5-16-94

MRID No. 429186-22

DATA EVALUATION RECORD

1. CHEMICAL: Fipronil and derivatives EUP (M&B 46030). Shaughnessey No. 129121.

- 2. TEST MATERIAL: M&B 46030 technical; Batch No. 78 GC 90; CAS No. 120068-37-3; 96.7% active ingredient; a white powder.
- 3. <u>STUDY TYPE</u>: 71-4. Avian Reproduction Study. Species Tested: Bobwhite quail (Colinus virginianus).
- 4. CITATION: Pedersen, C.A and D.R. DuCharme. 1993. M&B
 46030 Technical: Toxicity and Reproduction Study in Bobwhite
 Quail. Conducted by Bio-Life Associates, Ltd., Neillsville,
 WI. Laboratory Project ID No. BLAL No. 108-005-07.
 Submitted by Rhône-Poulenc Ag Company, Research Triangle
 Park, NC. EPA MRID No. 429186-22.

5. REVIEWED BY:

Andrew C. Bryceland, Fishery Biologist Signature: 12/10/19 Review Section 5
Ecological Effects Branch
Environmental Fate and Effects Division (7507C) Date:

6. APPROVED BY:

Ann Stavola, Supervisory Biologist

Review Section 5

Ecological Effects Branch

Environmental Fate and Effects Division (7507C)

Date:

- 7. CONCLUSIONS: This study is scientifically sound but does not fulfill the requirements for an avian reproduction study. There were no treatment-related effects observed in bobwhite quail that were fed M&B 46030 for 20 weeks and 2 days at 0.2, 2, and 10 ppm a.i. (nominal concentrations). The no-observed-effect concentration (NOEC) was 10 ppm a.i.
- 8. RECOMMENDATIONS: N/A.
- 9. BACKGROUND:
- 10. DISCUSSION OF INDIVIDUAL TESTS: N/A.

11. MATERIALS AND METHODS:

A. <u>Test Animals</u>: The birds used in this study were bobwhite quail (*Colinus virginianus*) purchased from a

DATA EVALUATION RECORD

- 1. <u>CHEMICAL</u>: Fipronil and derivatives EUP (M&B 46030). Shaughnessey No. 129121.
- 2. TEST MATERIAL: M&B 46030 technical; Batch No. 78 GC 90; CAS No. 120068-37-3; 96.7% active ingredient; a white powder.
- 3. <u>STUDY TYPE</u>: 71-4. Avian Reproduction Study. Species Tested: Bobwhite quail (*Colinus virginianus*).
- 4. CITATION: Pedersen, C.A and D.R. DuCharme. 1993. M&B
 46030 Technical: Toxicity and Reproduction Study in Bobwhite
 Quail. Conducted by Bio-Life Associates, Ltd., Neillsville,
 WI. Laboratory Project ID No. BLAL No. 108-005-07.
 Submitted by Rhône-Poulenc Ag Company, Research Triangle
 Park, NC. EPA MRID No. 429186-22.
- 5. REVIEWED BY:

Charles G. Nace Jr., M.S. Associate Scientist KBN Engineering and Applied Sciences Inc.

6. APPROVED BY:

Michael L. Whitten, M.S. Wildlife Toxicologist KBN Engineering and Applied Sciences, Inc.

James J. Goodyear, Ph.D. Project Officer, EEB/EFED USEPA

Signature: Muhan & white

Date: for C.G. Nace

41.5/54 11.5/54

Signature: //

Signature:

Date:

7. CONCLUSIONS: This study is scientifically sound and fulfills the requirements for an avian reproduction study. There were no treatment-related effects observed in bobwhite quail that were fed M&B 46030 for 20 weeks and 2 days at 0.2, 2, and 10 ppm a.i. (nominal concentrations). The no-observed-effect concentration (NOEC) was 10 ppm a.i.

- 8. RECOMMENDATIONS: N/A.
- 9. BACKGROUND:
- 10. DISCUSSION OF INDIVIDUAL TESTS: N/A.

commercial supplier in Gravette, AR. The birds were 26 weeks of age at study initiation and were acclimated to the laboratory environment for 29 days. All birds were phenotypically indistinguishable from wild birds. At test initiation, all birds were examined for physical injuries and general health.

B. Dose/Diet Preparation/Food Consumption: Diets were prepared by mixing a standard premix with stock diet. The standard premix was a mixture of the appropriate amount of test substance dissolved in acetone and added to stock diet. Diets were prepared fresh weekly, approximately 24 hours prior to administration. The control diet consisted of stock diet and acetone in the amount equivalent to the test diets. The diets were adjusted to 100 percent active ingredient and are reported as parts per million (ppm) of active ingredient (a.i.). Each of the three treatment groups and the control group were fed the appropriate diet for 20 weeks and 2 days.

Basal diet for adult birds during the first 4 weeks of the study was Purina® Duck Grower W/O®. The birds received Purina® Game Bird Breeder Layena® from week 5 until study termination. The compositions of these diets were presented in the report. The test substance was not mixed into the diet of the offspring. Food and water were supplied ad libitum during acclimation and during the test.

Samples of approximately 100 g were collected during test weeks 1, 2, 3, 4, 8, 12, 16, and 20. These samples were immediately frozen after collection and were shipped, under dry ice, to Hazleton, Wisconsin, for concentration verification using gas chromatography.

C. <u>Design</u>: The birds were randomly distributed into four groups as follows:

M&B 46030 Technical	Number	<u>Birds</u>	<u>Per Pen</u>
Nominal Concentration	of Pens	Males	Females
Control (0 ppm a.i.)	12	1	2
0.2 ppm a.i.	12	1	2
2 ppm a.i.	12	1	2
10 ppm a.i.	12	1	2

Treatment levels were based upon results of a 28-day dietary pilot study. Adult birds were identified by individual wing tags.

Pen Facilities: Adult birds were housed in steel wire pens which measured 53.3 x 61.0 x 38.1 cm. The average daily temperature in the adult study room was 25°C with an average relative humidity of 56%.

The photoperiod during the first 7 weeks of the study was 7 hours of light per day. At the start of week 8, the photoperiod was increased to 17 hours of light per day and maintained at that level for the duration of the study.

- Adult Observations/Gross Pathology: Adult birds were observed daily throughout the study for signs of toxicity. Mortalisies occurring prior to terminal adult sacrifice were recorded and necropsied. Necropsies were also conducted on half of all surviving adult birds from each concentration at study termination. Adult body weights were measured at study initiation, biweekly through week 8, and at study termination. Feed consumption was measured in each cage biweekly during the treatment period.
- F. Eggs/Eggshell Thickness: Eggs were collected daily during the production period and were labeled according to pen of origin. Normal eggs were stored at 16 and 19°C (average daily minimum and maximum temperature) with an average relative humidity of 76%. The eggs were turned once daily during each seven-day collection Eggs were removed from the egg cooler weekly and eggs not cracked or used for eggshell thickness measurements were placed in incubators maintained at 37.7°C with relative humidity ranging from 58-67%. eggs were turned automatically every four hours while in the incubator. Eggs were candled on day 11 of incubation to determine fertility and on day 18 to determine embryo survival. On incubation day 21, the eggs were placed in hatching trays.

Eggs were collected on the first day of six separate intervals of the test period for eggshell thickness measurements. Eggs were broken, the contents removed, thoroughly washed, air dried for at least 48 hours, and measured at three points around the equator of the egg. The egg shells and contents of the eggs were frozen for residue analysis, if requested by the Sponsor.

G. <u>Hatchlings</u>: Hatchlings were housed according to group and pen number. All hatchlings were observed daily and received untreated diet during the 14-day observation period. The hatchlings were maintained at average

minimum and maximum temperatures ranging from 35 to 47°C and average relative humidity ranging from 39 to 52%. Hatchling body weights were measured and recorded at hatch and on day 14.

Gross pathological examinations were conducted on birds found dead during the 14-day observation period and on selected hatchlings on day 14.

H. <u>Statistics</u>: Analysis of variance (ANOVA) was used to statistically analyze the following parameters:

Adult Body Weight
Adult Feed Consumption

Hatchling Body Weight Eggshell Thickness

Contingency Table Analysis was used to statistically analyze the following parameters:

Eggs Set of Eggs Laid
One Week Eggs of Fertile
Eggs Set
Full-Term Eggs of Fertile
Eggs Set
Infertile Eggs of Eggs
Set
Hatched Eggs of Fertile
Eggs Set
Fertile Eggs of Eggs Set
Defective Eggs of Eggs
Laid

Eggs Laid Per Hen
Midterm Eggs of Fertile
Eggs Set
Cracked Eggs of Eggs
Laid
Live 3-Week Embryos of
Fertile Eggs Set
14-Day Old Survivors of
Hatchlings
Normal Eggs of Eggs Laid

12. REPORTED RESULTS:

- A. <u>Diet Analysis</u>: The percent recoveries for the diets prepared during test weeks 1, 2, 3, 4, 8, 12, 16, and 20 averaged 88.1, 89.0, and 92.2% for the 0.2, 2, and 10 ppm a.i. test groups, respectively (Table 1, attached).
- B. Mortality and Behavioral Reactions: Mortality in the control and at 0.2, 2, and 10 ppm a.i. was 8.3, 5.6, 16.7, and 8.3%, respectively. The deaths were attributed to factors other than the test material and examinations of one-half of the surviving adult birds revealed no treatment-related effects.
- c. <u>Adult Body Weight and Food Consumption</u>: No significant differences in body weights were noted throughout the study. Small differences (increases or decreases) in mean body weights were considered to be random

2

occurrences which were unrelated to the test material. No significant differences in feed consumption were noted throughout the study. Occasional small differences were not statistically significant (Tables 2A and 2B, attached).

- P. Reproduction: When compared to controls, there was a significantly higher number of cracked eggs at 0.2 and 2 ppm a.i. These differences were not considered to be treatment-related because the 10 ppm a.i. test group was unaffected (Tables 4A and 4B, attached). The ingestion of the test material had no adverse affects on egg fertility, hatchability, or survival of newly hatched quail.
- E. <u>Eggshell Thickness</u>: There were no significant differences in eggshell thickness when compared to control eggs (Table 6A, attached).
- F. Offspring: Although some significant differences in body weights were noted for various groups within the hatches, these intergroup differences were not consistent or dose correlated. Hence, these differences were not considered to be treatment-related (Tables 8 and 9, attached).

Twelve hatchlings in various groups died after their pens became wet from leaky waterers, or after they had been playing in the waterers, or after their waterers leaked dry. There were no significant differences noted in hatchling survival.

There were no treatment-related abnormal behavioral reactions or clinical signs of toxicity noted in any hatch. Gross pathological examinations of hatchlings found dead or of selected hatchlings on day 14 revealed no treatment-related findings.

13. STUDY AUTHOR'S CONCLUSIONS/QUALITY ASSURANCE MEASURES: "The ingestion of M&B 46030 Technical by the parental generation did not adversely affect the reproductive success of the F_0 generation or the viability of the offspring in the F_1 generation. The no-observed-effect level was determined to be 10 ppm a.i."

The report stated that the study was conducted in conformance with Good Laboratory Practice (GLP) regulations (40 CFR Part 160). Quality assurance audits were conducted during the study and the final report was signed by a

Quality Assurance Officer for Bio-Life Associates, Ltd. An additional statement of conformance with GLP (40 CFR part 160) guidelines was included in the analytical report.

14. REVIEWER'S DISCUSSION AND INTERPRETATION OF STUDY RESULTS:

A. <u>Test Procedure</u>: The test procedures were in accordance with Subdivision E, ASTM, and SEP guidelines except for the following deviations:

The homogeneity and stability of the test material in the diets were not confirmed by chemical analysis.

