DATA EVALUATION RECORD

- 1. CHEMICAL: XRD-498. Shaughnessey No. 129016.
- TEST MATERIAL: XRD-498; N-(2,6-difluorophenyl)-5-methyl-(1,2,4) triazolo (1,5-a)pyrimidine-2-sulfonamide; AGR 240043; CAS No. 098967-40-9; 99.6% purity; a white powder.
- **STUDY TYPE:** Avian Reproduction Study. Species Tested: Mallard (Anas platyrhynchos).
- CITATION: Beavers, J.B., A. Corbitt, and M.J. Jaber. XRD-498 Herbicide, N-(2,6-difluorophenyl)-5-methyl-(1,2,4) triazolo (1,5-a)pyrimidine-2-sulfonamide: A One-Generation Reproduction Study with the Mallard (Anas platyrhynchos). Laboratory Project No. 103-298. Prepared by Wildlife International Ltd., Easton, MD. Submitted by DowElanco. MRID No. 419317-42.

5. REVIEWED BY:

Michael L. Whitten, M.S. Wildlife Toxicologist KBN Engineering and Applied Sciences, Inc.

6. APPROVED BY:

Pim Kosalwat, Ph.D. Senior Toxicologist KBN Engineering and Applied Sciences, Inc.

Henry T. Craven, M.S. Supervisor, EEB/EFED USEPA

signature: Muhal L. white

Date: /2/4/91

signature: P. Hosalwat

Date: 12/4/91

Signature: Remy 7- Commander

Date: 12/10/92

CONCLUSIONS: Nominal dietary concentrations of XRD-498 at 100, 300, and 600 ppm a.i. had no effects upon behavior, food consumption, or reproduction in adult mallards during the 18week exposure period. The NOEC was 600 ppm a.i. The study is scientifically sound and fulfills the guideline requirements for an avian reproduction study. This study is being

N/A. Obtained and test concentrations were not RECOMMENDATIONS: reserved in the dat. The lack of an wor is acceptable since this is a sulforge were and will always bessed at very low levels topping will not approach the 600 ppm level. The faithful to measure concentration in the dat is accepted become the diet was mixed fresh each week.

DR 12-10-52

- 9. BACKGROUND:
- 10. DISCUSSION OF INDIVIDUAL TESTS: N/A.
- 11. MATERIALS AND METHODS:
 - A. <u>Test Animals</u>: The birds used in the test were penreared, unmated mallards (*Anas platyrhynchos*) purchased from Whistling Wings, Hanover, Illinois. The birds were acclimated to the facilities for 5 weeks. At test initiation all birds were examined for physical injuries and general health. Birds that did not appear healthy were discarded. The birds were 22 weeks of age at test initiation. Adult birds were identified by individual leg bands.
 - B. Dose/Diet Preparation/Food Consumption: Test diets were prepared by mixing XRD-498 into a pre-mix which was used for weekly preparation of the final diet. The control diet and three test concentrations (100, 300, and 600 ppm) were prepared weekly and presented to the birds on Monday of each week. When necessary, additional feed was prepared. Each of the four groups of adult birds was fed the appropriate diet from test initiation until terminal sacrifice. Dietary concentrations were adjusted for purity of the test substance, and are presented as ppm of the active ingredient (a.i.). The control diet contained an amount of the solvent (acetone) and carrier (corn oil) equal to that in the treated diets.

Basal diet for adult birds and their offspring was formulated by Agway, Inc. The composition of the diet was presented in the report. The test substance was not mixed into the diet of the offspring. Food and water were supplied ad libitum during acclimation and during the test. Six composite samples from the control and each treatment concentration were collected on day 10 of week 1 to determine the homogeneity of the test material in the diet. These samples, along with verification samples collected on day 0 of weeks 9 and 18, were used to calculate mean measured concentrations. Samples were collected on day 7 of weeks 1, 9, and 18 to evaluate the stability of the test material in the diet. All samples were frozen immediately after collection, and remained frozen until analyzed by Dow Chemical Co.

Food consumption in each pen was determined once each week throughout the study.

C. <u>Design</u>: The birds were randomly distributed into four groups as follows:

XRD-498 Herbicide Nominal Concentration	Number	Birds	<u>Per Pen</u>
Concentraction	of Pens	Males	Females
Control (0 ppm) 100 ppm	16	1	1
300 ppm	16 16	1 1	1
600 ppm	16	1	1

Treatment levels were based upon known toxicity data, a pilot reproduction study conducted by Wildlife International Ltd., and consultation with the sponsor. The primary phases of the study and their approximate durations were as follows:

- 1. Acclimation 5 weeks.
- 2. Pre-photostimulation 8 weeks.
- 3. Egg laying 10 weeks.
- Post-adult sacrifice (final incubation, hatching, 14-day offspring rearing period) - 5 weeks.
- Pen Facilities: Adult birds were housed indoors in pens constructed of wire grid and sheeting. Pens measured approximately 75 x 90 x 45 cm high. The average temperature in the adult study room was 20.7°C ± 1.6°C (SD) with an average relative humidity of 36% ± 12% (SD).

The photoperiod during acclimation and during the first 8 weeks of the study was 8 hours of light per day. The photoperiod was increased to 17 hours of light per day at the beginning of week 9 and was maintained at that level until sacrifice of adult birds. The birds were exposed to approximately 130 lux of illumination throughout the study.

E. Adult Observations/Gross Pathology: Adult birds were observed at least once daily throughout the study for signs of toxicity or abnormal behavior. All birds that died during the study were necropsied. As soon as practical after the death of the bird, the penmate was sacrificed and necropsied. At study termination, all surviving birds were sacrificed and necropsied. Adult birds were weighed at test initiation, at the end of weeks 2, 4, 6, 8, and at study termination.

