (§84-2)] for in vivo cytogenetic mutagenicity data.

B. STUDY DEFICIENCIES

No study deficiencies were identified.
APPENDIX

MRID 44929511

THE FOLLOWING ATTACHMENTS ARE NOT AVAILABLE ELECTRONICALLY. SEE THE FILE COPY.
TABLE 1: MICRONUCLEUS TEST ON MOUSE BONE MARROW CELLS
SUMMARIZED DATA (first experiment)

ANIMALS SACRIFICED 16 h AFTER APPLICATION

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sex</th>
<th>FCEs per 1000 erythrocytes (mean)</th>
<th>Ratio PCE/NCE</th>
<th>Micronucleated PCEs found in 5000 PCEs</th>
<th>% of micronucleated PCEs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600.0 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>437</td>
<td>0.78</td>
<td>2</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Females</td>
<td>506</td>
<td>1.02</td>
<td>2</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>1200.0 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>417</td>
<td>0.72</td>
<td>3</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Females</td>
<td>475</td>
<td>0.91</td>
<td>2</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>2400.0 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>389</td>
<td>0.64</td>
<td>2</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Females</td>
<td>469</td>
<td>0.88</td>
<td>3</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
</tbody>
</table>

In a total of 5 animals
Table 2: Micronucleus Test on Mouse Bone Marrow Cells

SUMMARIZED DATA (first experiment)

ANIMALS SACRIFICED 24 h AFTER APPLICATION

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sex</th>
<th>PCEs per 1000 erythrocytes (mean)</th>
<th>Ratio PCE/NCE</th>
<th>Micronucleated PCEs found in 5000 PCEs</th>
<th>% of micronucleated PCEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Control: Arachis Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>359</td>
<td>0.56</td>
<td>0</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Females</td>
<td>434</td>
<td>0.77</td>
<td>2</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Positive Control: Cyclophosphamide, 64 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>387</td>
<td>0.63</td>
<td>63</td>
<td></td>
<td>1.26*</td>
</tr>
<tr>
<td>Females</td>
<td>411</td>
<td>0.70</td>
<td>52</td>
<td></td>
<td>1.04*</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td>115</td>
<td></td>
<td></td>
<td>1.15*</td>
</tr>
</tbody>
</table>

in a total of 5 animals

Significantly different from neg. contr. at a level of significance of p = 0.05
TABLE 3: MICRONUCLEUS TEST ON MOUSE BONE MARROW CELLS
SUMMARIZED DATA (second experiment)

ANIMALS SACRIFICED 24 h AFTER APPLICATION

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PCEs per 1000 erythrocytes (mean)</th>
<th>Ratio PCE/ NCE</th>
<th>Micronucleated PCEs found in 5000 PCEs</th>
<th>% of micronucleated PCEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Control: Arachis Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>446</td>
<td>0.81</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Females</td>
<td>388</td>
<td>0.63</td>
<td>0 !</td>
<td>0.00</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>600.0 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>433</td>
<td>0.76</td>
<td>4</td>
<td>0.08</td>
</tr>
<tr>
<td>Females</td>
<td>485</td>
<td>0.94</td>
<td>4</td>
<td>0.08</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td></td>
<td></td>
<td>0.08*</td>
</tr>
<tr>
<td>1200.0 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>330</td>
<td>0.49</td>
<td>6</td>
<td>0.12</td>
</tr>
<tr>
<td>Females</td>
<td>489</td>
<td>0.96</td>
<td>2</td>
<td>0.04</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td></td>
<td></td>
<td>0.08*</td>
</tr>
<tr>
<td>2400.0 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>547</td>
<td>1.21</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Females</td>
<td>497</td>
<td>0.99</td>
<td>3</td>
<td>0.06</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Positive Control: Cyclophosphamide, 64 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>436</td>
<td>0.77</td>
<td>67</td>
<td>1.34*</td>
</tr>
<tr>
<td>Females</td>
<td>326</td>
<td>0.48</td>
<td>31</td>
<td>0.62*</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td></td>
<td></td>
<td>0.98*</td>
</tr>
</tbody>
</table>

In a total of 5 animals
! Only 4 animals used
* Significantly different from neg. contr. at a level of significance of p = 0.05
<table>
<thead>
<tr>
<th>Treatment</th>
<th>PCEs per 1000 erythrocytes (mean)</th>
<th>Ratio PCE/NCE</th>
<th>Micronucleated PCEs found in 5000 PCEs</th>
<th>% of micronucleated PCEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Control: Arachis Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>473</td>
<td>0.90</td>
<td>5</td>
<td>0.10</td>
</tr>
<tr>
<td>Females</td>
<td>510</td>
<td>1.04</td>
<td>5</td>
<td>0.10</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td>10</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>2400.0 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>410</td>
<td>0.69</td>
<td>4</td>
<td>0.08</td>
</tr>
<tr>
<td>Females</td>
<td>529</td>
<td>1.12</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Pooled data</td>
<td></td>
<td>5</td>
<td></td>
<td>0.05</td>
</tr>
</tbody>
</table>

in a total of 5 animals
DATA EVALUATION REPORT

CGA-51202

SALMONELLA/ESCHERICHIA/MAMMALIAN ACTIVATION GENE MUTATION ASSAY; [OPPTS 870.5100 (§84-2)]
MRID 44929512

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-101

Primary Reviewer:
B.L. Whitfield, Ph.D.
Signature: [Signature]
Date: APR 25 2001

Secondary Reviewers:
Cheryl B. Bast, Ph.D., D.A.B.T.
Signature: [Signature]
Date: APR 25 2001

Robert H. Ross, Group Leader, M.S.
Signature: [Signature]
Date: APR 25 2001

Quality Assurance:
LeeAnn Wilson, M.A.
Signature: [Signature]
Date: APR 25 2001

Disclaimer

This review may have been altered subsequent to the contractor's signature above.

Managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under Contract No. DE-AC05-96OR22464.
DATA EVALUATION RECORD

STUDY TYPE: Salmonella/mammalian activation gene mutation assay
[OPPTS 870.5100 (§84-2)]

DP BARCODE: D260000
P.C. CODE: 108801 (parent) SUBMISSION CODE: S569354
TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-51202 technical (100% a.i.)

SYNONYMS: none provided

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, Post Office Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY In a reverse gene mutation assay in bacteria (MRID 44929512), strains TA98, TA100, TA1535 and TA1537 of S. typhimurium and strain WP2(uvrA) of E. coli were exposed to CGA-51202 technical (Batch No. JD 7069/3, 100% a.i.) in DMSO at concentrations of 312.5, 625.0, 1250.0, 2500.0, 5000.0 µg/plate in the presence and absence of mammalian metabolic activation. Two independent assays were conducted and all plating was in triplicate. The S9-fraction was obtained from Aroclor induced male RAI (Tif:RAIe(SPF)) rat liver.

CGA-51202 technical was tested up to a limit concentration of 5000 µg/plate. Cytotoxicity, as based on a reduction in the number of revertants per plate compared to the solvent control value, was seen in a preliminary cytotoxicity assay using TA100 and WP2(uvrA) only at 5000 µg/plate without S9-mix. The number of revertants per plate was 54% of the solvent control value in TA100 and 53% of the solvent control value in WP2(uvrA). A precipitate was seen on the TA100 plate at 5000 µg/plate without S9-mix. In the mutagenicity assays, no cytotoxicity was evident at any test point and no precipitates were seen. CGA-51202 technical did not increase the number of revertants per plate over solvent control values at any tested concentration in any of the five bacterial strains in either mutagenicity assay, with or without S9-mix. The solvent and positive control values were appropriate for the respective strains and within the laboratory's historical control ranges. There was no evidence of induced mutant colonies over background.

February 2000
This study is classified as **Acceptable/Guideline**. It satisfies the requirement for FIFRA Test Guideline 84-2 (OPPTS 870.5100) for *in vitro* mutagenicity [bacterial reverse gene mutation] data.

COMPLIANCE: Signed and dated GLP, Quality Assurance and Data Confidentiality statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-51202 technical
 Description: beige crystalline material
 Lot/Batch #: JD 7069/3
 Purity: 100% a.i.
 Stability of compound: responsibility of sponsor
 CAS #: not provided
 Structure: not provided
 Solvent used: DMSO
 Other comments: none

2. Control materials
 Negative: none
 Solvent/final concentration: DMSO
 Positive:
 Nonactivation:
 Sodium azide 5.0 µg/plate TA100, TA1535
 2-Nitrofluorene 20.0 µg/plate TA98
 9-Aminoacridine 150.0 µg/plate TA1537
 Other:
 4-nitroquinoline-N-oxide 2.0 µg/plate WP2(uvrA)
 Activation:
 2-Aminoanthracene 2.5 µg/plate TA98, TA100, TA1537
 2-Aminoanthracene 50.0 µg/plate WP2(uvrA)
 Cyclophosphamide 400.0 µg/plate TA1535

3. Activation: S9 derived from male RAI (Tif:RAI(SPF)) rats

 x Aroclor 1254 x induced x rat x liver
 _ phenobarbital _ non-induced _ mouse _ lung
 _ none _ other _ other

S9 mix composition (if purchased, give details):

 S9-fraction 100 µL/mL
 NADP 4 µmol/mL
 MgCl₂ 8 µmol/mL

February 2000
4. Test organisms: *S. typhimurium* strains

- TA97 x TA98 x TA100 _ TA102 _ TA104
- _ TA1535 _ TA1537 _ TA1538; list any others:

E. coli strain: WP2(uvrA)

Properly maintained? Y
Checked for appropriate genetic markers (rfa mutation, R factor)? Y

5. Test compound concentrations used:

- Preliminary cytotoxicity assay: (TA100 and WP2(ureA), single plating)
 Nonactivated and activated conditions: 20.5761, 61.7284, 185.1852, 555.5556, 1666.6667, 5000.0000 µg/plate

- Initial and confirmatory mutagenicity assay: (all strains, triplicate plating)
 Nonactivated and activated conditions: 312.5, 625.0, 1250.0, 2500.0, 5000.0 µg/plate

B. TEST PERFORMANCE

1. Type of Salmonella assay:

- _x_ standard plate test
- _ _ pre-incubation
- _ _ "Prival" modification (*i.e.* *azo-reduction method*)
- _ _ spot test

2. Protocol

One-tenth mL of an overnight culture of bacteria was mixed with 2 mL of molten top agar, 0.1 mL of the desired concentration of test material, solvent or positive control and 0.5 mL of either sodium phosphate buffer or S9-mix. This mixture was poured into a Petri dish containing about 20 mL of minimal agar (1.5% agar supplemented with 2% salts of Vogel-Bonner Medium E and 2% glucose). The top agar (0.6% agar and 0.6% NaCl) was supplemented with 10% of 0.5 mM L-histidine and 0.5 mM (+)biotin dissolved in water for the *S. typhimurium* strains and with 10% of 0.5 mM L-tryptophan dissolved in water for the *E. coli* strain. The plates were inverted and incubated for 48 hours at 37 ± 1.5°C in the dark. The background lawn of bacteria was then examined and the number of revertant colonies counted with an Artek colony counter.
Criteria for a positive response are a reproducible doubling, at least, of the mean number of revertants per plate above that of the solvent control at any concentration for one or more of the following strains: TA98, TA1535, TA1537 and WP2(uvrA) or a 1.5 fold increase for TA100 accompanied by a positive dose-response.

II. REPORTED RESULTS

The concentrations of test material used in the assays were analytically determined (HPLC with UV detection) to be as intended.

A. PRELIMINARY CYTOTOXICITY ASSAY

Six concentrations of CGA-51202 technical ranging from 20.6 to 5000 µg/plate were tested with strains TA100 and WP2(uvrA) in the presence and absence of S9-mix. A single plate per dose/activation condition was used. The measure of cytotoxicity was a reduction in the number of revertants per plate in CGA-51202 treated cells compared to the solvent control value. No cytotoxicity was seen at any concentration in either strain in the presence of S9-mix or at the lower five concentrations in the absence of S9-mix. The number of revertants per plate at 5000 µg/plate without S9-mix was 54% of the solvent control value in TA100 and 53% of the solvent control value in WP2(uvrA). A precipitate was seen on the TA100 plate at 5000 µg/plate without S9-mix. The upper dose selected for the mutagenicity assays was 5000 µg/plate.

B. MUTAGENICITY ASSAY

Five concentrations of CGA-51202 technical ranging from 312.5 to 5000.0 µg/plate were tested, with and without S9-mix, in an initial and a confirmatory mutagenicity assay. All plating was in triplicate. No cytotoxicity as measured by a reduction in the number of revertants per plate compared to solvent control values was evident at any test point. No information was provided on the background lawn of bacteria. CGA-51202 technical did not increase the number of revertants per plate over solvent control levels at any tested concentration in any of the five bacterial strains in either mutagenicity assay, with or without S9-mix. The solvent and positive control values were appropriate for the respective strains and within the laboratory's historical control ranges (historical control data are included in the Appendix). Results of the initial mutagenicity assay are summarized in Appendix Tables 1 and 2 (MRID 44929512, pp. 30 and 31) and those of the confirmatory assay are summarized in Appendix Tables 3 and 4 (MRID 44929512, pp. 32 and 33).

III. REVIEWER'S DISCUSSION/CONCLUSIONS

A. This is an acceptable study. CGA-51202 technical was tested to a limit concentration of 5000 µg/plate, suitable experimental protocol was followed and the solvent and positive control values were appropriate for the respective strains. The test material did not increase the number of revertants per plate at any concentration as tested in this study.
This study is classified as Acceptable/guideline. It satisfies the requirement for FIFRA Test Guideline 84-2 (OPPTS 870.5100) for in vitro mutagenicity [bacterial reverse gene mutation] data.

B. STUDY DEFICIENCIES

No study deficiencies were identified.
APPENDIX

MRID 44929512

THE FOLLOWING ATTACHMENTS ARE NOT AVAILABLE ELECTRONICALLY. SEE THE FILE COPY.
Historical control data and acceptable ranges for controls

Arithmetic Mean (m) and Standard Deviation (s) of colony counts obtained in 91 separate experiments over the period of January 15, 1990 to January 02, 1991. Acceptable range for mean colony counts (mean of values) of spontaneous revertants.

Without microsomal activation

<table>
<thead>
<tr>
<th>Strain</th>
<th>Substance</th>
<th>µg/plate</th>
<th>m</th>
<th>s</th>
<th>Acceptable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 100</td>
<td>negative control sodium azide</td>
<td>2.0</td>
<td>146.9</td>
<td>28.2</td>
<td>80-220</td>
</tr>
<tr>
<td>TA 1535</td>
<td>negative control sodium azide</td>
<td>2.0</td>
<td>11.4</td>
<td>3.3</td>
<td>7-30</td>
</tr>
<tr>
<td>E.coli</td>
<td>negative control</td>
<td>2.0</td>
<td>20.2</td>
<td>4.5</td>
<td>8-40</td>
</tr>
<tr>
<td>WP2 uvrA</td>
<td>4-nitroquinoline-N-oxide</td>
<td>1.0</td>
<td>501.7</td>
<td>323.4</td>
<td></td>
</tr>
</tbody>
</table>

With microsomal activation

<table>
<thead>
<tr>
<th>Strain</th>
<th>Substance</th>
<th>µg/plate</th>
<th>m</th>
<th>s</th>
<th>Acceptable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 100</td>
<td>negative control 2-aminoanthracene</td>
<td>2.5</td>
<td>142.2</td>
<td>25.8</td>
<td>70-220</td>
</tr>
<tr>
<td>TA 1535</td>
<td>negative control cyclophosphamide</td>
<td>400.0</td>
<td>12.6</td>
<td>3.2</td>
<td>7-35</td>
</tr>
<tr>
<td>E.coli</td>
<td>negative control</td>
<td>50.0</td>
<td>22.3</td>
<td>5.2</td>
<td>8-50</td>
</tr>
<tr>
<td>WP2 uvrA</td>
<td>2-aminoanthracene</td>
<td>2.5</td>
<td>35.4</td>
<td>5.7</td>
<td>20-70</td>
</tr>
<tr>
<td>TA 1537</td>
<td>negative control</td>
<td>5.0</td>
<td>12.0</td>
<td>4.3</td>
<td>5-30</td>
</tr>
</tbody>
</table>
TABLE 1

SUMMARY OF THE RESULTS

Experiment without microsomal activation

<table>
<thead>
<tr>
<th>Test number</th>
<th>Experiment</th>
<th>Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>911342</td>
<td>Original</td>
<td>JD 7069/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment/Strain</th>
<th>TA 100</th>
<th>TA 1535</th>
<th>WP2</th>
<th>uvrA</th>
<th>TA 98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>151.3</td>
<td>8.3</td>
<td>19.3</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>CGA 51202 tech.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312.5000 ug/plate</td>
<td>144.3</td>
<td>7.7</td>
<td>14.3</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td>625.0000 ug/plate</td>
<td>138.7</td>
<td>9.0</td>
<td>23.3</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>1250.0000 ug/plate</td>
<td>142.3</td>
<td>8.7</td>
<td>16.3</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>2500.0000 ug/plate</td>
<td>140.3</td>
<td>12.0</td>
<td>19.3</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>5000.0000 ug/plate</td>
<td>151.3</td>
<td>7.7</td>
<td>18.0</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>Positive controls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sodium azide</td>
<td>1472.3</td>
<td>1124.7</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>4-NQO</td>
<td>----</td>
<td>----</td>
<td>1020.7</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>2-nitrofluorene</td>
<td>----</td>
<td>----</td>
<td>2129.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment/Strain</th>
<th>TA 1537</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>13.0</td>
</tr>
<tr>
<td>CGA 51202 tech.</td>
<td></td>
</tr>
<tr>
<td>312.5000 ug/plate</td>
<td>11.0</td>
</tr>
<tr>
<td>625.0000 ug/plate</td>
<td>13.0</td>
</tr>
<tr>
<td>1250.0000 ug/plate</td>
<td>12.3</td>
</tr>
<tr>
<td>2500.0000 ug/plate</td>
<td>13.7</td>
</tr>
<tr>
<td>5000.0000 ug/plate</td>
<td>6.0</td>
</tr>
<tr>
<td>Positive controls:</td>
<td></td>
</tr>
<tr>
<td>9-aminoacridine</td>
<td>1658.3</td>
</tr>
</tbody>
</table>
TABLE 2

SUMMARY OF THE RESULTS

Experiment with microsomal activation

<table>
<thead>
<tr>
<th>Treatment/Strain</th>
<th>TA 100</th>
<th>TA 1535</th>
<th>WP2</th>
<th>uvrA</th>
<th>TA 98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>144.0</td>
<td>14.3</td>
<td>24.7</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>CGA 51202 tech.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312.5000 ug/plate</td>
<td>136.7</td>
<td>11.7</td>
<td>22.0</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td>625.0000 ug/plate</td>
<td>157.7</td>
<td>6.0</td>
<td>24.3</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>1250.0000 ug/plate</td>
<td>134.7</td>
<td>8.7</td>
<td>20.0</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td>2500.0000 ug/plate</td>
<td>138.3</td>
<td>8.3</td>
<td>19.0</td>
<td>43.3</td>
<td></td>
</tr>
<tr>
<td>5000.0000 ug/plate</td>
<td>128.0</td>
<td>10.7</td>
<td>15.0</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>Positive controls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-aminoanthracene</td>
<td>2160.3</td>
<td>----</td>
<td>1037.0</td>
<td>1718.7</td>
<td></td>
</tr>
<tr>
<td>cyclophosphamide</td>
<td>----</td>
<td>635.0</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

Treatment/Strain: TA 1537

<table>
<thead>
<tr>
<th>Negative control</th>
<th>11.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGA 51202 tech.:</td>
<td></td>
</tr>
<tr>
<td>312.5000 ug/plate</td>
<td>12.3</td>
</tr>
<tr>
<td>625.0000 ug/plate</td>
<td>15.0</td>
</tr>
<tr>
<td>1250.0000 ug/plate</td>
<td>14.0</td>
</tr>
<tr>
<td>2500.0000 ug/plate</td>
<td>10.0</td>
</tr>
<tr>
<td>5000.0000 ug/plate</td>
<td>11.3</td>
</tr>
<tr>
<td>Positive controls:</td>
<td></td>
</tr>
<tr>
<td>2-aminoanthracene</td>
<td>123.7</td>
</tr>
</tbody>
</table>
TABLE 3

SUMMARY OF THE RESULTS

Experiment without microsomal activation

<table>
<thead>
<tr>
<th>Test number</th>
<th>Experiment</th>
<th>Test substance</th>
<th>Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>911342</td>
<td>Confirmatory</td>
<td>CGA 51202 tech.</td>
<td>JD 7069/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment/Strain</th>
<th>TA 100</th>
<th>TA 1535</th>
<th>WP2</th>
<th>uvrA</th>
<th>TA 98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>102.7</td>
<td>11.0</td>
<td>21.0</td>
<td>19.0</td>
<td></td>
</tr>
</tbody>
</table>

CGA 51202 tech.:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>TA 100</th>
<th>TA 1535</th>
<th>WP2</th>
<th>uvrA</th>
<th>TA 98</th>
</tr>
</thead>
<tbody>
<tr>
<td>312.5000 ug/plate</td>
<td>109.7</td>
<td>8.7</td>
<td>24.3</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>625.0000 ug/plate</td>
<td>102.0</td>
<td>11.7</td>
<td>21.3</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>1250.0000 ug/plate</td>
<td>99.3</td>
<td>7.3</td>
<td>14.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500.0000 ug/plate</td>
<td>93.7</td>
<td>12.0</td>
<td>18.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.0000 ug/plate</td>
<td>99.0</td>
<td>12.0</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Positive controls:

- Sodium azide: 607.0, 823.0, ----, ----, ----
- 4-NQO: ----, ----, 1164.7, ----
- 2-nitrofluorene: ----, ----, 1357.3

<table>
<thead>
<tr>
<th>Treatment/Strain</th>
<th>TA 1537</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>9.7</td>
</tr>
</tbody>
</table>

CGA 51202 tech.:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>TA 1537</th>
</tr>
</thead>
<tbody>
<tr>
<td>312.5000 ug/plate</td>
<td>5.0</td>
</tr>
<tr>
<td>625.0000 ug/plate</td>
<td>10.7</td>
</tr>
<tr>
<td>1250.0000 ug/plate</td>
<td>9.3</td>
</tr>
<tr>
<td>2500.0000 ug/plate</td>
<td>6.0</td>
</tr>
<tr>
<td>5000.0000 ug/plate</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Positive controls:

- 9-aminoacridine | 874.3
TABLE 4

SUMMARY OF THE RESULTS

Experiment with microsomal activation

<table>
<thead>
<tr>
<th>Test number</th>
<th>Confirmatory Test substance</th>
<th>Batch</th>
<th>TA 100</th>
<th>TA 1535</th>
<th>WP2 uvrA</th>
<th>TA 98</th>
</tr>
</thead>
<tbody>
<tr>
<td>911342</td>
<td>CGA 51202 tech.</td>
<td>JD 7069/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatment/Strain

<table>
<thead>
<tr>
<th>Negative control</th>
<th>103.0</th>
<th>9.7</th>
<th>17.0</th>
<th>32.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGA 51202 tech.</td>
<td>102.3</td>
<td>11.7</td>
<td>20.0</td>
<td>39.0</td>
</tr>
<tr>
<td>312.5000 ug/plate</td>
<td>100.0</td>
<td>15.3</td>
<td>16.7</td>
<td>42.3</td>
</tr>
<tr>
<td>625.0000 ug/plate</td>
<td>104.3</td>
<td>10.0</td>
<td>20.0</td>
<td>37.0</td>
</tr>
<tr>
<td>1250.0000 ug/plate</td>
<td>103.3</td>
<td>10.0</td>
<td>18.7</td>
<td>39.3</td>
</tr>
<tr>
<td>2500.0000 ug/plate</td>
<td>106.0</td>
<td>9.7</td>
<td>17.3</td>
<td>42.3</td>
</tr>
<tr>
<td>5000.0000 ug/plate</td>
<td>102.3</td>
<td>11.7</td>
<td>20.0</td>
<td>39.0</td>
</tr>
<tr>
<td>Positive controls:</td>
<td>1349.3</td>
<td>----</td>
<td>1028.7</td>
<td>2414.7</td>
</tr>
<tr>
<td>2-aminoanthracene</td>
<td>----</td>
<td>333.3</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>cyclophosphamide</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

Treatment/Strain

<table>
<thead>
<tr>
<th>TA 1537</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Negative control</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGA 51202 tech.</td>
<td>8.0</td>
</tr>
<tr>
<td>312.5000 ug/plate</td>
<td>12.7</td>
</tr>
<tr>
<td>625.0000 ug/plate</td>
<td>12.0</td>
</tr>
<tr>
<td>1250.0000 ug/plate</td>
<td>6.0</td>
</tr>
<tr>
<td>2500.0000 ug/plate</td>
<td>100.7</td>
</tr>
<tr>
<td>5000.0000 ug/plate</td>
<td></td>
</tr>
</tbody>
</table>
DATA EVALUATION REPORT

METOLACHLOR ESA (CGA-354743 TECHNICAL)

STUDY TYPE: ACUTE ORAL TOXICITY - RAT [870.1100 ($81-1)]
MRID 44931704

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09A

Primary Reviewer:
Susan Chang, M.S.

Signature:
Date: JAN 18 2000

Secondary Reviewers:

Signature:
Date: JAN 18 2000

Robert H. Ross, M.S., Group Leader

Signature:
Date: JAN 18 2000

Quality Assurance:
Lee Ann Wilson, M.A.

Signature:
Date: JAN 18 2000

Disclaimer

This review may have been altered subsequent to the contractor's signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
STUDY TYPE: Acute Oral Toxicity - Rat; OPPTS 870.1100 [§81-1]

DP BARCODE: D260393
P.C. CODE: 108801 (Metolachlor)

TEST MATERIAL (PURITY): CGA-354743 Technical (metabolite of CGA 24705, 98.0% a.i.)

SYNONYMS: not reported

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In an acute oral toxicity study (MRID 44931704) groups of five male and five female fasted young adult Hanlbn:WIST rats were given a single oral 5000 mg/kg dose of CGA-354743 Technical (metabolite of CGA 24705, Batch No. KI-5408/6, 98.0% a.i.) in distilled water and observed for 14 days.

No rats died and all rats had normal body weight gains during the study. No remarkable clinical observations were noted during the study and no remarkable observations were noted at necropsy.

The oral LD₅₀ for males, females, and combined was > 5000 mg/kg (Limit Test).

CGA-354743 Technical is in TOXICITY CATEGORY IV based on the LD₅₀.

This acute oral study is classified as Acceptable/Guideline and satisfies the guideline requirements for an acute oral study [870.1100 (§81-1)] in the rat.

COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-354743 Technical (metabolite of CGA 24705, metolachlor)

 Description: light brown solid
 Lot/Batch #: KI-5408/6
 Purity: 98.0% a.i.
 CAS #: not provided
 Structure: not provided

2. Vehicle and/or positive control

 Distilled water

3. Test animals

 Species: rat
 Strain: Han/lbm:WIST
 Age and/or weight at dosing: young adult; males: 178-190 g, females: 170-180 g
 Source: BRL Biological Research Laboratories, Wölferstrasse 4, 4414 Füllinsdorf, Switzerland
 Acclimation period: at least 5 days
 Diet: NAFAG No. 890 (NAFAG, Gossau/SG, Switzerland), ad libitum
 Water: municipal water, ad libitum
 Housing: five same sex per Macrolon Type 4 cage
 Environmental conditions:
 Temperature: 21±3°C
 Humidity: 50±20%
 Air changes: approximately 13-14/hour
 Photoperiod: 12 hour light/12 hour dark

B. STUDY DESIGN AND METHODS

1. In life dates

 Start: April 28, 1998; end: May 12, 1998

2. Animal assignment and treatment

 Following an overnight fast, groups of five rats/sex were given by gavage a single 5000 mg/kg dose of the test material in distilled water. The animals were observed for clinical signs of toxicity at 1, 3, and 5 hours post dosing and daily thereafter for 14 days. Mortality checks were performed twice daily. They were weighed on study days 0, 7, and 14. All rats were sacrificed and necropsied.
Data taken from Table 1, p. 14, MRID 44931704.

3. Statistics

Calculation of the oral LD$_{50}$ was not required.

II. RESULTS AND DISCUSSION

A. MORTALITY

Mortality is given in Table 1. None of the rats died as a result of CGA-354743 Technical toxicity.

The oral LD$_{50}$ for males, females, and combined was $>$ 5000 mg/kg. This places CGA-354743 Technical (metabolite of CGA 24705, metolachlor) in TOXICITY CATEGORY IV.

B. CLINICAL OBSERVATIONS

No remarkable clinical observations were noted.

C. BODY WEIGHT

All rats had normal body weight gains.

D. NECROPSY

No remarkable observations were noted.

E. DEFICIENCIES

None
DATA EVALUATION REPORT

METOLACHLOR ESA
(CG-354743 TECHNICAL)

STUDY TYPE: ACUTE DERMAL TOXICITY - RAT [870.1200 (81-2)]
MRID 44931705

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831

Task Order No. 00-09B

Primary Reviewer:
Susan Chang, M.S.

Signature: [signature]
Date: JAN 18 2000

Secondary Reviewers:

Signature: [signature]
Date: JAN 18 2000

Robert H. Ross, M.S., Group Leader

Signature: [signature]
Date: JAN 18 2000

Quality Assurance:
Lee Ann Wilson, M.A.

Signature: [signature]
Date: JAN 18 2000

Disclaimer

This review may have been altered subsequent to the contractor’s signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
DATA EVALUATION RECORD

STUDY TYPE: Acute Dermal Toxicity - Rat; [OPPTS 870.1200 (§81-2)]

DP BARCODE: D260393
P.C. CODE: 108801 (Metolachlor)

SUBMISSION CODE: S570059
TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-354743 Technical (metabolite of CGA 24705, 98.0% a.i.)

SYNONYMS: not reported

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In an acute dermal toxicity study (MRID 44931705) approximately 10% of the body surface area of five male and five female young adult rats was dermally exposed to 2000 mg/kg (Limit Test) CGA-354743 Technical (metabolite of CGA 24705, Batch No. KI-5408/6, 98.0% a.i.) moistened with distilled water for 24 hours. The animals were observed for 14 days.

None of the animals died during the study. No remarkable clinical observations or local irritation were noted on any rats. With the exception of one female that lost weight during the first week, all animals had normal body weight gains. No observable abnormalities were noted at necropsy.

The dermal LD₅₀ for males, females, and combined was > 2000 mg/kg (Limit Test).

CGA-354743 Technical is in TOXICITY CATEGORY III based on the LD₅₀.

This acute dermal study is classified as Acceptable/Guideline and satisfies the guideline requirements for an acute dermal study [870.1200 §(81-2)] in the rat.

COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided.

January 2000
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-354743 Technical (metabolite of CGA 24705, metolachlor)

 Description: light brown solid
 Lot/Batch #: KI-5408/6
 Purity: 98% a.i.
 CAS #: not provided
 Structure: not provided

2. Vehicle and/or positive control

 Distilled water

3. Test animals

 Species: rat
 Strain: Hanlbnm:WIST
 Age and/or weight at dosing: approximately 8-12 weeks; males: 246-263 g, females: 209-212 g
 Source: BRL Biological Research Laboratories, Wölferstrasse 4, 4414 Füllinsdorf, Switzerland
 Acclimation period: at least 5 days
 Diet: NAFAG No. 890 (NAFAG, Gossau/SG, Switzerland), ad libitum
 Water: municipal water, ad libitum
 Housing: individually in Macrolon type 3 cages
 Environmental conditions:
 Temperature: 22±3°C
 Humidity: 50±20%
 Air changes: approximately 13-14/hour
 Photoperiod: 12 hour light/dark

B. STUDY DESIGN AND METHODS

1. In life dates

 Start: April 29, 1998; end: May 13, 1998

2. Animal assignment and treatment

 The study was conducted as a limit test using five male and five female rats. The animals were given a single 2000 mg/kg dose of CGA-354743 Technical (5000 mg test material moistened with 5 g of distilled water and at 0.4 g per 100 g body weight) applied to a shaved area (approximately 10% of the body surface) on the back. The
application site was covered with a gauze-lined semiocclusive dressing and fastened with an adhesive elastic bandage. The covering was removed 24 hours later and the site cleaned with lukewarm water. The animals were observed for clinical signs of toxicity daily for 14 days. Mortality was checked twice daily. They were weighed prior to test material application, and on study days 7 and 14. All rats were sacrificed and necropsied.

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>Males</th>
<th>Females</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0/5</td>
<td>0/5</td>
<td>0/10</td>
</tr>
</tbody>
</table>

Data taken from p. 13, MRID 44931705.

3. **Statistics**

Calculation of the dermal LD₅₀ was not required.

II. **RESULTS AND DISCUSSION**

A. **MORTALITY**

Mortality is given in Table 1. None of the rats died during the study.

The dermal LD₅₀ for males, females, and combined was > 2000 mg/kg. This places CGA-354743 Technical (metabolite of CGA 24705, metolachlor) in TOXICITY CATEGORY III.

B. **CLINICAL OBSERVATIONS**

No remarkable clinical observations or local irritation were noted on any rats.

C. **BODY WEIGHT**

With the exception of one female that lost weight during the first week, all animals had normal body weight gains.

D. **NECROPSY**

No observable abnormalities were noted.

E. **DEFICIENCIES**

None
DATA EVALUATION REPORT

METOLACHLOR ESA
(CG-354743 TECHNICAL)

STUDY TYPE: PRIMARY EYE IRRITATION - RABBIT [870.2400 (81-4)]
MRID 44931706

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09C

Primary Reviewer:
Susan Chang, M.S.
Signature:
Date: JAN 18 2000

Secondary Reviewers:
Signature:
Date: JAN 18 2000

Robert H. Ross, M.S., Group Leader
Signature:
Date: JAN 18 2000

Quality Assurance:
Lee Ann Wilson, M.A.
Signature:
Date: JAN 18 2000

Disclaimer

This review may have been altered subsequent to the contractor's signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
STUDY TYPE: Primary Eye Irritation - Rabbit; [OPPTS 870.2400 (§81-4)]

TEST MATERIAL (PURITY): CGA-354743 Technical (metabolite of CGA 24705, 98.0% a.i.)

SYNONYMS: not reported

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a primary eye irritation study (MRID 44931706) 41 mg (0.1 mL weight equivalent) of CGA-354743 Technical (metabolite of CGA 24705, Batch No. KI-5408/6, 98.0% a.i.) was instilled into the conjunctival sac of the left eye of three male and three female rabbits and the eye lids held together for approximately 1 second. The eyes were washed with distilled water for one minute after the 24 hour reading. The contralateral eye of all rabbits served as control. The eyes were scored for ocular irritation according to the OECD/EEC/MAFF scoring system 1, 24, 48, and 72 hours after instillation.

Corneal opacity (grade 1-2) was found in 5/6 rabbits one hour after test material instillation that persisted through 24 hours in 4/6 animals. By 48 hours, 4/6 rabbits had corneal opacity with resolution in 2/6 rabbits by 72 hours, in 1/6 rabbits by day 7 and in 1/6 rabbits by day 10. Iritis (grade 1) was noted on 5/6, 4/6, 2/6, and 2/6 rabbits 1, 24, 48, and 72 hours, respectively, after test material instillation; resolution occurred by 7 days. The test material induced conjunctival redness (grades 1 or 2) in all rabbits within one hour of treatment with resolution in 5/6 rabbits within 7 days and in 1/6 rabbits within 10 days. Conjunctival chemosis (grade 1 or 2) was noted in 6/6 rabbits one hour after treatment which resolved by day 7.

In this study, CGA-354743 Technical was a moderate irritant and is in TOXICITY CATEGORY II for primary eye irritation.
This study is classified as **Acceptable/Guideline** and satisfies the guideline requirements for a primary eye irritation study [870.2400 (81-4)] in the rabbit.

COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided.

I. MATERIALS AND METHODS

A. MATERIALS

1. **Test material:** CGA-354743 Technical (metabolite of CGA 24705, metolachlor)
 - Description: white solid
 - Lot/Batch #: KI-5408/6
 - Purity: 98% a.i.
 - CAS #: not provided
 - Structure: not provided

2. **Vehicle**
 - None

3. **Test animals**
 - Species: rabbit
 - Strain: New Zealand White
 - Age and weight at dosing: approximately 3-6 months; males: 2260-2490 g; females: 2570-4150 g
 - Source: Elevage Scientifique des Dombes, 01400 Chatillon sur Chalaronne, France
 - Acclimation period: at least 5 days
 - Diet: NAFAG No. 814 (NAFAG, Gossau/SG, Switzerland), *ad libitum*
 - Water: municipal water, *ad libitum*
 - Housing: individually in cages (Techniplast batteries, Techniplast FRL, Via 1 Maggio 6, 21020 Buguggiate/Varese, Italy)
 - Environmental conditions:
 - Temperature: 22±3°C
 - Humidity: 50±20%
 - Air changes: approximately 13-14/hour
 - Photoperiod: 12 hour light/dark

B. STUDY DESIGN AND METHODS

1. **In life dates**
Start: April 28, 1998; end: May 15, 1998

2. Animal assignment and treatment

The test material (0.1 mL weighing 66 mg) was instilled into the conjunctival sac of the left eye of three male and three female rabbits and the eye lids held together for approximately 1 second. The eyes were washed with distilled water for one minute after the 24 hour reading. The contralateral eye of all rabbits served as control. The animals were scored for ocular irritation 1, 24, 48, and 72 hours and 7 and 10 days after instillation according to the OECD/EEC/MAFF scoring system.

II. RESULTS AND DISCUSSION

A. Corneal opacity (grade 1-2)\(^1\) was found in 5/6 rabbits one hour after test material instillation that persisted through 24 hours in 4/6 animals. By 48 hours, 4/6 rabbits had corneal opacity with resolution in 2/6 rabbits by 72 hours, in 1/6 rabbits by day 7 and in 1/6 rabbits by day 10. Iritis (grade 1) was noted on 3/6, 4/6, 2/6, and 2/6 rabbits 1, 24, 48, and 72 hours, respectively, after test material instillation; resolution occurred by 7 days. The test material induced conjunctival redness (grades 1 or 2) in all rabbits within one hour of treatment with resolution in 5/6 rabbits within 7 days and in 1/6 rabbits within 10 days. Conjunctival chemosis (grade 1 or 2) was noted in 6/6 rabbits one hour after treatment which resolved by day 7.

This classifies the test material as a moderate irritant. CGA-354743 Technical (metabolite of CGA 24705, metolachlor) is in TOXICITY CATEGORY II.