The average daily temperature in the adult study room was 25°C; 21°C is recommended.

The SEP recommends that eggs be stored at a temperature of 16°C and a relative humidity of 65%; eggs were stored with average daily minimum and maximum temperatures of 16 to 19°C with a relative humidity of 76%.

The SEP recommends that eggs be hatched at a temperature of 39°C and a relative humidity of 70%; eggs were hatched at 37.7°C and relative humidity ranging from 58-67%.

Test treatments were not of a high enough concentration to generate an effect level.

Test treatments were not separated by a factor of five.

Test treatments did not overlap the expected environmental concentration.

B. <u>Statistical Analysis</u>: Statistical analyses of reproductive parameters were performed by the reviewer using analysis of variance (ANOVA) following arcsine square-root transformation of the ratio data. The comparisons between control data and data from each treatment level were made using Dunnett's procedure and Bonferroni's procedure. The computer program is based on the EEB Birdall program. The significance level was p ≤0.05.

The results of the statistical analyses were similar to those reported by the author with the following exception (see attached printouts): male body weight at 0.2 and 2 ppm a.i. was significantly lower when compared with the control using Dunnett's test. This

3

effect was not observed at 10 ppm a.i. and therefore is not considered to be treatment-related.

C. **<u>Discussion/Results</u>**: Excoriation developed in a total of 58 birds. The author stated that the affected birds "...did not exhibit any abnormal behavioral reactions other than slightly restricted mobility of the affected region, lethargy, and weight loss." However, weight loss in breeding birds (especially females) can have major effects on reproduction. It is unclear whether excoriation affected reproduction or contributed to the observed mortality. The authors attributed the excoriation to increased activity and additional stress during the 17-hour photoperiod. However, the reviewer notes that this testing laboratory routinely reports this condition in bobwhite quail studies, while other testing laboratories do not seem to have this problem. Husbandry techniques may be responsible for the frequency of excoriation observed in studies conducted by this laboratory. While excoriation does not appear to have affected the outcome of this study, the results may not be directly comparable with results of other studies that did not have a high rate of excoriation.

The maximum application rate of Fipronil 1.5G is 0.13 lbs. a.i./A. The maximum expected residues, based on Hoerger and Kenega, with 1 lb a.i./A is 240ppm (based on short grasses). Multiplying the maximum application rate of Fipronil 1.5G (0.13 lbs a.i./A) by the Kenega value (240ppm) would indicate an estimated environmental concentration (EEC) of 31 ppm a.i./A. Test concentrations should include an actual or expected field residue exposure level and a multiple level such as five. The range selected must generate an LOEC as well as NOEC without causing any mortalities in the parent generation. The highest concentration that was tested was 10ppm (nominal) which is lower than the estimated environmental concentration of 31 ppm ai/A.

This study is scientifically sound but does not fulfill the requirements for an avian reproduction study. There were no treatment-related effects observed in bobwhite quail that were fed M&B 46030 for 20 weeks and 2 days at 0.2, 2, and 10 ppm a.i. The NOEC was 10 ppm a.i.

D. Adequacy of the Study:

(1) Classification: Supplemental.

- (2) Rationale: This study must be repeated so that the test concentrations include the estimated environmental concentration (EEC = 31ppm) for Fipronil 1.5G. The range selected must generate an LOEC as well as NOEC without causing any mortalities in the parent generation.
- (3) Repairability: Irreparable.
- 15. COMPLETION OF ONE-LINER: Yes; 01/28/94.

Cupial lingery

Page is not included in this copy. Pages through are not included in this copy.
The material not included contains the following type of information:
Identity of product inert ingredients.
Identity of product impurities.
Description of the product manufacturing process.
Description of quality control procedures.
Identity of the source of product ingredients.
Sales or other commercial/financial information.
A draft product label.
The product confidential statement of formula.
Information about a pending registration action.
FIFRA registration data.
The document is a duplicate of page(s)
The document is not responsive to the request.
The information not included is generally considered confidention by product registrants. If you have any questions, please contact the individual who prepared the response to your request.

•							
		0.000000	125252888555555555555555555555555555555		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7 . ce: . ce: . ce: . ce:
	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	245455 245455	282624. 7.2728244 282624. 7.2728244 192624. 7. 162454	EC ES	nay\Tiproni(
	55 55 55 55 55 55 55 55 55 55 55 55 55	\$25555 \$25555 \$25555 \$25555	25255555555555555555555555555555555555	55555555555555555555555555555555555555	23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	LE NH HS	\42918622.
SAS	2758 30 3 3 3325883	330 401 34.2 323 35.3 35.3 37.1 38.2 38.2	1888888484 PR464	**************************************	88888888888888888888888888888888888888		out Page
10:25	253.2 253.2 332.2		313 313 313 313 313 313 313 313 313 313	2882888	284 4 285 285 284 4 282 285 285 285 285 285 285 285 285 285	SURV	10:
Tuesday,	36908 1195 34138 1080 30197 1095 40429 1182 43608 1149 33770 1285 32103 1212 30231 1011 27809 1294 30607 1202 39363 1091 43684 1210 38612 1071 38612 1070	4642 1015 4345 1148 1127 1146 1127 1207 7848 1207 7487 1090 9967 1372	103 103 103 103 103 103 103 103	34166 106 34166 106 34749 113 37698 118 37698 134	357.65 1243 357.65 1243 46000 1245 41394 1124 41394 1124 41398 1108 35999 1108 35999 1108 35999 1109 36439 1109 36439 1109 36439 1109 36439 1109 36439 1109 36439 1109 36439 1109		‡ 25 ≬uesday
March 29,	955 1263 1134 1395 1137 11395 11395 11397 11294 11294 11294 11294 11294 11294 11294	1030 1151 1403	115 115 115 115 115 115 115 115 115 115	14 14 14 14 14 14 14 14 14 14 14 14 14 1	17.00 17.00	M POS	, March
1994 2	945 1044 950 1180 1074 1307 1128 1165 1086 949 848 1035 847 913 836 1051 838 1061 978 1100 978 1100 978 1152 1152 1152 1152 1152 1152 1152	05 1075 05 1075 05 1075 05 1250 05 1250 05 1075 05 107		1285 1080 1285 1153		9	29, 1994 1
		; = :	· · · · · · · · · · · · · · · · · · ·	, z			
	5	S	5	မ္တ	15	N Obs	File:e
2 2 1 1 2 2 2 3 4 4 5 5 6 6 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	16 EE EES VEES HATHI HATHI HATHI HATHI FOOD PREM POSTH POSTH POSTH	Obs Variable	15 EC VES VES VES VES VES VES VES VES VES VES		15 EL EES VES VES VES VES VES VES VES VES VES	Obs Variabl	ile:e
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ES 16 ES 16 ES 16 ES 16 HS 16 HS 16 HS 16 HS 17	Variabl	PORTH TO THE PROPERTY TO THE P	Variable		Obs Varia	ile:e:\andy\fipron
	EL 16 1.000000 0 C S S 16 5.000000 0 C S 17 C S 16 5.0000000 0 C S 17 C S 16 5.00000000 0 C S 17 C S 16 5.0000000000 0 C S 17 C S 16 5.00000000 0 C S 17 C S 16 5.000000000 0 C S 17 C S 16 5.000000000 0 C S 17 C S 16 5.000000000 0 C S 17 C S 16 5.000000000000000000000000000000000000	Variable	EL 15 29.000000 0 CC 15 15 26.000000 0 CC 15 1.0000000 0 CC 15 15 1.0000000 0 CC 15 15 1.0000000 0 CC 15 15 15 15 15 15 15 15 15 15 15 15 15	Variable N Minimum	EL 14 4 EC 14 3 VE 14 3. VE 14 1. HS 14 1. HS 14 1. HS 14 1. HS 14 1. HS 13 30. SURVAT 13 30. SURVAT 13 185. FOOD 15 PREM 15 PREM 15 PREF 15 941.	Obs Variabl	ile:e:\andy\fipronil\42918622.out
TRT=D	EL 16 1.000000 85.0 EC 16 5.000000 79.0 VE 16 5.000000 65.0 VE 16 3.000000 65.0 VE 16 6 3.000000 65.0 VE 16 6 3.000000 65.0 VE 16 6 0.323000 0.41.64 SIRWHT 15 252.2000000 342.22 FOOD 16 1099.00 11 PREM 16 951.0000000 11 PREM 16 951.0000000 11 PREM 16 951.0000000 11 PREM 16 951.0000000 11	Variable N Minimum Maximum	EL 15 29.000000 89.00 EC 15 15 26.000000 83.00 ES 15 26.000000 83.00 VE 15 1.000000 69.00 NH 15 1.000000 65.00 HS 15 1.000000 65.00 HS 15 1.000000 43.50 SURVAIT 15 241.400000 362.40 FOOD 15 247.400000 13.000000 13.000000 13.000000 13.000000 13.000000 13.0000000 13.0000000 13.0000000 13.0000000 13.0000000 13.0000000 13.0000000 13.0000000 13.0000000 13.0000000 13.0000000 13.0000000 13.00000000 13.00000000 13.00000000 13.00000000 13.00000000 13.00000000 13.00000000 13.00000000 13.00000000 13.00000000 13.000000000 13.00000000 13.0000000000	Variable N Minimum Maximum	EE 14 EE 14 EE 14 VE 14 HS 14 HS 14 HS 14 HS 14 HS 14 HS 15 FOOD 15 PREM 15 PR	Obs Variable N Minimum	ile:e:\andy\fipron

Std Dev
16.8415586
1.0327956
15.8945933
19.0707954
20.0064277
19.5009157
19.5009187
19.5477437
0.0148314
3.100276
29.8879447
3509.76
103.6256082
137.5744933
69.5453261

Std Dev 23.0859806 2.7072434 19.9632997 21.277433 20.1196421 20.5097538 20.4939015 0.024719 2.6122422 26.4392691 3.7392691 3.7392691 3.7392691 3.7392691 3.7392691 3.7392691 3.7392691 3.7392691 3.7392691 3.7392691 3.7392691

Std Dev

23.5166530 1.4917355 21.2977875 19.8755745 18.4384929 15.8938788 15.6410632 0.0264306 3.42584456 3.42584456 3.4258416 36.5091453 107.2157149 106.4121161 56.4515806 85.2008616

	P 7 5 6	PR FOUNT	<u>PR</u> SENTENT	<u>PRRESTAN</u>	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
POSTM 14	F000 15	THICK 12 HATWT 11 SURVWT 15 FOOD 15	PORTE THE REPORT OF THE REPORT	200 XX X	2002 THE SECTION OF T
15 14 952.0	5-	5330 25330	ಸವವನದದದ ಜ್ಞಾನ	7340 1.1	71173333333 711733333333333
7099.00 1011.00 952.0000000	100000	320000 9000000 1000000	3200000 9000000	1.000000 1.000000 0 0.320000 3.900000	000000 000000 000000 000000 000000 00000
43684.0 1310.0 1395.0	UP7. 00000	0.403000 42.600000 329.200000	69.00000 65.00000 65.00000 67.00000 67.00000	73.00000 69.00000 65.000000 65.000000 72.600000 329.200000	83.000000 3.0000000 76.0000000 69.0000000 65.0000000 65.0000000 42.6000000 329.2000000
_		_			0 44, 2142857 0 0.8461538 0 43, 1538462 0 35, 33846154 0 28, 9230769 0 28, 7692308 0 28, 7692308 0 38, 3841667 0 38, 189180
					30.1921502 38 0.9870962 62 26.7873769 92 27.8692000 54 27.4455171 54 27.4455171 69 25.89129156 67 0.0265050 82 2.7334294
107 1000		WIV.	38225	3222566	763 763 763 763 763 763 763 763 763 763

ANALYSIS OF EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure Class Level Information

Class Levels Values
TRT 4 A B C D

Number of observations in data set = 61

NOTE: Due to missing values, only 59 observations can be used in this analysis.

