DATA EVALUATION RECORD

- Sulfosate. CHEMICAL: 1. Shaughnessey No. 128501.
- TEST MATERIAL: SC-0224 Technical; Lot No. WRC-10387-47-01; 2. Sample purity 57.3%; a light amber colored liquid.
- STUDY TYPE: Early Life Stage Toxicity Test. 3. Species Tested: Rainbow trout (Salmo gairdneri).
- Cohle, P. 1988. Early Life Stage Toxicity of 4. CITATION: SC-0224 Technical to Rainbow Trout (Salmo gairdneri) in a Flow-Through System. Prepared by Analytical Bio-Chemistry Laboratories, Inc. Columbia, Missouri. Report No. 35819. Submitted by ICI Americas Inc., Wilmington, Delaware. Accession No. 408937-04 and 411114-02 (Supplement).
- 5. REVIEWED BY:

Kimberly D. Rhodes Associate Scientist KBN Engineering and Applied Sciences, Inc. Signature: Timberly D. Rhode.

Date: July 10, 1989

APPROVED BY: 6.

7.

Prapimpan Kosalwat, Ph.D. Staff Toxicologist KBN Engineering and Applied Sciences, Inc.

Henry T. Craven Supervisor, EEB/HED USEPA

Signature: P. Kosalwat

Date: July M, 1989

Signature: Henry Come All Py

Date: Daniel Ralloff **CONCLUSIONS:** This study appears to be scientifically sound and fulfills the guideline requirements for a fish early life stage toxicity test. Based on a significant reduction in growth (length and weight), the MATC of SC-0224 for rainbow trout (Salmo gairdneri) was > 51 < 101 mg a.i./L

mean measured concentration.

8. RECOMMENDATIONS: N/A

9. BACKGROUND:

10. DISCUSSION OF INDIVIDUAL TESTS: N/A

11. MATERIALS AND METHODS:

- Test Animals: Unfertilized rainbow trout eggs (Salmo A. gairdneri) and semen were obtained from a commercial supplier in California. Upon receipt, the eggs were at a temperature of approximately 11.5°C. The eggs were poured into a dry plastic bowl which was resting in an 11°C water bath. The sperm was poured over the eggs and they were mixed gently by hand. An egg wash solution (slightly saline) was added to the bowl and the eggs were again stirred. The eggs were allowed to stand in this solution for approximately 30 seconds. Excess liquid and sperm were poured off followed by a fresh ABC soft reconstituted water rinse. At 15 minute intervals for the next hour and a half, aliquots of test dilution water (ABC well water) were added to the bowl containing the fertilized eggs in soft water. eggs were then ready to be added to the test chambers.
- Test System: A proportional diluter system described B. by Mount and Brungs, utilizing a Hamilton Micro Lab 420 syringe dispenser, was used for the intermittent introduction of SC-0224 Technical test solutions and diluent water into each test chamber. The proportional diluter system used for the project was set to provide test levels approximately 50 percent dilutions of each other. Each glass test aquarium measured 30.7 x 15.8 cm with a water depth of 24 cm, yielding an approximate 11.6 liters. The diluter delivered an average rate of approximately 57 mL/minute/replicate of test solution or control water to the test vessels which was sufficient to replace a replicate volume 7.1 times in a 24 hour period over the course of the study. concentrations of the test material with a dilution water control were tested. The test chambers were immersed in a temperature controlled water bath held at 10 ± 1°C. The lighting was maintained on a 16-hour daylight photoperiod, after the embryos had hatched.

The rainbow trout eggs were incubated in cups suspended in the treatment and control water. These egg incubation cups were made from 8-cm diameter glass jars with the bottoms cut out and stainless steel screening (16 mesh) fused to the bottom. To insure exchange of water, the egg cups were oscillated in the test

solution and/or control water by means of a rocker arm apparatus driven by a 2 rpm electric motor.