B. DEFICIENCIES

None

\(^1\) Using a scale of 0-4 with 0 being no effect and 4 the most severe effect.
DATA EVALUATION REPORT

METOLACHLOR ESA
(CGA-354743 TECHNICAL)

STUDY TYPE: PRIMARY DERMAL IRRITATION - RABBIT [870.2500 (§81-5)]
MRID 44931707

Prepared for
Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by
Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09D

Primary Reviewer:
Susan Chang, M.S.

Secondary Reviewers:

Robert H. Ross, M.S., Group Leader

Quality Assurance:
Lee Ann Wilson, M.A.

Disclaimer

This review may have been altered subsequent to the contractor’s signatures above.
STUDY TYPE: Primary Dermal Irritation - Rabbit; [OPPTS 870.2500 (§81-5)]

DP BARCODE: D260393
P.C. CODE: 108801 (Metolachlor)

TEST MATERIAL (PURITY): CGA-354743 Technical (metabolite of CGA 24705, 98.0% a.i.)

SYNONYMS: not reported

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a primary dermal irritation study (MRID 44931707) three male and three female adult New Zealand white rabbits were dermally exposed to 0.5 g CGA-354743 Technical (metabolite of CGA 24705, Batch No. KI-5408/6, 98.0% a.i.) on a gauze patch moistened with distilled water for 4 hours on the flank of the animals. The animals were scored 1, 24, 48, and 72 hours after patch removal. Irritation was scored by the method of Draize.

Very slight erythema was noted on 4/6 rabbits (1 male and 3 females) one hour following patch removal with resolution on 2/6 rabbits by 24 hours, on 1/6 rabbits by 48 hours, and on 1/6 rabbits by 72 hours. There was no edema observed. The primary dermal irritation index was 0.29. The female rabbit which had the longest duration of erythema lost weight during the 72-hour period.

In this study, CGA-354743 Technical was essentially nonirritating and is in TOXICITY CATEGORY IV for primary dermal irritation.

This study is classified as Acceptable/Guideline and satisfies the guideline requirements for a primary dermal irritation study [870.2500 (81-5)] in the rabbit.

COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-354743 Technical (metabolite of CGA 24705, metolachlor)
 Description: white solid
 Lot/Batch #: KI-5408/6
 Purity: 98% a.i.
 CAS #: not provided
 Structure: not provided

2. Vehicle
 Distilled water

3. Test animals
 Species: rabbit
 Strain: New Zealand White
 Age and weight at dosing: approximately 3-6 months; males: 3130-3460 g; females: 3500-4320 g
 Source: Elevage Scientifique des Dombes, 01400 Chatillon sur Chalaronne, France
 Acclimation period: at least 5 days
 Diet: NAFAG No. 814 (NAFAG, Gossau/SG, Switzerland), ad libitum
 Water: municipal water, ad libitum
 Housing: individually in cages (Techniplast batteries, Techniplast FRL, Via 1 Maggio 6, 21020 Buguggiate/Varese, Italy)
 Environmental conditions:
 Temperature: 21±2°C
 Humidity: 55±10%
 Air changes: approximately 13-14/hour
 Photoperiod: 12 hour light/dark

B. STUDY DESIGN AND METHODS

1. In life dates

 Start: April 21, 1998; end: April 24, 1998
2. Animal assignment and treatment

Three male and three female animals were given a single 0.5 g dose of CGA-354743 Technical applied to a 2 cm x 3 cm gauze patch (moistened with distilled water) and placed on the clipped site on one flank. A distilled water moistened gauze patch was placed on the other flank as control. The patches were loosely covered with aluminum foil and held in place with adhesive tape. The dressing was removed after four hours and the application site washed with lukewarm water to remove the test material residues. The site was scored for erythema and edema according to the Draize method 1, 24, 48, and 72 hours after patch removal.

II. RESULTS AND DISCUSSION

A. Very slight erythema was noted on 4/6 rabbits (1 male and 3 females) one hour following patch removal with resolution on 2/6 rabbits by 24 hours, on 1/6 rabbits by 48 hours, and on 1/6 rabbits by 72 hours. There was no edema observed. The primary dermal irritation index was 0.29. The female rabbit which had the longest duration of erythema lost weight during the 72-hour period.

CGA-354743 Technical (metabolite of CGA 24705, metolachlor) was essentially nonirritating and is in TOXICITY CATEGORY IV.

B. DEFICIENCIES

None
DATA EVALUATION REPORT

METOLACHLOR ESA
(CG-354743 TECHNICAL)

STUDY TYPE: DERMAL SENSITIZATION - GUINEA PIG [870.2600 (81-6)]
MRID 44931708

Prepared for
Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by
Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09E

Primary Reviewer:
Susan Chang, M.S.

Secondary Reviewers:
Robert H. Ross, M.S., Group Leader
Quality Assurance:
Lee Ann Wilson, M.A.

Signature:
Date: JAN 18 2000

Disclaimer

This review may have been altered subsequent to the contractor's signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
STUDY TYPE: Dermal Sensitization - Guinea Pig; [OPPTS 870.2600 (§81-6)].

DP BARCODE: D260393
P.C. CODE: 108801 (Metolachlor)
SUBMISSION CODE: S570059
TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-354743 Technical (metabolite of CGA 24705, 98.0% a.i.)

SYNONYMS: not reported

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a dermal sensitization study (MRID 44931708) with CGA-354743 Technical (metabolite of CGA 24705, Batch No. KI-5408/6, 98.0% a.i.), 10 young adult male and 10 female guinea pigs were tested using the Buehler Test. An additional five animals/sex served as a vehicle control group and five/sex as a naive control group.

After the first induction, irritation (slight or slight to moderate confluent erythema) at the application site was observed in 13/20 and 18/20 animals at the 24-hour and 48-hour evaluations, respectively. After the second induction, irritation was observed in 17/20 and 18/20 animals at the 24-hour and 48-hour examinations, respectively. After the third induction, all animals had evidence of irritation. The vehicle control animals had no reaction. One female test animal had slight confluent erythema at 48 hours and another female test animal had slight confluent erythema 24 hours after challenge that persisted through 48 hours. No rechallenge was conducted. The flanks of the test animals treated with vehicle had no reaction. The vehicle control and naive control animals had no reaction after challenge. The study report included a positive control study carried out within six months of the current study. The 2-mercaptobenzothiazole positive control and vehicle control animals responded appropriately.

In this study, CGA-354743 Technical was a weak dermal sensitizer.
This study is classified as **Acceptable/Guideline** and satisfies the guideline requirements for a dermal sensitization study [870.2600 (§81-6)] in the guinea pig.

COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided.

I. MATERIALS AND METHODS

A. MATERIALS

1. **Test material:** CGA-354743 Technical (metabolite of CGA 24705, metolachlor)

 - Description: white solid
 - Lot/Batch #: KI-5408/6
 - Purity: 98% a.i.
 - CAS #: not provided
 - Structure: not provided

2. **Vehicle and positive control**

 - Vehicle: distilled water; positive control: 2-mercaptobenzothiazole

3. **Test animals**

 - Species: guinea pig
 - Strain: Himalayan Spotted (GOHI)
 - Age and weight at start of treatment: approximately 1-3 months; males: 296-378 g; females: 300-371 g
 - Source: BRL Biological Research Laboratories Ltd., 4414 Füllinsdorf, Switzerland
 - Acclimation period: 7 days
 - Diet: NAFAG No. 845 (NAFAG, Gossau/SG, Switzerland, *ad libitum*
 - Water: municipal water, *ad libitum*
 - Housing: individually in Macrolon cages type 3 cages
 - Environmental conditions:
 - Temperature: 22±3°C
 - Humidity: 50±20%
 - Air changes: approximately 13-14/hour
 - Photoperiod: 12 hour light/dark

B. STUDY DESIGN AND METHODS

1. **In life dates**

 - Start: April 29, 1998; end: May 28, 1998
2. **Animal assignment and treatment**

In a pre-test, one male and one female guinea pig were treated for six hours with four concentrations (10, 30, 50 and 80%) of the test material applied to two sites on each side of the spine. The sites were examined 24 and 48 hours after completion of the application. The 80% concentration produced mild to moderate skin irritation and was selected for induction in the definitive test. The 50% concentration was the highest concentration to produce no irritation and was therefore selected for the challenge application.

In the definitive test, the animals were induced and challenged according to the Buehler Test. The neck-shoulder area on one side of 20 male and 20 female guinea pigs was shaved. For the induction phase, approximately 0.35 mL of 80% test material in distilled water was applied with an occlusive Hilltop Chamber for six hours once each week for three weeks to the clipped side of the test animals (20 animals). For the vehicle control group (10 animals), the chamber contained distilled water. The naive control group animals (10 animals) were not treated. The application site was checked for irritation 24 and 48 hours after each induction treatment. Thirteen days after the third induction, the test animals were challenged with 0.35 mL of 50% test material in distilled water on the clipped flank on the same side as the inductions and with 0.35 mL of distilled water on the clipped flank at the opposite side. The vehicle control and naive control animals were challenged as the test animals. Reactions were scored 24 and 48 hours after inductions and challenge.

II. **RESULTS AND DISCUSSION**

A. **INDUCTION REACTIONS AND DURATION**

After the first induction, irritation (slight or slight to moderate confluent erythema) at the application site was observed in 13/20 and 18/20 animals at the 24-hour and 48-hour evaluations, respectively. After the second induction, irritation was observed in 17/20 and 18/20 animals at the 24-hour and 48-hour examinations, respectively. After the third induction, all animals had evidence of irritation. The vehicle control animals had no reaction.

B. **CHALLENGE REACTIONS AND DURATION**

One female (1/10) test animal had patchy erythema at the test flank 24 hours after challenge that became slight confluent erythema by 48 hours and another female test animal had slight confluent erythema 24 hours after challenge that persisted through 48 hours. The flanks of the test animals treated with vehicle had no reaction. The vehicle control and naive control animals had no reaction after challenge.

CGA-354743 Technical (metabolite of CGA24705, metolachlor) was a weak dermal sensitizer.
C. **POSITIVE CONTROL**

The study report included a positive control study which was carried out within six months of the current study. The 2-mercaptobenzothiazole positive control and vehicle control animals responded appropriately.

D. **ADDITIONAL TESTING**

It is the reviewer’s opinion that the study was conducted in a manner suitable to detect the sensitization potential of the test material. However, a rechallenge would firmly determine that the test material was a dermal sensitizer.

E. **DEFICIENCIES**

A rechallenge will clearly determine if the test material is a dermal sensitizer. It is not clear in the study report whether the inductions and challenge took place at the same site.
DATA EVALUATION REPORT

CGA-354743 (METOLACLR ESA)
(METABOLITE OF METOLACHLOR)

STUDY TYPE: SUBCHRONIC ORAL TOXICITY FEEDING - DOG
[OPPTS: 870.3150 (§82-lb)]
MRID 44931709

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09G

Primary Reviewer:
Donna L. Fefee, D.V.M.

Secondary Reviewers:
Carol S. Forsyth, Ph.D., D.A.B.T.
Robert H. Ross, M.S., Group Leader
Lee Ann Wilson, M.A.

Signature:
Date:
Signature:
Date:
Signature:
Date:
Signature:
Date:

Disclaimer

This review may have been altered subsequent to the contractors’ signatures above.
EXECUTIVE SUMMARY: In a 90-day subchronic oral toxicity study (MRID 44931709), CGA-354743 technical (Batch Nos. KI-5408/4 and KI-5408/5, 99% a.i.) was administered to 4 purebred beagle dogs/sex/dose by capsule at dose levels of 0, 50, 200, 500, and 1000 mg/kg/day for 13 weeks. An additional group of 4 males and 4 females received parent compound (CGA-77102 technical, Batch No. P.501001, 98.5% a.i.) at 200 mg/kg/day for 13 weeks.

There were no significant treatment related effects on mortality, body weight, food consumption, food conversion ratios, ophthalmological findings, hematology and urinalysis parameters, or gross and histopathological findings. Vomiting did occur at a higher incidence in females treated with 1000 mg/kg/day of CGA-354743. Clinical signs in animals treated with CGA-77102 included vomiting, salivation and hematuria. Mean alkaline phosphatase activity was slightly increased in males receiving 1000 mg/kg/day CGA-354743 at weeks 7 and 13 to levels which were less than double the pretest mean for this group. This finding correlated with slightly increased absolute liver weights, but there were no corresponding histopathological findings, or toxicologically significant increases in other biochemistry parameters. In females, mean ALP activities remained within the reference range for untreated animals and mean GGT activity exceeded the reference range only at week 13 and only for the 500 mg/kg/day CGA-354743 group. Absolute liver weights and liver weights relative to body weights were increased in females receiving 500 and 1000 mg/kg/day. In the absence of corresponding histopathological findings or biologically significant increases in biochemistry parameters consistent with adverse hepatic effects, this finding is not considered toxicologically significant.
Mean ALP and GGT activities were significantly increased in both sexes at weeks 7 and 13 given CGA-77102. In addition, ALT activity of males was increased at weeks 7 and 13. Absolute and relative liver weights were significantly increased in males and females. There were small increases in the incidences and severity of bile duct hyperplasia, perilobular fatty change in the livers of both sexes, and cystic hyperplasia of the gallbladder occurred only in the parent compound group.

The results appear to indicate that CGA-354743 may have effects (vomiting, slight increases in ALT and liver weight) similar to those of its parent compound, CGA-77102; however, at the limit dose, 1000 mg/kg/day, the effects observed were so slight and of questionable toxicological significance in CGA-35743-treated dogs that a definitive comparison of the two compounds cannot be made.

Based on the data presented in this study, the LOAEL was not determined, and the NOAEL was greater than or equal to 1000 mg/kg/day.

This subchronic oral toxicity study in dogs is classified as Acceptable/Guideline and satisfies the guideline requirements for a subchronic oral study [OPPTS: 870.3150 (§82-1b)] in dogs since the limit dose was tested.

COMPLIANCE: Signed and dated GLP, Quality Assurance, Data Confidentiality, and Flagging statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-354743 technical

Description: solid
Batch Nos.: KI-5408/4 and KI-5408/5
Purity: 99% a.i. (Both batches)
Stability of compound: not provided
CAS #: not provided
Structure: not provided

2. Parent compound: CGA-77102 technical

Description: oil
Batch No.: P.501001
Purity: 98.5% a.i.
Stability of compound: not provided
CAS #: not provided
Structure: not provided

3. Vehicle: none

4. Test animals

Species: Dog
Strain: Purebred beagle
Age/weight at study initiation: males: 35 to 43 weeks, 11.20-13.70 kg; females: 34 to 49 weeks, 10.40-13.30 kg
Source: Animal Production, Novartis Pharma AG, 4332 Stein / Switzerland
Housing: 2/sex/dose in the same kennel. The dogs were chained for feeding.
Diet: Certified pelleted standard diet (NAFAG 9405 Tox), 350 g/animal daily.
Water: tap water, ad libitum
Environmental conditions:
 Temperature: minimum room temperature of 15° C
 Humidity: not provided
 Air changes: not provided
 Photoperiod: 12 hour light/dark cycle
Acclimation period: 16 weeks
B. STUDY DESIGN

This study was designed to assess the subchronic oral toxicity potential of CGA-354743 technical when administered by capsule to dogs for 13 weeks and to compare its toxic effects with those of its parent compound, CGA-77102 technical.

1. In life dates - start: September 1, 1997; end: December 4, 1997

2. Animal assignment

Animals were assigned to the test groups in Table 1 by means of a randomized complete block design generated by SAS/STAT procedure PLAN (SAS Institute, Inc.), in order to avoid litter effects and provide homogenous mean body weights among groups.

<table>
<thead>
<tr>
<th>TABLE 1: Study Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Group</td>
</tr>
<tr>
<td>Negative Control</td>
</tr>
<tr>
<td>Low Dose</td>
</tr>
<tr>
<td>Low-Mid Dose</td>
</tr>
<tr>
<td>High-Mid Dose</td>
</tr>
<tr>
<td>High Dose</td>
</tr>
<tr>
<td>Parent Compound</td>
</tr>
</tbody>
</table>

Data taken from text table on p. 20, MRID 44931709.

3. Dose selection rationale

Dose selection for the test article and the parent compound was based on the results of a previously conducted rising dose-finding study in dogs (Laboratory Study ID 971088). CGA-354743 technical was administered to 2 male purebred beagle dogs by capsule at dose levels increasing from 350 to 1000 to 2000 mg/kg/day, with the high dose being given for 4 weeks. At 2000 mg/kg/day, the only observed effect was a slight increase in alkaline phosphatase activity.

CGA-77102 technical was administered to 2 male purebred beagle dogs by capsule at dose levels increasing from 50 to 100 to 200 mg/kg/day, with the high dose being given for 4 weeks. Dose levels of 350 or 500 mg CGA-77102 technical/kg/day were administered to either one or two female purebred beagle dogs; the phrasing in the report is unclear. The 350 and 500 mg/kg/day dose levels induced frequent vomiting and were therefore considered too high. The 200 mg/kg/day dose level was well tolerated for four weeks, and a slight increase in alkaline phosphatase activity was observed at this dose in one of the two males.
The doses of CGA-354743 selected for this study were 50 mg/kg/day, which was expected to not induce any effects, 200 mg/kg/day to correspond to the dose selected for the parent compound, 500 mg/kg/day, which was expected not to induce any effects and to be a no-observable-effect level, and 1000 mg/kg/day, which represented a limit dose and was expected to cause minimal effects. The dose of CGA-77102 selected for this study was 200 mg/kg/day, which was expected to cause toxic effects in order to compare the toxicity of the two compounds.

4. **Test article preparation and analysis**

The test articles were administered in hard-gelatin capsules. Control animals received empty capsules. Capsules were prepared approximately weekly and the dosages were adjusted according to the body weight measurement from the preceding week. No analysis was performed because the test article and parent compound were used as supplied.

5. **Statistics**

For each time point and parameter a univariate statistical analysis was performed using nonparametric methods to allow for both normal and non-normal data distributions. Groups treated with CGA-354743 technical were compared to the negative control group using Wilcoxon’s two-sample test and tested for trends by Jonckheere’s test for ordered alternatives. The CGA-77102-treated group and the negative control group were compared using Wilcoxon’s two-sample test. Two-sided asymptotic p-values were reported with significance levels of 4% and 1% for Wilcoxon’s two-sample test and Jonckheere’s test for ordered alternatives, respectively.

C. **METHODS**

1. **Observations**

Animals were observed twice daily for mortality, moribundity, and clinical signs.

2. **Body weight**

Animals were weighed once per week, starting a week before study initiation and throughout the study.

3. **Food consumption**

Food consumption was measured daily and reported as weekly means. Food consumption ratios (FCR) as “g food/kg body weight/day” were calculated weekly throughout the study.
4. **Ophthalmoscopic examination**

Ophthalmologic examinations were performed on all animals pre-dosing and towards the end of the treatment period. Mydriaticum™ (Ciba Vision) was used to induce mydriasis, and Novesin™ (0.4%) (Ciba Vision) was used for local anesthesia.

5. **Blood** was collected from all animals for hematology and clinical analysis pretest and during weeks 7 and 13 using jugular puncture after overnight fasting. The CHECKED (X) parameters were examined.

a. Hematology

X	Hematocrit (HCT)*	X	Leukocyte differential count*
	Hemoglobin (HGB)*		Mean corpuscular HGB (MCH)
X	Leukocyte count (WBC)*	X	Mean corpuscular HGB conc. (MCHC)
X	Erythrocyte count (RBC)*	X	Mean corpuscular volume (MCV)
X	Platelet count*		Reticulocyte count
X	Blood clotting measurements*		OTHER
	(Thromboplastin time)		Red cell volume
X	(Clotting time)		Hemoglobin concentration distribution width
X	(Prothrombin time)		distribution width

* Required for subchronic studies based on Subdivision F Guidelines

b. Clinical chemistry

X	Calcium*
	Chloride*
X	Magnesium
X	Phosphorus*
X	Potassium*
X	Sodium*

ENZYMES	X	Alkaline phosphatase (ALK)
	X	Cholinesterase (CHE)
	X	Creatine phosphokinase
	X	Lactic acid dehydrogenase (LDH)
X	Serum alanine amino-transferase (also SGPT)*	
X	Serum aspartate amino-transferase (also SGOT)*	
X	Gamma glutamyl transferase (GGT)	
	glutamate dehydrogenase	

ELECTROLYTES	X	Albumin*
	X	Blood creatinine*
	X	Blood urea nitrogen*
	X	Total Cholesterol
	X	Globulins
	X	Glucose*
	X	Total bilirubin
	X	Total serum protein (TP)*

| OTHER | X | A/G ratio |
| | X | Phospholipids |

* Required for subchronic studies based on Subdivision F Guidelines
6. **Urinalysis**

Urine was collected from fasted animals by catheterization pretest and during weeks 7 and 13. The CHECKED (X) parameters were examined.

<table>
<thead>
<tr>
<th>X</th>
<th>Appearance</th>
<th>X</th>
<th>Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume</td>
<td></td>
<td>Ketones</td>
</tr>
<tr>
<td></td>
<td>Specific gravity</td>
<td></td>
<td>Bilirubin</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
<td>Red blood cells</td>
</tr>
<tr>
<td>X</td>
<td>Sediment (microscopic)</td>
<td></td>
<td>White blood cells</td>
</tr>
<tr>
<td>X</td>
<td>Protein</td>
<td></td>
<td>Nitrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Urobilinogen</td>
</tr>
</tbody>
</table>

* Not required for subchronic studies.

7. **Sacrifice and pathology**

Animals were sacrificed at the end of week 13 via injection of T 61 (Hoechst) followed by exsanguination. Detailed necropsies were performed on all animals, and the CHECKED (X) tissues from each animal were preserved in 4% neutral buffered formalin, embedded in paraplast, sectioned, stained with hematoxylin and eosin, and subjected to microscopic examination. The (XX) organs, in addition, were weighed.

<table>
<thead>
<tr>
<th>X</th>
<th>DIGESTIVE SYSTEM</th>
<th>X</th>
<th>CARDIOVASC./HEMAT.</th>
<th>X</th>
<th>NEUROLOGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tongue</td>
<td>X</td>
<td>Aorta*</td>
<td>XX</td>
<td>Brain*</td>
</tr>
<tr>
<td>X</td>
<td>Salivary glands*</td>
<td></td>
<td>Heart*</td>
<td></td>
<td>Peripheral nerve*</td>
</tr>
<tr>
<td>X</td>
<td>Esophagus*</td>
<td></td>
<td>Bone marrow*</td>
<td>X</td>
<td>Spinal cord (3 levels)</td>
</tr>
<tr>
<td>X</td>
<td>Stomach*</td>
<td></td>
<td>Lymph nodes*</td>
<td></td>
<td>Pituitary*</td>
</tr>
<tr>
<td>X</td>
<td>Duodenum*</td>
<td>XX</td>
<td>Spleen*</td>
<td></td>
<td>Eyes (optic nerves.)</td>
</tr>
<tr>
<td>X</td>
<td>Jejunum*</td>
<td>XX</td>
<td>Thymus*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Ileum*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Cecum*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Colon*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Rectum*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XX</td>
<td>Liver*</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Gall bladder*</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Pancreas*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RESPIRATORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Trachea*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Lung*</td>
<td>X</td>
<td>Ovaries</td>
<td>X</td>
<td>Bone</td>
</tr>
<tr>
<td></td>
<td>Nose</td>
<td>X</td>
<td>Oviducts</td>
<td>X</td>
<td>Skeletal muscle</td>
</tr>
<tr>
<td></td>
<td>Pharynx</td>
<td>X</td>
<td>Uterus*</td>
<td>X</td>
<td>Cartilage</td>
</tr>
<tr>
<td></td>
<td>Larynx</td>
<td>X</td>
<td>Vagina</td>
<td>X</td>
<td>Skin</td>
</tr>
</tbody>
</table>

* Required for subchronic studies based on Subdivision F Guidelines
+ Organ weight required in subchronic and chronic studies.
++ Organ weight required for non-rodent studies.
T = required only when toxicity or target organ

February 2000
II. RESULTS

A. MORTALITY AND CLINICAL SIGNS

No deaths or unscheduled sacrifices occurred during the study. The only treatment related clinical sign observed in animals receiving CGA-354743 technical was an increased number of occurrences of vomiting among females receiving 1000 mg/kg/day (8 occurrences vs. none for controls). These occurred mainly during the first two weeks of the study. Treatment related clinical signs observed from animals receiving CGA-77102 technical included increased numbers of occurrences of vomiting among both males (48 vs. none for controls) and females (111 vs. none for controls). Two females accounted for the majority of the occurrences. Gross hematuria was observed in the kennel of two males several times during weeks 7 and 12.

B. BODY WEIGHT AND WEIGHT GAIN

There were no statistically significant differences in absolute body weights between groups treated with the test material or parent compound and control groups during the study. However, the pretest mean absolute body weight of the male parent compound group was significantly greater than that of controls.

Body weight gain data are given in Table 2. For animals treated with the CGA-354743, there was a lot of variability between mean weight gains throughout the study, but statistical significance was seldom attained. In males receiving the test material, week 2 mean body weight gains were significantly decreased at 50, 200, and 500 mg/kg/day and week 3 mean body weight gains were decreased at 50 mg/kg/day. For females receiving the test material, week 2 mean body weight gains were significantly decreased at all dose levels with a negative trend evident up to the 500 mg/kg/day dose level. No consistent dose-related patterns were observed.

In animals receiving the CGA-77102, there were mean body weight losses in both sexes throughout the study, but statistically significant occurred only during weeks 1-5 and week 8 for males and during weeks 1-3 for females.

C. FOOD CONSUMPTION

1. Food consumption

There were no statistically significant differences in mean food consumption between treated and control groups during the study.

2. Food efficiency

Food efficiency was not determined by the study authors; however, food conversion ratios, which vary inversely as food efficiency, were calculated. There were no statistically significant differences in food conversion ratios between treated and
control groups during the study. Lower mean food consumption ratios were noted during weeks 2-4 for females treated with the parent compound due to the decreased food consumption by one female.

D. OPHTHALMIC EXAMINATION

There were no treatment related effects on ophthalmic examination findings in animals treated with the test material or parent compound.

E. CLINICAL PATHOLOGY

1. Hematology

Hematologic changes among animals treated with the CGA-354743 included increased absolute eosinophil counts among treated males at week 7 (0.158, 0.395, 0.550, 0.448, and 0.550 g/L) and week 13 (0.248, 0.480, 0.663, 0.675, and 0.670 g/L) for controls, 50, 200, 500, and 1000 mg/kg/day groups, respectively. The increase was statistically significant for the 1000 mg/kg/day group. The reference range for this parameter is 0.100-0.550 G/L (Appendix B, page 417).
<table>
<thead>
<tr>
<th>Week</th>
<th>Control</th>
<th>CGA-354743 technical (mg/kg/day)</th>
<th>CGA-77102 tech. (mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.125</td>
<td>0.025 (-80)*</td>
<td>0.025 (-80)</td>
</tr>
<tr>
<td>2</td>
<td>0.175</td>
<td>0.050* (-71)</td>
<td>0.050* (-71)</td>
</tr>
<tr>
<td>3</td>
<td>0.200</td>
<td>0.000* (-100)</td>
<td>0.075 (-62)</td>
</tr>
<tr>
<td>4</td>
<td>0.250</td>
<td>0.050 (-80)</td>
<td>0.100 (-60)</td>
</tr>
<tr>
<td>5</td>
<td>0.250</td>
<td>0.125 (-50)</td>
<td>0.200 (-20)</td>
</tr>
<tr>
<td>6</td>
<td>0.175</td>
<td>0.075 (-57)</td>
<td>0.075 (-57)</td>
</tr>
<tr>
<td>7</td>
<td>0.175</td>
<td>0.000 (-100)</td>
<td>-0.05 (-129)</td>
</tr>
<tr>
<td>8</td>
<td>0.175</td>
<td>0.150 (-14)</td>
<td>0.125 (-29)</td>
</tr>
<tr>
<td>9</td>
<td>0.100</td>
<td>0.025 (-75)</td>
<td>-0.02 (-120)</td>
</tr>
<tr>
<td>10</td>
<td>0.100</td>
<td>0.075 (-25)</td>
<td>0.050 (-50)</td>
</tr>
<tr>
<td>11</td>
<td>0.200</td>
<td>0.125 (-38)</td>
<td>0.200</td>
</tr>
<tr>
<td>12</td>
<td>0.125</td>
<td>0.100 (-20)</td>
<td>0.075 (-40)</td>
</tr>
<tr>
<td>13</td>
<td>0.000</td>
<td>-0.02</td>
<td>-0.07</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.075</td>
<td>0.025 (-67)</td>
<td>0.050 (-33)</td>
</tr>
<tr>
<td>2</td>
<td>0.250</td>
<td>0.025* (-90)</td>
<td>0.000* (-100)</td>
</tr>
<tr>
<td>3</td>
<td>0.150</td>
<td>0.025 (-83)</td>
<td>0.100 (-33)</td>
</tr>
<tr>
<td>4</td>
<td>0.225</td>
<td>0.050 (-77)</td>
<td>0.125 (-44)</td>
</tr>
<tr>
<td>5</td>
<td>0.300</td>
<td>0.050 (-83)</td>
<td>0.275 (-8)</td>
</tr>
<tr>
<td>6</td>
<td>0.150</td>
<td>-0.02 (-113)</td>
<td>0.100 (-33)</td>
</tr>
<tr>
<td>7</td>
<td>0.150</td>
<td>-0.02 (-113)</td>
<td>0.050 (-67)</td>
</tr>
<tr>
<td>8</td>
<td>0.225</td>
<td>0.025 (-89)</td>
<td>0.075 (-67)</td>
</tr>
<tr>
<td>9</td>
<td>0.100</td>
<td>0.000 (-100)</td>
<td>0.025 (-75)</td>
</tr>
<tr>
<td>10</td>
<td>0.100</td>
<td>0.000 (-100)</td>
<td>0.075 (-25)</td>
</tr>
<tr>
<td>11</td>
<td>0.200</td>
<td>0.100 (-50)</td>
<td>0.125 (-38)</td>
</tr>
<tr>
<td>12</td>
<td>0.200</td>
<td>0.050 (-75)</td>
<td>0.075 (-63)</td>
</tr>
<tr>
<td>13</td>
<td>0.100</td>
<td>-0.05 (-150)</td>
<td>0.000 (-100)</td>
</tr>
</tbody>
</table>

Data taken from Table 9.3, pp. 56-58, MRID 44931709.

* Significantly different than controls; p<0.04.

* Significant negative trend from control up to the flagged dose level; p<0.01.

* Number in parenthesis equals percent greater than or less than control, calculated by reviewer.
Other statistically significant inter-group differences were observed but were not considered to be treatment related because there was no dose-response pattern, the magnitudes of the changes were too small to be toxicologically significant, and/or the values were not appreciably different from pretest values.

2. Clinical chemistry

Selected clinical chemistry parameters are summarized in Tables 3 and 4. Alkaline phosphatase (ALP) activities were increased at week 7 in males receiving 1000 mg/kg/day and at week 13 in males receiving 500 and 1000 mg/kg/day CGA-354743. ALP activities of treated females remained within the reference range, although at 500 and 1000 mg/kg/day, ALP activities were slightly higher than controls. Gamma-glutamyl transpeptidase (GGT) activities were slightly increased in males at 1000 mg/kg/day CGA-354743 for week 7 and week 14, however, these values were within the reference range for untreated animals. In females, GGT activity was only increased above the reference range for the 500 mg/kg/day group and only at week 14.

For animals treated with CGA-77102, ALP and GGT activities were significantly increased in both sexes at week 7 and week 14. Albumin levels were decreased below the reference range in males at week 7 and week 13 while the mean globulin concentration was increased above the reference range for males at both time intervals. For males, mean ALT activity was increased at weeks 7 and 13 as compared with controls and referenced range values.

Other statistically significant inter-group differences were observed but were not considered to be treatment related and/or biologically significant because there was no dose-response pattern, the magnitudes of the changes were too small to be toxicologically significant, the values were not appreciably different from pretest values, or the values fell within the provided reference range for untreated animals.
TABLE 3. Selected mean clinical chemistry parameters in male Beagle dogs administered CGA-354743 technical or CGA-77102 technical by capsule for 13 weeks.

<table>
<thead>
<tr>
<th>Clinical Chemistry Parameter</th>
<th>Week</th>
<th>Control</th>
<th>CGA-354743 tech. (mg/kg/day)</th>
<th>CGA-77102 tech. 200 mg/kg/day</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>200</td>
<td>500</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>-1</td>
<td>85.95</td>
<td>91.30</td>
<td>91.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>74.80</td>
<td>77.10</td>
<td>88.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>68.35</td>
<td>83.00</td>
<td>97.23</td>
<td>110.2*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGT (U/L)</td>
<td>-1</td>
<td>2.800</td>
<td>3.100</td>
<td>2.950</td>
<td>3.025</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.750</td>
<td>2.825</td>
<td>3.125</td>
<td>2.900</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.575</td>
<td>4.175</td>
<td>4.350</td>
<td>4.350</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>-1</td>
<td>31.31</td>
<td>32.34</td>
<td>32.28</td>
<td>32.13</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>32.62</td>
<td>33.54</td>
<td>33.93</td>
<td>31.92</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>32.28</td>
<td>33.66</td>
<td>33.43</td>
<td>32.31</td>
</tr>
<tr>
<td>Globulin (g/L)</td>
<td>-1</td>
<td>24.20</td>
<td>24.68</td>
<td>24.53</td>
<td>25.47</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>25.01</td>
<td>25.35</td>
<td>24.73</td>
<td>26.83</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>26.73</td>
<td>27.48</td>
<td>26.17</td>
<td>28.39</td>
</tr>
<tr>
<td>A/G ratio</td>
<td>-1</td>
<td>1.310</td>
<td>1.318</td>
<td>1.318</td>
<td>1.268</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.303</td>
<td>1.335</td>
<td>1.375</td>
<td>1.195</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.223</td>
<td>1.230</td>
<td>1.283</td>
<td>1.153</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>-1</td>
<td>56.65</td>
<td>67.83</td>
<td>56.30</td>
<td>55.48</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>45.45</td>
<td>56.25</td>
<td>48.50</td>
<td>41.23</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>57.25</td>
<td>55.33</td>
<td>74.76</td>
<td>47.13</td>
</tr>
<tr>
<td>Potassium (mmol/L)</td>
<td>-1</td>
<td>4.420</td>
<td>4.495</td>
<td>4.403</td>
<td>4.273</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.205</td>
<td>4.400</td>
<td>4.385</td>
<td>4.345</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.281</td>
<td>4.245</td>
<td>4.149</td>
<td>4.075</td>
</tr>
</tbody>
</table>

Data taken from Tables 9.10, 9.11, and 11.4, pp. 132-139, 140-171, and 418-419, respectively, MRID 44931709.

* Significantly different than controls; p<0.04.

* Significant positive or negative trend from control up to the flagged dose level; p<0.01.
TABLE 4. Selected mean clinical chemistry parameters in female Beagle dogs administered CGA-354743 technical or CGA-77102 technical by capsule for 13 weeks.

<table>
<thead>
<tr>
<th>Clinical Chemistry Parameter</th>
<th>Week</th>
<th>Control</th>
<th>CGA-354743 tech. (mg/kg/day)</th>
<th>CGA-77102 tech. (mg/kg/day)</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>-1</td>
<td>78.88</td>
<td>91.38</td>
<td>73.98</td>
<td>82.23</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>63.75</td>
<td>77.33</td>
<td>82.63</td>
<td>107.6*</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>62.08</td>
<td>79.53</td>
<td>79.15</td>
<td>112.7**</td>
</tr>
<tr>
<td>GGT (U/L)</td>
<td>-1</td>
<td>2.825</td>
<td>3.025</td>
<td>2.975</td>
<td>3.025</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.825</td>
<td>2.900</td>
<td>2.975</td>
<td>3.525</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.800</td>
<td>3.950</td>
<td>3.750</td>
<td>5.450**</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>-1</td>
<td>34.82</td>
<td>34.30</td>
<td>35.13</td>
<td>33.30</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>35.45</td>
<td>35.14</td>
<td>35.09</td>
<td>32.92*</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>36.10</td>
<td>35.48</td>
<td>35.93</td>
<td>33.20*</td>
</tr>
<tr>
<td>Globulin (g/L)</td>
<td>-1</td>
<td>25.00</td>
<td>23.22</td>
<td>24.60</td>
<td>25.41</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>24.23</td>
<td>21.09</td>
<td>22.00</td>
<td>25.63</td>
</tr>
<tr>
<td>A/G ratio</td>
<td>-1</td>
<td>1.418</td>
<td>1.488</td>
<td>1.435</td>
<td>1.315</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.478</td>
<td>1.678</td>
<td>1.538</td>
<td>1.288</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.363</td>
<td>1.573</td>
<td>1.468</td>
<td>1.168</td>
</tr>
</tbody>
</table>

Data taken from Tables 9.10, 9.11, and 11.4, pp. 132-139, 140-171, and 418-419, respectively, MRID 44931709.

* Significantly different than controls; p<0.04.
* Significant positive or negative trend from control up to the flagged dose level; p<0.01.

F. URINALYSIS

There were no treatment related effects on urinalysis parameters in animals treated with the test material or parent compound.

G. SACRIFICE AND PATHOLOGY

1. Organ weight

Selected organ weight data are given in Table 5. In animals treated with CGA-354743, absolute liver weights were increased in males at 1000 and females at 500 and 1000 mg/kg/day with a positive trend (p<0.01) evident in males at 1000 mg/kg/day. Relative liver weights were increased in females at 500 and 1000 mg/kg/day with a positive trend (p<0.01) evident at 1000 mg/kg/day. In animals treated with CGA-77102, absolute and relative liver weights were significantly increased in males and females. There were no other treatment related effects on organ weights.
TABLE 5. Selected mean organ weight data of Beagle dogs administered CGA-354743 technical or CGA-77102 technical by capsule for 13 weeks.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>CGA-354743 technical (mg/kg/day)</th>
<th>CGA-77102 tech. (mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>344.2</td>
<td>314.8</td>
<td>344.8</td>
</tr>
<tr>
<td>Relative liver weight (%)</td>
<td>30.81</td>
<td>26.42</td>
<td>29.13</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>288.1</td>
<td>310.0</td>
<td>302.8</td>
</tr>
<tr>
<td>Relative liver weight (%)</td>
<td>26.03</td>
<td>27.44</td>
<td>27.95</td>
</tr>
</tbody>
</table>

Data taken from Tables 9.14-9.15, pp. 194-197, respectively, MRID 44931709.

* Significantly different than controls; p<0.05.
* Significant positive or negative trend from control up to the flagged dose level; p<0.01.
Number in parenthesis equals percent of control calculated by reviewer.

2. Gross pathology

There were no treatment related gross necropsy findings in the animals treated with the test material or the parent compound. Mottled lungs were observed in 7/24 males and 3/24 females with a random distribution among groups.

