PMRA a.i. code (CCH)

Nature of the Residue in Plants OPPTS 860.1300 DACO 6.3

PC Code: 128008 MRID: 45405022

submission # 2001-1027, 1036, 1043

Date:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

Date:

July 2, 2003

Reviewers:

M.1 Ns San Date: 9.2.03

Maxie Jo Nelson, Chemist

Peer reviewer

RAB2/HED (7509C)

R. Loranger Date: 8/15/0=

Richard A. Loranger Branch Senior Scientist RAB2/HED (7509C) Henri P. Bietlot, Chemist

Reviewer

RREAS, HED, PMRA

1111 1110

Section Head

FREAS, HED, PMRA

DP Barcode: D278386

Petition:

1F06313

Citation:

45405022 Rabe, U.; Schluter, H. (2001) Metabolism of BAS 510 F in Grapevine:

Final Report: Lab Project Number: 41837: 2000/1014860. Unpublished study

prepared by BASF Aktiengesellschaft. 68 p.

Sponsor:

BASF Corporation

Background

The information contained herein was compiled by the Dynamac Corporation (20440 Century Boulevard, Suite 100, Germantown MD 20874), contractor, under the supervision of RAB2/HED. This DER has undergone secondary review by PMRA/Canada, and peer review by RAB2, and reflects current HED and Office of Pesticide Programs (OPP) policies.

Executive Summary

BASF Corporation has submitted a study investigating the metabolism of [14C]BAS 510 F in grapes. The in-life and analytical phases of the study were conducted by BASF Aktiengesellschaft (Limburgerhof, Germany). Grape bunches and leaves were collected 45 days following the last of three foliar applications of [14C]BAS 510 F, uniformly labeled on the phenyl

PC Code: 128008 MRID: 45405022

submission # 2001-1027, 1036, 1043

rings (diphenyl label) or labeled at the 3-position of the pyridine ring (pyridine label), at 0.713 lb ai/A/application (800 g ai/ha/application for a total of 2.13 kg ai/ha, =2X proposed GAP). Grape bunches were separated into grapes and stalks. TRR (calculated by summing extractable and nonextractable residues) were 1.181 and 2.066 ppm in/on grapes, 12.356 and 19.637 ppm in/on grape stalks, and 43.672 and 63.359 ppm in/on grape leaves treated with diphenyl-label [14C]BAS 510 F and pyridine-label [14C]BAS 510 F, respectively. Material balances, based on sample combustion, were 90.6-108.7% for grapes and grape leaves.

The majority of residues (>92% TRR) in grape commodities were extracted with methanol. An additional water extraction step released a small amount of radioactivity (<1% TRR). Extracts from the grape berry were analyzed by HPLC; identification of BAS 510 F was confirmed by LC/MS/MS. The unchanged parent, BAS 510 F, was the only component identified in grape commodities, accounting for 92.2-97.5% TRR (1.095-1.905 ppm in/on grapes; 11.914-19.152 ppm in/on grape stalks; and 41.752-60.859 ppm in/on grape leaves). One unknown peak was observed in the methanol extracts of grape leaves at up to 2.4% TRR (1.049 ppm). Because of the low levels of this unknown, and the fact that grape leaves are not a significant food/feed item, the petitioner chose not to investigate the identity of this peak. Nonextractable residues accounted for 2.0-7.3% (up to 0.15 ppm) TRR and were not further analyzed.

The petitioner included supporting storage stability data in which the extractions and analyses of samples were repeated at the end of the study and compared to the results obtained at the beginning of the study. The extraction profiles of grapes stored for approximately 16 months were very similar to those of grapes extracted within 2 months of sample collection. In addition, the HPLC profiles of the initial methanol extracts of stored grapes were very similar to those obtained at the beginning of the study. These data are sufficient to support the storage intervals of the RAC samples from this study.

The submitted study is acceptable to satisfy data requirements for a plant metabolism study with grapes.

GLP Compliance

Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided. The petitioner stated that the study was conducted in accordance with the GLP regulations established in Germany (Appendix 1 to §19a Section 1, Chemikaliengesetz of 25-July-1994; Official Bulletin/Federal Republic of Germany I 1994, p. 1703) instead of U.S. EPA GLP regulations or PMRA's GLP guidelines.

