

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

DEC 30 1992

0:9957

MEMORANDUM

OFFICE OF PESTICIDES AND TOXIC SUBSTANCES

Lambda-Cyhalothrin (Karate*). Re-evaluation of 3-SUBJECT:

Generation Reproduction Study and Necessity for Change

of Study on Which RfD is Based

Shaughnessy No. 128867 Tox. Chem. No. 725C

Related Tox. Chem. No. 271F

TO:

George Z. Ghali, Manager RfD/Peer Review Committee Science Analysis Branch

Health Effects Division (H7509C)

FROM:

Pamela M. Hurley, Toxicologist famela M. Hurley 8/21/92 Section I, Toxicology Branch

Health Effects Division (H7509C)

THRU:

Roger L. Gardner, Section Head Section I. Toxicology Branch 1

Health Effects Division (H7509C)

The Toxicology Branch (TB-I) has re-evaluated the 3generation reproduction study conducted on rats with cyhalothrin and has determined that the current NOEL's and LEL's need to be revised as follows:

Reproductive NOEL: 100 ppm (5 mg/kg/day) (HDT) Parental (systemic) NOEL: 100 ppm (5 mg/kg/day) (HDT) Developmental NOEL: 100 ppm (HDT)

Although this revision does not affect the RfD value, it does change the study on which that value is based. The RfD value now needs to be based on the 1-year dog study in which the NOEL is 0.5 mg/kg/day and the LEL is 3.5 mg/kg/day, based on clinical signs of neurotoxicity including ataxia, muscle tremors and convulsions.

Printed on Recycled Pape

Review:

The current RfD for cyhalothrin/lambda-cyhalothrin is based on the NOEL from a 3-generation study conducted on rats with cyhalothrin. In that study, the animals were tested at 0, 10, 30 and 100 ppm in the diet. The NOEL's and LEL's were determined to be as follows:

Reproductive NOEL < 10 ppm based on decreased body weight gain of pups during lactation.

Parental (systemic) NOEL: 10 ppm.

Parental (systemic) LEL: 30 ppm based on reduction in body weights and body weight gains during pre-mating period and during gestation.

Developmental NOEL was combined with the reproductive NOEL at the time when this study was assessed.

TB-I has re-reviewed the study and has determined that all of the NOEL's for each parameter need to be changed to 100 ppm (HDT). The following paragraphs contain a detailed discussion for each of the parameters examined.

Parental/Systemic Toxicity:

The original NOEL and LEL for parental toxicity was based on decreased body weights and body weight gains during the premating and gestation periods. There were no treatment-related mortalities or clinical signs of toxicity. The original Data Evaluation Record (DER) essentially stated that with the exception of those at the lowest dose level, all the decreases in mean body weights and body weight gains that were statistically significant when compared to controls were toxicologically significant. The following tables taken directly from the DER summarize the data. An updated discussion of the data is provided after each table.

Effects of Cyhalothrin on Mean Body Weight Gain (g) During the Premating Period in Rats					
	Do	ose Level (ppr	n)		
End of Week	0	10	30	100	
		F. Males	gani yang gana ayang mga eyang mga ayang ing mga ayang barang ayang ayang ayang ayang ayang ayang ayang ayang		
1	54.7	53.8	53.7	50.5*	
6	302.3	297.0	301.7	295.8	
12	422.7	414.1	418.8	415.0	
		F. Males			
1	59.3	56.6	57.6	54.9*	
6	276.8	271.8	283.5	266.4	
11	382.7	351.7*	363.5	349.0*	
		F, Males			
1	61.2	50.3	58.5	56.7	
6	287.0	291.7	280.7	254.7	
11	385.7	391.5	373.1	352.8*	
		F _n Females			
1	40.0	41.0	42.6*	38.3	
6	161.2	150.2	165.9	150.3	
12	211.5	209.9	219.0*	208.4	
		F, Females			
1	40.6	39.9	40.4	40.4	
6	142.7	137.4	134.2*	131.4*	
11	182.3	173.2	168.9**	165.1**	
	F ₂ Females				
1	37.6	÷2.7*	37.6	37.7	
6	131.4	135.9	129.0	122.3*	
11	166.0	, 159.0	160.6	156.0*	

Statistically different from control value (p \leq 0.05). Statistically different from control value (p \leq 0.01,.

