PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

Data Requirement:

PMRA DATA CODE: 9.4.4

EPA DP Barcode: D278418

OECD Data Point:

EPA Guideline: 72-3(c)

Test material: BAS 510 F

Purity (%): 96.9%

Common name: Nicobifen

Chemical name

IUPAC: 2-chloro-N-(4'-chlororobiphenyl-2-yl) nicotinamide

CAS name: 3-Pyridinecarboxamide, 2-chloro-N (4'-chloro[1.1'-biphenyl]-2-yl)

CAS No.: 188425-85-6 Synonyms: not stated

Primary Reviewer: Peter Takacs, Regi Mathew.

Date: February 12/2002

{PMRA}

Secondary Reviewer(s): Thomas M. Steeger, Ph.D. homes M Ste

Date: April 1, 2002

{EPA}

Company Code: BAZ

Active Code: CHH-BAZ-4

Use Site Category: In Canada, this fungicide is proposed for use on USC 13, 14 and 30; agricultural feed, food and turf uses. BAS 510 F is to be used 2-6 times per growing season depending on the crop, at a maximum recommended application rate of 875 g a.i./ha/application (0.78 lbs a.i./Acre/application).

EPA PC Code: 128008

CITATION: Robert L. Boeri, Derek C. Wyskiel, Timothy J. Ward and Catherine M. Holmes. September, 2000. Flow-Through Mollusc Shell Deposition Test with BAS 510 F. T.R. Wilbury Laboratories, Inc. 40 Doaks Lane Marblehead, Massachusetts 01945. Study number 1917-BA.

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

EXECUTIVE SUMMARY:

The 96-hr-acute toxicity of BAS 510 F to the Eastern oyster, *Crassostrea virginica*, was studied under flow-through conditions. Juvenile oysters were exposed to control, solvent control, and test chemical at mean-measured concentration of 0.42, 0.78, 1.3, 2.2, 3.9 mg ai/L. Observations for mortality were made daily and shell deposition was measured at the end of the test. The 96-hour EC₅₀ for shell deposition was 1.02 mg ai/L. No mortality occurred at any treatment level. The 96-hour NOEC could not be calculated due to significant inhibition of shell deposition at all test concentrations; therefore the NOEC is less than 0.421 mg a.i./L.. Based on a 96-hr EC₅₀ of 1.02 mg a.i./L in oysters, BAS 510F is classified as highly toxic estuarine/marine molluscs on an acute exposure basis.

This study is classified as core and as having fulfilled guideline testing requirements. This study is conditionally required in Canada, and the use pattern indicates that exposure in estuarine habitats can be expected.

Results Synopsis

Test Organism Age: juvenile Test Type: Flow-through

 EC_{so} : 1.02 mg ai/L NOEL: < 0.42 mg a.i./L

Endpoint Effected: shell deposition

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

I. MATERIALS AND METHODS

GUIDELINE FOLLOWED:

The final definitive test was conducted under flow-through conditions from January 26 to 30, 2001, according to T.R. Wilbury Study Protocol 1917-BA (BASF Study Number 46670, Flow-Through Mollusc Shell Deposition Test with BAS 510 F), which was signed by the study director on September 1, 2000. It was based on procedures of the U.S. Environmental Protection Agency (1985, 1988).

COMPLIANCE:

This study was conducted according to EPA Good Laboratory Practice Regulations (40 CFR 160).

A. MATERIALS:

1. Test Material

BAS 510 F

Description:

white powder

Lot No./Batch No.:

N75

Purity:

95.41%

Stability of Compound

Under Test Conditions:

expires August 29/2002.