3. Microscopic pathology

Selected histopathology data are given in Table 6. There were no histopathology findings in the animals treated with CGA-354743. In the CGA-77102 group, there were small increases in the incidences and severity of bile duct hyperplasia and perilobular fatty change in the livers of both sexes as compared to controls and animals treated with the CGA-354743. Cystic hyperplasia of the gallbladder occurred only in the CGA-77102 group. Although, the incidence and severity of these findings were considered to be within the normal ranges for dogs of this age group, these findings were considered to be treatment related because they correlated with increased liver weights and changes in the biochemical profile. An unusual pattern of multifocal spermatic granulomata was observed in the testes of one male dog treated with the CGA-77102; it could not be determined whether this finding was treatment related. Acute bronchopneumonia (Grades 1-3) or chronic bronchopneumonia (Grades 1-2) were observed in male and females dogs representing all groups except the parent compound group. This finding was clearly not treatment related.
TABLE 6. Incidences of selected histopathology findings in Beagle dogs administered CGA-354743 technical or CGA-77102 technical by capsule for 13 weeks.

<table>
<thead>
<tr>
<th>Histopathology finding</th>
<th>Control</th>
<th>CGA-354743 technical (mg/kg/day)</th>
<th>CGA-77102 tech. (mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perilobular fatty change</td>
<td>0/4</td>
<td>0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>Bile duct hyperplasia</td>
<td>1/4</td>
<td>0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>Gallbladder-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystic hyperplasia</td>
<td>0/4</td>
<td>0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>Lungs-bronchopneumonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>0/4</td>
<td>1/4</td>
<td>0/4</td>
</tr>
<tr>
<td>Chronic</td>
<td>0/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perilobular fatty change</td>
<td>0/4</td>
<td>1/4</td>
<td>0/4</td>
</tr>
<tr>
<td>Bile duct hyperplasia</td>
<td>0/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>Gallbladder-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystic hyperplasia</td>
<td>0/4</td>
<td>0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>Lungs-bronchopneumonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>1/4</td>
<td>0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>Chronic</td>
<td>0/4</td>
<td>1/4</td>
<td>0/4</td>
</tr>
</tbody>
</table>

Data taken from Pathology Report Summary Tables, pp. 467-469, MRID 44931709.

III. DISCUSSION

A. DISCUSSION

CGA-354743 technical: There were no significant treatment related effects on mortality, body weight, food consumption, food conversion ratios, ophthalmological findings, urinalysis parameters, or gross and histopathological findings. Eight occurrences of vomiting were observed among females at 1000 mg/kg/day. Vomiting is common among research dogs; however, because it occurred in the high dose animals, a treatment-related effect cannot be ruled out. Slight eosinophilia was observed in males at week 13 at 200, 500, and 1000 mg/kg/day with statistical significance being achieved for the 1000 mg/kg/day group. This finding was probably treatment related, as no findings consistent with other causes of eosinophilia (such as ecto- or endoparasites, food allergies, or allergic dermatitis) were identified among clinical signs, or gross and microscopic pathology findings. However, this finding is of questionable toxicological...
significant. Males at 1000 mg/kg/day had increased mean ALP activities at weeks 7 and 13 which were both less than double the pretest mean for this group. This finding correlated with slightly increased absolute liver weights (9% greater than controls), but there were no corresponding histopathological findings, or increases in other biochemistry parameters (ALT, AST, GGT, bilirubin) which might indicate a significant adverse hepatic effect. Although GGT activity was significantly increased in males at 1000 mg/kg/day at week 7 and week 13, these values were within the reference range for untreated animals, and this finding is therefore not considered to be biologically significant. In females, mean ALP activities remained within the reference range for untreated animals, and mean GGT activity exceeded the reference range only at week 13 and only for the 500 mg/kg/day group. The study author also mentions decreased mean albumin concentrations and increased mean globulin concentrations in females at 500 and 1000 mg/kg/day. The only values outside the reference ranges were week 13 mean globulin concentration and A/G ratio for the 500 mg/kg/day group, not the high dose group. Absolute liver weights were increased in females at 500 and 1000 mg/kg/day and relative liver weights were increased in females at 500 and 1000 mg/kg/day with a positive trend evident at 1000 mg/kg/day. In the absence of corresponding histopathological findings or biologically significant increases in biochemistry parameters consistent with adverse hepatic effects, this finding is of questionable toxicological significance.

CGA-77102 technical (200 mg/kg/day): There were no significant treatment related effects on mortality, ophthalmological findings, urinalysis parameters, or gross necropsy findings. Clinical signs included vomiting, salivation, and hematuria. Food consumption was transiently decreased in one female. Both groups exhibited mean weight loss throughout the study, although there was no effect on mean absolute body weights. Mean ALP and GGT activities were significantly increased in both sexes at weeks 7 and 13. Albumin levels were decreased below the reference range while globulin concentrations were increased in males at weeks 7 and 13. Globulin concentrations were increased above the reference range for females at week 13 only. For males, mean ALT activity was increased at weeks 7 and 13 as compared with controls and the reference range for untreated animals. Absolute and relative liver weights were significantly increased in males and females. There were small increases in the incidences of bile duct hyperplasia and perilobular fatty change in the livers of both sexes as compared to controls and animals treated with CGA-354743, and cystic hyperplasia of the gallbladder occurred only in the parent compound group. These findings were considered treatment related because they correlate with increased liver weights and changes in the biochemical profile.

A comparison of the effects of the two compounds indicates that CGA-354743 may have effects similar to those of its parent compound, CGA-77102; however, the data indicate that CGA-354743 needs substantially higher dose levels than that of the parent compound to obtain similar adverse effects. A definitive comparison of the two compounds cannot be made based on the results of this study.
Based on the data presented in this study, the LOAEL for CGA-354743 technical was not determined and the NOAEL was greater than or equal to the limit dose of 1000 mg/kg/day.

This subchronic oral toxicity study in dogs is classified as Acceptable/Guideline and satisfies the guideline requirements for a subchronic oral study since the limit dose was tested [OPPTS: 870.3150 (§82-1b)] in dogs.

B. STUDY DEFICIENCIES

There were no major deficiencies in the conduct of this study; however, the following minor deficiencies were noted. Animals were assigned to test groups by means of a randomized complete block design intended to avoid litter effects and provide homogeneous mean body weight among groups. This was done immediately after the animals arrived at the lab, and when the study began 16 weeks later, the mean body weight of the male CGA-77102 group was significantly greater than that of controls. At initiation of dosing, males were up to 43 weeks old and females were up to 49 weeks old; however, the guideline specifies that dosing should commence “not later than 9 months of age.” Housing the animals in groups of two made it impossible to accurately determine which and how many animals were exhibiting the clinical signs of vomiting, diarrhea, and hematuria. A brief description of the histopathology grading criteria should have been included for findings which were assigned a grade. Also, although the high incidence bronchopneumonia was not treatment related, it should have been mentioned and addressed by the study author.
DATA EVALUATION REPORT
CGA-354743

STUDY TYPE: SUBCHRONIC ORAL TOXICITY FEEDING - RAT
[OPPTS 870.3100 (§82-1a)]
MRID 44931710

Prepared for
Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by
Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09F

Primary Reviewer:
Melissa D. Halpern, Ph.D.

Secondary Reviewers:
H.T. Borges, Ph.D., MT(ASCP), D.A.B.T

Robert H. Ross, M.S., Group Leader

Quality Assurance:
Eric Lewis, M.S.

Signature: ___________________________ Date: ____________
Signature: ___________________________ Date: ____________
Signature: ___________________________ Date: ____________

Disclaimer

This review may have been altered subsequent to the contractor’s signatures above.

STUDY TYPE: Subchronic Oral Toxicity - Rat [OPPTS 870.3100 ($82-1a)]

DP BARCODE: D260393
P.C. CODE: 108801
TEST MATERIAL (PURITY): CGA-354743 (a.i. 98%)

SYNONYMS: Metolachlor ESA (degrdate of metolachlor)

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419.

EXECUTIVE SUMMARY: In a 90-day subchronic oral toxicity limit study (MRID 44931710), groups of 10 male and 10 female Cr!: CD BR rats were given CGA-354743 (Lot/Batch # KI-5408/6, 98% a.i.) administered in the diet at concentrations of 0, 360, 1200, 6000, or 20,000 ppm. These concentrations were equivalent to 0, 25.1, 86.2, 427.0 or 1545.0 mg/kg/day for males and 0, 28.4, 98.3, 519.0 and 1685.0 mg/kg/day for females. An additional 10 male and 10 female rats were given CGA-77102 (s-Metolachlor)(Lot/Batch # P.501001, 98.5% a.i.) administered in the diet at 5000 ppm (equivalent to 429 mg/kg/day for males and 563 mg/kg/day for females). The study was designed to assess the subchronic oral toxicity of CGA-354743 technical and to compare its toxic effects with those of its parent compound, CGA-77102 technical.

No deaths or clinical signs of toxicity occurred during this study. In addition, no statistically significant changes in body weight, body weight gain, food consumption, food efficiency, ophthalmologic examination, urinalysis, or histopathology was reported for animals fed CGA-354743. Limited and sporadic statistically significant changes in hematology, clinical chemistry, water intake and organ weight data were not dose-dependent, and were of questionable toxicological and biological importance.

Dietary exposure to CGA-77102 produced a statistically significant decreased body weight gain (-20%, p £ 0.01) in males during week 1 only. Females exposed to CGA-77102 showed decreased body weight gain (-19%) by week 13, but these changes were not statistically significant. The food efficiency of rats fed CGA-77102 was decreased relative to their respective...
control animals. Male and female rats had increased absolute and relative liver weights. These results are consistent with a mild liver hypertrophy in females.

Based on the data presented in this study, the NOAEL is ≥20,000 ppm (1543 mg/kg/day and 1685 mg/kg/day for females) for CGA-354743. A LOAEL could not be established. At 5000 ppm (429 mg/kg/day in males and 563 mg/kg/day in females) CGA-77102, there evidence of decreased body weight gain and food efficiency, increased absolute and relative liver weights and an increased incidence of hepatic centrilobular hypertrophy, although the effects were mild.

This subchronic oral toxicity study in rats is classified as Acceptable/Guideline [OPPTS 870.3100 (§82-1a)] and satisfies the guideline requirements.

COMPLIANCE: Signed and dated GLP, Quality Assurance, Data Confidentiality, and Flagging statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-354743
 Description: Solid
 Lot/Batch #: KI-5408/6
 Purity: 98% a.i.
 Stability of compound: 5 weeks at room temperature
 CAS #: not reported
 Structure: not available

2. Vehicle and/or positive control
 none

3. Test animals
 Species: Rat
 Strain: Crl: CD BR
 Age/weight at study initiation: males: 4 weeks, 127 -174 g; females: 4 weeks, 104 -149 g
 Source: Charles River Deutschland GmbH, Sulzfeld, Germany
 Housing: Individually, Macrolon type 3 cages
 Diet: Certified standard diet (NAFAG # 8900), *ad libitum*
 Water: tap water, *ad libitum*

4. Environmental conditions
 Temperature: 20-24°C
 Humidity: 45-65%
 Air changes: 16-20/hour
 Photoperiod: 12 hour light/dark cycle
 Acclimation period: 11 days

B. STUDY DESIGN

1. In life dates - start: 02/23/98 end: 05/29/98

2. Animal assignment
 Animals were assigned to one of 6 groups based on body weights using a computer randomization program (Table 1). Ten rats/sex/dose were used except for the control groups where 20/sex were used. Of the treated rats, four groups were given varying
concentrations of CGA-354743, and one group was fed CGA-77102 tech. (S-Metolachlor, batch # P.501001, a.i.% 98.5%). CGA-77102 was used to allow direct comparison of the toxicity to CGA-354743 (a major soil metabolite of CGA-77102).

TABLE 1. Study Design

<table>
<thead>
<tr>
<th>Group</th>
<th>Group number</th>
<th>Number of animals</th>
<th>Dose (mg/kg/day)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Males</td>
</tr>
<tr>
<td>CGA-354743</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>1</td>
<td>20♂/20♀</td>
<td>0.0</td>
</tr>
<tr>
<td>360 ppm</td>
<td>2</td>
<td>10♂/10♀</td>
<td>25.1</td>
</tr>
<tr>
<td>1200 ppm</td>
<td>3</td>
<td>10♂/10♀</td>
<td>86.2</td>
</tr>
<tr>
<td>6000 ppm</td>
<td>4</td>
<td>10♂/10♀</td>
<td>427.0</td>
</tr>
<tr>
<td>20000 ppm</td>
<td>5</td>
<td>10♂/10♀</td>
<td>1545.0</td>
</tr>
<tr>
<td>CGA-77102</td>
<td>6</td>
<td>10♂/10♀</td>
<td>429.0</td>
</tr>
</tbody>
</table>

* Dose level (mg/kg/day) was taken from p. 43; MRID 44931710.

3. **Dose selection rationale**

Doses were selected by the sponsor based on previous subchronic toxicity studies with CGA-77102. The lowest dose, 360 ppm, was intended as the NOAEL, 1200 ppm to cause no or minimal adverse effects, 6000 ppm to cause minimal adverse effects, and 20,000 ppm to cause observable adverse effects with no or few fatalities. CGA-77102 was tested on an equimolar basis, comparing 5000 ppm CGA-77102 with 6000 ppm CGA-354743.

4. **Test diet preparation and analysis**

The appropriate amount of CGA-354743 was weighed (without adjustment for purity) and mixed with pulverized diet containing approximately 25% water. After mixing, pellets were formed and air dried. CGA-77102 (an oily liquid) was weighed and 130 g dissolved in 500 mL acetone. A premix diet was made using an aliquot of this solution added to a fixed amount of diet. The acetone was removed under vacuum at 22°C and the premix mixed with a fixed diet quantity to yield appropriate treatment concentrations. Fresh diets were prepared monthly and stored at room temperature.

Analyses were performed on all test diets used for treatment weeks 1-5 and 10 to the end of the study. Batches used for weeks 1 - 5 were analyzed for homogeneity using samples taken at the beginning, middle and end of the pelleting process. Stability analyses were performed after 5 weeks storage at room temperature from pretest preparations at 100, 1000, 10,000 and 20,000 ppm.

Results –

Homogeneity: CGA-354743 concentrations ranged from 96.4 - 102.8% of nominal.
Stability: CGA-354743 was stable for 5 weeks at room temperature. Concentrations varied between -10.4% and +1.4% of the mean values calculated from the homogeneity determinations.

Concentration: Mean concentrations of 106%, 105%, 108%, 106% and 106% of nominal for groups 2-6, respectively, were calculated.

The analytical data was sufficient to establish that the mixing procedure was adequate and the variance between nominal and actual dosage to the animals was acceptable.

5. Statistics

Body weight, food consumption, laboratory data and organ weight data were analyzed using univariate analyses at each time point. Each treatment group was compared to the control group either by Lepage's or by Wilcoxon's two-sample test and tested for increasing or decreasing trends from control up to the respective dose group by Jonckeere's test for ordered alternatives.

C. METHODS

1. Observations

Animals were observed twice daily for mortality and moribundity.

2. Body weight

Animals were weighed at study initiation and once per week throughout the study.

3. Food consumption, compound intake and water intake

Food consumption, compound consumption and water intake were calculated weekly.

4. Blood was collected from all animals at the end of week 13 via orbital sinus puncture after overnight fasting for hematology and clinical biochemical analysis. The CHECKED (X) parameters were examined.
a. Hematology

<table>
<thead>
<tr>
<th>Parameter</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit (HCT)*</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (HGB)*</td>
<td></td>
</tr>
<tr>
<td>Leukocyte count (WBC)*</td>
<td></td>
</tr>
<tr>
<td>Erythrocyte count (RBC)*</td>
<td></td>
</tr>
<tr>
<td>Platelet count*</td>
<td></td>
</tr>
<tr>
<td>Blood clotting measurements*</td>
<td></td>
</tr>
<tr>
<td>(Thromboplastin time)</td>
<td></td>
</tr>
<tr>
<td>(Clotting time)</td>
<td></td>
</tr>
<tr>
<td>(Prothrombin time)</td>
<td></td>
</tr>
<tr>
<td>(Fibrinogen)</td>
<td></td>
</tr>
<tr>
<td>Leukocyte differential count*</td>
<td>X</td>
</tr>
<tr>
<td>Mean corpuscular HGB (MCH)</td>
<td>X</td>
</tr>
<tr>
<td>Mean corpusc. HGB conc.(MCHC)</td>
<td>X</td>
</tr>
<tr>
<td>Mean corpusc. volume (MCV)</td>
<td>X</td>
</tr>
<tr>
<td>Reticulocyte count</td>
<td>X</td>
</tr>
<tr>
<td>Red cell volume distribution width (RDW)</td>
<td>X</td>
</tr>
<tr>
<td>Hemoglobin concentration distribution width (HDW)</td>
<td>X</td>
</tr>
<tr>
<td>Methemoglobin (metHb)</td>
<td>X</td>
</tr>
</tbody>
</table>

* Required for subchronic studies based on Subdivision F Guidelines

b. Clinical chemistry

ELECTROLYTES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium*</td>
<td></td>
</tr>
<tr>
<td>Chloride*</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>Phosphorus*</td>
<td></td>
</tr>
<tr>
<td>Potassium*</td>
<td></td>
</tr>
<tr>
<td>Sodium*</td>
<td></td>
</tr>
</tbody>
</table>

ENZYMES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase (ALK)</td>
<td></td>
</tr>
<tr>
<td>Cholinesterase (ChE)</td>
<td></td>
</tr>
<tr>
<td>Creatine phosphokinase</td>
<td></td>
</tr>
<tr>
<td>Lactic acid dehydrogenase (LDH)</td>
<td></td>
</tr>
<tr>
<td>Serum alanine amino-transferase (also SGPT)*</td>
<td>X</td>
</tr>
<tr>
<td>Serum aspartate amino-transferase (also SGOT)*</td>
<td>X</td>
</tr>
<tr>
<td>Gamma glutamyl tranpeptidase</td>
<td></td>
</tr>
<tr>
<td>Glutamate dehydrogenase</td>
<td></td>
</tr>
</tbody>
</table>

OTHER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin*</td>
<td></td>
</tr>
<tr>
<td>Blood creatinine*</td>
<td></td>
</tr>
<tr>
<td>Blood urea nitrogen*</td>
<td></td>
</tr>
<tr>
<td>Total Cholesterol</td>
<td>X</td>
</tr>
<tr>
<td>Globulins</td>
<td>X</td>
</tr>
<tr>
<td>Glucose*</td>
<td>X</td>
</tr>
<tr>
<td>Total bilirubin</td>
<td>X</td>
</tr>
<tr>
<td>Total serum protein (TP)*</td>
<td>X</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>X</td>
</tr>
<tr>
<td>Serum protein electrophores</td>
<td>X</td>
</tr>
<tr>
<td>A/G ratio</td>
<td>X</td>
</tr>
</tbody>
</table>

* Required for subchronic studies based on Subdivision F Guidelines

5. Urinalysis

Urine was collected overnight from individual rats housed in metabolism cages. The CHECKED (X) parameters were examined.

Physical/chemical examinations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td>Relative Density</td>
<td>X</td>
</tr>
<tr>
<td>Color</td>
<td>X</td>
</tr>
<tr>
<td>pH</td>
<td>X</td>
</tr>
<tr>
<td>Protein</td>
<td>X</td>
</tr>
<tr>
<td>Glucose</td>
<td>X</td>
</tr>
<tr>
<td>Ketones</td>
<td></td>
</tr>
<tr>
<td>Urobilinogen</td>
<td></td>
</tr>
<tr>
<td>Bilirubin</td>
<td></td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>X</td>
</tr>
<tr>
<td>Leukocytes</td>
<td></td>
</tr>
</tbody>
</table>
6. Ophthalmologic examination

Control and highest dose animals were examined ophthalmologically prior to dosing and during week 13. Examinations included ophthalmoscopic inspection and induction of mydriasis with Mydriaticum™.

7. Neurotoxicity screening

Neurotoxicity screening was not performed.

8. Sacrifice and pathology

Animals were sacrificed at the end of week 13 via carbon dioxide anesthesia and exsanguination following overnight fast. Necropsies were done on all animals and tissues from each animal were preserved in neutral buffered 4% formalin. After formalin fixation, tissues were embedded in paraffin, sectioned at 3-5 microns, stained with hematoxylin and eosin, and subjected to microscopic analyses. The CHECKED (X) tissues were collected and examined histologically. The (XX) organs, in addition, were weighed.

<table>
<thead>
<tr>
<th>DIGESTIVE SYSTEM</th>
<th>CARDIOVASC./HEMAT.</th>
<th>NEUROLOGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>x Tongue</td>
<td>x Aorta*</td>
<td>xx Brain*</td>
</tr>
<tr>
<td>x Salivary glands*</td>
<td>x Heart*</td>
<td>x Periph. nerve*</td>
</tr>
<tr>
<td>x Esophagus*</td>
<td>x Bone marrow*</td>
<td>x Spinal cord (3 levels)*</td>
</tr>
<tr>
<td>x Stomach*</td>
<td>x Lymph nodes*</td>
<td>x Pituitary*</td>
</tr>
<tr>
<td>x Duodenum*</td>
<td>x Spleen*</td>
<td>x Eyes (optic n.)*</td>
</tr>
<tr>
<td>x Jejunum*</td>
<td>x Thymus*</td>
<td></td>
</tr>
<tr>
<td>x Ileum*</td>
<td>x Aorta*</td>
<td>xx Brain*</td>
</tr>
<tr>
<td>x Cecum*</td>
<td>xx Heart*</td>
<td>x Periph. nerve*</td>
</tr>
<tr>
<td>x Colon*</td>
<td>xx Bone marrow*</td>
<td>x Spinal cord (3 levels)*</td>
</tr>
<tr>
<td>x Rectum*</td>
<td>x Lymph nodes*</td>
<td>x Pituitary*</td>
</tr>
<tr>
<td>xx Liver*+</td>
<td>xx Spleen*</td>
<td>x Eyes (optic n.)*</td>
</tr>
<tr>
<td>x Pancreas*</td>
<td>xx Thymus*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESPIRATORY</th>
<th>UROGENITAL</th>
<th>GLANDULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>x Trachea*</td>
<td>x Kidneys*++</td>
<td>x Adrenal gland*</td>
</tr>
<tr>
<td>x Lung*</td>
<td>x Urinary bladder*</td>
<td>x Lacrimal gland*</td>
</tr>
<tr>
<td>x Nose</td>
<td>x Testes*++</td>
<td>x Mammary gland*</td>
</tr>
<tr>
<td>x Pharynx</td>
<td>x Epididymides</td>
<td>x Parathyroids*</td>
</tr>
<tr>
<td>x Larynx</td>
<td>x Prostate</td>
<td>x Thyroids'</td>
</tr>
<tr>
<td></td>
<td>x Seminal vesicle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x Ovaries</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x Uterus*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x Vagina</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTHER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x Bone</td>
<td>x Ovaries</td>
</tr>
<tr>
<td>x Skeletal muscle</td>
<td>x Uterus*</td>
</tr>
<tr>
<td>x Skin</td>
<td>x Vagina</td>
</tr>
<tr>
<td></td>
<td>x All gross lesions and masses*</td>
</tr>
<tr>
<td></td>
<td>x Harderian glands</td>
</tr>
<tr>
<td></td>
<td>x Zymbal’s glands</td>
</tr>
</tbody>
</table>

* Required for subchronic studies based on Subdivision F Guidelines
+ Organ weight required in subchronic and chronic studies.
T = required only when toxicity or target organ.

II. RESULTS

A. OBSERVATIONS

No deaths or clinical signs of toxicity were reported during the study.
B. BODY WEIGHT AND WEIGHT GAIN

Body weight and body weight gain were not affected by CGA-354743 treatment. Dietary exposure to CGA-77102 produced a statistically significant decreased body weight gain (-20%, p ≤ 0.01) in males during week 1 only. Females exposed to CGA-77102 showed decreased body weight gain (-19%) by week 13, but these changes were not statistically significant. Data are presented in Tables 2a and 2b.

Table 2a: Mean body weight (g) and mean body weight gain in males treated with CGA-34743 or CGA-77102

<table>
<thead>
<tr>
<th>Dose Levels (ppm)</th>
<th>CGA-354743</th>
<th>CGA-77102</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>148.8 ± 10.26</td>
<td>150.00 ± 11.11</td>
</tr>
<tr>
<td>360</td>
<td>150.0 ± 12.03</td>
<td>151.1 ± 13.12</td>
</tr>
<tr>
<td>1200</td>
<td>151.7 ± 13.92</td>
<td>152.6 ± 14.93</td>
</tr>
<tr>
<td>6000</td>
<td>153.1 ± 15.78</td>
<td>154.3 ± 16.79</td>
</tr>
<tr>
<td>20000</td>
<td>154.4 ± 17.69</td>
<td>155.1 ± 18.70</td>
</tr>
<tr>
<td>5000 ppm</td>
<td>155.6 ± 19.60</td>
<td>156.2 ± 20.71</td>
</tr>
</tbody>
</table>

Mean Body Weight (g)

<table>
<thead>
<tr>
<th>Week</th>
<th>Mean Body Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150.00 ± 11.11</td>
</tr>
<tr>
<td>13</td>
<td>153.1 ± 13.92</td>
</tr>
</tbody>
</table>

Cumulative Mean Body Weight Gain (g)

<table>
<thead>
<tr>
<th>Week</th>
<th>Cumulative Mean Body Weight Gain (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59.21 ± 6.68</td>
</tr>
<tr>
<td>13</td>
<td>342.3 ± 45.89</td>
</tr>
</tbody>
</table>

Extracted from Tables 8.7 (pages 72-75) and 8.9 (pages 82-85) of MRID 44931710

Table 2b: Mean body weight (g) and mean body weight gain in females treated with CGA-34743 or CGA-77102

<table>
<thead>
<tr>
<th>Dose Levels (ppm)</th>
<th>CGA-354743</th>
<th>CGA-77102</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>124.6 ± 9.00</td>
<td>125.8 ± 6.02</td>
</tr>
<tr>
<td>360</td>
<td>125.8 ± 10.73</td>
<td>126.0 ± 10.58</td>
</tr>
<tr>
<td>1200</td>
<td>126.5 ± 11.34</td>
<td>127.0 ± 11.29</td>
</tr>
<tr>
<td>6000</td>
<td>128.0 ± 12.05</td>
<td>128.5 ± 12.00</td>
</tr>
<tr>
<td>20000</td>
<td>129.0 ± 12.76</td>
<td>129.5 ± 12.71</td>
</tr>
<tr>
<td>5000 ppm</td>
<td>130.0 ± 13.48</td>
<td>130.5 ± 13.43</td>
</tr>
</tbody>
</table>

Mean Body Weight (g)

<table>
<thead>
<tr>
<th>Week</th>
<th>Mean Body Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125.8 ± 6.02</td>
</tr>
<tr>
<td>13</td>
<td>128.0 ± 10.73</td>
</tr>
</tbody>
</table>

Cumulative Mean Body Weight Gain (g)

<table>
<thead>
<tr>
<th>Week</th>
<th>Cumulative Mean Body Weight Gain (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.34 ± 5.74</td>
</tr>
<tr>
<td>13</td>
<td>148.4 ± 21.76</td>
</tr>
</tbody>
</table>

Extracted from Tables 8.7 (pages 76-79) and 8.9 (pages 86-89) of MRID 44931710
C. FOOD CONSUMPTION, COMPOUND INTAKE AND WATER INTAKE

1. Food consumption

Mean food consumption (g/animal/week) and food consumption ratios (g food/kg body weight/day) in animals fed CGA-354743 were not significantly changed throughout the study.

2. Compound consumption

Achieved doses were generally close to nominal in all cases (Table 3).

<table>
<thead>
<tr>
<th>Group Number</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target Dietary Level mg/kg/day</td>
<td>Achieved Dietary Level mg/kg/day (% nominal)</td>
</tr>
<tr>
<td>Group 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group 2</td>
<td>25.1</td>
<td>26.6 (106%)</td>
</tr>
<tr>
<td>Group 3</td>
<td>86.2</td>
<td>90.6 (105%)</td>
</tr>
<tr>
<td>Group 4</td>
<td>427.0</td>
<td>461.0 (108%)</td>
</tr>
<tr>
<td>Group 5</td>
<td>1545.0</td>
<td>1638.0 (106%)</td>
</tr>
<tr>
<td>Group 6</td>
<td>429.0</td>
<td>454.0 (106%)</td>
</tr>
</tbody>
</table>

Data taken from p. 43; MRID 44931710.

3. Food efficiency

Food efficiency of rats fed CGA-354743 was similar to that of control rats. The food efficiency of rats fed CGA-77102 was decreased relative to their respective control animals (Table 4).
TABLE 4. Mean overall group food efficiency (weeks 1-13)*

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 - Control</td>
<td>13.7</td>
<td>8.5</td>
</tr>
<tr>
<td>Group 2 - CGA-354743</td>
<td>14.9</td>
<td>9.5</td>
</tr>
<tr>
<td>Group 3 - CGA-354743</td>
<td>14.7</td>
<td>8.5</td>
</tr>
<tr>
<td>Group 4 - CGA-354743</td>
<td>14.4</td>
<td>8.2</td>
</tr>
<tr>
<td>Group 5 - CGA-354743</td>
<td>13.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Group 6 - CGA-77102</td>
<td>11.8</td>
<td>6.1</td>
</tr>
</tbody>
</table>

*Data calculated by the reviewer: \(\text{Overall body weight gain (g)} = \frac{\text{Total food consumption} \times 100}{100} \)

4. Water Intake

The water consumption of male and female rats fed 20,000 ppm CGA-354743 was statistically increased approximately 25% relative to their respective control rats throughout the study. No other significant differences in water consumption for the remaining groups was found.

D. CLINICAL PATHOLOGY

1. Hematology

Although sporadic statistically significant changes were found in certain hematological parameters, they were of little toxicological or biological relevance and were within the reference values for the laboratory. These included marginally increased counts for white blood cells, eosinophils, and lymphocytes for females receiving 6000 ppm (519 mg/kg/day) CGA-354743 and the MCV of male rats receiving 6000 ppm (427.0 mg/kg/day).

2. Clinical chemistry

Sporadic statistically significant changes for a limited number of clinical chemistry parameters were reported. These included phosphorous for males receiving 20,000 ppm (1545 mg/kg/day) and females receiving 6000 ppm (519 mg/kg/day), and urea for males receiving 20,000 ppm (1545 mg/kg/day) CGA-354743. These changes were not dose-dependent, were within historical limits for the laboratory, and of no toxicological and biological relevance.

Males fed 5000 ppm CGA-77102 had statistically significant increases of glucose and total serum protein, as well as decreases of AST and ALT activity. Female rats fed 5000 ppm CGA-77102 had statistically increased cholesterol and phosphate and
decreased total serum bilirubin. These changes in clinical chemistry parameters were within the reference values provided by the laboratory and of no toxicological or biological significance. The study report indicates that GGT values were increased in males and females. However, examination of the individual animal data shows that GGT was measured only in the GCA-77102 treated animals. Therefore, these values cannot be compared to control measurements. It appears that there is also no reference value for GGT from this laboratory, as it is listed as 0.0 for both males and females in Appendix D.

E. URINALYSIS

No treatment-related findings were reported for any group fed CGA-354743. Males rats fed 5000 ppm CGA-77102 had increased leukocytes in the urine (220/µL compared with 80/µL in control rats). The significance of this finding is unknown.

F. OPTHALMIC EXAMINATION

Ophthalmic examination revealed no treatment-related changes.

G. SACRIFICE AND PATHOLOGY

1. Organ weight

Statistically significant changes to rats fed CGA-354743 in organ weights were limited to increased absolute brain weight of 20,000 ppm (1545 mg/kg/day) males, absolute kidney weight of 6000 ppm (519 mg/kg/day) females, and spleen weight relative to body weight of 20,000 ppm (1685 mg/kg/day) females. These increases, though statistically significant, were unrelated to dose and not of a magnitude to be toxicologically and biologically significant.

Both male and female rats fed 5,000 ppm CGA-77102 had increased liver weights relative to control animals, although the increases were not statistically significant. Likewise, the liver weight relative to body weight of male rats was increased, though not statistically. The liver to body weight ratio of female rats was statistically significant compared with control rats.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 ppm</td>
<td>5000 ppm</td>
</tr>
<tr>
<td>Body Weight</td>
<td>472.9 ± 45.65</td>
<td>461.2 ± 52.27</td>
</tr>
<tr>
<td>Liver to Body Weight</td>
<td>41.02 ± 4.92</td>
<td>47.35 ± 4.71</td>
</tr>
</tbody>
</table>

*p<0.05
Data from pp. 161-170; MRID 44931710
February 2000
2. Gross pathology

No treatment-related gross pathology findings were reported.

3. Microscopic pathology

No microscopic pathology findings were reported for rats fed CGA-354743. Four of ten female rats fed 5000 ppm CGA-77102 had minimal to slight hepatic centrilobular hypertrophy as compared to the none in the control group.

III. DISCUSSION

A. STUDY AUTHOR’S CONCLUSIONS

The study author concluded that CGA-354743 was well-tolerated up to the limit dose of 20000 ppm. The dose of 6000 ppm CGA-354743 was the NOEL and the dose of 20000 ppm is the NOAEL. (The basis for setting the NOEL/NOAEL was not given.) The dietary concentration of 5000 ppm of CGA-77102 represents the Maximum Tolerated Dose.

B. DISCUSSION

Administration of CGA-354743 in the diet to male and female Crl:CD BR rats at concentrations of 0.0, 360, 1200, 6000, or 20,000 ppm (equivalent to 0.0 25.1, 86.2, 427.0 and 1545 mg/kg/day for males and 0.0, 28.4, 98.3, 519.0 and 1685 mg/kg/day for females) for 90 days resulted in few observed effects. The highest dose tested exceeded the guideline recommended limit intake of 1000 mg/kg/day. An additional 10 rats/sex/group were administered CGA-77102 in the diet at a dose of 5000 ppm (429 mg/kg/day for males and 563 mg/kg/day for females).

All animals survived to study end and no clinical signs were reported. There were no statistically significant changes in body weight, body weight gain, food consumption, food efficiency, ophthalmoscopic examination, urinalysis, or histopathology in animals treated with CGA-354743. Dietary exposure to CGA-77102 produced a statistically significant decreased body weight gain (-20%, p ≤ 0.01) in males during week 1 only. Females exposed to CGA-77102 showed decreased body weight gain (-19%) by week 13, but these changes were not statistically significant. The food efficiency of rats fed CGA-77102 was decreased relative to their respective control animals.

Statistically significant changes in hematologic parameters were limited to marginally increased counts for white blood cells, eosinophils, and lymphocytes of females receiving 6000 ppm (519 mg/kg/day) and the MCV of male rats receiving 6000 ppm (427.0 mg/kg/day) CGA-354743. However, these changes were not dose-dependent, were within historic reference ranges, and are not considered toxicologically or biologically relevant. Sporadic statistically significant changes in a limited number of clinical chemistry parameters were also reported. These included phosphorous for males.
receiving 20,000 ppm (1545 mg/kg/day) and females receiving 6000 ppm (519 mg/kg/day), and urea for males receiving 20,000 ppm (1545 mg/kg/day) CGA-354743. These changes also were not dose-dependent, were within historical limits for the laboratory, and of no toxicological and biological relevance. Although it appeared that male and female rats fed 5000 ppm CGA-77102 had marginally increased serum GGT activity, there is some confusion about the extent of the analyses for this parameter, as discussed in Study Deficiencies. Male and female rats did have increased absolute and relative liver weights. These results are consistent with a mild liver hypertrophy observed microscopically in females. No toxicologically relevant increases of organ weights were found for rats fed CGA-345743.

The data presented in this study show that the NOAEL for CGA-354743 is ≥20,000 ppm (1545 mg/kg/day for male and 1685 mg/kg/day female rats). No LOAEL could be established. The highest dose tested for both males and females exceeded the guideline limit dose. At 5000 ppm (429 mg/kg/day in males and 563 mg/kg/day in females) CGA-77102, there evidence of decreased body weight gain and food efficiency, increased absolute and relative liver weights and an increased incidence of hepatic centrilobular hypertrophy, although the effects were mild.

B. STUDY DEFICIENCIES

The blood chemistry summary on page 134 of MRID 44931710 lists a mean GGT values of 0.1 for group 1 (control) males. However, the individual animal data on page 270 shows values of 0.000 for all animals. In fact, based on the individual animal data, the only animals which had GGT measurements were the group 6 males and females. In addition, only 5/10 females in group 6 had values listed in the individual animal data. Section 3.6 Laboratory investigations states that laboratory investigations (hematology, blood chemistry and urine analyses) were carried out on all surviving animals at the end of the treatment period. Failure to measure GGT is not included in section 2.2 Deviations from the protocol. This irregularity should be clarified but it does not alter the final conclusions of the study.
DATA EVALUATION REPORT

Metolachlor ESA (CGA-354743 TECHNICAL)

STUDY TYPE: DEVELOPMENTAL TOXICITY - RAT [870.3700 (83-3a)]
MRID 44931711

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Biomedical and Environmental Information Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09H

Primary Reviewer:
Carol S. Forsyth, Ph.D., D.A.B.T.

Signature: JAN 27 2000
Date: JAN 27 2000

Secondary Reviewers:
Kowetha A. Davidson, Ph.D., D.A.B.T.

Signature: JAN 27 2000
Date: JAN 27 2000

Robert H. Ross, M.S., Group Leader

Signature: JAN 27 2000
Date: JAN 27 2000

Quality Assurance:
Lee Ann Wilson, M.A.

Signature: JAN 27 2000
Date: JAN 27 2000

Disclaimer

This review may have been altered subsequent to the contractor's signatures above.

Managed by Lockheed Martin Energy Research, Corp. for the U.S. Department of Energy under Contract No. DE-AC05-96OR22464.
DATA EVALUATION RECORD

STUDY TYPE: Developmental Toxicity - Rat; OPPTS 870.3700 (§83-3a)]

DP BARCODE: D260393
P.C. CODE: 108801 (parent)

TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-354743 Technical (98% a.i.)

SYNONYMS: none; degrade of metolachlor

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, Post Office Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a developmental toxicity study (MRID 44931711), 28 presumed pregnant Wistar B: Hanlbf:WIST rats per group were administered CGA 354743 Technical (98%; Batch No. KI-5408/6) by gavage in 0.5% aqueous sodium carboxymethylcellulose in 0.1% aqueous polysorbate 80 at doses of 0, 250, 500, or 1000 mg/kg/day on gestation days (GD) 6-15, inclusive. Controls were treated with 0.5% sodium carboxymethylcellulose in 0.1% aqueous polysorbate 80 (vehicle). On GD 21, dams were sacrificed, subjected to gross necropsy, and all fetuses examined externally. Approximately one-half of each litter was processed for visceral examination and the remaining one-half was processed for skeletal examination.

