NOTICE OF PESTICIDE:

X Registration
___ Reregistration
(under FIFRA, as amended)

Name and Address of Registrant (include ZIP Code):

Luz G. Chan
Drexel Chemical Company
1700 Channel Avenue
P.O. Box 13327, Memphis, TN 38113

Note: Changes in labeling differing in substance from that accepted in connection with this registration must be submitted to and accepted by the Registration Division prior to use of the label in commerce. In any correspondence on this product always refer to the above EPA registration number.

On the basis of information furnished by the registrant, the above named pesticide is hereby registered under the Federal Insecticide, Fungicide and Rodenticide Act.

Registration is in no way to be construed as an endorsement or recommendation of this product by the Agency. In order to protect health and the environment, the Administrator, on his motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under this Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others.

This product is conditionally registered in accordance with FIFRA section 3(c)(7)(A). You must comply with the following conditions:

1. Submit and/or cite all data required for registration/reregistration/registration review of your product under FIFRA when the Agency requires all registrants of similar products to submit such data.

Signature of Approving Official:

Venus Eagle, Product Manager 01
Invertebrate-Vertebrate Branch 3, Registration Division (7505P)

Date:

12/2/15
2. You are required to comply with the data requirements described in the DCI identified below:

 - Sulfuryl Fluoride GDCI-078003-964

 You must comply with all of the data requirements within the established deadlines. If you have questions about the Generic DCI listed above, you may contact the Chemical Review Manager in the Pesticide Reevaluation Division: http://www.epa.gov/oppsrrd1/contacts_prd.htm

3. The container label and Applicator’s Manual constitute the entire master label for this product. In addition to this label, the Drexel Chemical Master Fume® AG Product Stewardship Program was submitted and must be maintained with this registration.

4. Make the following label changes before you release the product for shipment:

 - Revise the EPA Registration Number to read, “EPA Reg. No. 19713-672.”

5. Submit one copy of the final printed label for the record before you release the product for shipment.

 Should you wish to add/retain a reference to the company’s website on your label, then please be aware that the website becomes labeling under the Federal Insecticide Fungicide and Rodenticide Act and is subject to review by the Agency. If the website is false or misleading, the product would be misbranded and unlawful to sell or distribute under FIFRA section 12(a)(1)(E). 40 CFR 156.10(a)(5) list examples of statements EPA may consider false or misleading. In addition, regardless of whether a website is referenced on your product’s label, claims made on the website may not substantially differ from those claims approved through the registration process. Therefore, should the Agency find or if it is brought to our attention that a website contains false or misleading statements or claims substantially differing from the EPA approved registration, the website will be referred to the EPA’s Office of Enforcement and Compliance.

 If you fail to satisfy these data requirements, EPA will consider appropriate regulatory action including, among other things, cancellation under FIFRA section 6(e). Your release for shipment of the product constitutes acceptance of these conditions. A stamped copy of the label is enclosed for your records. Please also note that the record for this product currently contains the following CSFs:

 - Basic CSF dated 08/28/2015

 If you have any questions, please contact Jacquelyn Marchese by phone at 703-347-0559, or via email at marchese.jacquelyn@epa.gov.

Enclosure
RESTRICTED USE PESTICIDE
(Due To Acute Inhalation Toxicity Of Sulfuryl Fluoride)
FOR SALE TO AND USE ONLY BY CERTIFIED APPLICATORS OR PERSONS UNDER THEIR DIRECT SUPERVISION AND ONLY FOR THOSE USES COVERED BY THE CERTIFIED APPLICATOR'S CERTIFICATION. AN APPLICATOR CERTIFIED BY THE STATE MUST BE PRESENT ON SITE AT ALL TIMES DURING INTRODUCTION OF FUMIGANT, REENTRY PRIOR TO AERATION AND INITIATION OF THE AERATION PROCEDURE.

For control of rodent, insect and other listed invertebrate pests.

Use Sites: Stationary transportation vehicles (railcars, shipping containers, trucks, etc., excluding aircraft and passenger railcars), temporary and permanent fumigation chambers, and storage structures.

Read the entire container label and Applicator's Manual before using this product. Refer to the Applicator's Manual for additional precautionary information and directions for use. The Applicator's Manual must be in the user's possession during fumigation. If the Applicator’s Manual is lost, obtain a replacement copy from your distributor or Drexel Chemical Company.

APPLICATION PERSONNEL MUST PARTICIPATE IN DREXEL CHEMICAL's SULFURYL FLUORIDE TRAINING AND STEWARDSHIP PROGRAM, MASTER TRAIN.

ACTIVE INGREDIENT:
Sulfuryl fluoride... 99.8%
OTHER INGREDIENTS: .. 0.2%
TOTAL: ... 100.0%

KEEP OUT OF REACH OF CHILDREN

DANGER PELIGRO

POISON VENENO

Si usted no entiende la etiqueta, busque a alguien para que se la explique a usted en detalle. (If you do not understand the label, find someone to explain it to you in detail.)

See FIRST AID on Page 2

EPA Reg. No. 19713-ATE
EPA Est. No. 19713-XX-X

Net Content: 125 LBS.

Manufactured By:
Drexel Chemical Company
PO. BOX 13027, MEMPHIS, TN 38113-0277

19713-672
FIRST AID

IF INHALED:
- Move person to fresh air.
- If person is not breathing, call 911 or ambulance, then give artificial respiration.
- **DO NOT** give mouth-to-mouth resuscitation.
- Call a poison control center or doctor for further treatment advice.

IF IN EYES:
- Hold eye open and rinse slowly and gently with water for 15 to 20 minutes.
- Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye.
- Call a poison control center or doctor for treatment advice.

IF SWALLOWED:
- Call a poison control center or doctor immediately for treatment advice.
- Have person sip glass of water if able to swallow.
- Do not induce vomiting unless told to by a poison control center or doctor.
- Do not give anything by mouth to an unconscious person.

IF ON SKIN OR CLOTHING:
- Take off contaminated clothing.
- Rinse skin immediately with plenty of water for 15-20 minutes.
- Call a poison control center or doctor for treatment advice.

In all cases of overexposure, such as nausea, difficulty in breathing, abdominal pain, slowing of movements and speech, numbness in extremities, get medical attention immediately. Take person to a doctor or emergency treatment facility. Have the product container or label with you when calling a poison control center or doctor, or going for treatment. You may also call CHEMTREC at 800-424-9300 for emergency.

Note to Physician:
This product is a gas which has no warning properties such as odor or eye irritation. (However, chloropicrin is used as a warning agent and is a known lachrymator). Early symptoms of exposure to this product are respiratory irritation and central nervous system depression. Excitation may follow. Slowed movement, reduced awareness, and slow or garbled speech may be noted. Prolonged exposure can produce lung irritation, pulmonary edema, nausea, and abdominal pain. Repeated exposure to high concentrations of this product can result in significant lung and kidney damage. Single exposures at high concentrations have resulted in death. Treat symptomatically. The liquid form of this product in the eye may cause damage due to refrigeration or freezing.

PRECAUTIONARY STATEMENTS

Hazards To Humans And Domestic Animals

DANGER: Corrosive. Extremely hazardous liquid and vapor under pressure. Fatal if inhaled. Causes irreversible eye damage. Do not breathe vapor. Do not get in eyes, on skin, or on clothing. Liquid may cause chemical burns, which may have a delayed onset, or may freeze exposed skin. May be fatal if swallowed. May be fatal if absorbed through skin. Sulphuryl fluoride is odorless. Exposure to toxic levels may occur without warning or detection by the user.

This product is used with 0.25% chloropicrin as a warning odorant. Chloropicrin may be irritating to the upper respiratory tract and, even at low levels, can cause painful irritation to the eyes, producing tearing. If these symptoms occur, leave the fumigation area immediately.

PERSONAL PROTECTIVE EQUIPMENT (PPE)

Protective Clothing
Wear splash-resistant goggles (goggles designed and made of material that allows no measurable movement of the liquid pesticide being used to pass through them during use) or full face shield for eye protection during introduction of the fumigant. Do not wear gloves or rubber boots. Do not reuse clothing or shoes that have become contaminated with this product until thoroughly aerated and cleaned.

Respiratory Protection
If the concentration of this product in the breathing zone of the fumigated area (as measured by a detector device with sufficient sensitivity such as an INTERSCAN, MIRAN or SF-Explorer™) does not exceed 1 ppm (4 mg/cubic meter), no respiratory protection is required. [A breathing zone is defined as the area within a structure where individuals typically stand, sit or lie down.] If the concentration of this product is greater than 1 ppm, further aeration and re-testing is required. When this concentration is exceeded or when concentration is unknown, all persons in the exposed area must wear a NIOSH approved positive pressure self-contained breathing apparatus (SCBA, not SCUBA) or combination air-supplied/SCBA respirator such as manufactured by Draeger, Ranger, Survivair, Scott or MSA. Before using any make or brand of SCBA, learn how to use it correctly. Determine that it has an adequate air supply for the job at hand, that it fits properly providing an adequate seal around the face and that it is in good working order. For more detailed information on the source and use of air monitoring devices and respirators, consult the Applicator’s Manual of this product.
USER SAFETY RECOMMENDATIONS

Users should: 1) Wash hands before eating, drinking, chewing gum, using tobacco or using the toilet. 2) Remove clothing/PPE immediately if pesticide gets inside. Then wash thoroughly and put on clean clothing. 3) Remove PPE immediately after handling this product. Wash the outside of gloves before removing. As soon as possible, wash thoroughly and change into clean clothing.

ENVIRONMENTAL HAZARDS
Sulfuryl fluoride is a highly toxic gas. Do not expose non-target organisms. This pesticide is toxic to fish and wildlife.

PHYSICAL OR CHEMICAL HAZARDS
Sulfuryl fluoride is a colorless, odorless toxic gas. Cylinders of this product are under pressure and must not be stored near heat or open flame. Exposures to temperatures above 158°F will cause a fusible plug to melt and the contents will be released. Under high heat conditions (temperatures above 752°F), this product can decompose into sulfur dioxide (SO₂), hydrofluoric acid (HF), and other decomposition products. Hydrofluoric acid is highly reactive and can corrode or damage many materials including metals, glass, ceramic finishes, fabrics, etc. Extinguish all flames including pilot lights of furnaces, hot water heaters, dryers, gas refrigerators, ranges, ovens, broilers, etc. Turn off or unplug all electrical heating elements such as those in heaters, dryers, etc., that represent a reasonable risk of a heat source that is at or near 752°F. Shut off automatic switch controls for appliances and lighting systems that will be included in the space to be fumigated. Contact your local gas company to determine what procedures should be followed in your area for shutting off natural gas or propane service. Gas service should be shut off at the main service valve. Sulfuryl fluoride can react with strong bases such as some photo developing solutions.

Notice: Read the entire label. Use only according to label directions. Before using this product, read Warranty-Conditions of Sale, Inherent Risks of Use, and Limitation of Remedies elsewhere on the label. If terms are unacceptable, return at once unopened.

In case of emergency endangering health or the environment involving this product, call 1-800-CHEMTREC. If you wish to obtain additional product information call Drexel Chemical Company at (901) 774-4370.

Agricultural Chemical: Do not ship or store with food, feeds, drugs or clothing.
STORAGE AND DISPOSAL

Do not contaminate water, food or feed by storage or disposal.

PESTICIDE STORAGE: Store in dry, cool, well ventilated area under lock and key. Post as a pesticide storage area. If the storage area is in an occupied building, the storage area must have either 1) a forced air ventilation system that meets required local ordinances for the storage of hazardous materials and operates continuously; or 2) be equipped with a permanently mounted and properly maintained and functioning sulfuryl fluoride monitoring device designed to alert occupants of the building if sulfuryl fluoride in the air of the storage area is greater than 1 ppm. Store cylinders upright secured to a rack or wall to prevent tipping.

PESTICIDE HANDLING: Do not subject cylinders to rough handling or mechanical shock such as dropping, bumping, dragging, or sliding. Do not use ropes, slings, hooks, tongs or similar devices to unload cylinders. Transport cylinders using hand truck, fork truck or other device to which the cylinder can be firmly secured. Do not transport any cylinders in closed vehicles where they occupy the same common airspace as personnel. Transport securely only in an upright position. Do not remove valve protection bonnet and safety cap until immediately before use. Replace safety cap and valve protection bonnet when cylinder is not in use.

When cylinder is empty, close valve, screw safety cap onto valve outlet, and replace protection bonnet before returning to supplier. Only the registrant is authorized to refill cylinders. Do not use cylinder for any other purpose. Follow registrant’s instructions for return of empty or partially empty cylinders.

Leak Procedures: Evacuate immediate area of leak. Use a NIOSH approved positive pressure self-contained breathing apparatus (SCBA, not SCUBA) or combination air-supplied/SCBA respirator, such as manufactured by Ranger, Survivair, Scott or MSA, for entry into affected areas to correct problem. Move leaking or damaged cylinder outdoors or to an isolated location, observing strict safety precautions. Work upwind if possible. Do not permit entry into leakage area by unprotected persons until concentration of fumigant is determined to be 1 ppm or less in the breathing zone, as determined by a detection device with sufficient sensitivity such as an INTERSCAN, MIRAN or SF-ExplorIR. For more detailed information on the source and use of air monitoring devices or respirators, consult the Applicator’s Manual of this product.

CYLINDER AND PRODUCT DISPOSAL:
Promptly return all empty cylinders to your distributor of this product. Follow proper cylinder handling directions above. Pesticide wastes are toxic. Improper disposal of excess pesticide is a violation of Federal law. If these wastes cannot be disposed of by use according to label instructions, consult your State Pesticide or Environmental Control Agency or the Hazardous Waste Representative at the nearest EPA Regional Office for guidance.

WARRANTY DISCLAIMER

Manufacturer warrants that this product conforms to the chemical description on the label and based upon tests believed reasonably fit for the purposes stated on the label when used in strict accordance with the directions, subject to the inherent risks set forth below. To the extent consistent with applicable law, Manufacturer makes no other expressed or implied warranty of merchantability or fitness for a particular purpose or any other express or implied warranty.

Use Risk

It is impossible to eliminate all risks associated with use of this product. Plant injury, lack of performance, or other unintended consequences may result because of such factors as use of the product contrary to label instructions (including conditions noted on the label, such as unfavorable weather, soil conditions, etc.), abnormal conditions (such as excessive rainfall, drought, tornadoes, hurricanes), presence of other materials, the manner of application, or other factors, all of which are beyond the control of Manufacturer or the Seller. To the extent consistent with applicable law, all such risks shall be assumed by Buyer.

Limitation of Remedies

To the extent consistent with applicable law, the exclusive remedy for losses or damages resulting from this product (including claims based on contract, negligence, strict liability, or other legal theories), shall be limited to one of the following, at Manufacturer’s discretion:

1. Refund of purchase price paid by Buyer or use for product bought, or
2. Replacement of amount of product used.

To the extent consistent with applicable law, in no case shall Manufacturer or the Seller be liable for consequential, special or indirect damages or losses from the use, handling or storage of this product.

The terms of the “Warranty Disclaimer” above and this “Limitation of Remedies” cannot be varied by any written or verbal statements or agreements. No employee or sales agent of the Manufacturer or the Seller is authorized to vary or exceed the terms of the “Warranty Disclaimer” or this “Limitation of Remedies” in any manner.

MASTER FUME and the Drexel logo are registered trademarks of Drexel Chemical Company. All other brand names, product names, or trademarks belong to their respective holders.
RESTRICTED USE PESTICIDE
(Due To Acute Inhalation Toxicity Of Sulfuryl Fluoride)

FOR SALE TO AND USE ONLY BY CERTIFIED APPLICATORS OR PERSONS UNDER THEIR DIRECT SUPERVISION AND ONLY FOR THOSE USES COVERED BY THE CERTIFIED APPLICATOR'S CERTIFICATION. AN APPLICATOR CERTIFIED BY THE STATE MUST BE PRESENT ON SITE AT ALL TIMES DURING INTRODUCTION OF FUMIGANT, RE-ENTRY PRIOR TO AERATION AND INITIATION OF THE AERATION PROCEDURE.

APPLICATOR’S MANUAL

For control of rodent, insect and other listed invertebrate pests.

Use Sites: Stationary transportation vehicles (railcars, shipping containers, trucks, etc., excluding aircraft and passenger railcars), temporary and permanent fumigation chambers, and storage structures.

Read the entire container label and Applicator's Manual before using this product. Refer to the Applicator's Manual for additional precautionary information and directions for use. The Applicator's Manual must be in the user's possession during fumigation. If the Applicator's Manual is lost, obtain a replacement copy from your distributor or Drexel Chemical Company.

APPLICATION PERSONNEL MUST PARTICIPATE IN DREXEL CHEMICAL'S SULFURYL FLUORIDE TRAINING AND STEWARDSHIP PROGRAM, MASTER TRAIN.

ACTIVE INGREDIENT:
Sulfuryl fluoride... 99.8%
OTHER INGREDIENTS: .. 0.2%
TOTAL: ... 100.0%

KEEP OUT OF REACH OF CHILDREN

DANGER PELIGRO

POISON VENENO

Si usted no entiende la etiqueta, busque a alguien para que se la explique a usted en detalle. (If you do not understand the label, find someone to explain it to you in detail.)

See FIRST AID on Page 2

EPA Reg. No. 19713-ATE
EPA Est. No. 19713-XX-X

Manufactured By:
Drexel Chemical Company
P.O. Box 13327, Memphis, TN 38113-0327

672SPAM-1115*P
FIRST AID

IF INHALED:
- Move person to fresh air.
- If person is not breathing, call 911 or ambulance, then give artificial respiration.
- **DO NOT** give mouth-to-mouth resuscitation.
- Call a poison control center or doctor for further treatment advice.

IF IN EYES:
- Hold eye open and rinse slowly and gently with water for 15 to 20 minutes.
- Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye.
- Call a poison control center or doctor for treatment advice.

IF SWALLOWED:
- Call a poison control center or doctor immediately for treatment advice.
- Have person sip glass of water if able to swallow.
- Do not induce vomiting unless told to by a poison control center or doctor.
- Do not give anything by mouth to an unconscious person.

IF ON SKIN OR CLOTHING:
- Take off contaminated clothing.
- Rinse skin immediately with plenty of water for 15-20 minutes.
- Call a poison control center or doctor for treatment advice.

In all cases of overexposure, such as nausea, difficulty in breathing, abdominal pain, slowing of movements and speech, numbness in extremities, get medical attention immediately. Take person to a doctor or emergency treatment facility. Have the product container or label with you when calling a poison control center or doctor, or going for treatment. You may also call CHEMTREC at 800-424-9300 for emergency.

Note to Physician: This product is a gas which has no warning properties such as odor or eye irritation. (However, chloropicrin is used as a warning agent and is a known lachrymator). Early symptoms of exposure to this product are respiratory irritation and central nervous system depression. Excitation may follow. Slowed movement, reduced awareness, and slow or garbled speech may be noted. Prolonged exposure can produce lung irritation, pulmonary edema, nausea, and abdominal pain. Repeated exposure to high concentrations of this product can result in significant lung and kidney damage. Single exposures at high concentrations have resulted in death. Treat symptomatically. The liquid form of this product in the eye may cause damage due to refrigeration or freezing.