An examination of each of the data points which were statistically significantly less than the control values indicated that not one of the values was less than 90% of the control values. In addition, the decreases in body weight gains were not always consistent across generations in either sex. It is unlikely that any of these decreases are toxicologically significant. One-hundred parts per million (ppm) may be close to the LEL since the NOEL's and the LEL's for the rat subchronic and chronic feeding studies were 50 ppm and 250 ppm, respectively, with decrease in body weight gain as the stated effect.

Effects of Cyhalothrin on Mean Maternal Body Weight (g) and Weight Gain (g) During Gestation in Rats					
	Dose	Level (ppm)			
	0	10	30	100	
	F _o ,	Litter A			
Initial Wt.	289.0	288.5	298.6	286.1	
Wt. gain at day					
8	23.7	27.5*	26.6	23.0	
15	55.7	60.6	58.4	56.0	
22	127.2	129.6	132.7	127.6	
	F_n ,	Litter B		protection to the second secon	
Initial Wt.	328.3	326.5	330.2	323.5	
Wt. gain at day					
8	21.6	26.0	25.1	25.2	
15	55.2	59.3	60.3	54.5	
22	124.4	129.4	143.9**	132.8	
	F.,	Litter A	····		
Initial Wt.	306.3	298.3	282.7**	287.0*	
Wt. gain at day	- ;				
8	23.4	24.7	23.4	24.0	
15	55.3	55.9	53.0	55.4	
22	134.5	132.1	130.1	133.2	

Effects of Cyhalothrin on Mean Maternal Body Weight (g) and Weight Gain (g) During Gestation in Rats					
	Dose	Level (ppm)			
	0	10	30	100	
	F.,	Litter B			
Initial Wt.	348.3	344.6	321.7**	323.0**	
Wt. gain at day					
8	23.9	25.3	20.8	22.0	
15	56.1	58.0	51.1	56.7	
22	131.3	132.3	120.3	128.2	
	F ₂ ,	Litter A		4	
Initial Wt.	297.1	296.9	284.6	278.7*	
Wt. gain at day					
8	26.3	26.0	26.1	22.4*	
15	54.2	56.8	54.1	50.8	
22	123.7	124.4	128.5	119.4	
	F ₂ ,	Litter B		_	
Initial Wt.	331.1	330.9	315.5*	312.4**	
Wt. gain at day					
8	23.4	25.5	21.8	20.8	
15	53.6	55.5	54.4	50.3	
22	142.2	137.0	136.7	127.2*	

- * Statistically different from control value ($p \le 0.05$).
- ** Statistically different from control value ($p \le 0.01$).

Only two or the values that were statistically significantly less than controls were less than 90% of the control values. These were mean body weight gain in the high dose F_2 , Litter B group at day 22 (89.5%), and mean body weight gain at day 8 in Litter A of the F_2 generation (85.2% of control). In general, the values that were statistically significantly less than controls in this table were neither dose-related nor consistent across generations (or the other mating for that generation in

some cases). Again, it is unlikely that any of these decreases are toxicologically significant. Therefore, the parental (systemic) NOEL is re-determined to be 100 ppm (HDT).

Reproductive Toxicity:

The original NOEL for reproductive effects was based on decreases in pup weight gain during lactation, decreases in litter size and decreases in live-born index. These are considered to be developmental effects rather than reproductive effects. There were no treatment-related effects on parental fertility, on precoital interval, on the length of gestation or on maternal neglect. The reproductive NOEL is therefore redetermined to be 100 ppm (HDT).

Developmental Toxicity:

The DER stated that there were statistically significant reductions in litter size for the high dose litters of the F_2A (80% of controls, days 5-29 of lactation) and F_3B (87% of control, days 11-29 of lactation) generations. However, this reduction in litter size was not seen in litters F_2B or in F_3A . It was not consistent. Since the values were between 80-87% of control values, it is possible, as with parental toxicity, that the high dose is close to the LEL for litter size.

