

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

APR 10 1995

AND THE REPORT OF THE PROPERTY OF THE PROPERTY

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

SUBJECT:

Dietary Exposure Analysis for Imidacloprid in/on Hops.

PP# 5E4425.

FROM:

Brian Steinwand

Dietary Risk Evaluation Section Science Analysis Branch/HED (7509C)

Through:

Elizabeth Doyle, Section Head

Dietary Risk Evaluation Section

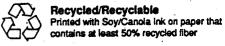
SAB/Health Effects Division

TO:

H. Jamerson/D. Edwards, PM Team 43 & 19

Registration Division (7505C)

Action Requested


Provide a dietary exposure analysis for the use of imidacloprid in/on hops. The petition requests and CBTS recommends that a tolerance of 6.0 ppm be established on hops; a time limited tolerance on hops which expires on June 28, 1996 has already been established (See memo, F. Griffith, 3/21/95).

Discussion

Toxicological Endpoint:

The Reference Dose (RfD) used in the analysis is 0.057 mg/kg bwt/day, based on a NOEL of 100 ppm (5.70 mg/kg bwt/day) from a two year rat feeding study with an uncertainty factor of 100 that demonstrated increased thyroid lesions in males as an endpoint. The HED RfD Peer review Committee also classified imidacloprid as a Group E carcinogen (G. Ghali memo, 11/10/93).

An acute dietary assessment is required by the Toxicology Endpoint Selection Document for imidacloprid (M. Ottley & K. Baetcke memo, 4/18/94). The endpoint for acute dietary risk assessment is 24 mg/kg/day from the rabbit developmental study. The LEL (72 mg/kg/day) was based upon decreased body weight, increased resorptions, abortions, and increased skeletal abnormalities.

Residue Information

Tolerances for imidacloprid are published in 40 CFR §180.472. Hops are included in this analysis as a published commodity with a 3.0 ppm tolerance. For the purposes of this analysis, the following changes were made to the DRES files: a) an increase of the hops tolerance (as per petition) from 3 to 6 ppm; b) new poultry tolerances upgraded to published status; and c) new tolerances for grapes, eggplant, peppers, tomatoes, broccoli, brussels sprouts, cabbage, cauliflower, collards, kale, kohlrabi, lettuce and mustard greens were upgraded to pending.

Residue values used and percent crop treated assumptions made in this analysis to calculate the Theoretic Maximum Residue Concentration (TMRC) and Anticipated Residue Concentration (ARC) are found in Table 1. Adequate secondary tolerances have been established at 0.1 ppm in milk, 0.3 ppm in meat, fat, and meat by-products of cattle, goats, hogs, horses, and sheep, 0.02 ppm in eggs, and 0.05 ppm in meat, fat, and meat by-products of poultry (See memo, F. Griffith, 3/21/95).

Results

A summary of the residue information considered in this analysis is attached as Table 1. A DRES chronic exposure analysis was performed using tolerance level residues and 100 percent crop treated information to estimate the Theoretical Maximum Residue Contribution (TMRC) for the general population and 22 subgroups. Summaries of the TMRCs and their representations as percentages of the Reference Dose (RfD) are included as Tables 2 & 3. Summaries of the acute dietary risk for the subgroup females(13+ years) are attached as Table 4.

Chronic Exposure Analysis

Exposure from Published Uses of imidacloprid:

Subgroup	Exposure (mg/kg/day)	<u>%RfD</u>
U.s. Population	0.002632	4.6
Children 1-6 years	0.006655	12
Non-nursing infants < 1y	r 0.011718	21
Proposed new Tolerances	on hops:	
U.S. Population	0.000012	.02
Children 1-6 years	0.00001	.00
Non-nursing infants < 1y	r	•
If the new tolerances on	hops are approved:	
U.S. Population	0.002643	4.6
Children 1-6 years	0.006655	12
Non-nursing infants < 1v	r 0.014747	26

Acute Exposure:

The DRES detailed acute exposure analysis evaluates individual food consumption as reported by respondents in the USDA 77-78 Nationwide Food Consumption Survey (NFCS) and estimates the distribution of single day exposures through the diet for the U.S. population and certain subgroups. The analysis assumes uniform distribution of imidacloprid in the commodity supply. Since the toxicological effect to which exposure is being compared in this analysis is a developmental effect, the subgroup females (13+years) is the only appropriate group for acute dietary concern.