BAS 510 F

Grape PMRA a.i. code (CCH) Nature of the Residue in Plants OPPTS 860.1300

DACO 6.3

PC Code: 128008 MRID: 45405022

submission # 2001-1027, 1036, 1043

1. Materials and Methods

1.1. Substance

Active Ingredient

Common Name:

Nicobifen (ISO, proposed)

IUPAC Name:

2-Chloro-N-(4'-chlorobiphenyl-2-yl)nicotinamide

CAS Name:

3-Pyridinecarboxamide, 2-chloro-N-(4'chloro[1,1'-biphenyl]-2-yl)-

CAS Number:

188425-85-6

Company Name:

BAS 510 F

Other Synonyms:

BASF Registry 300355

Location of Isotopic Label (diphenyl label): Uniformly labeled in both phenyl rings

Radiochemical Purity: >99%

Specific Activity: 314,000 dpm/µg (µCi/mmol not provided)

Location of Isotopic Label (pyridine label): Labeled at the 3-position in the pyridine ring

Radiochemical Purity: >99%

Specific Activity: 349,000 dpm/µg (µCi/mmol not provided)

1.2. Crop and Site

Type and Variety of Crop: Grape, var. Müller-Thurgau

Growth Environment: Four plots of grapevines, two plots per label, at the BASF

agricultural testing facility (Limburgerhof, Germany)

Conditions: Fertilization, herbicide, and fungicides were applied according to standard

German agricultural practices. PMRA cannot comment on what these involve.

PC Code: 128008 MRID: 45405022

wiki): 43405022 submission # 2001-1027, 1036, 1043

1.3. Application

Type of Application: Foliar spray application using a hand sprayer

Application Matrix: The radiolabeled test substances were dissolved in suspension

concentrate formulation blank and water.

Application Rate: 0.713 lb/A/application (800 g ai/ha/application)

Number of Applications: Three

Timing of Applications: First application at BBCH growth stage 68-69 (end of

flowering); second application 12 days later at growth stage 71; third application 41 days

later at growth stage 81 (beginning of ripening)

Pre-harvest Interval(s): Leaves were sampled 15 days after the third application to thin out the foliage. Samples of grape bunches and leaves were collected at grape maturity, 45 days after the final application.

1.4. Harvest/Post-harvest Procedures

The leaf samples collected 15 days after the final application were not subjected to any extractions or analyses. Grape bunches were separated into grapes and stalks. Samples of grapes, stalks, and leaves from mature vines were frozen immediately after sampling and stored frozen (\leq -18 C) until analysis.

Table 1.4.1. Su	mmary of Storage Conditions		
Matrix	RAC or Extract	Storage Temperature ('C)	Duration (days)
Grape	Grapes (RAC)	≤-18 C	63
	Leaves	≤-18 C	105
	Stalks	≤-18 C	383

The petitioner included supporting storage stability data in which the extractions and analyses of samples were repeated at the end of the study and compared to the results obtained at the beginning of the study. The extraction profiles of grapes stored for approximately 16 months were very similar to those of grapes extracted within 2 months of sample collection. In addition, the HPLC profiles of the methanol extracts of stored grapes were very similar to those collected at the beginning of the study. Although minor amounts of unknown compounds were observed in the extracts of stored grapes, the observed amounts were low (<2% TRR). These data are acceptable and sufficient to support the storage intervals of the RAC samples in this study.

Freezer storage stability information was not provided for the leaves and stalks. Based on the results of the analysis in these commodities and the results from the grape berries, no additional freezer storage stability information will be needed to support this study.

DACO 6.3

PC Code: 128008 MRID: 45405022

submission # 2001-1027, 1036, 1043

1.5. Analytical Methods

PMRA a.i. code (CCH)

Samples of grape commodities from both labels were homogenized and subjected to combustion/LSC for determination of total radioactive residues (TRR), with the exception of stalks. Because of sample inhomogeneity, TRR in stalks could not be determined by direct combustion/LSC; instead, TRR were determined by summing extractable and nonextractable radioactivity. The reported limits of quantitation (calculated) were 0.006 ppm for diphenyl-label samples and 0.005 ppm for pyridine-label samples.

Subsamples of homogenized grape commodities were extracted with methanol (MeOH; 3x) and water (2x; grapes and grape stalks only). The MeOH extracts were isolated by centrifugation and combined; the water extracts were similarly isolated and combined. The MeOH extracts were mixed with water, concentrated, and partitioned with cyclohexane (3x). The remaining aqueous phase was partitioned with ethyl acetate (EtOAc; 3x).