Dilution water for the rainbow trout test was well water characterized as having a pH of 7.9 - 8.4, total hardness of 250 - 284 mg/L as CaCO₃, total alkalinity of 330 - 368 mg/L CaCO₃ and specific conductance of 554 - 645 umhos/cm.

- C. <u>Dosage</u>: 95-day flow-through early life stage test.
- Design: Thirty rainbow trout eggs were randomly D. introduced into each quadruplicate chamber (120 eggs per concentration). When hatching commenced, the number of eggs hatched in each incubation cup was recorded daily until hatching was completed. The 60day post hatch growth period began when hatch was greater than 95 percent. At 11 days post-hatch the rainbow trout sac fry were transferred from the egg incubation cups into growth chambers. Fry growth data were collected on days 35 and 60 post-hatch. same days were also used as data points for survival analysis, since the most accurate counts of the fish could be made on these days. Feeding began on day 13 post-hatch. The fry were fed brine shrimp nauplii (Artemia salina) throughout the study. Salmon starter in pellet form was added to the diet after 25 days post-hatch.

Water quality parameters of pH and conductivity were measured on Day 0, Day 1, Day 7 and on every 7th day thereafter until test termination from the control, low concentration, and high concentration. Dissolved oxygen was measured on Day 0, Day 1, Day 7, and on every 7th day thereafter until test termination in all test concentrations. Water hardness and alkalinity were measured on Day 0, Day 48, Day 76, and Day 91. Temperature was monitored daily and was also continuously recorded with a temperature data logger. A control and five nominal SC-0224 concentrations of 6.0, 12, 25, 50, and 100 mg a.i./L were tested. The measured concentrations of SC-0224 in test water were determined on days 0, 1, 7, 14 and every 7 days thereafter during the study until test termination.

E. <u>Statistics</u>: Comparison analyses between the control and five test levels were carried out using the measured parameters of hatchability, survival, standard length and wet weight by analysis of variance (ANOVA).

Prior to evaluation of growth data by ANOVA, consideration was given to the need for any data transformations. Homogeneity of variances among groups was evaluated using Bartlett's test. Bartlett's tests showed that error variances were within the statistical criterion; therefore, no data transformations were required.

One-way analysis of variance (ANOVA) calculations were used to determine if significant differences existed. The data were analyzed by comparing all replicates (24 total) of the control and 5 test levels against each other and by combining the data from the 4 replicates within a concentration into a single group and comparing the concentrations against each other. If treatment effects were indicated by a significant F-test of the mean square ratios, Tukey's HSD multiple means comparison test was used to determine which exposure levels differed from the control values.

Significant differences in the percentage survival were determined after (arcsine square-root percentage) transformation of the data. Differences were determined by ANOVA.

REPORTED RESULTS: The mean measured concentrations of SC-12. 0224 Technical maintained during this chronic study were 6.8, 12, 23, 51, and 100 mg/L, which ranged from 88% to 110% of the nominal concentrations. The water quality parameters remained within acceptable ranges. Mean dissolved oxygen saturation was \geq 75% in all test levels through day 70. day 84 the mean dissolved oxygen concentrations of the three highest concentrations slightly fell to 69%, 64% and 51% oxygen saturation, respectively. The pH values of the test solutions ranged from 7.9 to 8.4 and were generally consistent between control, low and high test levels throughout the duration of the study. Hardness ranged from 250 to 284 mg/L and alkalinity from 330 to 368 mg/L. The temperature range from the thermometer recordings was 9 to 11.1°C.

Hatchability of eyed rainbow trout eggs after 35 days of continuous exposure to SC-0224 technical ranged from 74 to 89% in the control and 5 test levels. No statistical significant reduction in hatch was found between the control and treatment levels. Swim-up began on day 48 (13 days post-hatch) and was for the most part complete by day 57. There did not appear to be a dose-related effect when time to swim up in the control fry was compared to that in fry

from the treated levels. The survival of trout fry continuously exposed to SC-0224 technical after 70 and 95 days (35 and 60 days post-hatch) is shown in Table 10 (attached). No significant reduction in fry survival was detected at either the 35 or 60 day post-hatch survival analysis points.