The Margin of Exposure (MOE) is a measure of how closely the high end exposure comes to the NOEL, the highest dose at which no effects were observed in the laboratory test. For this analysis the MOE is calculated as the ratio of the NOEL to the exposure (NOEL/exposure = MOE). An uncertainty factor (UF) of 100 was applied to account for interspecies extrapolation and intraspecies variability. The Agency is not generally concerned unless the MOE is below 100 when based upon data generated in animal studies.

Using only the CBTS recommended tolerances, the MOE for the females 13+ subgroup is 2,500 for high end exposure. The estimated percent of potential person days on which any commodity for which imidacloprid has tolerances is consumed is ≈ 100 %.

DRES Subgroup	High End MOE (LOEL/High Exposure)	Mean MOE
Females (13+years)	2,500	>13,000

Conclusions

The chronic analysis for imidacloprid is a worst case estimate of dietary exposure with all residues at tolerance level and 100 percent of the commodities assumed to be treated with imidacloprid. Even without refinements, the chronic dietary risk exposure to imidacloprid appears to be minimal for this petition on hops at 6.0 ppm and does not exceed the RfD for any of the DRES subgroups.

Generally, acute dietary margins of exposure of less than 100 tend to cause the Agency concern when endpoints from studies in animals are the basis for comparison. The MOE value of 2,500 demonstrates no concern for females of child-bearing age considering the proposed tolerances.

There appears to be no dietary concern for the tolerances on the recommended commodities found on page 1 of this memo.

Attachments

cc: DRES; Caswell 497E; RCAB; CBTS (F. Griffith); Tox I

TTRE TOTAL A THROUGH DALY)

- 02532 MG/KG/DAY

Imidacloprid

CFR No.

24096AA 270030A 27003WA 14013AB 14013AC 08020A 04001JA 04001AA 14013DA 14013HA 14013AA 13045AA 13021A 13012Å 13005A 13008A 13007A 11003AD 11003A 04001D/ 010141 01014D/ 01013AA 13020AA 13013A 11005J 08020A 06007A 3011A 3010A 3009A 1005U 10051 1005R/ 1005A/ 1004A 1003AE 11001A/ COOE WINE AND SHERRY COTTONSEED - MEAL SORGHUM (INCLUDING MILO) POTATOES (WHITE) - PEEL ONLY POTATOES (WHITE) - DRY COTTON SEED - OIL POTATOES (WHITE) - PEELED POTATOES (WHITE) - UNSPECIFIED POTATOES (WHITE) - WHOLE MUSTARD GREENS LETTUCE-LEAFY VARIETIES KOHLRAB I BRUSSEL SPROUTS
CABBAGE-GREEN AND EGGPLANT HOPS HOPS APPLES-FRESH LETTUCE-HEAD VARIETIES LETTUCE - UNSPECIFIED CABBAGE-CHINESE/CELERY, INC. BOK CHOY COLLARDS **CAULIFLOWER** BROCCOLI TOMATOES-PUREE PIMIENTOS PEPPERS-OTHER CHILI PEPPERS PEPPERS, SWEET, GARDEN MANGOES APPLES-JUICE APPLES-DRIED GRAPES - JUICE GRAPES-FRESH TOMATOES - CATSUP TOMATOES-WHOLE GRAPES-RAISINS TOMATOES-JUICE FOOD NAME 17.00 137 * * * - Tr 300.00 ppm No evidence of carcinog-ONCO: E (RfD/PR Committee) enicity in rats or mice. PETITION 4F4169 4F4337 3F4169 3F423 5E4425 300343 3F4231 3F423 3F423 4F4169 3F4169 3F4169 3F4169 3F423 4F428 3F4169 3F4169 3F4169 3F4169 3.000000 ME TOLERANCE (PPM)
PENDING 1.000000 3.500000 3.00000 0.200000 1.000000 3.500000 3.500000 3.500000 6.00000 3.500000 3.500000 1.00000 5,500000 5.500000 \$.500000 5.500000 5.500000 5.500000 .000000 .00000 .000000 .00000 .00000 .00000 .000000 .00000 PUBL I SHED 9.000000 0.300000 0.500000 0.050000 0.300000 0.300000 0.500000 0.500000 0.300000 3.00000