The MeOH extracts and aqueous grape stalk extracts were analyzed by HPLC. HPLC analyses were conducted on a system equipped with an ODS II or PRP-1 column, a UV detector, a radioactivity monitor, and a fraction collector. A gradient mobile phase of water:acetonitrile: formic acid (950:50:2 and 50:950:2, v:v:v) was used. The petitioner only used radiolabeled BAS 510 F as a standard in these experiments. No othe known or postulated betaloites of BAS 510 was used.

The identification of BAS 510 F in diphenyl-label grapes was confirmed by electrospray ionization LS/MS/MS. LC/MS/MS analyses were conducted using an ODS II column and a gradient mobile phase similar to that used for HPLC analyses.

2. Results

Label Location	Crop Matrix	Application Rate	PHI, days	TRR, p	om	% Mass
Lauci Location Crop Mis	Crop iviauix	Application Rate	rru, days	Combustion ¹	Calculation ²	Balance ³
	Grapes	3 x 0.713 lb ai/A	45	1.086	1.181	108.7%
	Grape stalks		45	Not determined	12.356	_
	Grape leaves		45	44.451	43.672	98.2%
Pyridine label	Grapes	3 x 0.713 lb ai/A	45	2.281	2.066	90.6%
	Grape stalks		45	Not determined	19.637	**
	Grape leaves	,	45	60.096	63.359	105.4%

As determined by direct combustion/LSC.

² Calculated by summing extractable residues and nonextractable residues. The petitioner used the calculated value for all reported results.

Based on sample combustion.

PMRA a.i. code (CCH)

OPPTS 860.1300

DACO 6.3

PC Code: 128008

MRID: 45405022

submission # 2001-1027, 1036, 1043

Table 2.2.1. Extraction, Characterization, and Identification of Radioactive Residues in Grapes² (TRR = 1.181 ppm) Harvested 45 Days Following Three Foliar Applications of [Diphenyl-U-¹⁴C]BAS 510 F at 0.713 lb ai/A/application.

Fraction ID	% TRR	ppm	Residue ID	% TRR	ppm	Comments
MeOH extract	92.7	1.095	BAS 510 F	92.7	1.095	Identification confirmed by LC/MS/MS. Sequentially partitioned with cyclohexane and EtOAc.
Cyclohexane	95.6	1.129	N/A ¹			
EtOAc	2.3	0.027	N/A			
Water	0.7	0.008	N/A			
Water extract	0.4	0.005	NA			
Nonextractable	6.8	0.081	N/A	1	······································	

Not analyzed.

Table 2.2.2. Extraction, Characterization, and Identification of Radioactive Residues in Grape Stalks ² (TRR = 12.356 ppm) Harvested 45 Days Following Three Foliar Applications of [Diphenyl-U-¹⁴C]BAS 510 F at 0.713 lb ai/A/application.

The state of the s							
Fraction ID	% TRR	ppm	Residue ID	% TRR	ppm	Comments	
MeOH extract	95.6	11.810	BAS 510 F	95.6	11.810	Sequentially partitioned with cyclohexane and EtOAc.	
Cyclohexane	61.0	7.542	N/A ¹				
EtOAc	32.6	4.033	N/A			·	
Water	0.2	0.020	N/A				
Water extract	0.8	0.104	BAS 510 F	0.8	0.104	×-	
Nonextractable	3.6	0.442	NA				

Not analyzed.

² Calculated by summing extractable residues and nonextractable residues. The petitioner used the calculated value for all reported results.

² Calculated by summing extractable residues and nonextractable residues. The petitioner used the calculated value for all reported results.

BAS 510 F

Grape

Nature of the Residue in Plants **OPPTS 860.1300**

PC Code:

128008 45405022

MRID: submission # 2001-1027, 1036, 1043

PMRA a.i. code (CCH)

DACO 6.3

Table 2.2.3. Extraction, Characterization, and Identification of Radioactive Residues in Grape Leaves 2 (TRR = 43.672 ppm) Harvested 45 Days Following Three Foliar Applications of [Diphenyl-U-14C]BAS 510 F at 0.713 lb ai/A/application.