1. ANALYSIS OF EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dependent Variable: RESP		2				
Source	무	Squares	Square	F Value	Pr > F	
Mode!	u	3213.826503	1071.275501	1.90	0.1403	
Error	55	31005.156548	563.730119			
Corrected Total	58	34218,983051	. 18			
R-Square	9	C.V.	Root MSE		RESP Mean	
0.093919	19	46.53944	23.74300	٧Ţ	51.0169492	
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
IRT	ы	3213.826503	1071.275501	1.90	0.1403	
Source	무	Type III SS	Mean Square	F Value	Pr > F	
TRT	W	3213.826503	1071.275501	1.90	0.1403	

|File:e:\andy\fipronil\42918622.out Page 4

1. ANALYSIS OF EL DATA

General Linear Models Procedure

Duncan's Multiple Range Test for variable: RESP

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 55 MSE= 563.7301 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.7046

Number of Means 2 3 4 Critical Range 17.56 18.46 19.06

Means with the same letter are not significantly different.

>>	>.>>	>>>)	, >>	Duncan Grouping	
42.571	44.214	56.188	59.733	Mean	i
7.	7	6	15	-=	
>	0	CO	œ	TR.	

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's T tests for variable: RESP

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 55 MSE= 563.7301 Critical Value of Dunnett's T= 2.412

Comparisons significant at the 0.05 level are indicated by '***'.

D ∩ Ø	TRT Comparison
-4.121 -7.343 -20.004	Simultaneous Lower Confidence Limit
17.162 13.616 1.643	Difference Between Means
38.445 34.575 23.289	Simultaneous Upper Confidence Limit

1. ANALYSIS OF EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure
Bonferroni (Dunn) T tests for variable: RESP

:

IT

K-Square C.V. NOOC Mac NEAR MEAN MEAN		Corrected Total 57 168.56896552	Error 54 165.49171245 3.06466134	Model 3 3.07725306 1.02575102 0.33 0.8003	Source DF Squares Square F Value Pr > F		General Linear Models Procedure	10:25 Tuesday, March 29, 1994	2. ANALYSIS OF EC DATA * 9	analysis.	NOTE: Due to missing values, only 58 observations can be used in this	Number of observations in data set = 61	TRT 4 A B C D	Class Levels Values	Class Level Information		**************************************			- B -41.311 -17.162 - C -37.398 -13.616 - D -26.205 -1.643	D - B -39.668 -15.519 8.630 D - C -35.756 -11.973 11.809 D - A -22.919 1.643 26.205	C - A -10.166 13.616 37.398	- B -26.902 -3.546	17.162		Simultaneous Simultaneous Lower Difference Upper TRT Confidence Between Confidence Comparison Limit Means Limit	Comparisons significant at the 0.05 level are indicated by '***'.	Critical Value of T= 2.73704	2011 2104 CONFECT COTES	File:e:\andy\fipronil\42918622.out Page 5 NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.
C - A -1.181	Comparison Limit	TRT Confidence	Simul taneous	Comparisons significant at the	Critical Value	Alabam D. Da. Confidence	NOTE: This tests controls t comparisons of all tr	Dunnett's T tes	General Lines		2. ANALY		>>	>>	>>.	>	Duncan 6	Means with the same letter	Number of Means Critical Range	Alpha= U.US WARNING: Cell Harmonic Mean o	NOTE: This test controls the experimentwise en	Duncan's Multiple Rai	General Line		2. ANAL	TRT 3 3.0	Source DF Type	TRT 3 3.0	Source DF Ty	File:e:\andy\fipronil\42918622.out Page 6 0.018255 161.1680
0.366 1.913	Means		Difference.	ficant at the 0.05 level are indicated by "***".	itical Value of Dunntt's T= 2.415	N	This tests controls the type I experimentwise error for comparisons of all treatments against a control.	Dunnett's T tests for variable: RESP	General Linear Models Procedure	10:25 Tuesday,	ANALYSIS OF EC DATA		0.846 13 D	5	7	1.437 16 C	Mean N TRT	same letter are not significantly different.	ns 2 3 4 e 1.308 1.375 1.420	MARNING: Cell sizes are not equal. marning Mean of cell sizes= 14.41346	This test controls the type I comparisonwise error rate, not the experimentwise error rate	Duncan's Multiple Range Test for variable: RESP	General Linear Models Procedure	10:25 Tuesday, March 29,	ANALYSIS OF EC DATA	3.07725306 1.02575102	Type III SS Mean Square F V	3.07725306 1.02575102	Type I SS Mean Square F V	Page 6 61.1680 1.750617
				y 1***1.	9	2	ror for			10:25 Tuesday, March 29, 1994	=							rent.			or rate, not			March 29, 1994	10	0.33 0.8003	Value Pr > F	0.33 0.8003	Value Pr > F	1.08620690

		3. ANALYSIS OF ES DATA 14	NOTE: Due to missing values, only 58 observations can be used in this analysis.	Number of observations in data set = 61	TRT 4 A B C D	Class Levels Values	General Linear Models Procedure Class Level Information	10:22 (desugy, maj cii cz, 1777			- C 2.382 -0.591 1-	B - C -2.227 -0.504 1.219 B - A -1.920 -0.138 1.644 B - D -1.730 0.087 1.904	A - C -2.121 -0.366 1.389 A - B -1.644 0.138 1.920 A - D -1.622 0.225 2.072	0.366 0.504 0.591	Simultaneous Simultaneous LOMER Difference Upper TRT Confidence Between Confidence Comparison Limit Means Limit	Comparisons significant at the 0.05 level are indicated by '***'.	Alpha= 0.05	at discontinuity of the	NOTE: This test controls the type I experimentwise error rate but	Bonferroni (Dunn) I tests for variable: RESP	General Linear Models Procedure	10:25 Tuesday, March 29, 1994	2. ANALYSIS OF EC DATA 12	.022.0	File: e: \andy\ripiorii \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		-							Means b	÷		NOTE: 1			TRT	Source	TRT	Source			Corrected Total	Error	Model	Source (Donostos Variables BESD
NOTE: This tasts so	Dunnett	Gener			٠			ou call at our	~ ·	Number	Alpha= WARNIN Harmonic	his test con he experimen	Gener Duncan's Mult		W	무	ы	막	0.084478	R-Square	57	54	Ç.	DF	of on DECD
to controls the type I experimentuise error for	Dunnett's T tests for variable: RESP	General Linear Models Procedure	3. ANALYSIS OF ES DATA			>>			same letter are not significantly different.	Number of Means 2 Critical Range 15.76	Alpha= 0.05 df= 54 MSE= 444./219 Alpha= 10.05 df= 54 MSE= 444./219 WakNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.41346	This test controls the type I comparisonwise error rate, not the experimentwise error rate	General Linear Models Procedure Multiple Range Test for variable: RESP	3. ANALYSIS OF ES DATA	2215,931009	Type III SS	2215.931009	Type I SS	45.05079	c.v.	26230.913793	24014.982784	2215.931009	Sum of Squares	
l avnerimentuio	ariable: RESP	Procedure	S DATA ******* 10:25 Tues	,	(T)	13	50.500 / 16 C	<i>i)</i> :	significantly o	15.76 16.57 17.10	Tes= 14.41346	comparisonwise	for variable: K	S DATA 10:25 Tues	738.643670	Mean Square	738.643670	Mean Square	21.08843	Root MSE		444.721903	738.643670	Mean Square	
			16 * 10:25 Tuesday, March 29, 1994			_	., 0		different.			e error rat	€SP	15 A 10:25 Tuesday, March 29, 1994	1.66	F Value	1.66	F Value	4				1.66	F Value	
7			Ŋ									, o		29	0.1863	₽r > F	0.1863	Pr > F	46.8103448	RESP Mean			0.1863	Pr > F	

|file:e:\andy\fipronil\&2918622.out Page 9 | comparisons of all treatments against a control. Comparisons significant at the 0.05 level are indicated by '***'. Comparisons significant at the 0.05 level are indicated by '***'. NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons. 000 Comparison Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 444.7219 Critical Value of T= 2.73894 Comparison Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 444.7219 Critical Value of Dunnett's T= 2.415 , , >> Bonferroni (Dunn) T tests for variable: RESP General Linear Models Procedure Class Level Information General Linear Models Procedure Class Simultaneous Lower Confidence Limit Simultaneous Lower Confidence Limit 3. ANALYSIS OF ES DATA -32.800 -28.913 -17.308 -24.325 -14.221 -8.852 -17.192 -10.974 -5.612 -3.072 -6.351 -14.675 ANALYSIS OF VE DATA Levels Difference Between Means Difference -15.852 -12.286 -4.940 -10.913 -7.346 4.940 Between Means -3.567 7.346 12.286 3.567 10.913 15.852 15.852 12.286 4.940 ABCD Values 10:25 Tuesday, March 29, 1994 10:25 Tuesday, March 29, 1994 Confidence Limit Signul taneous Confidence Limit Simul taneous 10.974 14.221 27.187 17.192 28.913 33.424 24.325 32.800 37.317 Error Model 풀 Source R Source Corrected Total Source Dependent Variable: RESP NOTE: Due to missing values, only 58 observations can be used in this analysis. |File:e:\andy\fipronil\42918622.out Page 10 Means with the same letter are not significantly different. NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate Duncan's Multiple Range Test for variable: RESP Duncan Grouping 0.030644 R-Square Alpha= 0.05 df= 54 MSE= 487.7496 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.41346 Number of observations in data set = 61 Number of Means 2 3 4 Critical Range 16.50 17.35 17.91 General Linear Models Procedure 9 General Linear Models Procedure 4. ANALYSIS OF VE DATA 4. ANALYSIS OF VE DATA 27171.1034483 26338.4785256 832.6249226 Type III SS 832.6249226 832.6249226 Type I SS 55.69274 Sum of Squares C.V. 37.231 41.938 34.500 44.133 Mean 277.5416409 Mean Square 277.5416409 Mean Square 487.7496023 277.5416409 22.08505 10:25 Tuesday, March 29, 1994 Root MSE 10:25 Tuesday, March 29, 1994 Mean Square 13 D 16 C F Value F Value F Value 0.57 0.57 39.6551724 RESP Mean

0.6378 Pr > F 0.6378 Pr > F

3

0.6378 Pr > F

2

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's T tests for variable: RESP

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 487.7496 Critical Value of Dunnett's T= 2.415

Comparisons significant at the 0.05 level are indicated by "***".

000 TRT Comparison , , , >>> Confidence Limit Simul taneous -10.186 -12.080 -17.811 Difference Between Means 9.633 7.437 2.731 Confidence Limit Simul taneous 29.453 26.955 23.273

4. ANALYSIS OF VE DATA

10:25 Tuesday, March 29, 1994

22

General Linear Models Procedure

Bonferroni (Dunn) I tests for variable: RESP

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 487.7496 Critical Value of T= 2.73894

Comparisons significant at the 0.05 level are indicated by '***'

>>> 008	>0@	>>> 0 1	> C C	TRT Comparison
-32.112 -29.574 -26.029	-29.824 -27.293 -20.568	-23.936 -17.880 -14.699	-19.544 -16.019 -12.845	Simultaneous Lower Confidence Limit
-9.633	-6.903	-2.196	2.196	Difference
-7.437	-4.707	4.707	6.903	Between
-2.731	2.731	7.437	9.633	Means
12.845	16.019	19.544	23.936	Simultaneous Upper Confidence Limit
14.699	17.880	27.293	29.824	
20.568	26.029	29.574	32.112	

5. ANALYSIS OF LE DATA

10:25 Tuesday, March 29, 1994

23

General Linear Models Procedure Class Level Information

Class Levels Values

A B C D

Number of observations in data set = 61

NOTE: Due to missing values, only 58 observations can be used in this analysis.