CHEMICAL INFORMATION FOR CASWELL NUMBER 497E

		Imidacloprid Caswell	A.I. CO	Cin	F000	50000	500005	50000SA	53001BA	53001DA	53001FA	53001LA	53001MA 53002RA	53002BB	53002FA	53002LA	53003AA	53005BA	53005FA	53005KA	53005MA	53006BA 53006BB	53006FA	53006LA	53006MA	550001 A		55008MA	55008MA 55008MB 55008MC	55008MA 55008MB 55008MC 55013BA	55008MB 55008MB 55008MB 55013BA 55013AA	55008MA 55008MB 55008MC 55013BA 55013LA 55013MA 55014AA
	CHEMICAL		_	Ç	ECON MARKET	H 103 - EAT - COI 11	MILK-FAT SOLIDS	MILK SUGAR (LACTOSE)	BEEF-MEAL STPRODUCTS	BEEF-DRIED	BEEF(BONELESS)-FAT (BEEF	BEEF (ORGAN MEATS)-LIVER	BEEF (BONELESS)-LEAN (W/O	GOAT (ORGAN MEATS)-OTHER	GOAT (BONELESS) - FAT	GOAT (ORGAN MEATS)-LIVER	HORSE	SHEED MEAT BYPRODUCTS	SHEEP (BONELESS) - FAT	SHEED CORGAN MEATS)-KIDNEY	SHEEP (BONELESS)-LI	PORK-MEAT BYPRODUCTS PORK(ORGAN MEATS)-OTHER	PORK(BONELESS)-FA	PORK(ORGAN MEATS)-LIVER	PORK-LEAN	TURKEY-GIBLETS (LIVER)	TURKEY-FLESH(W/O SKIN,	TURKEY-UNSPECIFIED	POULTRY, OTHER-BYPRODUCTS	POLITRY OTHER-GIRI	POULTRY, OTHER-GIBLETS(LIVER) POULTRY, OTHER-FLESH (+SKIN, W	POULTRY, OTHER-GIBI POULTRY, OTHER-FLEE EGGS-WHOLE EGGS-WHITE ONLY
C	STUDY TYPE	2yr feeding- rat NOEL= 5.7000 mg/kg	·	18		á		SE)	-OTHER		(BEEF TALLOW)	LIVER	AN (W/O REMOVEABLE FAT)	OTHER	- KIDNEY	LIVER	HORSE	JCTS JCTS		-KIONEY	SHEEP (BONELESS) - LEAN (W/O REMOVEABLE FAT	OTHER	PORK(BONELESS)-FAT (INCLUDING LARD)	LIVER		IVER))	MICTS	ETS(I IVER)	POULTRY, OTHER-GIBLETS(LIVER) POULTRY, OTHER-FLESH (+SKIN, W/O BONES)	SH (+SKIN,W/O BONES)
HEMICAL INFORMA					PETITION NUMBER	4F4169	4F4169	4F4169	4F4169	4F4169	4F4169	4F4169	4F4169 4F4169	4F4169	4F4169	4F4169	4F4169	4F4169 4F4169	4F4169	4F4169	4F4169	4F4169	4F4169	4F4169	454169	3F4231	3F4231	3F4231	3F4251	3F4231	3F4231 3F4231	3F4231 3F4231 3F4231 3F4231
CHEMICAL INFORMATION FOR CASWELL NUMBER 497E	EFFECTS	Increased incidence of mineralized particles in thyroid colloid.	No evidence of carcinog-	enicity in rats or mice.	NEW TO														٠													
NUMBER 497E	REFERENCE DOSES	OPP RfD= 0.057000 EPA RfD= 0.0000000			TOLERANCE (PPM) PENDING PUBL	9	.0	·	0		0 9		φ.	.	•	- 0		0 ¢	. 0	0 9	o o	0	- c	0	00	0	- 0	0	5 C		.	000
	5		-		LISHED	100000	100000	30000	300000	300000	300000	30000	300000	300000	300000	300000	300000	300000	300000	300000	300000	0.300000	0.30000	0.300000	0.30000	0.050000	0.050000	0.050000	0.050000		0.050000	0.050000 0.020000 0.020000
DATE: 03/29/95	DATA GAPS/COMMENTS	MO Cata Rabo.			•		,		-			in the second se																				
PAGE: 2	STATUS STATUS STATUS																															
	외	• /		1	1																											