Fraction ID	% TRR	ppm	Residue ID	% TRR	ppm	Comments	
MeOH extract	98.0	42.801	BAS 510 F	95.6	41.752	Sequentially partitioned with	
			Unknown 2.4 1.049 C)		cyclohexane and EtOAc.		
Cyclohexane	99.6	43.488	N/A ¹				
EtOAc	2.2	0.947	NA				
Water	0.2	0.079	N/A				
Nonextractable	2.0	0.871	N/A				

Not analyzed.

Table 2.2.4. Extraction, Characterization, and Identification of Radioactive Residues in Grapes 2 (TRR = 2.066 ppm) Harvested 45 Days Following Three Foliar Applications of [Pyridin-3-14C]BAS 510 F at 0.713 lb ai/A/application.

Fraction ID	% TRR	ppm	Residue ID	% TRR	ppm	Comments
MeOH extract	92.2	1.905	BAS 510 F	92.2	1.905	Sequentially partitioned with cyclohexane and EtOAc.
Cyclohexane	105.5	2.180	N/A ¹			
EtOAc	1.7	0.035	N/A		. *	
Water	1.1	0.022	N/A			
Water extract	0.5	0.009	N/A			
Nonextractable	7.3	0.150	NA			

Not analyzed.

Table 2.2.5. Extraction, Characterization, and Identification of Radioactive Residues in Grape Stalks 2 (TRR = 19.637 ppm) Harvested 45 Days Following Three Foliar Applications of [Pyridin-3-14C]BAS 510 F at 0.713 lb ai/A/application.

Fraction ID	* % TRR	ppm	Residue ID	% TRR	ppm	Comments
MeOH extract	97.0	19.054	BAS 510 F	97.0	19.054	Sequentially partitioned with cyclohexane and EtOAc.
Cyclohexane	93.7	18.403	N/A ¹			
EtOAc	1.9	0.380	N/A			
Water	0.5	0.102	N/A			
Water extract	0.5	0.108	BAS 510 F	0.5	0.098	
			Unknown	0.1	0.010	
Nonextractable	2.4	0.475	N/A			

² Calculated by summing extractable residues and nonextractable residues. The petitioner used the calculated value for all reported results.

² Calculated by summing extractable residues and nonextractable residues. The petitioner used the calculated value for all reported results.

BAS	510	F
Grap	e	

Nature of the Residue in Plants

OPPTS 860.1300

DACO 6.3

PC Code: 128008 MRID: 45405022

submission # 2001-1027, 1036, 1043

PMRA a.i. code (CCH)

Table 2.2.6. Extraction, Characterization, and Identification of Radioactive Residues in Grape Leaves ² (TRR = 63.359 ppm) Harvested 45 Days Following Three Foliar Applications of (Pyridia-3-¹⁴CJBAS 510 F at 0.713 lb ai/A/application.

Fraction ID	% TRR	ppm	Residue ID	% TRR	ppm	Comments	
MeOH extract	97.9	62.031	BAS 510 F Unknown	96.1 1.8	60.859 1.172	Sequentially partitioned with cyclohexane and EtOAc.	
Cyclohexane	97.4	61.702	N/A ¹				
EtOAc	2.3	1.427	N/A				
Water	0.2	0.141	NA				
Nonextractable	2.1	1.328	N/A				

Not analyzed.

¹ Not analyzed.

² Calculated by summing extractable residues and nonextractable residues. The petitioner used the calculated value for all reported results.

² Calculated by summing extractable residues and nonextractable residues. The petitioner used the calculated value for all reported results.

Nature of the Residue in Plants

OPPTS 860.1300

PC Code: 1 MRID: 4

128008 45405022

PMRA a.i. code (CCH)

DACO 6.3

submission # 2001-1027, 1036, 1043

Metabolite or Fraction	Gr	apes	Grape	stalks	Grape leaves	
	%TRR	ppm	%TRR	ppm	%TRR	ppm
[Diphenyl-U-I4C]BAS 510 F						
BAS 510 F	92.7	1.095	96.4	11.914	95.6	41.752
Water extract	0.4	0.005	**	***	idean	
Unknown	••				2.4	1.049
Total Identified (TI)	92.7	1.095	96.4	11.914	95.6	41.752
Total Characterized (TC)	0.4	0.005	· ·	**	2.4	1.049
Total Extractable (TE)	93.1	1.1	96.4	11.914	98.0	42.801
Total Bound (TB)	6.8	0.081	3.6	0.442	2.0	0.871
% Mass Balance	99	9.9	100.0		100.0	
[Pyridin-3-14C]BAS 510 F			, , , , , , , , , , , , , , , , , , ,			
BAS 510 F	92.2	1.905	97.5	19.152	96.1	60.859
Water extract	0.5	0.009	AV 44		**	
Unknown	969A.	****	0.1	0.010	1.8	1.172
Total Identified (TI)	92.2	1.905	97.5	19.152	96.1	60.859
Total Characterized (TC)	0.5	0.009	0.1	0.01	1.8	1.172
Total Extractable (TE)	92.7	1.914	97.6	19.162	97.9	62.031
Total Bound (TB)	7.3	0.150	2.4	0.475	2.1	1.328
% Mass Balance	10	0.0	10	0.0	100.0	