A statistically significant reduction in growth was detected in the lowest mean measured concentration (6.8 mg a.i./L) at both the 35 (length) and 60 day (length and weight) posthatch analysis points (Table 11, attached). It appeared to be traceable primarily to the C replicate of this concentration. No reduction was detected in fish from the other concentrations, therefore, it did not appear to be part of a toxicant dose-response pattern and was considered as aberrant. Day 60 post-hatch analysis also revealed a statistically significant growth reduction in the highest nominal concentration (100 mg a.i./L). Low dissolved oxygen concentrations in the highest concentration near the end of the study may have influenced both this reduction as well as certain acute effects observed during the last 8 days of the During the final 8 days of the study, some of the 101-mg a.i./L fish began to show an increase in abnormal observations, including fish on the bottom of the test chambers, flaring of the opercula on one side, exophthalmia, dark discoloration, surfacing, loss of equilibrium and bloated abdomen.

Based on the reduction in growth after 60 days of exposure in 101 mg a.i./L mean measured concentration, the Maximum Acceptable Toxicant Concentration (MATC) range is estimated to be between 51 and 101 mg a.i./L mean measured concentration. The no-observable effect concentration appeared to be at the mean measured SC-0224 technical concentration of 51 mg a.i./L.

13. STUDY AUTHOR'S CONCLUSIONS/QUALITY ASSURANCE MEASURES:
Based on the reduction in growth after 60 days of exposure
in 101 mg a.i./L mean measured concentration, the Maximum
Acceptable Toxicant Concentration (MATC) range is estimated
to be between 51 and 101 mg a.i./L mean measured
concentration. The no-observable effect concentration
appeared to be at the mean measured SC-0224 technical
concentration of 51 mg a.i./L.

A GLP compliance statement was included in the report and the study was audited by a QA unit. A statement of quality assurance was included in the report, indicating that the study was conducted in accordance with U.S. EPA Good

Laboratory Practice Standards: Pesticide Programs (40 CFR 160).

14. REVIEWER'S DISCUSSION AND INTERPRETATION OF STUDY RESULTS:

- A. <u>Test Procedure</u>: The test procedures were generally in accordance with protocols recommended by the Guidelines, but deviated from the SEP as follows:
 - o The SEP recommends that test water should have a hardness of 40 to 48 mg/L as $CaCO_3$ and a pH range of 7.2 to 7.6. The hardness of the test water in this study was 250 284 mg/L $CaCO_3$ and the pH ranged from 7.9 to 8.4.
 - o The SEP states that the flow rate must be capable of maintaining the dissolved oxygen concentration at above 75 percent of saturation. By day 84 the dissolved oxygen concentration in the three highest test levels were 7.5, 6.9, and 5.5 mg a.i./L which represented 69, 64 and 51% oxygen saturation at 10°C.
 - o There appears to be a discrepancy in the report concerning the mean measured concentration of the highest treatment level. Table 4 states that the mean measured concentration for the highest treatment level is 100 mg a.i./L while Tables 10 and 11 state that it is 101 mg a.i./L. The reviewer believes that 101 mg a.i./L is the correct value.
- B. Statistical Analysis: The reviewer evaluated embryo hatchability and larval survival following an arc-sine square-root transformation of the data. The growth data (standard length and wet weight) were statistically evaluated by ANOVA without any transformations. All printouts are attached.

The reviewer confirmed no significant difference between survival of larvae and hatchability of embryos in any treatment level and the control.

The reviewer confirmed a significant difference at P=0.01 of length and weight of rainbow trout larvae in the lowest (6.8 mg a.i./L) and highest (101 mg a.i./L) mean measured concentration when compared to the control. The significant difference at the lowest concentration is not believed to be a toxicant related effect since there was no effect in the next three higher concentrations.