כחכחוניאר	
THE CHINA SEE	TECOMATICAL PROPERTY.
5	ŝ
070	
;	2

<u></u>	2yr feeding- rat NOEL= 5.7000 mg/kg -9 100.00 ppm -5 14 0000 mg/kg	-	CHEMICAL
No evidence of carcinog- enicity in rats or mice.	mineralized particles in thyroid colloid.	1	CHEMICAL INFORMATION FOR CASWELL NUMBER 497E
	m op	REFERENCE DOSES	NUMBER 497E
		DATA GAPS/COMMENTS	DATE: 03/29/95
		STATUS RfD/PR reviewed 04/22/93	PAGE:

55015BA 55015LA 55015MA 55015MB

CHICKEN-BYPRODUCTS
CHICKEN-GIBLETS(LIVER)
CHICKEN-FLESH(W/O SKIN,W/O BONES)
CHICKEN-FLESH(+SKIN,W/O BONES)

3F4231 3F4231 3F4231 3F4231

CODE CODE

FOOD NAME

PETITION NUMBER

E

PENDING (PPM)

PUBL I SHED

0.050000 0.050000 0.050000 0.050000

CT X		7-78-9	#497E		CUENTON INCOMATION
ONCO: E (RfD/PR Committee) enicity in rats or mice.	LEL= 16.9000 mg/kg	100_00 ppm	NOEL= 5.7000 mg/kg	2vr feeding- rat	STUDY TYPE
enicity in rats or mice.	No evidence of carcinog-	thyroid colloid.	mineralized particles in	Increased incidence of	EFFECTS
		EPA RfD= 0:000000	OPP RfD= 0.057000	AD1 UF>100	REFERENCE DOSES
				No deta gaps.	DATA GAPS/COMMENTS
				KTU/FK Teviewed 04/CC/	STATUS OF 123 /G

•					
NURSING INFANTS (< 1 YEAR OLD) NON-NURSING INFANTS (< 1 YEAR OLD) FEMALES (13+ YEARS, PREGNANT) FEMALES 13+ YEARS, NURSING CHILDREN (1-6 YEARS OLD) CHILDREN (7-12 YEARS OLD)	HISPANICS NON-HISPANIC WHITES NON-HISPANIC BLACKS NON-HISPANIC OTHERS	NORTHEAST REGION NORTH CENTRAL REGION SOUTHERN REGION WESTERN REGION	U.S. POPULATION - SPRING SEASON U.S. POPULATION - SUMMER SEASON U.S. POPULATION - FALL SEASON U.S. POPULATION - WINTER SEASON	U.S. POPULATION - 48 STATES	POPULATION SUBGROUP
0,004866 0.011718 0.001814 0.002172 0.006655 0.004088	0.003096 0.002642 0.002324 0.002718	0.002760 0.002698 0.002372 0.002801	0.002468 0.002535 0.002781 0.002736	0.002631	TOTAL TMRC (MG/KG BODY WEIGHT/DAY) CURRENT TMRC** NEW TMRC**
0.005485 0.014746 0.006715 0.007638 0.016735 0.012404	0.008537 0.008222 0.006999 0.008585	0.008426 0.008301 0.007291 0.008736	0.007700 0.007740 0.008470 0.008467	0.008099	NEW THRC++
9.623265 25.870911 11.780782 13.399537 29.359284 21.760947	14.977821 14.425288 12.279626 15.062230	14.782172 14.563830 12.791993 15.325465	13.508718 13.578412 14.859261 14.854167	14.209154	NEW TMRC AS PERCENT OF RFD
1.085839 5.313479 8.598193 9.589472 17.683961 14.589793 0.076693	9.546453 9.790779 8.202982 10.293246	9.940133 9.830533 8.629763 10.410582	9.179433 9.130546 9.980784 10.053851	9.593240	DIFFERENCE AS PERCENT OF RFD
					EFFECT OF ANTICIPATED RESIDUES ARC %RFD
	AR OLD) 0.004866 0.005485 9.623265 1 YEAR OLD) 0.011718 0.014746 25.870911 0.001814 0.006715 11.780782 0.002172 0.007638 13.399537 1.006655 0.012404 21.750947 0.002473 0.002473 0.012404 21.750947 0.002473 0.002473 0.012404 21.750947 12.774737	NIC WHITES NIC WHITES NIC BLACKS NIC OTHERS NIC OT	REGION O.002760 O.002698 O.002698 O.002801 O.002801 O.002801 O.002801 O.002801 O.002801 O.002801 O.008537 I4.977821 O.002802 O.008537 I4.977821 O.008522 I4.425288 O.002718 O.008522 I4.425288 O.008523 O.008525 I5.062230 O.002718 O.008585 I5.062230 O.002718 O.005485 O.005485 O.005485 O.005485 O.005485 O.005485 O.005485 O.006715 O.006715 O.006715 O.006715 O.006855 O.006855 O.006855 O.006855 O.006855 O.006856 O.006856 O.006857 O.006857 O.006857 O.006858 O.	POPULATION - SPRING SEASON 0.002468 0.007700 13.508718 POPULATION - SUMMER SEASON 0.002535 0.007740 13.578412 POPULATION - FALL SEASON 0.002781 0.008470 14.859261 POPULATION - FALL SEASON 0.002736 0.008467 14.859261 POPULATION - FALL SEASON 0.002736 0.008467 14.859261 POPULATION - FALL SEASON 0.002736 0.008467 14.859261 POPULATION - FALL SEASON 0.002760 0.008426 14.782172 PERSTANCION 0.002698 0.008426 14.782172 POPULATION - FALL SEASON 0.002698 0.008301 14.653830 POPULATION - FALL SEASON 0.002698 0.008301 14.782172 PERSTANCION 0.002699 0.002372 0.007291 12.791993 PARSING INFANTS (< 1 YEAR OLD)	POPULATION - 48 STATES POPULATION - 5 STATES