The DER stated that there was a decrease in the percentage of live-born pups in the low-dose F_1B and in the mid- and high dose F_3B litters. Again, there was no consistency across other generations or across the other mating group. In addition, these percentages were still within 90% of the control percentages.

pup weights and weight gains during lactation. As with the previous analyses, very few of the statistically significant decreases when compared to the control group were less than 90% of the control values. None of these were consistent between matings for the same generation and the consistency between generations was limited. It is unlikely that these decreases are toxicological effects, although it is again possible, as with parental toxicity, that the high dose is close to the LEL for pup weights and weight gains during the lactation period. The NOEL for developmental toxicity is re-determined to be 100 ppm. The following table summarizes the data.

Effects of Cyhalothrin on Mean Initial Pup Body Weight (g) and Weight Gain (g) in Rats					
	Dose	Level (ppm)			
Weight Gain	0	10	30	100	
	F ₁	A Females			
Initial Wt.	5.4	5.7	5.7	5.7	
Postnatal Day					
5	2.9	2.3*	2.5	2.5	
11	11.3	10.6	10.7	10.5	
22	32.4	30.8	30.9	31.1	
29	61.6	59.9	61.1	59.8	
	F	A Males			
Initial Wt.	5.8	6.2	6.1	6.1	
Postnatal Day					
5	2.9	2.6	2.8	2.7	
11	12.1	11.4	11.5	11.0	
22	34.2	33.1	32.3	34.0	
29	67.0	65.9	65.9	66.6	
	F,	B Females			
Initial Wt.	5.9	6.0	5.9	5.9	
Postnatal Day	Postnatal Day				
5	2.5	3.0	2.7	2.5	
11	11.8	12.5	11.4	10.8	
. 22	36.6	37.1	32.9*	33.2*	
29	67.3	68.8	61.8*	62.2*	

Effects of Cyhalothrin on Mean Initial Pup Body Weight (g) and Weight Gain (g) in Rats					
	Dose	Level (ppm)			
Weight Gain					
	F	∵3 Males			
Initial Wt.	6.2	6.4	6.3	6.0	
Postnatal Day					
5	2.6	3.1	3.0	2.5	
11	11.9	13.0	12.0	11.4	
22	37.5	38.5	35.2	34.8	
29	71.2	72.9	66.8	66.4*	
	F ₂ .	A Females			
Initial Wt.	5.8	5.9	5.8	5.8	
Postnatal Day					
5	3.3	3.1	3.0	3.0	
12	12.6	12.4	12.2	12.7	
22	36.7	36.9	33.6	36.5	
29	69.0	70.8	67.6	70.0	
	F	A Males			
Initial Wt.	6.1	6.2	5.2	6.2	
Postnacal Day					
5	3.2	3.1	2.9	3.3	
12	13.1	12.6	12.4	13.6	
22	37.1	36.7	35.3	38.9	
29	71.3	73.2	72.5	75.8	

Effects of Cyhalothrin on Mean Initial Pup Body Weight (g) and Weight Gain (g) in Rats					
	Dose	Level (ppm)			
Weight Gain	0	10	30	100	
	F ₂	B Females			
Initial Wt.	6.0	5.9	6.0	6.0	
Postnatal Day				·	
5	2.6	2.8	3.3	2.7	
11	12.4	12.8	13.9	12.1	
22	37.9	39.2	38.5	36.6	
29	72.5	72.6	73.6	70.4	
	F	B Males			
Initial Wt.	6.5	6.6	6.4	6.3	
Postnatal Day					
5	2.9	2.9	3.4	2.7	
11	13.5	13.4	14.2	12.2	
22	41.0	41.8	41.0	37.4*	
29	80.1	79.4	80.0	73.9*	
	F ₃	A Females			
Initial Wt.	5.8	5.7	5.7	5.8	
Postnatal Day					
5	3.2	3.0	2.9	2.9	
11	13.3	12.8	12.2	11.7*	
22	38.5	36.5	34.7**	34.7*	
29	73.7	71.2	67.8**	67.6**	