PRECAUTIONARY STATEMENTS

Hazards To Humans And Domestic Animals

DANGER: Corrosive. Extremely hazardous liquid and vapor under pressure. Fatal if inhaled. Causes irreversible eye damage. Do not breathe vapor. Do not get in eyes, on skin, or on clothing. Liquid may cause chemical burns, which may have a delayed onset, or may freeze exposed skin. May be fatal if swallowed. May be fatal if absorbed through skin. Sulfuryl fluoride is odorless. Exposure to toxic levels may occur without warning or detection by the user.

This product is used with 0.25% chloropicrin as a warning odorant. Chloropicrin may be irritating to the upper respiratory tract and, even at low levels, can cause painful irritation to the eyes, producing tearing. If these symptoms occur, leave the fumigation area immediately.

PERSONAL PROTECTIVE EQUIPMENT (PPE)

Protective Clothing
Wear splash-resistant goggles (goggles designed and made of material that allows no measurable movement of the liquid pesticide being used to pass through them during use) or full face shield for eye protection during introduction of the fumigant. Do not wear gloves or rubber boots. Do not reuse clothing or shoes that have become contaminated with this product until thoroughly aerated and cleaned.

Respiratory Protection
If the concentration of this product in the breathing zone of the fumigated area (as measured by a detector device with sufficient sensitivity such as an INTERSCAN, MIRAN or SF-ExporiTR™) does not exceed 1 ppm (4 mg/cubic meter), no respiratory protection is required. [A breathing zone is defined as the area within a structure where individuals typically stand, sit or lie down.] If the concentration of this product is greater than 1 ppm, further aeration and re-testing is required. When this concentration is exceeded or when concentration is unknown, all persons in the exposed area must wear a NIOSH approved positive pressure self-contained breathing apparatus (SCBA, not SCUBA) or combination air-supplied/SCBA respirator such as manufactured by Draeger, Ranger, Survivair, Scott or MSA. Before using any make or brand of SCBA, learn how to use it correctly. Determine that it has an adequate air supply for the job at hand, that it fits properly providing an adequate seal around the face and that it is in good working order. For more detailed information on the source and use of air monitoring devices and respirators, consult the Applicator’s Manual of this product.
Notice: Read the entire label. Use only according to label directions. Before buying or using this product, read “Warranty Disclaimer.”
In case of emergency endangering health or the environment involving this product, call 1-877-208-2593. If you wish to obtain additional product information, call Drexel Chemical Company at (901) 774-4370.

USER SAFETY RECOMMENDATIONS

Users should: 1) Wash hands before eating, drinking, chewing gum, using tobacco or using the toilet. 2) Remove clothing/PPE immediately if pesticide gets inside. Then wash thoroughly and put on clean clothing. 3) Remove PPE immediately after handling this product. Wash the outside of gloves before removing. As soon as possible, wash thoroughly and change into clean clothing.

ENVIRONMENTAL HAZARDS
Sulfuryl fluoride is a highly toxic gas. Do not expose non-target organisms. This pesticide is toxic to fish and wildlife.

PHYSICAL OR CHEMICAL HAZARDS
Sulfuryl fluoride is a colorless, odorless toxic gas. Cylinders of this product are under pressure and must not be stored near heat or open flame. Exposures to temperatures above 158°F will cause a fusible plug to melt and the contents will be released. Under high heat conditions (temperatures above 752°F), this product can decompose into sulfur dioxide (SO₃), hydrofluoric acid (HF), and other decomposition products.

Hydrofluoric acid is highly reactive and can corrode or damage many materials including metals, glass, ceramic finishes, fabrics, etc. Extinguish all flames including pilot lights of furnaces, hot water heaters, dryers, gas refrigerators, ranges, ovens, broilers, etc. Turn off or unplug all electrical heating elements such as those in heaters, dryers, etc., that represent a reasonable risk of a heat source that is at or near 752°F. Shut off automatic switch controls for appliances and lighting systems that will be included in the space to be fumigated. Contact your local gas company to determine what procedures should be followed in your area for shutting off natural gas or propane service. Gas service should be shut off at the main service valve. Sulfuryl fluoride can react with strong bases such as some photo developing solutions.

Notice: Read the entire label. Use only according to label directions. Before using this product, read Warranty-Conditions of Sale, Inherent Risks of Use, and Limitation of Remedies elsewhere on the label. If terms are unacceptable, return at once unopened.

In case of emergency endangering health or the environment involving this product, call 1-800-CHEMTREC. If you wish to obtain additional product information call Drexel Chemical Company at (901) 774-4370.

Agricultural Chemical: Do not ship or store with food, feeds, drugs or clothing.
INFORMATION
APPLICATION PERSONNEL MUST PARTICIPATE IN DREXEL CHEMICAL’S SULFURYL FLUORIDE TRAINING AND STEWARDSHIP PROGRAM, MASTER TRAIN.
Carefully read the container label and this Applicator’s Manual before using this product. Do not use this product without Drexel Chemical’s Master Fume AG Calculator Program. Drexel Chemical’s Master Fume AG Calculator Program is a computer program available to calculate safe and effective levels of this product for fumigating structures and commodities. Never allow untrained individuals to use this product.
Prior to fumigation, read the Applicator’s Manual carefully. Notify appropriate owners, employees, and/or operators at the facility where the fumigation will occur, and provide relevant safety and health information to local fire and rescue officials for use in the event of an emergency.
Do not connect cylinders to introduction equipment until all fumigation warning signs have been posted and the space to be fumigated is clear of people, non-target animals and secured.

COMPRESSED GAS HAZARDS
The release of high pressure fumigant can be forceful and there is potential for personal injury. Care must be exercised when fumigating, especially tarped commodities, so that the fumigant is not released too rapidly and “balloons” the tarp off of the restraining sand or water snakes. A fog-out can also occur if the fumigant is released too rapidly, cooling the air temperature below the dew point. This is avoided by following the instructions in the Applicator’s Manual.
The rapid discharge of this product through introduction equipment will result in cooling parts of the equipment and the cylinders. Contact with the cooled equipment can cause frostbite.
This product is a highly hazardous material and should be used only by individuals knowledgeable of its chemical hazards and trained in the use of required respiratory equipment, detection devices, emergency procedures and proper use.
Two persons trained in the use of this product (at least one person being an applicator certified by the state) must be present on site at all times during introduction of the fumigant, re-entry prior to aeration, initiation of the aeration procedure and when testing for re-entry after aeration (if aerated in an enclosed space). It is essential that no occupant re-enter the fumigated space after fumigation until the fumigant has been aerated and the space has been fully tested and cleared for re-entry.
Only a detection device of sufficient sensitivity (LOD < 1 ppm), such as the INTERSCAN gas analyzer [Model CF 1900], MIRAN vapor analyzer [SapphIRe] or SF-ExplorIR can be used to confirm a concentration of 1 ppm or less of this product. The INTERSCAN gas analyzer [Model CF 1900] must be calibrated within one month prior to use as a detection device. All other approved detection devices must be calibrated according to manufacturer directions. The concentration of this product must be monitored throughout the structure. The structure or enclosure must remain posted for fumigation until cleared for re-entry.

PRODUCT INFORMATION
MASTER FUME AG IS A RESTRICTED USE PESTICIDE DUE TO ACUTE INHALATION TOXICITY OF SULFURYL FLUORIDE.

PHYSICAL PROPERTIES
Sulfuryl fluoride is a colorless, odorless toxic gas. Cylinders of this product are under pressure and must not be stored near excessive heat or open flame. Exposures to temperatures of more than 158°F will cause a fusible plug to melt and the contents will be released. Sulfuryl fluoride can react with strong bases such as some photo developing solutions.

Structural formula: \(\text{SO}_2\text{F}_2 \)
GAS SOLUBILITY (at 25°C (77°F) at 760 mm Hg): In water 0.075% (750 ppm) by weight, only slightly soluble in organic solvents and vegetable oils.

STABILITY: Stable to temperatures normally encountered in space fumigations. Non-flammable under normal conditions in all atmospheric concentrations. However, heaters and open flames must be extinguished as temperatures over 400°C (752°F) will cause decomposition products to be formed which can be corrosive and etch metal and glass.

HEAT OF VAPORIZATION: 81.1 BTU per pound at -55°C (-67°F) or 4600 cal./mol. 1 pound of sulfuryl fluoride = 4.45 moles. 1 pound of this product will lower 1000 cubic foot of dry air by 2.5°C (4.5°F).

VOLUME PER POUND: 1 pound of gas occupies 3.8 cubic foot at 25°C (77°F) and 760 mm Hg. 1 pound of gas per 1000 cubic foot of unoccupied space equals approximately 3850 ppm at room temperature and pressure (25°C at 760 mm Hg).

HYDROLYSIS: Slow in water; Rapid in basic solutions.

REACTIVITY: Sulfuryl fluoride is relatively non-reactive as a gas. No malodor or corrosive effects have been detected when the chemical has been used as directed. Sulfuryl fluoride can react with strong bases such as some photo developing solutions.

DIRECTIONS FOR USE

RESTRICTED USE PESTICIDE

It is a violation of Federal law to use this product in a manner inconsistent with its labeling.

When fumigating, all local, state, and federal rules and regulations regarding use of detection devices, positive-pressure self-contained breathing apparatus, security requirements and placement of warning signs must be observed.

Read carefully all Directions for Use before using this product.

FUMIGATING WITH THIS PRODUCT

INTRODUCTION

MASTER FUME AG contains the active ingredient, sulfuryl fluoride, and is registered for use only by professional fumigators to control existing infestations of stored product insect pests in stationary transportation vehicles (railcars, shipping containers, trucks, etc., excluding aircraft and passenger railcars), temporary and permanent fumigation chambers, and storage structures.

Read the entire label and this Applicator’s Manual before using this product. If the Applicator’s Manual is lost, obtain a replacement copy from your distributor of this product or your Drexel Chemical Company representative.

Each fumigator using this product is responsible for complying with all federal, state and local regulations or codes regulating the use of this product. The fumigator should stay informed about state and local regulations in areas where they operate.

State and local government offices, distributors of this product or Drexel Chemical Company sales representatives responsible for your area can help identify the relevant agencies responsible for regulating fumigation practices in your area.

Chapter 1

COMMODITIES THAT CAN BE FUMIGATED

This product can be used on the following raw agricultural and processed food commodities:

<table>
<thead>
<tr>
<th>Raw Agricultural* and Processed Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
</tr>
<tr>
<td>Corn</td>
</tr>
<tr>
<td>Corn flour</td>
</tr>
<tr>
<td>Corn grits</td>
</tr>
<tr>
<td>Corn meal</td>
</tr>
<tr>
<td>Millet</td>
</tr>
<tr>
<td>Oat</td>
</tr>
</tbody>
</table>

*This product can be used to fumigate seeds of these commodities.

Sites containing additional seed varieties may be fumigated as long as the fumigated seeds will not be part of the food chain for human consumption.

For a list of sites than can be fumigated with this product and site specific considerations for doing an effective and safe fumigation, see Chapter 10.

USE RESTRICTIONS AND PRECAUTIONS

- Do not exceed a maximum cumulative dosage of 1500 oz-h/1000 cubic foot for normal atmospheric pressure (NAP) fumigations.
- Do not exceed a maximum cumulative dosage of 200 oz-h/1000 cubic foot for vacuum fumigations.
- Do not exceed the maximum cumulative dosages of NAP and vacuum fumigations, respectively, for sequential fumigations.
- When fumigating storage tanks, silos, etc. containing bulk flour, empty or draw down Wheat flour to less than 3 feet deep.
- Minimize quantities of flour in the processing plant, structure or enclosure prior to fumigation to prevent excessive residues in Wheat flour.
• Use this product together with a dosage calculator called Drexel Chemical's Master Fume AG Calculator (Chapter 7). Drexel Chemical's Master Fume AG Calculator must be used to calculate the initial dosage required for treatment and for any additional quantities needed during the fumigation to improve efficacy and/or to rectify loss due to leakage.
• Special care should be taken to minimize quantities of processed foods prior to space fumigations. Processed food not practical to remove prior to fumigation may undergo incidental fumigation with this product. However, no direct fumigation of processed foods is permitted unless the processed food is found in "COMMODITIES THAT CAN BE FUMIGATED" section of this manual.

PEST CONTROLLED
This product is used to control the following pests including all its life stages (i.e., egg, larva, pupa and adult):

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codling moth</td>
<td>Cydia pomonella</td>
</tr>
<tr>
<td>Flour beetles</td>
<td>Tribolium spp.</td>
</tr>
<tr>
<td>Granary weevil</td>
<td>Sitophilus granarius</td>
</tr>
<tr>
<td>Indian meal moth</td>
<td>Plodia interpunctella</td>
</tr>
<tr>
<td>Mediterranean flour moth</td>
<td>Ephestia kuehniella</td>
</tr>
<tr>
<td>Navel Orange worm</td>
<td>Amyelois transitella</td>
</tr>
<tr>
<td>Rats and Mice</td>
<td>Sitophilus oryzae</td>
</tr>
<tr>
<td>Rice weevil</td>
<td>Oryzaephilis suranamensis</td>
</tr>
<tr>
<td>Saw toothed grain beetle</td>
<td>Trogoderma variable</td>
</tr>
<tr>
<td>Warehouse beetle</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 2
GENERAL SAFETY
This product is colorless, odorless and non-irritating to mucous membranes at low concentrations. This product gives no warning of its presence.
This product is toxic and must be handled carefully. Ignoring the potential hazards of this product can result in serious illness or even death.

SYMPTOMS OF POISONING
Symptoms in humans from inhalation exposure to this product will depend on the concentration and the length of exposure experienced. The earliest sign of overexposure to this product is central nervous system (CNS) depression. Exposure to progressively higher concentrations is expected to result in convulsions, tremors and/or strychnine-like muscular rigidity.
Humans exposed to high concentrations of this product may experience respiratory irritation, nausea, abdominal pain, CNS depression, slowing of movements and speech and numbness in the extremities.
Survival after exposure to high concentrations can occur even following convulsions, if exposure has been brief.

FIRST AID
Refer to the "FIRST AID" section of this manual or container label.
In all cases of overexposure, such as nausea, difficulty in breathing, abdominal pain, slowing of movements and speech, numbness in extremities, get medical attention immediately. Take person to a doctor or emergency treatment facility immediately. Have the product container or label with you when calling a poison control center or doctor or going for treatment.
For information on this pesticide product (including health concerns, medical emergencies or pesticide incidents), call 1-877-208-2593 or CHEMTREC at 1-800-424-9300.

NOTES TO PHYSICIAN
Depending on the length of exposure, it is predicted that persons exposed to this product will probably show little evidence of intoxication at first unless the concentration was moderate to high (more than 500 ppm). Initial effects will probably be depression of the CNS with slow speech and body movement the first signs noted. Convulsions may ensue with respiratory arrest being a terminal event. Assisted respiration may be necessary.
Remove exposed patient to fresh air and put at rest. Keep exposed individual at bed rest and under observation for at least 24 hours. Clinical observation should be directed at the pulmonary, hepatic and renal systems. A post-mortem finding in a fatality attributed to sulfuryl fluoride was pulmonary edema. Death was attributed to cardiorespiratory failure.
Also see "FIRST AID" section of this manual for additional notes to physician.
There is no known antidote. Clinical observation is essential. Treatment is based on the clinical judgment of the physician and the individual reaction of the patient.
PERSONAL PROTECTIVE EQUIPMENT (PPE)

Protective Clothing
Wear splash-resistant goggles or full face shield for eye protection during introduction of the fumigant. Do not wear gloves or rubber boots. Do not reuse clothing or shoes that have become contaminated with this product until thoroughly aerated and cleaned.

Respiratory Protection
If the concentration of this product in the breathing zone of the fumigated area (as measured by a detector device with sufficient sensitivity such as an INTERSCAN, MIRAN or SF-ExplorIR) does not exceed 1 ppm (4 mg/cubic meter), no respiratory protection is required. [A breathing zone is defined as the area within a structure where individuals typically stand, sit or lie down.] If the concentration of this product is greater than 1 ppm, further aeration and re-testing is required. When this concentration is exceeded, or when concentration is unknown, all persons in the exposed area must wear a NIOSH approved positive pressure self-contained breathing apparatus (SCBA, not SCUBA) or combination air-supplied/SCBA respirator such as manufactured by Draeger, Ranger, Survivair, Scott, or MSA. Before using any make or brand of SCBA, learn how to use it correctly.

Determine that it has an adequate air supply for the job at hand, that it fits properly, providing an adequate seal around the face and that it is in good working order.

The INTERSCAN must be calibrated according to manufacturer specifications within one month prior to use as a clearance device. All other approved detection devices must be calibrated according to manufacturer specifications.

FIRE FIGHTING

Information
This product is not combustible. However, in temperatures exceeding approximately 400°C (752°F), this product will degrade to form hydrogen fluoride (HF) and sulfur dioxide. Theoretically, the number of ounces of HF per 1000 cubic feet produced during a fire in a structure containing this product would equal 0.4x number of ounces of this product per 1000 cubic feet (in temperatures exceeding approximately 752°F, each mole (102 gm) of sulfuryl fluoride will degrade to form 2 moles (40 gm) of hydrogen fluoride (HF)). Nonetheless, amounts of HF actually produced during fires involving this product may be insignificant because this product rapidly diffuses from structures.

Use of Water
Evolution of hazardous materials can be minimized by use of water during a fire. Water will scrub out part of the HF and SO₂ formed by decomposition of this product in the flame. Water also can be used to cool cylinders of this product and prevent discharge of the product caused by melted fusible plugs. If possible, avoid runoff into waterways because HF is toxic to fish.

Protective Clothing
Self-contained breathing apparatus (SCBA) and normal “turn-out” gear must be worn when fighting fires in structures under fumigation with this product.

For Fires Involving Cylinders of this Product
When fighting fires in atmospheres containing potentially high concentrations of this product, self-contained breathing apparatus (SCBA) and encapsulating protective suits must be worn. Protective suit material must be compatible with exposure to hydrofluoric acid.

PREVENTING STATIC ELECTRICITY
The flow of liquid gas in the introduction hose may be a source of static electricity. To prevent the risk of static sparking, the introduction hose must be properly grounded using acceptable demonstrated methods (e.g., securely attaching a length of copper tubing with adequate fittings to the end of the introduction hose).

When using copper tubing as a ground, attach the copper tubing with a grounding wire to the fan cage frame or to a neutral ground. The copper tubing mounted at the end of the introduction hose must be securely attached to the fan or some other stable object.

FUMIGANT INTRODUCTION HOSE AND FITTINGS
• Use hose with minimum burst pressure of 3450 kPa (500 psi) that is compatible with liquid Master Fume. Polyethylene or polypropylene hoses have proven satisfactory.
• Use care not to kink or crush the hose. Reinforced hose helps prevent collapse.
PERSONAL SAFETY
• Always wear eye protection when introducing this product or repairing leaks on introduction manifolds or hoses.
• Proper respiratory protection (SCBA) must be on hand in case of required emergency entry into structure.
• Make a security check for personnel, structure preparation and persons in nearby buildings and grounds. Apply proper lock-outs and placarding.

MATERIAL SAFETY
• Use proper fumigant introduction techniques to help prevent corrosion or water stains on interior materials.
• To the extent possible, provide protection for nearby desirable plants.
• Use circuit breakers or fuses for fans.
• To the extent possible, place fans to minimize the risk of damage to equipment.

Chapter 3
CYLINDER
Cylinders of this Product
This product is packaged as a gas under pressure in cylinders. Cylinders contain both gas and liquid. Cylinders containing this product are designed not to explode in high temperatures. A fusible plug in the cylinder valve body melts at 158°F to 165°F (70°C to 73.8°C) releasing the contents of the cylinder.