Storage conditions of

test chemicals:

stored in the dark at room temperature

Physicochemical properties of BAS 510 F

Parameter	Values	Comments
Water solubility at 20°C	4.69 mg/L	very insoluble
Vapour pressure	7x10 ⁻⁹ mbar @ 20 °C	non-volatile
UV absorption	UV molecular extinction: 1.53x10³ at 290 nm	•
pKa	does not dissociate in water	not affected by pH
Kow	910	moderately lipophilic, not likely to bioconcentrate

2. Test organism:

Species: Eastern oyster, Crassostrea virginica

Age at test initiation: juvenile

Source: commercial supplier (Middle Peninsula Aquaculture, North, Virginia)

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

B. <u>STUDY DESIGN</u>:

1. Experimental Conditions

a) Range Finding Test:

A range-finding test was conducted under static renewal conditions from October 18 to 22, 2000. Nominal concentrations of BAS 510 F were 0 (control and solvent control, 0.1 mL/L acetone), 0.10, 0.50, 1.0, 5.0, and 8.0 mg/L. After 96 hours there was 100% survival in the control, solvent control, and at all tested concentrations. Shell growth averaged 1.7 mm in the control, 2.2 mm in the solvent control, 1.7 mm at 0.10 mg ai/L, 1.8 mm at 0.50 mg ai/L, 1.6 mm at 1.0 mg ai/L, 0.2 mm at 5.0 mg ai/L, and 0.6 mm at 8.0 mg ai/L. No sublethal effects were observed at any tested concentration during the test.

b) Definitive Study

Table 1. Experimental Parameters

	D. 4. 11	Remarks
Parameter	Details	Criteria
Source	Oysters obtained from commercial supplier (Middle Peninsula Aquaculture, North, Virginia.	
Mean Valve Height	36 to 49 mm in height measured along long axis	EPA requires mean valve height of 25 - 50 mm measured along the long axis
Acclimation:		
Period: Conditions: Feeding:	10 days same as test oysters were supplied with live marine phytoplankton to supplement the existing food in the unfiltered, atural seawater that was used as dilution water.	EPA requires acclimation period minimum 10 days
Health:	No abnormalities were noted	
Duration of the test	96 hr	

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

	D (2)	Remarks	
Parameter	Details	Criteria	
Test condition: Flow through	During the test the diluter was activated 1,089 times, resulting in an average of 9.1 volume additions per 24 hours in each test vessel and 0.57 liters per oyster per hour.		
Aeration	Not required to maintain adequate oxygen levels		
Test vessel:		,	
Material: Size: Fill volume:	Glass aquaria 20L 15L	EPA requires 1. Material (glass or stainless steel) 2. Static volume (18.9 L or 5 gal) with 15 L solution) b. Static or flow-through volume (300x600x300 = 54000 cc.)	
Source of dilution water	Water used for acclimation of test organisms and for all toxicity testing was unfiltered, natural seawater collected directly from the Atlantic Ocean at T.R. Wilbury Laboratories in Marblehead, Massachusetts. The water, which had a salinity of 32 to 35 parts per thousand, was stored in polyethylene tanks where it was aerated.	EPA requires natural unfiltered seawater	
Water parameters: Hardness: pH: Dissolved oxygen: Temperature: Salinity: Pesticides:	not reported 7.8 - 8.1 6.0 - 8.0 mg/L 20.2 - 21.9°C 32 - 34 parts per thousand Not detected	(Static 1 st 48 hrs 40%; 2 st 48 hrs 60%; Flow-through 60%) (% of lowest conc. & hour)	
Intervals of water quality measurement	daily		
Number of replicates: Control (dilution water): Solvent control: Treatments:	2 2 2 2		

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

Parameter	Details	Remarks
ratameter	Details	Criteria
Number of organisms per replicate: Control Solvent control: Treatments:	10 10 10	EPA requires minimum 10/level can be divided among containers.
Treatment concentrations:	Nominal: 0, 0.52, 0.88, 1.4, 2.4, 4.0 mg/L mean measured: 0.421, 0.777, 1.26, 2.20, 3.58 mg/L.	(EPA requires a geometric series with each concentration being at least 60% of the next higher one)
Solvent	acetone (0.5 mL/L)	
		(EPA requires solvents not to exceed 0.1 ml/L for flow-though tests)
Lighting	A 16 hour light and 8 hour dark photo period was automatically maintained with cool-white fluorescent lights that provided a light intensity of approximately 32 foot candles. A 15 minute transition period was provided between dark and light.	(EPA requires 16 hours light, 8 hours dark; OECD: optional light- dark cycle or complete darkness 14 light:10 dark)
Recovery of chemical: Frequency of determination: Level of Quantitation: Level of Detection:	beginning and end of study 0.10 mg ai/L; 0.00232 mg/L	All samples were filtered through a 0.22 µm filter upon collection

2. Observations:

Table 2: Observations

Parameters	Details	Remarks
		Criteria
Parameters measured including the sublethal effects	Survival at termination of test deposition of new shell growth	
Observation intervals	test initiation and termination	The number of surviving organisms and the occurrence of sublethal effects were determined visually at 0, 24, 48, 72, and 96 hours.