ANALYSIS OF LE DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dependent Variable: RESP	le: RESP	?			
Source	무	Squares	Square	f Value	Pr > F
Model	u	609.5398257	203.1799419	0.44	0.7278
Error	54	25134.3912088	465.4516891		
Corrected Total	57	25743.9310345			
	R-Square	C.V.	Root MSE		RESP Mean
	0.023677	61.70173	21.57433		34.9655172
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRT	W	609.5398257	203.1799419	0.44	0.7278
Source	Đ	Type III SS	Mean Square	F Value	Pr > F
TRT	3	609.5398257	203.1799419	0.44	0.7278

5. ANALYSIS OF LE DATA

10:25 Tuesday, March 29, 1994

Duncan's Multiple Range Test for variable: RESP General Linear Models Procedure

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $% \left(1\right) =\left\{ 1\right\} =\left$

Alpha= 0.05 df= 54 MSE= 465.4517 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.41346

Number of Means

N

1

Tro

	C - B -20.837 0.400 21.637 C - D -17.449 4.615 26.680 C - A -13.768 7.857 29.482	Simultaneous Simultaneous TRT Lower Difference Upper TRT Confidence Between Confidence Comparison Limit Means Limit	Comparisons significant at the 0.05 level are indicated by '***'.	Critical Value of T= 2.73894	Confidences 0.05	NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.	Bonferroni (Dunn) T tests for variable: RESP	General Linear Models Procedure Corr	10:25 Tuesday, March 29, 1994 Error	5. ANALYSIS OF LE DATA	Source		Simultaneous Simultaneous Lower Difference Upper TRT Confidence Between Confidence Comparison Limit Means Limit	Critical Value of Dunnett's T= ignificant at the 0.05 level are	ons of all treatments against a control. O.05 Confidence= 0.95 df= 54 MSE= 465.4517	ols the type I experie	Dimpettic I tests for variable: RESD	10:25 Tuesday, March 29, 1994	5. ANALYSIS OF LE DATA		A 33.385 (13 D A 30.143 (14 A	38.000 16	File:e:\andy\fipronil\42918622.out Page 13 Critical Range 16.12 16.95 17530 Means with the same letter are not significatively different. Duncan Grouping Mean N TRT
			are iudicat	73894	SA MSEH A	rimentwise ror rate th	/ariable: RI	cedure):25	13	r '				54 MSE= 4	(perimentwi	ble BESP	10:25 Tue	NA.		# # # # # # # # # # # # # # # # # # #	5):	95 1750 nificantly
	85 86 87	neous er ence it			65-4517	o E	ESP			27		دد		ated by '***'.				esday, March 29, 1994	26		> 0 0		different.
•	 	TRT	Sourc	TRT	Sour			Corr	Erro	Mode	Sour	Depe		NO.				· · · · · · · · · · · · · · · · · · ·			, mat, i e ga d	·	<u> </u>
			æ		će			Corrected Total	7	-	Ĉe .	ndent Variable		E: Due to missi analysis.							(>>>	000	e:e:\andy\fipr 8 8 8 8
		u	e DF	W	rce DF	0.028186	R-Square	ected Total 57	F 54	3	Ce DF	Gene Dependent Variable: RESP		Due to missing analysis.	Number o	1		Gene			AAA DBC	 >BC	e:e:\andy\fipronil\42918
	6. ANALYSIS OF	3 668.4303714		3 668.4303714		3186	R-Square C.V.				DF	w	6. ANALYSIS OF	Due to missing analysis.	Number of observations	TRT 4	Class Levels	General Linear Mode Class Level Inf		6. ANALYSIS OF	- C -29.482 - B -29.416 - D -26.001	- C -26.680 - B -26.607 - A -19.518	fipronil\42918622.out Page 1 - C -21.637 - D -18.176 - A -14.502
	6. ANALYSIS OF NH DATA 10:25 Tuk		DF		DF	3186 72.09485	are	57	54	ш	DF Squares	General Linear Models Proces SP	ANALYSIS OF NH DAT	Due to missing analysis.	Number of observations in data set = 6			General Linear Models Procedure Class Level Information		6. ANALYSIS OF NH DATA	- C -29.482 -7.857 - B -29.416 -7.457 - D -26.001 -3.242	- C -26.680 -4.615 - B -26.607 -4.215 - A -19.518 3.242	Page 14 7 -0.400 6 4.215 2 7.457
	6. ANALYSIS OF NH DATA 30 ***********************************	668.4303714	DF Type III SS	668.4303714	DF Type I SS	3186 72.09485	are C.V.	57	54 23046.6730769	3 668.4303714	DF	General Linear Models Proces SP		E: Due to missing values, only 58 observations can be used in this analysis.	Number of observations in data set = 61	*	Levels	General Linear Models Procedure Class Level Information			- C -29.482 - B -29.416 - D -26.001	- C -26.680 - B -26.607 - A -19.518	Page 1

General Linear Models Procedure

<u>Duncan's Multiple Range Test for variable: RESP</u>

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $^{\nu \nu}$

Alpha= 0.05 df= 54 MSE= 426.7502 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.48346

Number of Means 2 3 6 Critical Range 15.44 16.23 16.76

Means with the same letter are not significantly different. Duncan Grouping

23.000 28.923 30.000 32.125 Mean 15 B 76 TRT C

ANALYSIS OF NH DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's I tests for variable: RESP

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 426.7902 Critical Value of Dunnett's T= 2.415

Comparisons significant at the 0.05 level are indicated by '***'.

Comparison . , Lower Confidence Limit Simul taneous -9.133 11.539 13.292 Difference Between Means 9.125 7.000 5.923 Confidence Limit Simul taneous 27.383 25.539 25.139

ANALYSIS OF NH DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure.

Bonferroni (Dunn) I tests for variable: RESP

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Comparisons significant at the 0.05 level are indicated by '***'.

>>>	000	\$ \$\pi\$ \$\pi\$	ဂဂဂ	0
è				Comp
	> 00 C	> 7 C	1 1 1 ≫ 17 00	PATE
	- 40,	2017	~ 0w	TRT parison
				2
22.2	152-24	-122	111	_8_ <u>\$</u>
	o in w	4110	8.21 7.92 1.58	Lower fiden
717 717	718	246	211 926 582	taneous ower fidence imit
1-1-1				. B
20-	3.202 5.923	7.077	121	fferenc Between Means
ଅଞ୍ଚିଷ	222	873	KKK	fference Between Means
	NO-	202	พพพ	S _ ≦
807	707	07N	2.46 833 83	fide than
778	73%	2781	882	taneous loper idence imit
				& E
~				

7. ANALYSIS OF HS DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure Class Level Information

Class Values

Levels ABCD

Number of observations in data set =

NOTE: Due to missing values, only 58 observations can be used in this analysis.

ANALYSIS OF HS DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

	Dependent Variable: RESP	e: RESP	2	E P P P		
	Source	DF	Squares	Square	F Value	Pr > F
Ň	Model	3	617.7524062	205.9174687	0.49	0.6933
4	Error	24	22874.2648352	423.5974969		
	Corrected Total	57	23492.0172414			
	·····	R-Square	c.v.	Root MSE	-	RESP Mean
		0.026296	72.74382	20.58148	22	28.2931034
	Source	DF	Type I SS	Mean Square F Value	F Value	Pr > F

Source TRI File:e:\andy\fipronil\42918622.out Page 17 콗 Comparisons significant at the 0.05 level are indicated by "***". NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control. Means with the same letter are not significantly different. NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate TRT Comparison Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 423.5975 Critical Value of Dunnett's T= 24415 Duncan's Multiple Range Test for variable: RESF Duncan Grouping Alpha= 0.05 df= 54 MSE= 423.5975 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.4346 Dunnett's T tests for variable: RESP Number of Means Critical Range General Linear Models Procedure General Linear Models Procedure 9 3 617.7524062 Confidence Limit Simul taneous -9.475 -11.656 -13.160 ANALYSIS OF HS DATA ANALYSIS OF HS DATA Type III SS 617.7524062 15.38 16.17 16.69 Difference Between Means 8.714 6.814 5.984 28.769 31.500 29.600 22.786 Mean 205.9174687 Mean Square 205.9174687 10:25 Tuesday, March 29, 1994 Confidence Limit 10:25 Tuesday, March 29, 1994 Simul taneous 26.903 25.284 25.127 13 D 16 C 8 RT F Value 0.49 0.49 0.6933 0.6933 Pr > F 35 Dependent Variable: RESP File:e:\andy\fipronil\42918622.out Page 18 Bonferroni (Dunn) I tests for variable: RESP ANALYSIS OF EGGSHELL THICKNESS DATA General Linear Models Procedure ANALYSIS OF EGGSHELL THICKNESS DATA General Linear Models Procedure Class Level Information General Linear Models Procedure Class 7. ANALYSIS OF HS DATA -27.696 Sum of Squares Levels -6.814 -5.984 Values A B C D

10:25 Tuesday, March 29, 1994

37

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 423.5975 Critical Value of T= 2.73894

Comparisons significant at the 0.05 level are indicated by ****.

>>>	000	0000	ဂဂဂ	Com
080	Jai P⊠C	>00	, , , > ⊖ æ	TRT mparison
-29.344 -27.763 -27.696	-23.780 -22.192 -15.729	-22.160 -20.530 -14.134	-18.360 -18.318 -11.916	Simultaneous Lower Confidence Limit
-8.714 -6.814 -5.984	-2.731 -0.831 5.984	-1.900 0.831 6.814	1.900 2.731 8.714	Difference Between Means
11.916 14.134 15.729	18.318 20.530 27.696	18.360 22.192 27.763	22.160 23.780 29.344	Simultaneous Upper Confidence Limit
Ĭ.,				

10:25 Tuesday, March 29, 1994

Number of observations in data set = 61

NOTE: Due to missing values, only 56 observations can be used in this analysis.

39

10:25 Tuesday, March 29, 1994

Mean Square F Value Pr > F

Source

P

20

.,	0.5916	0.64	0.00035001	0.00105004	ы	TRT	
	Pr > F	F Value	Mean Square	Type III SS	DF.	Source	
*****	0.5916	0.64	0.00035001	0.00105004	ш	TRT	
	Pr > F	F Value	Mean Square	Type I SS	DF	Source	
· , · , · , · , ·	0.36948214	0	0.023352	6.320143	0.035708		
	RESP Mean		Root MSE	C.V.	R-Square	 !-	
·········				0.02940598	55	Corrected Total	
			0.00054531	0.02835594	52	Error	
-	0.5916	0.64	0.00035001	0.00105004	U	Model	
File			₹ #	2.out Page 19	onil\4291862	File:e:\andy\fipronil\42918622.out Page 19	

ANALYSIS OF EGGSHELL THICKNESS DATA

10:25 Tuesday, March 29, 1994

6

General Linear Models Procedure

Duncan's Multiple Range Test for variable: RESF

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 52 MSE= 0.000545 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 13*8206 Number of Means 2 3 4 Critical Range .0178 .0188 .0194

Means with the same letter are not significantly different.

>>	>>>>	-> >	>>	Duncan Grouping
0.36417	0.36613	0.37260	0.37492	Mean
(12/ D	16 C	15 8	13 ^	N TRT
			.¥	·

8. ANALYSIS OF EGGSHELL THICKNESS DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's T tests for variable: RESP

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 52 MSE= 0.000545 Critical Value of Dunnett's T= 2.415

|File:e:\andy\fipronil\42918622.out Page 20

Comparisons significant at the 0.05 level are indicated by '***'.