Cylinder Information
This product is sold as a compressed liquid gas in a high-pressure cylinder and must be handled, stored and transported with precaution. Inspect every cylinder upon delivery for damage. If the cylinder is damaged, immediately return the cylinder to the distributor of this product.
No additional gas is used to pressurize the cylinder. Each full cylinder contains 57 kg (125 lbs.) of product normally under about 1380 to 2070 kPa (200 to 300 psi).

Cylinder Handling
• Avoid manhandling the cylinder when moving or weighing; e.g., use a hoist with a hanging bonnet.
• Protect the valve from damage by always replacing the valve cover and safety bonnet.
• Open valve slowly at first, then completely open it (one full turn) so the valve and the introduction hose do not frost. Use proper size adjustable wrench (25 to 30 cm). Keep wrench attached to valve while valve is open.
• Bear in mind that frosting of the outside cylinder surface when releasing the last 3 to 5 pounds of this product is likely.
• Close valve completely when fumigant introduction is finished or cylinder is “empty.”

SEE “STORAGE AND DISPOSAL” SECTION AT THE END OF THIS MANUAL FOR STORAGE AND DISPOSAL OF THIS PRODUCT.

Cylinder Valve System
Cylinders of this product are fitted with special valves (see Figure 1).

![PICTORIE OF CYLINDER VALVE TO BE INSERTED HERE](image)

Figure 1. Cylinder Valve

The cylinder is equipped with both a safety cap and a covering called a “bonnet.” The safety cap and bonnet must be securely in place at all times except when gas is to be released from the cylinder. This protects the valve system from being damaged and/or prevents accidental release of the fumigant.
Do not hang or lift cylinders by the valves. Use a proper sling to lift cylinders. Use a “hanging” bonnet or other device specifically designed for this purpose when weighing a cylinder on a hanging scale. (Hanging bonnet can be obtained from the fumigation supply distributor.)

Leaking Cylinders
If a cylinder is suspected of leaking fumigant, evacuate immediate area of leak. Use a NIOSH approved positive pressure self-contained breathing apparatus (SCBA, not SCUBA) or combination air-supplied/SCBA respirator, such as manufactured by Draeger, Ranger, Survivair, Scott or MSA, for entry into affected areas to correct problem. The SCBA must be worn when exposure is more than 1 ppm or when the concentration is unknown.
Move leaking or damaged cylinder outdoors or to an isolated location, observing strict safety precautions. Work upwind if possible. Do not permit entry into leakage area by unprotected persons until concentration of fumigant in the breathing zone...
is determined to be 1 part per million (ppm) or less as determined by a detection device with sufficient sensitivity such as an INTERSCAN gas analyzer [Model: GF 1900], MIRAN vapor analyzer [SaphiRe] or SF-ExplorIR. Often tightening the packing nut on the top of the valve to 35 to 40 N.m. (25 to 30 foot pounds) of torque with an adjustable wrench will stop the leak. Never use excessive force to open a stuck or improperly sealed valve. See valve stem adjustment procedures at the end of this chapter.

Once the cylinder is empty, contact your distributor for proper return instructions.

Frozen Valves and Hoses
If the cylinder valve is "just cracked" to reduce the rate of release, this product will expand from a liquid to a gas within the hose and frosting of the outside of the valve and hose may occur. FROSTING CAN BE AVOIDED By ALLOWING FULL FLOW THROUGH THE VALVE AND LINES. Do not control the rate of flow of this product by restricting flow through the cylinder valve.

Frozen Cylinders
If a break occurs on the dip tube in the cylinder, this product will be discharged in the gas phase when the liquid level falls below the break. As the liquid expands in the cylinder, heat will be taken from the surrounding area and the cylinder will frost or freeze at that point. This product will still be discharged, but at a much slower rate. If cylinder shows signs of a broken dip tube (a very rare occurrence), paint it red on the shoulder of the cylinder, put a red tag on it and return to the distributor so that the problem can be corrected before refilling.

Empty Cylinders
Handle, store and transport empty cylinders using the same precautions as previously discussed for full cylinders. The last 1.5 to 2 kg (3 to 5 lbs.) of gas in the cylinder which is the final pounds of this product in a cylinder generally are in a gaseous state and will not move out of the cylinder as rapidly as when it is a liquid. However, it will move through the introduction hose. REMEMBER TO CLOSE VALVE COMPLETELY ON EMPTY CYLINDERS.

Cylinder Return Policy
When the cylinder is empty, fully close the valve and replace the safety cap and protection bonnet and return the empty cylinder to your distributor. Broken or defective cylinder must be returned to your Master Fume Ag distributor. Only Drexel is authorized to refill cylinders. Do not use cylinders of this product for any other purpose.

Transportation of Cylinders
Transport cylinders capped and secured in an upright position. Do not transport cylinders that are unsecured or laying on their side. These are requirements of the Department of Transportation (DOT) when transporting compressed air cylinders. Loose cylinders can become airborne and significant damage to dip tube may occur in an accident. Because of the toxicity of this product, do not transport cylinders in the same airspace as the driver or other occupants of vehicles, such as in vans or unpartitioned trucks. Always store and transport cylinders in a secure upright position. Do not transport cylinders of this product in the same airspace or breathing zone of any area occupied by the driver and other occupants of vehicles. Consult your local distributor or Drexel Chemical Company for training resources for DOT regulations.

Air Transportation: Never transport cylinders of this product by aircraft.

Valve Stem Adjustments in the Field
Introduction
When cylinders are filled at the plant, a soap solution is applied to the valve stem (the square shaft area) and valve threads at the top of the cylinder. The cylinder is not released if leaks are present. Each time the valve is opened and closed, the stem works against the packing causing the packing to flow away from the valve stem. Over time this may allow product to escape past the valve stem when the valve is in the open position. This document describes how this situation can be safely corrected in the field.

Hazards and PPE
Operators performing the valve stem adjustment must follow all precautions on the product label section for “Leak Procedures”. This may include, but is not limited to, immediate evacuation followed by re-entry using positive pressure self-contained breathing apparatus. Move cylinders outdoors or to a ventilated isolated location prior to adjusting the stem. Allow no unprotected persons in the area during the adjustment procedure until fumigant concentration is verified with sufficiently sensitive detection equipment to be below the levels of concern indicated on the product label.
Indications
This procedure is appropriate when a cylinder shows indication of product loss from around the valve stem. Loss may be indicated either by a sufficiently sensitive detection device or hissing/bubbling at the stem when the valve is open. This procedure may not be effective or appropriate for other valve problems.

Training
Only persons appropriately trained for Hazardous Material handling are permitted to perform this task. While operators who transport this product are required to receive Hazardous Material training, individuals have to check with their employer if they have any questions regarding required training.

Procedure
To stop a loss of this product from around the valve stem in the field, follow the following steps.
Follow directions in "HAZARDS AND PPE" section above prior to starting this procedure. Make sure all PPE and sufficiently sensitive detection devices are used.

1. If product loss is detected, immediately close the valve. This will stop this product from leaking out of the stem.
2. Secure the cylinder against a stationary object (rack, wall, etc.) to prevent tipping. Using the same wrench you use to remove the cap from the valve exit, tighten the packing nut on top of the valve. Turn the packing nut in a clockwise direction to tighten the packing nut. Do not overtighten this nut. The specification is 34 to 40 N.m. (25 to 30 foot pounds) of torque, which is easily reached with a 25 to 30 cm (10 to 12 inches) adjustable wrench.
3. Open the valve. If product is still leaking from around the valve stem, repeat steps 1 and 2. If product loss still persists, close the valve, red tag the cylinder and return it for credit. The valve will be replaced at the plant.

Chapter 4
EQUIPMENT
MONITORING EQUIPMENT: FUMISCOPE, REPORTIR™
The monitoring equipment is designed to measure the actual concentration of this product within the fumigation site to determine accumulated dosage. This equipment is not sensitive enough to use as a clearing device after the exposure period. This equipment also is used in conjunction with Drexel Chemical’s Master Fume Calculator for determining actual HLTs. Fumiscopes can be purchased through your distributor or from the manufacturer. For more information, contact:

Key Chemical and Equipment Co., Inc.
13195 49th Street N., Unit A
Clearwater, FL 34622
Phone: (727) 572-1159
Fax: (727) 572-4595

Note: Contact the manufacturer for Fumiscope calibration and repair procedures.
All companies with Master Fume AG must own 2 pieces of monitoring equipment and they must be calibrated and inspected yearly by Drexel and/or Master Fume AG distributor.

CLEARANCE TESTING EQUIPMENT
A. INTERSCAN GAS ANALYZER
Model GF1900 has an integral pump that draws the air sample through a pyrolyzer (furnace) where the product is converted to SO2 which then passes through an SO2 sensor. The unit is lightweight and is battery or AC powered for easy portability. For more information, contact the manufacturer or:

Key Chemical and Equipment Co. Inc.
13195 49th Street N., Unit A
Clearwater, FL 34622
Phone: (727) 572-1159
Fax: (727) 572-4595

B. MIRAN GAS ANALYZER
The Miran SapphIRe utilizes a single beam, infrared detection technology to directly measure low concentrations (0 to 5 ppm) of sulfuryl fluoride. For more information, contact:

Thermo Environmental Instruments
8 West Forge Parkway
Franklin, MA 02038
Phone: (508) 520-0430
www.thermo.com/AQI
C. SF-EXPLORIR GAS MONITOR
The SF-ExplorIR is a portable monitor that uses non-dispersive infrared (NDIR) technology. It features direct measurement of sulfuryl fluoride at 0 to 5 ppm. For more information, contact: Spectros Instruments, Inc. or their representatives.

D. OTHER UNITS
The listed detection and monitoring equipment in this label is not intended to be all inclusive. As new technology is developed, new devices may be evaluated by Drexel Chemical Company to detect this product. Contact your nearest representative from Drexel Chemical Company for the latest information on sufficiently sensitive detection devices.

Prior to using the above instruments to clear a structure, meters must be “zeroed.” This must be done according to the manufacturer’s directions, away from the fumigation site and in an atmosphere that does not contain this product. Manufacturer’s instructions also include information regarding appropriate and necessary calibration and maintenance. Manufacturer’s specifications must be followed to ensure proper operation of these instruments.

Please refer to the manufacturer for the latest specifications and instructions for any equipment used with this product.

Chapter 5
FUMIGATION MANAGEMENT PLAN (FMP)
The certified applicator is responsible for working with the owners and/or responsible employees of the site to be fumigated to develop an FMP for this product. The FMP is intended to ensure a safe and effective fumigation. Critical components of a fumigation of this product include Drexel Chemical’s Master Fume AG Calculator Program and the documentation it creates and the Precision Fumigation™ Techniques. The FMP must address characterization of the site and appropriate monitoring and notification requirements consistent with, but not limited to, the following:

1. Inspect the site to determine its suitability for fumigation.
2. When sealing is required, consult previous records for any changes to the structure, potential leaks and monitoring of occupied and adjacent buildings.
3. Consult with company officials (whose area or commodity is fumigated) and appropriate employees, prior to each fumigation, for any existing FMPs, SDS, Applicator’s Manual and other relevant safety procedures.
4. Consult company officials in the development of procedures and appropriate safety measures for nearby workers and public personnel who will be in and around the area during fumigation and aeration.
5. Consult with company officials to develop an appropriate exterior monitoring plan that will confirm that nearby workers and bystanders are not exposed to levels above the allowed limits during application, fumigation and aeration. This plan must also demonstrate that nearby residents will not be exposed to concentrations above the allowable limits.
6. Consult with company officials to develop procedures for local authorities to notify nearby residents in the event of an emergency.
7. Confirm the placement of warning placards around the fumigation site as described in this Manual.
8. Confirm the required safety equipment (including that required for entry into an area under fumigation) is in place and the necessary manpower is available to complete a safe, effective fumigation.

GUIDANCE FOR PREPARATION OF AN FMP
An FMP is an organized, documented description of the steps involved to help ensure a safe, legal and effective fumigation. Drexel Chemical’s Master Fume AG Calculator Program supports the creation of documentation needed to satisfy an FMP. Drexel Chemical’s Master Fume AG Calculator Program and the FMP will assist you and others in complying with pesticide product label requirements. The guidance that follows is designed to help assist you in addressing all the necessary factors involved in preparing for and fumigating a site. This guidance is intended to help you organize any fumigation that you might perform prior to actual treatment. It is meant to be somewhat prescriptive, yet flexible enough to allow the experience and expertise of the fumigator to make changes based on circumstances which may exist in the field. Precision Fumigation techniques support this flexible and adaptive approach. By following a step-by-step procedure, yet allowing for flexibility, safe and effective fumigation can be performed. Before any fumigation begins, carefully read and review the label and the Applicator’s Manual. This information must be given to the appropriate company officials (supervisors, foreman, safety officer, etc.) in charge of the site. Preparation is the key to any successful fumigation. If you do not find specific instructions for the type of fumigation that you are to perform listed in this guidance document, you will want to construct a similar set of procedures using this document as your guide or contact Drexel Chemical Company for assistance and/or additional resources. Finally, before any fumigation begins you must be familiar with and comply with all applicable federal, state and local laws. The success and future of fumigation are not only dependent on your ability to do your job, but also by carefully following all rules, regulations, and procedures required by governmental agencies.

Checklist Guide for an FMP
This checklist is provided to help you take into account factors that must be addressed prior to performing all fumigations. It emphasizes safety steps to protect people and property. The checklist is general in nature and cannot be expected to apply to all types of fumigation situations. It is to be used as a guide to prepare the required plan. Each item must be considered. However, it is understood that each fumigation is different and not all items will be necessary for each fumigation.
A. PRELIMINARY PLANNING AND PREPARATION
1. Determine the purpose of the fumigation and record in Drexel Chemical's Master Fume AG Calculator.
 a. Control of insect infestation
 b. Control of rodent infestation
 c. Plant pest quarantine
2. Determine the type of fumigation and record in Drexel Chemical's Master Fume AG Calculator. For example:
 a. Space: tarp, mill, warehouse, food plant, railcar or ship (when fumigating vessels such as ships read the U.S. Coast Guard Regulations 46 CFR 147A, in addition to the Applicator’s Manual)
 b. Commodity: raw agricultural or processed foods
3. Fully acquaint yourself with the site and commodity to be fumigated, and record the following in Drexel Chemical’s Master Fume AG Calculator when necessary.
 a. In conjunction with the owner/operator/person in charge, take note of the general structure layout, structure construction (materials, design, age, maintenance), fire or combustibility hazards, connecting structures, other significant fumigant escape routes and other unique hazards or structure characteristics.
 b. The number and identification of persons who will routinely enter the proximate area fumigated (i.e., employees, visitors, customer, etc.)
 c. The specific commodity to be fumigated
 d. The previous treatment history of the commodity, if available
 e. Accessibility of utility service connections
 f. Nearest telephone or other means of communication and note the location of these items
 g. Emergency shut-off stations for electricity water and gas. Note the location of these items
 h. Location and number of fans, introduction sites and monitoring lines
 i. Current emergency telephone numbers of local health, fire, police, hospitals and physician responders
 j. Name and phone number (both day and night) of appropriate company officials
 k. Location of command center
 l. Review labeling including the Applicator’s Manual
 m. Location of cylinders
 n. Cylinder temperature or pressure
 o. Introduction line: length, inside diameter, and burst pressure
 p. Fan capacity (i.e., cu. ft/mm)
 q. Record and calculate dosage in Drexel Chemical’s Master Fume AG Calculator
 (1) Cubic footage or other appropriate space/location calculations
 (2) Estimated HLT
 (3) Temperature
 (4) Exposure time
 (5) Target pest
 (6) Whether the low, high or user-defined CT was used and the resultant CT target value
 (7) Initial, additional and total amount of fumigant used
 (8) Time of introduction and if any, times of introduction of add gas applied
 (9) Actual CT achieved

B. PERSONNEL
1. Confirm that all relevant personnel in and around the structure to be fumigated have been notified prior to application of the fumigant. Consider using a checklist that each employee initials indicating they have been notified.
2. Instruct all relevant fumigation personnel to read the Applicator’s Manual about the hazards that may be encountered and about the selection of personal protection devices including sufficiently sensitive detection equipment.
3. Confirm that all personnel are aware of and know how to proceed in case of an emergency situation.
4. Instruct all relevant personnel on how to report any accident and/or incidents related to fumigant exposure. Provide a telephone number for emergency response reporting.
5. Instruct all personnel to report to proper authorities any theft of fumigant and/or equipment related to fumigation.
6. Establish a meeting area for all personnel in case of emergency.

C. MONITORING
1. Safety
 a. Monitoring of conditions of this product must be conducted in areas to prevent excessive exposure and bystander exposure.
 b. Keep a log or manual of monitoring records for each fumigation site. This log must at a minimum contain the timing, number of readings taken, location, and level of concentrations found.
 c. When monitoring, document even if there is no fumigant present above the safe levels. In such cases, subsequent monitoring is not routinely required. However, spot checks must be made occasionally, especially if conditions significantly change.
 d. Monitoring must be conducted during aeration and corrective action taken if gas levels exceed the allowed levels in an area where bystanders and/or nearby residents or domestic animals may be exposed.
2. Efficacy
 a. Readings of this product should be taken from within the fumigated structure to insure proper gas concentrations. Drexel Chemical's Master Fume AG Calculator analysis of these readings must be used as a basis for any decisions to add gas and the determination of subsequent amounts needed.
 b. All readings of this product must be recorded in Drexel Chemical's Master Fume AG Calculator.
 c. Readings should be of sufficient nature to reasonably determine HLT and, thus, identify whether any significant unforeseen leaks are occurring.

D. NOTIFICATION
1. Confirm the appropriate local authorities (fire departments, police departments, etc.) have been notified as per label instructions, local ordinances or instructions of the client.
2. Prepare written procedure ("Emergency Response Plan") that contains explicit instructions, names and telephone numbers so as to be able to notify local authorities if levels of this product are exceeded in an area that could be dangerous to bystanders and/or domestic animals.

E. SEALING PROCEDURES
1. Sealing must be adequate to control the pests. Care should be taken to ensure that sealing materials will remain adequately intact until the fumigation is complete.
2. If the site has been fumigated before, review the previous FMP and/or Drexel Chemical's Master Fume AG Calculator files for previous sealing and HLT information.
3. Make sure that construction/remodeling has not changed the building in a manner that will materially affect the fumigation.
4. Warning placards must be placed on all entrances and all sides of the fumigation site.

F. APPLICATION PROCEDURES AND FUMIGATION PERIOD
1. Plan carefully and apply the product in accordance with the label requirements.
2. Two persons trained in the use of the product, at least one being an applicator certified by the state, must be present on site at all times during the introduction of the fumigant, re-entry prior to aeration, initiation of the aeration procedure, when testing for re-entry after aeration (if aerated in an enclosed space) and during re-entry.
3. Apply fumigant from the outside when and where appropriate.
4. Provide watchmen when entry into the fumigation site by unauthorized persons cannot otherwise be assured (e.g., by secondary locks, barricades, etc.).
5. When entering structures, always follow OSHA rules for confined spaces.
6. Keep the flexibility and record keeping function of Drexel Chemical's Master Fume AG Calculator in mind - it will provide a basis for improved understanding and thus, safer fumigation application in the future.
 a. If Drexel Chemical's Master Fume AG Calculator calculated CT is achieved early, the fumigation can be ended early.
 b. If additional time is necessary, use Drexel Chemical's Master Fume AG Calculator to calculate how much time is needed.
 c. If it is necessary to add gas, use Drexel Chemical's Master Fume AG Calculator to calculate how much additional gas is required.