Eggs/Eggshell Thickness: Eggs were collected daily from all pens, marked according to pen of origin, and washed to prevent pathogen contamination. The eggs were then stored at 10.4°C ± 0.8°C (SD) and 67% relative humidity until incubated. Eggs were removed from the storage room weekly and candled. Cracked or abnormal eggs were discarded. All eggs that were not cracked, abnormal or used for egg shell thickness measurements were placed in an incubator at 37.5°C ± 0.04°C (SD) and 56% relative humidity. Eggs were candled again on day 14 of incubation to determine embryo viability and on day 21 to determine embryo survival. All eggs were turned automatically while in the incubator. The eggs were placed in a hatcher on incubation day 24. The average temperature in the hatcher was 37.0°C ± 0.6°C (SD) with an average relative humidity of 76%.

Weekly throughout the egg laying period, one egg was collected, when available, from each of the odd numbered pens during the odd numbered weeks, and from each of the even numbered pens during the even numbered weeks. These eggs were used for egg shell thickness measurements. The average thickness of the dried shell plus membrane was determined by measuring (to the nearest 0.005 mm) five points around the waist of the egg using a micrometer.

- G. <u>Hatchlings</u>: All hatchlings and unhatched eggs were removed from the hatcher on day 26 or 27 of incubation. The average body weight of the hatchlings by pen was then determined. Hatchlings were toe and web clipped for identification by pen of origin and then placed in brooding pens until 14 days of age. Each brooding pen measured 72 cm x 90 cm x 24 cm high, and was constructed of galvanized wire mesh and sheeting. Temperatures in the brooding compartment were approximately 38°C until the birds were 5 to 7 days of age, and 26°C thereafter. The photoperiod was maintained at 17 hours of light per day. Hatchlings were fed untreated diet. At 14 days of age, the average body weight by parental pen of all survivors was determined.
- M. Statistics: Upon completion of the study, Dunnett's method was used to determine statistically significant differences between the control group and each of the treatment groups. Sample units were the individual pens within each experimental group. Percentage data were examined using Dunnett's method following arcsine transformation. The pens in which mortality occurred were not used in statistical comparisons of the data.

Each of the following parameters was analyzed statistically:

Adult Body Weight
Adult Feed Consumption
Eggs Laid of Maximum Laid
Eggs Cracked of Eggs Laid
Viable Embryos of Eggs Set
Live 3-Week Embryos of
Viable Embryos
Hatchlings of 3-Week
Embryos
Hatchlings of Eggs Set

Offspring Body Weight
Hatchlings of Maximum Set
14-Day Old Survivors of
Maximum Set
14-Day Old Survivors of
Eggs Set
14-Day Old Survivors of
of Hatchlings
Egg Shell Thickness

12. REPORTED RESULTS

- A. <u>Diet Analysis</u>: The results of the diet analyses showed that homogeneity and stability were within acceptable limits. Mean measured concentrations of samples collected on the first day of weeks 1, 9, and 18 were 95 ppm, 285 ppm, and 584 ppm (Table 6 attached). These values correspond to 95%, 95%, and 97% of the nominal concentrations of 100, 300, and 600 ppm, respectively. Detailed results of diet analyses were presented in Appendix XII of the report.
- B. Mortality and Behavioral Reactions: There were no treatment-related mortalities at any concentration tested. One incidental mortality occurred in the 100-ppm group, and one incidental mortality occurred in the 300-ppm group.

The single mortality in the 100-ppm group was a female found dead during week 17. Necropsy revealed an emaciated bird with a regressing ovary, extensive egg yolk peritonitis, and a large abscess with caceous necrosis at the midsection of the reproductive tract. The single mortality in the 300-ppm group was a female found dead at the end of week 11. Necropsy revealed petechial hemorrhages, enlarged heart and spleen, and egg yolk peritonitis.

Necropsy results of all mortalities and sacrificed birds were included in the report. Due to the nature of the lesions observed at necropsy, both mortalities were considered to be incidental to treatment. Similarly, all lesions observed in sacrificed birds were considered to be unrelated to treatment.

No overt signs of toxicity were observed at any concentration.

C. Adult Body Weight and Food Consumption: No significant differences in body weights between the control and any treatment group were noted at any body weight interval.

There were no apparent treatment related effects upon feed consumption among birds at any concentration tested. There were some reductions in feed consumption between the control and the treatment groups within the first 5 weeks. The differences were statistically significant during weeks 2 and 3 at all test concentrations and at the 300 and 600 ppm concentrations during week 5 (Table 2, attached). The differences were not dose responsive and were considered to be incidental to treatment.

- D. <u>Reproduction</u>: When compared to the control group, there were no significant differences in reproductive parameters at any concentration tested (Tables 3 & 3A, attached).
- E. <u>Egg Shell Thickness</u>: When compared to the control group, there were no significant differences in egg shell thickness at any concentration.
- F. Offspring Body Weight: There were no significant differences between the control and any treatment group in body weight of offspring at hatching or at 14 days of age.
- "Dietary concentrations of XRD-498 herbicide at 100 ppm, 300 ppm or 600 ppm did not result in treatment related mortality, overt signs of toxicity, or effects upon adult body weight or feed consumption during the 18 week exposure period. There were no apparent treatment related effects upon reproductive parameters at any of the concentrations tested. The no-observed-effect concentration for XRD-498 herbicide in this study was 600 ppm, the highest concentration tested."

The report stated that study was conducted in conformance with Good Laboratory Practice regulations (40 CFR Part 160). Quality assurance audits were conducted during the study and the final report was signed by the Quality Assurance Auditor of Wildlife International Ltd.

14. Reviewer's Discussion and Interpretation of the Study:

A. <u>Test Procedure</u>: The test procedures were in accordance with Subdivision E - Hazard Evaluation: Wildlife and Aquatic Organisms, ASTM, and SEP guidelines except for the following deviations:

Eggs were stored at a temperature of approximately 10°C; 16°C is recommended.