2:100000

8. ANALYSIS OF EGGSHELL THICKNESS DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Bonferroni (Dunn) T tests for variable: RESP

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 52 MSE= 0.000545 Critical Value of T= 2.74295

Comparisons significat at the 0.05 level are indicated by /***/.

000	000	ထတ္ထ	>>>	· C
Um>	08>	00≯	008	TRT mparison
-0.03640 -0.03324 -0.02642	-0.03272 -0.02950 -0.02250	-0.02659 -0.01655 -0.01637	-0.02195 -0.01512 -0.01489	Simultaneous Lower Confidence Limit
-0.01076 -0.00843 -0.00196	-0.00880 -0.00647 0.00196	-0.00232 0.00647 0.00843	0.00232 0.00880 0.01076	Difference Between Means
0.01489 0.01637 0.02250	0.01512 0.01655 0.02642	0.02195 0.02950 0.03324	0.02659 0.03272 0.03640	Simultaneous Upper Confidence Limit
			-	

9. ANALYSIS OF HATCHLING WEIGHT DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure Class Level Information

Class R Levels Values

ABCD

Number of observations in data set = 61

9. ANALYSIS OF HATCHLING WEIGHT DATA

10:25 Tuesday, March 29, 1994

44

General Linear Models Procedure

Dependent Variable: KESP	Die: KESP	2	K 000			
Source	PF	Squares	Square	F Value	Pr > F	
Model	ij	20.69919477	6.89973159	0.77	0.5140	
Error	50	445.65062005	8.91301240			
Corrected Total	53	466.34981481	<u>.</u>			
	R-Square	C.V.	Root MSE		RESP Mean	
	0.044386	7.939680	2.985467	1.1	37.6018519	
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
TRT	3	20.69919477	6.89973159	0.77	0.5140	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
TRT	ш	20.69919477	6.89973159	0.77	0.5140	

9. ANALYSIS OF HATCHLING WEIGHT DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Duncan's Multiple Range Test for variable: RESP

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 50 MSE= 8.913012

Alpha= 0.05 df= 50 MSE= 8.913012 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 13.28173

Number of Means 2 3 14
Critical Range 2.328 2.448 2.527
Means with the same letter are not significally different.

>>	· ~ >>	->>	->	Duncan Grouping	
36.885	37.133	38.120	38.382	Mean	•
(13)A	1175 C	15 B	11 D (. N TRT	

File:e:\andy\fipronil\42918622.out Page 22
9. ANALYSIS OF HATCHLING WEIGHT DATA

:

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's T tests for variable: RESP

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 50 MSE= 8.913012 Critical Value of Dunnett's T= 2.421

Comparisons significant at the 0.05 level are indicated by '***'.

J-2-4.	
Cab	0
	TRT omparison
-1.464 -1.503 -2.490	Simultaneous Lower Confidence Limit
1.497 1.235 0.249	Difference Between Means
4.458 3.974 2.988	Simultaneous Upper Confidence Limit

9. ANALYSIS OF HATCHLING WEIGHT DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Bonferroni (Dunn) I tests for variable: RESP

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 50 MSE= 8.913012 Critical Value of T= 2.74730

Comparisons significant at the 0.05 level are indicated by '***'.

>>> 0000	>80 	BBB >∩∪	> C B	TRT Comparison
-4.857 -4.363 -3.357	-4.504 -3.982 -2.859	-3.518 -2.008 -1.873	-2.994 -2.007 -1.863	Simul taneous Lower Confidence Limit
-1.497 -1.235 -0.249	-1.248 -0.987 0.249	-0.262 0.987 1.235	0.262 1.248 1.497	Difference Between Means
1.863 1.873 2.859	2.007 2.008 3.357	2.994 3.982 4.343	3.518 4.504 4.857	Simultaneous Upper Confidence Limit
)				

•
_
ē
•
- 0
-
Q
7
ž
-
-
-
~
9
=
_
1
ŧ
-
=
×
ň
n
2
-7
7
0
age
•
0
Ų

10:25 Tuesday, March 29, 1994

General Linear Models Procedure Class Level Information

Class Levels Values

ABCD

Number of observations in data set = 61

NOTE: Due to missing values, only 54 observations can be used in this analysis.

10. ANALYSIS OF 14-DAY SURVIVOR WEIGHT DATA

10:25 Tuesday, March 29, 1994

General
Linear
· Models Proc
 Procedure

Dependent Variable: RESP	e: RESP	2			
Source	DF	Squares	Square	F Value	Pr > F
Model	3	6858.754935	2286.251645	2.50	0.0704
Error	50	45791.240065	915.824801		
Corrected Total	53	52649.995000	.		
	R-Square	C.V.	Root MSE		RESP Mean
	0.130271	10.48539	30.26260	b)	288.616667
Source	DF	Type I SS	Mean Square	F Value	P > F
TRT	ш	6858.754935	2286.251645	2.50	0.0704
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRT	ы	6858.754935	2286.251645	2.50	0.0704

10. ANALYSIS OF 14-DAY SURVIVOR WEIGHT DATA

10:25 Tuesday, March 29, 1994

50

General Linear Models Procedure

Duncan's Multiple Range Test for variable: RESP

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $$\rm H\mbox{}$

Alpha= 0.05 df= 50 MSE= 915.8248 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 13.28173

Number of Means 2 3 4 Critical Range 23.60 24.81 25.62

Means with the same letter are not significantly different.

|File:e:\andy\fipronil\42918622.out Page 24 | Duncan Grouping Mean N TRI

292.99 294.41 298.11 268.85 13/ A 15 C 15 B 11 0

10. ANALYSIS OF 14-DAY SURVIVOR WEIGHT DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's T tests for variable: RESP

NOTE: This tests controls the type I experimentwise error comparisons of all treatments against a control. ġ

Alpha= 0.05 Confidence= 0.95 df= 50 MSE= 915.8248 Critical Value of Dunnett's T= 2.421

Comparisons significant at the 0.05 level are indicated by '***'.

+	
CBD	TRT Comparison
-0.76 -2.21 -3.62	Simultaneous Lower Confidence Limit
29.26 25.55 24.14	Difference Between Means
59.27 53.32 51.90	Simultaneous Upper Confidence Limit
:-	3-

10. ANALYSIS OF 14-DAY SURVIVOR WEIGHT DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Bonferroni (Dunn) I tests for variable: RESP

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 50 MSE= 915.8248 Critical Value of T= 2.74730

Comparisons significant at the 0.05 level are indicated by '***'.

*		
888	000	C
>00	>n#	TRT Comparison
-36.71 -28.95 -5.95	-29.30 -27.89 -4.81	Simultaneous Lower Confidence Limit
-3.70 1.41 25.55	3.70 5.12 29.26	Difference Between Means
29.30 31.77 57.06	36.71 38.12 63.32	Simultaneous Upper Confidence Limit

|File:e:\andy\fipronil\42918622.out Page 25 000 11. ANALYSIS OF FOOD CONSUMPTION DATA General Linear Models Procedure Class Level Information Class -38.12 -31.77 -7.37 57.06 57.06 Levels 45.55 52.62 92.62 92.62 -5.12 -1.41 24.14 Values ABCD 10:25 Tuesday, March 29, 1994 27.89 55.64 25.6 25.6 25.6 25.6

11. ANALYSIS OF FOOD CONSUMPTION DATA

Number of observations in data set = 61

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

TRT TRT Source Source Corrected Total Error Model Source Dependent Variable: RESP 0.068405 R-Square PF 6 P 3056848951.0 2847743743.3 209105207.7 Type III SS 209105207.7 209105207.7 Type I SS 19.52658 Sum of Squares C.V. Mean Square Mean Square 69701735.9 69701735.9 49960416.5 69701735.9 7068,268 Root MSI Square F Value F Value F Value 1.40 1.40 1.40 36198.1803 RESP Mean 0.2536 0.2536 Pr > F Pr v F 0.2536 Pr > F

11. ANALYSIS OF FOOD CONSUMPTION DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Duncan's Multiple Range Tst for variable: RESP

NOTE: This test controls the type I compariso wise error rate, not the experimentwise error rate

File:e:\andy\fipronil\42918622.out Page 26

Alpha= 0.05 df= 57 MSE= 49960417 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 15.2381

Number of Means 2 3 4 Critical Range 5131 5395 5569

Means with the same letter are not significantly different.

>:	>>>:	>>:	>>	Grouping	
33363	35656	37631	38048	Mean	į
(15	3	16	15	z	
ס ֿ	>	C	60	TRT	

11. ANALYSIS OF FOOD CONSUMPTION DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's T tests for variable: RESP

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 57 MSE= 49960417 Critical Value of Dunnett's T= 2.412

Comparisons significant at the 0.05 level are indicated by '***'.

.♥೧₩ + + + >>> _y	TRT Comparison
-3834	Confidence
-8518	Limit
2392	Difference
1975	Between
-2292	Means
8618	Upper
8103	Confidence
3933	Limit

11. ANALYSIS OF FOOD CONSUMPTION DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Bonferroni (Dunn) T tests for variable: RESP

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 57 MSE= 49960417 Critical Value of T= 2.73346

Comparisons significant at the 0.05 level are indicated by '***'.

Simultaneous Simultaneous Upper Upper

>000	>>> C) C.C. 	 	File:e:\andy\fipronil\4 TRT Comparison
-11739 -11211 -9347	-9447 -8919	-7361 -4969		2918622.out Page Confidence Limit
-4684 -4267 -2292	-2392 -1975	1975	417 2392 4684	27 Between Means
2371 2677 4763	4663 4969 677,7	6527 8919	7361 9447 11739	Confidence Limit

ANALYSIS OF ES/EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure Class Level Information

Class 큠 Levels ABCD Values

Number of observations in data set = 61

ANALYSIS OF ES/EL DATA

NOTE: Due $\uparrow \gamma$ missing values, only 57 observations can be used in this analysis.

10:25 Tuesday, March 29, 1994

59

General Linear Models Procedure

TRT . Source Source Error Model 큠 Corrected Total Source Dependent Variable: RESPONSE Weight: 0.013350 R-Square PF PF 56 53 W 39271.9271000 38747.6348442 524.2922558 Type III ss 524.2922558 524.2922558 Type I SS 37.60984 Sum of Squares c.v. 174.7640853 Mean Square 174.7640853 Mean Square 731.0874499 174.7640853 27.03863 Root MSE Mean Square F Value F Value Value 0.24 0.24 0.24 RESPONSE Mean 71.8924270 Pr > F 0.8687 Pr > f 0.8687 Pr > F 0.8687

ANALYSIS OF ES/EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Duncan's Multiple Range Test for variable: RESPONSE

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 53 MSE= 731.0874 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.20026

Number of Means 2 3 4 Critical Range 20.36 21.41 22.10

Means with the same letter are not significantly different.

>>	>>>	>>>	>>	Grouping	
71.36	71.73	72.16	72.44	Mean	
15	7.	15	13	, /Z	
C	>	œ	0	RT	

ANALYSIS OF ES/EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's I tests for variable: RESPONSE

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 53 MSE= 731.0874 Critical Value of Dunnett's T= 2.417

Comparisons significant at the 0.05 level are indicated by '***'.