G. POST-APPLICATION OPERATIONS
1. Provide watchmen when you cannot otherwise secure the fumigation site from entry (e.g., by secondary locks, barricades, etc.) by unauthorized persons during the aeration process.
2. Determine gas concentration in the fumigated environment from outside if possible. Use a sufficiently sensitive gas detector before re-entry into a fumigated structure to determine fumigant concentration.
3. Turn on ventilating or aerating fans where appropriate.
4. Ventilate and aerate in accordance with structural limitations and nearby occupied areas so as to minimize bystander exposure.
5. Consider temperature when aerating.
6. Determine gas concentration in the surrounding area if required.
7. Remove warning placards when aeration is complete and the fumigated space has been cleared for re-entry using a detection device of sufficient sensitivity.
8. Inform business/client that employees/other persons may return to work or otherwise be allowed to re-enter the aerated structure.
9. Keep records of monitoring of gas concentration inside (efficacy readings) and outside (safety readings) the fumigation environment to document completion of aeration.

Chapter 6
PREPARATIONS FOR FUMIGATION
Prior to fumigation, read the Applicator's Manual carefully. Notify appropriate owners, employees, and/or operators at the facility where the fumigation will occur and provide relevant safety and health information to local fire and rescue officials for use in the event of an emergency.
Best practice is to notify local police, fire department and emergency responders of impending start and finish times for the fumigation.

Property Owner/Customer Checklist: The owners of buildings to be fumigated need to be informed of circumstances and conditions associated with the fumigation process and of their involvement in preparation, vacancy and re-occupancy. Some states require the fumigator to provide the customer with a list of preparations required for the fumigation. The customer may also be required to acknowledge in writing certain liabilities.

The responsibility for proper fumigation procedures lies with the certified fumigator regardless of who does the work.

OCCUPANTS/CUSTOMERS NEED TO KNOW:
1. Qualifications of the certified applicator who will be doing the fumigation.
2. Their specific role in preparation for fumigation - what to prepare, turn off, remove, etc.
3. What the fumigation process (introduction, exposure, aeration and clearance) entails so that there can be absolutely NO ENTRY by unauthorized personnel into the structure until it is certified clear for re-entry by the fumigator.
4. The specific times to leave the structure and when re-occupancy may occur.
5. That the fumigator often requires that the property owners surrender keys to the structure to be fumigated. The fumigator should have access to all areas of the fumigation site during the whole period that the site is under their control.
6. This product has no residual effectiveness and so does not control future infestations of pests.
7. To reveal to the fumigator known or potential connections to adjacent/other buildings.

WHAT TO REMOVE PRIOR TO FUMIGATION
Remove from the structure to be fumigated all persons, non-target animals and desirable growing plants. All drugs (including tobacco products) and medicinals (including those items in refrigerators and freezers) need to be removed prior to fumigation.

FLAMES OR HEATING ELEMENTS
This product is a very stable compound that is relatively non-reactive and non-flammable. However, under high heat conditions present in gas flames or glowing electric elements, this product can decompose into sulfur dioxide SO₂, hydrofluoric acid HF, and other decomposition products. Hydrofluoric acid is highly reactive and can corrode or damage many materials including metals, glass, ceramic finishes, fabrics, etc. Therefore, extinguish all flames including pilot lights of furnaces, hot water heaters, dryers, gas refrigerators, ranges, ovens, broilers, etc. Turn off or unplug all electrical heating elements such as those in heaters, dryers, etc. Shut off automatic switch controls for appliances and lighting systems that will be included in the space to be fumigated.

Contact your local gas company to determine what procedures should be followed in your area for shutting off natural gas or propane service. Gas service should be shut off at the main service valve. When a single gas meter serves more than 1 structure, gas service to all sources may be interrupted. The gas lines should be cleared. Fumigation companies may request that customers have the local gas company turn off the gas prior to fumigation. The local gas company will always need to turn gas service on after it has been turned off to determine that the gas flow rate and pressure are appropriate.

Important: Before fumigating, ALL pilot lights must be turned off. The heat of gas flames, pilot light flames, or the glowing wires or hot surfaces of electric heaters can cause this product to break down to form a corrosive material. Make sure the gas flames and pilot flames of furnaces, gas refrigerators and kitchen ranges are extinguished and that glowing electric heaters that represent a reasonable risk of a heat source that is at or near 752°F are turned off.

CHLORINE GAS: Damage to metals can also occur from the inclusion of chlorine gas for bleaching or chlorination processes. Ensure this equipment is turned off with no leaks or excluded from the fumigation.

CHECKING FOR CONNECTED AREAS
Prior to fumigation, the certified applicator is required to check for connected areas. A connected area is defined as any area connected with the space to be fumigated by construction elements (e.g., pipes, conduits, ducts, etc.) that may allow the passage of fumigant between the spaces.

Any connected areas must be vacated during the fumigation process unless it is isolated from the space to be fumigated by methods that will prevent passage of the fumigant from the space to be fumigated into the connected area. When it is necessary to vacate areas that have been isolated, that area shall be considered as a fumigated space and all applicable rules, regulations and label instructions apply such as preparation, placarding, securing and aeration.

Concentrations of this product must be continually measured during the fumigation of a structure in any occupied isolated connected structures to verify concentrations are less than 1 ppm to confirm that individuals in the isolated areas are not exposed to unacceptable levels of this product.

Use only a detection device of sufficient sensitivity such as the INTERSCAN gas analyzer [Model GF 1900], MIRAN vapor analyzer [Sapphire] or SF-ExplorIR to confirm a concentration of 1 ppm or less. If concentrations of this product is more than 1 ppm, then the sealing of the isolated space from the fumigated area is probably not working and the immediate space must be evacuated unless the concentration is continuously monitored to prevent exposure greater than 1 ppm. SCBA must be worn by the applicator if the concentration is more than 1 ppm. Important: All connected/adjoining areas must be vacated if required by state or local laws or regulations.
DISTRIBUTION / AERATION FAN USE AND PLACEMENT

Purpose of Fans
The purposes for fans in a structural fumigation are:
1. Fumigant introduction
2. Equilibrium and circulation
3. Aeration

Positioning Fans
• There is no set pattern established for the positioning or the number of fans to use.
• Fans should be strategically placed in order to mix the fumigant and rapidly reach equilibrium.
• At least one fan for each level of the structure.
• It is good fumigation practice to use more fans in structures that are divided into numerous smaller compartments or rooms.
A rule of thumb is to use one fan for each 75,000 ft³ and at least one fan for each area or level of the fumigation.
In structures frequently used or dedicated to fumigation, air circulation equipment and fans can be built into the structure.
Examples of some systems include air-handling systems that provide for the fumigant introduction, continuous circulation, and
also aid in the quick, effective aeration of the structure.

Reaching Equilibrium
When the liquid form of this product is released from the introduction hose, it extracts a substantial amount of heat from the
surrounding air as it expands to form a gas. A pound of the liquid form of this product changing to the gas phase will drop the
temperature of 1000 cubic foot of dry air 4.5°F (28.3 cubic meters of air 2.5°C).
The chilling causes the formation of a cloud of condensed water (fog) that must be dissipated before it collects on a surface.
The rate of dissipation depends upon the release rate, atmospheric conditions and mixing rate. The fan capacity, quantity,
and placement determine the mixing rate. The chilled gas of this product is much denser than the surrounding air and can
settle to the bottom of the fumigation space unless mechanically mixed with the surrounding air.
All gases tend to move from an area of high concentration to low concentration and will eventually come to equilibrium in a
confined space. This product will do the same when it is introduced into a fumigation space, regardless of the fact that
molecules of this product are heavier than air molecules. However, the rate of passive diffusion may be too slow to achieve
equilibrium within a practical period. Thus, mechanical mixing by fans is essential.
Important: High capacity fans are needed when introducing this product into a space to prevent stratification, to aid in proper
dispersion and to assist temperature distribution.

Continuous Circulation with Fans
A significant benefit of continuous circulation is the movement of this product from areas of high concentration to areas of
lower concentration. This continuous circulation maintains a more equal concentration within the fumigation space and helps
ensure that this product will penetrate all areas where infestation may exist.
It is next to impossible to seal a structure so that there are no leaks. Unless there are abnormally large leaks, continuous
circulation during the entire exposure period will not appreciably affect the loss rate for this product. Obviously, the air stream
should not flow directly against “leaky” areas because excessive fumigant loss can occur.

Preparing for Aeration
When first preparing the fumigation, plan ahead for the aeration period and take steps to aid aeration by strategic placement
of fans and other aeration tools. Just as fans are useful in achieving equilibrium of fumigants, they are excellent aids in attaining
rapid aeration and are essential where cross ventilation is poor. Have a detailed plan in place for safe, effective aeration of
the structure. Be sure to consult local regulations for more restrictive aeration procedures.

MONITORING HOSES
Arrangements should be made to place sampling hoses in the structure prior to fumigant introduction. Semi-rigid vinyl hoses
(3 to 6 mm or 1/8 to 1/2” ID) should be placed to allow sample representative concentrations with a Fumiscope or similar
device. Monitoring hoses larger than 6 mm ID may take a longer time to pull the sample from the fumigated space to the
monitoring device because of the larger volume of air needed to be moved.
Ideally, monitoring lines should be placed on all levels of the fumigated structure. If the structure is compartmentalized into
separate rooms or other sub-units, place lines in areas representative of the different units.

SEALING THE STRUCTURE
No two fumigations are exactly alike. Each job requires the fumigator to establish and maintain an effective fumigation
environment. The fumigation must be conducted in a manner that will effectively control the pests without causing undue risk
to people or property. The fumigator must conform to the label for this product and the Applicator’s Manual, as well as to
federal, state and local regulations. When in doubt, a fumigator should seek assistance from suppliers, regulators, Drexel
Chemical Company representatives or other educational sources.
The quality of the seal has a huge influence on the effectiveness of the fumigation. Increasing the seal of the fumigation site
is one of the most effective ways to ensure a quality fumigation and reduce the total amount of fumigant needed.
There are several approaches to the challenges of confining the fumigant. The fumigator needs to make field judgments how to best seal a space. Pay special attention to drains, vents, conduits, wiring, electrical junction boxes, floor cracks, wall/floor or wall/ceiling joints and damage to outside walls from equipment. When sealing, keep in mind a few basic thoughts:

1. Identify and address key leakage areas. Careful inspection of the structure will help identify leaky areas. Be sure to carefully seal protruding equipment on the top floors and roofs. Building eaves also can be very leaky.
2. To the extent necessary and possible, close off all connected structures and install an “air break” to stop gas moving to connected structures.

Tape and Seal

For fumigation structures that can be appropriately sealed with materials such as plastic or tape, seal adequately around doors, windows, vents and other openings. When necessary to minimize escape of fumigant through the soil and to avoid injury to nearby plants, wet soil (if not sufficiently moist) around the structure to act as a barrier for the fumigant. Often, structures are too large to be completely tarped for fumigant confinement. The most common practices are to use polyethylene sheeting, non-porous panels, fumigation tape, spray adhesives, foams and insulation materials to seal the structure for fumigation. These techniques are usually used around doors, windows, roof eaves, loading docks, pipes, augers, conveyers, vents, etc. If properly used, these materials can do an ample job of confining the fumigant within the structure.

Stucco or masonry block buildings may be sealed by taping laminated paper or plastic film over outside doorways, windows and vents. This sealing method is recommended for structures in which any wooden section, including roofing, is exposed to the outside.

However, even with an excellent job of tape and seal around windows, doors, etc., if the building walls, roof or basement have holes that are not sealed, the structure may not hold fumigant satisfactorily.

Always monitor with a Fumiscope or similar device when necessary.

Foam Sealing

The use of expandable spray foams have been effectively used to help seal structures. Expandable foam is economical and can be used for both permanent and temporary seals. Refer to the foam product directions for proper use and compatibility issues.

Tarping

Good sealing is necessary for an effective fumigation. Tarpaulins (tarps) can be used in the sealing process with tapes/adhesives to help seal leaky areas or to envelop the entire area to be fumigated. This method is effective on almost any size or type of space/site. The ability of a tarp to contain a gas depends on the condition of the tarp, the material of construction and its thickness.

One of the most critical operations in tarping a space is achieving a tight seal at the ground where protrusions, debris or rough-textured soil or concrete may provide an opening for gas to escape. The edges of the cover that contact the floor or soil must be sealed by techniques such as taping the tarp to the floor or placing sand or water snakes over the edges of the tarp. Sand or water snakes may be used effectively if the ground surface is very smooth. One method of improving the seal with a sand or water snake is to run a trough of water on the tarps along with the snakes. Vinyl/nylon snake covers do not deteriorate readily. To minimize escape of fumigant through the soil and to avoid injury to nearby plants, wet soil (if not sufficiently moist) around the structure to act as a barrier for the fumigant. When possible, avoid walking on tarped, fumigated material to maintain seal during the exposure period. To achieve an adequate ground seal, allow at least 2 feet of tarp to clear the ground snakes. This will accommodate movement of the tarps from wind movement.

TARP MATERIAL: Plastic tarps are semi-permeable membranes that permit different fumigants to pass through them at different rates. The passage of this product through most plastic sheeting of sufficient thickness is very slow (see Table 1). Use only tarps made of materials that will adequately confine this product for the required time. Tarps are sold in many sizes. Experience has shown that the following have proven satisfactory:

1. 4 to 6 mil polyethylene for “single use” tarps
2. Laminated (several layers) polyethylene
3. Vinyl coated nylon
4. Neoprene coated nylon
5. PVC (polyvinyl chloride) coated nylon

THICKNESS: As a minimum, 4 to 6 mil (160 to 240 microns) thickness of the above materials adequately confines this product. A tarp of 100 microns is equivalent to a 400 gauge material. Polyethylene tarps less than 4 mil (160 microns) are not of an adequate thickness to confine this product because they do not possess the strength and weight needed for the handling, wind resistance and abrasion encountered in most fumigations.
TABLE 1. Percent permeation loss and adsorption of 8 oz/1000 ft² sulfuryl fluoride after 24 hours from 11 ounce glass bell jar with lid made of tarp materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>% Permeation Loss</th>
<th>% Adsorption*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sulfuryl fluoride</td>
<td>Sulfuryl fluoride</td>
</tr>
<tr>
<td>Polyethylene 4 mil</td>
<td>0.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Tarp A, 10.3 oz/yd²</td>
<td>3.3</td>
<td>6.1</td>
</tr>
<tr>
<td>Tarp B, 7.2 oz/yd²</td>
<td>5.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Tarp C, 9.6 oz/yd²</td>
<td>0.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Used tarp**</td>
<td>100.0</td>
<td>8.8</td>
</tr>
</tbody>
</table>

*Values reflect subtraction of fumigant loss due to glass container adsorption (2.2% for sulfuryl fluoride). (n=4)

**A used tarp is a tarp which has abrasions of the vinyl coating causing the nylon fabric to be exposed in a few spots.

PLACARDING AND SECURING FUMIGATED AREAS

Placarding of Fumigated Areas

This product is a toxic gas without a warning agent. All entrances and all sides of the fumigated environment and any connected area not monitored must have warning signs. Do not connect cylinders to introduction equipment until all fumigation warning signs have been posted, the space to be fumigated is clear of people and non-target animals, and it is secured. Warning signs must be of weather resistant material and should be securely affixed to the structure. Do not allow entry by unprotected persons into fumigated area until the signs are removed. Signs must remain legible during the entire posting period. Warning signs should be placed in advance of the fumigation in order to keep unauthorized persons away. The warning signs must be printed, in English and Spanish, with:

1) The signal word DANGER/PELIGRO and the SKULL and CROSSBONES symbol
2) The statement, "Area under fumigation. DO NOT ENTER / NO ENTRE".
3) The date of fumigation and time.
4) Name of fumigant used and EPA Reg. No.
5) Name, address and telephone number of the applicator.

Only a certified applicator may authorize removal of placards and only when concentration of this product in the breathing zone of the treated site is 1 ppm or less. Use the following considerations when posting warning signs:

- Follow local, state and federal regulations for sign format, size, durability or additional information requirements.
- Use materials that will allow information to remain legible when posted.
- Use information that allows for 24 hour communication with the certified applicator in the event of an emergency.

Transfer of incompletely aerated commodity to a new storage site within a facility is permissible. However, the new storage site must have placarding and security similar to the fumigation site if concentration of this product is equal to or greater than 1 ppm. Workers who handle incompletely aerated commodity must be informed and appropriate measures must be taken (ventilation and wearing of SCBA) to prevent any exposure greater than 1 ppm.

Securing Structures

In order to secure against unauthorized entry during the fumigation exposure period, a locking device or barricade must be used on all exterior doors or doorways. A locking device or barricade must be effective in preventing entry of any exterior door or doorway using normal opening or entering processes by anyone other than the certified applicator in charge of the fumigation or persons in his/her on-site direct supervision. Consult state and local regulations for any supplementary instructions and local restrictions on securing against entry. Several additional security options to consider might include:

CLAM SHELL LOCKS:

(Insert Picture Here) CLAM SHELL LOCKS are designed to prevent use of the door or occupant's keys to unlock entrance doors.
KEY-WAY LOCKS:

(KEY-WAY LOCKS are designed to prevent use of the occupant's keys to unlock entrance doors. These function by inserting a two-part locking key into the door keyhole and removing only half of the key. The other half of the locking key remaining in the door prevent insertion of the occupant's key.

J-SAFE LOCKS:

(J-SAFE LOCKS or chains can also be used on certain structures.

GUARDS:

Guards may be considered in some circumstances and may be required in some locations. Consult local regulations. Best practice is to notify local police, fire department and emergency responders of impending start and finish times for the fumigation.

RAILCARS, TRAILERS OR SHIPS:

Railcars, trailers or ships must be secured against unauthorized entry during the fumigation exposure period.

Chapter 7
INTRODUCTION AND DISTRIBUTION OF THIS PRODUCT
CHOOSING INTRODUCTION SITES

The specific site(s) of release of this product is (are) very important to the success of the fumigation. This product should be introduced in a manner to achieve rapid equilibrium, avoid excessive loss, prevent fog-out and ensure safety to personnel and materials.

Site selection should be made using good judgment. Ask, “If this product was introduced in this location, how and when will it get to the most remote locations in the commodity or structure?” The size and configuration of the space and the adequacy of the circulation typically dictate the number of release sites for this product. Therefore, for many applications, it is often appropriate to use multiple introduction sites to rapidly attain equilibrium.

In structures that are frequently used for fumigation, permanent introduction systems can be built into the structure to ensure safe, effective and adequate fumigant introduction. Be sure to inspect all components of introduction systems prior to each use.

The proper introduction of this product (release from the cylinder) is essential to the success, safety and economy of a fumigation. It is imperative that the fumigator understands the principles involved and the conditions that exist for introducing the fumigant on each job.

Below are points that are considered when introducing this product:

1. The introduction methods used will practically achieve the target dosage (sufficient ounce-hours for the working temperature to control the target pest).
2. This product must be introduced in a manner that is safe to personnel and property inside and outside of the fumigation space.
3. The goal is to reach concentration equilibrium of this product throughout the fumigated space as quickly as is safe and practical.

Important: Prior to release of this product, make sure a thorough check of the structure and surroundings is conducted and all safety precautions have been taken.