- C. <u>Discussion/Results</u>: This study appears scientifically valid. Based on a significant reduction in growth (length and weight), the MATC of SC-0224 Technical for rainbow trout (<u>Salmo gairdneri</u>) was > 51 < 101 mg a.i./L mean measured concentration.
- D. Adequacy of the Study:
 - (1) Classification: Core.
 - (2) Rationale: N/A.
 - (3) Repairability: N/A.
- 15. COMPLETION OF ONE-LINER FOR STUDY: Yes, 6-30-89.

Sulfosate ecological effects review
Page is not included in this copy.
Pages 8 through 11 are not included in this copy.
The material not included contains the following type of information:
Identity of product inert ingredients
Identity of product impurities
Description of the product manufacturing process
Description of product quality control procedures
Identity of the source of product ingredients
Sales or other commercial/financial information
A draft product label
The product confidential statement of formula
Information about a pending registration action
X FIFRA registration data
The document is a duplicate of page(s)
The document is not responsive to the request
The information not included is generally considered confidential by product registrants. If you have any questions, please contact the individual who prepared the response to your request.

٠,

SC-0224 Technical Length

Analysis of Variance

File: SCGROW

Date: 06-30-1989

FILTER: None

N's, means and standard deviations based on dependent variable: LENGTH

* Indicates statistics are collapsed over this factor

	2 * U.8 3 * 12 4 * 23 5 * 51 6 * 101 * 1 * 2 * 3 * 4 1 1 1 2 1 3 1 4 1 3 2 1 2 2 3 3 4 4 1 1 1 4 1 5 2 2 3 3 3 4 4 1 4 2 4 3 4 3 4 4 4 5 1 5 1 6 1 6 1 6 2 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	3.7538 3.2213 3.6430 3.6425 3.5895 3.7370 3.9000 3.8286 3.7231 3.5133 3.6083 3.2000 3.7786 3.7571 3.7867 3.4692 3.6600 3.8600 3.8600 3.8500 3.7643 3.8867 3.4556 3.4538 3.9667 3.9800 3.2417 3.2417	0.4056 0.3375 0.3640 0.4142 0.4568 0.3858 0.3637 0.3099 0.2359 0.2127 0.3335 0.3777 0.4382 0.3847 0.1604 0.3543 0.4029 0.4789 0.1682 0.3459 0.3079 0.3114 0.2603 0.4235 0.3655 0.3655
	63 9	2 . 9778	0.2167
g 4 14 3.3429 0.3005	6 4 14	3.3429	0.3005

Number of variances = 24 df per variance = 12.

Source	df	SS (H)	MSS	F	P
Between Subjects	315	52.3447			
C (CONC)	5	13.5653	2.7131	25.303	0.0000
R (REP)	3	1.3028	0.4343	4.050	0,0076
CR	15	6.1674	0.4112	3.835	0.0000
Subj w Groups	292	31.3091	0.1072		

SC-0224 Technical (Length)

Analysis of Variance

File: SCGROW

Date: 06-30-1989

FILTER: None

Post-hoc tests for factor C (CONC)

Level	Mean	Level	Mean
1	3,820	6	3.221
2	3.540		
3	3.675		
4	3.841		
5	3.754		

Co	ompai	rison	Dunnett
	1 >	2	0.0100
		3	
	1 <	4	
	1 >	5	
*	1 >	6	0.0100
-		3	N.A.
	2 <	4	N.A.
		5	N.A.
	2 >	6	N.A.
	3 <	4	N.A.
	3 <	5	N.A.
	3 >	6	N.A.
	4 >	5	N.A.
	4 >	6	N.A.
	5 >	6	N.A.

Level	Mean
1	3.643
2	3.642
3	3.589
4	3.737

Comp	aı	rison	Dunnet
1	>	2	
1	>	3	
1	<.	4	,
2	>	3	N.A.
2		4	N.A.
3	*	4	N.A.