All animals survived to terminal sacrifice. No clinical signs of toxicity were observed in any animal. Maternal body weights, body weight gains, and food consumption were similar between the treated and control groups throughout the study. Maternal necropsy was unremarkable.

Therefore, the maternal toxicity NOAEL is ≥1000 mg/kg/day and the maternal toxicity LOAEL was not identified.

No differences were observed between the treated and control groups for number of corpora lutea, number of implantation sites, live fetuses/dam, pre- and post-implantation losses, fetal body weights, or fetal sex ratios.
No treatment-related external, visceral, or skeletal malformations/variations were observed in any fetus from any group.

The high dose is equivalent to the limit dose for developmental toxicity studies.

Therefore, the developmental toxicity NOAEL is ≥1000 mg/kg/day and the developmental toxicity LOAEL was not identified.

This study is classified as Acceptable/Guideline and satisfies the requirements for a developmental toxicity study [870.3700 (§83-3a)] in rats.

COMPLIANCE: Signed and dated Quality Assurance, Good Laboratory Practice, Flagging, and Data Confidentiality statements were included.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test Material: CGA-354743 Technical

 Description: solid
 Batch No.: KI-5408/6
 Purity: 98% a.i.
 Stability of compound: not stated
 CAS No.: not given
 Structure: not given

2. Vehicle and/or positive control

 A 0.5% (w/w) aqueous solution of sodium carboxymethylcellulose (CMC, Hercules Powder Company, Pharmacopeia quality, high viscosity, Prod. 7HF) in 0.1% aqueous polysorbate 80 was used as the vehicle and negative control. No positive control was used in this study.

3. Test animals

 Species: rat
 Strain: Wistar B: Hanlhm:WIST
 Age and weight at study initiation: minimum of 8 weeks; 170.0-216.4 g
 Source: BRL, Biological Research Laboratories Ltd., Woelferstrasse 4, CH-4414 Fuellinsdorf, Switzerland
 Housing: Animals were individually housed in Macrolon cages with wire mesh tops and standardized granulated soft wood bedding material.
 Diet: Pelleted certified standard feed (Nafag No. 890, Tox; Nafag, Naehr- und Futtermittel AG, Gossau, Switzerland) was available ad libitum.
 Water: Tap water was available ad libitum.
 Environmental conditions:
 Temperature: 22 ± 3°C
 Humidity: 50 ± 20%
 Air changes: about 16/hour
 Photoperiod: 12 hr light/dark
 Acclimation period: at least 7 days between delivery from animal breeder and the first day of treatment

B. PROCEDURES AND STUDY DESIGN

This study was designed to assess the developmental toxicity potential of CGA-354743 Technical when administered by gavage to rats on GD 6-15, inclusive.
1. In life dates

Start: April 7, 1998; end: April 28, 1998 (start of necropsy)

2. Mating

Females were mated to a male of the same stock and proven fertility at a ratio of three females to one male. Each cage was divided into two parts by a guillotine door, separating the sexes until 4 p.m. on the mating day, when the door opened automatically. Successful mating was assessed by the presence of a vaginal plug or of spermatozoa in a vaginal smear. The day of successful mating was designated as gestation day (GD) 0.

3. Animal assignment and dose selection are presented in Table 1. Animals were assigned to a control or treatment group using a method of randomization based on weight stratification.

<table>
<thead>
<tr>
<th>Test Group</th>
<th>Dose Level (mg/kg/day)</th>
<th>Number Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Low Dose</td>
<td>250</td>
<td>28</td>
</tr>
<tr>
<td>Mid Dose</td>
<td>500</td>
<td>28</td>
</tr>
<tr>
<td>High Dose</td>
<td>1000</td>
<td>28</td>
</tr>
</tbody>
</table>

Data taken from text tables pp. 15 and 16, MRID 44931711.

4. Dose selection rationale

Doses were selected on the basis of a range-finding study (Laboratory Study No. 981008) in which pregnant rats were administered 250, 500, or 1000 mg/kg/day. No maternal or developmental toxicity was observed at any dose. Further details of this study were not included in the report.

5. Dose solution preparation and analysis

The test substance was mixed in a 0.5% aqueous solution of sodium carboxymethyl-cellulose in 0.1% aqueous polysorbate 80. Solutions were prepared daily with a high-speed homogenizer. Homogeneity during administration was maintained with a magnetic stirrer. Samples of the dosing solutions were analyzed for concentration, homogeneity, and stability three times during the study. Samples from the top, middle, and bottom of the dosing solutions were analyzed for concentration and homogeneity.
Stability was determined after storage at room temperature for the duration of dosing from samples taken from the middle of the solutions.

Results

Concentration analysis: Absence of test article was confirmed in the vehicle. Mean concentrations of the dosing solutions ranged from 99.5% to 104% of nominal.

Homogeneity analysis: Concentrations of the top, middle, and bottom of the dosing solutions differed by <10%.

Stability analysis: Samples taken after the period of dosing differed from their initial measured concentrations by <6%.

Analyses of the dosing solutions indicated that the test article could be adequately mixed in the vehicle, was stable for the duration of use, and that actual doses to the animals were acceptable.

6. **Dosing**

All doses were administered in a volume of 10 mL/kg of body weight.

C. **OBSERVATIONS**

1. **Maternal observations and evaluations**

The animals were checked once daily for clinical signs and twice daily for mortality. Body weights were measured daily and food consumption was measured on days 6, 11, 16, and 21. Dams were sacrificed on GD 21 by carbon dioxide inhalation and examined grossly. The number of corpora lutea on each ovary was counted. Gravid uteri were weighed and examined for number and location of live and dead fetuses and number and location of early and late resorptions and abortion sites. Dams found dead or sacrificed early were subjected to gross necropsy.

2. **Fetal evaluations**

At necropsy, each live fetus was weighed, sexed, and examined for external abnormalities. Fetuses were killed by subcutaneous injection of a barbiturate anesthetic. Approximately one-half of each litter was processed for visceral examination and the remaining one-half processed for skeletal examination. In the case of a gross external anomaly or malformation, fetuses were allocated to one technique depending on the type and incidence of the finding. For the visceral examinations, fetuses were fixed in Bouin’s solution for at least two weeks and then micro-dissected. For the skeletal examinations, fetuses were cleared with potassium hydroxide and stained with alizarin red S.
D. DATA ANALYSIS

1. Statistical analysis

Continuous data were analyzed by the Analysis of Variance (ANOVA) followed by Dunnett's t-test to separate the means. The Chi-Square and Fisher's Exact tests were used for the analysis of categorical data. Non-parametric data were analyzed with the Kruskal-Wallis test followed by the Mann-Whitney U test.

2. Historical control data from September 19, 1970 to December 31, 1998 on 432 mated females were provided to allow comparison with concurrent controls and treatment groups.

II. RESULTS

A. MATERNAL TOXICITY

1. Mortality and clinical signs

All animals survived to scheduled sacrifice. No treatment-related clinical signs of toxicity were observed in any animal.

2. Body weight

Selected maternal body weights during gestation are given in Table 2. No statistically significant differences in absolute body weights occurred at any time between the treated groups and the control group. Body weight gains were also similar between the treated and control groups throughout the study.
3. **Food consumption**

Maternal food consumption was similar between the treated and control groups throughout the study.

4. **Gross pathology**

No treatment-related gross abnormalities were observed at maternal necropsy.

5. **Cesarean section data**

Data collected at cesarean section are summarized in Table 3. No differences were observed between the treated and control groups for number of corpora lutea, number of implantation sites, live fetuses/dam, resorptions, pre- and post-implantation losses, fetal body weights, or fetal sex ratios. No dam had complete litter resorption or contained dead fetuses.

TABLE 2: Maternal body weights during gestation (g)

<table>
<thead>
<tr>
<th>GD</th>
<th>0 mg/kg/day</th>
<th>250 mg/kg/day</th>
<th>500 mg/kg/day</th>
<th>1000 mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>190.6 ± 9.8</td>
<td>190.2 ± 10.0</td>
<td>189.8 ± 9.2</td>
<td>190.0 ± 9.2</td>
</tr>
<tr>
<td>6</td>
<td>212.9 ± 9.7</td>
<td>211.6 ± 8.6</td>
<td>211.3 ± 8.4</td>
<td>212.4 ± 9.9</td>
</tr>
<tr>
<td>10</td>
<td>228.4 ± 10.5</td>
<td>227.2 ± 9.4</td>
<td>227.0 ± 10.4</td>
<td>229.1 ± 10.6</td>
</tr>
<tr>
<td>16</td>
<td>262.9 ± 13.5</td>
<td>262.9 ± 12.6</td>
<td>262.4 ± 14.5</td>
<td>265.1 ± 14.3</td>
</tr>
<tr>
<td>21</td>
<td>315.6 ± 19.3</td>
<td>320.5 ± 18.1</td>
<td>317.4 ± 19.1</td>
<td>318.8 ± 20.7</td>
</tr>
<tr>
<td>Adjusted body wt.</td>
<td>245.2</td>
<td>246.8</td>
<td>245.8</td>
<td>245.8</td>
</tr>
</tbody>
</table>

Data taken from Tables 2 and 7, pp. 31-33 and 46, respectively, MRID 44931711.

TABLE 3: Cesarean section observations

<table>
<thead>
<tr>
<th>Observation</th>
<th>0 mg/kg/day</th>
<th>250 mg/kg/day</th>
<th>500 mg/kg/day</th>
<th>1000 mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Animals Assigned</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>No. Animals Pregnant</td>
<td>27</td>
<td>25</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Pregnancy Rate (%)</td>
<td>96.4</td>
<td>89.3</td>
<td>96.4</td>
<td>100</td>
</tr>
<tr>
<td>Maternal Mortality</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Delivered Early/Aborted</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gravid Uterine Wt (g)</td>
<td>70.4</td>
<td>73.7</td>
<td>71.7</td>
<td>73.0</td>
</tr>
<tr>
<td>Corpora Lutea/Dam</td>
<td>11.1</td>
<td>11.3</td>
<td>11.1</td>
<td>11.5</td>
</tr>
<tr>
<td>Implantation/Dam</td>
<td>10.7</td>
<td>11.0</td>
<td>10.6</td>
<td>11.1</td>
</tr>
<tr>
<td>Preimplantation Loss (mean %)</td>
<td>4.1</td>
<td>2.8</td>
<td>4.7</td>
<td>4.4</td>
</tr>
<tr>
<td>Postimplantation Loss (mean %)</td>
<td>4.0</td>
<td>1.3</td>
<td>1.4</td>
<td>4.1</td>
</tr>
<tr>
<td>Total Live Fetuses</td>
<td>279</td>
<td>272</td>
<td>282</td>
<td>302</td>
</tr>
<tr>
<td>Live Fetuses/Litter</td>
<td>10.3</td>
<td>10.9</td>
<td>10.4</td>
<td>10.8</td>
</tr>
<tr>
<td>Mean Fetal Weight (g)</td>
<td>4.9</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Sex Ratio (% Male)</td>
<td>48.7</td>
<td>45.2</td>
<td>46.1</td>
<td>48.7</td>
</tr>
<tr>
<td>Total Dead Fetuses</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dams With All Resorptions</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resorptions/Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Resorptions</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Late Resorptions</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Data taken from Tables 5, 6, and 7, pp. 40, 42-44, and 46, respectively, MRID 44931711.

*Calculated by reviewer.

B. DEVELOPMENTAL TOXICITY

No treatment-related external, visceral, or skeletal malformations/variations were observed in any fetus from any group. A summary of findings is given in Table 4.

1. **External examination**

 The number of fetuses(litters) examined for external malformations/variations in the 0, 250, 500, and 1000 mg/kg/day groups was 279(27), 272(25), 282(27), and 302(28), respectively. One high-dose litter contained a fetus with an umbilical hernia.
2. Visceral examination

The number of fetuses(litters) examined for visceral malformations/variations in the 0, 250, 500, and 1000 mg/kg/day groups was 130(27), 128(25), 135(27), and 143(27), respectively. One mid-dose fetus had most organs in situs inversus. Anophthalmia and hemorrhagic liver were also observed in the high-dose fetus with the umbilical hernia. Anomalies such as thymic remnant in the neck and accessory lobules on the liver were seen in one to five fetuses per group including controls.

3. Skeletal examination

The number of fetuses(litters) examined for skeletal malformations/variations in the 0, 250, 500, and 1000 mg/kg/day groups was 149(27), 143(25), 146(27), and 159(28), respectively. The only skeletal malformation was fused ribs in one low-dose fetus. Skeletal anomalies of the sternebrae, vertebrae, and ribs were observed at low incidences in fetuses from the treated and control groups. Variations in ossification rates of the cranial bones, metatarsals, sternebrae, calcaneus, vertebrae, ribs, and phalanges were also common to fetuses from all groups.
<table>
<thead>
<tr>
<th>Observation</th>
<th>0 mg/kg/day</th>
<th>250 mg/kg/day</th>
<th>500 mg/kg/day</th>
<th>1000 mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total external findings (umbilical hernia)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Visceral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umbilical hernia</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Most organs in situs inversus</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Anophthalmia</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Hemorrhagic liver</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Thymic remnant in the neck</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>3 (3)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Accessory liver lobulet</td>
<td>0 (0)</td>
<td>3 (3)</td>
<td>5 (5)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Total visceral observations</td>
<td>1 (1)</td>
<td>4 (3)</td>
<td>9 (7)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Skeletal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total skeletal malformations (fused ribs)</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Total skeletal anomalies</td>
<td>9 (7)</td>
<td>10 (7)</td>
<td>17 (11)</td>
<td>11 (8)</td>
</tr>
<tr>
<td>Total skeletal variations</td>
<td>147 (27)</td>
<td>138 (25)</td>
<td>144 (27)</td>
<td>155 (27)</td>
</tr>
</tbody>
</table>

Data taken from Tables 9, 10, and 11-13, pp. 50, 52-55, and 58-96, respectively, MRID 44931711.
III. DISCUSSION

A. INVESTIGATORS' CONCLUSIONS

The study author concluded that no signs of maternal or fetal toxicity and no evidence of teratogenicity were observed following maternal treatment with CGA 354743 Technical on GD 6-15; the NOEL for rat dams and fetuses was 1000 mg/kg/day.

B. REVIEWER'S DISCUSSION

1. MATERNAL TOXICITY

Maternal toxicity was not evident in any treated group. No clinical signs were observed and body weights, body weight gains, and food consumption were similar between the treated and control groups.

Therefore, the maternal toxicity NOAEL is ≥1000 mg/kg/day and the maternal toxicity LOAEL was not identified.

2. DEVELOPMENTAL TOXICITY

a. Deaths/resorptions

Maternal treatment with the test article did not result in increases in either pre- or postimplantation loss or fetal death.

b. Altered growth

No treatment-related effects on fetal body weights or ossification rates were observed.

c. Developmental variations

Developmental variations were common to both treated and control fetuses and the incidence rates of specific variations were not affected by treatment.

d. Malformations

Malformations did not increase with exposure to the test article.

It should be noted that although neither maternal nor developmental toxicity were apparent, the high dose is equivalent to the limit dose for developmental toxicity studies.
Therefore, the developmental toxicity NOAEL is \(\geq 1000 \text{ mg/kg/day} \) and the developmental toxicity LOAEL was not identified.

C. STUDY DEFICIENCIES

No deficiencies were identified that would compromise the integrity of this study.

D. CORE CLASSIFICATION

This study is classified as **Acceptable/Guideline** and satisfies the requirements for a developmental toxicity study [870.3700 (§83-3a)] in rats.
DATA EVALUATION REPORT
CGA-354743

SALMONELLA/ESCHERICHIA/MAMMALIAN ACTIVATION GENE MUTATION
ASSAY; [OPPTS 870.5100 (§84-2)]
MRID 44931712

Prepared for
Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by
Chemical Hazard Evaluation Group
Toxicology and Risk Analysis
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-091

Primary Reviewer:
B.L. Whitfield, Ph.D.
Signature: ____________________________
Date: APR 25 2001

Secondary Reviewers:
Cheryl B. Bast, Ph.D., D.A.B.T.
Signature: ____________________________
Date: APR 25 2001
Robert H. Ross, Group Leader, M.S.
Signature: ____________________________
Date: APR 25 2001

Quality Assurance:
LeeAnn Wilson, M.A.
Signature: ____________________________
Date: APR 25 2001

Disclaimer
This review may have been altered subsequent to the contractor's signature above.

Managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under Contract No.
DE-AC05-96OR22464
DATA EVALUATION RECORD

STUDY TYPE: Salmonella/Escherichia/mammalian activation gene mutation assay; [OPPTS 870.5100 (§84-2)]

DP BARCODE: D260393
P.C. CODE: 108801 (parent)

SUBMISSION CODE: S570059
TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-354743 tech. (cga-354743 (Metolachlor ESA); 95% a.i.)

SYNONYMS: none provided

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, Post Office Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a reverse gene mutation assay in bacteria (MRID 44931712), strains TA98, TA100, TA102, TA1535 and TA1537 of S. typhimurium and strain WP2(uvrA) of E. coli were exposed to CGA-354743 tech. (Batch No. RV-2816/1, 95% a.i.) in DMSO at concentrations of 312.5, 625.0, 1250.0, 2500.0 and 5000.0 µg/plate in the presence and absence of mammalian metabolic activation (S9-mix). The S9-fraction was obtained from Aroclor 1254 induced male RAI (Tif:RAII(9F)) rat liver.

CGA-354743 tech. was tested up to a limit concentration of 5000 µg/plate. No cytotoxicity, as measured by thinning or absence of the background lawn of bacteria or by a reduction in the number of revertants per plate compared to the solvent control values, was seen in the preliminary cytotoxicity test or in the mutagenicity tests at concentrations up to 5000 µg/plate, with or without S9-mix. An initial and a confirmatory mutagenicity assay was conducted and all plating was in triplicate. The number of revertants per plate was not increased over solvent control values in any strain at any tested concentration, with or without S9-mix, in either assay. The positive and solvent control values were appropriate in the respective strains and within the laboratory's historical control ranges. There was no evidence of induced mutant colonies over background.
This study is classified as **Acceptable/Guideline**. It satisfies the requirement for FIFRA Test Guideline 84-2 (OPPTS 870.5100) for *in vitro* mutagenicity [bacterial reverse gene mutation] data.

COMPLIANCE: Signed and dated GLP, Quality Assurance and Data Confidentiality statements were provided.

I. **MATERIALS AND METHODS**

A. **MATERIALS**

1. **Test material:** CGA-354743 tech.
 - Description: solid
 - Lot/Batch #: RV-2816/1
 - Purity: 95% a.i.
 - Stability of compound: stable
 - CAS #: not provided
 - Structure: not provided
 - Solvent used: DMSO
 - Other comments: metabolite of CGA-24705, metolachlor

2. **Control materials**

 - **Negative:**
 - Solvent/final concentration: DMSO / 0.1 mL/plate

 - **Positive:**
 - Nonactivation:
 - Sodium azide 2.0 µg/plate TA100, TA1535
 - 2-Nitrofluorene 5.0 µg/plate TA98
 - 9-Aminoacridine 80.0 µg/plate TA1537
 - Mitomycin C 0.5 µg/plate TA102
 - 4-Nitroquinoline (4NQO) 2.0 µg/plate WP2(uvrA)

 - Activation:
 - 2-Aminoanthracene 1.5 µg/plate TA98, TA100, TA1537
 - 2-Aminoanthracene 5.0 µg/plate TA102
 - 2-Aminoanthracene 20.0 µg/plate WP2(uvrA)
 - Cyclophosphamide 200.0 µg/plate TA1535

February 2000
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-354743 tech.
 Description: solid
 Lot/Batch #: RV-2816/1
 Purity: 95% a.i.
 Stability of compound: stable
 CAS #: not provided
 Structure:
 Solvent used: DMSO
 Other comments: metabolite of CGA-24705

2. Control materials

 Negative:
 Solvent/final concentration: DMSO / 0.1 mL/plate

 Positive:
 Nonactivation:
 Sodium azide 2.0 µg/plate TA100, TA1535
 2-Nitrofluorene 5.0 µg/plate TA98.
 9-Aminoacridine 80.0 µg/plate TA1537
 Mitomycin C 0.5 µg/plate TA102
 4-Nitroquinoline (4NQO) 2.0 µg/plate WP2(uvrA)

 Activation:
 2-Aminoanthracene 1.5 µg/plate TA98, TA100, TA1537
 2-Aminoanthracene 5.0 µg/plate TA102
 2-Aminoanthracene 20.0 µg/plate WP2(uvrA)
 Cyclophosphamide 200.0 µg/plate TA1535

3. Activation: S9 derived from male RAI (Tif:RAIf (SPF)) rats.
 x_ Aroclor 1254
 _ phenobarbital
 _ none
 x_ induced
 _ non-induced
 x_ rat
 _ mouse
 _ other
 _ other
 x_ liver
 _ lung

February 2000
S9 mix composition (if purchased, give details):

- S9-fraction: 100.0 µL/mL
- NADP: 4.0 µmol/mL
- MgCl₂: 8.0 µmol/mL
- KCl: 33.0 µmol/mL
- Na-phosphate buffer (pH 7.4): 100 µmol/mL
- Glucose-6-phosphate: 5.0 µmol/mL

4. Test organisms: *S. typhimurium* strains

 - TA97
 - TA98
 - TA100
 - TA102
 - TA104
 - TA1535
 - TA1537
 - TA1538; list any others:

 E. coli strain WP2(uvrA)

 Properly maintained? Y
 Checked for appropriate genetic markers (rfa mutation, R factor)? Y

5. Test compound concentrations used

 Preliminary cytotoxicity test: TA100 and WP2(uvrA), single plating
 Nonactivated and activated conditions: 20.58, 61.73, 185.19, 555.56, 1666.67, 5000.00 µg/plate

 Mutagenicity assay (initial and confirmatory): all strains, triplicate plating
 Nonactivated and activated conditions: 312.5, 625.0, 1250.0, 2500.0, 5000.0 µg/plate

B. TEST PERFORMANCE

1. Type of Salmonella assay:

 - standard plate test
 - pre-incubation (___ minutes)
 - "Prival" modification (i.e. azo-reduction method)
 - spot test
 - other [describe]

2. Protocol

 A standard pour plate assay was conducted by mixing 0.1 mL of an overnight culture of a tester strain with 2 mL top agar (0.6% agar and 0.6% NaCl supplemented with 10% of 0.5 mM L-histidine and 0.5 mM (+)biotin for the TA strains and with 10% of 0.5 mM L-tryptophan for WP2(uvrA)), 0.5 mL of S9-mix or 0.5 mL of 100 mM...
sodium phosphate buffer and 0.1 mL of test material solution, positive control or solvent control. The mixture was poured onto 20 mL of minimal agar in a Petri dish (1.5% agar supplemented with 2% salts of the Vogel-Bonner Medium E and 2% glucose). The plates were inverted and incubated for approximately 48 hours at 37 ± 1.5°C in darkness. The number of revertant colonies was then counted electronically using an Artek Colony Counter or manually if a precipitate, agar damage or strong coloration of the agar interfered with automatic counting. The background lawn of bacteria was also evaluated.

Criteria for a positive response were at least a reproducible 2-fold increase in the mean number of revertants per plate above that of the solvent control at any test material concentration in strains TA98, TA1535, TA1537 or WP2(uvrA) or at least a 1.5-fold increase in strains TA100 or TA102. In general, a positive dose-response should be seen.

II. REPORTED RESULTS

The concentrations of test material in solution were determined by HPLC with UV detection to be in agreement with the intended concentrations.

A. PRELIMINARY CYTOTOXICITY ASSAY

Five concentrations of CGA-354743 tech. ranging from 20.58 to 5000.00 µg/plate were tested, with and without S9-mix, using strains TA100 and WP2(uvrA). No cytotoxicity, as determined by a decrease in the number of revertants per plate compared to the solvent control or by a thinning or absence of the background lawn, was seen at any concentration of test material, with or without S9-mix, in either strain. The limit dose of 5000 µg/plate was thus selected as the upper dose for the mutagenicity assays.

B. MUTAGENICITY ASSAY

Five concentrations of CGA-354743 tech. ranging from 312.5 to 5000.0 µg/plate were tested, with and without S9-mix, in all six tester strains in an initial and a confirmatory assay. All plating was in triplicate. The background lawn of bacteria was normal in all strains at all test material concentrations, with or without S9-mix, in both assays. Likewise, the number of revertants per plate was not increased over solvent control values in any strain at any tested concentration, with or without S9-mix, in either assay. The positive and solvent control values were appropriate in the respective strains and within the laboratory’s historical control ranges. Results of the mutagenicity assays are presented in Appendix Tables 1 - 4 (MRID 44931712, pp. 26 - 29).

III. REVIEWER’S DISCUSSION/CONCLUSIONS:

A. This is an acceptable study. CGA-354743 tech. was tested to a limit dose of 5000 µg/plate, suitable experimental protocol was followed and the positive and solvent control values were appropriate for the respective strains. The test material did not
increase the number of revertant colonies per plate over solvent control values in any tester strain at any evaluated concentration, with or without S9-mix.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline 84-2 (OPPTS 870.5100) for in vitro mutagenicity [bacterial reverse gene mutation] data.

B. STUDY DEFICIENCIES

No study deficiencies were identified.
APPENDIX
MRID 44931712

THE FOLLOWING ATTACHMENTS ARE NOT AVAILABLE ELECTRONICALLY. SEE THE FILE COPY.
TABLE 1: SUMMARY OF THE MUTAGENICITY EXPERIMENTS
Experiments with metabolic activation

Test number: 951133
Experiment: Original
Test substance: CGA 354743 tech.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Treatment</th>
<th>Mean Counts</th>
<th>Strain</th>
<th>Treatment</th>
<th>Mean Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 100</td>
<td>Negative control</td>
<td>132.33</td>
<td>TA 1535</td>
<td>Negative control</td>
<td>16.00</td>
</tr>
<tr>
<td></td>
<td>312.50 µg/plate</td>
<td>136.00</td>
<td></td>
<td>312.50 µg/plate</td>
<td>14.67</td>
</tr>
<tr>
<td></td>
<td>625.00 µg/plate</td>
<td>125.33</td>
<td></td>
<td>625.00 µg/plate</td>
<td>15.33</td>
</tr>
<tr>
<td></td>
<td>1250.00 µg/plate</td>
<td>114.33</td>
<td></td>
<td>1250.00 µg/plate</td>
<td>14.00</td>
</tr>
<tr>
<td></td>
<td>2500.00 µg/plate</td>
<td>121.67</td>
<td></td>
<td>2500.00 µg/plate</td>
<td>15.33</td>
</tr>
<tr>
<td></td>
<td>5000.00 µg/plate</td>
<td>134.67</td>
<td></td>
<td>5000.00 µg/plate</td>
<td>12.67</td>
</tr>
<tr>
<td>WP2 uvrA</td>
<td>Negative control</td>
<td>24.67</td>
<td>TA 98</td>
<td>Negative control</td>
<td>37.00</td>
</tr>
<tr>
<td></td>
<td>312.50 µg/plate</td>
<td>17.67</td>
<td></td>
<td>312.50 µg/plate</td>
<td>36.00</td>
</tr>
<tr>
<td></td>
<td>625.00 µg/plate</td>
<td>18.00</td>
<td></td>
<td>625.00 µg/plate</td>
<td>32.67</td>
</tr>
<tr>
<td></td>
<td>1250.00 µg/plate</td>
<td>30.00</td>
<td></td>
<td>1250.00 µg/plate</td>
<td>34.33</td>
</tr>
<tr>
<td></td>
<td>2500.00 µg/plate</td>
<td>26.00</td>
<td></td>
<td>2500.00 µg/plate</td>
<td>32.33</td>
</tr>
<tr>
<td></td>
<td>5000.00 µg/plate</td>
<td>29.00</td>
<td></td>
<td>5000.00 µg/plate</td>
<td>32.00</td>
</tr>
<tr>
<td>TA 1537</td>
<td>Negative control</td>
<td>12.33</td>
<td>TA 102</td>
<td>Negative control</td>
<td>287.00</td>
</tr>
<tr>
<td></td>
<td>312.50 µg/plate</td>
<td>12.00</td>
<td></td>
<td>312.50 µg/plate</td>
<td>296.67</td>
</tr>
<tr>
<td></td>
<td>625.00 µg/plate</td>
<td>14.00</td>
<td></td>
<td>625.00 µg/plate</td>
<td>292.67</td>
</tr>
<tr>
<td></td>
<td>1250.00 µg/plate</td>
<td>16.67</td>
<td></td>
<td>1250.00 µg/plate</td>
<td>312.00</td>
</tr>
<tr>
<td></td>
<td>2500.00 µg/plate</td>
<td>9.67</td>
<td></td>
<td>2500.00 µg/plate</td>
<td>286.67</td>
</tr>
<tr>
<td></td>
<td>5000.00 µg/plate</td>
<td>13.00</td>
<td></td>
<td>5000.00 µg/plate</td>
<td>301.00</td>
</tr>
<tr>
<td>Positive control</td>
<td>419.00</td>
<td>Positive control</td>
<td>1725.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2: SUMMARY OF THE MUTAGENICITY EXPERIMENTS

Experiments without metabolic activation

<table>
<thead>
<tr>
<th>Test number</th>
<th>951133</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Original</td>
</tr>
<tr>
<td>Test substance</td>
<td>CGA 354743 tech.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strain</th>
<th>Treatment</th>
<th>Mean Counts</th>
<th>Strain</th>
<th>Treatment</th>
<th>Mean Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 100</td>
<td>Negative control</td>
<td>121.00</td>
<td>TA 1535</td>
<td>Negative control</td>
<td>17.67</td>
</tr>
<tr>
<td></td>
<td>312.50 µg/plate</td>
<td>116.33</td>
<td></td>
<td>312.50 µg/plate</td>
<td>15.33</td>
</tr>
<tr>
<td></td>
<td>625.00 µg/plate</td>
<td>124.00</td>
<td></td>
<td>625.00 µg/plate</td>
<td>13.67</td>
</tr>
<tr>
<td></td>
<td>1250.00 µg/plate</td>
<td>110.33</td>
<td></td>
<td>1250.00 µg/plate</td>
<td>14.33</td>
</tr>
<tr>
<td></td>
<td>2500.00 µg/plate</td>
<td>128.00</td>
<td></td>
<td>2500.00 µg/plate</td>
<td>14.00</td>
</tr>
<tr>
<td></td>
<td>5000.00 µg/plate</td>
<td>114.33</td>
<td></td>
<td>5000.00 µg/plate</td>
<td>14.67</td>
</tr>
<tr>
<td>WP2 uvrA</td>
<td>Negative control</td>
<td>20.00</td>
<td>TA 98</td>
<td>Negative control</td>
<td>21.00</td>
</tr>
<tr>
<td></td>
<td>312.50 µg/plate</td>
<td>21.00</td>
<td></td>
<td>312.50 µg/plate</td>
<td>18.00</td>
</tr>
<tr>
<td></td>
<td>625.00 µg/plate</td>
<td>20.33</td>
<td></td>
<td>625.00 µg/plate</td>
<td>17.33</td>
</tr>
<tr>
<td></td>
<td>1250.00 µg/plate</td>
<td>15.67</td>
<td></td>
<td>1250.00 µg/plate</td>
<td>16.33</td>
</tr>
<tr>
<td></td>
<td>2500.00 µg/plate</td>
<td>19.00</td>
<td></td>
<td>2500.00 µg/plate</td>
<td>20.67</td>
</tr>
<tr>
<td></td>
<td>5000.00 µg/plate</td>
<td>20.33</td>
<td></td>
<td>5000.00 µg/plate</td>
<td>17.33</td>
</tr>
<tr>
<td>Positive control</td>
<td>793.33</td>
<td>TA 102</td>
<td>Negative control</td>
<td>1056.33</td>
<td>Positive control</td>
</tr>
<tr>
<td>Positive control</td>
<td>14.67</td>
<td>TA 1535</td>
<td>Negative control</td>
<td>2646.67</td>
<td>Positive control</td>
</tr>
</tbody>
</table>
TABLE 3: SUMMARY OF THE MUTAGENICITY EXPERIMENTS
Experiments with metabolic activation

Test number : 951133
Experiment : Confirmatory
Test substance : CGA 354743 tech.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Treatment</th>
<th>Mean Counts</th>
<th>Strain</th>
<th>Treatment</th>
<th>Mean Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 100</td>
<td>Negative control</td>
<td>101.33</td>
<td>TA 1535</td>
<td>Negative control</td>
<td>20.67</td>
</tr>
<tr>
<td>312.50 µg/plate</td>
<td>116.67</td>
<td>312.50 µg/plate</td>
<td>18.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>625.00 µg/plate</td>
<td>97.33</td>
<td>625.00 µg/plate</td>
<td>19.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250.00 µg/plate</td>
<td>89.00</td>
<td>1250.00 µg/plate</td>
<td>17.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500.00 µg/plate</td>
<td>105.67</td>
<td>2500.00 µg/plate</td>
<td>18.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.00 µg/plate</td>
<td>115.33</td>
<td>5000.00 µg/plate</td>
<td>13.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control</td>
<td>1745.33</td>
<td>Positive control</td>
<td>184.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP2 uvrA</td>
<td>Negative control</td>
<td>30.67</td>
<td>TA 98</td>
<td>Negative control</td>
<td>45.67</td>
</tr>
<tr>
<td>312.50 µg/plate</td>
<td>34.33</td>
<td>312.50 µg/plate</td>
<td>43.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>625.00 µg/plate</td>
<td>32.00</td>
<td>625.00 µg/plate</td>
<td>42.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250.00 µg/plate</td>
<td>31.00</td>
<td>1250.00 µg/plate</td>
<td>48.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500.00 µg/plate</td>
<td>25.00</td>
<td>2500.00 µg/plate</td>
<td>58.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.00 µg/plate</td>
<td>31.33</td>
<td>5000.00 µg/plate</td>
<td>53.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control</td>
<td>659.33</td>
<td>Positive control</td>
<td>1773.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA 1537</td>
<td>Negative control</td>
<td>12.33</td>
<td>TA 102</td>
<td>Negative control</td>
<td>322.67</td>
</tr>
<tr>
<td>312.50 µg/plate</td>
<td>22.33</td>
<td>312.50 µg/plate</td>
<td>317.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>625.00 µg/plate</td>
<td>17.07</td>
<td>625.00 µg/plate</td>
<td>300.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250.00 µg/plate</td>
<td>17.33</td>
<td>1250.00 µg/plate</td>
<td>302.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500.00 µg/plate</td>
<td>16.33</td>
<td>2500.00 µg/plate</td>
<td>289.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.00 µg/plate</td>
<td>14.00</td>
<td>5000.00 µg/plate</td>
<td>295.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control</td>
<td>356.00</td>
<td>Positive control</td>
<td>1169.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4: SUMMARY OF THE MUTAGENICITY EXPERIMENTS

Experiments without metabolic activation

Test number: 951133
Experiment: Confirmatory
Test substance: CGA 354743 tech.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Treatment</th>
<th>Mean Counts</th>
<th>Strain</th>
<th>Treatment</th>
<th>Mean Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 100</td>
<td>Negative control</td>
<td>109.00</td>
<td>TA 1535</td>
<td>Negative control</td>
<td>16.67</td>
</tr>
<tr>
<td></td>
<td>312.50 mg/plate</td>
<td>112.33</td>
<td></td>
<td>312.50 mg/plate</td>
<td>19.00</td>
</tr>
<tr>
<td></td>
<td>625.00 mg/plate</td>
<td>115.33</td>
<td></td>
<td>625.00 mg/plate</td>
<td>18.33</td>
</tr>
<tr>
<td></td>
<td>1250.00 mg/plate</td>
<td>109.67</td>
<td></td>
<td>1250.00 mg/plate</td>
<td>21.67</td>
</tr>
<tr>
<td></td>
<td>2500.00 mg/plate</td>
<td>104.33</td>
<td></td>
<td>2500.00 mg/plate</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td>5000.00 mg/plate</td>
<td>95.33</td>
<td></td>
<td>5000.00 mg/plate</td>
<td>16.33</td>
</tr>
<tr>
<td>Positive control</td>
<td>936.00</td>
<td>Positive control</td>
<td>670.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP2 uvrA</td>
<td>Negative control</td>
<td>31.67</td>
<td>TA 98</td>
<td>Negative control</td>
<td>34.67</td>
</tr>
<tr>
<td></td>
<td>312.50 mg/plate</td>
<td>30.33</td>
<td></td>
<td>312.50 mg/plate</td>
<td>45.00</td>
</tr>
<tr>
<td></td>
<td>625.00 mg/plate</td>
<td>27.33</td>
<td></td>
<td>625.00 mg/plate</td>
<td>40.67</td>
</tr>
<tr>
<td></td>
<td>1250.00 mg/plate</td>
<td>25.67</td>
<td></td>
<td>1250.00 mg/plate</td>
<td>38.00</td>
</tr>
<tr>
<td></td>
<td>2500.00 mg/plate</td>
<td>26.33</td>
<td></td>
<td>2500.00 mg/plate</td>
<td>40.00</td>
</tr>
<tr>
<td></td>
<td>5000.00 mg/plate</td>
<td>25.00</td>
<td></td>
<td>5000.00 mg/plate</td>
<td>36.33</td>
</tr>
<tr>
<td>Positive control</td>
<td>996.67</td>
<td>Positive control</td>
<td>854.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA 1537</td>
<td>Negative control</td>
<td>14.00</td>
<td>TA 102</td>
<td>Negative control</td>
<td>336.33</td>
</tr>
<tr>
<td></td>
<td>312.50 mg/plate</td>
<td>13.67</td>
<td></td>
<td>312.50 mg/plate</td>
<td>338.33</td>
</tr>
<tr>
<td></td>
<td>625.00 mg/plate</td>
<td>14.00</td>
<td></td>
<td>625.00 mg/plate</td>
<td>328.67</td>
</tr>
<tr>
<td></td>
<td>1250.00 mg/plate</td>
<td>13.00</td>
<td></td>
<td>1250.00 mg/plate</td>
<td>321.00</td>
</tr>
<tr>
<td></td>
<td>2500.00 mg/plate</td>
<td>13.00</td>
<td></td>
<td>2500.00 mg/plate</td>
<td>337.00</td>
</tr>
<tr>
<td></td>
<td>5000.00 mg/plate</td>
<td>13.00</td>
<td></td>
<td>5000.00 mg/plate</td>
<td>302.67</td>
</tr>
<tr>
<td>Positive control</td>
<td>823.33</td>
<td>Positive control</td>
<td>1363.67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA EVALUATION REPORT
CGA-354743

STUDY TYPE: IN VIVO MAMMALIAN CYTOGENETICS - MICRONUCLEUS ASSAY
IN MOUSE BONE MARROW CELLS [OPPTS 870.5395 (§84-2)]
MRID 44931713

Prepared for
Health Effects Division
Office of Pesticides Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by
Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09J

Primary Reviewer:
B.L. Whitfield, Ph.D.
Signature:
Date:

Secondary Reviewers:
Cheryl B. Bast, Ph.D., D.A.B.T.
Signature:
Date:

Robert H. Ross, Group Leader, M.S.
Signature:
Date:

Quality Assurance:
Lee Ann Wilson, M.A.
Signature:
Date:

Disclaimer
This review may have been altered subsequent to the contractor’s signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
STUDY TYPE: In vivo mammalian cytogenetics - micronucleus assay in mouse bone marrow [OPPTS 870.5395 (§84-2)].