Do not apply for insect control when temperature at the site of the pest is below 40°F. This temperature may be measured wherever the infestation may be. This restriction does not apply when fumigating for rodents. To prevent damage, do not apply liquid fumigant directly to any surface within the fumigation area.

This product is packaged as a liquid under pressure and requires a heat source for conversion of the liquid to a gas during introduction. The heat source can be the air around the introduction site or mechanical heat exchanging systems.

The introduction system must:
- Prevent breakdown or contamination of this product.
- Confine this product until it is released into the fumigation area.
- Prevent liquid sulfuryl fluoride from contacting surfaces which could be damaged or the commodity within the fumigation area.
- Prevent a fog-out in the fumigation area. A fog-out is substantial condensation of moisture inside a fumigated structure that is caused by the air temperature dropping below the dew point.

Damage to materials can occur if the rate of release of this product exceeds fan capacity. Use electric fan(s) to facilitate forced distribution and aeration of other dead air spaces and rapid dispersion of the gas.

This product must be introduced from the cylinder through a suitable leak-proof delivery system (hoses, connectors, gauges, solenoids, etc.) with a minimum burst pressure of 500 psi. It is recommended to:
- Release the fumigant into a large open space.
• Direct the fumigant into the blast of air from a fan(s) having a capacity of at least 1000 cubic foot per minute per pound of this product released per minute.
• Introduce no more than 4 cylinders per introduction site.
• Have one introduction site per every 75,000 cubic foot.

SELECTION AND USE OF EQUIPMENT FOR FUMIGANT INTRODUCTION

Weighing the Fumigant
Either platform or hanging scales can be used to weigh the cylinder during fumigant introduction. If hanging scales are used, hanging bonnets or cylinder slings must be used to hang the cylinder from the scale. Consult your distributor or Drexel Chemical Company for a source of hanging bonnets. Scales should be routinely calibrated to assure correct readings. Refer to the scale manufacturer for calibration and maintenance details.

THE CYLINDER SHOULD NEVER BE SUSPENDED BY THE VALVE!

Hoses
Release the fumigant through a suitable leak-proof hose with a minimum burst pressure of 3450 kPa (500 psi). The hose should be flexible, kink-resistant, durable and compatible with the liquid form of this product. Prior to use, confirm with distributor or manufacturer that the introduction hose meets the above requirements. The introduction rate of this product is mostly controlled by the inside diameter and the length (resistance) of the fumigant introduction hose. Flow rates can be easily calculated using Drexel Chemical's Master Fume AG Calculator.

Protective Sheeting
Protective sheeting, such as polyethylene plastic, can be placed under the hose and fan to further protect floors and other materials during application from potential moisture condensation.

Securing Introduction Hose
A widely used method is to securely attach the introduction hose to a tarp clamp and then use the tarp clamp to attach the hose to the fan cage. The fan cage is angled upward at about 45°. Another option is to attach the fumigant introduction hose to a solid heavy object in front of a fan angled upward at 45°. If the introduction hoses are part of a permanent introduction system, be sure to inspect the hoses prior to each use to ensure they are securely mounted and still in required working order.

Fog-Outs
A cloud of fine droplets suspended in air near the ground is called fog. It is very important when introducing this product to prevent excessive fog and dew formation. Releasing this product will cause some condensation near the release point - slow release rate and low humidity will cause less and a fast release rate and high humidity will cause more. After the condensation forms, it will evaporate at a rate that is dependent on the relative humidity, the temperature of the fumigation atmosphere and the air mixing rate controlled by the introduction fans. Condensation forming on the photoelectric eye of a smoke detector or motion detector can cause the alarm to activate. It is very important to use proper fans to help mix the heat of the building and fumigation atmosphere to evaporate the condensation. Liquid water absorbs the very small amount of impurities in this product and can result in corrosion.

Fog-Out Prevention
There are several options to reduce the incidence of moisture condensation when fumigating air-conditioned structures in hot, humid weather:
1. Let structure warm a day or two before fumigation to equalize inside and outside temperature and stabilize the Relative Humidity (RH).
2. Reduce the introduction rate with a smaller diameter hose, longer hose or pulsed (interrupted) introduction.
3. Reduce the amount of this product introduced into one area by using multiple introduction sites. This would be most important in high-dosage fumigations.
4. Use multiple fans or larger fans to hasten the mixing of air and heat exchange.
5. Monitor the fumigation or extend the exposure period to reduce the overall fumigant requirements, if practical.
6. When necessary, use a combination of several of these techniques to reduce the release rate and relative humidity, and increase the heat exchange of the structure to the fumigation atmosphere. Drexel Chemical's Master Fume AG Calculator takes into consideration fan capacity to recommend the fumigant introduction rate.
7. Do not tarp or seal a space that is excessively wet.

Fumigated Space Leak Detection and Mitigation
During release of this product, the fumigator must monitor around the perimeter of the fumigation area (especially downwind) with a leak detector with sufficient sensitivity to ensure a good seal so that concentrations of this product are kept within 1 ppm or less outside of the fumigation area. An SCBA must be readily available during the fumigant introduction period in case of leaks.
Detectors such as TIF 5750 and XP-1 manufactured by TIF Instruments, Inc., Miami, Florida, can detect concentrations of this product over 50 ppm. These devices can only be used to check cylinders for significant leaks. A device capable of measuring to 1 ppm of this product must be used for all other tasks.

If more than 1 ppm of this product is detected, then clear the area of all personnel. Only persons wearing a self-contained breathing apparatus (SCBA) with full facemask and operating in pressure demand mode or its equivalent are permitted in the area to address the leak. Only after levels of this product are 1 ppm or less, are unprotected personnel permitted in the area. Large leaks must be minimized as quickly as possible to help avoid risk of exposure to bystanders and/or occupants of nearby structures and to minimize loss of fumigant. This involves walking around the structure or fumigated area with a monitoring device to determine if excessive amounts of fumigant are escaping. Proper respiratory protection must be worn when sealing leaks. Seal leaks from the exterior of the structure whenever possible. If it is necessary to seal a leak from the interior of the structure, the applicator must follow all proper re-entry procedures.

Re-entry Procedures
If re-entry into a fumigated area is necessary after introduction of the fumigant, but before complete aeration, to troubleshoot distribution of the fumigant or repair leaks, follow the re-entry procedures specified in Chapter 9.

CALCULATING DOSAGE
Establishing the Required Dosage
The fumigator is challenged with the task of distributing and maintaining a concentration of fumigant over the fumigation period to achieve the target dosage. Because of the multitude of factors, no two fumigations are identical. To specify a single dosage rate for all conditions would seldom be correct — usually it would be either excessive or insufficient for expected pest control.

Drexel Chemical's Master Fume AG Calculator Program
Drexel Chemical's Master Fume AG Calculator is used for all fumigations using this product. See directions for details and specific use. Do not use this product without the Drexel Chemical's Master Fume AG Calculator. Drexel Chemical's Master Fume AG Calculator must be used to calculate the dosage. Drexel Chemical's Master Fume AG Calculator Program may be modified and updated from time to time; please contact your Drexel Chemical Company representative for current information.

Precision Fumigation Defined
Precision Fumigation is not a new concept; however, most fumigators have lacked the tools to consistently plan and conduct precision fumigations. Precision Fumigation can be defined as "Optimizing fumigant use to maximize efficiency and minimize risk."

Precision Fumigation Concepts
Use of this product allows fumigators to use their skills, knowledge and experience to create and implement successful, flexible fumigations. Precision Fumigation methods: a) allow fumigation when/how necessary, b) capitalize on enhanced sealing methods, c) maximize exposure time and d) utilize temperature modification.

Fumigant Dosage
All fumigants utilize some form of the dosage relationship which is often referred to as the “CT Concept”:

\[
\text{Dosage} = \text{Concentration} \times \text{Time (CT)}
\]

Therefore, the dosage required to kill the target pest(s) is accumulated over a period of time and is measured in ounce-hours or gram-hours.

\[
\text{CT} = \text{oz-h}/1000 \text{ cu. ft.}
\]

The concentration in ounce per 1000 cubic foot of fumigant multiplied by the exposure time in hours

The maximum target concentration in Drexel Chemical's Master Fume AG Calculator is 128 ounces per 1000 cubic foot.

The maximum target dosage for all normal atmospheric pressure (NAP) fumigations is 1500 CT (1500 ounce-hours per 1000 cubic foot).

For vacuum chamber fumigations, the maximum target concentration is 128 ounces per l000 cubic foot, and the maximum target dosage is 200 CT (200 ounce-hours per 1000 cubic foot).

Concentration Units of this Product

1 ounce per 1000 cubic foot = 240 ppm
FUMIGANT DOSAGE FACTORS

The proper dosage for efficacy and the total amount of this product needed for a fumigation is determined by four interrelated factors:

1. Pest species and life stages
2. Temperature at the site of infestation
3. Exposure time
4. Half-Loss Time (HLT)

Pest Factor

This product is effective on all key stored product insect pest species and can control all life stages of insects. However, different pest species and life stages require different dosages for effective control. Adult, larval and pupal stages are controlled with relatively low dosages of this product, while the egg stage requires higher dosages.

Several rodent pests such as rats and mice may infest commodities and sites, and damage materials within facilities. The temperature restriction of 40°F for insect fumigation does not apply to rodents because they are warm blooded. The target dosage for rodents is 36 ounces-hour per 1000 cubic foot.

Temperature Factor

Temperature is an important factor for successful fumigation. Insects are ectothermic, so increasing temperature increases insect metabolism. Increasing insect metabolism greatly improves the efficacy of this product. Increasing temperature can decrease exposure time and/or gas needed. Relatively large changes in temperature are generally not required. Achieving temperatures of 25 to 30°C (78 to 86°F), for example, can have a very positive effect on fumigation efficacy and efficiency.

Fumigators can use the following methods for increasing temperature of the fumigated space. Permanent/built-in systems utilizing hot water, steam, electric, fossil, solar heat sources. Temporary/leased units operating on propane or natural gas, electric or other fuels can be used. Fans, heater fans and other electrical equipment should be grounded and have a good protective fusible or breaker system. Planning fumigations during the warmer seasons or even during the warmer periods of the day can positively affect temperature factor.

Do not apply this product for insect control when the temperature of the site of the pests is below 40°F. The measured minimum temperature at the site of the insect pest should be used for dosage calculations. For rodents, temperature does not affect dosage because they are warm blooded.

Time Factor (T)

The time factor is a key component of C x T = Dosage formula. The exposure time is defined as the number of hours the target insect is exposed to the fumigant. If the structure has good gas confinement, increasing the exposure period is one of the most cost effective practices available to the fumigator. Doubling exposure time in a well-sealed structure can decrease gas needed by up to 50%. The fumigator should work with the customer to plan and optimize exposure time to minimize the fumigant needed.

Increase time = Decrease gas needed
Decrease time = Increase gas needed

Half Loss Time (HLT)

HLT is the measurement of how well a fumigated space or area holds fumigant from loss. HLT is defined as the time in hours during which 50% of the initial concentration of fumigant is lost. Research has shown fumigant retention is often extremely variable between and even among areas within a structure. Results from numerous measurements for this product indicate the main influencing factors are:

1. Condition of seal (wall construction, number and size of leaks, etc.).
2. Type of underseal (slab, soil, wood).
3. Volume of structure (ratio of surface area to volume).
4. Wind velocity.
5. Number of windows and doors and other openings such as pipes, vents, racks, etc.

If HLT is more than 20 hours for structures, the seal is considered very good. HLT is calculated by actively monitoring the fumigation with a Fumiscope or similar device over a period of time and determining the specific loss of gas in that time period. To get a reasonably accurate picture of the HLT in a large structure, monitoring points should be established throughout the building. This ensures that each area or compartment of the structure will achieve the required dosage. Drexel Chemical's Master Fume AG Calculator will calculate an HLT by area using the collected monitoring data.

Under conditions of rapid fumigant loss (low HLT), only the initial hours of exposure significantly accumulate dosage. If the HLT is significantly shorter than expected (fumigant leaking drastically faster than planned), to achieve the required dosage, the fumigator must take additional steps. These steps include, but are not limited to, stopping the addition of fumigant and addressing the leak (following re-entry procedures if there is a need to reenter or wearing SCBA if working from outside), before increasing gas concentration of this product, increasing the time of exposure or utilizing a combination of the two methods.
Best practice is to use monitoring data, from previous fumigations for this or similar sites and conditions to estimate the HLT, and then monitor to confirm the true HLT. When a reasonable estimate of HLT is not available prior to the initiation of exposure, the following Precision Fumigation method should be used. Introduce part of the calculated dosage of this product, monitoring to determine the actual HLT and then introduce additional parts of the calculated dosage and/or increase exposure time to achieve the target dosage.

USING DREXEL CHEMICAL’S MASTER FUME AG CALCULATOR PROGRAM

Drexel Chemical's Master Fume AG Calculator is a computer-based program that requires entry of key information to determine the dosage and amount of this product to be used. Before Drexel Chemical's Master Fume AG Calculator Program can be used, contact your Drexel Chemical Company representative on how to activate the computer program for calculating dosage. Drexel Chemical's Master Fume AG Calculator Program may be modified and updated from time to time; please contact your Drexel Chemical Company representative for more information.

Drexel Chemical's Master Fume AG Calculator Program has been developed to allow fumigators to calculate the correct dosage over a broad range of pest species, life stages, temperatures and exposure times. Drexel Chemical's Master Fume AG Calculator determines the necessary dosage (gram-hours or ounce hours), converts this to pounds of this product per 1000 cubic feet (or cubic meter) based on volume of fumigated space for all target pests referenced in this Manual. The program also can calculate the necessary adjustments to the exposure period or pounds of this product required to reach the target dosage based on fumigation monitoring data.

- The maximum target concentration in Drexel Chemical's Master Fume AG Calculator is 128 ounces per 1000 cubic foot.
- The maximum target dosage for NAP fumigation in Drexel Chemical's Master Fume AG Calculator is 1500 CT (ounces-hour per 1000 cu. ft.).

Drexel Chemical’s Master Fume AG Calculator Temperature Range

This Manual states that the lower fumigation temperature limit is 40°F for insects. At present, however, Drexel Chemical's Master Fume AG Calculator calculates specific dosages for temperatures between 68°F (20°C) and 86°F (30°C). Drexel Chemical's Master Fume AG Calculator allows the user to input temperatures higher than 86°F, but will calculate the dosage based on 86°F. Since the efficacy of this product increases with temperature, Drexel Chemical's Master Fume AG Calculator dosages for temperatures higher than 86°F are conservative.

Drexel Chemical's Master Fume AG Calculator allows the user to input temperatures below 68°F, but will calculate the dosage based on 68°F and provide a warning message that insect control may be less than optimal due to the cooler temperature and decreased insect metabolism. Following the fumigation, monitoring the pest population is recommended to assess control.

Drexel Chemical’s Master Fume AG Calculator Exposure Time Range

Drexel Chemical's Master Fume AG Calculator allows the user to input exposure times between 1 and 168 hours. Short exposures of a few hours are best suited for vacuum fumigations, while exposure periods of several days can be appropriate for reasonably sealed structures. Fumigations will commonly be 24 hours due to the need to limit shutdown time, but extending the exposure time can decrease the amount of fumigant necessary. Use Drexel Chemical's Master Fume AG Calculator to determine the most appropriate exposure time to meet both the customer’s and fumigator’s needs.

Drexel Chemical’s Master Fume AG Calculator HLT Range

Drexel Chemical's Master Fume AG Calculator accepts HLTs from 1 to 1000 hours. The fumigator estimates this value prior to the fumigation preferably based on results of monitoring previous fumigations of this structure or of fumigations conducted under similar conditions. HLTs of greater than 50 hours are normally achieved only in chambers and other tightly sealed silos. Change HLTs in Drexel Chemical's Master Fume AG Calculator to see the impact of HLT on the amount of fumigant needed for a fumigation.

Drexel Chemical’s Master Fume AG Calculator Area Volume Range

Drexel Chemical's Master Fume AG Calculator calculates fumigant dosages for structures ranging in volume from 35 to 10,000,000 cubic foot. Errors in measuring the volume can lead to under-dosing and not achieving the target dosage or using more fumigant than is needed to achieve the target dosage.

Drexel Chemical's Master Fume AG Calculator Ranges

Temperature:	68 to 86°F
HLT:	1 to 1000 hours
Exposure Time:	1 to 168 hours
Volume:	35 to 10,000,000 cu. ft.
Dosage:	“Low” or “High”
Fumigation Type:	“Space” or “Commodity”
Pressure Type:	“Normal Atmospheric” or “Vacuum”
Limits
Dosage (CT): 1500 oz-h/1000 cu. ft. (NAP)
200 oz-h/1000 cu. ft. (vacuum)
Concentration: 128 oz/1000 cu. ft.

Drexel Chemical's Master Fume AG Calculator Example
INPUT
Species: Red Flour Beetle
Temperature: 86°F
HLT: 15 hours
Exposure Time: 24 hours
Volume: 800,000 cu. ft.
Dosage: Low
Fumigation Type: Space
Pressure Type: Normal Atmospheric
OUTPUT
Dosage (CT): 338 oz-h/1000 cu. ft.
Concentration: 23.3 oz/1000 cu. ft.
Quantity: 1164 lbs.

Steps of Operation
Preparation prior to fumigant release:
1. Determine pest species and life stages to be controlled.
2. Measure temperature at pest location with a thermometer. (Drexel Chemical's Master Fume AG Calculator operates in both English (°F) and metric (°C) units.)
3. Calculate volume of fumigation space.
4. Determine the targeted exposure period.
5. Estimate the HLT based on previous experience or estimation.
6. In Drexel Chemical's Master Fume AG Calculator, calculate dosage of this product in ounce per 1000 cubic foot (or gm/m³) and get pound (or kg) of this product needed for the job.

Sequential Fumigations
Sequential fumigations are an alternative dosage strategy that may be used to control insect infestations. Fumigate once at the low dosage, which is sufficient for control of the post-embryonic (larva, pupa, adult) stages, plus a significant portion of the eggs. If there are any surviving insect eggs, then after they have hatched, but prior to their maturation and deposition of new eggs, fumigate a second time, again at the low dosage. When sequential fumigations are done, do not exceed the maximum cumulative target dosage of 1500 CT (1500 oz-h/1000 cu. ft.) for the target commodity.

Using Drexel Chemical's Master Fume AG Calculator When Monitoring
During the exposure period, the concentration of this product can be measured by a Fumiscope or similar device. After the fumigant concentration has reached equilibrium, measurements taken over an interval of time will give the actual loss rate from which the HLT can be determined. Use of Drexel Chemical's Master Fume AG Calculator during monitored fumigations has shown that significant quantities of this product can be saved compared to unmonitored fumigations and better control achieved. Refer to Drexel Chemical's Master Fume AG Calculator help file for specific directions on how to use this program. Drexel Chemical's Master Fume AG Calculator is designed to determine actual HLT based on measurements of concentrations of this product during fumigation.

Monitoring to Determine Status and Updated Dosing Directions
1. Measure (with a gas measuring instrument such as a Fumiscope or similar device) concentration of this product ounce per 1000 cubic foot (gm/m³).
2. After one or more hours, take a second measurement of concentration of this product. Accuracy of HLT increases as time between monitoring intervals is increased.
3. Drexel Chemical's Master Fume AG Calculator will calculate the actual measured HLT.
4. If the HLT is shorter than estimated (more rapid loss of fumigant), then either more of this product needs to be added to finish on time or the exposure time may be extended if sufficient product is present. Drexel Chemical's Master Fume AG Calculator will provide the time and “add gas” directions.