SC-0224 Technical Weight

Analysis of Variance

File: SCGROW

Date: 06-30-1989

FILTER: None

N's, means and standard deviations based on dependent variable: WEIGHT

* Indicates statistics are collapsed over this factor

	1		
Factors: CR Concentration	mg/ N	Mean	S.D.
* *	 316	0.8071	0.2417
1 * Control	55	0.8951	0.2007
2 * 6.8	52	0.7618	0.2507
3 * 12	52	0.8072	0.2158
4 * 23	58	0.9074	0.1868
, 5 * 51	52	0.8604	0.2397
¥ 6 * 101	47	0.5712	0.2007
* 1	79	0.8015	0.2089
* 2	80	0.8093	0.2411
* 3	76	0.7688	0.2684
* 4	81	0.8461	0.2442
1 1	14	0.9551	0.2209
1 2	14	0.9168	0.2284
1 3	14	0.8669	0.1942
1 4	13	0.8373	0.1473
2 1	15	0.7324	0.1922
2 2	12	0.8014	0.2277
2 3	11	0.5585	0.2197
2 4	14	0.9190	0.2485
3 1	14	0.8266	0.1137
3 2	15	0.8618	0.2085
3 3	13	0.7111	0.2464
3 4	10	0.8232	0.2784
4 1	15	0.8967	0.1407
4 2	14	0.9171	0.2169
4 3	14	0.8769	0.1925
4 4	15	0.9374	0.2053
5 1	Э	0.7072	0.1650
5 2	13	0.6886	0.2180
5 3	15	0.9925	0.1802
5 4	15	0.9691	0.2162
6 1	12	0.6312	0.2366
6 2	12	0.6312	0.2366
6 3	9	0.4156	0.0900
6 4	14	0.5682	0.1394
	ימת מת מ	זמממממממממממ	מממממממממממ

Source	df	SS (H)	MSS	F	P
Between Subjects	315	18.4092			
C (CONC)	5	3.8794	0.7759	18.809	0.0000
R (REP)	3	0.3498	0.1166	2.827	0.0385
CR	15	2.1345	0.1423	3.450	0.0000
Subi w Groups	292	12.0454	0.0413		

SC-0224 Technical Weight

Analysis of Variance

File: SCGROW

Date: 06-30-1989

FILTER: None

Post-hoc tests for factor C (CONC)

Level	Mean	Level	Mean
1	0.895	6	0.571
2	0.762		
3	0.807		
4	0.907		
5	0.860		

Co	om p	ar	ison	Dunnett
	1	>		0.0100
		>	3	
	1	<	4	
	1		5	
*	1222233	>	6	0.0100
•	2	<	3	N.A.
	2		4	N.A.
	2	<	5	N.A.
	2	>	6	N.A.
	3	4.	4	N.A.
	3	*	5	N.A.
	3	>	6	N.A.
	4	>	5	N.A.
	4 5	> >	6	N.A.
	5	>	6	N.A.

Level	Mean
1	0.802
2	0.809
3	0.769
4	0.846

Comp	oai	rison	Dunnet
1	<	2	
1	>	3	
1	*.	4	
2	>	3	N.A.
2	*.	4	N.A.
3	Ć.	4	N.A.

SC-0224 Technical Survival

Analysis of Variance

File: scsurv

Date: 06-30-1989

FILTER: None

N's, means and standard deviations based on dependent variable: SURV

* Indicates statistics are collapsed over this factor

Factors:	C	Concentration	mg/L	N	Mean	S.D.
	*	•		24	1.2823	0.2086
	1	Control		4	1.2777	0.0505
	2	6.B		4	1.2513	0.2429
		12		4	1.2957	0.2001
	4	23		4	1.4369	0.1546
	5	51		4	1.3074	0.3303
	6	101		4	1.1245	0.1779

Number of variances= 6 df per variance= 3.