DP BARCODE: D260393
P.C. CODE: 108801 (parent)
TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-354743 tech. (CGA-354743 (Metolachlor ESA, degradate of metolachlor), 98 ± 2% a.i.)

SYNONYMS: none provided

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, Post Office Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a ICOM:CD1 (CRL) mouse bone marrow micronucleus assay (MRID 44931713), five mice/sex/dose were treated once each via oral gavage with CGA-354743 tech. (Batch No. K15408/6, 98 ± 2% a.i.) at doses of 1250, 2500 and 5000 mg/kg body weight. Bone marrow cells were harvested at 16, 24 and 48 post-treatment from the high dose and negative control groups and at 24 hours only from the intermediate and low dose and positive control groups. The vehicle was bidistilled water.

There were no signs of toxicity in the preliminary toxicity assay (5000 mg/kg only) or at any dose or sampling time in the micronucleus assay. The upper dose was the limit dose for this assay and also the solubility limit. No bone marrow cytotoxicity, based on the PCE/NCE ratio was evident. There was no statistically significant increase in the percentage of micronucleated PCEs in any CGA-354743 tech. treated group when compared to the solvent control groups and there were no sex-related differences seen. The mean percentage of micronucleated PCEs (pooled male/female data) was 0.04% in all treatment groups except the 5000 mg/kg, 24 hour harvest time group in which the percentage was 0.07%. The solvent control values were 0.03, 0.03 and 0.01% at 16, 24 and 48 hours, respectively while the positive control value was 1.07% (24 hour harvest time only). The positive and solvent controls induced the appropriate responses.
There was no significant increase in the frequency of micronucleated polychromatic erythrocytes in bone marrow after any dose or treatment time.

This study is classified as **Acceptable/Guideline**. It satisfies the requirement for FIFRA Test Guideline [OPPTS 870.5395 (§84-2)] for *in vivo* cytogenetic mutagenicity data.

COMPLIANCE: Signed and dated GLP, Quality Assurance and Data Confidentiality statements were provided.

1. **MATERIALS AND METHODS**

 A. **MATERIALS**

 1. **Test material:** CGA-354743 tech.

 Description *(e.g. technical, nature, color):* solid
 Lot/Batch #: KI-5408/6
 Purity: 98 ± 2 % a.i.
 Stability of compound: stable
 CAS #: not provided
 Structure: not provided
 Solvent used: bidistilled water
 Other comments: metabolite of CGA-24705, metolachlor

 2. **Control materials**

 Negative *(if not vehicle)/Route of administration:* none

 Vehicle/Final volume/Route of administration: bidistilled water / 10 mL/kg / oral gavage

 Positive/Final dose(s)/Route of administration: cyclophosphamide / 64 mg/kg / oral gavage

 3. **Test compound administration**

 Volume of test substance administered: 10 mL/kg body weight

 Route of administration: oral gavage

 Dose levels used:

 Preliminary toxicity test: 5000 mg/kg

 Micronucleus assay: 1250, 2500, 5000 mg/kg
4. Test animals

Species: mouse
Strain: ICO:CD1(CRL)
Age: 6 - 8 weeks
Weight male: 32 - 38 g female: 24 - 30 g
Source: Animal farm of IFFA CREDO, France, 79592 L'Arbresle
No. animals used per dose: _5_ males _5_ females
Properly maintained? Y

B. TEST PERFORMANCE

1. Treatment and sampling times

a. Test compound

Dosing: _x_ once __ twice (24 hr apart)
__ other (describe):
Sampling (after last dose): _6 hr __ 12 hr _x_ 24 hr _x_ 48 hr __ 72 hr _x_
(other describe): 16 hr (sampling time for the intermediate and low doses was 24 hours only)

b. Negative and/or vehicle control

Dosing: _x_ once __ twice (24 hr apart)
Sampling (after last dose): _6 hr __ 12 hr
x 24 hr _x_ 48 hr __ 72 hr (mark all that are appropriate), other (describe): 16 hours

c. Positive control

Dosing: _x_ once __ twice (24 hr apart)
__ other (describe):
Sampling (after last dose): _6 hr __ 12 hr
x 24 hr __ 48 hr __ 72 hr (mark all that are appropriate), other (describe):

2. Tissues and cells examined

x bone marrow __ other (list):

No. of polychromatic erythrocytes (PCE) examined per animal: _2000_.
No. of normochromatic erythrocytes (NCE; more mature RBCs) examined per animal: varied, the PCE/NCE ratio was determined in at least 1000 erythrocytes.
Other (if other cell types examined, describe):
3. **Details of slide preparation**

Mice were killed at the selected harvest time by CO₂ asphyxiation, bone marrow was collected in fetal calf serum from both femurs of each animal, the marrow suspension was centrifuged and the cells resuspended in fetal calf serum. Smears were prepared and stained with May-Grünewald/Giemsa solution and mounted. No further details of slide preparation was provided. The slides were coded prior to analysis.

4. **Statistical methods**

The significance of differences was assessed by the Chi-Squared-Contingency-Test ($F=1$, $p < 0.05$)

5. **Evaluation criteria**

Micronuclei were identified as uniform, darkly stained, more or less round bodies in the cytoplasm of erythrocytes. The unit of measure was the micronucleated PCE, not the number of micronuclei. Bodies which were reflective, improperly shaped or stained or which were not in the focal plain of the cell were judged to be artifacts. The mean number of micronucleated PCEs in the treatment groups and negative control groups were compared for significant differences, using data from each sex separately and also using pooled data from both sexes.

The results were considered positive if the mean number of micronucleated PCEs in any test material treated group exceeded 0.20% and if there was a statistically significant difference (Chi Squared ≥ 3.84; $p < 0.05$) when compared with the negative control. A positive response in a minority of mice accompanied by an increase in the number of micronucleated NCEs in not considered treatment related.

II. **REPORTED RESULTS**

A. **PRELIMINARY TOXICITY ASSAY**

One male and one female mouse each received a single treatment of 5000 mg/kg CGA-354743 tech. via oral gavage and were observed for three days. No deaths or other signs of toxicity were seen. The experiment was repeated with the same results. This concentration was thus chosen as the upper dose for the micronucleus assay.

B. **MICRONUCLEUS ASSAY**

Five mice/sex/dose were treated once each via oral gavage with 1250, 2500 or 5000 mg/kg CGA-354743 tech. and the bone marrow cells harvested at 24 hours post-treatment in all dose groups and additionally at 16 and 48 hours post-treatment in the 5000 mg/kg groups. No signs of toxicity were seen in any mouse during the study.
and no indication of bone marrow cytotoxicity was seen (based on the PCE/NCE ratios). Test material concentrations were analyzed by HPLC to confirm the actual concentrations and stability and found acceptable.

There was no statistically significant increase in the percentage of micronucleated PCEs in any CGA-354743 tech. treated group when compared to the solvent control groups and there were no sex-related differences seen. The mean percentage of micronucleated PCEs (pooled male/female data) was 0.04% in all treatment groups except the 5000 mg/kg, 24 hour harvest time group in which the percentage was 0.07%. The solvent control values were 0.03, 0.03 and 0.01% at 16, 24 and 48 hours, respectively while the positive control value was 1.07% (24 hour harvest time only). Results of the micronucleus assay are summarized in Appendix Tables 1 - 3 (MRID 44931713, pp. 22 - 24).

III. REVIEWER'S DISCUSSION/CONCLUSIONS

A. This is an acceptable study. CGA-354743 tech. was tested to a limit dose of 5000 mg/kg, suitable experimental protocol was followed and the positive and solvent control values were appropriate. CGA-354743 tech. did not increase the percentage of micronucleated PCEs as tested in this study.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline [OPPTS 870.5395(§84-2)] for in vivo cytogenetic mutagenicity data.

B. STUDY DEFICIENCIES

No study deficiencies were identified.
APPENDIX
MRID 44931713

THE FOLLOWING ATTACHMENTS ARE NOT AVAILABLE ELECTRONICALLY. SEE THE FILE COPY.
TABLE 1

MICRONUCLEUS TEST ON MOUSE BONE MARROW CELLS

SUMMARIZED DATA

ANIMALS SACRIFICED 16 h AFTER APPLICATION

Test number	981016
Test substance	CGA 354743 tech.
Batch	KI-5408/6

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PCEs counted (total)</th>
<th>Ratio PCE/NCE</th>
<th>Micronucleated PCEs # found</th>
<th>% of micronucleated PCEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Control: Bidistilled water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>10000</td>
<td>0.89</td>
<td>2</td>
<td>0.02</td>
</tr>
<tr>
<td>Females</td>
<td>10000</td>
<td>0.94</td>
<td>3</td>
<td>0.03</td>
</tr>
<tr>
<td>Pooled data</td>
<td>20000</td>
<td>0.92</td>
<td>5</td>
<td>0.03</td>
</tr>
<tr>
<td>Treatment: 5000 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>10000</td>
<td>0.79</td>
<td>3</td>
<td>0.03</td>
</tr>
<tr>
<td>Females</td>
<td>10000</td>
<td>0.86</td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td>Pooled data</td>
<td>20000</td>
<td>0.83</td>
<td>8</td>
<td>0.04</td>
</tr>
</tbody>
</table>

In a total of 5 animals per sex
TABLE 2: MICRONUCLEUS TEST ON MOUSE BONE MARROW CELLS

SUMMARIZED DATA

ANIMALS SACRIFICED 24 h AFTER APPLICATION

Test number	981016
Test substance	CGA 354743 tech.
Batch	KI-5408/6

<table>
<thead>
<tr>
<th>Treatment Sex</th>
<th>PCEs counted (total)</th>
<th>Ratio PCE/NCE</th>
<th>Micronucleated PCEs # found</th>
<th>% of micronucleated PCEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Control: Bidistilled water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>10000</td>
<td>0.76</td>
<td>3</td>
<td>0.03</td>
</tr>
<tr>
<td>Females</td>
<td>10000</td>
<td>0.75</td>
<td>2</td>
<td>0.02</td>
</tr>
<tr>
<td>Pooled data</td>
<td>20000</td>
<td>0.76</td>
<td>5</td>
<td>0.03</td>
</tr>
<tr>
<td>Treatment: 1250 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>10000</td>
<td>0.99</td>
<td>2</td>
<td>0.02</td>
</tr>
<tr>
<td>Females</td>
<td>10000</td>
<td>0.93</td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td>Pooled data</td>
<td>20000</td>
<td>0.96</td>
<td>8</td>
<td>0.04</td>
</tr>
<tr>
<td>Treatment: 2500 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>10000</td>
<td>0.69</td>
<td>3</td>
<td>0.03</td>
</tr>
<tr>
<td>Females</td>
<td>10000</td>
<td>0.81</td>
<td>4</td>
<td>0.04</td>
</tr>
<tr>
<td>Pooled data</td>
<td>20000</td>
<td>0.75</td>
<td>7</td>
<td>0.04</td>
</tr>
<tr>
<td>Treatment: 5000 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>10000</td>
<td>0.65</td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td>Females</td>
<td>10000</td>
<td>0.66</td>
<td>7</td>
<td>0.07</td>
</tr>
<tr>
<td>Pooled data</td>
<td>20000</td>
<td>0.66</td>
<td>13</td>
<td>0.07</td>
</tr>
<tr>
<td>Positive Control: Cyclophosphamide 64 mg/kg, p.o.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>10000</td>
<td>0.67</td>
<td>109</td>
<td>1.09*</td>
</tr>
<tr>
<td>Females</td>
<td>10000</td>
<td>0.64</td>
<td>104</td>
<td>1.04*</td>
</tr>
<tr>
<td>Pooled data</td>
<td>20000</td>
<td>0.66</td>
<td>213</td>
<td>1.07*</td>
</tr>
</tbody>
</table>

* In a total of 5 animals per sex
* Number of micronucleated PCEs statistically significant different from negative control (Level of significance p<0.05)
TABLE 3: MICRONUCLEUS TEST ON MOUSE BONE MARROW CELLS
SUMMARIZED DATA

ANIMALS SACRIFICED 48 h AFTER APPLICATION

<table>
<thead>
<tr>
<th>Test number</th>
<th>Test substance</th>
<th>Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>981016</td>
<td>CGA 354743 tech.</td>
<td>KI-5408/6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PCEs counted (total)</th>
<th>Ratio PCE/NCE</th>
<th>Micronucleated PCEs # found</th>
<th>% of micronucleated PCEs</th>
</tr>
</thead>
</table>
| **Negative Control: Bidistilled water**
Males | 10000 | 0.87 | 1 | 0.01 |
| Females | 10000 | 0.93 | 1 | 0.01 |
| Pooled data | 20000 | 0.90 | 2 | 0.01 |

| **Treatment: 5000 mg/kg**
Males | 10000 | 0.87 | 3 | 0.03 |
| Females | 10000 | 1.07 | 4 | 0.04 |
| Pooled data | 20000 | 0.97 | 7 | 0.04 |

* In a total of 5 animals per sex
DATA EVALUATION REPORT

CGA-354743

STUDY TYPE: OTHER GENOTOXICITY: UNSCHEDULED DNA SYNTHESIS IN PRIMARY RAT HEPATOCYTES/MAMMALIAN CELL CULTURES
[OPPTS 870.5550 (§84-2)]
MRID 44931714

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09K

Primary Reviewer:
B.L. Whitfield, Ph.D.
Signature: B.L. Whitfield
Date: FEB 01 2000

Secondary Reviewers:
Cheryl B. Bast, Ph.D., D.A.B.T
Signature: Cheryl Bast
Date: FEB 01 2000

Robert H. Ross, Group Leader, M.S.
Signature: Robert H. Ross
Date: FEB 01 2000

Quality Assurance:
LeeAnn Wilson, M.A.
Signature: LeeAnn Wilson
Date: FEB 01 2000

Disclaimer

This review may have been altered subsequent to the contractor's signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
DATA EVALUATION RECORD

STUDY TYPE: Other Genotoxicity: Unscheduled DNA Synthesis in Primary Rat Hepatocytes/Mammalian Cell Cultures [OPPTS 870.5550 (§84-2)]

P.C. CODE: 108801 (parent)
TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-354743 tech. (CGA-354743 (Metolachlor ESA, degradate of metolachlor), 98% a.i.)

SYNONYMS: none given

SPONSOR: Novartis Crop Protection, Greensboro, NC

EXECUTIVE SUMMARY: In an unscheduled DNA synthesis (UDS) assay (MRID 44931714), primary rat hepatocyte cultures were exposed to CGA-354743 tech. (Batch No. KI-5408/6, 98% a.i.) in bidistilled water at concentrations of 9.77, 39.06, 156.25, 625.00, 2500.00, 5000.00 µg/mL for 16 to 18 hours in an initial assay and to concentrations of 78.13, 156.25, 312.50, 625.00, 1250.00, 2500 µg/mL for 16 to 18 hours in a confirmatory assay. Primary hepatocytes were obtained from healthy male HANlbm:WIST(SPF) rats.

CGA-354743 tech. was tested up to cytotoxic concentrations based on cell morphology changes and reduced cell viability. A cytotoxicity test at concentrations ranging from 4.88 to 5000.00 µg/mL showed a general trend of decreasing cell viability with increasing test material concentration, decreasing from 81% viable cells at 4.88 µg/mL to 57% at 5000.00 µg/mL. Viability of the solvent controls was 88%. Effects on cell morphology were seen at concentrations of 39.06 and higher, although, sufficient cells with good morphology were available for UDS determination at all test material concentrations. One hundred and fifty cells (50/slide) were scored for UDS per treatment group. There was no increase in the net nuclear grain count, the net grain count of cells in repair or in the percentage of cells in repair over solvent control values at any concentration in either assay. The mean net nuclear grain counts remained below 1.0 at all
concentrations in both assays. The mean net nuclear grain counts of the solvent controls were 0.5 and -0.4 in the initial and confirmatory assays, respectively, while those of the positive controls were 12.3 and 9.3 in the initial and confirmatory assays, respectively. The positive and solvent controls induced the appropriate response. **There was no evidence that unscheduled DNA synthesis, as determined by radioactive tracer procedures (nuclear silver grain counts), was induced.**

This study is classified as **Acceptable/Guideline**. It satisfies the requirement for FIFRA Test Guideline (OPPTS 870.5550; 84-2) for other genotoxic mutagenicity data.

COMPLIANCE: Signed and dated GLP, Quality Assurance and Data Confidentiality statements were provided.

I. MATERIALS AND METHODS

A. MATERIALS

1. **Test material:** CGA-354743 tech.

 Description (e.g. technical, nature, color, stability): solid
 Lot/Batch #: KI-5408/6
 Purity: 98% a.i.
 Stability of compound: stable
 CAS #: not provided
 Structure: not provided
 Solvent used: bidistilled water
 Other comments: none

2. **Control materials**

 Negative: none
 Solvent/final concentration: bidistilled water
 Positive (concentrations/solvent): 2-acetylaminofluorene / 10 µg/mL / unspecified

3. Test compound concentrations used:

 Preliminary cytotoxicity assay: 4.88, 9.77, 19.53, 39.06, 78.13, 156.25, 312.50, 625.00, 1250.00, 2500.00, 5000.00 µg/mL
 UDS assay (first): 9.77, 39.06, 156.25, 625.00, 2500.00, 5000.00 µg/mL
 UDS assay (confirmatory): 78.13, 156.25, 312.50, 625.00, 1250.00, 2500 µg/mL

4. **Media**

 See Section A. 6
5. **Test cells**

Mammalian cells in culture/primary rat hepatocytes. Primary hepatocytes from healthy male HANibm:WIST(SPF) rats obtained from BRL/CPB, Biological Research Laboratories Ltd., Füllinsdorf, Switzerland.

6. **Cell preparation:**

 a. **Perfusion technique**

 The liver was perfused *in situ* through the portal vein for 8 - 10 minutes with calcium-free Hanks' solution (BSS) supplemented with EGTA (0.5 mMol/L) and NaHCO₃ (the perfusate was aerated with carbogen (95% O₂, 5% CO₂) to adjust the pH to about 7.3). The temperature was maintained at approximately 37°C. Perfusion was then continued for an additional 10 minutes with BSS supplemented with 0.05% collagenase, 2 mMol/L CaCl₂ and NaHCO₃ (aerated as before). The liver was then excised, placed in a dish containing BSS supplemented with 100 U/mL penicillin, 100 µg/mL streptomycin and 2.5 µg/mL amphotericin, 2 mMol/L CaCl₂, 0.4 mMol/L MgSO₄, 0.05% bovine serum albumin (BSA) and NaHCO₃. The pH was adjusted to 7.3 as before.

 b. **Hepatocyte harvest/culture preparation**

 The Glisson's capsule was opened and the cells dispersed by gently shaking the liver in the solution. Cells were filtered, washed once and resuspended in Williams' medium E. Viability of the cells, as determined by Trypan blue exclusion, was typically greater than 80%. The isolated hepatocytes in Williams Medium E containing 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL streptomycin, 2.5 µg/mL amphotericin and 2 mMol/L glutamine were cultured in a humidified atmosphere with 5% CO₂ at 37°C. Cultures were prepared for the UDS assay by seeding 10⁵ cells/mL in a series of compartments in multiplates containing gelatinized THERMANOX coverslips (4 x 10⁵ cells per compartment). Following a 1.5 to 2.0 hour attachment period, unattached cells were removed by washing with BSS and the cultures were refed with culture medium.

B. TEST PERFORMANCE

1. **Cytotoxicity assay**

Eleven concentrations of CGA-354743 tech. ranging from 4.88 to 5000 µg/mL were tested for cytotoxicity to the hepatocytes. Two cultures per test material concentration (or solvent control) were treated with 200 µL each of the desired test solution and incubated for 16 - 18 hours. The medium was then removed and the cells washed twice with BSS and stained with Trypan blue solution (0.2%) for five minutes. The
cells were then washed with BSS, fixed and the percentage of viable cells (those unstained) in 100 cells was determined. The morphological quality of the viable cells was also evaluated.

2. UDS assay

a. Treatment

Four cultures per treatment group (solvent control, positive control and test material) were treated by adding 20 µL of test solution to 2 mL of medium in each culture compartment. Immediately after the test material was added, 8 µCi ³H-thymidine was added to each compartment and the cultures incubated for 16-18 hours. Following treatment, the cells were washed twice with BSS and the nuclei swollen by treatment with 1% sodium citrate for 10 minutes. The cells were then fixed with ethanol:acetic acid (3:1 (v:v)) and the coverslips mounted on microscope slides and prepared for autoradiography.

b. Preparation of Autoradiographs/Grain Development

Slides were coated with Ilford K.5 emulsion (diluted with two volumes of water) in a dark room at 20°C, air-dried and exposed in light- and airproof boxes containing desiccants at 4°C for four days. The autoradiographs were developed in Kodak Developer D-19, rinsed in acetic acid (1%) and fixed in Hypam solution (Ilford, diluted 1:10 in water). They were then stained in hematoxylin solution, rinsed in tap water and counterstained in eosine. Slides were coded prior to scoring.

c. Grain counting

Three slides (50 cells/slide) were scored from each treatment group and control group using an electronic counter attached to a microscope at 2000x magnification. The number of silver grains over the nuclei (nuclear grain count) were counted and the mean and standard deviations were calculated. The number of silver grains over three nuclear sized regions of cytoplasm adjacent to the nucleus were also counted and the mean value subtracted from the nuclear grain count to obtain the net nuclear grain count. The percentage of cells in repair, defined as cells with a net nuclear grain count of 2.0 or more, was also determined. Cells undergoing replicative DNA synthesis were excluded from the analysis.

e. Evaluation criteria

Criteria for a positive response were a reproducible increase, compared to the solvent control, of the mean nuclear grain counts and the mean net nuclear grain counts at two or more consecutive concentrations with at least one concentration giving a mean net nuclear grain count of 2.0 or higher. In addition, the results
were considered positive if the percentage of cells in repair showed an obvious shift to higher values at two or more consecutive concentrations compared to the solvent controls. In general, a positive dose-response should be seen.

Results were considered negative if it was reproducibly shown that the mean nuclear grain counts and the mean net nuclear grain counts as well as the percentage of cells in repair were not significantly different from the solvent control values at any concentration and no concentration dependency was seen.

f. Statistical analysis

No statistical analysis was performed.

II. REPORTED RESULTS

The concentrations and stability of test material used in this study were confirmed by HPLC analysis.

A. Preliminary cytotoxicity assay

Cell viability and morphology were evaluated at eleven CGA-354743 tech. concentrations ranging from 4.88 to 5000.00 µg/mL. There was a general trend of decreasing cell viability with increasing test material concentration, decreasing from 81% viable cells at 4.88 µg/mL to 57% at 5000.00 µg/mL. Viability of the solvent controls was 88%. Effects on cell morphology were seen at concentrations of 39.06 and higher, although, sufficient cells with good morphology were available for UDS determination at all test material concentrations.

B. UDS assay

Six concentrations of CGA-354743 tech. ranging from 9.77 to 5000.00 µg/mL were evaluated for UDS inducing activity in an initial assay and six concentrations ranging from 78.13 to 2500.00 µg/mL were evaluated in a confirmatory assay. One hundred and fifty cells (50/slide) were scored per treatment group. There was no increase in the net nuclear grain count, the net grain count of cells in repair or in the percentage of cells in repair over solvent control values at any concentration in either assay. The mean net nuclear grain counts remained below 1.0 at all concentrations in both assays. The mean net nuclear grain counts of the solvent controls were 0.5 and -0.4 in the initial and confirmatory assays, respectively, while those of the positive controls were 12.3 and 9.3 in the initial and confirmatory assays, respectively. Results of the UDS assays are summarized in Appendix Tables 1 and 2 (MRID 44931714, pp. 24 and 27).
III. REVIEWER’S DISCUSSION/CONCLUSIONS

A. This is an acceptable study. CGA-354743 tech. was tested to a sufficiently high concentration, limited by cytotoxicity, proper experimental protocol was followed and the positive and solvent control values were appropriate (within the testing laboratory’s historical control ranges). There was no evidence that CGA-354743 tech. induced UDS in primary rat hepatocytes as tested in this study.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline (OPPTS 870.5550; 84-2) for other genotoxic mutagenicity data.

B. STUDY DEFICIENCIES - No study deficiencies were identified.
APPENDIX
MRID 44931714

THE FOLLOWING ATTACHMENTS ARE NOT AVAILABLE ELECTRONICALLY. SEE THE FILE COPY.
TABLE 1 Group mean net grain count values, original experiment

<table>
<thead>
<tr>
<th>Dose (µg/ml)</th>
<th>Net nuclear grain count (NG)</th>
<th>Net grain count of cells in repair</th>
<th>Percent of cells in repair (NG ≤ 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>SD</td>
<td>mean</td>
</tr>
<tr>
<td>Bidistilled water</td>
<td>0.5</td>
<td>0.4</td>
<td>2.7</td>
</tr>
<tr>
<td>10.00 2-AAF</td>
<td>12.3</td>
<td>0.5</td>
<td>12.3</td>
</tr>
<tr>
<td>5000.00</td>
<td>0.4</td>
<td>0.3</td>
<td>2.9</td>
</tr>
<tr>
<td>2500.00</td>
<td>0.4</td>
<td>0.3</td>
<td>2.9</td>
</tr>
<tr>
<td>625.00</td>
<td>0.6</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>156.25</td>
<td>0.1</td>
<td>0.2</td>
<td>2.9</td>
</tr>
<tr>
<td>39.06</td>
<td>-0.0</td>
<td>0.3</td>
<td>2.5</td>
</tr>
<tr>
<td>9.77</td>
<td>0.6</td>
<td>0.2</td>
<td>2.7</td>
</tr>
</tbody>
</table>
TABLE 2 Group mean net grain count values, confirmatory experiment

<table>
<thead>
<tr>
<th>Dose (µg/ml)</th>
<th>Net nuclear grain count (NG)</th>
<th>Net grain count of cells in repair (NG ≥ 2)</th>
<th>Percent of cells in repair (NG ≤ 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>SD</td>
<td>mean</td>
</tr>
<tr>
<td>Bidistilled water</td>
<td>-0.4</td>
<td>1.0</td>
<td>2.6</td>
</tr>
<tr>
<td>10.00 2-AAF</td>
<td>9.3</td>
<td>1.2</td>
<td>9.3</td>
</tr>
<tr>
<td>2500.00 2-AAF</td>
<td>0.8</td>
<td>0.3</td>
<td>3.0</td>
</tr>
<tr>
<td>1250.00 2-AAF</td>
<td>0.7</td>
<td>0.5</td>
<td>3.1</td>
</tr>
<tr>
<td>625.00 2-AAF</td>
<td>0.6</td>
<td>0.1</td>
<td>3.0</td>
</tr>
<tr>
<td>312.50 2-AAF</td>
<td>0.9</td>
<td>0.2</td>
<td>2.9</td>
</tr>
<tr>
<td>156.25 2-AAF</td>
<td>0.4</td>
<td>0.3</td>
<td>2.8</td>
</tr>
<tr>
<td>78.13 2-AAF</td>
<td>-0.3</td>
<td>0.2</td>
<td>2.9</td>
</tr>
</tbody>
</table>
DATA EVALUATION REPORT

CGA-354743
(METOLACHLOR ESA, degrade of Metolachlor)

STUDY TYPE: METABOLISM AND PHARMACOKINETICS – RAT
[OPPTS: 870-7485 (§85-1)]
MRID 44931715

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09L

Primary Reviewer:
Robert A. Young, Ph.D., D.A.B.T.
Signature: [Signature]
Date: [FEB 01 2000]

Secondary Reviewers:
H. Tim Borges, Ph.D., MT (ASCP), D.A.B.T.
Signature: [Signature]
Date: [FEB 01 2000]

Robert H. Ross, M.S., Group Leader
Signature: [Signature]
Date: [FEB 01 2000]

Quality Assurance:
Lee Ann Wilson, M.A.
Signature: [Signature]
Date: [FEB 01 2000]

Disclaimer

This review may have been altered subsequent to the contractor’s signatures above.

DATA EVALUATION RECORD

STUDY TYPE: Metabolism - Rat [OPPTS 870.7485 (§85-1)]

TEST MATERIAL (PURITY): CGA 77102 (purity 99.8%); [phenyl-U-14C] CGA 77102 (purity >98.96%)

SYNONYMS: (S)-2-Chloro-N-(2-ethyl-6-methyl-phenyl)-N-(2-methoxy-1-methyl-ethyl)-acetamide; (S)-2-Chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide; S-Metolachlor

SPONSOR: Novartis Crop. Protection, Inc., CH-4002, 410 Swing Road, Post Office Box 18300, Greensboro, NC 27419.

EXECUTIVE SUMMARY: In a metabolism study (MRID 44931715), groups of three male and three female rats were each given [phenyl-U-14C] CGA 77102 (batch no. ILS-143.1; purity 98.9%) and non-radiolabeled CGA 77102 (batch no. AMS 757-101; purity 99.8%) to provide a total single oral dose of 0.5 or 100 mg/kg. Urinary and fecal excretion were monitored over 72 hours and major metabolites identified and quantified. The study focused on evaluating the presence of the metabolites CGA 354743, CGA 368208, and CGA 357704 in the excreta of rats.

There were no deaths or overt signs of toxicity attributed to the test material. Actual administered doses were 3-8% greater than nominal. Overall recovery of administered radioactivity was an acceptable 93.83-99.18%. Urinary excretion and carcass burden data implied that absorption was approximately 38-49% of the administered dose. Most (86.5-91.7%) of the radioactivity recovered at 72 hours post was associated with the urine and feces. The available data suggested that urinary excretion was slightly greater in female rats than male rats (42% for low- and high-dose females as compared to 30% and 32% of low- and high-dose males, respectively), and fecal elimination was expectedly less (approximately 13-15%) for females than for males. However, the small sample size (three rats per sex) precludes a definitive assessment of gender-specific differences in excretory pattern. Time-course data for absorption and excretion were not...
provided. Based upon the residual radioactivity in the carcasses, accumulation in the tissues was less than 10% of the administered dose at 72 hours after administration.

Both urinary and fecal metabolites were identified and quantified. For both routes of elimination, three major metabolites were identified but none represented more than 0.25% of the administered dose. Characterization of these metabolites and comparison to known reference standards revealed them to be CGA 357704, CGA 354743, and CGA 368208. In the feces, CGA 357704 and CGA 354743 represented a notably greater percent of the administered dose than in the urine. The amounts of CGA 368208 were similar in the feces and urine. Biliary excretion experiments were not performed and, therefore, no assessment can be made regarding biliary or gut microflora as the source of these biotransformation products in the feces.

This metabolism study in rats is Acceptable/Non-guideline. Although not satisfying the requirements for a Metabolism and Pharmacokinetics study [OPPTS 870.7485 (85-1)], the study was well designed and conducted, and provided supplemental data regarding the quantitation and identification of urinary and fecal metabolites in rats given a single oral dose of CGA 77102.

COMPLIANCE: Signed and dated Good Laboratory Practice Compliance Statement (p. 3), OECD Principles of Good Laboratory Practice (p. 5), Quality Assurance (p. 6), and Data Confidentiality statements (p. 2) were provided in the study report.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test compound

Radiolabeled: [Phenyl-U-14C] CGA 77102
Batch No.: ILS-143.1
Specific Activity: 2000 kBq/mg
Purity: 98.9%
Description: not specified
Contaminants: none noted
CAS No.: 51218-45-2

Non-radiolabeled: CGA 77102
Purity: 99.8%
Batch No.: AMS 757-101
Description: not specified
Contaminants: none noted
CAS No.: 51218-45-2

Structure:

2. Vehicle

Ethanol/PEG 200/water (3/2/3, v:v:v) served as the dosing vehicle.

3. Test animals

Species: rat
Strain: Ti:ERA f (SPF)
Age and weight at study initiation: 7-9 weeks; males: 196-205 g, females: 182-199 g
Housing: Maintained individually in Plexiglass metabolism cages from Day-1 to termination.
Diet: Certified standard powdered diet (Nafag No. 890, NAFAG, Gossau, Switzerland, ad libitum (except the night before administration of radiolabeled test material).
Water: tap water ad libitum
Environmental conditions:
 Temperature: 20°C
Humidity: 42-78%
Air changes: not specified
Photoperiod: 12 hrs/12 hrs
Acclimation period: At least 4 days

4. Preparation of dosing solution

The dose solutions were prepared by dissolving an appropriate amount of the test material in ethanol/PEG 200/water (3/2/3, v:v:v) to provide concentrations of 0.2 mg/mL (low dose) or 24.9 mg/mL (high dose). The low- and high-doses represented approximately 212 kBq and 6.8 MBq/animal, respectively.

Results -
Homogeneity: Not specified but dosing solution preparation as described would appear to provide acceptable homogeneity.

Stability: Based upon TLC analysis (radiochromatograms provided in study report), the dosing solutions were stable at the time of administration.

Dose confirmation: The test material represented <98% of the radioactivity in the dosing solutions. Actual doses to the test animals were 3-8% greater than nominal.

B. STUDY DESIGN AND METHODS

1. Group arrangements

Animals were numbered randomly and assigned to experimental groups shown in Table 1.

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>Dose (mg/kg)</th>
<th>Number/SEX</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low dose (B3)</td>
<td>0.5</td>
<td>3 males 3 females</td>
<td>Actual administered dose ranged from 0.52 to 0.55 mg/kg; urine and fecal samples collected at 0-24, 24-48, and 48-72 hrs</td>
</tr>
<tr>
<td>High dose (D2)</td>
<td>100</td>
<td>3 males 3 females</td>
<td>Actual administered dose ranged from 102.30 to 111.85 mg/kg; urine and fecal samples collected at 0-24, 24-48, and 48-72 hrs</td>
</tr>
</tbody>
</table>

Information taken from p. 19 and Tables 1 and 2, p. 33. MRID 44931715.

2. Dosing and sample collection

Animals were administered the test material by stomach tube. Low-dose rats were given about 0.5 mL and high-dose rats were given about 0.8 mL of the dosing solution. Individual animal doses based on individual body weights were provided in the study report.
Expired air - Not collected.

Blood - Not collected.

Urine - Urine samples were collected from individual rats at 0-24, 24-48, and 48-72 hours. Samples were collected in containers immersed in dry ice and volumes recorded. Samples were kept frozen until analyzed.

Feces - Feces were collected at ambient temperature from individual rats at 0-24, 24-48, and 48-72 hours. Sample weights were recorded and the samples were kept frozen until analyzed.

Cage wash - At the end of each sample collection period, the cages were thoroughly rinsed with water/ethanol (1/1, v:v).

Tissues - Specific tissues not collected. At termination of the experiment, the rats were anesthetized with carbon dioxide and killed by exsanguination. The carcasses were kept frozen until homogenization and analysis.

3. Sample preparation/analysis

Urine - Aliquots (0.05 - 0.5 mL) of urine samples were mixed with scintillation cocktail (Irgasafe Plus, Packard Instrument Co.) and subjected to Liquid Scintillation Counting (LSC). Approximately one half of the 0-72 hour urine samples from each dose group were pooled for the purpose of metabolite identification. Based on radioactivity content, these pooled aliquots represented 36.2% of the low dose and 37.0% of the high dose. The pooled aliquots for metabolite identification were acidified with trichloracetic acid and fractionated on a PRP-1 resin extraction column. Resin column fractionation yielded three fractions. One fraction (first methanol eluate) contained approximately 90% of the radioactivity and was used for metabolite isolation. This fraction was evaporated and analyzed by TLC with known reference standards of CGA 354743, CGA 368208, and CGA 357704. Preparative TLC was used to acquire samples of the three fractions for LC/MS/MS analysis. Urinary metabolites were quantified using solid phase extraction and HPLC.

Feces - Approximately one half of the 0-72 hour fecal samples were also pooled. These aliquots represented 53% of the low dose and 50.9% of the high dose radioactivity in the feces. For radioactivity determination, the fecal samples were homogenized with water, combusted in a sample oxidizer (Carbosorb used to trap carbon dioxide), and mixed with Permafluor E+3 for LSC. Extraction of the fecal aliquot for metabolite identification was performed using acetonitrile and three subsequent 0.01M acetonitrile/ammonium “formiate” buffer (80:20 v/v, pH 4). Two extraction fractions (F1a/D2-1, F1a/B3-1) were prepared by evaporating the solvent. The corresponding nonextractable residues were labeled F1a/D2-R and F1a/B3-R. Radioactivity in all of these fractions was determined. For metabolite identification,
the fractions were analyzed by TLC using reference standards (CGA 354743, CGA 368208, and CGA 357704).

Cage wash - Cage wash samples were mixed with scintillation fluid (Irgasafe Plus, Packard Instrument Co.) and counted.

Tissues/carcass - The carcasses were homogenized in a food processor with dry ice. Samples of the carcass homogenates were combusted and analyzed by LSC.

4. Analytical techniques

LSC - LSC was performed using a Packard Tri-Carb, model 2000CA that computed quench-corrected disintegrations per minute (dpm).

Radio-TLC - The pattern of radioactivity detection on thin layer plates was accomplished by use of a spark chamber radiochromatogram camera (Berta; Raytest, Straubenhardt, Germany). Quantitation of the fractions was performed by extraction of each zone on the thin layer plate and subsequent radioassay by LSC. For isolation of metabolites, the thin layer plates were analyzed by a Bio-Imaging Analyzer (BAS 2000; Fuji Photo Film Co., Ltd. Tokyo, Japan) with quantitation of radioactivity by TINA (Raytest, Straubenhardt, Germany) software that provided percent of total radioactivity on the plate.

Radio-HPLC - The HPLC eluent fractions were collected and aliquots of each fraction assayed by LSC.

Thin Layer Chromatography (TLC) - TLC was performed using precoated silica gel 60 F$_{254}$ and RP-18 F$_{254}$, plates. Specific solvent systems and stationary phases were used for determination of the stability of CGA 77102, analysis of metabolite patterns, and isolation of metabolites (these have not been duplicated in this DER but are shown in tabular form on pp. 21-12 of the study report (MRID 44931715). Non-radioactive fractions on thin layer plates were visualized by dark quenching spots against the fluorescent background under UV light (254 nm). Rf values for the various reference standards were also provided on p. 22 of the study report.