Chapter 8
MONITORING THIS PRODUCT
Monitoring discussed within this chapter refers to measuring accumulated dosage and does not refer to required monitoring for worker and bystander exposure.
Monitoring fumigant concentration at key places in the fumigated environment is directed because it can provide important information to the fumigator regarding the placement of fumigant introduction sites that will assist in the efficiency and success of future fumigations. Thus, in addition to helping maximize efficiency of a large fumigation, monitoring fumigant concentration can serve as a learning experience for the fumigator. For instance, if equilibrium is not achieved quickly, the fumigator can consider placing additional introduction sites or fans in the next fumigation. Measurement of the accumulated concentration of this product while the fumigation is in progress becomes increasingly valuable as the structure size, complexity and the repercussions of poor pest control increase.

THE OBJECTIVES OF MONITORING FUMIGANT CONCENTRATION OF THIS PRODUCT ARE:
1. To allow Drexel Chemical's Master Fume AG Calculator to determine the optimal amount of this product needed to control the target pests under the actual fumigation conditions.
2. To allow Drexel Chemical's Master Fume AG Calculator to calculate CT (dosage) needed and achieved to ensure a successful fumigation.
3. To allow Drexel Chemical's Master Fume AG Calculator to calculate the actual HLT vs. just estimating the HLT.
4. To create a reasonable history of Drexel Chemical's Master Fume AG Calculator file records so that enhanced Precision Fumigation techniques can be built upon in subsequent fumigations.

SPECIFIC GUIDELINES FOR MONITORING A TYPICAL FUMIGATION
This product should be circulated so as to reach equilibrium rapidly, ideally within an hour of introduction. The time for HLT determination starts only after equilibrium of this product has been established.
1. Monitor this product in spaces most representative of the atmosphere in which insects will be located within the structure. In larger jobs, more sampling points may be necessary.
2. In structures with partitions or poor air circulation, samples should be taken from the separate sections, such as each floor of multiple story structures or each room in a partitioned building.
3. Measurements should be as dependable and accurate as possible, especially when low concentrations are involved.
4. The time required between measurements to determine the HLT will depend on the estimated HLT or past history of the structure.

Monitoring Hoses
Arrangements should be made to place sampling hoses in the structure prior to fumigant introduction. Semi-rigid vinyl hoses (3 to 6 mm or 1/8 inch to ½ inch ID) should be placed so as to sample representative concentrations with a Fumiscope or similar device. Monitoring hoses larger than 6 mm ID may take a longer time to pull the sample from the fumigated space to the monitoring device because of the larger volume of air needed to be moved. Adequate tubing must be connected to the Fumiscope or similar device to direct all of the fumigant exhausted from the unit back into the enclosure or structure to prevent exposure to the fumigant.

Chapter 9
AERATION, CLEARING, AND RE-ENTRY
Two persons trained in the use of this product, at least one being an applicator certified by the state, must be present on site at all times during introduction of the fumigant, re-entry prior to aeration, initiation of the aeration procedure, when testing for re-entry after aeration (if aerated in an enclosed space) and during re-entry. It is essential that no occupant reenter the structure after fumigation until the fumigant has been aerated and the space has been fully tested and cleared for re-entry. One of the features of this product for structural fumigation is its capacity to rapidly diffuse into the sites of the pests. Then, when the confinement seals are removed, aeration is also typically rapid. Fans are excellent aids in attaining quick aeration and are essential where cross ventilation is poor. The "opening" of a fumigation should be carried out with care to minimize crew and bystander exposure to this product.
PRECAUTION: Prior to aeration, fumigators need to take into account the proximity to bystanders, location of other structures, wind speed and direction.

AERATION — PRACTICES
Successful, timely, and safe aerations following fumigations must be planned. The following five practices should always be factored into the fumigation prior to fumigant introduction:
1. MINIMIZE CONCENTRATIONS AT END OF EXPOSURE PERIOD: The lower the concentration of fumigant at the end of the exposure period, the easier and more timely the aeration process will be. By using Precision Fumigation techniques, the fumigator can minimize the amount of fumigant introduced, maximize its efficiency and maximize the accumulated dosage (CT).
2. AERATE AT THE HIGHEST POINT PRACTICAL: By aerating at the highest point on the structure, the highest concentrations of fumigant are directed away from workers and bystanders and are allowed to quickly dilute to less than 1 ppm levels.
3. DIRECT AERATION GASES UPWARD: Aeration in an upward manner also directs fumigant away from workers and bystanders and by using additional fans, acts to further dilute the fumigant to safe levels. In many cases, a permanent exhaust system that forcefully directs the air column upward or emits it through a stack would aid in the efficiency and safety of the aeration process.

4. CONTROL THE EXHAUST RATE: The exhaust rate during the aeration process should be controlled to ensure large volumes of fumigant laden air have time to disperse, thus minimizing the risk of bystander exposure to concentrations greater than 1 ppm. Many structures have air handling systems that can easily achieve a total air exchange within the facility in a very short period of time.

5. MONITOR TO ENSURE WORKER AND BYSTANDER EXPOSURE LEVELS ARE NOT EXCEEDED: The perimeter of the fumigation area, especially downwind, must be monitored to ensure that concentrations of this product are kept within acceptable levels outside the fumigation area.

FACTORS INFLUENCING AERATION TIME
Five factors affect the time needed for aeration:
1. Rate of air exchange
2. Terminal fumigant concentration
3. Load factor - sorption/desorption and diffusion rate
4. Temperature
5. Interior layout of the structure

Rate of Air Exchange
The most important factor in aeration is the rate of air exchange in a structure. The air exchange rate will be influenced by openings in the external walls (windows, vents, door, etc.), wind velocity, size and arrangement of the structure. The most effective, practical method to increase the rate of aeration is to increase cross ventilation by opening doors and windows. Fans are also useful for this purpose as a means of establishing a directed airflow through the structure in which fresh air is introduced and air inside the structure is exhausted/ventilated as efficiently as possible.

Terminal Fumigant Concentration
The amount of fumigant left in a structure at the end of the fumigation period can vary greatly. All other factors being equal, the greater the terminal concentration, the longer the time required to complete aeration. Thus, good planning and monitoring to ensure only the necessary amount of this product is introduced can decrease the aeration period.

Load Factor — Sorption, Desorption and Diffusion
The "load factor" can be expressed as the amount of materials fumigated that will adsorb or absorb the fumigant. This product has relatively low sorptive characteristics, meaning it has a low potential to stick to or react with fumigated materials. The sorption that does occur, however, can affect aeration in some situations. Desorbing fumigant can slow the time to reach safe re-entry levels of 1 ppm or less. Often, the greatest amount of this product to be desorbed is associated with the commodities.

The sorption/desorption phenomenon is a function of fumigant concentration and temperature — the higher the concentration throughout the fumigation, the greater the driving force for sorption and, therefore, the higher the quantity to be desorbed. As with sorption, desorption initially occurs very rapidly. Most of the fumigant will desorb during the initial part of the aeration period in response to the immediate lowered concentration inside the structure when seal is broken.

Temperature
Temperature has a direct effect on the clearance rate of a fumigant. The higher the temperature, the faster the rate of gas diffusion and desorption.

HANDLING UNAERATED COMMODITIES
Transfer of an unaerated commodity to a new storage site within a facility prior to complete aeration is permissible; however, transfer of unaerated containers or truck trailers over public roads is prohibited. Also, railcars cannot be moved off site until aerated.

While handling unaerated commodities, people must not be exposed to this product in excess of permitted exposure levels. Transfer of incompletely aerated commodity via bulk handling equipment such as augers, drag conveyors and conveyor belts to a new site is permissible. However, the new storage must have proper placarding and adequate security if it contains greater than 1 ppm of this product. Workers who handle incompletely aerated commodity must be informed and appropriate safety measures must be taken (i.e., ventilation and respiratory protection) to prevent exposures from exceeding 1 ppm.

CLEARANCE AND RE-ENTRY
Re-entry Procedures
Before aeration, if re-entry into an area under fumigation is required for any reason, the following procedures must be strictly adhered to:
1. Before re-entry, measure the concentration of this product using a sufficiently sensitive device to adequately prepare for worker safety.

2. A minimum of two persons, one an applicator certified by the state and others being trained in the use of this product, must be present on site to reenter an area under fumigation for initiating aeration or trouble shooting and testing for concentration of the fumigant after aeration before releasing for reoccupation.

3. The person before entering must be wearing a self-contained breathing apparatus (SCBA) with full facemask and operating in pressure demand mode or its equivalent.

4. Other appropriate worker protective equipment must be worn by all workers at the site depending upon the site and the type of work being done.

5. Notify authorities, emergency personnel and other required personnel if re-entry is done under emergency conditions (see Chapter 9).

No one shall be in fumigated areas if the level of this product is more than 1 ppm unless wearing a NIOSH approved positive pressure self-contained breathing apparatus (SCBA, not SCUBA) or combination air supplied/SCBA respirator, such as manufactured by Draeger, Ranger, Survivair, Scott or MSA. Only a detection device of sufficient sensitivity, such as the INTERSCAN gas analyzer [Model GF 1900], MIRAN vapor analyzer [SapphIRe] or SF-ExplorIR can be used to confirm a concentration of 1 ppm or less of this product.

Re-occupancy
Do not allow re-occupancy of any fumigated area until the aeration and clearing process is complete according to directions and levels of this product do not exceed 1 ppm as determined by the use of a detection device with sufficient sensitivity. Following the aeration period, the fumigator must test the breathing spaces in the space or structure to make certain that the concentration of this product is 1 ppm or less before allowing re-occupation of the structure. Follow all federal, state, and local requirements for re-occupancy.

Chapter 10
SITE SPECIFIC CONSIDERATIONS
KEY CONSIDERATIONS FOR FUMIGATING STORAGE FACILITIES, TRANSPORT VEHICLES AND PROCESSING PLANTS
Follow all local, state and federal regulations covering the fumigation of vehicles and processing plants.

Stationary vs. In-Transit
Empty and loaded containers, trucks, railcars, surface ships and other transport vehicles or vessels may be fumigated in essentially the same way as other storage facilities. However, in-transit fumigation (including aeration) of any vehicle is prohibited on public roads or waterways. Nevertheless, stationary vehicles under fumigation may be moved within the confines of the fumigation site if necessary. Special care must be given while moving a stationary vehicle or vessel under fumigation so as to prevent exposure to bystanders or workers to levels of 1 ppm or more of this product. Vehicles and vessels successfully moved must have proper placarding and adequate security. Workers who handle incompletely aerated commodity must be informed and appropriate safety measures must be taken (i.e., ventilation and respiratory protection) to prevent exposures from exceeding 1 ppm. Moving vehicles while under fumigation on the fumigation site may result in loss of fumigant and, therefore, potentially less effective fumigation.

Selection of Fumigation Location
The size and configuration of the space and the adequacy of the circulation will dictate the placement and number of release sites for this product in a stationary vehicle or vessel. Careful planning must be made for fumigant introduction in railcars, shipping containers and trailers. Prevent the liquid form of this product from contacting any part of the vehicle or contents as it can damage paint or tarnish metals. Railcars, shipping containers and trailers must be placed in a location appropriate for conducting fumigation. The location should be away from other work areas in a secured place.

Sealing the Vehicle or Vessel
Stationary vehicles should be prepared and sealed following general fumigation using tarpaulin and tape. Seal vessels using tarping, taping, and other methods specific for ships to confine this product to the fumigation area.

Securing the Vehicle or Vessel
After the fumigation site has been selected, railcars and trailers should be moved into position and secured by setting the brakes and blocking the wheels so that the vehicle will not move during the fumigation and aeration periods. When fumigating vessels, place warning signs at all entrances and secure the fumigated space. Only certified applicator and trained workers involved in the fumigation, wearing appropriate personal protective equipment, may be at the site during fumigation and aeration. Follow label instructions for securing entrances and posting warning signs on fumigated spaces and structures.
Fumigation of Surface Ships and Vessels in Port

Because of its physical properties, this product is ideally suited to control pest infestations in surface ships. Its high volatility allows the gas to penetrate into all areas of the vessel very quickly, control the pest and aerate rapidly. However, due to its lack of warning properties and high inhalation toxicity, this product must not be used to fumigate ships or other vessels while they are in use. People and desirable plants or pets must not remain on board during the fumigation.

Surface ships and barges may be fumigated with this product, but all aeration procedures must be completed before these vessels are allowed to sail. The vessel must not be moved during the fumigation and aeration periods. If re-entry is necessary before aeration is completed, strictly follow re-entry procedures (see Chapter 9). Only those persons involved in the fumigation may be at the fumigation site, including during the aeration process.

Important: Submarines and other below-the-surface ships must not be treated with this product. Except for those persons involved in the fumigation, no people, desirable plants, or pets may be on board during fumigation. The professional fumigator and the ship’s captain (or owner) shall follow all applicable regulations including those listed in the Coast Guard, DOT, Title 46, Shipping, section Parts 147A.1-147A.43. Since the codes listed are for fumigants in general, do not use procedures that are not permissible for this product as directed by label instructions and regulations.

If conditions of high relative humidity exist in the vessel during fumigation, great care should be exercised to use the proper sized fan and shooting hose to avoid overshooting the fan capacity, thereby causing a “fog out” in the vessel and possibly tarnishing and staining.

Vehicle (Containers, Railcars, Trailers, etc.) Aeration

Aerate the vehicle using active ventilation methods. To help ensure workers and bystanders are not exposed to concentrations that exceed exposure levels for re-entry, to the extent possible, control the ventilation process using the best practices procedures described in this Manual (Chapter 7), monitor concentrations of this product around the fumigated ship and/or prohibit entry into the area in question. At the end of the aeration time when the vehicle has been cleared for re-entry, the warning signs should be removed, the chocks removed from the wheels, and the vehicle put back into service. In-transit fumigation and aeration of railcars and other transportation vehicles are not permitted.

Surface Ship Aeration

Only those persons involved in the fumigation may be at the present fumigation site until the site is cleared for re-occupancy. In-transit aeration of ships is not permitted. Ships must be aerated and cleared for re-entry prior to being reoccupied. Aerate the ship using active ventilation methods to ventilate the bulk of the fumigant from the ship. To help ensure workers and bystanders are not exposed to concentrations that exceed exposure levels for re-entry, to the extent possible, control the ventilation process using the best practices procedures in this Manual (Chapter 7), monitor concentrations of this product around the fumigated ship and/or prohibit entry into the area in question.

PREPARATION FOR CHAMBER OR STACK FUMIGATION

Safety precautions and fumigation procedures vary by whether the chamber or stack is outside or within another structure. Before any chamber or stack is fumigated, it is appropriate to:

1. Determine the correct dosage (concentration x time = ounce-hours) to control the designated pest under the specific treatment conditions.
2. Confirm that the chamber or stack and any accessory equipment perform as intended.
3. Determine that this product will be confined within the chamber or stack by making a test run and monitoring for leaks with appropriate equipment. Pressure testing can also indicate the gas confinement capabilities of the chamber.
4. Have on hand proper respiratory protection equipment (SCBA) and personnel trained in how to properly use it.
5. Train personnel in the proper handling of the cylinders.
6. Educate personnel in first aid procedures to be followed should an accident occur and personnel be exposed to this product.
7. Notify other appropriate individuals that fumigations of this product will be taking place:
 Company employees other than those performing the fumigations such as security patrols, janitors, etc., police and fire department personnel and others required by local, state and federal laws.

A. CHAMBERS AND STACKS WITHIN STRUCTURES

Permanent Chambers

Fumigations with this product may be conducted in permanent fumigation chambers enclosed within a larger structure. A permanent chamber is defined as a durable hard-walled structure engineered specifically for fumigation that effectively confines this product. Monitor indoor areas around the permanent fumigation chamber for concentrations of this product during the fumigation, especially during introduction. No one is permitted to be in an area where the concentration of this product is more than 1 ppm without proper respiratory protection (SCBA). It is advisable to position the chamber away from work areas.

LOADING: Chambers and stacks should be loaded so that adequate air movement can occur around commodities to allow even distribution of the gas.
CIRCULATION FAN(S): A shooting fan/circulation fan is recommended when introducing this product. A small circulating fan inside the chamber will provide a gentle movement of air adequate to achieve even gas distribution throughout the chamber. However, if a large open space is not available or if use of an introduction fan is dangerous or impractical, an introduction/circulation fan is not required. If a fan is not used, ensure introduction will not result in a fog-out within the fumigation chamber. Slow introduction rates (1 to 4 pounds per minute) are recommended to prevent excessive cooling of air near the introduction site. Do not apply liquid fumigant directly onto food commodities. Another recommendation is to increase the number of introduction sites. Without circulation fans, reaching equilibrium will be delayed or may not be achieved. Thus, insect control may not be achieved throughout the chamber and aeration will be slowed since ventilation will be lessened.

TESTING SEAL EFFECTIVENESS: Fittings for conducting pressure tests and for monitoring lines during fumigation should be incorporated in the chamber.

Vacuum Chambers
Vacuum fumigations often require a lower use rate than normal atmospheric fumigations. Do not exceed 200 ounces-hour per 1000 cubic foot. Vacuum fumigations can be conducted in vacuum chambers located within an enclosed structure without considering the entire structure as being under fumigation.

PLACARDING: Post warning signs at all entrances to the vacuum chamber.

INTRODUCTION: This product should be released from outside the building. If this product is released into the vacuum chamber from within the enclosing structure, then the occupied area must be monitored to ensure the concentration of this product does not exceed 1 ppm.

WORKER EXPOSURE MONITORING: The area surrounding the vacuum chamber should be frequently monitored for concentrations of this product to ensure that occupants and workers are not exposed above 1 ppm. Special care should be taken to monitor during introduction to ensure that the introduction lines and cylinder connections are not leaking. If any leak resulting in detectable levels greater than 1 ppm is encountered during application, immediately clear the area of all personnel not wearing an SCBA. Only persons who are wearing an SCBA are permitted in the area to address the leak. Only after the level of this product has dropped to 1 ppm or less are unprotected personnel permitted to enter the area.

AERATION: Aerate the vacuum chamber following instructions above for vacuum chamber fumigations outside structures. If re-entry is necessary before aeration is completed, strictly follow re-entry procedures (see Chapter 9).

Tarped-Stacks
This product may be used to fumigate stacked commodities by covering the commodity with highly fumigant-resistant tarpaulins and then sealing them to the subsurface to create a temporary fumigation chamber (tarped-stack).

All personnel not trained or not involved in the fumigation must be vacated from the immediate area in which the tarped-stack fumigation is occurring until the fumigation is completed and the immediate area has been cleared for re-entry.

The indoor areas around the tarped-stack must be monitored for concentrations of this product when fumigation workers, without proper respiratory protection (SCBA) are present within the structure. Perform air monitoring by utilizing a detection device with sufficient sensitivity such as an INTERSCAN gas analyzer [Model GF 1900] or MIRAN vapor analyzer [SapphiRe] to ensure that workers are not exposed to concentrations of this product exceeding 1 ppm. No one is permitted to be in an area where the concentration of this product is above 1 ppm without proper respiratory protection (SCBA).

PLACARDING: Post warning signs to all sides of the structure that encloses the stack. For a tarped-stack, post all sides of the stack as well as all entrances and sides of the building.

OCCUPANCY: All personnel not trained or involved in execution of the fumigation are not permitted within the immediate area of the tarped-stack during the fumigation.