Effects of Cyhalothrin on Mean Initial Pup Body Weight (g) and Weight Gain (g) in Rats				
	Dose	Level (ppm)		
Weight Gain	0	10	30	100
	F	3A Males		
Initial Wt.	6.2	6.2	6.1	6.1
Postnatal Day				
5	3.4	3.1	2.9*	2.9*
11	14.0	12.1**	12.4*	11.7**
22	39.8	37.1*	35.8**	34.8**
29	79.1	75.2	72.1**	69.9**
	F ₃	B Females		
Initial Wt.	6.0	6.2	6.1	5.9
Postnatal Day				
5	3.4	3.3	3.3	3.5
11	13.7	12.8	13.4	13.3
22	39.3	36.9	37.0	37.7
29	74.7	70.8	70.4*	71.9
	F	B Males	·	.
Initial Wt.	6.4	6.5	6.4	6.4
Postnatal Day				
5	3.6	3.4	3.3	3.4
11	14.3	13.6	13.0*	13.4
22	40.9	39.0	37.6*	38.4
29	80.0	76.4	74.1*	75.7

Statistically different from control value (p \leq 0.05). Statistically different from control value (p \leq 0.01).

Current Date 8/31/42 TOX CORE Grade/ Category Doc. No.	Guideline OONGS7
urrent Da TOX Category	N/A
File Last Updated Current Dated ion Results: TOX LD ₅₀ , LC ₅₀ , PIS, NOEL, LEL Category	Update: Reproductive NOEL: 100 ppm (HDT). Maternal NOEL: 100 ppm (HDT). Developmental NOEL: 100 ppm (HDT)
File EPA Accession No.	
in Material	Cyhaloth 073207- rin 073209 batch ADM/4615 680
Caswell No. 725C Chemical Name Cyhalothrin Shaughnessy No.: 128867 Study/Lab/Study #/Date Ma	Reproduction-3 generation. Species: rat. ICI Central Tox. Lab. CTI/P/906

1 - Liner Oppdate: Reproduction Study

ENVIRONMENTAL PROTECTION AGENCY	FICE OF PESTICIDES/HED/SACB	TOX ONELINERS
U.B. ENVI	OFFICE	

PAGE 1

CABWELL# 725C

	TOX COREGRADE/ CAT DOCUMENT#	Minimum 005100	Minimum 005100	6uideline 005100 005161
FILE LAST PRINTED: 08/21/92	RESULTS	Levels tested by gavage in Charles River SPF CD strain: 0, 5, 10 & 15 mg/kg/day. Maternal LEL = 15 mg/kg/day. (reduced body Mt. and food consumption). Fetotoxic NOEL > 15 mg/kg/day. Teratogenic NOEL > 15 mg/kg/day. Developmental NOEL => 15 mg/kg/day HOT A/D ratio = 10/15 = 0.7	Levels tested by gavage in M.Z.W. str. Maternal MOEL = 10 mg/kg Maternal LEL = 30 mg/kg (decr. in body weight gain). Developmental NOEL = 30 mg/kg. A/D ratio = 10/30 = 0.33	Levels tested in SPF Wistar strain: 0, 10, 30 & 100 ppm. Reproductive NOEL < 10 ppm (101). (decr. body weight gain during weaning) Maternal NOEL = 10 ppm. Maternal IEL = 30 ppm (reduced body weight gain during pregnancy).
	ACCESSION/ MRID NO.	073206	073206	073207-
€	HAILRIAI	Cyhaluthrin batch 005, 89.25% pure W/W.	Cyhalothrin batch 005 89.2%	Cyhatothrin batch ADM/ 4615680. 89.2% pure W/W
TUXCHEM NO. 128867: Cyhalothrin	CHARION	Developmental Toxicity Study Species: rat Hazleton Labs, Europe U170; 6/81	Developmental Toxicity Study Species: rutkit Hazlaton Labs, Europe RB 0169; 6/81	Reproduction 3 generation Species: rat It1 tentral for tab. t11/P/906;; 5/13/84