Behavioral observations of offspring were not reported.

Observations on food palatability were not reported.

B. Statistical Analysis: Statistical procedures differed from recommended methods. Specifically, there is no basis for transforming the number of eggs laid and the number of hatchlings to percentile values of the maximum number of eggs laid or set in any test group.

Statistical analyses of reproductive parameters were performed by the reviewer using analysis of variance (ANOVA) following square-root transformation of the count data and arcsine square-root transformation of the ratio data. The comparison between control data and data from each treatment level was made using multiple comparison tests. The computer program used is based on the EEB Bigbird program, with an exception that the count data were square-root transformed before the ANOVA. The significance level was $p \leq 0.05$.

Analyses of reproductive parameters were verified (attached) and generally matched those reported by the authors. Exceptions are discussed below.

C. <u>Discussion/Results</u>: Three parameters analyzed by the reviewer showed significant differences from the control for at least one treatment concentration: cracked eggs, food consumption, and male body weight.

Fewer eggs were cracked at 300 ppm than in the control group; this was not a treatment effect.

When analyzed over the entire study period, the 300-ppm group consumed significantly less food than the control group. Food consumption in all treatment groups was generally less than in the control group, with the 300-ppm group usually showing the lowest values (Figure 3, attached). Because values at 600 ppm more closely approximated the control values, lower values at 300 ppm suggest the absence of a treatment-effect. These data, however, do show the importance of observing and

describing food palatability. Unfortunately, these observations were not reported.

Male body weight change from initiation to termination at 100 and 300 ppm was significantly greater than control values. Because males in these treatment groups gained weight while the males in the control group lost weight (Table 1, attached), the differences are not attributed to treatment.

There were no apparent treatment related effects upon reproductive parameters at any of the concentrations tested. The NOEC for XRD-498 was 600 ppm, the highest concentration tested.

This study is scientifically sound and fulfills the guideline requirements for an avian reproduction study.

D. Adequacy of the Study:

- (1) Classification: Core.
- (2) Rationale: Deviations from protocols were minor and probably did not affect the validity of the study.
- (3) Repairability: N/A.
- 15. COMPLETION OF ONE-LINER: Yes; November 25, 1991.

RIN 7767-93

REVIEWS FOR BROADSTRIKE (FLUMETSULAM 129016)
Page is not included in this copy. Pages through are not included.
The material not included contains the following type of information:
Identity of product inert ingredients.
Identity of product impurities.
Description of the product manufacturing process.
Description of quality control procedures.
Identity of the source of product ingredients.
Sales or other commercial/financial information.
A draft product label.
The product confidential statement of formula.
Information about a pending registration action.
FIFRA registration data.
The document is a duplicate of page(s)
The document is not responsive to the request.
The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.

XRD-498 MALLARD

TREATMEN	T LEVE	.: 0 ppm	(Control)						
			EL	EC	ES	VE	LE21	HAT	TWOWK
CASE	1		33	1	28	27	27	22	22
CASE	2		36	2	29	27	26	21	21
CASE	3		39	1	35	33	33	11	10
CASE	4		37	2	30	24	24	17	16
CASE	5		43	0	34	34	34	30	30
CASE	6		50	0	46	45	43	30	30
CASE	7		0	0	0	.0	0	0	0
CASE	8		52	1	46	45	43	23	23
CASE	9		49	2	43	43	43	32	32
CASE	10		3,7	2	32	29	29	26	26
CASE	11		47	0	43	37	37	27	27
CASE	12		48	1	4.3	25	18	.0	.0
CASE	13		44	1	38	34	33	26	26
CASE	14		42	1	37	37	35	22	22
CASE	15		31	0	29	28	26	16	16
CASE	16		35	2	29	29	27	18	18
		Totals	623	16	542	497	478 [.]	321	319
TREATME	NT LEVI	EL: 100 p	pm						
			EL	EC	ES	VE	LE21	HAT	TWOWK
CASE	17		1	0	0	0	0	0	0
CASE	18		46	1	41	38	38	8	7
CASE	19		49	2	42	40	40	38	38
CASE	20		43	0	39	39	39	21	21
CASE	21		•		.•		•	•	
CASE	22		49	0	45	44	41	.38	37
CASE	23		45	2	39	39	38	33	33
CASE	24		48	2	41	39	36	23	22
CASE	25		55	1	49	47	47	14	13
CASE	26		37	1	30	29	28	.4	4
CASE	27		30	1	27	25	25	14	14
CASE	28		45	1	40	35	33	12	10
CASE	29		0	0	0	0	. 0	0	0
CASE	30		51	3	44	21	20	16	16
CASE	31		39	.0	36	.34	31	7	6
CASE	32	*	46	0	. 42	41	41	25	25
		Totals							

XRD-498 MALLARD

		VEL: 300	ppm	•					
			EL	EC	ES	VE	LE21	HAT	77 Tay 20
CASI			43	0				mar	TWOWK
CASI	34		0	0	39	38	35	23	22
CASI	3.5		43	0	0	0	0	0	23
CASE	36		41	1	39	38	38	35	34
CASE			38	ō	35	35	35	32	32
CASE			50	2	34	34	34	16	15
CASE				.4	44	39	39	35	34
CASE	40		7	i	:	•	•		
CASE			30	0	1	,1	0	ò	0
CASE	42	10	49	1	27	27	27	11	11
CASE	43		50	Ō	44 .	43	41	30	30
CASE	44		21		46	45	44	34	30
CASE	45		47	0	18	16	15	3	
CASE	46		46	0	42	42	41	6	3
CASE	47		26	0	42	41	41	17	.6
CASE	48		43	0	23	22	21	12	17
	.,		4.3	.0	39	39	38	33	12
		Totals	624	_				33	29
		TOCALS	534	5	473	460	449	287	276
TREATM	ENT LEVE	L: 600 p	prin.						
2.2			EL	EC	ES	VE	LE21	HAT	TWOWK
CASE	49		43	3	36	25			
CASE	50		41	2	35	34	25	21	21
CASE	51		47	4	39	35	34	21	20
CASE	52		35	0	31	28	33	23	23
CASE	53		40	3	33	33	26	8	8
CASE	54		47	0	42	39	33	26	24
CASE	55		37	1	33		39	32	31
CASE	56		39	4	30	30	3,0	27	26
CASE	57		27	2	23	29	28	14	14
CASE	58		39	ī	34	21	21	15	14
CASE	59		40	ī		32	31	19	18
CASE	60		0	Ô	35	33	33	20	17
CASE	61		42	2	0	0	0	0	0
CASE	62		47	0	36	33	33	28	27
CASE	63		50	0	42	42	42	20	20
CASE	64		38		46	14	14	9	9
			00	.0	35	34	34	26	26
		Totals							