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

Water quality was acceptable (Yes/No)	Yes	
Were raw data included?	Yes	

II. RESULTS AND DISCUSSION

A. MORTALITY:

No mortality was observed in any of the treatment groups.

Table 3: Effect of BAS 510 F on mortality of Crassostrea virginica.

Treatment		Observ	ation period
(mg a.i./L)	No. of organisms	96 hr	
[mean measured]		No Dead	% mortality
Control	20	0	0
Solvent control	20	0	0
0.421	20	0	0
0.777	20	0	0
1.26	20	0	0
2.20	20	0	0
3.58	20	0	0
NOEC		3.58 mgai/L	
LC ₅₀		> 3.58 mgai/L	

Shell deposition was significantly lower than pooled control at every treatment level. Therefore a NOEC for this endpoint could not be determined.

Table 4: Effect of BAS 510 F on shell deposition of Crassostrea virginica.

Treatment	Observation period	
(mg a.i./L) [mean measured]	96 hr	
	Mean Shell deposition (mm)	
Control	2.0	
Solvent control	2.3	
0.421	1.5*	·

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

Therefore	Observation period		
Treatment (mg a.i./L)	96 hr		
[mean measured]	Mean Shell deposition (mm)		
0.777	1.4*		
1.26	1.3*		
2.20	0.7*		
3.58	0*		
NOEC	<0.42 mg ai/L		
EC ₅₀	1.02 mg ai/L		

[★] Significantly different from control

C. REPORTED STATISTICS:

The EC₅₀ was calculated by standard statistical techniques (Stephan, 1983). The binomial/nonlinear interpolation method using mean measured concentrations and mean shell growth was employed. The slope of the concentration-response curve could not be calculated by this method. The no observed effect concentration was calculated using TOXSTAT 3.3 (Gulley, *et al.*, 1990). Control and solvent control shell deposition data were compared with a parametric "t" test and found not to be statistically significantly different ($\alpha = 0.05$). Subsequent statistical analyses were performed by comparing the pooled control and solvent control data to the treatment data. A Chi-square test was used to determine that the data were normally distributed and Bartlett's test was used to determine that the variances were homogeneous. Shell deposition data in the treatments were compared to the pooled control data with a one-way analysis of variance (ANOVA) and Bonferroni's test.

D. VERIFICATION OF STATISTICAL RESULTS BY THE REVIEWER:

Statistical test: Mann-Whitney Rank Sum Test; SigmaStat v. 2.

This test was performed because the equality of variance assumption was not met for the control data and the lowest treatment group data. The test indicated that the reduction in shell deposition at the low test concentration of 0.42 mg ai/L was statistically significant compared to controls.

```
Group Median 25\% 75\% pooled control 2.250 1.900 2.550 Col 4 1.600 0.400 2.200 T = 488.500 n(small)= 20 n(big)= 20 (P = 0.035) The differences in the median values among the two groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.035)
```

Data were not normally distributed, therefore the non-parametric ANOVA, Kruskal-Wallis One Way Analysis of Variance on Ranks with Dunnett's test was also used. All treatment levels were significantly lower than the pooled control.

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

All Pairwise Multiple Comparison Procedures (Dunnett's Method) :

Comparis	on Diff of Ran	ks p	q'	P<0.05
Col 8 vs	pooled control	1342.000	6	6.100 Yes
Col 7 vs	pooled control	915.500	5	4.990 Yes
Col 6 vs	pooled control	546.500	4	3.718 Yes
Col 5 vs	pooled control	496.000	3	4.491 Yes
Col 4 vs	pooled control	432.000	2	5.843 Yes

E. <u>STUDY DEFICIENCIES</u>: The applicant claimed that pooled control data was used in the analyses, however, percent of control data reported in Table 4 of the study indicates that treatments were compared to the dilution water control only. Since the two controls were not significantly different, this is a minor deficiency.

