

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

NOV 17 1994

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

SUBJECT:

Dietary Exposure Analysis for Imidacloprid (NTN)

through the Use on Mango (PP#4F4285).

FROM:

Jennifer M. Wintersteen

Rick Evaluation Section

Dietary Risk Evaluation Section

Science Analysis Branch/HED

(7509C)

TO:

Dennis Edwards, PM Team 19

Insecticide-Rodenticide Branch

Registration Division

(7505C)

THROUGH:

Elizabeth A. Doyle, Ph.D., Section Head

Dietary Risk Evaluation Section

SAB/Health Effects Division

Action Requested

Provide a Dietary Risk Evaluation System (DRES) analysis of the dietary exposure for imidacloprid through the proposed use on mango.

Discussion

Toxicological Endpoint:

The chronic analysis used a Reference Dose (RfD) of 0.057 mg/kg body weight/day, based on a no observed effect level (NOEL) of 5.7 mg/kg bwt/day and an uncertainty factor of 100. The NOEL is based on a chronic toxicity study in rats that demonstrated increased thyroid lesions in males as an endpoint effect. The HED RfD Peer Review Committee also classified imidacloprid as a Group E carcinogen (G. Ghali memo, 11/10/93).

An acute dietary assessment is required by the Toxicology Endpoint Selection Document for Imidacloprid (Karl Baetcke memo, 4/18/94). The endpoint for acute dietary risk assessment is 24 mg/kg/day from the rabbit developmental study. The LEL (72 mg/kg/day) was based upon decreased body weight, and increased resorptions, abortion and increased skeletal abnormalities.

Residue Information:

Food uses evaluated in this analysis were the published interim tolerance on hops listed in the Tolerance Index System (TIS) and 40 CFR §180.472. Hops is included in this analysis as a published commodity with an expiration date of 6/28/95. Meat and

milk tolerances, 0.2 and 0.05 ppm, respectively, are also published as interim tolerances along with hops.

CBTS recommends for a tolerance on mango at 0.2 ppm in a F. Griffith memo dated 7/22/94. Mango is included in the analysis as a new tolerance.

No information has been provided for refinement of percent of crop treated or anticipated residues for either chronic or acute analyses. A summary of the residue information used in the analysis is attached as Table 1.

Results:

Chronic Exposure

A DRES chronic exposure analysis was performed using tolerance level residues and 100 percent crop treated information to estimate the Theoretical Maximum Residue Contribution (TMRC) for the general population and 22 subgroups.

Summaries of the TMRCs and their representations as percentages of the RfD for imidacloprid are attached as Table 2.

The following table provides exposure information for the U.S. population and the most highly exposed subgroup, children 1-6 years old. The exposure and percent of the Reference Dose for each proposed commodity is given in the table as well.

TMRC Ex	posure Estim	ates for	Imidacloprid	-
Commodity Type	U.S. Popul (TMRC) (μg/kg/day	(%RfD)	Non-Nursing (TMRC) (µg/kg/day)	Infants (%RfD)
Published Uses hops, meat & milk	0.000985	2	0.003693	6
Proposed New Use mango	<0.000001	0	0	0
Total	0.000985	2	0.003693	6

Acute Exposure

The DRES detailed acute exposure analysis evaluates individual food consumption as reported by respondents in the USDA 77-78 Nationwide Food Consumption Survey (NFCS) and estimates the distribution of single day exposures through the diet for the U.S. population and certain subgroups. The analysis assumes uniform distribution of imidacloprid in the commodity supply. Since the toxicological effect to which high end exposure is being compared to in this analysis is developmental toxicity, the DRES subgroup of concern is females (13+ years) which approximates women of child-bearing age.

The Margin of Exposure (MOE) is a measure of how closely the high end exposure comes to the NOEL (the highest dose at which no effects were observed in the laboratory study), and is calculated as the ratio of the NOEL to the exposure (NOEL/exposure = MOE). For substances whose acute NOEL is based on animal studies, the Agency is not generally concerned unless the MOE is below 100.

In the analysis, tolerance level residues for hops, meat, milk and mango were used to calculate the high-end exposure for the females (13+ years) subgroup. High end exposure was compared to the NOEL of 24 mg/kg bwt/day from the rabbit developmental study to get a high end Margin of Exposure. The MOE for females was calculated in the attached table and the results are as follows:

Females (13+ years) High End Exposure = 0.00288 mg/kg/day NOEL/Exposure = 24 mg/kg/day ÷ 0.00288 mg/kg/day = 8333

Using the given endpoints, the MOE is not of concern for the subgroup females (13+ years) with an estimated MOE considerably above 100.

Discussion

To the extent that this analysis used tolerance level residues and 100 percent-crop-treated assumptions, it is considered a "worst-case" picture of the dietary risk from imidacloprid. The chronic dietary risk from exposure of imidacloprid appears to be of minimal concern, with all DRES subgroups having TMRC values well below the Reference Dose.