MALLARD

ANOVA on SQR(Eggs Laid)

DEP VAR:

SEL

N:

62 MULTIPLE R: 0.077 SQUARED MULTIPLE R: 0.006

ANALYSIS OF VARIANCE

SOURCE

SUM-OF-SQUARES DF MEAN-SQUARE

F-RATIO

TRT

1.239 3

0.413

0.115

0.951

ERROR

207.583 58

3.579

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE

SS

DF

MS

 \mathbf{F}

HYPOTHESIS ERROR

0.219 207.583

1 58 0.219 3.579 0.061

0.805

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

ERROR

SS

DF

MS

F

HYPOTHESIS

1.052 207.583 58

1

1.052 3.579

0.294

0.590

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

ERROR

SS

DF

MS

F

P

HYPOTHESIS

0.020

1 207.583 58 0.020 3.579 0.006

ANOVA on SQR(Eggs Cracked)

DEP VAR:

SEC

N: 62 MULTIPLE R: 0.352 SQUARED MULTIPLE R: 0.124

ANALYSIS OF VARIANCE

SOURCE

SUM-OF-SQUARES DF MEAN-SQUARE

F-RATIO

TRT

3.471 3

1.157

2.742

0.051

ERROR

24.475

58

0.422

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

SS DF

HYPOTHESIS ERROR

0.056 24.475

1 58

0.056 0.422

MS

0.133

0.716

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

ERROR

SS

DF

F

P

HYPOTHESIS

2.115 24.475 1 2.115 58 0.422

MS

5.012

0.029 Eggs cracked:

300ppm < control

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

SS

DF

MS

F

HYPOTHESIS

1

0.084 0.422 0.198

0.658

58

ANOVA on SQR(Eggs Set) N: 62 MULTIPLE R: 0.076 SQUARED MULTIPLE R: 0.006 DEP VAR: SES ANALYSIS OF VARIANCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO SOURCE P 0.399 1.197 3 TRT 0.113 0.952 204.864 58 3.532 ERROR Post-hoc contrast of treatment 1 with control. TEST FOR EFFECT CALLED: TRT TEST OF HYPOTHESIS DF MS F SOURCE SS HYPOTHESIS 0.233 1 0.233 0.066 0.798 204.864 3.532 ERROR 58 Post-hoc contrast of treatment 2 with control. TRT TEST FOR EFFECT CALLED: TEST OF HYPOTHESIS SS F P SOURCE DF MS 1.030 0.292 0.591 HYPOTHESIS 1.030 1 204.864 58 3.532 ERROR Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

F SOURCE DF MS SS 0.932 0.026 0.007 0.026 1 HYPOTHESIS ERROR 204.864 58 3.532

ANOVA on SQR(Viable Embryos)

DEP VAR:

SVE

N:

62 MULTIPLE R: 0.047 SQUARED MULTIPLE R: 0.002

ANALYSIS OF VARIANCE

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO

TRT

0.444 3

0.148

0.044

0.988

ERROR

196.353 58

3.385

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

SS DF

MS

F

P

HYPOTHESIS ERROR

0.251 196.353

1 58 0.251 3.385

0.074

0.786

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

SS

DF

MS

F

0.087

P

HYPOTHESIS ERROR

0.295 196.353

1 58

0.295 3.385

0.769

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

SS DF

MS

F

P

HYPOTHESIS

0.325

1

0.325

0.096

0.758

ERROR

196.353

58

ANOVA on SQR(21-day Live Embryos)

DEP VAR:

SLE21

N:

62 MULTIPLE R: 0.042 SQUARED MULTIPLE R: 0.002

ANALYSIS OF VARIANCE

SOURCE

SUM-OF-SQUARES DF MEAN-SQUARE

F-RATIO

P

TRT

0.358

3

0.119

0.034

0.991

ERROR

202.433 58

3.490

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

SS

DF

MS

F

P

HYPOTHESIS ERROR

0.169 202.433

1 58

0.169 3.490

0.048

0.827

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

SS

DF

MS

F

P

HYPOTHESIS ERROR

0.335 202.433

1 58

0.335 3.490

0.096 0.758

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

ERROR

SS

DF

MS

P

HYPOTHESIS

0.123 202.433

1 58

0.123 3.490

0.035

ANOVA on SQR(Hatched)

DEP VAR:

SHAT N: 62 MULTIPLE R: 0.123 SQUARED MULTIPLE R: 0.015

ANALYSIS OF VARIANCE

SOURCE

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO

TRT

2.850 3

0.950

0.298 0.827

ERROR

184.781 58 3.186

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE

SS

DF

MS

P

HYPOTHESIS ERROR

1.895 184.781

1 58

1.895 3.186

0.595

0.444

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE SS DF

MS

F

0.162

P

HYPOTHESIS ERROR

0.516 184.781

1 58

0.516 3.186

0.689

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

SS DF

MS

F

HYPOTHESIS

0.011

1

0.011

0.004 0.953

ERROR

184.781

58

ANOVA on SQR(Two week Survivors)