C 80 C	TRT Comparison
-24,461 -23,862 -24,662	Simul taneous Lower Confidence Limit
0.713 0.426 -0.374	Difference Between Means
25.887 24.714 23.914	Simultaneous Upper Confidence Limit
Ž	**

ANALYSIS OF ES/EL DATA

10:25 Tuesday, March 29, 1994

స

General Linear Models Procedure

8

Errer 54 849611.51362 15733.54655	Model 3 21065.30029 7021.76676 0.45 0.7209	Source Df Squares Square F Value Pr > F	General Linear Models Procedure Dependent Variable: RESPONSE	9. ANALYSIS OF VE/ES DATA **********************************	only 58 observations can be used in this	Number of observations in data set = 61	TRT 4 A B C D	Class Levels Values	General Linear Models Procedure Class Level Information	10:25 Tuesday, March 29, 19	9. ANALYSIS OF VE/ES DATA 63	C - D -29.170 -1.087 26.995 C - B -27.862 -0.800 26.261 C - A -27.915 -0.374 27.166	A - B -27.966 -0.426 -27.114 A - C -27.166 0.374 27.915	-27.114 0.426 -26.261 0.800	- B -27.796 0.287 - A -27.832 0.713 - C -26.995 1.087 - D -28.370 -0.287	Simultaneous Simultaneous Lower Difference Upper TRI Confidence Between Confidence Comparison Limit Means Limit	05 level are	6 df= 53 MSE= 731.0874 F T= 2.74091	NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.	ipronil\42918622.out P Bonferroni (Dunn) I te
Simultaneous Simultaneous Lower Difference Upper	Comparisons significant at the 0.05 level are indicated by '***'.	Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 15733.55 Critical Value of Dumnett's T= 2.415	NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.	General Linear Models Procedure Dunnett's T tests for variable: RESPONSE	9. ANALYSIS OF VE/ES DATA ***********************************	A 67.30 (5/B	A 69.01 (16)C	A 72.44 13 D	A 74.59 (14)	Means with the same letter are not significantly different. Duncan Grouping Mean N TRT	Number of Means 2 3 4 Critical Range 93,7 98.5 101.7	Alpha= 0.05 df= 54 MSE= 15733.55 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.41346	NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate	General Linear Models Procedure Duncan's Multiple Range Test for variable: RESPONSE	9. ANALYSIS OF VE/ES DATA ***********************************	TRT 3 21065.30029 7021.76676 0.45 0.7209	rce Df Type III SS Mean Square f Value	TRT 3 21065.30029 7021.76676 0.45 0.7209	178.4013 125.4334	File:e:\andy\fipronil\42918622.out Page 30 Corrected Total 57 870676.81391 R-Square C.V. Root MSE RESPONSE Mean

General Linear Models Procedure	File:e:\andy\fipronil\42918622.out Page 32
•	**** 10:25 Tuesday, March 29, 1994
	March 2
	19, 1994

RESPONSE Mean 72.6971695

0.7681 Pr > F 0.7681

Pr > F

0.7681

Pr > f

3/0

- c

Dunnett's T tests for variable: RESPONSE

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 6275.304 Critical Value of Dunnett's T= 2%415

Comparisons significant atte 0.05 level are indicated by '***'.

Comparison Cofdence Limit Simul taneous -67.481 -71.825 -72.858 Lower Difference Uppe Beteen Confidence Means Limit 2.528 1.857 -1.769 Simul taneous 72.537 75.539 69.321

10. ANALYSIS OF LE/VE DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Bonferroni (Dunn) T tests for variable: RESPONSE

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 6275.304 Critical Value of T= 2.73894

Comparisons significant at the 0.05 level are indicated by '***'.

Confidence Limit Simul taneous Difference Between Means Confidence Limit Simul taneous

Comparison B > C ω > ∩ -81.931 -85.426 -78.860 -81.687 -81.712 -78.592 -80.344 -76.875 -73.682 -2.528 -1.857 1.769 -0.672 1.857 3.625 0.672 2.528 4.297 81.687 81.931 82.275 85.426 85.842 73.682 78.592 8.860 76.875 &1.712 82.397

ANALYSIS OF NH/LE DATA

10:25 Tuesday, March 29, 1994

d

General Linear Models Procedur® Class Level Information

File:e:\andy\fipronil\42918622.out Page 34

Class Levels Values

ABCD

Number of observations in data set = 61

NOTE: Due to missing values, only 57 observations can be used in this analysis.

11 ANALYSIS OF NH/LE DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

7 Error Model R Source Dependent Variable: RESPONSE Weight: RT Source Corrected Total Source 0.050217 R-Square 56 308775.96967 293270.19013 15505.77954 Type III SS 15505.77954 15505.77954 Type I SS 111.5993 Sum of Squares C.V. Mean Square Mean Square 5168.59318 5533.3998 5168.59318 5168.59318 74.38683 Root MSE Mean Square F Value F Value F Value 0.93 RESPONSE Mean 66.6552988 0.4308 Pr > F 0.4308 Pr v F 0.4308 Pr > F

11 ANALYSIS OF NH/LE DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Duncan's Multiple Range Test for variable: RESPONSE

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 53 MSE= 5533.4 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.08805

Number of Means 2 3 4 Critical Range 56.24 59.14 61.05

Means with the same letter are not significantly different.

Duncan Grouping 69.94 Mean 12 D TRT

- D -84.045 -5.080 - C -77.117 -3.840	C - B -69.436 3.840 77.117 C - A -68.656 5.959 80.574	- D -79.100 -1.239	D - C - 76.621 1.239 179.100 D - B - 73.885 5.080 34.045 D - A - 73.011 7.198 87.407	Lower Difference TRT Confidence Between Co	in tened by		Alpha= 0.05 Confidence= 0.95 df= 53 MSE= 5533.4 Critical Value of T= 2.74091	generally has a higher type II error rate than Tukey's for all pairwise comparisons.	NOTE: This test controls the type I experimentwise error rate but	Bonferroni (Dunn) I tests for variable: RESPONSE	in the second of the second	10:25 Tuesday, March 29, 10	11 ANALYSIS OF NHILE DATA 77	- A -64.717 2.118	D - A -63.555 7.198 77.951 C - A -59.860 5.959 771.777	Means	Simultaneous Lower Dif Confidence B	Comparisons significant at the 0.05 level are indicated by '***'.	Alpha= 0.05 Confidence= 0.95 df= 53 MSE= 5533.4 Critical Value of Dunnett's T= 2.418	NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.	Dunnett's T tests for variable: RESPONSE	General Linear Models Procedure	10:25 Tuesday, March 29, 1994		ar i	75	File:e:\anvy\fipronfl\42918622.out Page 35
Duncan's Mul		ž	· un	TRT	Source	TRT	Source			Corrected Total	Error	Model	Source	Dependent Variable: Weight:	 			NOTE: Due to missing values, only 57 observations can be used in this analysis.							•	/ / >>>	File:e:\andy\fipronil\42918622.out Page 36 -73.649 2.118
Duncan's Multip : This test conf	Genera		12	и	DF	u	DF	0.023666	R-Square	56	53	W	DF	e: RESPONSE	Gener		12	ing values,	Number of		TOT	<u> </u>	Gener		zi.	800	oni (\42918
e Range Test for	General Linear Models Procedure		ANALYSIS OF NH/EL DATA	19667.07680	Type III SS	19667.07680	Type I SS	261.4860	C.V.	831033.09024	811366.01345	19667.07680	Sum of Squares		General Linear Models Procedure		ANALYSIS OF NH/EL DATA	only 57 observ	of observations in data set =			Class Levets	General Linear Models Procedure Class Level Information		12 ANALYSIS OF NH/EL DATA	-87.407 -80.574 -77.885	522.out Page 3 -73.649
controls the type I comparisonwise error rate, not	Procedure	10:25 Tue	EL DATA	6555.69227	Mean Square	6555.69227	Mean Square	123.7287	Root MSE		15308.79271	6555.69227	Mean Square		s Procedure	10:25 Tue	/EL DATA	ations can be u	n data set = 61		D .	Values	s Procedure	10:25 Tu	I/EL DATA	-7.198 73.011 -5.959 68.656 -2.118 73.649	
SPONSE rate		10:25 Tuesday, March 29, 1994		0.43	F Value	0.43	F Value	4	RESF			0.43	F Value			10:25 Tuesday, March 29, 1994		sed in this						10:25 Tuesday, March 29, 1994		011 656 649	885
3		29, 1994	80	0.7336	Pr > F	0.7336	D. > 10	47.3175225	RESPONSE Mean			0.7336	Pr > F			1 29, 1994	73	ø						h 29, 1994	78		

File:e:\andy\fipronil\42918622.out Page 37 the experimentwise error rate

File:e:\andy\fipronil\42918622.out Page 38

Comparison

Lower Confidence Limit

ifference Between Means

Upper Confidence Limit

-125.065 -126.520 -121.255

3.441 4.101 7.252

131.948 134.721 135.759

-131.948 -125.365 -120.022

-3.441 0.659 3.811

125.065 126.683 127.643

Alpha= 0.05 df= 53 MSE= 15308.79 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.20026

Number of Means Critical Range 93.2 98.0 101.2

Means with the same letter are not significantly different. Duncan Grouping Mean N TRT

44.06 47.22 47.87 51.32 14 A **# 15/** 15 C 13 D . .

ANALYSIS OF NH/EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's T tests for variable: RESPONSE

NOTE: This tests controls the type I experimentwise error comparisons of all treatments against a control. ਠ੍ਹ

Alpha= 0.05 Confidence= 0.95 df= 53 ASE= 15308.79 Critical Value of Dunnett's T= 2.417

Comparisons significant at the 0.05 level are indicated by '***'.

800 TRT Comparison Simultaneous
Lower Difference (
Confidence Between
Means -111.095 -110.483 -114.294 4.101 0.659 -3.152 * Upper Confidence Limit S. mul taneous 119.296 111.801 107.991

12 ANALYSIS OF NH/EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Proceduse

Bonferroni (Dunn) I tests for variable: RESPONSE

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 53 MSE= 15308.79 Critical Value of T= 2.74091

Comparisons significant at the 0.05 level are indicated by ****.

Simul taneous

Simul taneous

17. ANALYSIS OF HS/NH DATA 10:25 Tuesday, March 29, 1994

-135.759 -127.643 -129.176

-7.252 -3.811 -3.152

134.721 126.683 122.873

-4.101 -0.659 3.152

126.520 125.365 129.176

General Linear Models Procedure
Class Level Information

Class Levels Values ABCD

Number of observations in data set =

NOTE: Due to missing values, only 54 observations can be used in this analysis.

17. ANALYSIS OF HS/NH DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

82 Error Model. Dependent Variable: RESPONSE Weight: Source Source Corrected Total Source RT 0.040577 R-Square 48768.390888 46789-496341 1978.894547 Type III SS 1978.894547 Type I SS 35.42387 Sum of Squares C.V. Mean Square Mean Square 659.631516 659.631516 935.789927 30.59068 Root MSE Square F Value F Value F Value 0.70 RESPONSE Mean 86.3561269 Pr v F Pr > f 0.5536

D A -29.824 0.516 30.856 B A -29.371 -1.308 26.756 C A -30.280 -2.216 25.848	General Linear Models Procedure Dunnett's T tests for variable: RESPONSE NOTE: This tests controls the type I experimentwise error comparisons of all treatments against a control. Alpha= 0.05 Confidence= 0.95 df= 50 MSE= 935.7899 Critical Value of Dunnett's T= 2.421 Comparisons significant at the 0.05 level are indicated by " Comparisons Simultaneous Simultaneous Liber Comparison Limit Means Limit	17. ANALYSIS OF HS/NH DATA ***********************************	File:e:\andy\fipronil\42918622.out Page 39 TRT 17. ANALYSIS OF HS/NH DATA ***********************************
	or for 9	86 Tuesday, March 29, 1994	16 0.70 0.536 85 Tuesday, March 29, 1994 RESPONSE Wise error rate, not 173 173 173 174 175 187 175 187 175 187 175 187 175 187 175 187 175 187 175 187 175 187 175 187 175 187 187 187 187 187 187 187 187 187 187
Dependent Variable: R Weight:	NOTE: Due to missing analysis.		File:e:\andy\fipronil Bonfer NOTE: This t genera genera pairwi Alpha= 0 Comparisons sig Comparis A - D A - B A - B A - C B - A B - C

1\42918622.out Page 40 General Linear Models Procedure

erroni (Dunn) I tests for variable: RESPONSE

test controls the type I experimentwise error rate but ally has a higher type II error rate than Tukey's for all vise comparisons.