High Performance Liquid Chromatography (HPLC) - HPLC analysis used a System Gold Nouveau system (Beckmann Instruments, Inc., San Ramon, CA) equipped with UV and radioactivity detectors. For analysis of urine samples, the system used a C-18 Nucleosill 120/5 μM 250 x 4 mm column, 1 mL/min flow rate with detection at 230 nm. A gradient solvent system of aqueous ammonium formiate buffer (Solvent A) and acetonitrile (Solvent B) was used. Specifics for the gradient flow and the retention times for the reference standards were provided on p. 23 of the study report.

5. Histopathology

Histopathologic analysis was not a protocol component and not performed.
6. **Statistics**

Group means and standard deviations were determined. Calculation methods for determining percent of metabolites in feces and urine, and determination of detection limits in tissues were also provided.

II. RESULTS

A. DISTRIBUTION/EXCRETION STUDIES

1. **Mass balance**

Overall recovery of administered radioactivity was acceptable (95.05-99.18% for low dose and 93.83-95.66% for high dose). Mass balance data are summarized in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Single low dose</th>
<th>Single high dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Expired air</td>
<td>Not measured</td>
<td>Not measured</td>
</tr>
<tr>
<td>Urine</td>
<td>30.22±0.36</td>
<td>42.13±4.70</td>
</tr>
<tr>
<td>Feces</td>
<td>56.50±7.00</td>
<td>49.58±5.28</td>
</tr>
<tr>
<td>Carcass</td>
<td>8.11±2.97</td>
<td>7.00±3.05</td>
</tr>
<tr>
<td>Cage wash</td>
<td>0.23±0.12</td>
<td>0.47±0.12</td>
</tr>
<tr>
<td>Total</td>
<td>95.05±9.06</td>
<td>99.18±2.72</td>
</tr>
</tbody>
</table>

Data taken from Tables 3-6, pp. 34-35, MRID 44931715.

2. **Absorption**

Absorption of the test material may be implied from the urinary excretion data as shown to represent approximately 30-42% of the administered dose. Addition of carcass burden (assuming it did not represent unabsorbed radioactivity from the gastrointestinal lumen) contributed an additional 6-8%. Tissue distribution and biliary excretion data were not provided and, therefore, unavailable for assessing absorption. Absorption appeared to be independent of dose at the doses tested.

3. **Excretion**

Based upon radioactivity in the urine, feces and cage wash, 87-92% of the administered radioactivity was eliminated by 72 hours. For both low and high dose groups, urinary elimination accounted for approximately 30-42% and fecal elimination
accounted for 47-57% of the administered dose. Overall and route-specific elimination appeared to be independent of dose. Although somewhat greater overall excretion was observed for females than for males in both dose groups, the differences were not statistically significant and could be explained by variability in one test animal and the small sample size. Under the conditions of this study, elimination via the feces was slightly greater than elimination via the urine although this difference was not as evident for female rats. Both routes are considered major routes of elimination for orally administered CGA 77102 at the doses and treatment period examined. The study focused on metabolite identification; time-course data for elimination were not generated.

4. Tissue distribution

Carcass burden at 72 hours represented 7-8% (low dose) and 6-7% (high dose) of the administered radioactivity (Table 2). Distribution among specific tissues was not examined.

B. PHARMACOKINETIC STUDIES

Kinetic parameters were not a protocol component and, therefore, were not assessed.

C. METABOLITE CHARACTERIZATION STUDIES

1. Urine

Resin column fractionation yielded three fractions. One fraction (first methanol eluate) contained approximately 90% of the radioactivity and was used for metabolite isolation. CGA 357704, CGA 368208, and CGA 354743 were confirmed as urinary metabolites. Quantitation data for these metabolites are presented in Table 3.

| TABLE 3. Quantitation of urinary metabolites (percent of administered dose) from rats given single oral dose of CGA 77102. |
|---|---|---|---|
| Dose group | CGA 357704 | CGA 354743 | CGA 368208 |
| Low dose | 0.02 | 0.03 | 0.03 |
| High dose | 0.05 | 0.003 | 0.02 |

Data taken from p. 30, MRID 44931715.

2. Feces

Quantitative data for fecal metabolites are shown in Table 4. Somewhat greater amounts of CGA 357704 and CGA 354743 were detected in the feces than were found in the urine.
TABLE 4. Quantitation of fecal metabolites (percent of administered dose) from rats given single a oral dose of CGA 77102.

<table>
<thead>
<tr>
<th>Dose group</th>
<th>CGA 357704</th>
<th>CGA 354743</th>
<th>CGA 368208</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low dose</td>
<td>0.12</td>
<td>0.25</td>
<td>0.05</td>
</tr>
<tr>
<td>High dose</td>
<td>0.16</td>
<td>0.14</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data taken from p. 30, MRID 44931715.

Total excretion of CGA 357704 was 0.14% and 0.21% of the administered dose for the low- and high-dose groups, respectively. Total excretion of CGA 354743 was 0.28% (low dose) and 0.14% (high dose) and total excretion of CGA 368208 was 0.08% for both the low- and high-dose groups.

D. HISTOPATHOLOGY

Histopathologic evaluations were not performed.

III. DISCUSSION

A. DISCUSSION

In a metabolism study (MRID 44931715), groups of three male and three female rats were each given [phenyl-U-¹⁴C] CGA 77102 (batch no. ILS-143.1; purity 98.9%) and non-radiolabeled CGA 77102 (batch no. AMS 757-101; purity 99.8%) to provide a total single oral dose of 0.5 or 100 mg/kg. Urinary and fecal excretion were monitored over 72 hours and major metabolites identified and quantified. The study focused on evaluating the presence of the metabolites CGA 354743, CGA 368208, and CGA 357704 in the excreta of rats.

There were no deaths or overt signs of toxicity attributed to the test material. Actual administered doses were 3-8% greater than nominal. Overall recovery of administered radioactivity was an acceptable 93.83-99.18%. There were no significant differences in recovery efficiency between the treatment groups or between genders. Urinary excretion and carcass burden data implied that absorption was approximately 38-49% of the administered dose. Urinary and fecal elimination represented most of the recovered radioactivity; fecal elimination somewhat more so. The available data suggested that urinary excretion was slightly greater in female rats than male rats (42% for low- and high-dose females compared to 30% and 32% for low- and high-dose males), and fecal elimination was expectedly less (approximately 13-15%) for females than for males. However, the small sample size (three rats per sex) precludes a definitive assessment of gender-specific differences in excretory pattern. Time-course data for absorption and excretion were not provided. Based upon the residual radioactivity in the carcasses, accumulation in the tissues was less than 10% of the administered dose at 72 hours after
administration. No time-course data were generated in this study so it is difficult to determine the potential for bioaccumulation.

Both urinary and fecal metabolites were identified and quantified. For both routes of elimination, three major metabolites were identified but none represented more than 0.25% of the administered dose. Characterization of these metabolites and comparison to known reference standards revealed them to be CGA 357704, CGA 354743, and CGA 368208. In the feces, CGA 357704 and CGA 354743 represented a notably greater percent of the administered dose than in the urine. The amounts of CGA 368208 were similar in the feces and urine. Biliary excretion experiments were not performed and, therefore, no assessment can be made regarding biliary or gut microflora as the source of these biotransformation products in the feces.

This metabolism study in rats is Acceptable/Non-guideline. Although not satisfying the requirements for a Metabolism and Pharmacokinetics Study [OPPTS 870.7485 (§85-1)], this study (MRID 44931715) was properly designed and conducted, and provided supplemental data regarding the quantitation and identification of very low levels of urinary and fecal metabolites in rats given a single oral dose of CGA 77102.

B. STUDY DEFICIENCIES

The study utilized only three animals/sex/dose. Although this did not compromise the validity of the results or the overall conclusions of this supplementary study, it did prevent definitive statistical evaluation. The study was designed to specifically address quantitation and identification of urinary and fecal metabolites and not for Tier 1 data requirements, thus its Non-guideline classification.
DATA EVALUATION REPORT

PHENYL-U-[14C]-CGA-376944 (METOLACHLOR DEGRADATE)

Study Type: METABOLISM AND PHARMACOKINETICS – RAT
[OPPTS 870.7485 (§85-1)]
MRIDs 44931716 and 44931717

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09M

Primary Reviewer:
William J. Spangler, Ph.D.
Signature:
Date: JAN 26 2000

Secondary Reviewers:
Robert A. Young, Ph.D., D.A.B.T.
Signature:
Date: JAN 2 6 2000

Robert H. Ross, M.S., Group Leader
Signature:
Date: JAN 2 6 2000

Quality Assurance:
Lee Ann Wilson, M.A.
Signature:
Date: JAN 2 6 2000

Disclaimer

This review may have been altered subsequent to the contractor’s signatures above.

CGA-354743 (Metolachlor Degradate) Metabolism Study [OPPTS 870.7485 (§85-1)]

EPA Reviewer: Byong-Han Chin, PhD
Reregistration Branch I, Health Effects Division (7509C)

EPA Work Assignment Manager: Joycelyn Stewart, PhD
Toxicology Branch, Health Effects Division (7509C)

DATA EVALUATION RECORD

STUDY TYPE: Metabolism - Rat; OPPTS [870.7485 (§85-1)]

DP BARCODE: D260393
SUBMISSION CODE: S570059
P.C. CODE: 108801 (parent only)
TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): Degradate of Metolachlor ([Phenyl-U-14C]-CGA 376944)
(chemical purity not specified); radiochemical purity >95.5%; unlabeled CGA-376944
(chemical purity not specified)

SYNONYMS:
A sulfonic acid soil degrade of Metolachlor (CGA77102); S-[(2-Ethyl-6-
methyl-phenyl)-2-methoxy-1-methyl-ethyl)-carbamoyl]-methanesulfonic acid-
[Phenyl-U-14C].

CITATION:
acid soil metabolite of CGA-77102, in the rat. Novartis Crop Protection AG,
CH-4002 Basle, Switzerland. Laboratory Study No. 030AM06, Novartis No.

acid soil metabolite of CGA-77102, in bile-duct cannulated rats after oral
administration. Novartis Crop Protection AG, CH-4002 Basle, Switzerland.
Laboratory Study No. 030AM08, Novartis No. 1066-99. MRID 44931716.
Unpublished.

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, Post Office Box 18300,
Greensboro, NC 27419.

EXECUTIVE SUMMARY: In a metabolism study (MRIDs 44931716 and 44931717),
groups of four male and female and six male Tif: RAI f (SPF) rats were given single oral
doses of [Phenyl-U-14C]-CGA-376944 (0.5 mg/kg nominal; Batch No. ILS-125.4 radiochemical purity
>95.5%), for the metabolism and bile-duct cannulation studies, respectively.

There were no deaths or overt signs of toxicity that could be attributed to the test material.
Weight loss in bile-duct cannulated rats was attributed to surgical trauma. Radioactivity
inventory indicated an acceptable 96.46-99.01% recovery of the administered dose among
the experimental groups.

January 2000
Based on urinary excretion, biliary excretion, and carcass burden, 17.35% of the administered radioactivity was absorbed following a single oral dose of 0.5 mg/kg of [Phenyl-U-14C]-CGA-376944. Absorption was rapid but limited and most of the absorbed radioactivity (92.3%) was excreted within 24 hours; primarily in the bile. At 72 hours, measurable radioactivity was found only in the liver of non-cannulated rats. Carcass burdens accounted for <0.01% of the administered dose at necropsy.

Fecal elimination was the major route of excretion, accounting for most of the administered oral dose in non-cannulated rats (94.24-96.27%). Fecal excretion was rapid with 98.8-99.2% of the fecal excretion occurring within 24 hours post-dosing. Urinary excretion, accounted for only 2.1-4.4% of the dose in non-cannulated rats and 5.3% in bile-duct cannulated rats. Urinary excretion was rapid and nearly complete within 24 hours of dosing. Biliary excretion represented 11.5% of the administered dose at 48 hours. The majority of biliary excretion (99.2%) occurred within 24 hours after dosing. In bile-duct cannulated animals, an additional 76.8% of the administered dose was excreted in the feces. Based on these data, biliary excretion is a contributor to fecal elimination of the test material. This appears consistent with the occurrence of enterohepatic circulation via the hepatic portal system and bile-duct. Only a minor percentage of the dose (5.3%) appeared to enter the systemic circulation where it was rapidly excreted by the kidneys. No biologically relevant gender-related differences were detected in the oral dose groups.

Blood pharmacokinetic parameters could not be calculated due to low blood concentrations and rapid clearance of the administered dose. Blood levels of radioactivity peaked in both sexes within one hour post-dosing.

It is evident from the results of this study that the test material undergoes limited but rapid absorption and nearly complete excretion within 24 hours. The primary route of excretion is via the feces with biliary excretion products representing about 15.0% of the fecal excretion products. At the dose tested, [14C]-CGA-376944 exhibits little potential for accumulation in the tissues. There were no significant gender-related differences in absorption and disposition of the test material. The unchanged test material accounted for >90% of the dose in both males and females. The unknown metabolites of urine and feces, separated by TLC accounted for 0.2-2.8% of the administered radioactivity and were not characterized further.

This combined metabolism study in rats is Acceptable/Guideline and satisfies the requirements for a Metabolism and Pharmacokinetics study [OPPTS 870.7485 (§85-1)].

COMPLIANCE: Signed and dated Good Laboratory Practice, Quality Assurance, and Data Confidentiality statements were included. A flagging statement was not included but is not necessary.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test compound

Radiolabeled: [Phenyl-U-\(^{14}\text{C}\)]-CGA-376944 (Metolachlor degrade)
Batch No.: ILS 125.4
Radiochemical purity: >95.5%
Chemical purity: not specified
Description: not available
Contaminants: none noted
CAS No.: not available

Radiolabeled reference compound: [Phenyl-U-\(^{14}\text{C}\)]-CGA-354743 (radiolabeled racemic mixture of CGA-376944)
Batch No.: KI-5408/6
Radiochemical purity: 98%
Chemical purity: not specified
Description: not available
Contaminants: none noted
CAS No.: not available

Non-radiolabeled: CGA-376944 (Metolachlor degrade)
Purity: not specified
Batch No.: not available
Description: not given
Contaminants: none noted
CAS No.: not available
Stability: not stated

Non-radiolabeled CGA-354743 (racemic mixture of CGA-376944)
Purity: 99%
Batch No.: RV-2816/3
Description: not given
Contaminants: none noted
CAS No.: not available
Stability: not stated
Structure:

\[
\text{Structure Image}
\]

*>=[^{14}\text{C}]
2. **Vehicle**

Physiological saline (0.9% NaCl) for oral administration.

3. **Test animals**

Species: rat
Strain: Tif: RAI f (SPF)
Age and mean weight at study initiation: Metabolism: males 186 g at 7 weeks; females 182 g at 9 weeks. Bile-duct cannulation: males 256 g at 7 weeks.
Source: Biological Research Laboratory (BRL), Füllinsdorf Switzerland for metabolism study and RCC, Biotechnology and Breeding Division, Füllinsdorf, Switzerland for bile-duct cannulation study.
Housing: Polycarbonate cages in groups during acclimatization; individually in metabolism cages (open plexiglass for metabolism and non-restriction metabolism with a tail cuff and dual channel infusion catheter for bile-duct cannulation) during experiment.
Diet: powdered certified standard diet (Nafag No. 890, Nafag, Gossau, Switzerland) *ad libitum*.
Water: tap water *ad libitum*
Environmental conditions:
 Temperature: metabolism 20°C; cannulated 22±2°C
 Humidity: metabolism 42-68%; cannulated 53-80%
 Air changes: not specified
 Photoperiod: 12 hour light/dark cycle
 Acclimation period: ≥4 days prior to metabolism study; ≥5 days prior to bile-duct cannulation surgery.

4. **Preparation of dosing solution**

The test doses were prepared by dissolving the labeled test material in water and diluting with 0.9% saline to a concentration of 0.133 mg/mL. Animals were administered approximately 0.8 mL each, resulting in males receiving 0.57 mg/kg, females 0.58 mg/kg, and bile-duct cannulated males 0.49 mg/kg. Stability was determined at the time of dosing. The administered dose was determined by diluting 3 gavage doses (0.8 mL) to 2 mL with water and determination of the radioactivity in 3 aliquots of each by liquid scintillation counting (LSC).

Results

- **Homogeneity**: Radioactivity analyses of dosing solution samples confirmed homogeneity (results were not provided).
- **Stability**: Test article was stable at the time of administration and doses contained 97% of the test material as radiolabeled CGA-376944; verified by TLC. This was considered adequate for the gavage dosing protocol.
- **Dose confirmation**: Confirmed by radio analysis (results were not provided).
B. STUDY DESIGN AND METHODS

1. Group arrangements

Animals were assigned to experimental groups by random selection based upon age corresponding to approximately 200 g for metabolism and 250 g for the bile-duct cannulation study. Conventional randomization procedures were not used. For the metabolism study, groups of 4 males and 4 females received nominal oral doses of 0.5 mg/kg and for the bile-duct cannulation study, 6 males received 0.5 mg/kg oral doses; all by gavage. The study protocols are summarized in Table 1.

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>Dose (mg/kg)</th>
<th>Number/Sex</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single low-dose</td>
<td>0.5 mg/kg</td>
<td>4 males</td>
<td>Assessment of absorption, distribution, and excretion of test material; metabolite characterization</td>
</tr>
<tr>
<td>(metabolism)</td>
<td></td>
<td>4 females</td>
<td></td>
</tr>
<tr>
<td>(MRID 44931717)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single low-dose</td>
<td>0.5 mg/kg</td>
<td>6 males</td>
<td>Assessment of biliary excretion of test material</td>
</tr>
<tr>
<td>(biliary excretion)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MRID 44931716)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information taken from p. 15 (MRID 4493171516) and p. 14 (MRID 44931717).

2. Dosing and sample collection

Animals were given single oral doses for the metabolism and bile-duct cannulation studies. Bile-duct cannulated rats were dosed after recovery (>18 hours) from the implantation surgery. To compensate for the bile collected from the bile-duct, an artificial bile fluid (0.05% bile salts dissolved in physiological saline) was infused into the duodenum at a flow rate of 0.8 mL/hr. The catheters were run subcutaneously and terminated in a cuff at the tail. From there the catheters were led by a steel spring to a dual channel swivel which allowed free movement within the plexiglass metabolism cage.

Expired air - Expired air was not collected.

Blood - Blood was collected from 3 animals of each sex by tail tip amputation at post-dosing intervals of 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 8, 24, and 48 hours. Blood was not collected from bile-duct cannulated animals.

Bile - Bile was collected only from animals cannulated for that purpose. Samples were taken at intervals of 0-1, 1-2, 2-4, 4-8, 8-24, 24-32, and 32-48 hours post-dosing.

Urine - Urine was collected at 0-4, 4-8, 8-24, 24-48, and 48-72 hours for the male and female rats from the metabolism study and at 0-24 and 24-48 hour intervals for bile-duct cannulated male rats.

January 2000
Feces - Feces were collected at 24-hour intervals (up to 48 hours post-dosing) for the bile-duct cannulated rats and at 0-8, 8-24, 24-48, and 48-72 hours for the conventional metabolism study.

Cage wash - Cages were washed with water/ethanol (1:1, v/v) at the end of the collection period for mass balance analysis.

Tissues - Animals were sacrificed by exsanguination following CO₂ anaesthesia. For the metabolism study, tissues were collected from males and females at the end of the scheduled sacrifice period (72 hours). The following tissues were collected: heart, liver, spleen, kidneys, bone, lungs, gonads, skeletal muscle, brain, adipose tissue, uterus, gastro-intestinal (GI) tract, and residual carcass. For bile-cannulated male rats, only the GI tract and the carcass were retained for analysis at sacrifice (48 hours).

3. Sample preparation/analysis

Collected urine, feces, bile, tissues, and organs were kept frozen, the collected blood was kept refrigerated and the cage washes were retained at ambient temperature until analysis. Aliquots of liquid samples (blood, urine, bile, and cage washes) underwent no additional treatment and were mixed directly with scintillation cocktail (Irgasafe plus, Packard Instrument Co.). Feces was mixed with water and homogenized manually with a pestle. Bone was cut into pieces with a scissors as were brain, lungs and ovaries. Other tissues (2-4 subsamples) were combined into one aliquot. Carcasses and GI tracts were homogenized frozen in a food chopper. Samples of blood, bone, macerated lungs, GI tract, homogenized feces, carcass, and feces residues after extraction were placed in combustion cones and analyzed by combustion analysis. The resultant CO₂ was trapped in Carbosorb (Packard Instrument Co.) and mixed with Permaflour E+ (Packard Instrument Co.) for LSC. Aliquots of brain, heart, kidneys, liver, muscle ovaries, spleen, testes, and uterus were solubilized in Soluene (Packard Instrument Co.), neutralized with HCl and scintillation cocktail (Irgasafe plus) was added to samples for LSC.

4. Analytical techniques

Pooled urine samples from males and females and bile samples from bile-duct cannulated males were analyzed directly by thin layer chromatography (TLC) on silica gel 60 F₂₅₄ plates (E. Merck AG.) developed with acetonitrile/water/formic acid 90:5:5 (v/v/v). The same solvent was used to determine the stability of CGA 376944 in the dosing solution using silica gel 60 F₂₅₄ and RP-18 F₂₅₄S (E. Merck AG.). Pooled feces from male and female rats was mixed with acetonitrile at about 1:5 (w/v) and extracted twice by shaking followed by centrifugation. The pooled supernatants were reduced in volume and metabolites were characterized by TLC.

LSC samples were counted in a Packard Tri-Carb, model 2000A, liquid scintillation spectrometer with automatic quench correction. The radioactivity on (TLC) plates was detected using a model Berta spark chamber radiochromatogram camera.
(Raytest) or a Packard Instant Imager. For quantification, radioactive zones were scraped off TLC plates, extracted with methanol, and counted in Irgasafe plus liquid scintillation cocktail. Non-radioactive fractions were visualized under UV irradiation (254 nm).

5. Histopathology

Histopathologic evaluations were not done as part of the metabolism and bile-duct cannulation studies.

6. Statistics

Statistical methods were not described. Data were presented as means plus or minus standard deviations, but no level of statistical significance was indicated.

II. RESULTS

A. DISTRIBUTION/EXCRETION STUDIES

1. Mass balance

Overall recovery of administered radioactivity was acceptable, ranging from 96.46 to 99.01% of the administered dose for the metabolism and bile-duct cannulation studies. Recovery of administered radioactivity was not significantly different among the treatment groups. Mass balance data are summarized in Table 2.

<table>
<thead>
<tr>
<th>TABLE 2. Overall recovery of administered radioactivity (% of dose) in rats given a single oral dose of [Phenyl-U-14C]-CGA-376944 at 0.5 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism study[^a]</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bile</td>
</tr>
<tr>
<td>Urine</td>
</tr>
<tr>
<td>Feces</td>
</tr>
<tr>
<td>Tissues</td>
</tr>
<tr>
<td>Carcass</td>
</tr>
<tr>
<td>GI tract</td>
</tr>
<tr>
<td>Cage wash</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

[^a]0-72 hours.
[^b]0-48 hours.

n.a. = not applicable.

Data taken from Tables 3 and 4, pp. 28 and 29, MRID 44931717 and Table 3, page 31, MRID 44931716.
2. Absorption

Absorption of the test material from the gastrointestinal tract into enterohepatic circulation may be implied from the urinary excretion, biliary excretion, and residual carcass data following oral administration of the test material to bile-duct cannulated, male rats (Table 1). Rapid absorption following a single oral dose of 0.5 mg/kg resulted in recovery of 11.51, 5.34, and 0.49% of the administered radioactivity in the bile, urine, and carcass, respectively, at 48 hours post-dosing (17.34% total absorption). Within 24 hours of administration 92.4% of the absorbed dose was excreted in the urine (26.5%) and bile (65.9%).

3. Excretion

Time-course data for excretion via the urine, bile, and feces in the dose groups are given in Table 3.

Fecal excretion accounted for the majority of the recovered radioactivity and represented approximately 76.8% and 94.24-96.27% of the administered dose for the bile-duct cannulated animals and non-cannulated treatment groups, respectively. The observed difference in fecal excretion between cannulated and non-cannulated animals was due to separate collection of bile and feces in the cannulated animals. The total excretion in the cannulated rats is not significantly different from the non-cannulated rats and indicates that biliary excretion is responsible for a moderate amount (11.5%) of the total administered radiolabeled dose which is excreted via the feces in non-cannulated rats. The data also indicate that a significant portion of the dose (~77%) recovered from feces is excreted directly without absorption. Gender-related differences were not biologically or statistically significant (Table 3). Biliary excretion and fecal excretion followed the same pattern in both studies with the majority of the dose being excreted within 24 hours after administration. The results appear consistent with the occurrence of enterohepatic recirculation.

Urinary excretion accounted for only minor amounts of the total administered radioactivity; 2.05-4.39% (non-cannulated) of the administered dose in 72 hours or 5.34% (cannulated) in 48 hours. The majority of the urinary excretion of the administered oral dose occurred within 24 hours (97% non-cannulated; 86% cannulated). Gender-related differences and differences between cannulated and non-cannulated urinary excretion in rats were not of biological significance.

4. Tissue distribution

Tissue burdens at 72 hours were minimal. The only tissue with radioactivity above the limit of determination was the liver from males (0.01% of total administered radioactivity). Carcass burden for non-cannulated rats was <0.01% and for cannulated rats was 0.49% of the administered oral dose. Because of the low levels found in tissue/carcass, a time-course analysis was not necessary.
TABLE 3. Time-course for excretion of administered radioactivity (% of dose) in rats given a single oral dose of [Phenyl-U-14C]-CGA-376944 at 0.5 mg/kg

<table>
<thead>
<tr>
<th>Sample/Time (hrs)</th>
<th>Metabolism study*</th>
<th>Bile-duct cannulation studyb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Bile</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>0-1</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>1-2</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>2-4</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>4-8</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>8-24</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>24-32</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>32-48</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Subtotal</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Urine</td>
<td>0.88</td>
<td>1.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.71</td>
<td>0.67</td>
</tr>
<tr>
<td>4-8</td>
<td>0.40</td>
<td>2.20</td>
</tr>
<tr>
<td>8-24</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>0-24</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>24-48</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>48-72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>2.05</td>
<td>4.39</td>
</tr>
<tr>
<td>Feces</td>
<td>31.34</td>
<td>19.48</td>
</tr>
<tr>
<td>0-8</td>
<td>64.13</td>
<td>73.53</td>
</tr>
<tr>
<td>8-24</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>0-24</td>
<td>0.76</td>
<td>1.16</td>
</tr>
<tr>
<td>24-48</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>48-72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>96.27</td>
<td>94.24</td>
</tr>
<tr>
<td>Cage washc</td>
<td>0.10</td>
<td>0.37</td>
</tr>
<tr>
<td>Total excreted</td>
<td>98.41</td>
<td>99.00</td>
</tr>
</tbody>
</table>

n.a. = not applicable.
*0-72 hours.
b0-48 hours.
cPerformed only at termination.
Data taken from Tables 3 and 4, pp 28 and 29, MRID 44931717 and Table 3, page 31, MRID 44931716.

B. PHARMACOKINETIC STUDIES

Blood levels of radioactivity peaked in both males and females within one hour post-dosing. However, plasma concentrations barely exceeded the limit of determination (±0.005 ppm CGA-376944 equivalents) in male and female rats. Maximal concentration (0.019 ppm) was reached in only one male and female at 15 minutes post-dosing. Pharmacokinetic parameters could not be calculated due to the low levels of radiolabel detected and the short retention times encountered. Rapid excretion of absorbed material in the bile is assumed to account for the low blood residue levels observed.
C. METABOLITE CHARACTERIZATION STUDIES

Pooled urine (0-48 hours) was analyzed by one-dimensional TLC. A pattern of 5 metabolite fractions was observed. One fraction, which co-chromatographed with CGA-376944, accounted for 17.9% of the urine radioactivity, but only 0.96% of the administered dose. The remaining four unknown fractions accounted for 20.8, 52.8, 3.8, and 7.5% of the radioactivity in urine and, respectively, 1.1, 2.8, 0.2, and 0.4% of the radioactivity in the administered dose.

Pooled bile fluid (0-48 hours) was analyzed by one-dimensional TLC. The major fraction, which co-chromatographed with CGA-376944, accounted for 80% of the radioactivity in the bile (9.2% of the administered dose). The remaining 3 unknown fractions accounted for 4.3, 13.0, and 2.6% of the biliary radioactivity and, respectively, 0.5, 1.5, and 0.3% of the radioactivity in the administered dose.

The majority of the administered radioactivity was recovered from total feces; 96.27 and 94.24% in male and female non-cannulated rats, respectively. Bile and feces accounted for 11.51 and 76.78%, respectively, of the administered radioactivity recovered from bile-duct cannulated males (88.29% total). Samples (0-24 hour pooled) were analyzed by one-dimensional chromatography following extraction with acetonitrile. Extraction yielded 96.6 and 97.3% of the total radioactivity in the pooled feces for male and female rats, respectively (non-cannulated). The sole metabolite recovered co-chromatographed with CGA-354743 (racemic mixture of CGA-376944). The unchanged test substance accounted for >90% of the dose in both males and females. The unknown metabolites of urine and feces, separated by TLC accounted for 0.2-2.8% of the administered radioactivity and were not characterized further.

D. HISTOPATHOLOGY

Histopathologic assessment was not a component of the reviewed studies (MRIDs 44931716 and 44931717).

III. DISCUSSION

A. DISCUSSION

There were no deaths or overt signs of toxicity that could be attributed to the test material. Bile-duct cannulated males lost 9-20 g between dosing and necropsy. This was attributed to surgical trauma and after treatment; not to test article toxicity. Radioactivity inventory indicated an acceptable recovery (96.46-99.01%) of the administered dose among the experimental groups.

Based on urinary excretion, biliary excretion, and carcass burden, 17.34% of the administered dose of [Phenyl-U-14C]-CGA-376944 was absorbed following a single oral dose of 0.5 mg/kg. Essentially all of the absorption occurred during the first 24 hours after administration. Deposition of test material-related radioactivity into tissues was minimal.
At 72 hours post dosing, overall tissue/carcass burdens represented <0.01 and 0.01% of the administered oral doses for non-cannulated males and females, respectively. For bile-duct cannulated males, 1.92% if the administered radioactivity was recovered in the GI tract and carcass at 48 hours post-dosing. Most tissues examined did not contain detectable levels of the test material.

Fecal elimination was the major route of excretion, accounting for most of the administered oral dose in non-cannulated rats (94.24-96.27%). Fecal excretion was rapid with 98.8-99.2% of the fecal excretion occurring within 24 hours after dosing. Contributions to fecal excretion were negligible after 48 hours. No biologically relevant, gender-related differences were detected in the oral dose groups. Urinary excretion accounted for approximately 2.1-4.4% of the oral dose. Similar to fecal excretion, urinary excretion was rapid and nearly complete within 24 hours of dosing. Only minor amounts of radioactivity were excreted in the urine after 48 hours. Biliary excretion represented 11.51% of the administered dose at 48 hours. The majority of the biliary excretion (99.2% of total recovered in bile) occurred within 24 hours after dosing. In the cannulated animals, 76.78% of the administered dose was excreted in the feces and 5.34% in the urine. Based on these data, biliary excretion is a contributor to fecal elimination of the test material. This appears consistent with the occurrence of enterohepatic recirculation via the hepatic portal system and bile duct. Only a minor percentage of the dose (5.34%) appeared to enter the systemic circulation where it was rapidly excreted via the kidneys.

Tissue/carcass burdens at 72 hours, after a single oral dose, represented only <0.01-0.01% of the total administered radioactivity. Tissues accounted for ~0.01% and carcasses accounted for <0.01% of the administered dose. Measurable levels of radioactivity were found only in the liver of non-cannulated male rats.

Blood levels of radioactivity peaked in both males and females within one hour post-dosing. Radioactivity barely exceeded the limit of determination in blood (~0.005 ppm CGA-376944 equivalents); maximal concentration (0.019 ppm) was reached in only one male and female at 15 minutes post-dosing. No blood pharmacokinetic parameters were calculated due to low blood levels and short residence times for the test material. Dispositional processes were not tested for saturation (multiple doses or a dose range not tested).

It is evident from the results of this study that the test material undergoes limited but rapid absorption and nearly complete excretion within 24 hours. The primary route of excretion is via the feces with biliary excretion products representing about 15.0% of the fecal excretion products. At the dose tested, [14C]-CGA-376944 exhibits little potential for accumulation in the tissues. There were no significant gender-related differences in absorption and disposition of the test material. The unchanged test material accounted for >90% of the dose in both males and females. The unknown metabolites of urine and feces, separated by TLC, accounted for 0.2-2.8% of the administered radioactivity and were not characterized further.
Although some deficiencies were noted, this metabolism study in rats is **Acceptable/Guideline** and satisfies the requirements for a Metabolism and Pharmacokinetics study [OPPTS 870.7485(§85-1)].

B. **STUDY DEFICIENCIES**

The experimental protocols of the reviewed studies (MRIDs 44931716 and 44931717) were established to examine the absorption, distribution, excretion, plasma kinetics, and metabolite characterization of the test material following single oral doses in male and female rats as well as excretion and metabolite characterization in bile-duct cannulated male rats. The data obtained were adequate to meet these objectives. However, some deficiencies were noted which did not affect the conclusions drawn from the study data. No pretest toxicity study was included. The doses appeared to consist of the radiolabeled compound only without dilution by unlabeled test material, and the radiochemical purity was stated but the chemical purity was not. The dose administered (0.5 mg/kg) was quite low with no rationale provided. It is possible that a low dose was selected to represent the expected concentration of the test material in soil as a result of aerobic and/or anaerobic metabolism of the parent (Metolachlor). Because only one dose was tested, assessing the effect of dose and dosing protocol on absorption, excretion, or metabolism patterns was not possible. The data set, therefore, is considered minimal.
DATA EVALUATION REPORT

CGA-354743
(CG-354743 TECHNICAL)

STUDY TYPE: ACUTE ORAL TOXICITY - RAT [870.1100 (81-1)]
MRID 44991101

Prepared for
Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by
Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09.1A

Primary Reviewer:
Susan Chang, M.S.

Secondary Reviewers:

Robert H. Ross, M.S., Group Leader

Quality Assurance:
Lee Ann Wilson, M.A.

Signature:
Date: FEB 10 2000

Signature: H.T. Borges
Date: FEB 10 2000

Signature: Robert H. Ross
Date: FEB 10 2000

Signature: Lee Ann Wilson
Date: FEB 10 2000

Disclaimer

This review may have been altered subsequent to the contractor's signatures above.

Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.
DATA EVALUATION RECORD

STUDY TYPE: Acute Oral Toxicity - Rat [OPPTS 870.1100 (§81-1)]

DP BARCODE: D262025
P.C. CODE: 108801 (Metolachlor)
SUBMISSION CODE: S572956
TOX. CHEM. NO.: 188DD

TEST MATERIAL (PURITY): CGA-354743 Tech. (Metabolite of CGA-24705, 95% a.i.)

SYNONYMS: not reported

SPONSOR: Novartis Crop Protection, Inc., 420 Swing Road, P.O. Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In an acute oral toxicity study (MRID 44991101) five male and five female fasted young adult Tif:RAI f (SPF) rats were given a single oral 2000 mg/kg dose of CGA-354743 Tech. (95%, a.i., Batch No. RV-2816/1) in 0.5% w/v Carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80 and observed for 14 days.

No animals died during the study. Piloerection and hunched posture were noted from all rats one hour post dosing with recovery by day 3. With the exception of one female that lost weight during the second week, all rats had normal body weight gains. No observable abnormalities were noted at necropsy.

The oral LD_{50} for males, females, and combined was > 2000 mg/kg.

CGA-354743 Tech. is in TOXICITY CATEGORY III based on the LD_{50}.

This acute oral study is classified as Acceptable/Guideline and satisfies the guideline requirements for an acute oral study [870.1100 (81-1)] in the rat.

COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-354743 Tech. (Metabolite of CGA 24705)
 Description: solid
 Lot/Batch #: RV-2816/1
 Purity: 95% a.i.
 CAS #: 51218-45-2 (Metolachlor)

2. Vehicle and/or positive control
 0.5% w/v Carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80

3. Test animals
 Species: rat
 Strain: Tif:RAI f (SPF)
 Age and/or weight at dosing: young adult; males: 219-229 g, females: 191-205 g
 Source: Ciba-Geigy Limited, Laboratory Animal Breeding, Pharma Division, 4332 Stein, Switzerland
 Acclimation period: at least 5 days
 Diet: NAFAG 890 (NAFAG, Gossau/SG, Switzerland), ad libitum
 Water: ad libitum
 Housing: five animals per Macrolon cages type 4
 Environmental conditions:
 Temperature: 22±2°C
 Humidity: 55±10%
 Air changes: approximately 15/hour
 Photoperiod: 12 hour light/dark

B. STUDY DESIGN AND METHODS

1. In life dates
 Start: October 19 (males) and 24 (females), 1995; end: November 7, 1995

2. Animal assignment and treatment
 Following an overnight fast, five rats/sex were given a single 2000 mg/kg dose of the test material in 0.5% w/v Carboxymethylcellulose in 0.1% w/v aqueous polysorbate 80 by gavage. The animals were observed for clinical signs of toxicity daily and for mortality twice daily for 14 days. They were weighed immediately prior to dosing and on study days 7 and 14. All rats were sacrificed and necropsied.

3. Statistics
 Calculation of the oral LD_{50} was not required.
II. RESULTS AND DISCUSSION

A. MORTALITY

None of the rats died as a result of CGA-354743 tech. toxicity.

The oral LD₅₀ for males, females, and combined was > 2000 mg/kg. This places CGA-354743 Tech. in TOXICITY CATEGORY III.

B. CLINICAL OBSERVATIONS

Piloerection and hunched posture were noted from all rats one hour post dosing with recovery by day 3.

C. BODY WEIGHT

With the exception of one female that lost weight during the second week, all rats had normal body weight gains.

D. NECROPSY

No observable abnormalities were noted.

E. DEFICIENCIES

None
DATA EVALUATION REPORT
CGA-354743

STUDY TYPE: MAMMALIAN CELLS IN CULTURE GENE MUTATION ASSAY IN
CHINESE HAMSTER V79 CELLS (OPPTS 870.5300) [§84-2]
MRID 44991102

Prepared for

Health Effects Division
Office of Pesticide Programs
U.S. Environmental Protection Agency
1921 Jefferson Davis Highway
Arlington, VA 22202

Prepared by

Chemical Hazard Evaluation Group
Toxicology and Risk Analysis Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Task Order No. 00-09.1B

Primary Reviewer:
B.L. Whitfield, Ph.D.

Secondary Reviewers:
Cheryl B. Bast, Ph.D., D.A.B.T

Robert H. Ross, M.S., Group Leader

Quality Assurance:
LeeAnn Wilson, M.A.