The acute dietary analysis of imidacloprid is not of concern for females of child-bearing age considering the proposed tolerances.

There appears to be no excessive dietary risk from the proposed new tolerance for imidacloprid on mango at 0.2 ppm.

Attachments

cc: DRES, Caswell #497E, Tox I, CBTS

• 4		Table 1: Imida	Table 1: Imidacloprid on Mango		
CHEMICAL	STUDY TYPE	EFFECTS	REFERENCE DOSES	DATA GAPS/COMMENTS	STATUS
Imidacloprid	2yr feeding- rat	Increased incidence of	ADI UF>100	No data gaps.	RfD/PR reviewed 04/22/93
Caswell #497E	NOEL= 5.7000 mg/kg	mineralized particles in			
CAS No. 105827-78-9	100.00 ppm	thyroid colloid.	EPA RfD= 0.000000		
A.I. CODE: 129099	LEL= 16.9000 mg/kg				
	mdd ניני טייז	No evidence of encegenic-	, -		
	[159: 155] R Committee) ity in lats or mice.	tty in fots or mice.		**	
		The second secon	· management, where it.	10 to the first or comments on the first of makes the second of the first of the second of the first of the second of the first of the second	
					-

MEM

PENDING (PM)

,						•																								
53006MA	53006LA	SOUDOLA	VFASS		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Berger 13	V 150, NES	7.15,105.1	53005+A	ნაქინცც	35 m55A	PW Soll	7 7 7 E	SOUGLA		20051 V	53002RB	530026A	July with	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	53001KA	530011 A	53001DA	530016B	\$30010A	50000SA	50000FA	5000008	08020AA	06007AA
PORK-LLAM	PORK(ORGAN MEATS)-LIVER	PORK (ORGAN MEATS) - KIDNEY	POPKCHORILITES)-TAT CINCLUDING LARD)	SORK (ORLAN MILATE) OTHER	STANDORD STANDORDS	SHOLD COURTESS STEAM (W/O PEMOVEABLE FAT	SHEEDCODGAN MEATSY-LIVER	SHEEP(ORLAN MEATS)-KIDNEY	SHEEP (BONELESS) - FAT	SHEEP(ORGAN MEATS) OTHER	SHEEP-MEAT BYPRODUCTS	HORSE	MOATEROVELESS) - LEAN (W/O REMOVEABLE FAT)	GOAT (OPEAN MEATS) LIVER	CONTRACTOR CONTRACTOR NOT AND AND ADDRESS OF THE PROPERTY OF T	GOAT (BUMLLESS) - FAT	GOAT (DREAN MEATS) - OTHER	GOAT-MEAT BYPRODUCTS	THE TOBONICLESS - LEAN (W/O PEMOVEABLE FAT)	BHT (OPSAN PLATS)-LIVER	BEEF (ORLAN MEATS)-KIDNEY	BEEF(BONELESS)-FAT (BEEF TALLOW)	BEEF-DRIID	BEEF (ORGAN MEATS) - OTHER	REEF-MI AT SYPRODUCTS	MILK SUGAR (LACTOSE)	MILK-FAT SOLIDS	MILK-NOW FAT SOLIDS	HOPS	MANGOES
3F4169	3F4169	384169	31-169	34-11.9	314169	31/1/0	3F4169	3F4169	3F4169	364109	384169	31.169	344109	34-169	31. 16°C	384169	3F4169	3F4169	31-169	34-169	3F4169	3F4169	3F4169	3F4169	3F4169	3F4169	3F4169	3F4169	300343	4F4285
															Table 1			•				•						•		0.200000
0.200000	0.200000	0.200000	0.200000	0.200000	0.200000	0.20000	0.20000	0.200000	0.200000	0.200000	0.200000	0.200000	0.20000	0.200000	0.700000	0.200000	0.200000	0.200000	0.200000	0.700000	0.200000	0.200000	0.200000	0.200000	0.200000	0.050000	0.050000	0.050000	3.00000	
					٠																							-		•