According to the General Information section (page 9), the purity of BAS 510F is 96.9%; however, under the Test Substance section of the Materials and Methods (page 10, the purity of the BAS 510F is listed as 95.41%.

F. <u>REVIEWER'S COMMENTS</u>: All test concentrations resulted in significantly reduced shell deposition in eastern oysters, and an NOEC could not be calculated.

Statistical analyses run assuming the treatment means would be normally distributed shows William's test with all BAS 510F-treated oysters exhibiting significantly decreased shell deposition compared to pooled control; therefore, the NOEL is less than the lowest dose tested, *i.e.*, 0.421 mg a.i./L. Probit analysis of percent inhibition of shell growth using SAS resulted an EC₅₀ of 1.02 (95% confidence interval: 0.56 - 1.59); probit slope = 2.14 (95% confidence interval: 0.89 - 3.39)

G. <u>CONCLUSIONS</u>: This study is classified as core and fulfills guideline testing requirements for an acute toxicity study using Eastern oysters. Although the study failed to establish a definitive NOEC, with an EC50 = 1.02, BAS 510 F is classified as highly toxic to estuarine/marine molluscs on an acute exposure basis. This study is conditionally required in Canada, and the use pattern indicates that exposure in estuarine habitats can be expected.

III. REFERENCES:

Approved 04/01/01 C. K.

SAS (Statistical Analysis System) 2000. SAS Institute, Release 8.01, Cary, North Carolina

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

96-Hr Easter Oyster Shell Deposition Study c:\BAS_O TITLE:

FILE:

TRANSFORM: NO TRANSFORM NUMBER OF GROUPS: 6

GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE
1	Control	1	2.3000	2.3000
1	Control	2	3.1000	3.1000
1	Control	3	3.8000	3.8000
1	Control	4	1.6000	1.6000
1	Control	5	2.1000	2.1000
1	Control	6	3.4000	3.4000
.1	Control	7	1.5000	1.5000
1	Control	8	2.6000	2,6000
1	Control	9	2.4000	2.4000
1	Control	10	2.6000	2.6000
1	Control	11	1.5000	1,5000
1	Control	12	2.6000	2.6000
1	Control	13	3.0000	3.0000
1	Control	14	1.5000	1.5000
1	Control	15	1.0000	1.0000
1	Control	16	2.1000	2.1000
1	Control	17	1.5000	1.5000
1	Control	18	0.0000	0.0000
1	Control	19	0.0000	0.0000
1	Control	20	1.5000	1.5000
1	Control	21	2.3000	2.3000
1	Control	22	3.0000	3.0000
1	Control	23	2.6000	2.6000
1	Control	24	2.5000	2.5000
1	Control	25	0.0000	0.0000
1	Control	26	2.1000	2.1000
1	Control	27	3.6000	3.6000
1 1	Control	28	3.1000	3.1000
1	Control	29	1.7000	1.7000
1	Control	30	1.7000	1.7000
1	Control Control	31 32	2.9000	2.9000
1	Control	32 33	2.0000 2.1000	2.0000
1	Control	34	2.1000	2.1000
ī	Control	35	2.1000	2.4000 2.1000
ī	Control	36	1.6000	1.6000
ĩ	Control	37	3.3000	3.3000
ī	Control	38	2.2000	2.2000
1	Control	39	2.5000	2.5000
1	Control	40	3.2000	3,2000
2	0.421	1	2.4000	2.4000
2	0.421	2	1.6000	1.6000
2	0.421	3	1.4000	1.4000
2	0.421	4	3.4000	3.4000
2 2 2 2	0.421	5	2.8000	2.8000
2	0.421	6	2.0000	2.0000
	0.421	7	2.3000	2.3000
2	0.421	8	0.0000	0.0000