Signature: ______ --.-.,.......,..--B.L. Whitfield. Ph.D.
Date: FEB 1 1 2000

Signature: ______ --.-.,.......,..--Cheryl B. Bast.
Date: FEB 1 1 2000

Signature: ______ --.-.,.......,..--Robert H. Ross.
Date: FEB 1 1 2000

Signature: ______ --.-.,.......,..--LeeAnn Wilson.
Date: FEB 1 1 2000

Disclaimer

This review may have been altered subsequent to the contractor’s signatures above.
DATA EVALUATION RECORD

STUDY TYPE: Mammalian cells in culture gene mutation assay in Chinese hamster V79 cells; OPPTS 870.5300 [§84-2]

TEST MATERIAL (PURITY): CGA-354743 tech. (cga-354743 (Metolachlor ESA, degrerate of metolachlor), 98% a.i.)

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, Post Office Box 18300, Greensboro, NC 27419

EXECUTIVE SUMMARY: In a mammalian cell gene mutation assay at the HPRT locus (MRID 44991102), Chinese hamster V79 cells in culture were exposed to CGA-354743 tech. in bidistilled water at concentrations of 185.19, 555.56, 1666.67, 5000.00 µg/mL in the presence and absence of mammalian metabolic activation (S9-mix). The S9-fraction was obtained from Aroclor 1254 induced male Tif:RAI/SPF rat liver.

CGA-354743 tech. was tested up to a weakly cytotoxic limit concentration of 5000 µg/mL. In a preliminary cytotoxicity test, the number of viable cells was reduced approximately 27% and 32%, compared to the solvent control group, at 5000.00 µg/mL with and without S9-mix, respectively. An initial and a confirmatory assay were conducted using two cultures per dose, four dishes per culture. In the presence of S9-mix, small but statistically significant increases in mean mutant frequencies over the solvent control value were seen in the initial mutation assay at concentrations of 555.56 µg/mL (4.10 per 10^6 viable cells, 0.002<p<0.01) and 5000.00 µg/mL (5.35 per 10^6 viable cells, p<0.001) but not at 1666.67 µg/mL (3.17 per 10^6 viable cells). The mean mutant frequency of the solvent control was 2.80 x 10^6 viable cells. Results in the confirmatory assay with S9-mix were similar with small but statistically significant increases in mean mutant frequencies over the solvent control value of 1.58 per 10^6 viable cells seen at 555.56 µg/mL (2.60 per 10^6 viable cells, 0.02<p<0.05), 1666.67 (3.40 per 10^6 viable cells, 0.002<p<0.01) and 5000.00 µg/mL (2.91 per 10^6 viable cells, 0.002<p<0.01). The mean mutant frequency of the
DMN positive control was 118.27 per 10^6 viable cells in the initial assay and 116.68 per 10^6 viable cells in the confirmatory assays. In the absence of S9-mix, statistically significant increases in mutant frequencies were seen at 555.56 and 5000.00 µg/mL CGA-35473 but not at 1666.67 µg/mL in both the initial and the first confirmatory assays. In the initial assay, the mean mutant frequency at 5000.00 µg/mL was 19.7 per 10^6 viable cells (p<0.001) compared to the solvent control value of 3.66 per 10^6 viable cells and the normalized mean number of mutants per flask was 39.41 compared to the solvent control value of 7.33. The results at 5000.00 µg/mL met the laboratory’s criteria for a positive response. In the first confirmatory assay, the statistically significant increase in the mutant frequency over the solvent control value seen at 5000.00 µg/mL (0.001<p<0.002) was not accompanied by a normalized mean number of mutants per flask of at least 20 more than the solvent control (18.63 vs 6.63 for the solvent control), thus not meeting the criteria for a positive response. A second confirmatory assay was performed without S9-mix and small but statistically significant increases in mutant frequency were seen at 555.56 and 1666.67 µg/mL but not at 5000.00 µg/mL; therefore, the positive result seen in the initial assay could not be confirmed. There was a statistically significant relationship between dose and mutant frequency in the initial and first confirmatory assay (p<0.001) but not in the second confirmatory assay. Although the increases in mutant frequencies over solvent control values seen in this study were statistically significant, all mutant frequencies in test material treated cultures were well within the laboratory’s historical solvent control range of 1.01 to 15.68 per 10^6 viable cells and below the historical solvent control mean mutant frequency of 5.46 per 10^6 viable cells (with the one exception at 5000.00 µg/mL without S9-mix). In addition, the solvent control values seen in both the initial and confirmatory assays were near the bottom of the historical control range. The normalized mean number of mutants per flask did not meet the laboratory criterion of 20 or more greater than the solvent control value at any dose with S9-mix or at any dose without S9-mix except at 5000.00 µg/mL as described. The statistically significant differences seen are thus unlikely to be biologically significant. It is of note that none of the assay results satisfied the generally accepted criteria for a positive response in this test system (i.e., reproducibility, dose response and/or minimum of 3-fold increase over background). The positive and solvent controls induced the appropriate response. There was suggestive (statistical) evidence of a possible induction of mutant colonies over background; however, the results are unlikely to be biologically significant because the absolute numbers of mutant colonies were low and within the testing laboratory’s historical solvent control ranges.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline OPPTS 870.5300 [§84-2] OPPTS 870.5300 for in vitro mutagenicity (mammalian forward gene mutation) data.

COMPLIANCE: Signed and dated GLP, Quality Assurance and Data Confidentiality statements were provided.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA-354743 tech

 Description: white powder
 Lot/Batch #: KI-5408/6
 Purity: 98% a.i.
 Stability of compound: stable
 CAS #: not provided
 Structure: not provided
 Solvent used: bidistilled water
 Other comments: none

2. Control materials:

 Negative: none
 Solvent/final concentration: bidistilled water
 Positive: (concentrations/solvent):
 Nonactivated conditions: ethyl methanesulfonate / 0.3 µL/mL / not given
 Activated conditions: N-nitrosodimethylamine (DMN) / 1.0 µL/mL / not given

3. Activation: S9 derived from male Tif:RAI/SPF rats

 x Aroclor 1254 x induced
 _ phenobarbital _ non-induced
 _ none _ hamster _ other x rat x liver
 _ other _ other
 If other, describe below

 S9 mix composition:
 S9-fraction 250.0 µL/mL
 glucose-6-phosphate 10.0 µmol/mL
 NADP 8.0 µmol/mL
 CaCl₂ 20.0 µmol/mL
 MgCl₂ 20.0 µmol/mL
 Na₂HPO₄ 1.0 µmol/mL
 FCS 30.0 µL/mL

4. Test cells: mammalian cells in culture

 _ mouse lymphoma L5178Y cells
 _ Chinese hamster ovary (CHO) cells
 x V79 cells (Chinese hamster lung fibroblasts)
Properly maintained? Y
Periodically checked for Mycoplasma contamination? Y
Periodically checked for karyotype stability? Y
Periodically "cleansed" against high spontaneous background? Y

Media:

5. **Locus examined**:

 thymidine kinase (TK)
 Selection agent: ______ bromodeoxyuridine (BrdU)
 (give concentr.) ______ fluorodeoxyuridine (FdU)
 ______ trifluorothymidine (TFT)

 hypoxanthine-guanine-phosphoribosyl transferase (HPRT)
 Selection agent: ______ 8-azaguanine (8-AG)
 (give concentr. 8 µg/mL) ______ 6-thioguanine (6-TG)

 Na⁺/K⁺ ATPase
 Selection agent: ______ ouabain
 (give concentration)

 __ other (locus and/or selection agent; give details):

6. **Test compound concentrations used**

 Preliminary cytotoxicity test:
 Nonactivated and activated conditions: 2.44, 4.88, 9.77, 19.53, 39.06, 78.12, 156.25, 312.50, 625.00, 1250.00, 2500.00, 5000.00 µg/mL

 Mutation assays (original and confirmatory):
 Nonactivated and activated conditions: 185.19, 555.56, 1666.67, 5000.00 µg/mL

B. TEST PERFORMANCE

1. **Cell treatment**:
 a. Cells exposed to test compound, negative/solvent or positive controls for:
 21_ hours (nonactivated) 5_ hours (activated)
 b. After washing, cells cultured for 7-8_ days (expression period) before cell selection:
c. After expression, 2×10^6 cells/dish (4 dishes/group/duplicate culture) were cultured for 7 - 8 days in selection medium to determine numbers of mutants and 100 cells/dish (6 dishes/group/duplicate culture) were cultured for 7 - 8 days without selective agent to determine cloning efficiency.

2. Statistical methods

Statistical significance of mutant frequencies (analysis of variance and test for linear trend) was carried out according to the UKEMS guidelines (Arlett et.al., 1990).

3. Evaluation criteria

Mutant frequencies were normalized to a virtual cloning efficiency of 100% at the end of the expression period. Mutant frequencies were usually not calculated for a culture if the cloning efficiency was lower than 15%. A mean mutant factor, defined as the ratio of the mean mutant frequencies of the treated cultures with the mean mutant frequencies of the solvent control cultures, was calculated for every concentration. Criteria for a positive response were (1) a mutant frequency at one or more concentrations significantly greater than that of the solvent control with the number of mutant clones in the treated and untreated cultures differing by more than 20, (2) a significant dose-relationship as indicated by the linear trend analysis, (3) reproducible results.

II. REPORTED RESULTS

The stability and intended concentrations of the test material were confirmed by analysis using HPLC with UV detection.

A. PRELIMINARY CYTOTOXICITY ASSAY

Twelve concentrations of CGA-354743 tech. ranging from 2.44 to 5000.00 µg/mL were tested, with and without S9-mix, in the preliminary cytotoxicity assay. Weak, concentration related growth inhibition was seen both with and without S9-mix. The number of viable cells was reduced approximately 27% and 32%, compared to the solvent control group, at 5000.00 µg/mL with and without S9-mix, respectively. The highest dose selected for testing in the mutation assay was 5000.00 µg/mL. Results of the cytotoxicity assay are presented in Appendix Tables 1 and 2 (MRID 44991102, pp. 28 and 29).

B. Mutagenicity assay

Four concentrations of CGA-354743 tech. ranging from 185.19 to 5000.00 µg/mL were tested, with and without S9-mix, in an initial and a confirmatory mutation assay. Two cultures per dose, four dishes per culture were evaluated. In the presence of S9-mix, small but statistically significant increases in mean mutant frequencies over the solvent control value were seen in the initial mutation assay at concentrations of 555.56 (4.10 per
10^6 viable cells, 0.002<p<0.01) and 5000.00 µg/mL (5.35 per 10^6 viable cells, p<0.001) but not at 1666.67 µg/mL (3.17 per 10^6 viable cells). The mutant frequency of the solvent control was 2.80 x 10^6 viable cells. Results in the confirmatory assay with S9-mix were similar with small but statistically significant increases in mean mutant frequencies over the solvent control value of 1.58 per 10^6 viable cells seen at 555.56 µg/mL (2.60 per 10^6 viable cells, 0.02<p<0.05), 1666.67 (3.40 per 10^6 viable cells, 0.002<p<0.01) and 5000.00 µg/mL (2.91 per 10^6 viable cells, 0.002<p<0.01). The mean mutant frequency of the DMN positive control was 118.27 per 10^6 viable cells in the initial assay and 116.68 per 10^6 viable cells in the confirmatory assays. There was a statistically significant positive linear relationship seen between dose and mutant frequency in the initial assay (p<0.001) and in the confirmatory assay (0.01<p<0.025). Although the increases in mutant frequencies over solvent control values were statistically significant, all mutant frequencies in test material treated cultures were well within the laboratory’s historical solvent control range of 1.01 to 15.68 per 10^6 viable cells and below the historical solvent control mean mutant frequency of 5.46 per 10^6 viable cells. In addition, the solvent control values seen in both the initial and confirmatory assays were near the bottom of the historical control range. The normalized mean number of mutants per flask did not meet the laboratory criterion of 20 or more greater than the solvent control value at any dose. The statistically significant differences seen are thus unlikely to be biologically significant. Results of the initial and confirmatory assays with S9-mix are summarized in Appendix Tables 3 and 4, respectively (MRID 44991102, pp. 30 and 32).

Small but statistically significant increases in mutant frequencies were also seen in the absence of S9-mix in both the initial and in two confirmatory assays. In both the initial and the first confirmatory assays, statistically significant increases in mutant frequencies were seen at 555.56 and 5000.00 µg/mL but not at 1666.67 µg/mL. In the initial assay, the mean mutant frequency at 5000.00 µg/mL was 19.7 per 10^6 viable cells (p<0.001) compared to the solvent control value of 3.66 per 10^6 viable cells and the normalized mean number of mutants per flask was 39.41 compared to the solvent control value of 7.33. The results at 5000.00 µg/mL met the laboratory’s criteria for a positive response. In the first confirmatory assay, the statistically significant increase in the mutant frequency over the solvent control value seen at 5000.00 µg/mL (0.001<p<0.002) was not accompanied by a normalized mean number of mutants per flask at least 20 more than the solvent control (18.63 vs 6.63 for the solvent control), thus not meeting the criteria for a positive response. A second confirmatory assay was performed without S9-mix and small but statistically significant increases in mutant frequency were seen at 555.56 and 1666.67 µg/mL but not at 5000.00 µg/mL; therefore, the positive result seen in the initial assay could not be confirmed. There was a statistically significant relationship between dose and mutant frequency in the initial and first confirmatory assay (p<0.001) but not in the second confirmatory assay. As discussed in the preceding paragraph describing the assays conducted with S9-mix, the statistically significant differences seen in the absence of S9-mix are unlikely to be biologically significant. Results of the assays without S9-mix are summarized in Appendix Tables 5 - 7 (MRID 44991102, pp.31, 33 and 34).
III. REVIEWER'S DISCUSSION/CONCLUSIONS:

A. This is an acceptable study. CGA-354743 tech. was tested up to a weakly cytotoxic limit concentration of 5000.00 µg/mL, suitable experimental protocol was followed and the positive and solvent control values were appropriate and within the laboratory’s historical control ranges. What conclusions can be drawn from the study are, however, debatable. Five assays were conducted as part of this study, all using the same four concentrations of test material. Two assays were conducted with S9-mix and three without S9-mix. A small but statistically significant increase in mutant frequency over the solvent control value was seen at two or more doses in all five assays and a statistically significant positive relationship between dose and mutant frequency was seen in four of the assays. No statistically significant increases in mutant frequency were seen at the low dose in any of the five assays but were seen in four of the five assays at the high dose. These results seem to suggest that CGA-354743 tech. is weakly mutagenic in this assay system; however, with one exception (5000.00 µg/mL without S9-mix in the initial assay), the mean mutant frequencies were within the laboratory’s historical solvent control range and the difference between the normalized mean number of mutants per flask in the solvent controls and test material treated cells was small (less than 20). The laboratory’s criteria for a positive response were met at 5000.00 µg/mL without S9-mix in the initial assay but were not met in the first confirmatory assay although the mean mutant frequency at 9.31 per 10^6 viable cells and the normalized mean number of mutants per flask at 18.63 were both the second highest values seen in the study. There was no statistically significant increase in mutant frequency at this concentration in a second confirmatory assay. The study author concluded that there was no biologically significant increase in mutant frequency found in this study. The reviewers conclude that there is suggestive but not conclusive evidence of a very weak mutagenic effect in this study.

B. STUDY DEFICIENCIES

No Study Deficiencies Were Identified.

REFERENCES

THE FOLLOWING ATTACHMENTS ARE NOT AVAILABLE ELECTRONICALLY SEE THE FILE COPY
APPENDIX
(MRID 44991102)
Table 1: Result of the Cytotoxicity Test

Experiment with metabolic activation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cell number after treatment (x10E6)</th>
<th>Survival clones after treatment (per well)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>1.420</td>
<td>84 86 81 79 87 84</td>
</tr>
<tr>
<td>Negative control</td>
<td>1.456</td>
<td>87 80 78 81 82 85</td>
</tr>
</tbody>
</table>

CGA 354 743 tech.:

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Mean of Number of Acute cytoviable cells toxicity (x10E6) (%) of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000.0000</td>
<td>1.360 61 64 63 66 62 64</td>
</tr>
<tr>
<td>2500.0000</td>
<td>1.481 60 61 72 69 64 63</td>
</tr>
<tr>
<td>1250.0000</td>
<td>1.444 65 66 72 72 70 67</td>
</tr>
<tr>
<td>625.0000</td>
<td>1.343 60 64 66 71 70 69</td>
</tr>
<tr>
<td>312.5000</td>
<td>1.476 68 72 70 71 67 73</td>
</tr>
<tr>
<td>156.2500</td>
<td>1.493 67 64 69 73 66 64</td>
</tr>
<tr>
<td>78.1250</td>
<td>1.449 78 82 77 80 81 84</td>
</tr>
<tr>
<td>39.0625</td>
<td>1.371 76 81 81 74 73 72</td>
</tr>
<tr>
<td>19.5313</td>
<td>1.370 72 81 76 74 73 71</td>
</tr>
<tr>
<td>9.7656</td>
<td>1.356 79 76 77 81 80 84</td>
</tr>
<tr>
<td>4.8828</td>
<td>1.491 76 78 84 83 83 81</td>
</tr>
<tr>
<td>2.4414</td>
<td>1.282 81 86 77 79 84 84</td>
</tr>
</tbody>
</table>

CGA 354 743 tech.:

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Mean of Number of Acute cytoviable cells toxicity (x10E6) (%) of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000.0000</td>
<td>63.33 0.86 27.70</td>
</tr>
<tr>
<td>2500.0000</td>
<td>64.63 0.96 19.40</td>
</tr>
<tr>
<td>1250.0000</td>
<td>68.67 0.99 16.73</td>
</tr>
<tr>
<td>625.0000</td>
<td>66.67 0.90 24.83</td>
</tr>
<tr>
<td>312.5000</td>
<td>70.17 1.04 13.01</td>
</tr>
<tr>
<td>156.2500</td>
<td>67.17 1.00 15.78</td>
</tr>
<tr>
<td>78.1250</td>
<td>80.33 1.16 2.23</td>
</tr>
<tr>
<td>39.0625</td>
<td>76.17 1.04 12.33</td>
</tr>
<tr>
<td>19.5313</td>
<td>74.50 1.02 14.28</td>
</tr>
<tr>
<td>9.7656</td>
<td>79.50 1.08 9.51</td>
</tr>
<tr>
<td>4.8828</td>
<td>80.83 1.21 nTx</td>
</tr>
<tr>
<td>2.4414</td>
<td>81.83 1.05 11.94</td>
</tr>
</tbody>
</table>
TABLE 2 : RESULT OF THE CYTOTOXICITY TEST
Experiment without metabolic activation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cell number after treatment (x10E6)</th>
<th>Survival clones after treatment (per well)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>1.670</td>
<td>102 111 99 97 103 106</td>
</tr>
<tr>
<td>Negative control</td>
<td>1.444</td>
<td>104 110 101 98 106 102</td>
</tr>
<tr>
<td>CGA 354 743 tech.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.0000 µg/ml</td>
<td>1.480</td>
<td>70 71 81 74 76 73</td>
</tr>
<tr>
<td>2500.0000 µg/ml</td>
<td>1.688</td>
<td>72 76 80 77 78 74</td>
</tr>
<tr>
<td>1250.0000 µg/ml</td>
<td>1.694</td>
<td>76 75 81 82 78 77</td>
</tr>
<tr>
<td>625.0000 µg/ml</td>
<td>1.639</td>
<td>87 88 82 90 84 86</td>
</tr>
<tr>
<td>312.5000 µg/ml</td>
<td>1.525</td>
<td>96 91 90 88 88 88</td>
</tr>
<tr>
<td>156.2500 µg/ml</td>
<td>1.695</td>
<td>97 90 91 96 94 98</td>
</tr>
<tr>
<td>78.1250 µg/ml</td>
<td>1.643</td>
<td>91 86 87 89 92 92</td>
</tr>
<tr>
<td>39.0625 µg/ml</td>
<td>1.718</td>
<td>90 87 91 89 86 94</td>
</tr>
<tr>
<td>19.5313 µg/ml</td>
<td>1.585</td>
<td>96 96 90 89 97 96</td>
</tr>
<tr>
<td>9.7656 µg/ml</td>
<td>1.651</td>
<td>90 96 94 97 100 93</td>
</tr>
<tr>
<td>4.8828 µg/ml</td>
<td>1.389</td>
<td>92 96 99 93 90 95</td>
</tr>
<tr>
<td>2.4414 µg/ml</td>
<td>1.463</td>
<td>99 101 96 104 107 108</td>
</tr>
</tbody>
</table>

Treatment | **Mean of clones viable cells (x10E6)** | **Acute cytotoxicity (% of control)** |
| Negative control | 103.00 | 1.72 |
| Negative control | 103.50 | 1.49 |

CGA 354 743 tech.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of clones viable cells (x10E6)</th>
<th>Acute cytotoxicity (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000.0000 µg/ml</td>
<td>74.17</td>
<td>31.71</td>
</tr>
<tr>
<td>2500.0000 µg/ml</td>
<td>76.17</td>
<td>20.03</td>
</tr>
<tr>
<td>1250.0000 µg/ml</td>
<td>78.17</td>
<td>17.63</td>
</tr>
<tr>
<td>625.0000 µg/ml</td>
<td>86.17</td>
<td>12.16</td>
</tr>
<tr>
<td>312.5000 µg/ml</td>
<td>90.17</td>
<td>14.43</td>
</tr>
<tr>
<td>156.2500 µg/ml</td>
<td>94.33</td>
<td>1.60</td>
</tr>
<tr>
<td>78.1250 µg/ml</td>
<td>89.50</td>
<td>0.54</td>
</tr>
<tr>
<td>39.0625 µg/ml</td>
<td>89.50</td>
<td>1.47</td>
</tr>
<tr>
<td>19.5313 µg/ml</td>
<td>94.00</td>
<td>8.53</td>
</tr>
<tr>
<td>9.7656 µg/ml</td>
<td>95.00</td>
<td>4.36</td>
</tr>
<tr>
<td>4.8828 µg/ml</td>
<td>94.17</td>
<td>7.33</td>
</tr>
<tr>
<td>2.4414 µg/ml</td>
<td>102.50</td>
<td>2.43</td>
</tr>
</tbody>
</table>
TABLE 3: SUMMARY OF THE MUTAGENICITY EXPERIMENT

Experiment with metabolic activation

<table>
<thead>
<tr>
<th>Test number</th>
<th>981018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Original</td>
</tr>
<tr>
<td>Test substance</td>
<td>CGA 354 743 tech.</td>
</tr>
<tr>
<td>Batch</td>
<td>KI-5408/6</td>
</tr>
</tbody>
</table>

Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>80.50</td>
<td>4.50</td>
<td>5.59</td>
</tr>
<tr>
<td>Positive control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMN 1 µl/ml</td>
<td>76.42</td>
<td>180.75</td>
<td>236.53</td>
</tr>
</tbody>
</table>

CGA 354 743 tech.:

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Mean mutant frequency (x10E-6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000.0000</td>
<td>85.25</td>
<td>9.13</td>
<td>10.70</td>
</tr>
<tr>
<td>1666.6667</td>
<td>82.75</td>
<td>5.25</td>
<td>6.34</td>
</tr>
<tr>
<td>555.5556</td>
<td>82.25</td>
<td>6.75</td>
<td>8.21</td>
</tr>
<tr>
<td>185.1852</td>
<td>82.50</td>
<td>3.63</td>
<td>4.39</td>
</tr>
</tbody>
</table>

Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency (x10E-6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>2.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMN 1 µl/ml</td>
<td>118.27</td>
<td>42.31</td>
<td>P<0.001</td>
</tr>
</tbody>
</table>

CGA 354 743 tech.:

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Mean mutant frequency (x10E-6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000.0000</td>
<td>5.35</td>
<td>1.91</td>
<td>P<0.001</td>
</tr>
<tr>
<td>1666.6667</td>
<td>3.17</td>
<td>1.13</td>
<td>Ns</td>
</tr>
<tr>
<td>555.5556</td>
<td>4.10</td>
<td>1.47</td>
<td>0.002<P<0.01</td>
</tr>
<tr>
<td>185.1852</td>
<td>2.20</td>
<td>0.79</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Linear relation: P<0.001
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>73.33</td>
<td>5.38</td>
<td>7.33</td>
</tr>
<tr>
<td>Positive control EMS 0.3 µl/ml</td>
<td>65.58</td>
<td>682.75</td>
<td>1041.04</td>
</tr>
</tbody>
</table>

CGA 354 743 tech.:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency (x10E-6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>3.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control EMS 0.3 µl/ml</td>
<td>520.52</td>
<td>142.03</td>
<td>P<0.001</td>
</tr>
</tbody>
</table>

CGA 354 743 tech.:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency (x10E-6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000.0000 µg/ml</td>
<td>19.70</td>
<td>5.38</td>
<td>P<0.001</td>
</tr>
<tr>
<td>1666.6667 µg/ml</td>
<td>4.44</td>
<td>1.21</td>
<td>Ns</td>
</tr>
<tr>
<td>555.5556 µg/ml</td>
<td>6.11</td>
<td>1.67</td>
<td>0.01<P<0.02</td>
</tr>
<tr>
<td>185.1852 µg/ml</td>
<td>2.58</td>
<td>0.70</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Linear relation: P<0.001
TABLE 1: SUMMARY OF THE MUTAGENICITY EXPERIMENT
Experiment with metabolic activation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>82.83</td>
<td>2.63</td>
<td>3.17</td>
</tr>
<tr>
<td>Positive control DMN 1 µl/ml</td>
<td>70.33</td>
<td>164.13</td>
<td>233.35</td>
</tr>
<tr>
<td>CGA 354 743 tech.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.0000 µg/ml</td>
<td>92.42</td>
<td>5.38</td>
<td>5.82</td>
</tr>
<tr>
<td>1666.6667 µg/ml</td>
<td>80.92</td>
<td>5.50</td>
<td>6.80</td>
</tr>
<tr>
<td>555.5556 µg/ml</td>
<td>79.25</td>
<td>4.13</td>
<td>5.21</td>
</tr>
<tr>
<td>185.1852 µg/ml</td>
<td>86.25</td>
<td>4.00</td>
<td>4.64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency (x10E-6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control DMN 1 µl/ml</td>
<td>116.68</td>
<td>73.64</td>
<td>P<0.001</td>
</tr>
<tr>
<td>CGA 354 743 tech.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.0000 µg/ml</td>
<td>2.91</td>
<td>1.84</td>
<td>0.002<P<0.01</td>
</tr>
<tr>
<td>1666.6667 µg/ml</td>
<td>3.40</td>
<td>2.14</td>
<td>0.002<P<0.01</td>
</tr>
<tr>
<td>555.5556 µg/ml</td>
<td>2.60</td>
<td>1.64</td>
<td>0.02<P<0.05</td>
</tr>
<tr>
<td>185.1852 µg/ml</td>
<td>2.32</td>
<td>1.46</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Linear relation: 0.01<P<0.025
TABLE 6: SUMMARY OF THE MUTAGENICITY EXPERIMENT

Experiment without metabolic activation

<table>
<thead>
<tr>
<th>Test number</th>
<th>981018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Confirmatory</td>
</tr>
<tr>
<td>Test substance</td>
<td>CGA 354 743 tech.</td>
</tr>
<tr>
<td>Batch</td>
<td>KI-5408/6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>62.25</td>
<td>4.13</td>
<td>6.63</td>
</tr>
<tr>
<td>Positive control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMS 0.3 µl/ml</td>
<td>59.58</td>
<td>746.13</td>
<td>1252.24</td>
</tr>
</tbody>
</table>

CGA 354 743 tech.:

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000.0000</td>
<td>65.08</td>
<td>12.13</td>
<td>18.63</td>
</tr>
<tr>
<td>1666.6667</td>
<td>62.42</td>
<td>4.63</td>
<td>7.41</td>
</tr>
<tr>
<td>555.5556</td>
<td>62.33</td>
<td>7.13</td>
<td>11.43</td>
</tr>
<tr>
<td>185.1852</td>
<td>68.42</td>
<td>2.50</td>
<td>3.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency (x10E-6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>3.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMS 0.3 µl/ml</td>
<td>626.12</td>
<td>188.97</td>
<td>P<0.001</td>
</tr>
</tbody>
</table>

CGA 354 743 tech.:

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Mean mutant frequency (x10E-6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000.0000</td>
<td>9.31</td>
<td>2.81</td>
<td>0.001<P<0.002</td>
</tr>
<tr>
<td>1666.6667</td>
<td>3.70</td>
<td>1.12</td>
<td>Ns</td>
</tr>
<tr>
<td>555.5556</td>
<td>5.72</td>
<td>1.72</td>
<td>0.02<P<0.05</td>
</tr>
<tr>
<td>185.1852</td>
<td>1.83</td>
<td>0.55</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Linear relation: P<0.001
TABLE 7: SUMMARY OF THE MUTAGENICITY EXPERIMENT

Experiment without metabolic activation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>53.08</td>
<td>1.25</td>
<td>2.35</td>
</tr>
<tr>
<td>Positive control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMS 0.3 µl/ml</td>
<td>37.00</td>
<td>880.13</td>
<td>2378.72</td>
</tr>
<tr>
<td>CGA 354 743 tech.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.0000 µg/ml</td>
<td>51.75</td>
<td>2.75</td>
<td>5.31</td>
</tr>
<tr>
<td>1666.6667 µg/ml</td>
<td>52.00</td>
<td>3.25</td>
<td>6.25</td>
</tr>
<tr>
<td>555.5556 µg/ml</td>
<td>41.50</td>
<td>3.75</td>
<td>9.04</td>
</tr>
<tr>
<td>185.1852 µg/ml</td>
<td>38.42</td>
<td>1.00</td>
<td>2.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency (x10E-6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMS 0.3 µl/ml</td>
<td>1189.36</td>
<td>1010.16</td>
<td>P<0.001</td>
</tr>
<tr>
<td>CGA 354 743 tech.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.0000 µg/ml</td>
<td>2.66</td>
<td>2.26</td>
<td>Ns</td>
</tr>
<tr>
<td>1666.6667 µg/ml</td>
<td>3.13</td>
<td>2.65</td>
<td>0.02<P<0.05</td>
</tr>
<tr>
<td>555.5556 µg/ml</td>
<td>4.52</td>
<td>3.84</td>
<td>0.01<P<0.02</td>
</tr>
<tr>
<td>185.1852 µg/ml</td>
<td>1.30</td>
<td>1.11</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Linear relation: Ns
CGA 51202 (METOLACHLOR METABOLITE) MAMMALIAN CELLS IN CULTURE: GENE MUTATION (84-2)

EPA Reviewer: Virginia A. Dobozy, VMD, MPH

EPA Work Assignment Manager: Joycelyn Stewart, Ph.D.

Toxicology Branch, Health Effects Division (7509C)

DATA EVALUATION RECORD

STUDY TYPE: Mammalian cells in culture gene mutation assay in Chinese hamster V79 cells [OPPTS 870.5300 (§84-2)]

DP BARCODE: D262423
P.C. CODE: 108801
TOX. CHEM. NO.: none

SUBMISSION CODE: 573839

TEST MATERIAL (PURITY): CGA 51202 tech. (metabolite of CGA 24705) (100% a.i.)

SYNONYMS: none provided

SPONSOR: Novartis Crop Protection, Inc., 410 Swing Road, P.O. Box 18300, Greensboro, NC 27419.

EXECUTIVE SUMMARY: In a mammalian cell gene mutation assay at the HPRT locus (MRID 45001201), Chinese hamster V79 cells cultured in vitro were exposed to CGA 51202 tech. (Batch No. JD 7069/3, 100% a.i.) in DMSO at concentrations of 500, 1000, 2000 and 4000 µg/mL in the presence and absence of mammalian metabolic activation (S9-mix). A confirmatory assay was conducted at test material concentrations of 375, 750, 1500 and 3000 µg/mL. The S9-fraction was obtained from Aroclor 1254 induced male Tiff:RAI/SPF rat liver.

CGA 51202 tech. was tested up to cytotoxic concentrations. The upper concentrations in both the initial and confirmatory assays, with and without S9-mix, killed virtually all the cells. Statistically significant increases in mean mutant frequency were seen in the initial assay with S9-mix at 500 µg/mL (6.66 x 10^-6) and 1000 µg/mL (5.56 x 10^-6) compared to the solvent control value of 4.02 x 10^-6 and without S9-mix at 500 µg/mL (15.35 x 10^-6) compared to the solvent control value of 12.90 x 10^-6. The increases were small and the actual mean mutant frequencies were within the range of historical solvent control values. No positive dose-response was seen and no statistically significant increases in mean mutant frequencies were seen in the confirmatory assay. The solvent and positive controls induced the appropriate response.

There was no evidence of a biologically significant induction of mutant colonies over background.

This study is classified as Acceptable/Guideline. It satisfies the requirement for FIFRA Test Guideline [OPPTS 870.5300 (§84-2)] for in vitro mutagenicity (mammalian forward gene mutation) data.
I. MATERIALS AND METHODS

A. MATERIALS

1. Test material: CGA 51202 tech.

 Description: white powder
 Lot/Batch #: JD 7069/3
 Purity: 100% a.i.
 Stability of compound: stable
 CAS No.: not provided
 Structure: not provided
 Solvent used: DMSO
 Other comments: none

2. Control materials

 Negative: none
 Solvent/final concentration: DMSO / 1%
 Positive (concentrations/solvent):
 Nonactivation: Ethyl methanesulfonate / 0.3 µL/mL / not specified
 Activation: N-Nitrosodimethylamine / 1.0 µg/mL / not specified

3. Activation: S9 derived from male Tiff:RAI/SPF rats

 x Aroclor 1254 x induced x rat x liver
 _ phenobarbital _ non-induced _ mouse _ lung
 _ none _ hamster _ other
 _ other _ other
 If other, describe below

 S9 mix composition
 S9-fraction 250.0 µL/mL
 Glucose-6-phosphate 10.0 µmol/mL
 NADP 8.0 µmol/mL
 CaCl₂ 20.0 µmol/mL
 MgCl₂ 20.0 µmol/mL
 Na₂HPO₄ 1.0 µmol/mL
 FCS 30.0 µL/mL
4. **Test cells:** mammalian cells in culture Chinese hamster V79, clone 65/3 cells
 - mouse lymphoma L5178Y cells
 - Chinese hamster ovary (CHO) cells
 - V79 cells (Chinese hamster lung fibroblasts)

 Properly maintained? Y
 Periodically checked for Mycoplasma contamination? Y
 Periodically checked for karyotype stability? Y
 Periodically "cleansed" against high spontaneous background? Y

 Media: Growth medium was Ham’s F10 medium supplemented with 10% fetal calf serum, 100 U/mL penicillin and 100 µg/mL streptomycin. Treatment medium was growth medium with the fetal calf serum reduced to 3% and no antibiotics. Selection medium was growth medium supplemented with 8 µg/mL 6-thioguanine.

5. **Locus examined**
 - thymidine kinase (TK)
 Selection agent:
 - bromodeoxyuridine (BrdU)
 - fluorodeoxyuridine (FdU)
 - trifluorothymidine (TFT)
 - hypoxanthine-guanine-phosphoribosyl transferase (HPRT)
 Selection agent:
 - 8-azaguanine (8-AG)
 (give concentr. 8 µg/mL 6-thioguanine (6-TG)
 - Na+/K+ ATPase
 Selection agent:
 - ouabain
 - other (locus and/or selection agent; give details):

6. **Test compound concentrations used**

 Preliminary cytotoxicity test:
 Nonactivated and activated conditions: 2.44, 4.88, 9.77, 19.53, 39.06, 78.12, 156.25, 312.50, 625.00, 1250.00, 2500.00, 5000.00 µg/mL

 Mutagenicity assays:
 Initial assay:
 Nonactivated and activated conditions: 500, 1000, 2000, 4000 µg/mL
Confirmatory assay:
Nonactivated and activated conditions: 375, 750, 1500, 3000 µg/mL

B. TEST PERFORMANCE

1. Cell treatment

 a. Cells exposed to test compound, negative/solvent or positive controls for:
 21 hours (nonactivated) _5_ hours (activated)

 b. After washing, cells cultured for _7 - 8_ days (expression period) before cell selection:

 c. After expression, _2 x 10^6_ cells/dish (_4_ dishes/group) were cultured for _7 - 8_ days in selection medium to determine numbers of mutants and _100_ cells/dish (_6_ dishes/group) were cultured for _7 - 8_ days without selective agent to determine cloning efficiency.

2. Statistical methods: “Statistical significance of mutant frequencies (analysis of variance and test for linear trend) was carried out according to the UKEMS guidelines” (Arlett et al., 1990).

3. Evaluation criteria: Criteria for an acceptable assay were: no effect on results by technical errors, contamination or artifacts; at least three test material concentrations plus the solvent and positive controls should be evaluated; the mutant frequency of the solvent control should not exceed 35 x 10^6; positive control values should be appropriate and the highest test material concentration should reduce cell viability by 50 - 90% or be limited by solubility or be the limit dose of 5 mg/mL.

The mutant frequency was expressed as mutants per 10^6 survivors and a mean mutant frequency was determined for each dose and activation condition. Cultures with survival values less than 15% were not evaluated for mutagenicity.

Criteria for a positive response were: a valid assay; a mutant frequency at one or more test material concentrations significantly greater than the solvent control with the number of normalized mutant clones in the treated cultures more than 20 greater than the solvent control value; a significant dose-relationship and reproducible results.

II. REPORTED RESULTS

Stock concentrations of test material were analyzed using HPLC with UV detection and found to be about 70% and 79% of the nominal values of 400,000 µg/mL and 50,000 µg/mL, respectively, in the initial assay. Stock concentrations were found to be about 96% and 144% of the nominal values of 300,000 and 37,500 µg/mL, respectively, in the confirmatory assay.
A. PRELIMINARY CYTOTOXICITY ASSAY: Twelve concentrations of CGA 51202 tech. ranging from 2.44 to 5000.00 µg/mL were tested with and without S9-mix in the preliminary cytotoxicity assay. In the presence of S9-mix, almost complete cytotoxicity was seen at 5000 µg/mL, approximately 50% cytotoxicity was seen at concentrations of 625 to 2500 µg/mL, and cytotoxicity ranging from about 14% to 34% was seen at lower concentrations. In the absence of S9-mix, complete cytotoxicity was seen at 5000 µg/mL, approximately 61% cytotoxicity was seen at 2500 µg/mL and cytotoxicity ranging between 7% and 37% seen at lower concentrations. The test material precipitated in culture medium at 5000 µg/mL. Based on these results, an upper concentration of 4000 µg/mL was selected for the initial mutation assay with and without S9-mix. Results of the cytotoxicity test with and without S9-mix are presented in Appendix Tables 1 and 2, respectively (MRID 45001201, pp. 27 and 28).