SECURING THE ENCLOSING STRUCTURE: When the fumigation workers are not present at the fumigation site, the enclosing structure must be secured from entry by anyone other than the certified fumigator or persons under his/her direct supervision.

WORKER EXPOSURE MONITORING: Workers and bystanders should not be exposed above 1 ppm of this product. When fumigation workers are present within the enclosing structure during the fumigation, frequently monitor with a detection device of sufficient sensitivity to measure at the 1 ppm level. Immediately vacate the area or use proper respiratory protection (SCBA) if the concentration of this product exceeds 1 ppm. Utilize ventilation procedures to reduce this product below 1 ppm prior to allowing re-entry without an SCBA.
INTRODUCTION: This product should be released from outside the building. If this product is released into the tarped-stack from within the enclosing structure, then the occupied area must be monitored to ensure the concentration of this product does not exceed 1 ppm. If any leak resulting in detectable levels above 1 ppm is encountered during application, immediately clear the area of all personnel not wearing an SCBA. Only persons who are wearing an SCBA are permitted in the area to address the leak. Only after the level of this product has dropped below 1 ppm are unprotected personnel permitted to enter the area.

AERATION: Aeration should be designed to exhaust fumigant from the enclosing structure to ensure that workers and bystanders are not exposed to levels above 1 ppm.

B. CHAMBERS AND STACKS OUTSIDE OF STRUCTURES

Atmospheric Pressure Chambers

DESIGN AND CONSTRUCTION: A suitable atmospheric fumigation chamber consists of a sufficiently gas-tight room with an appropriate door. An application system, exhaust blower and a small fan for even gas distribution are recommended.

PLACARDING: The applicator must post all entrances and all sides of the chamber (if accessible) to be fumigated with warning signs.

INTRODUCING FUMIGANT: Release this product from the cylinder placed outside the chamber through an introduction system (introduction lines, connectors, etc.) with a minimum 500 psi burst pressure rating. A small fan should be used to distribute the gas uniformly within the chamber. Monitoring gas concentrations within the chamber can confirm the distribution of gas within the chamber.

DOSAGE MONITORING: Monitoring gas concentrations within the chamber during the exposure period with a Fumiscope or similar device is recommended to confirm HLT, describe gas distribution throughout the chamber, and ensure the target dosage is achieved. Recommended monitoring site locations include one at high, medium, and low heights and in the front, middle and back of the chamber.

EXHAUST FAN(S): The size of the exhaust blower will depend on the size of the fumigation chamber and the aeration time requirements. Generally, a fan capable of changing the air in the chamber in 5 to 10 minutes is recommended. The chamber must exhaust this product outside the building and away from adjoining buildings or work areas. Consult your state agency for emission control requirements.

Vacuum Chambers

Vacuum chambers require special designs which take into account the vacuum pressure exerted on the materials of construction. For this reason, it is recommended that trained engineers be consulted before constructing a vacuum chamber. Follow all directions given by the manufacturer or design engineer.

Vacuum fumigations often require a lower use rate than normal atmospheric fumigations. Do not exceed 200 oz-h/1000 cubic foot.

Specially built steel chambers for vacuum fumigations provide the fastest and most effective fumigation. After the commodity is placed in the chamber, pumps evacuate air. This product is introduced and rapidly penetrates all space previously occupied by air. A lethal dosage of this product results when the proper concentration is maintained for the required fumigation period. With the sustained concentration (no leakage) and a vacuum of 25 to 27 inches Hg, the time of exposure and the dosage may be reduced for some insects and life stages.

PLACARDING: The applicator must post all entrances and all sides of the chamber (if accessible) to be fumigated with warning signs.

DRAWING A VACUUM: A vacuum of 25 to 27 inches of mercury is commonly drawn for vacuum fumigations. Check to ensure that the vacuum is maintained according to plan. Unplanned vacuum release indicates leakage. Note that some vacuum fumigations are planned to allow release of the vacuum during exposure with the objective of improving penetration of the commodity as air enters the chamber.

INTRODUCING FUMIGANT: Because of the special design of vacuum chambers, the manufacturer or design engineer’s operation procedure be followed. Release this product from the cylinder placed outside the chamber through an introduction system (introduction lines, connectors, etc.) with a minimum 500 psi burst pressure rating. A small fan can be used to distribute the gas uniformly in the chamber if the vacuum is to be maintained throughout the exposure period.

DOSAGE MONITORING: The Fumiscope or similar device cannot be used to measure this product during a vacuum fumigation unless the vacuum is released. If the vacuum is maintained, and thus no gas is leaking from chamber, the achieved dosage (CT) can be calculated by using the simple Concentration x Time formula.
AERATION PROCEDURES: At the end of the exposure, release the vacuum, ensuring any exhaust does not expose workers or bystanders above the permissible exposure limit. Purge the chamber of air/fumigant 2 times by pulling a partial vacuum prior to checking the gas concentration for re-entry purposes. Aeration of this product is very rapid, but desorption can occur for a longer period of time.

Manage the aeration process (location, exhaust rate and direction) to ensure that workers and bystanders are not exposed to levels above 1 ppm.

Always check for the concentration of this product with a suitable detector before entering the chamber without proper respiratory protection (SCBA). Keep the exhaust fans running during the aeration period and also while unloading the chamber. Remove the warning signs when aeration has been completed and it has been determined that the area is safe to enter.

Tarped-Stacks
Fumigations may be conducted in temporary chambers created using tarpaulins or other gas impermeable sheeting as the “walls” to hold in the fumigant. These are sometimes called “stack fumigations.” The following instructions pertain to fumigation of tarped-stacks located outside other structures.

The items should be placed on a sufficiently airtight foundation, such as another tarp or on concrete, and covered with a fumigation tarp to ensure a tight seal. The tarp over the items should be supported so as to create a gas expansion dome. The edge of the tarp on the foundation must be sealed either by weighting the edges with sand or water “snakes” or equivalent.

PRECAUTION: Tarp fumigations should be conducted out of doors or in a building that will not be occupied during fumigation and aeration periods.

PLACARDING: All entrances and all sides of the fumigated environment and any connected area not monitored must have warning signs.

DOSAGE MONITORING: Monitoring gas concentrations within the tarped-stack during the exposure period with a Fumoscope or similar device is recommended to confirm HLT, describe gas distribution throughout the stack, and ensure the target dosage is achieved. Monitoring site locations include one at high, medium, and low heights and in the front, middle and back of the stack.

AERATION: Best practices for aeration of tarped-stacks involves setting up a chimney system that will ventilate from the highest point of the stack in an upward direction at a rate that will not lead to workers or bystanders being exposed to levels above 1 ppm.

STORED BULK COMMODITY FUMIGATION (e.g., Silos, etc.)
In many commodity storage situations, the amount of open space for introducing this product is limited compared to the total volume of the structure. It may not be possible to use shooting fans and release methods that are recommended for space fumigations. Because of limited free air volume and lower air movement, fumigators can best adjust by slowing the introduction rate by using smaller diameter shooting hoses and/or extending the hose length.

If the fumigant is released directly into the headspace of a storage structure, care should be taken to avoid contact of liquid fumigant and the commodity. Sufficient air circulation should be provided to prevent moisture condensation in the introduction area.

It is strongly recommended that recirculation systems (portable or built-in) be used to rapidly and evenly distribute this product throughout the space being treated. Existing aeration blowers that are vented to the outside should not be used.

Procedures for Fumigating Bulk Commodities
1. Follow instructions in this Manual regarding sealing, securing, placarding, and aeration/clearing.
2. Seal and secure the storage structure.
3. Determine the target dosage and quantity of fumigant needed using Drexel Chemical's Master Fume AG Calculator.
4. Make adjustments to the dosage based on the fumigant monitoring results and Drexel Chemical's Master Fume AG Calculator recommendations for achieving target dosages.
5. Determine where the fumigant will be released.
6. Best practice is to introduce fumigant directly into the air stream of a recirculation system. This may either be inside the storage structure or directly into the ducting of the system. If the fumigant is released into the recirculation system, it should be down stream of the fan itself.
7. In almost all cases fumigant introduction rates should be slower than for space fumigations of similar volumes to provide time for the fumigant to penetrate the grain mass and not establish high fumigant concentrations in the introduction space.
8. In the event that a recirculation system is not available, the fumigant should be released into the headspace above the commodity. Care should be taken to prevent contact of liquid fumigant with the commodity.
9. Air circulation should be started prior to fumigant introduction and continued during introduction to aid in the penetration of this product into the commodity mass. High concentrations in the introduction space can result in excessive fumigant loss via leakage before the fumigant penetrates evenly into commodity mass.

10. After introducing the initial amount of fumigant to reach the targeted dosage, gas concentrations should be monitored periodically. Any adjustments in terms of amount of fumigant or exposure time should be made based on Drexel Chemical's Master Fume AG Calculator status recommendations.

Bulk Commodity Aeration
1. Prior to the initiation of fumigation procedures, equipment should be put in place for a safe aeration.
2. The fumigant laden air should be vented from the highest practical point of the storage structure slow enough to not exceed exposure limits.
3. If available, aeration blowers can be used to rapidly exhaust remaining fumigant so long as these do not vent in areas where workers or bystanders might be affected.
4. SCBA equipment must be worn if workers must enter the fumigated space to initiate aeration or levels exceed 1 ppm.
5. The storage facility should be finally aerated to 1 ppm or less.
6. The area or site must be monitored to ensure that liberation of fumigant from the treated commodity does not result in the development of unacceptable levels of this product. Do not allow re-entry into treated areas by any person before this time without proper respiratory protection.
7. Actively aerate commodity a minimum of 24 hours prior to offering to consumers.

Mills and Food Processing Facilities
For mills and food processing facilities, special consideration should be given to help ensure workers and bystanders are not exposed to concentrations that exceed exposure levels for re-entry. To the extent possible, control the ventilation process using the best practices procedures described in this Manual (Chapter 7), monitor concentrations of this product around the fumigated site, and/or prohibit entry into the area in question.

Precautions to help protect accidental bystander exposure to this product in excess of 1 ppm can be of particular importance because of the sometimes proximate location of residential structures and bystanders that can occasionally occur around mills and food processing facilities.

Special care should be taken to minimize quantities of processed foods prior to space fumigations. Processed food not practical to remove prior to fumigation may undergo incidental fumigation with this product. However, no direct fumigation of processed foods is permitted unless the processed food is specifically listed in the section "COMMODITIES THAT CAN BE FUMIGATED".

Chapter 11 TROUBLESHOOTING
This product in the gaseous phase is a very slightly reactive chemical compared to other fumigants such as methyl bromide, hydrocyanic acid (HCN) or acrylonitrile.

CYLINDERS
Valve Problems
Cylinders of this product are fitted with special valves that are appropriate for use with this product. These valves can be damaged if the wrong size wrench is used. A 25 to 30 cm adjustable wrench should be used to open or close these valves.

STUCK VALVE: Never use excessive force to open a stuck valve. If a valve will not open using normal force, return the cylinder to your distributor.

LEAKING VALVE: Make sure the valve is completely shut off; however, do not use excessive force. Reopening and then closing can usually properly seal the valve and stop the leak. If the valve continues to leak, often tightening the packing nut on the top of the valve to 25 to 30 foot pounds of torque with an adjustable wrench will stop the leak. If the valve still leaks, move the cylinder to an isolated, secured area and allow the cylinder to continue to vent to the air. Be sure to keep people away from the area. When all the gas has escaped, replace the bonnet and identify faulty cylinders by painting the cylinder shoulders red and tagging the cylinder describing the problem in detail. Return the cylinder to your distributor so it may be sent to Drexel Chemical Company for repairs.

Dip Tubes
A broken dip tube rarely is the reason the liquid form of this product cannot be moved out of the cylinder when the valve is wide open. Sharp blows to the cylinder, rough handling, or dropping the cylinder can break off the dip tube from the bottom of the valve. If the dip tube is broken, this product will be released from the cylinder, but at a much slower rate. Either introduce this product slowly or replace the bonnet and call your distributor for instructions on cylinder return procedures.
Leaking Cylinders
Leaking may occur if cylinders receive rough handling. Abrasion on the side of the cylinder may produce pinholes in the metal.

Always identify faulty cylinders, valves and dip tube by painting the cylinder shoulders red. Attach a red tag describing the problem in detail. Return cylinders to your distributor.

CORROSION OF METALS
This product is not known to cause any corrosion when it is in the vapor (gaseous) phase under normal temperatures. Every batch of this product is tested for metal corrosion before being released for sale.

Metal surfaces of copper, silver, steel, stainless steel, brass, aluminum, etc., may become corroded or rusted if this product is allowed to change from a liquid to a gas within the hose. If this product is introduced too rapidly, the temperature of the air may drop below the dew point resulting in the formation of condensation.

Condensation generally occurs in or near the area of introduction of this product. Minute quantities of acids or bases produced by the high heat sources which produce temperatures at or near 752°F and pilot lights be turned off during fumigation. Fog-outs can also cause etching of glass and ceramic tile. Each batch of this product is also tested for glass etching before it leaves the production plant.

Metal tarnishing/corrosion can also occur if heat sources are left on during fumigation. This product is decomposed by heat from flames such as pilot lights in furnaces, stoves, dryers or refrigerators and such glowing heat sources as electric heaters. Heat sources above 400°C (752°F) decompose this product to corrosive materials (mainly HF). Therefore, it is imperative that pilot lights and other heat sources which pose this risk be eliminated or turned off during fumigations.

Damage to metals can also occur from the inclusion in the fumigated space of chlorine generators. These pieces of equipment should either be turned off or excluded from the fumigation.

Damage to metals can usually be corrected by cleaning the metal items with a good metal cleanser or polish. The corrosion or rust is usually only on the surface.

GLASS ETCHING
This product in the gaseous phase is not known to cause etching of glass. HF, the decomposition product of this product, may react with ceramic material such as window glass, china, glazed tile, etc., creating a condition referred to as “etching” or “frosting.” Therefore, it is imperative that all heat sources which produce temperatures at or near 752°F and pilot lights be turned off during fumigation. Fog-outs can also cause etching of glass and ceramic tile. Each batch of this product is also tested for glass etching before it leaves the production plant.

RUN STAINS
This product in the gaseous phase is not known to cause staining of fabrics, walls, paintings, etc. Staining, however, can be caused by the presence of liquid water (dew or fog) caused by exceeding the capacity of the fan to mix cold air when this product is introduced into the warmer air in the structure. A condition can occur when condensation forms on the interior and/or exterior surfaces of the structures and a “sticky” light to dark brown liquid (from grease, dirt, and smoke) runs down wall surfaces. This may have the appearance in color and consistency of cola. Spots also may form on the bottom side of horizontal surfaces.

Most stains can be removed by washing.

Condensation forming and running down vertical surfaces can occur even without the introduction of this product. A structure that is air conditioned to a much lower temperature than the air temperature and then opened to introduce hot humid outside air will form condensation on cold surfaces such as heavy brass. This condition can be avoided by either warming the structure slowly prior to sealing or waiting until all seals are in place before opening windows and doors to avoid introducing outside air.

STAINING
This product in the vapor phase does not cause staining or discoloration of fabric or other materials normally found in a structure under fumigation. Fabric staining or color changes can occur when a high heat source (i.e., pilot light) converts this product to SO2 and other corrosive materials. Many fabric dyes are acid or base indicators and will change color in the presence of acids or bases. For staining caused by frost, see “FUMIGANT INTRODUCTION HOSE FREEZING” section below.

FUMIGANT INTRODUCTION HOSE FREEZING
When this product is introduced according to label directions, the introduction hose will not freeze and the liquid will change to a gas at the end of the hose. The use of the proper size fumigant introduction hose is important. Initially, slowly open the valve a quarter to one-half turn to begin the liquid flow of this product. Then, open valve to one full turn or full flow through the hose. If the liquid changes to a gas within the hose, frost will collect along the length of the hose and water damage can occur to floors, furniture, etc., where the hose rests. Also, this product may change from a liquid to a gas in a hose with kinks. This can cause freeze damage from either frost accumulating on the outside of the hose or the hose becoming brittle, breaking and splashing the liquid form of this product on surfaces. Replace kinked or damaged hoses. Use mesh-reinforced, flexible hosing of proper specifications to avoid this problem.

During release of this product from the cylinder, some chilling of the valves, cylinder, and fumigant introduction hoses can occur under normal circumstances. Valves can freeze if this product is allowed to change from a liquid to a gas within the
valve area. Valve freezing is usually caused by using an improper fumigant introduction hose connector. Carpeting and floors can be damaged if cylinders, fans and hoses are allowed to rest upon them. When this could pose a problem, plastic or other protective material should be placed under the fumigant introduction hoses and fans.

PLANT AND TURF DAMAGE
This product is quite toxic to most plants and they should be protected from the fumigant; however, plants should not be used as an indicator of the success or failure of a fumigation. Plants should be removed from inside the fumigation site. Structural foundation plantings of ornamental shrubs and trees can be protected to a certain degree from the gas by wetting the soil, thereby sealing off the gas from the plant root system. Water is an excellent barrier and this product will not readily move through moist soil. Certain plants have been found to be more sensitive to this product than others. These include junipers, some dwarf palms, springeri fern, orchids and Lily grasses (*Liriope* spp. and *Ophiopogon* spp.) which are commonly used as border plantings. Special attention should be given to these plants during fumigation and the initiation of aeration to reduce the exposure to this product. Plants that have been moved should be placed in a similar environment to that where they were being grown — same temperature, light, humidity, etc.

ODOR PROBLEMS
Odors can also be caused by the decomposition of dead animals. Occasionally, animals such as rats or mice are trapped inside the fumigation site and killed during the fumigation. Many times they die in inaccessible areas within the structure and cannot be easily removed.

POOR CONTROL OF PESTS
Poor control of the target pest is caused by not generating the target CT (Concentration x Time) for the temperature to kill the pest. Accumulation of target CT does not begin until the fumigant has reached equilibrium in the site. Many factors may contribute to insufficient CT accumulation:
1. Confinement of fumigant, primarily ground seal or tarps is worse than estimated.
2. Inaccurate monitoring device.
3. Too short an exposure period (insufficient CT).
4. Using the wrong dosage (insufficient ounces per hour).
5. Not using adequate fans to distribute the gas properly within the site.
6. Not accurately determining the temperature of the pest site.
7. Error in calculating volume to be fumigated.
8. High winds which can cause excessive loss of gas.
9. Target pest excluded from exposure to fumigant by some gas inhibiting barrier.

Latent Mortality
Sometimes live insects may be found immediately after fumigation. Under optimum or favorable conditions, the target pest will be dead or obviously dying by the end of the fumigation period. Researchers have evaluated eventual mortality of several stages of key postharvest pests following exposure to this product. Latent mortality in insects occurs for exposures very near mortality threshold levels. Within a species, the latent mortality period for the egg stage is generally longer and more variable than other life stages.

Non-target Organisms
Signs of activity of live non-target organisms (organisms which are not specific targets of the fumigation) found within the fumigated space does not mean the fumigation failed to control the target pests. Consider the following:
- Lethal dosage requirements vary for different organisms and may be higher for non-target organisms than for the target pest.
- The organism may have received a toxic dosage and will eventually die (latent mortality).
- The non-target organism may have entered the structure during the aeration period. Therefore, judgment of the success or failure of the fumigation should not be made on the presence of live organisms immediately following the fumigation.

PLASTICS
Liquid form of this product can be a solvent of some plastic materials. This product should not be introduced directly onto plastic surfaces, such as windows, as liquid droplets may discolor or etch the material.