DEP VAR: STWOWK

N: 62 MULTIPLE R: 0.130 SQUARED MULTIPLE R: 0.017

ANALYSIS OF VARIANCE

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO SOURCE

TRT 3.108 3 1.036 0.332 0.802

3.121 ERROR 181.035 58

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F 2.294 0.735 0.395 2.294 1 HYPOTHESIS 181.035 3.121 ERROR 58

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SS DF F P SOURCE MS 0.735 0.235 0.629 0.735 1 HYPOTHESIS 181.035 3.121 ERROR 58

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

P F SS DF MS SOURCE 0.975 0.003 1 0.003 0.001 HYPOTHESIS 3.121 181.035 58 ERROR

ANOVA on EC/EL

DEP VAR: RESP1 N: 58 MULTIPLE R: 0.317 SQUARED MULTIPLE R: 0.101

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

TRT 234.668 3 78.223 2.011 0.123

ERROR 2100.079 54 38.890

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P

HYPOTHESIS 10.298 1 10.298 0.265 0.609

ERROR 2100.079 54 38.890

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P

HYPOTHESIS 133.711 1 133.711 3.438 0.069

ERROR 2100.079 54 38.890

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P
HYPOTHESIS 9.308 1 9.308 0.239 0.627
ERROR 2100.079 54 38.890

ANOVA on VE/ES

DEP VAR: RESP2 N: 57 MULTIPLE R: 0.318 SQUARED MULTIPLE R: 0.101 ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P 741.969 3 TRT 247.323 1.987 0.127 ERROR 6597.159 53 124,475

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS HYPOTHESIS 3.867 1 3.867 0.031 0.861 ERROR 6597.159 53 124.475

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P HYPOTHESIS 264.489 1 264.489 2.125 0.151 6597.159 124,475 ERROR 53

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS P 0.916 0.343 114.070 HYPOTHESIS 114.070 1 6597.159 53 124.475 ERROR

ANOVA on LE21/VE 57 MULTIPLE R: 0.243 SQUARED MULTIPLE R: 0.059 RESP3 N: DEP VAR: ANALYSIS OF VARIANCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P SOURCE 194.860 1.107 0.354 584.581 3 TRT 175.978 9326.840 53 ERROR Post-hoc contrast of treatment 1 with control. TEST FOR EFFECT CALLED: TEST OF HYPOTHESIS P DF MS F SOURCE SS 0.875 0.025 4.428 4.428 1 HYPOTHESIS 53 175.978 9326.840 ERROR Post-hoc contrast of treatment 2 with control. TRT TEST FOR EFFECT CALLED: TEST OF HYPOTHESIS SS DF F MS SOURCE 0.728 128.025 0.398 1 HYPOTHESIS 128.025 175.978 ERROR 9326,840 53 Post-hoc contrast of treatment 3 with control. TEST FOR EFFECT CALLED: TRT TEST OF HYPOTHESIS F P DF MS SOURCE SS

168.915

9326.840

HYPOTHESIS

ERROR

1

53

168.915

175.978

0.332

ANOVA on HAT/LE21

DEP VAR:

RESP4

N:

56 MULTIPLE R: 0.167 SQUARED MULTIPLE R: 0.028

ANALYSIS OF VARIANCE

SOURCE

SUM-OF-SQUARES DF MEAN-SQUARE

F-RATIO

P

TRT

384.442

128.147

0.500

0.684

ERROR

13340.497

52

3

256.548

MS

256.548

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

SS

DF

F

P

HYPOTHESIS ERROR

182.347 13340.497

182.347 1

0.711

0.403

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

52

TEST OF HYPOTHESIS

SOURCE

SS

DF

F

P

HYPOTHESIS ERROR

10.257 13340.497 1 52

10.257 256.548

MS

0.040

0.842

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE

SS

ĎF

MS

F

HYPOTHESIS

34.776

1

34.776

0.136

ERROR

13340.497

52

256.548

ANOVA on TWOWK/HAT

DEP VAR: RESP5 N: 55 MULTIPLE R: 0.283 SQUARED MULTIPLE R: 0.080

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

TRT 279.249 3 93.083 1.477 0.232

ERROR 3214.772 51 63.035

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P

HYPOTHESIS 221.504 1 221.504 3.514 0.067

ERROR 3214.772 51 63.035

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED: T

TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P HYPOTHESIS 80.869 80.869 1.283 0.263 1 ERROR 3214.772 51 63.035

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P
HYPOTHESIS 195.898 1 195.898 3.108 0.084
ERROR 3214.772 51 63.035

ANOVA on HAT/ES

RESP6 N: 57 MULTIPLE R: 0.159 SQUARED MULTIPLE R: 0.025 DEP VAR: ANALYSIS OF VARIANCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO SOURCE P 375.143 3 125.048 0.457 0.713 TRT 14500.770 53 273.599 ERROR Post-hoc contrast of treatment 1 with control. TEST FOR EFFECT CALLED: TEST OF HYPOTHESIS SOURCE SS DF MS F 263.611 0.963 0.331 HYPOTHESIS 263.611 1 273.599 14500.770 53 ERROR Post-hoc contrast of treatment 2 with control. TEST FOR EFFECT CALLED: TRT TEST OF HYPOTHESIS DF MS F SOURCE SS 93.210 93.210 0.341 0.562 1 HYPOTHESIS 14500.770 53 273.599 ERROR Post-hoc contrast of treatment 3 with control. TEST FOR EFFECT CALLED: TRT TEST OF HYPOTHESIS F P SOURCE SS DF MS

HYPOTHESIS

ERROR

0.000

14500.770

3

1

53

0.000 273.599 0.000

ANOVA on TWOWK/ES

DEP VAR: RESP7 N: 57 MULTIPLE R: 0.169 SQUARED MULTIPLE R: 0.029

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

TRT 412.993 3 137.664 0.520 0.670

ERROR 14018.255 53 264.495

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

SI FOR EFFECT CALLED.