^{**}New TNRC includes new, pending, and published tolerances.

TOLERANCE ASSESSMENT SUMMARY FOR Imidacloprid CASWELL #497E

DATE: 04/07/95

ANALYSIS FOR POPULATION SUB-GROUP: U.S. POPULATION - 48 STATES

MANETATA TON FOLDEN	TION SUB-GROUP: U.S. POPULATION - 48 STATES		
	EXISTING TOLERANCES (PUBLISHED ONLY) RESULT IN A TMRC OF: THE EXISTING TMRC IS EQUIVALENT TO:	0.002632 4.616	MG/KG/DAY % OF THE ADI.
	PROPOSED NEW TOLERANCES (CURRENT PETITION ONLY) RESULT IN A TMRC OF: THESE NEW TOLERANCES WILL OCCUPY:	0.000012 0.020	MG/KG/DAY % OF THE ADI.
	IF THE NEW TOLERANCES (CURRENT PETITION ONLY) ARE APPROVED THE RESULTANT THRC WILL BE: THE NEW THRC WILL OCCUPY	0.002643 4.636	MG/KG/DAY % OF THE ADI.
	OTHER PENDING TOLERANCES EXCLUDING THE CURRENT NEW PETITION HAVE A TMRC OF: THIS TMRC WILL OCCUPY	0.005457 9.574	
	IF ALL PENDING TOLERANCES (INCLUDING THE CURRENT NEW PETITION) ARE GRANTED THE RESULTANT TMRC WILL BE: THE TOTAL TMRC WILL OCCUPY TION SUB-GROUP: NON-NURSING INFANTS (< 1 YEAR OLD	14:209	MG/KG/DAY % OF THE ADI.
ANALTSIS PUR PUPULA	TION SUB-GROUP: NON-HORSING INFANTS (> 1 TEAR OLD	••	
	EXISTING TOLERANCES (PUBLISHED ONLY) RESULT IN A TMRC OF: THE EXISTING TMRC IS EQUIVALENT TO:		MG/KG/DAY % OF THE ADI.
	NO NEW TOLERANCES ARE IN THE FILE.	,	f
	OTHER PENDING TOLERANCES EXCLUDING THE CURRENT NEW PETITION HAVE A TMRC OF: THIS TMRC WILL OCCUPY	0.003029 5.313	MG/KG/DAY % OF THE ADI.
ANALYSIS FOR PORIII	IF ALL PENDING TOLERANCES (INCLUDING THE CURRENT NEW PETITION) ARE GRANTED THE RESULTANT TMRC WILL BE: THE TOTAL TMRC WILL OCCUPY ATION SUB-GROUP: CHILDREN (1-6 YEARS OLD)	0.014747 25.871	MG/KG/DAY % OF THE ADI.
ANALISIS FUR PUPULA	(ITON SUB-GROUP: CHILDREN (I O ILANS SED)		
	EXISTING TOLERANCES (PUBLISHED ONLY) RESULT IN A TMRC OF: THE EXISTING TMRC IS EQUIVALENT TO:	0.006655 11.675	MG/KG/DAY % OF THE ADI.
	PROPOSED NEW TOLERANCES (CURRENT PETITION ONLY) RESULT IN A TMRC OF: THESE NEW TOLERANCES WILL OCCUPY:	<0.000001 0.000	MG/KG/DAY % OF THE ADI.
	IF THE NEW TOLERANCES (CURRENT PETITION ONLY) ARE APPROVED THE RESULTANT TMRC WILL BE: THE NEW TMRC WILL OCCUPY	0.006655 11.675	MG/KG/DAY % OF THE ADI.
	OTHER PENDING TOLERANCES EXCLUDING THE CURRENT NEW PETITION HAVE A TMRC OF: THIS TMRC WILL OCCUPY	0.010080 17.684	
	IF ALL PENDING TOLERANCES (INCLUDING THE CURRENT NEW PETITION) ARE GRANTED THE RESULTANT TMRC WILL BE: THE TOTAL TMRC WILL OCCUPY	0.016735 29.359	