PMRA.	Submission Number 2001-10	27	EPA MRID Number {454050-03}
2	0.421 9	0.8000	0.8000
2 2	0.421 9 0.421 10	0.0000	0.0000
2	0.421 11	3.1000	3.1000
2	0.421 12	1.6000	1.6000
2	0.421 13	0.0000	0.0000
2	0.421 14	2.0000	2.0000
2	0.421 15	1.2000	1.2000
2	0.421 16	2.0000	2.0000
2	0.421 17	2.1000	2.1000
2	0.421 18	0.0000	0.0000
2	0.421 19	1.2000	1.2000
2 3 3 3 3 3	0.421 20	0.0000	0.0000
3	$ \begin{array}{ccc} 0.777 & 1 \\ 0.777 & 2 \end{array} $	2.5000	2.5000
3	0.777 3	0.0000 2.1000	0.0000 2.1000
3	0.777 4	1.3000	1.3000
3	0.777 5	1.1000	1.1000
3	0.777 6	2.1000	2.1000
3 3 3	0.777 7	0.0000	0.0000
3	0.777 8	0.7000	0.7000
3	0.777 9	1.9000	1.9000
3	0.777 10	3.1000	3.1000
3	0.777 11	3.1000	3.1000
3	0.777 12	1.9000	1.9000
3	0.777 13	0.9000	0.9000
3	0.777 14	0.0000	0.0000
3 3 3 3 3 3 3 3 3	0.777 15	2.8000	2.8000
3	0.777 16 0.777 17	0.0000	0.0000
3	0.777 18	0.8000 1.5000	0.8000 1.5000
3	0.777 19	0.0000	0.0000
3	0.777 20	1.6000	1.6000
4	1.26 1	2.6000	2.6000
4	1.26 2	1.1000	1.1000
4	1.26 3	1.4000	1.4000
4	1.26 4	0.0000	0.0000
4	1.26 5	0.0000	0.0000
4	1.26 6	1.1000	1.1000
4	1.26 7	2.1000	2.1000
4 4	1.26 8	0.9000	0.9000
4	1.26 9 1.26 10	0.0000 0.0000	0.0000
4	1.26 10	3.0000	0.0000 3.0000
4	1.26 12	1.7000	1.7000
4	1.26 13	1.7000	1.7000
4	1.26 14	2.1000	2.1000
4	1.26 15	2.5000	2.5000
4	1.26 16	3.5000	3.5000
4	1.26 17	0.0000	0.0000
4	1.26 18	2.2000	2.2000
4	1.26 19	0.0000	0.0000
4	1.26 20	0.0000	0.0000
5	2.20 1 2.20 2	0.6000	0.6000
5	2.20 2 2.20 3	1.8000 1.4000	1.8000
4 5 5 5 5	2.20 4	0.0000	1.4000 0.0000
5	2.20 5	2.6000	2.6000
-		2.000	2.0000

PMR/	A Submission Num	ıber 2	001-1027	EPA MRID Number {454050-03}
-	0.00		0.000	
5 5	2.20	6	0.0000	0.0000
ב	2.20	7	0.0000	0.0000
5	2.20	8	0.0000	0.0000
5 5	2.20	9	0.0000	0.0000
. 5	2.20	10	0.0000	0.0000
5	2.20	11	0.0000	0.0000
5	2.20	12	2.4000	2.4000
5	2.20	13	0.5000	0.5000
5	2.20	14	2.0000	2.0000
5	2.20	15	0.0000	0.0000
5	2.20	16	0.9000	0.9000
5	2.20	17	0.9000	0.9000
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.20	18	0.0000	0.0000
5	2.20	19	0.0000	0.0000
5	2.20	20	0.0000	0.0000
6	3.58	1	0.0000	0.0000
6	3.58	2	0.0000	0.0000
6	3.58	3	0.0000	0.0000
6	3.58	4	0.0000	0.0000
6	3.58	5	0.0000	0.0000
6	3.58	6	0.0000	0.0000
6	3.58	7	0.0000	0.0000
6	3.58	8	0.0000	0.0000
6	3.58	9	0.0000	0.0000
6	3.58	10	0.0000	0.0000
6	3.58	11	0.0000	0.0000
6	3.58	12	0.0000	0.0000
6	3.58	13	0.0000	0.0000
6	3.58	14	0.0000	0.0000
6	3.58	15	0.0000	0.0000
6	3.58	16	0.0000	0.0000
6	3.58	17	0.0000	0.0000
6	3.58	18	0.0000	0.0000
6	3.58	19	0.0000	0.0000
6	3.58	20	0.0000	0.0000
		~		