MISCELLANEOUS
WHITE POWDER LEFT AS RESIDUE: A white powder substance found on windows, tile, glass, lamps, etc., indicates that a source of heat (pilot lights, etc.) was left on during the fumigation.
STORAGE AND DISPOSAL

Do not contaminate water, food or feed by storage or disposal.

PESTICIDE STORAGE: Store in dry, cool, well ventilated area under lock and key. Post as a pesticide storage area. If the storage area is in an occupied building, the storage area must have either 1) a forced air ventilation system that meets required local ordinances for the storage of hazardous materials and operates continuously; or 2) be equipped with a permanently mounted and properly maintained and functioning sulfuryl fluoride monitoring device designed to alert occupants of the building if sulfuryl fluoride in the air of the storage area is greater than 1 ppm. Store cylinders upright secured to a rack or wall to prevent tipping.

Pesticide Handling: Do not subject cylinders to rough handling or mechanical shock such as dropping, bumping, dragging, or sliding. Do not use ropes, slings, hooks, tongs or similar devices to unload cylinders. Transport cylinders using hand truck, fork truck or other device to which the cylinder can be firmly secured. Do not transport any cylinders in closed vehicles where they occupy the same common airspace as personnel. Transport securely only in an upright position. Do not remove valve protection bonnet and safety cap until immediately before use. Replace safety cap and valve protection bonnet when cylinder is not in use.

When cylinder is empty, close valve, screw safety cap onto valve outlet, and replace protection bonnet before returning to supplier. Only the registrant is authorized to refill cylinders. Do not use cylinder for any other purpose. Follow registrant’s instructions for return of empty or partially empty cylinders.

Leak Procedures: Evacuate immediate area of leak. Use a NIOSH approved positive pressure self-contained breathing apparatus (SCBA, not SCUBA) or combination air-supplied/SCBA respirator, such as manufactured by Ranger, Survivair, Scott or MSA, for entry into affected areas to correct problem. Move leaking or damaged cylinder outdoors or to an isolated location, observing strict safety precautions. Work upwind if possible. Do not permit entry into leakage area by unprotected persons until concentration of fumigant is determined to be 1 ppm or less in the breathing zone, as determined by a detection device with sufficient sensitivity such as an INTERSCAN, MIRAN or SF-ExplorIR. For more detailed information on the source and use of air monitoring devices or respirators, consult the Applicator’s Manual of this product.

CYLINDER AND PRODUCT DISPOSAL:

Promptly return all empty cylinders to your distributor of this product. Follow proper cylinder handling directions above. Pesticide wastes are toxic. Improper disposal of excess pesticide is a violation of Federal law. If these wastes cannot be disposed of by use according to label instructions, consult your State Pesticide or Environmental Control Agency or the Hazardous Waste Representative at the nearest EPA Regional Office for guidance.

WARRANTY DISCLAIMER

Manufacturer warrants that this product conforms to the chemical description on the label and based upon tests believed reasonably fit for the purposes stated on the label when used in strict accordance with the directions, subject to the inherent risks set forth below. To the extent consistent with applicable law, Manufacturer makes no other expressed or implied warranty of merchantability or fitness for a particular purpose or any other express or implied warranty.

Use Risk

It is impossible to eliminate all risks associated with use of this product. Plant injury, lack of performance, or other unintended consequences may result because of such factors as use of the product contrary to label instructions (including conditions noted on the label, such as unfavorable weather, soil conditions, etc.), abnormal conditions (such as excessive rainfall, drought, tomatoes, hurricanes), presence of other materials, the manner of application, or other factors, all of which are beyond the control of Manufacturer or the Seller. To the extent consistent with applicable law, all such risks shall be assumed by Buyer.

Limitation of Remedies

To the extent consistent with applicable law, the exclusive remedy for losses or damages resulting from this product (including claims based on contract, negligence, strict liability, or other legal theories), shall be limited to one of the following, at Manufacturer’s discretion:

1. Refund of purchase price paid by Buyer or use for product bought, or
2. Replacement of amount of product used.

To the extent consistent with applicable law, in no case shall Manufacturer or the Seller be liable for consequential, special or indirect damages or losses from the use, handling or storage of this product. The terms of the "Warranty Disclaimer" above and this "Limitation of Remedies" cannot be varied by any written or verbal statements or agreements. No employee or sales agent of the Manufacturer or the Seller is authorized to vary or exceed the terms of the "Warranty Disclaimer" or this "Limitation of Remedies" in any manner.

MASTER FUME and the Drexel logo are registered trademarks of Drexel Chemical Company. All other brand names, product names or trademarks belong to their respective holders.
APPENDIX A

ENGLISH-METRIC CONVERSION TABLES

Temperature	Volume	Wind Speed
(°C x 1.8) + 32 = °F | 1 ft³ = 0.0283 m³ | 1.609 kph = 1 mph
(°F - 32) ÷ 1.8 = °C | 1 m³ = 35.31 ft³ | 0.621 = 1 kph

[INSERT HERE THE CONVERSION TABLES FOR TEMPERATURE, VOLUME AND WIND SPEED]

DOSAGE: oz-hr/1000 ft³ ~~ gm-hr/m³
PRESSURE: 1 PSI ~~ 6.9Kpa~~ 0.689 bar
1 bar ~~ 100 Kpa ~~ 14.50 PSI

APPENDIX B

GLOSSARY TERMS

ACTIVE AERATION: Aeration that is not passive. Any increased aeration as a result of human intervention or process.
ACTIVE INGREDIENT: Components of a pesticide that control the target pest and is responsible for the pesticidal effect.
ACUTE INHALATION TOXICITY: Immediate poisoning from a single elevated inhalation exposure to a substance; causes injury or death from a single exposure.
ACUTE ORAL TOXICITY: Immediate poisoning from a single oral elevated ingestion exposure to a substance; causes injury or death from a single exposure.
ACUTE TOXICITY: A rapid response, often within minutes or hours to a single exposure or dose of a chemical.
ADSORPTION/ABSORPTION = SORPTION: The action of a material in holding a gas or substance. The opposite of desorption.
AERATE: Exchange fumigant-laden air with fresh air until the concentration of fumigant has reached the permitted entry level.
AERATION: The final step of a fumigation that involves proper ventilation and clearance of this product from the structure.
AMERICAN CONFERENCE FOR GOVERNMENTAL INDUSTRIAL HYGIENISTS (ACGIH): The professional organization of governmental industrial hygienists which establishes annual recommended guideline threshold limit values (TLVs) for lifetime noise, radiation and chemical occupational exposures for eight hours per day, 40 hours per week.
ANTIDOTE: A remedy that counteracts the effects of a poison.
ARTHROPOD: Any segmented invertebrate of the phylum Arthropoda having jointed legs.
ATMOSPHERE: A mass or body of gases that are present in a region or place.
AXIAL FLOW FAN: A fan in which the air flows through the impeller and casing is primarily axial. The impeller is contained within a cylinder housing (AMCA Publication 211).
BOILING POINT (BP): The temperature at which a liquid converts from liquid phase into a gas (the temperature at which the vapor pressure in a liquid equals the external pressure).
BONNET: The cap that covers the valve and safety cap on the fumigant cylinder to protect the valving system from damage and prevent accidental release of the fumigant.
CARCINOGENICITY: Possessing the power, ability or tendency to produce or incite cancer in a living tissue.
CENTRAL NERVOUS SYSTEM (CNS) DEPRESSION: An alteration of level of consciousness that proceeds other changes in vital and neurologic signs.
CERTIFIED APPLICATOR: Member of a fumigation crew who has successfully completed the proper training and is approved by the State and the manufacturer to release the fumigant.
CIRCULATION: Mechanically stir or circulate the fumigation atmosphere.
CLAMPS: Devices used to attach tarps together and hold them in place during a fumigation.
CLEARING: The procedure following the aeration period when the fumigator tests the breathing space in the structure with sensitive equipment to make certain the concentration of this product is 1 ppm or less before allowing re-occupancy.

CONCENTRATION: Amount of fumigant per unit area within the fumigated space during exposure period. Usually measured in ounces per 1000 cubic feet or grams per cubic meter.

CONDENSATION: The change of a vapor or gas into a liquid.

CUBIC FEET PER MINUTE (CFM): Often used as a rating system for the amount of air a fan can move.

CYLINDER SLING: A type of holster or suspension ring used to suspend a fumigant cylinder.

DESORPTION: The liberation or removal of a fumigant substance from other substances.

DEW POINT: The temperature at which water will condense from air (the temperature at which dew forms).

DEW POINT DEPRESSION: The number of degrees the temperature must be lowered for dew (water condensation form air) to form.

DIP TUBE: A PVC tube that extends from the bottom of the cylinder to the valve on the top that releases liquid Master Fume.

DISPERSE: Distribute the fumigant throughout the fumigation site.

DIFFUSION: The spontaneous process whereby a fumigant moves from an area of high concentration toward an area of lower concentration.

DOSE: The amount of fumigant introduced into the fumigation space — oz/1000 cubic feet (gm/cubic meter). Often confused with dosage.

DRIERITE: The hygroscopic material used in the Fumiscope unit to remove moisture from the air. Drierite in good condition is normally blue in color.

EQUILIBRIUM: The state when all the sulfuryl fluoride molecules are at equal concentrations from each other in a confined area.

EXPOSURE TIME: The amount of time a fumigant is confined in a structure to kill the target pest.

°F/°C: Working temperature. Usually the temperature of the closest spots insect pests are located. Usually expressed in degrees Fahrenheit or Celsius. In the case of chamber fumigations, the internal temperature of the commodities to be fumigated (i.e., site of pest).

FACE SHIELD: One of two pieces of safety equipment permitted to protect the eyes required when releasing the fumigant (see goggles).

FLASH POINT: The temperature at which vapor explodes.

FLUOROSIS: A mottling or blackening of the teeth caused by an overexposure to fluorine.

FOG: Very fine droplets of liquid moisture in air.

FOG-OUT: The condensation of moisture inside a fumigated structure which is caused by a large drop in air temperature. Methods to prevent a fog-out include: (1) using the proper inside diameter and length of the introduction hose, and (2) using appropriate fans with sufficient velocity to effectively mix the warmer air inside the structure with the colder Master Fume gas.

FUMIGANT INTRODUCTION: Release of the fumigant from its containers into the fumigation space.

FUMISCOPE: A thermal conductivity analyzer used to monitor the concentration of this product during a fumigation. Measures in ounces per 1000 cubic feet or gm per cubic meter. The Fumiscope is not for monitoring for human exposure.

GAS: Matter in vapor state. That fluid form of matter which is compressible with limits and, which owing to the relatively free movement of its molecules, diffuses readily in other like forms of matter and is capable of indefinite expansion in all directions.

GOGGLES: One of two pieces of approved safety equipment to protect the eyes required when releasing the fumigant (see face shield).

GROUND SEAL: The sealing of tarps to the ground to prevent fumigant loss during a fumigation.

HALF-LOSS TIME (HLT): The relative measure of how well a structure holds fumigant. Actual time required to lose one-half of the fumigant concentration, measured in hours. The fumigant loss rate depends on the building construction, sealing practices, wind, and fumigant distribution influences. The actual/HLT can be established only by measuring the fumigant concentration during the exposure period with a gas measuring measuring instrument and using Drexel Chemical's MasteRate program.

HANGING BONNET: A type of cap or ring used to suspend the fumigant cylinder.

HEAT OF VAPORIZATION: The amount of heat necessary to change a liquid state to a gaseous state. This is usually measured in British Thermal Units (BTUs).

HEPATIC: Pertaining to the liver.

HOURS EXPOSURE (HE): The number of hours the site is exposed to the fumigant.

HYDROFLUORIC ACID: A highly reactive chemical which can corrode or damage many household effects. This product can decompose into hydrofluoric acid and sulfur dioxide if exposed to high heat conditions present in gas, flames or glowing electric elements.

HYDROGEN FLUORIDE: A colorless liquid made by the action of sulfuric acid on calcium fluoride. The compound is an extremely strong fluorinating agent, which attacks glass.

HYDROLYSIS: A chemical reaction that causes chemical breakdown in the presence of water.

INSIDE DIAMETER (ID): The measurement of the interior width of the fumigant introduction and monitoring hoses.

INERT INGREDIENT: Other non-pesticidal or formulating ingredients in a pesticide formulation.
INTERSCAN GAS ANALYZER: A portable analyzer designed to measure low concentrations of this product for worker and bystander exposure and final clearing. The Interscan provides immediate and continuous readings of gas concentrations from 1 to 50 ppm.

LATENT HEAT OF VAPORIZATION: The number of calories per mole of substance needed to change a liquid at its boiling point to a gas. For this product, this is 4600 cal/mole. When liquid fumigants under pressure are released, available heat is “pulled” from the immediate surroundings as the liquid changes to a gas.

LATENT MORTALITY: The delayed kill of an organism receiving a toxic dose.

LEAK DETECTOR: Device used to detect leaks in the structure or seal during a fumigation. An example would be a TIF 5750 or XP-1 detector models.

LOAD FACTOR: The amount of material within the fumigated space. Sometimes fumigant is sorbed by materials and made unavailable for insect control.

MAXIMUM CONCENTRATION: The greatest concentration of chemical that can or is permitted to exist as a gas in a given space. The higher the maximum concentration of the fumigant, the more that can be applied in a given space.

MIRAN SapphiRe (mobile infrared analyzer): A type of clearance device used to clear a structure for re-occupancy after a fumigation. Uses infrared technology to measure down to ppm.

MOLECULAR WEIGHT: The sum of the weights of the constituent atoms of a molecule. For this product it is 102.07.

MONITORED FUMIGATION: Repeated observations of a fumigation during the exposure period to determine the concentration of gas at a specific location, detect gas loss over time, ensure the appropriate amount of fumigant and the exposure time, and/or to reduce potential problems or expenses.

MUTAGENICITY: Possessing the power, ability or tendency to produce genetic changes or mutations.

NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH (NIOSH): The U.S. government agency responsible for research regarding occupational safety and health issues in the workplace. They also approve appropriate safety equipment, such as hard hats, respirators, eye protection, etc.

NON-FLAMMABLE: Not flammable or readily ignitable.

OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA): Federal agency that regulates worker health and safety procedures and practices.

ODOR POTENTIAL: The possibility of malodor being generated due to the fumigant having been in contact with certain materials.

OUNCE- HOURS (OH) OR GRAM-HOURS: Dosage = concentration X hours exposure.

OVICIDAL: Possessing the ability to kill the egg stage of an insect.

PARTIAL PRESSURE (DALTON’S LAW): In any mixture of gases the total pressure is equal to the sum of the partial pressures each gas would exert were it present alone in the volume occupied by the mixture. The total pressure P is equal to the sum of the partial pressures of the individual gases.

PARTS PER MILLION (PPM): A measure of the concentration of a substance, e.g., 10 ppm = 10 drops of water in a million drops.

PERMISSIBLE EXPOSURE LIMIT (PEL): The eight-hour time weighted average acceptable inhalation exposure limit for any regulated substance in the workplace. This exposure limit is enforced by OSHA and is the law.

PENETRATION: The passage of fumigant into or through an object, such as flour, commodities, wood, tarps, soil, etc.

POST- EMBRYONIC: The larval, pupal and adult stages of insects.

POUNDS PER SQUARE INCH ABSOLUTE (PSIA): A measure of atmospheric pressure. PSIG is pounds per square inch as measured by a gauge.

PULMONARY: Pertaining to or affecting the lungs.

PULMONARY EDEMA: The presence of abnormally large amounts of fluids in the intercellular spaces of the lungs.

REACTIVITY: The ability of the fumigant to react with (combine with or change) other compounds in which it comes into contact.

RELATIVE HUMIDITY: The ratio of the amount of water present in the air relative to the amount it could hold at 100% saturation; usually expressed in percent.

RELEASE OF FUMIGANT: The actual introduction of fumigant into the fumigation space or site.

RENAL: Relating to the kidneys.

REVOLUTIONS PER MINUTE (RPM): A measure of fan speed.

RODENTS: Any animal from the order Rodentia, such as mice and rats. SAFETY CAP: A covering that protects the cylinder valve from damage or accidental release of the fumigant.

SAND SNAKES: Sand- or water-filled tubes made of material used to seal tarps to the ground to minimize release of the fumigant.

SCBA - POSITIVE PRESSURE: Self-contained breathing apparatus that maintains a slightly positive pressure of air inside the face piece at all times.

SECONDARY LOCKS: Securing mechanisms used during fumigation to prevent inadvertent or illegal entry to a structure under fumigation.

SHORT-TERM EXPOSURE LIMIT (STEL): The time-weighted average exposure limit for a particular compound which should not be exceeded at any time during a work day, even if the eight hour time-weighted average is within the threshold limit value (TLV). Exposures to this level of a compound should not be longer than 15 minutes and should not occur more than four times per day. There should be 60 minutes between exposures in this range.
SOLUBILITY: The capability of being dissolved in a solvent such as water.
SORPTION: The uptake of gaseous fumigant resulting from the attraction and retention by liquid and solid materials present. If great enough, there is a gradual reduction of fumigant available to kill the target pest. Sorption may also negatively affect the penetrability of the gas.
SPECIFIC GRAVITY: The ratio of the weight of a body to that of an equal volume of some standard substance — water in the case of solids and liquids, air in the case of gases. The ratio of the mass of a liquid to the mass of an equal volume of water at 4°C, water = 1.
SUBCHRONIC ORAL TOXICITY: The oral toxicity of a material determined for an exposure period between an acute (24 hours) and chronic (weeks to months) in length.
SULFURYL FLUORIDE: The active ingredient of this product, which is non-flammable, non-corrosive and does not cause undesirable odors, is a gas at temperatures above -55°C (-67°F).
TARPAULIN: Semi-permeable membranes used during fumigation to confine the fumigant in a specific area during the exposure period.
TEMPERATURE (°C OR °F): The pesticidal activity of a fumigant varies with temperature. The dosage requirements for this product are based on the mean temperature of the coldest potential pest infested site in the structure. This temperature is nearly always represented by that of the sub-area soil or slab. A probe or surface thermometer can be used to measure temperature. It is very important to accumulate the proper ounce-hours for the temperature that exists.
TERATOGENIC: The potential for an effect to cause congenital abnormality.
TERATOLOGY: The division of embryology and pathology that deals with abnormal development and congenital malformations.
THRESHOLD LIMIT VALUE (TLV): The time-weighted average concentration for a normal eight-hour day and 40-hour work week to which nearly all workers may be repeatedly exposed day-to-day without adverse effects.
VACUUM CHAMBER: Specially built steel chamber used for fumigation. After the material to be fumigated is placed in the chamber, air is evacuated by pumps. The fumigant is then admitted and rapidly fills all the air space previously occupied by air.
VALVE STEM: Opening at the top of the cylinder through which the fumigant is released.
VAPOR CORROSIVENESS: The tendency of the gas to corrode materials. When properly introduced, this product is not corrosive.
VAPOR DENSITY: The weight ratio of a gas to air.
VAPOR PRESSURE: The pressure exerted by a gas that is in equilibrium with its solid or liquid state. The higher the vapor pressure, the more easily and rapidly a fumigant will diffuse and penetrate to reach a gas-air equilibrium and the more rapidly it will aerate and desorb.
WATER SOLUBILITY: The ability of the fumigant to dissolve in water. The less soluble in water, the less that compound is attracted to and adsorbed on the surface of materials. It is also important when considering penetration of the fumigant into soil moisture.
WATER VAPOR: Water in the gaseous state.