Exposure = RDV x X = 0.0024 x 4 High End Exposure = 0.0096	TOLERANCES: ANTICIPATED RESIDUES:	ESTIMATES BASED ON TOLERANCES: ANTICIPATED RESIDUES:	-FEMALES(13+ YRS)	**************************************	*HAME: IMIDACLOPRID STU *CASWELL NO: 497E CFR NO: CFR A *CAS NO: 12909-90-0 SHAUGHNESSY NO: 129099 B	DETAILED ACUTE ANALYSIS INCLUDING AR'S: ALL STATISTICS BASED ON USERS' DAILY CONSUMPTION 10:41 Tuesday, April 4, 1995 2: ************************************
· .	100 o	PERSON DAYS THAT ARE USER-DAYS MG/KG BODY WEIGHT/DAY AS PERCENT OF RDV 0.00 0.00 0.000000 79.78 0.001732 72.16 ESTIMATED % OF POPULATION USER-DAYS WITH RESIDUE CONTRIBUTION EXCEEDING X TIMES THE RDV, FOR X= 0.2.4.6.8 1 1.2 1.4 1.6 1.8 2 3 4 5 10 15	ESTIMATED % OF POTENTIAL	ed in thi	CFR NO: CFR .	UDING AR/
	20	99 0 % 0 1 SAV	× 0	s ana	12909	S: A
	0 0 0 91 71 51	THAT ARE 0.00 99.78 OF POPUL/2	F POTEN	C lysis in ithout t	STUDY A 9 B	LL STAT
*	51	USER- ATION	TIAL	s O.O	RDV	ISTIC
	34 0	DAYS USER- .8		0024 fodifi		S BASE
	22	MG/K	MEAN	MG/ cations	NOEL	D ON US
	7 0	G BOD 0.00 0.00 11H RES 1.2	DAIL	KG ò	ŞF	ERS' [
	9.0	BODY WEIG 0.000000 0.001732 RESIDUE	RESI	, BODA		AILY
	6.0	MG/KG BODY WEIGHT/DAY 0.000000 0.001732 'S WITH RESIDUE CONTRIBU 1 1.2 1.4 1.6	MEAN DAILY RESIDUE CONTRIBUTION PER USER-DAY	MG/KG of BODY WEIGHT/DAY ons.	STUDY TYPE	CONSUMP
*	0.4	1.8	TRIBUI	/DAY		TION TION
	30	AS PERCENT OF RDV 0.00 72.16 EXCEEDING X TIMES 2 3 4	TON PER	***	SPECIES	***
	0	RCENT 0 0.00 72.16 DING X	USER	***	EFF.	10:
	00	F ROV	-DAY	DATA:	ŒV.	41 Tu
	00	THE RO		R DATA: No User Modifications*	EFF. LEV. CORE GRADE DOC. NO.	0:41 Tuesday, April 4, 1995 22
	00	v, 10 Fg		****	GRADE	April
	00	7 X X		lificat	000	4, 195
9	00	20		******		75 22

MOE = Noel + Exposure = 24 mg/kg/day + 0.0096 mg/kg/day MOE = 2500

Mean MOE = NOEL + Mean = 24 + 0.001732 =>13,000