TEST OF HYPOTHESIS

SOURCE SS DF MS F P HYPOTHESIS 321.133 1 321.133 1.214 0.275 14018.255 ERROR 53 264.495

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P
HYPOTHESIS 156.556 1 156.556 0.592 0.445
ERROR 14018.255 53 264.495

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

DF F P SOURCE SS MS 0.035 0.851 9.377 1 9.377 HYPOTHESIS ERROR 14018.255 53 264,495

MALLARD

TREATMENT LEVEL: O PPM

		THICK *	HATWT	SURVWT	FOOD
CASE	1	0	32	300	2443
CASE	2	O	34	292	2638
CASE	2 3 4	0	31	286	2530
CASE	4	0	33	279	2067
CASE	5	0	36	287	2367
CASE	5 6 7 8	0	38	337	2337
CASE	7	•		•	2938
CASE	8	0	36	270	2399
CASE	9	O .	32	301	2458
CASE	10	0	31	263	2147
CASE	11	0	31	239	2058
CASE	12	0	•	•	2335
CASE	13	0	39	310	2841
CASE	14	0	36	307	2400
CASE	15	0	36	288	2320
CASE	16	0	. 33	290	2524
	TRE	ATMENT LEVEL: 100 F	PPM		
CASE	17	0			2294
CASE	18	Ŏ ·	38	289	2515
CASE	19	O	34	307	1862
CASE	20	Ó	31	259	2101
CASE	21	•	•	•	2027
CASE	22	0	32	298	2447
CASE	23	0	31	254	2079
CASE	24	0	34	255	2188
CASE	25	0	34	287	2565
CASE	26	0	36	331	2248
CASE	27	0	33	240	2147
CASE	28	0	36	290	2439
CASE	29	.•	•	•	2537
CASE	30	0	38	278	2275
CASE	31	0	37	315	2216
CASE	32	0	34	273	2326

* See following page for eggshell thickness values

TREATMENT LE	VEL:	300	PPM
--------------	------	-----	-----

		THICK *	HATWT	SURVWT	FOOD
CASE	33	0	39	292	2398
CASE	34	•	,•	•	2190
CASE	35	0	35	260	2382
CASE	36	0	32	287	1965
CASE	37	0	33	291	2011
CASE	38	O	34	273	1948
CASE	39	•	•	•	1203
CASE	40	0	•	•	2440
CASE	41	Ó	29.	275	2115
CASE	42	0	36	274	2011
CASE	43	0	27	279	2033
CASE	44	Ö.	33	261	1602
CASE	45	Õ	37	240	2185
CASE	46	Ö	32	247	2571
CASE	47	Õ	33	274	2357
CASE	48	Ö	37	299 .	2403

PREATMENT LEVEL: 600 PPM

CASE	49	0	36	289	2682
CASE	50	Ö	32	292	2175
CASE	51	O	32	295	2465
CASE	52	Ö	33	266	2826
CASE	53	Ö	34	284	2738
CASE	54	0	33	274	1933
CASE	55	Ö	34	304	1870
CASE	56	Ó	32	268	2297
CASE	57	Ö	37	304	2285
CASE	58	O	34	294	2392
CASE	59	0	35	303	2055
CASE	60	_	•	•	2378
CASE	61	Ö	34	263	2320
CASE	62	Ö	29	270	2369
CASE	63	Ö	37	277	2009
CASE	64	ŏ	31	285	2399
CAUL	5.	•			

* Eggshell Thickness (mm)

TRT	THICK	100 pp	M	3000	0 M	Goo	pp m
CONTROL O	0.377	100 11	0.245	2 .	0.406	3 ′	0.393
Course	0.377	1	0.391	2	•	. 3	0.41
0	0.407	1	0.375	2	0.388	3	0.381
Ö	0.4	1	0.355	2	0.395	3	0.404
0	0.347	1		2	0.399	3	0.375
0	0.408	1	0.362	.2	0.37	3	0.375
0		1	0.356	2	•	3	0.397
0	0.41	1	0.368	2	0.305	.3	0.377
0	0.395	1	0.382	2	0.353	3	0.392
0	0.389	1	0.422	2	0.382	3	0.4
0	0.413	1	0.392	2	0.368	.3	0.397
0	0.364	i	0.375	2	0.424	3	
0	0.399	1		2	0.409	3	0.397
0	0.406	1	0.362	2	0.386	3	0.429
Ö	0.388	i	0.441	2	0.405	.3	0.398
Ō	0.367	1	0.397	2	0.423	.3	0.388