B. MUTAGENICITY ASSAY

Four concentrations of CGA 51202 tech. ranging from 500 to 4000 µg/mL were tested with and without S9-mix in the initial mutation assay. Two cultures, four flasks per culture, were used at each concentration. No viable cells were seen following the expression period in cultures treated at 4000 µg/mL, either with or without S9-mix. Cell growth was inhibited 22% following treatment at 2000 µg/mL with S9-mix but virtually no cytotoxicity was seen at this dose following the expression period. Cell growth in cultures treated at 2000 µg/mL without S9-mix was inhibited 41% following treatment and 26% after the expression period. The mean mutant frequencies in the presence of S9-mix were 6.66, 5.56 and 4.16 mutants per 10⁶ surviving cells at 500, 1000 and 2000 µg/mL, respectively, compared to the solvent control value of 4.02 mutants per 10⁶ surviving cells. The increases in mutant frequencies at 500 and 1000 µg/mL were statistically significant (p < 0.001) but did not meet the criteria for a positive response and were in the upper range of historical solvent controls. The mean mutant frequencies in the absence of S9-mix were 15.35, 14.46 and 13.18 mutants per 10⁶ surviving cells at 500, 1000 and 2000 µg/mL, respectively, compared to the solvent control value of 12.90 mutants per 10⁶ surviving cells. The increase in mutant frequency at 500 µg/mL was statistically significant (0.02 < p < 0.05) but not considered biologically significant for the same reasons given for the assay with S9-mix. The solvent and control values were acceptable. Results of the initial mutation assay with and without S9-mix are summarized in Appendix Tables 3 and 4, respectively (MRID 45001201, pp. 29 and 30).

A confirmatory mutation assay was conducted using CGA 51202 tech. concentrations of 375, 750, 1500 and 3000 µg/mL with and without S9-mix. Two cultures, four flasks per culture, were used at each concentration. The upper dose, although lower than that used in the initial assay, was excessively cytotoxic both with and without S9-mix, killing virtually all the cells. Cell growth at 1500 µg/mL after treatment and expression was inhibited 48% and 7%, respectively with S9-mix and 57% and 11%, respectively, without S9-mix. The mean mutant frequencies in the presence of S9-mix were 4.33, 2.46, and 3.02 mutants per 10⁶ surviving cells at 375, 750 and 1500 µg/mL, respectively, compared to the solvent control value of 3.18 mutants per 10⁶ surviving cells. None of the values
were significantly different than the solvent control value. The mean mutant frequencies in the absence of S9-mix were 4.04, 3.96 and 3.24 mutants per 10^6 surviving cells at 375, 750 and 1500 µg/mL, respectively, compared to the solvent control value of 5.74 mutants per 10^6 surviving cells. None of the values were significantly different than the solvent control value. The solvent and positive control values were acceptable. Results of the confirmatory mutation assay with and without S9-mix are summarized in Appendix Tables 5 and 6, respectively (MRID 45001201, pp. 31 and 32).

III. REVIEWER'S DISCUSSION/CONCLUSIONS

A. This is an acceptable study. CGA 51202 tech. was tested to cytotoxic doses, proper experimental protocol was followed and the solvent and positive control values were appropriate. The statistically significant increases in mutant frequency seen in the initial assay are not likely to be biologically significant for a number of reasons. The increases were small, well below the testing laboratory’s requirement for a positive response that the number of normalized mutant clones in the treated cultures must be more than 20 greater than the solvent control value. The mutant frequencies were not outside the upper range of historical solvent control frequencies and no positive dose-response was seen. In addition, the results were not confirmed in the repeat assay. There was no evidence that CGA 51202 tech. was mutagenic as tested in this study.

B. STUDY DEFICIENCIES

No major study deficiencies were identified. The concentrations of test material used in the initial assay were 20% to 30% below the desired concentrations but still acceptable. Test material concentrations used in the confirmatory assay were equal to or greater than the desired concentrations.

REFERENCES

APPENDIX
(MRID 45001201)

THE FOLLOWING ATTACHMENTS ARE NOT AVAILABLE ELECTRONICALLY. SEE THE FILE COPY.
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cell number after treatment (x10^6)</th>
<th>Survival clones after treatment (per well)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>1.310</td>
<td>82 85 87 80 77 86</td>
</tr>
<tr>
<td>Negative control</td>
<td>1.316</td>
<td>81 86 84 78 87 86</td>
</tr>
<tr>
<td>CGA 51202 tech.:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.0000 µg/ml</td>
<td>0.259</td>
<td>1 7 3 5 4 5</td>
</tr>
<tr>
<td>2500.0000 µg/ml</td>
<td>0.901</td>
<td>61 64 66 60 67 66</td>
</tr>
<tr>
<td>1250.0000 µg/ml</td>
<td>0.881</td>
<td>54 60 62 51 55 56</td>
</tr>
<tr>
<td>625.0000 µg/ml</td>
<td>0.647</td>
<td>66 61 62 63 64 63</td>
</tr>
<tr>
<td>312.5000 µg/ml</td>
<td>1.144</td>
<td>78 82 82 83 84 83</td>
</tr>
<tr>
<td>156.2500 µg/ml</td>
<td>1.077</td>
<td>79 89 80 81 80 78</td>
</tr>
<tr>
<td>78.1250 µg/ml</td>
<td>0.916</td>
<td>85 81 80 76 78 84</td>
</tr>
<tr>
<td>39.0625 µg/ml</td>
<td>0.954</td>
<td>79 81 78 87 81 83</td>
</tr>
<tr>
<td>19.5313 µg/ml</td>
<td>0.986</td>
<td>76 82 80 79 83 84</td>
</tr>
<tr>
<td>9.7656 µg/ml</td>
<td>1.094</td>
<td>81 86 80 77 84 84</td>
</tr>
<tr>
<td>4.8828 µg/ml</td>
<td>1.115</td>
<td>85 80 81 78 79 86</td>
</tr>
<tr>
<td>2.4414 µg/ml</td>
<td>1.019</td>
<td>77 86 86 83 81 80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of clones</th>
<th>Number of viable cells (x10^6)</th>
<th>Acute cytotoxicity (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>82.83</td>
<td>1.09</td>
<td>99.01</td>
</tr>
<tr>
<td>Negative control</td>
<td>83.67</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>CGA 51202 tech.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000.0000 µg/ml</td>
<td>4.17</td>
<td>0.01</td>
<td>47.25</td>
</tr>
<tr>
<td>2500.0000 µg/ml</td>
<td>64.00</td>
<td>0.58</td>
<td>49.47</td>
</tr>
<tr>
<td>1250.0000 µg/ml</td>
<td>64.00</td>
<td>0.61</td>
<td>44.56</td>
</tr>
<tr>
<td>625.0000 µg/ml</td>
<td>82.00</td>
<td>0.94</td>
<td>14.20</td>
</tr>
<tr>
<td>312.5000 µg/ml</td>
<td>83.17</td>
<td>0.87</td>
<td>20.03</td>
</tr>
<tr>
<td>156.2500 µg/ml</td>
<td>80.67</td>
<td>0.74</td>
<td>32.38</td>
</tr>
<tr>
<td>78.1250 µg/ml</td>
<td>81.80</td>
<td>0.78</td>
<td>28.91</td>
</tr>
<tr>
<td>39.0625 µg/ml</td>
<td>81.80</td>
<td>0.78</td>
<td>28.91</td>
</tr>
<tr>
<td>19.5313 µg/ml</td>
<td>80.67</td>
<td>0.72</td>
<td>33.77</td>
</tr>
<tr>
<td>9.7656 µg/ml</td>
<td>82.00</td>
<td>0.80</td>
<td>17.91</td>
</tr>
<tr>
<td>4.8828 µg/ml</td>
<td>81.50</td>
<td>0.91</td>
<td>16.89</td>
</tr>
<tr>
<td>2.4414 µg/ml</td>
<td>82.27</td>
<td>0.84</td>
<td>23.38</td>
</tr>
</tbody>
</table>
TABLE 2

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cell number after treatment (x10E6)</th>
<th>Survival clones after treatment (per well)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>Negative control</td>
<td>1.388</td>
<td>92 98 96 69 96 99</td>
</tr>
</tbody>
</table>

CGA 51202 tech:

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Cell number Tx</th>
<th>Survival clones after treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000.0000</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>2500.0000</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>1250.0000</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>625.0000</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>312.5000</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>156.2500</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>78.1250</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>39.0625</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>19.5313</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>9.7656</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>4.8828</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
<tr>
<td>2.4414</td>
<td>1.094</td>
<td>96 100 96 91 101 92</td>
</tr>
</tbody>
</table>

Treatment Mean of clones: 95.00

Novartis Number 1192-98
TABLE 3: SUMMARY OF THE MUTAGENICITY EXPERIMENT

Experiment with metabolic activation

<table>
<thead>
<tr>
<th>Test number</th>
<th>981112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Original</td>
</tr>
<tr>
<td>Test substance</td>
<td>CGA 51202 tech.</td>
</tr>
<tr>
<td>Batch</td>
<td>JD 7099/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>96.50</td>
<td>7.75</td>
<td>8.03</td>
</tr>
<tr>
<td>Positive control</td>
<td>DMN 1 µl/ml</td>
<td>82.58</td>
<td>137.00</td>
</tr>
</tbody>
</table>

CGA 51202 tech.:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000.0000 µg/ml</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2000.0000 µg/ml</td>
<td>95.08</td>
<td>8.00</td>
<td>8.33</td>
</tr>
<tr>
<td>1000.0000 µg/ml</td>
<td>93.25</td>
<td>10.38</td>
<td>11.13</td>
</tr>
<tr>
<td>500.0000 µg/ml</td>
<td>97.67</td>
<td>13.00</td>
<td>13.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency (x10⁻⁶)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>4.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control</td>
<td>DMN 1 µl/ml</td>
<td>82.95</td>
<td>20.66</td>
</tr>
</tbody>
</table>

CGA 51202 tech.:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency (x10⁻⁶)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000.0000 µg/ml</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2000.0000 µg/ml</td>
<td>4.16</td>
<td>1.04</td>
<td>Ns</td>
</tr>
<tr>
<td>1000.0000 µg/ml</td>
<td>5.56</td>
<td>1.39</td>
<td>P<0.001</td>
</tr>
<tr>
<td>500.0000 µg/ml</td>
<td>6.66</td>
<td>1.66</td>
<td>P<0.001</td>
</tr>
</tbody>
</table>

Linear relation: Ns
TABLE 4

SUMMARY OF THE MUTAGENICITY EXPERIMENT

Experiment without metabolic activation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>91.08</td>
<td>23.50</td>
<td>25.80</td>
</tr>
<tr>
<td>Positive control</td>
<td>60.42</td>
<td>775.50</td>
<td>1283.59</td>
</tr>
</tbody>
</table>

CGA 51202 tech.:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000.0000 µg/ml</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2000.0000 µg/ml</td>
<td>59.75</td>
<td>15.75</td>
<td>26.36</td>
</tr>
<tr>
<td>1000.0000 µg/ml</td>
<td>64.42</td>
<td>18.63</td>
<td>28.91</td>
</tr>
<tr>
<td>500.0000 µg/ml</td>
<td>68.42</td>
<td>21.00</td>
<td>30.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency (x10^6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>12.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control</td>
<td>641.79</td>
<td>49.75</td>
<td>P<0.001</td>
</tr>
</tbody>
</table>

CGA 51202 tech.:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000.0000 µg/ml</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2000.0000 µg/ml</td>
<td>13.18</td>
<td>1.02</td>
<td>Ns</td>
</tr>
<tr>
<td>1000.0000 µg/ml</td>
<td>14.46</td>
<td>1.12</td>
<td>Ns</td>
</tr>
<tr>
<td>500.0000 µg/ml</td>
<td>15.35</td>
<td>1.19</td>
<td>0.02<P<0.05</td>
</tr>
</tbody>
</table>

Linear relation: Ns
TABLE 5

SUMMARY OF THE MUTAGENICITY EXPERIMENT

Experiment with metabolic activation

<table>
<thead>
<tr>
<th>Test number</th>
<th>981112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Confirmatory</td>
</tr>
<tr>
<td>Test substance</td>
<td>CGA 51202 tech.</td>
</tr>
<tr>
<td>Batch</td>
<td>JD 7059/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>80.67</td>
<td>5.13</td>
<td>6.35</td>
</tr>
<tr>
<td>Positive control DMN 1 µl/ml</td>
<td>57.00</td>
<td>103.75</td>
<td>182.02</td>
</tr>
<tr>
<td>CGA 51202 tech.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000.0000 µg/ml</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1500.0000 µg/ml</td>
<td>80.67</td>
<td>4.88</td>
<td>6.04</td>
</tr>
<tr>
<td>750.0000 µg/ml</td>
<td>81.25</td>
<td>4.00</td>
<td>4.92</td>
</tr>
<tr>
<td>375.0000 µg/ml</td>
<td>83.75</td>
<td>7.25</td>
<td>8.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency (x10^-6)</th>
<th>Mean mutant factor</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>3.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control DMN 1 µl/ml</td>
<td>91.01</td>
<td>28.55</td>
<td>P<0.001</td>
</tr>
<tr>
<td>CGA 51202 tech.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000.0000 µg/ml</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1500.0000 µg/ml</td>
<td>3.02</td>
<td>0.95</td>
<td>Ns</td>
</tr>
<tr>
<td>750.0000 µg/ml</td>
<td>2.46</td>
<td>0.77</td>
<td>Ns</td>
</tr>
<tr>
<td>375.0000 µg/ml</td>
<td>4.33</td>
<td>1.36</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Linear relation: Ns
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean of viability clones per well</th>
<th>Mean of mutants per flask</th>
<th>Normalized mean of mutants per flask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>71.92</td>
<td>8.25</td>
<td>11.47</td>
</tr>
<tr>
<td>Positive control EMS 0.3 µl/ml</td>
<td>46.58</td>
<td>374.50</td>
<td>803.94</td>
</tr>
<tr>
<td>CGA 51202 tech.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000.0000 µg/ml</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1500.0000 µg/ml</td>
<td>75.17</td>
<td>4.88</td>
<td>6.49</td>
</tr>
<tr>
<td>750.0000 µg/ml</td>
<td>71.00</td>
<td>5.63</td>
<td>7.92</td>
</tr>
<tr>
<td>375.0000 µg/ml</td>
<td>77.33</td>
<td>6.25</td>
<td>8.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean mutant frequency factor (x10^-6)</th>
<th>Mean mutant factor (P)</th>
<th>Significance (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>5.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive control EMS 0.3 µl/ml</td>
<td>401.97</td>
<td>70.08</td>
<td>P<0.001</td>
</tr>
<tr>
<td>CGA 51202 tech.:</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3000.0000 µg/ml</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1500.0000 µg/ml</td>
<td>3.24</td>
<td>0.57</td>
<td>Ns</td>
</tr>
<tr>
<td>750.0000 µg/ml</td>
<td>3.96</td>
<td>0.69</td>
<td>Ns</td>
</tr>
<tr>
<td>375.0000 µg/ml</td>
<td>4.94</td>
<td>0.70</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Linear relation: \(0.025<P<0.05\)
Supplement to Document #001374 - DER for MRID No.00080897: Multi-generation Reproduction Study in Rats. This supplement provides an Executive Summary to upgrade the original DER.

EPA Reviewer: Virginia A. Dobozy, V.M.D., M.P.H. Virginia A. Dobozy 7/1/01
Reregistration Branch I, Health Effects Division (7509C)

Branch Senior Scientist: Whang Phang, Ph.D. Whang Phang 7/26/01
Reregistration Branch I, Health Effects Division (7509C)

DATA EVALUATION RECORD

STUDY TYPE: Multi-generation Reproduction Study in Rats
OPPTS Number: 870.3800 OPP Guideline Number: 83-4

PC CODE: 108801

TEST MATERIAL (PURITY): Metolachlor (95.4% a.i.)

Chemical Name: 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide

Synonym: CGA-24705

SPONSOR: CIBA-GEIGY Corporation

EXECUTIVE SUMMARY:

In a two-generation reproduction study (MRID 00080897), metolachlor (95.4% a.i.) was administered in the diet to two consecutive generations of 15 male/30 female CD albino rats at dose levels of 0, 30, 300 or 1000 ppm (F₀ males: 0, 2.4, 23.5 and 75.8 mg/kg/day; F₀ females: 0, 2.5, 26.0 and 85.7 mg/kg/day; F₁ males: 0, 2.3, 23.7 and 76.6 mg/kg/day; F₁ females: 0, 2.6, 25.7 and 84.5 mg/kg/day).

There were no deaths in the F₀ generation. Two females of the F₁ generation died during the pre-mating period, one in the 300 ppm group at 32 days and the other in the 1000 ppm group at 52
days. One female in the 300 ppm group was found dead on gestation day 19 and a control group female was sacrificed in a moribund condition on lactation day 1. Based on necropsy examinations, none of the deaths was treatment-related. There were no treatment-related clinical signs of toxicity in either generation. Body weight, body weight gain and food consumption were unaffected in the F₀ generation. In the F₁ generation, food consumption was significantly decreased in females of the 1000 ppm group at several timepoints; however, there was no effect on body weight/body weight gain. Therefore, this finding was not considered toxicologically significant. There were no treatment-related effects on organ weights or gross/microscopic necropsy examinations in either generation.

There was no evidence of a treatment-related effect on any of the reproductive parameters for either generation. Offspring body weight was significantly decreased in the F₁ litter on lactation days 14 and 21 (91-96% of control value) and in the F₂ litter on lactation days 4, 7, 14 and 21 (92-95% of control value). Although the magnitude of the decrease is small, the finding is regarded as toxicologically significant.

The parental toxicity LOAEL was not established. The NOAEL was 1000 ppm (F₀ males/females: 75.8/85.7 mg/kg/day; F₁ males/females: 76.6/84.5 mg/kg/day).

The reproductive toxicity LOAEL was not established. The NOAEL was 1000 ppm (F₀ males/females: 75.8/85.7 mg/kg/day; F₁ males/females: 76.6/84.5 mg/kg/day).

The offspring LOAEL was conservatively established at 1000 ppm (F₀ males/females: 75.8/85.7 mg/kg/day; F₁ males/females: 76.6/84.5 mg/kg/day) based on decreased body weight in F₁ and F₂ litters. The NOAEL is 300 ppm (F₀ males/females: 23.5/26.0 mg/kg/day; F₁ males/females: 23.7/25.7 mg/kg/day).

The study is classified as Acceptable/guideline and satisfies the guideline requirements for a multi-generation reproduction study in rats (83-4; OPPTS 870.3800).
Supplement to Document #010251- DER for MRID 00129377: Chronic Toxicity/Carcinogenicity Study in Rats. This supplement provides an Executive Summary to upgrade the original DER which reviewed only the chronic toxicity portion of the study.

EPA Reviewer: Virginia A. Dobozy, V.M.D., M.P.H.

Reregistration Branch I, Health Effects Division (7509C)

Branch Senior Scientist: Whang Phang, Ph.D.

Reregistration Branch I, Health Effects Division (7509C)

DATA EVALUATION RECORD

STUDY TYPE: Chronic Toxicity/Carcinogenicity Study in Rats

OPPTS Number: 870.4100

PC CODE: 108801

TEST MATERIAL (PURITY): Metolachlor (95.3% a.i.)

Chemical Name: 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide

Synonym: CGA-24705

SPONSOR: CIBA-GEIGY Corporation

EXECUTIVE SUMMARY:

In a chronic toxicity/carcinogenicity study (MRID 00129377), metolachlor (95.3% a.i.) was administered in the diet to 60 CD-Crl:CD (SD)BR albino rats/sex/group at dose levels of 0, 30, 300 or 3000 ppm (0, 1.5, 15 or 150 mg/kg/day based on 1 ppm in food equals 0.05 mg/kg/day) for two years. An additional 10 rats/sex/group were administered either 0 (control) or 3000 ppm in the diet for 12 months; five rats/sex/group were sacrificed after the treatment and the remaining five/sex/group were allowed to recover for four weeks and then sacrificed.

This summary applies only to the chronic toxicity portion of the study. The HED Cancer Peer
Review Committee evaluated the carcinogenic potential of metolachlor on several occasions. At the 4th Committee meeting on July 27, 1994, metolachlor was classified as a Group C, possible human carcinogen based on liver tumors in rats with risk quantitated using a Margin of Exposure approach.

Comparable mortality rates were observed in the treated and control animals. There were no treatment-related clinical signs of toxicity. Mean body weight gain was slightly decreased in the 3000 ppm females (6 - 17% decrease) throughout the study; the changes were not statistically significant. Mean food consumption was slightly decreased (4 - 9%) in the 3000 ppm females; the decrease was not statistically significant. Absolute, relative and liver-to-brain weight were increased (7%, 13% and 5%, respectively) in the 3000 ppm males. These increases were also observed in the 3000 ppm males after the four-week recovery period. However, the toxicological significance of the finding is questionable as there were no accompanying clinical pathology or histological changes.

The LOAEL was 3000 ppm (150 mg/kg/day) for females based on slightly decreased body weight gain and food consumption. The NOAEL was 300 ppm (15 mg/kg/day) for females. The LOAEL was not established for males. The NOAEL was 3000 ppm (150 mg/kg/day).

The study is classified as acceptable/guideline and satisfies the guideline requirements for a chronic toxicity study in rats (83-1; OPPTS 870.4100).
EXECUTIVE SUMMARY:

In a carcinogenicity study (MRID 00117597), metolachlor (reported to be 95% a.i.) was administered in the diet to 68 CD-1 mice/sex/group at doses of 0, 300, 1000 or 3000 ppm (0, 45, 150 or 450 mg/kg/day, based on 1 ppm equals 0.150 mg/kg/day). Eight mice/sex/group were sacrificed at 12 and 18 months.

High dose females had a significant increased mortality rate due to a number of deaths during the first few weeks of treatment (control: 24/52; high dose females: 34/52 at termination). Although
the deaths were possibly attributable to a viral infection, the contribution of the test material can’t be dismissed. Body weight was statistically significantly decreased (91-95% of control value) throughout the study in the 3000 ppm males and during the latter half of the study in the 3000 ppm females (93-95%). Body weight gain was consistently decreased in the 3000 ppm males (48-88%) and females (59-86%). Food consumption was comparable between treated and control groups until week 90 of treatment, at which time the 3000 ppm males consumed 10% less than controls. The decrease was statistically significant at weeks 98, 102 and 104. There was no significant effect on female food consumption. There was no evidence of a treatment-related effect on hematology or clinical chemistry parameters. Organ weight was not affected except for a dose-related decrease in the absolute and relative weight of the seminal vesicles of males which was statistically significant at the high dose. However, there was no effect on testes weight and no accompanying histological changes in the seminal vesicles; therefore, the toxicological significance of the finding is questionable. There were no treatment-related microscopic changes. There was no treatment-related increase in tumor incidence in the study.

The LOAEL was 3000 ppm (450 mg/kg/day) based on possible treatment-related deaths in females and decreased body weight/body weight gain in males and females. The NOAEL was 1000 ppm (150 mg/kg/day).

The HED Cancer Peer Review Committee evaluated the carcinogenic potential of metolachlor on several occasions. At the 4th Committee meeting on July 27, 1994, it was metolachlor was classified as a Group C, possible human carcinogen based on liver tumors in the rat with risk quantitated using a Margin of Exposure approach.

The study is classified as acceptable/guideline and satisfies the guideline requirements for a carcinogenicity toxicity study in mice (83-5; OPPTS 870.4200).
Table 1: Body Weight/Body Weight Gain in Mice Treated with Metolachlor

<table>
<thead>
<tr>
<th>Dose Levels (ppm)</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>23.1</td>
<td>23.5</td>
</tr>
<tr>
<td>1</td>
<td>24.0</td>
<td>24.3</td>
</tr>
<tr>
<td>2</td>
<td>26.6</td>
<td>26.5</td>
</tr>
<tr>
<td>13</td>
<td>33.6</td>
<td>33.3</td>
</tr>
<tr>
<td>26</td>
<td>36.9</td>
<td>37.3</td>
</tr>
<tr>
<td>52</td>
<td>40.1</td>
<td>39.8</td>
</tr>
<tr>
<td>104</td>
<td>40.5</td>
<td>40.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Body Weight Gain (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>0.9</td>
</tr>
<tr>
<td>0-2</td>
<td>3.5</td>
</tr>
<tr>
<td>0-13</td>
<td>10.5</td>
</tr>
<tr>
<td>13-26</td>
<td>3.3</td>
</tr>
<tr>
<td>13-52</td>
<td>6.5</td>
</tr>
<tr>
<td>0-52</td>
<td>17.0</td>
</tr>
<tr>
<td>0-104</td>
<td>17.4</td>
</tr>
</tbody>
</table>

a Extracted from Tables 20 (pages 83-84) and 23 (pages 91-92) of the study report.

b Calculated by the reviewer using mean body weight data.

*p<0.05 and ** p<0.01 using Dunnett’s procedure* (percentage of control value, calculated by reviewer)
Supplement to Documents # 010251, 010088, 009699 and 008442- DER for MRID Nos. 40980701, 41164501, 42218601 and 42218602: Chronic Oral Toxicity Study in Dogs. This supplement provides an Executive Summary to upgrade the original DERs.

EPA Reviewer: Virginia A. Dobozy, V.M.D., M.P.H.
Reregistration Branch I, Health Effects Division (7509C)

Branch Senior Scientist: Whang Phang, Ph.D.
Reregistration Branch I, Health Effects Division (7509C)

DATA EVALUATION RECORD

STUDY TYPE: Chronic Oral Toxicity Study in Dogs
OPPTS Number: 870. 4100 OPP Guideline Number: 83-1

PC CODE: 108801

TEST MATERIAL (PURITY): Metolachlor (97% a.i.)

Chemical Name: 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide

Synonym: CGA-24705

SPONSOR: CIBA-GEIGY Corporation

EXECUTIVE SUMMARY:

In a chronic toxicity study (MRIDs 40980701, 41164501, 42218601 and 42218602), metolachlor (97% a.i.) was administered in the diet to Beagle dogs (6/sex/group for control and high dose groups; 4/sex/group for low- and mid-dose groups) at dose levels of 0, 100, 300 or 1000 ppm (males: 0, 3.5, 9.7 and 32.7 mg/kg/day, respectively; females: 0, 3.6, 9.7 and 33.0 mg/kg/day, respectively) for one year. Two dogs of each sex in the control and high-dose group designated as recovery animals were treated for 52 weeks and were then allowed a 4-week recovery period. An additional 4 dogs/sex/group were treated at the same dose levels and
In a prenatal developmental toxicity study (MRID 00151941), CGA-24705 (metolachlor) (96.4% a.i.) in 0.5% (w/v) aqueous hydroxymethylcellulose was administered by gavage (10 ml/kg) to 25 presumed pregnant Crl:COBS®CD®(SD) BR rats from gestation days (GD) 6 through 15, inclusive, at dose levels of 0, 30, 100, 300 or 1000 mg/kg/day. The animals were sacrificed on GD 20 and the fetuses examined for evidence of developmental effects.

There were four treatment-related deaths [GD 7, 8 and 10 (2 rats)] in animals treated at 1000 mg/kg/day. Clinical signs of toxicity, including clonic and/or toxic convulsions, excessive salivation, urine-stained abdominal fur and/or excessive lacrimation, were observed in animals treated at 1000 mg/kg/day. There was also an increase in excessive salivation in the 300 mg/kg/day group. However, as this effect was most likely due to gastric irritation and there was
Metolachlor Technical Prenatal Developmental Toxicity (Rat) (83-3a; OPPTS 870.3700)

no other evidence of treatment-related toxicity, the finding is not considered toxicologically significant. Body weight gain was significantly decreased in the 1000 mg/kg/day group during GD 6-16 (83% of control value; p<0.05), GD 6-20 (88% of control value; p<0.05) and GD 0-20 (88% of control value; p<0.01). Food consumption was not affected.

In the 1000 mg/kg/day group, there was a slightly decreased number of implantations per dam (14.6 vs 15.8 in controls), decreased live fetuses/dam (13.8 vs 15.2 in controls) and increased number of resorptions/dam (0.8 vs 0.5 in controls). There was also a statistically significant decrease (p<0.05; 96% of control value) in mean fetal body weight.

The maternal toxicity LOAEL was 1000 mg/kg/day based on an increased incidence of death, clinical signs of toxicity (clonic and/or toxic convulsions, excessive salivation, urine-stained abdominal fur and/or excessive lacrimation) and decreased body weight gain. The NOAEL was 300 mg/kg/day.

The developmental toxicity LOAEL was conservatively established at 1000 mg/kg/day based on slightly decreased number of implantations per dam, decreased number of live fetuses/dam, increased number of resorptions/dam and significant decrease in mean fetal body weight. The NOAEL was 300 mg/kg/day.

The study is classified as Acceptable/guideline and satisfies the guideline requirements for a prenatal developmental toxicity study in rats (83-3a; OPPTS 870.3700).
DATA EVALUATION RECORD

STUDY TYPE: Prenatal Developmental Toxicity - Rabbit

OPPTS Number: 870.3700 OPP Guideline Number: 83-3b

PC CODE: 108801

TEST MATERIAL (PURITY): CGA-24705 (Metolachlor) (95.4% a.i.)

Chemical Name: 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide

SPONSOR: CIBA-GEIGY Corporation

EXECUTIVE SUMMARY:

In a prenatal developmental toxicity study (MRID 00041283), CGA-24705 (metolachlor) (95.4% a.i.) in 0.75% aqueous hydroxy methylcellulose was administered by gavage (10 ml/kg) to 16 pregnant New Zealand White rabbits/group from gestation days (GD) 6 through 18, inclusive, at dose levels of 0, 36, 120 or 360 mg/kg/day. The animals were sacrificed on GD 30 and the fetuses examined for evidence of developmental effects.

One doe at 36 mg/kg/day and another at 360 mg/kg/day died on GDs 24 and 29, respectively. The cause of death in both animals was attributed to persistent anorexia. Two rabbits aborted, one at 120 mg/kg/day (GD 25) and another at 360 mg/kg/day (GD 17). The high-dose animal had persistent anorexia. One rabbit in each group delivered prior to GD 30; the control, low- and
Metolachlor Technical Prenatal Developmental Toxicity (Rabbit) (83-3b; OPPTS 870.3700)

high-dose animals on GD 29 and the mid-dose animal on GD 30. There was a treatment-related increase in the incidence of persistent anorexia in the does treated at 360 mg/kg/day, which was defined as less than one-half of the daily food allotment consumed. However, food consumption data were not provided to support this finding. There was a treatment-related decrease in body weight gain in the 360 mg/kg/day group for GD 6-18 (-0.16 kg vs +0.04 kg in controls; p<0.01) and GD 6-30 (-0.01 kg vs +0.03 kg in controls). There was no treatment-related increase in gross pathological findings in maternal animals at necropsy.

No treatment-related increase in external, visceral or skeletal developmental effects was observed.

The maternal toxicity LOAEL was 360 mg/kg/day based on an increased incidence of clinical observations (persistent anorexia) and decreased body weight gain. The NOAEL was 120 mg/kg/day.

The developmental toxicity LOAEL was not established. The NOAEL was 360 mg/kg/day.

The study is classified as Acceptable/guideline and satisfies the guideline requirements for a prenatal developmental toxicity study in rabbits (83-3b; OPPTS 870.3700).
DATA EVALUATION RECORD

STUDY TYPE: Subchronic Oral Toxicity Study in Dogs
OPPTS Number: 870.3150

PC CODE: 108801

TEST MATERIAL (PURITY): Metolachlor

Chemical Name: 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide

Synonym: CGA-24705

SPONSOR: CIBA-GEIGY Corporation

EXECUTIVE SUMMARY:

In a subchronic oral toxicity study (MRIDs 00032174 and 43244001), metolachlor (96.8% ai) was administered in the diet to Beagle dogs (8/sex/group for control and high dose groups; 6/sex/group for low- and mid-dose groups) at dose levels of 0, 100, 300 or 1000 ppm (males: 0, 2.92, 9.71 and 29.61 mg/kg/day, respectively; females: 0, 2.97, 8.77 and 29.42 mg/kg/day, respectively) for six months.

There were no deaths or clinical signs of toxicity. Mean body weight gain was decreased during weeks 0-13 and 0-26 in the 1000 ppm group males (55-63% decrease) and females (44-50%
decrease), although the changes were not statistically significant. Mean overall food consumption was not affected in the 1000 ppm group males but was slightly decreased (9%) in the 1000 ppm females. There was a significant decrease in the activated partial thromboplastin time (APTT) in the 300 and 1000 ppm group males and 300 ppm group females but the findings were not considered toxicologically significant because the decrease was slight and not dose-related. Alkaline phosphatase was significantly increased in the 300 ppm and 1000 ppm group males and females at week 26; however, the effect was not considered toxicologically significant due to the small magnitude of the increase and the lack of accompanying necropsy findings.

The LOAEL was 1000 ppm (males/females: 29.61/29.42 mg/kg/day) based on decreased body weight gain. The NOAEL was 300 ppm (males/females: 9.71/8.77 mg/kg/day).

The study is classified as Acceptable/guideline and satisfies the guideline requirements for a subchronic toxicity study in dogs (82-1; OPPTS 870.3150). The study was conducted for six months, whereas the guidelines require 90 days of dosing. However, toxicity parameters, with the exception of necropsy, were also evaluated at 90 days in the study.
Supplement to Documents #009558 and 010315 - DER for MRID No.41833101: 21-Day Dermal Toxicity Study in Rabbits. This supplement provides an Executive Summary to upgrade the original DER. The systemic NOAEL/LOAEL have been changed on re-evaluation.

EPA Reviewer: Virginia A. Dobozy, V.M.D., M.P.H.
Reregistration Branch I, Health Effects Division (7509C)

Branch Senior Scientist: Whang Phang, Ph.D.
Reregistration Branch I, Health Effects Division (7509C)

DATA EVALUATION RECORD

STUDY TYPE: 21-Day Dermal Toxicity Study in Rabbits
OPPTS Number: 870.3200
OPP Guideline Number: 82-2

PC CODE: 108801

TEST MATERIAL (PURITY): Metolachlor (96.4% a.i.)

Chemical Name: 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide

Synonym: CGA-24705

SPONSOR: CIBA-GEIGY Corporation

EXECUTIVE SUMMARY:

In a 21-day dermal toxicity study (MRID 41833101), metolachlor (96.4% a.i.) was applied topically once daily for 21 days to the intact skin of five New Zealand rabbits/sex/group at doses of 0, 10, 100 or 1000 mg/kg/day.

All animals survived the treatment. There were no treatment-related effects on clinical signs, body weight/body weight gain, food consumption, ophthalmoscopic examinations, hematology
or necropsy examinations. Significant increases in total bilirubin were observed only in females treated at 100 mg/kg/day (68% increase) and 1000 mg/kg/day (72% increase). However, these increases were not considered toxicologically significant as there was no other evidence of organ effects at these doses and hyperbilirubinemia has not been reported in other toxicity studies with metolachlor. Absolute and relative liver weight were significantly increased in the 1000 mg/kg/day males and relative kidney weight was significantly increased in 1000 mg/kg/day females. These effects are not considered toxicologically significant as there were no accompanying laboratory or necropsy findings.

There was evidence of skin irritation in all treated groups. Very slight erythema and dry skin were observed in all animals of the 10 mg/kg/day group; one female at this dose had fissuring. With increasing doses, more animals were observed to have fissuring and wrinkling of the skin. On histopathology, hyperkeratosis, parakeratosis, congestion of the dermis, edema and subacute lymphocytic infiltration were reported in some or all of the treated animals.

The systemic LOAEL was not established. The NOAEL was 1000 mg/kg/day (HDT).

The dermal irritation LOAEL was 10 mg/kg/day (LDT) based on very slight erythema, dry skin and fissuring (one animal). The NOAEL was not established.

The study is classified as acceptable/guideline and satisfies the guideline requirements for a 21-day dermal toxicity study in rabbits (82-2; OPPTS 870.3200).
DATA EVALUATION RECORD

STUDY TYPE: Dermal Penetration in Rats

OPPTS Number: 870.7600 OPP Guideline Number: 85-3

PC CODE: 108801

TEST MATERIAL (PURITY): ¹⁴C-Metolachlor (uniformly labeled in the phenyl with a specific activity of 17.7 µCi/ng for the low- and mid-dose levels and 1.77 µg/mg for the high-dose level)

Chemical Name: 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide

Synonym: CGA-24705

SPONSOR: CIBA-GEIGY Corporation

EXECUTIVE SUMMARY:

In a dermal penetration study (MRID 41833102), ¹⁴C-CGA 24705 (% a.i. unknown) suspended in deionized water was applied to a 10 cm² area of the backs of 4 male Crl:CD®BR rats/group at doses of 0.01, 0.1 or 1.0 mg/cm². Each dose group was exposed for either 2, 4, 10 or 24 hours and then the area was washed and the animals sacrificed. Another 4 animals/dose group were treated for either 10 or 24 hours, the skin was washed and they were placed in a metabolism cage for collection of urine and feces. Sacrifice was 72 hours later. The amount of radioactivity
in the blood, urine, feces, carcass, skin and cage wash was determined for all animals.

CGA 24705 was rapidly absorbed with significant bioaccumulation. The total percentage of the applied dose which was found in the blood, urine, feces, carcass and cage wash (or absorbed) after 10 hours was 32.93, 20.26 and 6.98 at 0.01, 0.1 and 1.0 mg/cm², respectively. The percentage remaining on the skin was 24.66, 20.89 and 12.69 at the respective doses. The total percentage of the applied dose in the blood, urine, feces, carcass and cage wash (or absorbed) after 24 hours was 62.84, 26.85 and 16.15 at 0.01, 0.1 and 1.0 mg/cm², respectively. The percentage remaining on the skin was 11.09, 19.14 and 15.49 at the respective doses.

For rats with skin washings at 10 hours and sacrifice 72 hours after washing, the total percentage of the applied dose found in the blood, urine, feces, carcass and cage wash was 50, 38.61 and 15.46 at 0.01, 0.1 and 1.0 mg/cm², respectively. The percentage remaining on the skin was 5.30, 3.48 and 3.54 at the respective doses. For rats with skin washings at 24 hours and sacrifice 72 hours after washing, the percentage of the applied dose found in the blood, urine, feces, carcass and cage wash was 67.32, 43.46 and 30.49 at 0.01, 0.1 and 1.0 mg/cm², respectively. The percentage remaining on the skin was 3.39, 1.36 and 1.42 at the respective doses.

The study is classified as **Acceptable/guideline** and **satisfies** the guideline requirements for a dermal penetration study in rats (85-3; OPPTS 870.7600).
Chemical: Metolachlor; (S)-2-Chloro-N-(2-ethyl-6-methylphenyl)-

PC Code: 108801; 108800
HED File Code 13000 Tox Reviews
Memo Date: 12/12/2001
File ID: TX050330
Accession Number: 412-02-0281

HED Records Reference Center
05/03/2002