96-Hr Easter Oyster Shell Deposition Study File: c:\BAS_O Transform: NO TRANSFORM

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	XAM	MEAN
1	Control	40	0.000	3.800	2.175
2	0.421	20	0.000	3.400	1.495
3	0.777	20	0.000	3.100	1.370
4	1.26	20	0.000	3.500	1.295
5	2.20	20	0.000	2.600	0.655
6	3.58	20	0.000	0.000	0.000

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

96-Hr Easter Oyster Shell Deposition Study File: c:\BAS O Transform: NO TRANSFORM

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM
1	Control	0.825	0.908	0.144
2	0.421	1.177	1.085	0.243
3	0.777	1.130	1.063	0.238
4	1.26	1.334	1.155	0.258
5	2.20	0.809	0.899	0.201
6	3.58	0.000	0.000	0.000

96-Hr Easter Oyster Shell Deposition Study File: c:\BAS_O Transform: NO TRANSFORM

ANOVA TABLE

SOURCE .	DF	SS	MS	F
Between	5	73.592	14.718	16.898
Within (Error)	134	116.725	0.871	
Total	139	190.318	- 	

Critical F value = 2.29 (0.05,5,120) Since F > Critical F REJECT Ho:All groups equal

96-Hr Easter Oyster Shell Deposition Study File: c:\BAS_O Transform: NO TRANSFORM

I	BONFERRONI T-TEST -	TABLE 1 OF 2	Ho:Contro	l <treatm< th=""><th>ent</th></treatm<>	ent
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1	Control	2.175	2.175		
2	0.421	1.495	1.495	2.661	*
3	0.777	1.370	1.370	3.150	*
4	1.26	1.295	1.295	3.443	*
5	2.20	0.655	0.655	5.947	*
6	3.58	0.000	0.000	8.510	*

Bonferroni T table value = 2.36 (1 Tailed Value, P=0.05, df=120,5)

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

96-Hr Easter Oyster Shell Deposition Study File: c:\BAS_O Transform: NO TRANSFORM

	BONFERRONI T-TEST -	TABLE	2 OF 2	Ho:Contr	ol <treatment< th=""></treatment<>
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	Control	40			
2 .	0.421	20	0.603	27.7	0.680
3	0.777	20	0.603	27.7	0.805
4	1.26	20	0.603	27.7	0.880
5	2.20	20	0.603	27.7	1.520
6	3.58	20	0.603	27.7	2.175

96-Hr Easter Oyster Shell Deposition Study
File: c:\BAS O Transform: NO TRANSFORM

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

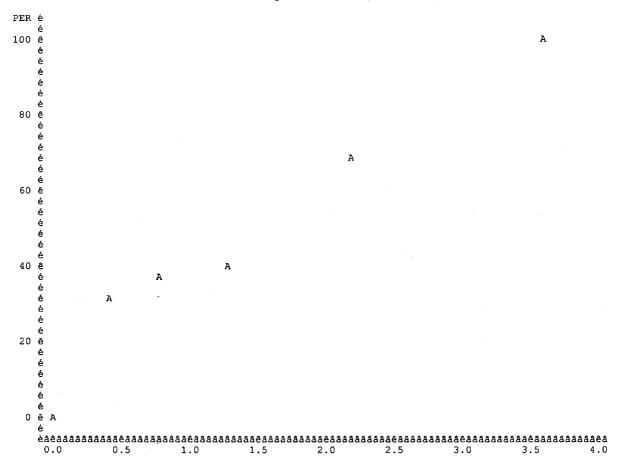
GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1 2 3 4 5	Control 0.421 0.777 1.26 2.20 3.58	40 20 20 20 20 20 20	2.175 1.495 1.370 1.295 0.655 0.000	2.175 1.495 1.370 1.295 0.655 0.000	2.175 1.495 1.370 1.295 0.655 0.000