TC = Sum of all unidentified, extractable residues

2.4 Proposed Metabolic Fate of BAS 510 F in Grape.

As borne out by Table 2.3, no significant metabolism of BAS 510 F (>2.5% of the TRR) was observed in grapes.

No metabolites of BAS 510 F were identified in grapes.

TE = Sum of TI and TC

[%] Mass Balance = TE %TRR +TB % TRR. Note that the petitioner calculated TRR by summing extractable and nonextractable residues; therefore, mass balance is at or very close to 100% for all matrices. See Table 2.1 for actual mass balance based on combustion of the grape and grape leaf samples.

PMRA a.i. code (CCH)

Nature of the Residue in Plants OPPTS 860.1300 DACO 6.3

PC Code: 128008 MRID: 45405022

submission # 2001-1027, 1036, 1043

Identifier	Chemical Name	Structure	Comments
BAS 510 F (Parent Compound)	3-Pyridinecarboxamide, 2-chloro-N-(4'chloro[1,1'-biphenyl]-2-yl)-	N CI	Identified in all grape commodities, at >92% TRR.

3. Discussion

3.1. Methods

Radiolabeled [¹⁴C]BAS 510 F, labeled at the 3-position of the pyridine ring or uniformly labeled on the phenyl rings, was applied three times to grape vines as a foliar spray application at 0.713 lb ai/A/application (800 g ai/ha for a total of 2.4 kg ai/ha/season, ≈2X the proposed label rate), with the first application at the end of flowering, the second application 12 days later, and the third application 41 days after the second, at the beginning of ripening. Grape bunches and leaves were collected at maturity, 45 days following the last application. Grape bunches were separated into grapes and stalks. The TRR were determined by combustion/LSC in grapes and grape leaves. For grape stalks, the petitioner calculated TRR by summing extractable and nonextractable radioactivity because of sample inhomogeneity. The petitioner also used calculated TRR values for grapes and grape leaves for reporting all results. Material balances, based on sample combustion, were 90.6-108.7% for grapes and grape leaves.

The majority of residues (>92% TRR) in grape commodities were extracted with MeOH. An additional water extraction released a small amount of radioactivity (<1% TRR). Extracts of grape commodities were analyzed by HPLC; identification of BAS 510 F was confirmed in grapes by LC/MS/MS. These methods adequately characterized/identified the majority of the residues in grape commodities.

3.2. Results

Following three foliar applications of [14C]BAS 510 F, labeled in the diphenyl portion or in the pyridine ring, at 0.713 lb ai/A/application (800 g ai/ha), TRR were 1.181 and 2.066 ppm, respectively, in/on grapes, 12.356 and 19.637 ppm, respectively, in/on grape stalks, and 43.672 and 63.359 ppm, respectively, in/on grape leaves collected 45 days following the last application.

PMRA a.i. code (CCH)

Nature of the Residue in Plants OPPTS 860.1300

DACO 6.3

PC Code: 128008 MRID: 45405022

submission # 2001-1027, 1036, 1043

The unchanged parent, BAS 510 F, was the only component identified in grape commodities, accounting for 92.2-97.5% TRR (1.095-1.905 ppm in/on grapes; 11.914-19.152 ppm in/on grape stalks; and 41.752-60.859 ppm in/on grape leaves). One unknown peak was observed in the MeOH extracts of grape leaves at up to 2.4% TRR. Because of the low levels of this unknown, and the fact that grape leaves are not a significant food/feed item, the petitioner did not investigate the identity of this peak. Nonextractable residues accounted for 2.0-7.3% TRR and were not further analyzed.

The submitted study is adequate to satisfy data requirements for a plant metabolism study with grapes.

4. Deficiencies

No deficiencies were identified.

5. References

None.