0.05 Confidence= 0.95 df= 50 MSE= 935.7899 Critical Value of T= 2.74730

gnificant at the 0.05 level are indicated by '***'.

റററ		>>>	900	S
 B>O	CA D	080	, CØ≯	TRT Comparison
-36.093 -34.062 -31.596	-35.185 -33.154 -29.779	-34.946 -30.539 -29.630	-33.914 -31.537 -30.629	Simultaneous Lower Confidence Limit
-2.732 -2.216 -0.908	-1.824 -1.308 0.908	-0.516 1.308 2.216	0.516 1.824 2.732	Difference Between Means
30.629 29.630 29.779	31.537 30.539 31.596	33.914 33.154 34.062	34.946 35.185 36.093	Simultaneous Upper Confidence Limit
		,		

18. ANALYSIS OF EC/EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure Class Level Information

Class Levels Values

ĪŖŢ ABCD

umber of observations in data set = 61

, values, only 58 observations can be used in this

18. ANALYSIS OF EC/EL DATA

10:25 Tuesday, March 29, 1994

89

General Linear Models Procedure

Model Weight: Source RESPONSE 110326.708822 1259.657767 Sum of Squares 2043.087200 419.885922 Mean Square F Value 0.21

> 0.8921 Pr > F

17. ANALYSIS OF HS/NH DATA

10:25 Tuesday, March 29, 1994

Error

7,

87

File:e:\andy\fipronil\42918622.out Page 41	roni (\42918	522.out Page 41	^		
Corrected Total	57	57 111586.366589	and the second		
	R-Square	c.v.	Root MSE	RESPO	RESPONSE Mean
	0.011289	765.6460	45.20052	Ų.	5.90357941
Source	DF	Type I SS	Mean Square	F Value	P 7
TRT	3	1259.657767	419.885922	0.21	0.8921
Source	맛	Type III SS	Mean Square	F Value	Pr > F
TRT	w	1259.657767	419.885922	0.21	0.8921
			4		

18. ANALYSIS OF EC/EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

NOTE: This test contr

Alpha= 0.05 df= 54 MSE= 2043.087 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.41346

Number of Means 2 3 4 Critical Range 33.77 35.51 36.66

Means with the same letter are not significantly different.

	>>	->>	->>	->-	Duncan Grouping
	5.241	5.324	6.304	6.858	Mean
-	; 13∕ D	5	16/c	14`A	æ
	D	8	C	>	TRT

18. ANALYSIS OF EC/EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's T tests for variable: RESPONSE

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 2043.087 Critical Value of Dunnett's T= 2.415

Comparisons significant at the 0.05 level are andicated by /***/. Simul taneous

Simul taneous

8

000	0 000	റററ	>>>	S
 ∞c>	00×	0.60>		TRT Comparison
-49.301 -47.289 -46.995	-47.540 -45.474 -46.830	-45.861 -43.514 -45.164	-44.752 -44.472 -46.067	Simultaneous Lower Confidence Limit
-1.617 -1.062 -0.083	-1.534 -0.980 0.083	-0.555 0.980 1.062	0.555 1.534 1.617	Difference Between Means
46.067 45.164 46.830	44.472 43.514 46.995	44.752 45.474 47.289	45.861 47.540 49.301	Simultaneou Upper Confidence Limit

19. ANALYSIS OF NH/ES DATA

10:25 Tuesday, March 29, 1994

93

General Linear Models Procedure Class Level Information

Class Levels Values

큠 ABCD

Number of observations in data set = 61

NOTE: Due to missing values, only 58 observations can be used in this analysis.

File:e:\andy\fipronil\42918622.out Page 42
Lower Difference
TRT Confidence Between
Comparison Limit Means Upper Confidence Limit 39.392 39.029 40.425

-40.501 -42.097 -43.659 -0.555 -1.534 -1.617

18. ANALYSIS OF EC/EL DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Bonferroni (Dunn) I tests for variable: RESPONSE

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 2043.087 Critical Value of T= 2.73894

*

TRT Comparison	isons signif
Simultaneous Lower D Confidence Limit	isons significant at the 0.05 level are indicated by /***
ifference Between Means	level are
Simultaneous Upper Confidence Limit	indicated by
	/ * * *

- A -49. - C -47. - B -46.	- A -47. - C -45. - D46.	- A -45	-44. -44.	Simult Lc TRT Confi mparison Li
. 301 - 289 1	.540 -1 .474 -0	.861 -0 .514 0	4752 6772 1	Inultaneous Lower Diff confidence Be Limit P
1.617 1.062	. 534). 980). 083	. 555 1.980 1.062).555 1.534 1.617	Simulifference Between Con Means
46.067 45.164 46.830	44.472 43.514 46.995	44.752 45.474 47.289	45.861 47.540 49.301	ultaneous Upper onfidence Limit

	* ** ** **	ATA	ES DATA	19. ANALYSIS OF NH/ES DATA	19.	
	···········		#			
∞∞∞ >	tario ha tarakana aya		7 7 7	>>>>>		
>>		TRT	Mean N T		Duncan Grouping A	
ဂဂ		lifferent.	significantly o	the same letter are not significantly different.	Means with the same	
o 0			3 104.6 101.3 104.6	Number of Means 2 Critical Range 96.4	Number Critics	
Comp			MSE= 16639.43 are not equal. sizes= 14.4,1346	Alpha= 0.05 df= 54 MSE= 16639.43 WARNING: Cell sizes are not equal. Immonic Mean of cell sizes= 14.4,1346	Alpha= WARNING Harmonic	
	, not	error rate	comparisonwise	s test controls the type I comparis⊅nwise error rate, not experimentwise error rate	NOTE: This test cont the experiment	
Comparisons		PONSE	r variable: RES	e Range Test for	Duncan's Multiple Range Test for variable: RESPONSE	
			Procedure	General Linear Models Procedure	Genera	
۸iph	29, 1994	Tuesday, March 29,	10:25 Tues			
pa ge	95	•	•	ANALYSIS OF NH/ES DATA	19.	
			* ***			
	0.7004	0.48	7918.88736	23756.66208	W	TRT
•	Pr > F	f Value	Mean Scuare	Type III SS	DF	Source
	0.7004	0.48	7918.88736	23756.66208	ы	TRT
	PT > F	F Value	Mean Square	Type I SS	DF	Source
	51.5328356	<u>Vī</u>	128,9939	250.3141	0.025758	
•	RESPONSE Mean	RESPO	Root, MSE	C.V.	R-Square	
owo) 1	-		zo (8 °	922286.07374	Corrected Total 57	Correcte
	•		16639.43355	898529.41166	54	Error
Comparisons	0.7004	0.48	7918.88736	23756.66208	ч	Model
Alph	Pr > F	F Value	Mean Square	Sum of Squares	DF	Source
i i					Dependent Variable: RESPONSE	Depender Weight:
NOTE - Th	······································		Procedure	General Linear Models Procedure	Genera	
	29, 1994	94 **** 10:25 Tuesday, March 29, 1994	7ES DAIA 10:25 Tues	**************	19. ANALYSIS OF NH/ES DAIA ***********************************	
to the factor (minus) to the			70 711	100000000000000000000000000000000000000	Course, Anna Service Control of the Control	

ile:e:\andy\fipronil\42918622.out Page 44

General Linear Models Procedure

Dunnett's T tests for variable: RESPONSE

JTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

lpha= 0.05 Confidence= 0.95 df= 54 MSE= 16639.43 Critical Value of Dunnett's T= 2.415

parisons significant at the 0.05 level are indicated by '***'.

BCO	TRT Comparison
-115.535 -112.885 -119.558	Simultaneous Lower Confidence Limit
4.446 1.115 -3.798	Difference Between Means
124.428 115.115 111.962	Simultaneous Upper Confidence Limit
Ţ	

19. ANALYSIS OF NH/ES DATA

10:25 Tuesday, March 29, 1994

Book Models Describes

General Linear Models Procedure Ionferroni (Dunn) T tests for variable: RESPONSE

TE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

pha= 0.05 Confidence= 0.95 df= 54 MSE= 16639.43 Critical Value of T= 2.73894

mparisons significant at the 0.05 level are indicated by '***'.

000	>>>	റററ	000	င္ပ
>0.0	mco	 ⊕>∪	# > C	TRT Comparison
-142.123 -131.890 -135.091	-140.527 -130.412 -127.495	-135.254 -128.182 -122.065	-128.591 -131.635 -125.635	Simultaneous Lower Confidence Limit
-8.244 -4.913 -3.798	-4.446 -1.115 3.798	-3.331 1.115 4.913	3.331 4.446 8.244	Difference Between Means
125.635 122.065 127.495	131.635 128.182 135.091	128.591 130.412 131.890	135.254 140.527 142.123	Simultaneous Upper Confidence Limit
	•			

20. ANALYSIS OF HS/ES DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

42

>				.3		
, Cr		TRT	Mean N T	2	Duncan Grouping	,
າດ		ifferent.	significantly d	with the same letter are not significantly different.	Means with the same	
0			95.2 100.8 104.4	BuribecabfRMagns 95.2	Buribeca	,,
S C			MSE= 16465,56 sizes= 14.41346	Alpha= 0.05 df= 54 Mi WARNING: Cell sizes are Harmonic Mean of cell si	Alpha= WARNING Harmonic	
	, 70¢	error rate	comparisonwise	s test controls the type I comparisonwise error rate, experimentwise error rate	NOTE: This test cont the experiment	
Comparisons		PONSE	r variable: RES	e Range Test fo		
			Procedure	General Linear Models Procedure	Genera	
Alph ·	29, 1994	10:25 Tuesday, March 29, 1994	10:25 Tues			
NOTE: Th	100		ES DATA	20. ANALYSIS OF HS/ES DATA	20.	
Вo						
	0.6882	0.49	8128.90748	24386.72243	u	TRT
	Pr > F	F Value	Mean Square	Type III SS	DF	Source
·	0.6882	0.49	8128.53748	24386.72243	, Lid	TRT
	Pr > F	F Value	Mean Square	Type I SS	DF	Source
œ G	51.0265580	51	128.3182	251.4734	0.026695	
₽ .	RESPONSE Mean	RESPO	Root MSE	C.V.	R-Square	
Comp				913527.14639	Corrected Total 57	Correc
. , , , , , i			16465.56341	889140.42397	54	Error
Comparisons	0.6882	0.49	8128.90748	24386.72243	w	Model
3	Pr > F	f Value	Square	Squares	DF	Source
<u></u>			K C		Dependent Variable: RESPONSE Weight:	Depend
NOTE: Th			Procedure	General Linear Models Procedure		•
- √. ya	29, 1994	Tuesday, March 29,				
	***		Mr.	20. ANALYSIS OF HS/ES DATA	20	···
					analysis.	
		can be used in this	tions can be us	only 58 observe	Due to missing values.	NOTE:
			in data sec = 61	Number of observations in	Number of	
			A B C D	4	TRT	
			Values 🔭	Class Levels	CL	
File:e:\andy\fip			mation	22.out Page 45 lass Level Infor	File:e:\andy\fipronil\42918622.out Page 45 Class Level Information	File:e

e:e:\andy\fipronil\42918622.out Page 46
A 51.73 16 C
A 51.02 14 A
A 47.15 15 B

20. ANALYSIS OF HS/ES DATA

10:25 Tuesday, March 29, 1994

3

General Linear Models Procedure

Dunnett's T tests for variable: RESPONSE

ME: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

lpha= 0.05 Confidence= 0.95 df= 54 MSE= 16465.56 Critical Value of Dunnett's T= 2.415

Comparisons significant at the 0.05 level are indicated by '***'.