96-Hr Easter Oyster Shell Deposition Study
File: c:\BAS_O Transform: NO TRANSFORM

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2

IDENTIFICATION	ISOTONIZED	CALC.	SIG	TABLE	DEGREES OF
	MEAN	WILLIAMS	P=.05	WILLIAMS	FREEDOM
Control 0.421 0.777 1.26 2.20 3.58	2.175 1.495 1.370 1.295 0.655 0.000	2.660 3.149 3.443 5.947 8.509	* * *	1.66 1.73 1.75 1.77	k= 1, v=134 k= 2, v=134 k= 3, v=134 k= 4, v=134 k= 5, v=134

s = 0.933


Note: df used for table values are approximate when v > 20.

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

PROBIT ANALYSIS (LOG10) OF PERCENT INHIBITION OVER CONCENTRATION 13 12:06 Monday, April 1, 2002

Plot of PER*CONC. Legend: A = 1 obs, B = 2 obs, etc.

PROBIT ANALYSIS (LOG10) OF PERCENT INHIBITION OVER CONCENTRATION 14
12:06 Monday, April 1, 2002

The REG Procedure Model: MODEL1 Dependent Variable: PER

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	1 4 5	5660.71893 269.25861 5929.97754	5660.71893 67.31465	84.09	0.0008
Root Depen Coeff	dent Mean	8.20455 46.43678 17.66822	R-Square Adj R-Sq	0.9546 0.9432	

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	11.44286	5.07752	2.25	0.0873			
CONC	1	25.48720	2.77934	9.17	0.0008			
PROBIT ANA	ALYSIS	(LOG10) OF PERCENT	INHIBITION	OVER CONCEN	TRATION			15
				12:0	6 Monday,	April	1,	2002

Probit Procedure

Iteration History for Parameter Estimates

Iter	Ridge	Loglikelihood	Intercept	Log10(DOSE)
0	0	-34.657359	0	0
1	0	-28.102715	-0.036879858	1.8311019823
2		-27.96384	-0.018706308	2.1279010131
3	0	-27.963597	-0.01749789	2.140447542
4	0	-27.963597	-0.017495232	2.140472048

Model Information

Data Set	WORK.B
Events Variable	RESPONSE
Trials Variable	N
Number of Observations	5
Number of Events	28
Number of Trials	50
Name of Distribution	NORMAL
Log Likelihood	-27.96359666

Last Evaluation of the Negative of the Gradient

Intercept Log10(DOSE)

-4.43862E-10 -2.59526E-10

Last Evaluation of the Negative of the Hessian

	Intercept	Log10(DOSE)
Intercept	26.621915471	1.6231365929
Log10 (DOSE)	1.6231365929	2.5123402569

Algorithm converged.

Goodness-of-Fit Tests

Statistic	Value	D F	Pr > ChiSq
Pearson Chi-Square	3.4475	3	0.3276
L.R. Chi-Square	4.5722	3	0.2059

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

PROBIT ANALYSIS (LOG10) OF PERCENT INHIBITION OVER CONCENTRATION 12:06 Monday, April 1, 2002

Probit Procedure

Response-Covariate Profile

Response Levels Number of Covariate Values

Since the chi-square is small (p > 0.1000), fiducial limits will be calculated using a t value of 1.96.