Source	df	SS (H)	MSS	F	Р
Between Subjects	23	1.0012			•
C (CONC)	5	0.2023	0.0405	0.912	0.4990
Subj w Groups	18	0.7989	0.0444		

Level	Mean	Level	Mean
1	1.278	6	1.125
2	1.251		
3	1.296		
4	1.437		
5	1.307		

Comparison	Dunnett
1 > 2	
1 < 3	
1 < 4	
1 < 5	
1 > 6	
2 < 3 2 < 4	N.A.
2 < 4	N.A.
2 < 5	N.A.
2 > 6	N.A.
3 < 4	N. A.
3 < 5	N.A.
3 > 6	N.A.
4 > 5	N.A.
4 > 6	N.A.
5 > 6	N.A.

SC-0224 Technical hatchability

Analysis of Variance

File: scsurv

Date: 06-30-1989

FILTER: None

N's, means and standard deviations based on dependent variable: HATCH

* Indicates statistics are collapsed over this factor

Factors: C	Concentration	(ma/c) N	Mean	s.D.
*		24	1.1673	0.1475
1	control	4	1.2199	0.1073
2	6-8	4	1.1746	0.1101
3		4	1.1213	0.0891
4	23	4	1.2844	0.2375
5	ัธเ	4	1.1746	0.1333
6	101	4	1.0289	0.1025

Source	df	SS (H)	MSS	F	Р
Between Subjects	23	0.5003			
C (CONC)	5	0.1515	0.0303	1.563	0.2190
Subi w Groups	18	0.3488	0.0194		

Post-hoc tests for factor C (CONC)

Leve1	Mean	Level	Mean
1	1.220	6	1.029
2	1.175		
3	1.121		
4	1.284		
5	1.175		

Compari	son D	unnett
		w.,,,,,
1 > 2		
1 > 3	;	
1 < 4	Ļ	
1 > 5	j	
1 > 6	;	
2 > 3 2 < 4	}	N.A.
2 < 4	}	N.A.
2 > 5	5	N.A.
$2 > \epsilon$;	N.A.
3 < 4	,	N.A.
2 > 5 2 > 6 2 > 6 3 < 5	ī	N.A.
-3 > e	;	N.A.
4 > 5	j	N.A.
4 > E	;	N.A.
5 > 6		N.A.

Shaughnessey No. 128501 Study/Species/Lab/	Chemical Name Sulfosate	Chemical Class	Page _	of	-
Succession Chemical X Active		nnical) Results	•	Reviewer/ Date	Valid
Avian Reproduction,	Group Dose(ppm) E		(X) 10%		State
Species:	Concrol	1.000	M ICA		
·	Treatment I			-	
Lab:	Treatment II				
Acc	Treatment III			·	
acc .	Study Duration:			• , , , ,	
	Commences:				
Field Study(Simulated/Actual) Group Rata(ai/a)		(X)		-
Species:	Control	Interval Treatments			
	Treatment I				· .
Lab:	Treatment II			· ////////////////////////////////////	
Acc.	Treatment III				٠.
	Crop/Site:	Study Curation:	• • •	•	
	Comments:		•	,	
					,
Chronic fish,	Mean Concentrations Tested (ppm	1)= (0.8: 12; 23; 51	: 101		
Species Salmo gairdneri	MATE = >51 < 101 PPm.	Effected Paramete	= lenat	hand weigh	U+
Lab: Analytical Bio-Chemistry Laboratories, Inc.	Contr. Mort. (1)= 8%	Sol. Contr. Mort. (%)		6/30/8	
Acc. 408937-04	Based on mea	in measured concentre active ingredient.	Hons,		
Chronic invertebrate	Concentrations Tested (pp				
Species	MATC => <cp< td=""><td></td><td>r(s)</td><td>-</td><td></td></cp<>		r(s)	-	
Lab	Contr. Hort. (X)=	•			
Acc.	Coments:			•	•
				•	