Eggshell Thickness

M	Δ.	T	т	Δ	D	'n
LI	$^{-}$	_		-	л	u

ANOVA on thick

		ANOV	A on thick		
THICK	N: 58	3 MUI	TIPLE R: 0.267	SQUARED MULT	CIPLE R: 0.071
	ANAL	rsis c	F VARIANCE		
SUM-	OF-SQUARES	DF	MEAN-SQUARE	F-RATIO	P
	0.004	3	0.001	1.381	0.258
	0.047	54	0.001		
ntrast (of treatmen	nt 1 w	with control.		ya ya wa na na
		TRT			
CE	SS	DF	MS	F	P
SIS COR	0.002 0.047	1 54	0.002 0.001	2.352	0.131
FFECT CA	ALLED:	nt 2 w	with control.		
CE	SS	DF	MS	F	P
SIS	0.000 0.047	1 54	0.000 0.001	0.084	0.773
ontrast	of treatmen	nt 3 v	with control.		
		TRT			
RCE	SS	DF	MS	F	P
SIS ROR	0.000 0.047	1 54	0.000 0.001	0.169	0.683
	SUM-O	ANALY SUM-OF-SQUARES 0.004 0.047 Intrast of treatment FFECT CALLED: POTHESIS CE SS IS 0.002 OR 0.047 Intrast of treatment FFECT CALLED: POTHESIS CE SS IS 0.000 O.047 Intrast of treatment FFECT CALLED: POTHESIS CE SS IS 0.000 O.047	ANALYSIS OF SUM-OF-SQUARES DF 0.004 3 0.047 54 OTHESIS OF SS DF OTHESIS OTHE	ANALYSIS OF VARIANCE SUM-OF-SQUARES DF MEAN-SQUARE 0.004 3 0.001 0.047 54 0.001 Intrast of treatment 1 with control. FFECT CALLED: TRT FOTHESIS GE SS DF MS IS 0.002 1 0.002 OR 0.047 54 0.001 Intrast of treatment 2 with control. FFECT CALLED: TRT FOTHESIS GE SS DF MS IS 0.000 1 0.000 OR 0.047 54 0.001 Intrast of treatment 3 with control. FFECT CALLED: TRT FOTHESIS GE SS DF MS IS 0.000 1 0.000 Intrast of treatment 3 with control. FFECT CALLED: TRT FOTHESIS GE SS DF MS IS 0.000 1 0.000 INTRAST OF TREATMENT 3 with control. FFECT CALLED: TRT FFOTHESIS GE SS DF MS IS 0.000 1 0.000	ANALYSIS OF VARIANCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO 0.004 3 0.001 1.381 0.047 54 0.001 Intrast of treatment 1 with control. EFFECT CALLED: TRT FOTHESIS GE SS DF MS F IS 0.002 1 0.002 2.352 OR 0.047 54 0.001 Intrast of treatment 2 with control. EFFECT CALLED: TRT FOTHESIS GE SS DF MS F IS 0.002 1 0.002 2.352 OR 0.047 54 0.001 Intrast of treatment 2 with control. EFFECT CALLED: TRT FOTHESIS GE SS DF MS F IS 0.000 1 0.000 0.084 Intrast of treatment 3 with control. EFFECT CALLED: TRT FOTHESIS GE SS DF MS F IS 0.000 1 0.000 0.084 INTRAST OF TREATMENT 3 WITH CONTROL. EFFECT CALLED: TRT FOTHESIS GE SS DF MS F IS 0.000 1 0.000 0.169

ANOVA on hatwt

	ANA	LYSIS (OF VARIANCE		
SOURCE	SUM-OF-SQUARE	S DF	MEAN-SQUARE	F-RATIO	P
TRT	7.954	3	2.651	0.374	0.772
ERROR	361.755	51	7.093		
ost-hoc conti	rast of treatme	ent 1 w	with control.	The second se	
TEST FOR EFFI		TRT			
SOURCE	SS	DF	MS	F.	P
HYPOTHESIS ERROR	0.685 361.755	1 51	0.685 7.093	0.097	0.757
			***	·	
TEST FOR EFFE		ent 2 w	ith control.		yan da aman ya ka
TEST FOR EFFE	CCT CALLED:		rith control.	F	P
TEST FOR EFFE TEST OF HYPOT	CCT CALLED:	TRT		F 0.264	P 0.609
TEST FOR EFFE TEST OF HYPOT SOURCE HYPOTHESIS ERROR	CT CALLED: CHESIS SS 1.875	TRT DF 1 51	MS 1.875 7.093		
TEST FOR EFFE TEST OF HYPOT SOURCE HYPOTHESIS ERROR	CCT CALLED: CHESIS SS 1.875 361.755 Cast of treatments	TRT DF 1 51	MS 1.875 7.093		
TEST FOR EFFE TEST OF HYPOT SOURCE HYPOTHESIS ERROR OST-hoc contr	CCT CALLED: CHESIS SS 1.875 361.755 Cast of treatments	TRT DF 1 51 nt 3 w	MS 1.875 7.093		

ANOVA on survwt

DEP VAR: SURVWT

N: 55 MULTIPLE R: 0.276 SQUARED MULTIPLE R: 0.076

ANALYSIS O	F VA	RIAN	ICE
------------	------	------	-----

	ANALY	YSIS C	F VARIANCE		
SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE	F-RATIO	P
TRT	1810.021	3	603.340	1.404	0.252
ERROR	21908.706	51	429.582		
Post-hoc cont	rast of treatmen	nt 1 w	vith control.	o de la composição de l	
TEST FOR EFF TEST OF HYPO	ECT CALLED:	TRT			
SOURCE	ss	DF	MS	F	P
HYPOTHESIS ERROR		1 51	280.002 429.582	0.652	0.423
Post-hoc cont TEST FOR EFF TEST OF HYPO		nt 2 w	vith control.		·
SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR			1722.076 429.582	4.009	0.051
Post-hoc cont	rast of treatmen	nt 3 w	with control.		
TEST FOR EFF TEST OF HYPO		TRT			
SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR		1 51	158.668 429.582	0.369	0.546

ANOVA on food

DEP VAR: FOOD N: 64 MULTIPLE R: 0.395 SQUARED MULTIPLE R: 0.156 ANALYSIS OF VARIANCE SUM-OF-SQUARES DF MEAN-SQUARE P SOURCE F-RATIO 815462.422 3 271820.807 3.702 0.016 TRT 4405363.188 60 73422.720 ERROR Post-hoc contrast of treatment 1 with control. TEST FOR EFFECT CALLED: TRT TEST OF HYPOTHESIS SS DF MS SOURCE 2.737 HYPOTHESIS 200978.000 1 200978.000 0.103 ERROR 4405363.188 60 73422.720 Post-hoc contrast of treatment 2 with control. TEST FOR EFFECT CALLED: TRT TEST OF HYPOTHESIS ee DE Me COTTOCE