Simultaneous Simultaneous Lower Difference Upper TRT Confidence Between Confidence Comparison Limit Means Limit

D - A -114.762 4.591 123.943
C - A -112.692 0.710 114.113
B - A -119.025 -3.872 111.282

20. ANALYSIS OF HS/ES DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

onferroni (Dunn) I tests for variable: RESPONSE

IOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 16465.56 Critical Value of T= 2.73894

Comparisons significant at the 0.05 level are indicated by '***'.

> - D	000 111 8>0	B>C	TRT Comparison
-139.959	-135.112 -127.909 -121.730	-127.351 -130.778 -124.716	Simultaneous Lower Confidence Limit
-4.591	-3.880 0.710 4.582	3.880 4.591 8.462	Difference Between Means
130.778	127.351 129.330 130.894	135.112 139.959 141.640	Simultaneous Upper Confidence Limit

												,
			0.1479 0.14	2 0.8304 3 0.2269 0	•	0.14494216			G D	0.0	PREM	
		3 (4 269 0.4872	T HO: LSMEAN(1)=LSMEAN()) 1 2 3 0.8304 0.2269 0.48	Pr > [T] HO:		171.36108130 43.51937725 42.76717651 42.11698954		2.93 0.70 0.4872 0.93 0.3579 -0.50 0.6190	501.3192693 B 30.4449493 B 39.6541709 B -21.0658822 B	501.3 30.4 39.6 -21.0	TRT A	
	*WN	0.0001	29.71622 28.77331 30.75979	2325	ല	ror of mate		: 7: 39	I for Parame	Es	Parameter	
	Number				·> ;	0.4477	0.90 15.10	11907.7287 199929.6678	35723.1861 199929.6678	~ ω	PREM	
	LSMEAN				TRT	P	F Value	Mean Square	Type III SS	DF.	Source	
		ns Poceonie	Squares Mear	Least Squares Means		0.4085	0.98 15.10	12996.4341 199929.6678	38989.3022 199929.6678	13	PEM	
Mai Cil. C7, 1774	luesuay, mai ci					Pr > F	F Value	Mean Square	Type I SS I	묶	Source	
106		BODY WEIGHT D	IS OF MALE !	COVARIATE ANALYSIS OF MALE BODY WEIGHT DATA	21.	1169.20339	د	115.0855	9.843071	0.250405		
						POSTM Mean	20	Root MSE	c.v.	R-Square		
			237288	1165.4237288	M X	PREM		e dage	954131.5593	58	Corrected Total	
					0			13244.0776	715212.5894	54	Error	
			500		: נשמ	0.0032	4.51	59729.7425	238918.9700	4	Model	
			э.			Pr > F	F Value	Square	Squares	DF.	Source	
			-		INTERCEPT	Ž		3	Sum of	le: POSTM	Dependent Variable:	
			cients	Coefficients	Effect	Ef		Procedure	General Linear Models P			
			0		-	29, 1994 TRT	March	10:25 Tuesday,		}	. 445 - 2	
CO	1165.4237288	1165.4237288 11	1165.4237288 116	1165.4	PREM		***	BODY WEIGHT D	COVARIATE ANALYSIS OF MALE BODY WEIGHT DATA	21. COVARIATE	N	
0-00	·	00-0	000-		മറമ≽	TRT	be used in this		only 59 observations	ssing values,	NOTE: Due to missing values, analysis.	
					INTERCEPT	7		in data set = 61	of observations in d	Number of	•	
			Coefficients	Coeffi	Effect	<u>m</u>		ABCD	*	TRT		
C		œ	>		-	TRT		Values	Class Levels V	CL		
		rocedure ins iquare Means	er Models P Squares Mea TRT Least S	General Linear Models Procedure Least Squares Means Coefficients for TRT Least Square Means					General Linear Models Procedure Class Level Information	Gener	**************************************	
105 th 29, 1994	DATA **** sday, March	BODY WEIGHT DATA ***********************************	SIS OF MALE	. COVARIATE ANALYSIS OF MALE BODY WEIGHT DATA	21	103	HT DATA ***********************************	BODY WEIGHT D	COVARIATE ANALYSIS OF MALE BODY WEIGHT DATA	21. COVARIATE	N	
rameters.	of the pa	re estimators	re not uniqu	are biased, and ar	letter '8'	. ·	222	62 124.716 82 121.730 872 126.733	-141.640 -8.462 -130.894 -4.582 -134.477 -3.872	>00	တ် ထ ထ	
inverse	eneralizec	Jular and a gu	to be sing	The X/X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the	NOTE: The X'X mat	×		372 134.477	-126.733 3.872	6 0 C	>>	
			Page 48	ronil\42918622.out	File:e:\andy\fipr		3	14.	Page 47	pronil\429186	File:e:\andy\fipronil\42918622.out_	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

21. COVARIATE ANALYSIS OF MALE BODY WEIGHT DATA

10:45 Tuesday, March 29, 1994

General Linear Models Procedure

Duncan's Multiple Range Test for variable: POSTM

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 54 MSE= 13244.68 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.7046

Number of Means 2 3 4 Critical Range 85.14 89.52 92.42

Means with the same letter are not significantly different. Duncan Grouping Mean

1156.29 1196.20 1135.25 1192.00 3 16 C 15 8 14 0

21. COVARIATE ANALYSIS OF MALE BODY WEIGHT DATA 10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Dunnett's I tests for variable: POSIM

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 13244.68 Critical Value of Dunnett's T= 2.413

Comparisons significant at the 0.05 level are indicated by "***.

Comparison Simul taneous Confidence -99.01 -140.69 Limit Difference Between Means Simultaneous e Upper Confidence Limit 107.41 69.26

File:e:\andy\fipronil\42918622.out Page 50 -158.40 -56.75

44.90

21. COVARIATE ANALYSIS OF MALE BODY WEIGHT DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Bonferroni (Durn) T tests for variable: POSTM

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 54 MSE= 13244.68 Critical Value of T= 2.73894

Comparisons significant at the 0.05 level are indicated by '***'.

000	000	>>>		ç
; ; ; ©≯®	C>₩	 COM	 	TRT mparison
		الرمد. د	_	. Simu
-174.24 -172.11 -136.39	-157.05 -154.85 -94.32	-121.34 -83.42 -58.61	-112.94 -77.22 -52.34	nultaneous Lower onfidence Limit
-56.75 -21.04	-39.91 -35.71 21.04	35.71 56.75	4.20 39.91 60.95	Difference Between Means
52.34 58.61 94.32	77.22 83.42 136.39	112.94 154.85 172.11	121.34 157.05 174.24	Simultaneous Upper Confidence Limit

22. COVARIATE ANALYSIS OF FEMALE BODY WEIGHT DATA 10:25 Tuesday, March 29, 1994

General Linear Models Procedure Class Level Information

Class

Levels

Values

A B C D

Number of observations in data set = 61

NOTE: Due to missing values, only 57 observations can be used in this analysis.

22. COVARIATE ANALYSIS OF FEMALE BODY WEIGHT DATA

10:25 Tuesday, March 29, 1994

General Linear Models Procedure

C - A -44.83 52.57 149.97 B - A -76.45 24.14 124.74 D - A -112.86 -10.35 92.16			. Serge	Coefficients		TRT
TRT Confidence Between Confidence Comparison Limit Means Limit	Ŭ,	1010.1929825	1010.1929825 1	1010.1929825		PREF
Difference S	0-		**	00		0 0
Comparisons significant at the 0.05 level are indicated by '***'.	•00			·0-		TRT A
Alpha= 0.05 Confidence= 0.95 df= 52 MSE= 12107.69 Critical Value of Dumnett's T= 2.419		,				INTERCEPT
comparisons of all treatments agains			^N Fager	Coefficients		Effect
NOTE: This tests controls the type I experimentwise error for			. ·	>		TRT
			s Procedure Means t Square Means	General Linear Models Procedure Least Squares Means icients for TRT Least Square Means	General Le Coefficients	
General Linear Models Procedure	March 29, 1994	Tuesday, Marc	10:35 Tue			
22. COVARIATE ANALYSIS OF FEMALE BODY WEIGHT DATA ***********************************			ALE BODY GEIGHT	22. COVARIATE ANALYSIS OF FEMALE BODY FEIGHT DATA	22. COVARIATE	
NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.	d inverse by the arameters.	followed to of the pa	ingular and a g s. Estimates ique estimators	The X/X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the lett^r 'B' are biased, and are not unique estimators of the parameters	'X matrix has be sed to solve the r 'B' are biased	NOTE: The X was u letto
3 0.377 0.4411 . 0.1179 4 0.5650 0.4251 0.1179 .	0.16478948	001	4.38 , 0.0001	.7212788	00	PREF
_	170.15985209 42.50664903 42.38166484 41.09009552		2.16 0.0350 0.58 0.5650 0.80 0.4251 1.59 0.1179	368.3686051 B 24.6147389 B 34.0744200 B 65.3365868 B		INTERCEPT A
22	Std Error of Estimate		9			Parameter
LSMEAN LSMEAN NU:LSMEAN=0 1121.61415	0.4587	0.88 19.16	10627-9973 231957-7132	31883.9920 231957.7132	W	PREF
TRT POSTF Std Err Pr > T LSMEAN	Pr > F	F Value	Mean Square	Type III SS	DF.	Source
Least Squares Means	0.4217 0.0001	0.95 19.16	11543.5937 231957.7132	34630.7812 231957.7132	∪	PREF
General Linear Models Procedure	рг > F	F Value	Mean Square	Type I ss	DF	Source
22. COVARIATE ANALYSIS OF FEMALE BODY WEIGHT DATA 113 ***********************************	1129.75439		110, 0350	9.739725	0.297469	
	POSTF Mean		Root MSE	C.V.	R-Square	
PREF 1010.1929825				896188.5614	otal 56	Corrected Total
			12107,6936	629600.0670	52	Error
C &	0.0009	5.50	6664741236	266588.4944	4	Model
A	Pr > F	F Value	Square	Squares	DF	Source
INTERCEPT I					File:e:\andy\fipronil\42918622.out Dependent Variable: POSTF	File:e:\and Dependent V

常生

22. COVARIATE ANALYSIS OF FEMALE BODY WEIGHT DATA 10:25 Tuesday, March 29, 1994

General Linear Models Procedure

Duncan's Multiple Range Test for variable: POSTF

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 52 MSE= 12107.69 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 14.1/032

Number of Means 2 3 5 4 Critical Range 82.99 87.26 90.09

Means with the same letter are not significantly different. Duncan Grouping Mean K R R

· > :	>>>	>> >	>
1101.08	1111.43	1135.57	1164.00
13	14 A	14 B	16. C

22. COVARIATE ANALYSIS OF FEMALE BODY WEIGHT DATA

10:25 Tuesday, March 29, 1994

116

General Linear Models Procedura

Bonferroni (Dunn) I tests for variable: POSTF

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 52 hSE= 12107.69 Critical Value of T= 2.74295

Comparisons significant at the 0.05 level are indicated by '***'.

>>>	000	000	S
 	 ⊽>n	 ©>®	TRT mparison
-163.03 -138.22 -105.90	-138.88 -89.93 -81.76	-82.03 -57.88 -49.77	Simultaneous Lower Confidence Limit
-52.57 -24.14 10.35	-28.43 -24.14 34.49	28.43 52.57 62.92	Difference Between Means
57.88 89.93 126.60	138.22 150.75	153.88 163.03 175.62	Simultaneous Upper Confidence Limit