CHEMICAL I	Caswell Caswell CAS No. A.I. CO CFR No.	•		U.S.	U.S.S.U.S.	Sam NOS NOS	NON WON YOU	TON YOUR	CHILBRIN (1-6 YEARS OLD) CHILBRIN (7-12 YEARS OLD) MALES (13-19 YEARS OLD) FLMARS (15-19 YEARS OLD)
	CASWELL #497E CASWELL #497E CAS NO. 105827-78-9 A.I. CODE: 129099 CFR No.			POPULATION -	POPULATION - POPULATION - POPULATION -	NORTHEAST REGION NORTH CENTRAL RESION SOUTHERN REGION WESTERN PEGION	HISERWILL NON-HISPANIC WHITES NON-HISPANIC BLACKS	Savak PCL STR Savak PCL Stra Savak Brisada Savak Brisada	CHILDERN (1-6 YEARS OLD) CHILDERN (7-12 YEARS OLD) MALES (13-19 YEARS OLD)
STUDY TYPE	5.7000 100.00 16.9000 300.00 RfD/PR C			48 STATES	SPRING SEASON SUMMER SEASON FALL SEASON WINTER SEASON			1 YEAR OLD) PRECKANTY NURSING	(D) (D) (D)
		, no.				· v			
EFFECTS ncreased incidence of	mineralized particles in thyroid colloid. No evidence of oncogenicity in rats or mice.	(AVG/IHSLin Ados Sx/SW) Ss TVIOL	CUP 101 TMRC*	0.000984	0.000945 0.000985 0.001015 0.000993	0.001013 0.001028 0.000892 0.001043	0.001214 0.000979 0.000900 0.001077	0,000000 0,003693 0,000698 0,000818	0.002363 0.001563 0.001086
<u> </u>	ζ, <u>3</u>	ODY PLICH	NEW THRC+*	0.000984	0.000945 0.000985 0.001015 0.000993	0.001013 0.001028 0.000892 0.001043	0.001215 0.000979 0.000900 0.001078	©000°15 0007693 0000698 0000818	0.002364 0.001564 0.001086 0.000834
	OPP RfD= EPA RfD=	T/DAY)	MRC++	784	\$58.5°	1928 43	779 779 778	18	4825
	0.057000	III. J.		1,726989	1.658275 1.728151 1.779907 1.741874	1,777218 1,803089 1,564798 1,829319	2.131056 1.717365 1.579761 1.890723	1.60%07 6.478568 1.225409 1.434898	4.146668 2.743291 1.905321
DATA GAPS/COMMENTS		OIFFTRENCE	OF KED	0.000195	0.000002 0.000700 0.000026 0.000051	0.000432 0.000011 0.000230 0.000084	0.000819 0.000132 0.000100 0.000044	0,000000 0,000000 0,000000 0,000000 0,000000	0.000261 0.000395 0.000030
MENTS		EFFEC		***					
RfD/PR r		T OF ANTI						e e	•
RfD/PR reviewed 04/22/93	•	EFFECT OF ANTICIPATED RESIDUES				*			
1/22/93		ESIDUES	%RFD			•			

^{*}Current IMRC does not include new or pending tolerances.
**New IMRC includes new, pending, and published tolerances.

TOLERANCE ASSESSMENT "MARY FOR Imidactoprid

DATE: 11/08/94

ANALYSIS FOR POPULATION SUB-GROUP: U.S. POPULATION - 48 STATES

EXISTING TOLERANCES (PUBLISHED ONLY)
RESULT IN-A TMRC OF:
THE EXISTING TMRC IS EQUIVALENT TO:

RE OUT IN A 1990 OF:

0.000985 1.727 MG/KG/DAY % OF THE ADI.

THE WIND THE STANSAULT WIND BLOWN CONTRACTOR OF RESULTANT PROMITE SET

<0.000001 0.000 0.000935 MG/KG/DAY % OF THE ADI. MG/KG/DAY % OF THE ADI.

NO OTHER PENDING TOLERANCES ARE IN THE FILE

THE NEW THRC WILL OCCUPY

ANALYSIS FOR POPULATION SUB-GROUP: NON-NURSING INFANTS (< 1 YEAR OLD)

THE EXISTING IMRC IS EQUIVALENT TO: EXISTING TOLERANCES (PUBLISHED ONLY) PESULT IN A TMRC OF: 0.003693

MG/KG/DAY % OF THE ADI.

NO NEW TOLERANCES ARE IN THE FILE.

NO STREE PENDING TOLERANCES ARE IN THE FILE

ANALYSIS FOR PERPENATION SUB-GROUP: CHILDREN (T-6 YEARS OLD)

EXISTING TOLERANCES (PUBLISHED ONLY)

RESULT IN A TMEC OF: THE TABLE THRE IS ECUTVALENT TO:

> 0.002354 4. 140 MG/KG/DAY % OF THE ADI.

: POPPOSES NEW TOLEFANCES (CURRENT PETITION ONLY)
RESULT IN A 1MRC OF: 0.000001 MG/KG/DAY % OF THE ADI.

THESE NEW TOLERANCES WILL OCCUPY;

IF THE NEW TOLERANCES (CURRENT PETITION ONLY)
ARE APPROVED THE PESULTANT TMRC WILL BE:
THE NEW TMRC WILL OCCUPY 0.002364 MG/KG/DAY % OF THE ADI.

NO GIVER PENDING TOLERANCES ARE IN THE FILE