SOURCE	SS	DF	MS	r	P
	777504.500 4405363.188	1 60	777504.500 73422.720	10.589	0.002

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P

HYPOTHESIS 80902.531 1 80902.531 1.102 0.298
ERROR 4405363.188 60 73422.720

MALLARD; FEMALE BODY WEIGHT

TREATMENT LEVEL: 0 ppm

		PREWT	POSTWT
CASE	1	839	893
CASE	2	962	1078
CASE	3	1000	1061
CASE	4	859	1129
CASE	- 5	909	1201
CASE	6	1036	1373
CASE	7	1053	1349
CASE	8	1004	1368
CASE	9	912	1158
CASE	10	1015	1299
CASE	11	884	1055
CASE	12	998	1231
CASE	13	1148	1426
CASE	14	960	1251
CASE	15	1184	1341
CASE	16	1043	1097

TREATMENT LEVEL: 100 ppm

		PREWT	POSTWT
CASE	17	1102	1375
CASE	18	989	1253
CASE	19	950	1290
CASE	20	828	998
CASE	21	876	•
CASE	22	1119	1164
CASE	23	829	1087
CASE	24	895	1230
CASE	25	1134	1469
CASE	26	916	1068
CASE	27	1089	1182
CASE	28	950	1226
CASE	29	1114	1352
CASE	30	938	1154
CASE	31	894	1260
CASE	32	943	1014

TREATMENT LEVEL: 300 ppm

		PREWT	POSTWT
CASE	33	1077	1259
CASE	34	1124	1397
CASE	35	993	1106
CASE	36	879	1002
CASE	37	. 1096	1177
CASE	38	1046	1153
CASE	39	883	• ,
CASE	40	836	1160
CASE	41	991	987
CASE	42	1078	1311
CASE	43	1049	1207
CASE	44	851	1057
CASE	45	1071	1269
CASE	46	1072	1278
CASE	47	949	1116
CASE	48	1081	1310

TREATMENT LEVEL: 600 ppm

		PREWT	POSTWT
CASE	49	1050	1199
CASE	50	989	1206
CASE	51	975	1126
CASE	52	1116	1035
CASE	53	956	1011
CASE	54	914	992
CASE	55	911	1254
CASE	56	806	924
CASE	57	1031	1285
CASE	58	945	1161
CASE	59	1096	1290
CASE	60	936	· 1009
CASE	61	921	986
CASE	62	1029	1177
CASE	63	1100	1431
CASE	64	947	1140

MALLARD; ADULT FEMALE BODY WEIGHT

ANOVA on postwt

DEP VAR: POSTWT N: 62 MULTIPLE R: 0.699 SQUARED MULTIPLE R: 0.488

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

TRT 56656.541 3 18885.514 1.880 0.143
PREWT 496636.430 1 496636.430 49.428 0.000

ERROR 572711.737 57 10047.574

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P HYPOTHESIS 712.216 712.216 0.071 0.791 1 572711.737 10047.574 ERROR 57

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P

HYPOTHESIS 15767.617 1 15767.617 1.569 0.215

ERROR 572711.737 57 10047.574

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE SS DF MS F P HYPOTHESIS 31361.888 1 31361.888 3.121 0.083 572711.737 10047.574 ERROR 57

MALLARD; MALE BODY WEIGHT

TREATMENT LEVEL: 0 PPM

		PREWT	POSTWT
CASE	1	1101	1209
CASE	2	1017	1034
CASE	3	1174	1073
CASE	4	1205	1159
CASE	5	1202	1196
CASE	6	1168	1113
CASE	7	1301	1271
CASE	.8	1055	993
CASE	9,	1073	1147
CASE	10	1194	1226
CASE	11	1092	1088
CASE	12	1199	1113
CASE	13	1212	1151
CASE	14	1244	1138
CASE	15	1271	938
CASE	16	1163	908

TREATMENT LEVEL: 100 PPM

		PREWT	POSTWT
CASE	17	1198	1146
CASE	18	1125	1070
CASE	19	1322	1238
CASE	20	1159	1160
CASE	21	1040	•
CASE	22	1290	1194
CASE	23	1131	1097
CASE	24	971	1129
CASE	25	1316	1339
CASE	26	1173	1104
CASE	27	1151	1139
CASE	28	1239	1327
CASE	29	1032	1146
CASE	30	1133	1203
CASE	31	1256	1257
CASE	32	967	1154

TREATMENT LEVEL: 300 PPM

		PREWT	POSTWT
CASE CASE CASE CASE CASE CASE CASE CASE	33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	1097 1059 1047 1382 1365 990 1134 1073 1203 1210 1241 1132 1108 1170 1206	1213 1056 1042 1318 1375 1059 1057 1280 1174 1248 1104 1225 1181 1276
	48	1206 1092	

TREATMENT LEVEL: 600 PPM

		PREWT	POSTWT
CASE CASE CASE CASE CASE CASE CASE CASE	49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	1123 1049 1284 1115 1172 1120 1012 1143 1076 1198 1269 1189 1112 1200 1231	1125 1169 1126 1093 1090 1075 1127 1155 991 1192 1459 1174 1085 1044 1157
			1270

DEP	VAR:	POSTW
		TODIW

N:

62 MULTIPLE R: 0.618 SQUARED MULTIPLE R: 0.382

ANALYSIS OF VARIANCE

COID	· · · · · · · · · · · · · · · · · · ·					
SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE	F-RATIO	p "	
TRT PREWT	55419.792 189847.390	3 1	18473.264 189847.390	2.705 27.802	0.054 0.000	
ERROR	389230.447	57	6828.604		0.000	

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	
HYPOTHESIS ERROR	40149.411 389230.447	1 57	40149.411 6828.604	5.880	0.019

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	_
HYPOTHESIS ERROR	41564.414 389230.447	1 57	41564.414 6828.604	6.087	P 0.017

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE HYPOTHESIS ERROR	SS	DF	MS	F	D
	14117.327 389230.447	1 57	14117.327 6828.604	2.067	0.156

stantition.