Analysis of Parameter Estimates

Standard Variable Estimate Error Chi-Square Pr > ChiSq Label Intercept -0.01750 0.19775 0.0078 0.9295 Intercept Log10 (DOSE) 2.14047 0.64371 11.0572 0.0009

Estimated Covariance Matrix

Intercept Log10 (DOSE) Intercept 0.039103 -0.025263 Log10 (DOSE) -0.025263 0.414357

Probit Model in Terms of Tolerance Distribution

MU

SIGMA 0.46718667

0.00817354

Estimated Covariance Matrix for Tolerance Parameters

SIGMA

0.008451 -0.002231 SIGMA -0.002231 0.019740

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

PROBIT ANALYSIS (LOG10) OF PERCENT INHIBITION OVER CONCENTRATION 17 12:06 Monday, April 1, 2002

Probit Procedure

Probit Analysis on Log10(DOSE)

	=		
Probability	Log10(DOSE)	95% Fiducial	Limits
0.01	-1.07867	-2.73797	-0.63286
0.02	-0.95131	-2.43062	-0.54989
0.03	-0.87051	-2.23600	-0.49687
0.04	-0.80972	-2.08984	-0.45672
0.05	-0.76028	-1.97116	-0.42388
0.06	-0.71820	-1.87030	-0.39575
0.07	-0.68130	-1.78201	-0.37095
0.08	-0.64826	-1.70308	-0.34862
0.09	-0.61821	-1.63143	-0.32819
0.10	-0.59055	-1.56558	-0.30927
0.15	-0.47603	-1.29442	-0.22946
0.20	-0.38502	-1.08132	-0.16362
0.25	-0.30694	-0.90118	-0.10445
0.30	-0.23682	-0.74266	-0.04807
0.35	-0.17184	-0.59991	0.00832
0.40	-0.11019	-0.46995	0.06732
0.45	-0.05053	-0.35158	0.13178
0.50	0.00817	-0.24474	0.20487
0.55	0.06688	-0.14973	0.28978
0.60	0.12653	-0.06609	0.38897
0.65	0.18819	0.00799	0.50385
0.70	0.25317	0.07549	0.63550
0.75	0.32329	0.13983	0.78606
0.80	0.40137	0.20471	0.96048
0.85	0.49238	0.27473	1.16940
0.90	0.60690	0.35772	1.43738
0.91	0.63456	0.37719	1.50268
0.92	0.66460	0.39815	1.57381
0.93	0.69764	0.42100	1.65222
0.94	0.73454	0.44630	1.74001
0.95	0.77663	0.47492	1.84037
0.96	0.82607	0.50826	1.95857
0.97	0.88686	0.54890	2.10422
0.98	0.96766	0.60246	2.29830
0.99	1.09501	0.68605	2.60503

PMRA Submission Number 2001-1027

EPA MRID Number {454050-03}

PROBIT ANALYSIS (LOG10) OF PERCENT INHIBITION OVER CONCENTRATION 18 12:06 Monday, April 1, 2002

Probit Procedure

Probit Analysis on DOSE

Probability	DOSE	95% Fidu	cial Limits
0.03		0.00183	0.23289
0.02		0.00371	0.28191
0.03		0.00581	0.31852
0.04		0.00813	0.34936
0.05		0.01069	0.37681
0.06		0.01348	0.40202
0.07	0.20831	0.01652	0.42564
0.08		0.01981	0.44810
0.09		0.02337	0.46969
0.10		0.02719	0.49061
0.15	0.33417	0.05077	0.58958
0.20		0.08292	0.68609
0.25	0.49324	0.12555	0.78623
0.30	0.57967	0.18086	0.89522
0.35	0.67322	0.25124	1.01934
0.40	0.77591	0.33889	1.16768
0.45	0.89016	0.44507	1.35450
0.50		0.56919	1.60277
0.55		0.70839	1.94888
0.60	1.33824	0.85883	2.44892
0.65	1.54238	1.01858	3.19045
0.70	1.79129	1.18984	4.32012
0.75	2.10517	1.37984	6.11025
0.80	2.51981	1.60218	9.13026
0.85	3.10729	1.88249	14.77070
0.90	4.04480	2.27886	27.37688
0.91	4.31079	2.38336	31.81862
0.92	4.61960	2.50123	37.48083
0.93	4.98475	2.63634	44.89724
0.94	5.42679	2.79449	54.95522
0.95	5.97898	2.98481	69.24269
0.96	6.69994	3.22298	90.90090
0.97	7.70647	3.53918	127.12053
0.98	9.28234	4.00371	198.74671
0.99	12.44550	4.85348	402.74134