TEXT SEARCHABLE DOCUMENT

Data Evaluation Record on the aerobic biotransformation of clofentezine (NC 21314) in water-sediment system

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Data Requirement:

PMRA Data Code:

EPA DP Barcode:

D342560

OECD Data Point:

EPA Guideline:

162-4

Test material:

Common name:

Clofentezine.

Chemical name:

IUPAC name:

3,6-Bis(2-chlorophenyl)-1,2,4,5-tetrazine. 3,6-Bis(2-chlorophenyl)-1,2,4,5-tetrazine.

CAS name: CAS No:

74115-24-5.

Synonyms:

NC 21314, NC 21 314, AE B084866.

SMILES string:

Clc1cccc1c2nnc(c3ccccc3Cl)nn2 (EPI Suite, v3.12 SMILES).

Primary Reviewer: Lynne Binari

Signature:

Cambridge Environmental

Date: 12/19/07

Secondary Reviewer: Kathleen Ferguson

Signature:

Cambridge Environmental

Date: 12/19/07

QC/QA Manager: Joan Gaidos

Cambridge Environmental

Signature:

Date: 12/19/07

Final Reviewer: Lucy Shanaman

EPA Reviewer

Lucy Sharaman Date: 2/21/08

Company Code:

Active Code:

Use Site Category:

EPA PC Code:

125501

CITATION: Leake, C.R. and D.J. Arnold. 1983. The degradation of NC 21314 in surface water/sediment microcosms. Unpublished study performed by FBC Limited, Chesterford Park Research Station, Essex, United Kingdom; sponsored and submitted by Makhteshim Agan of North America (MANA), Inc., Raleigh, North Carolina (pp.2-4). FBC Study No.: 46J and Report No.: METAB/83/17 (p.4). Registration Document No.: NC 21314/W37 (p.1). Experimental start and completion dates were not provided. Final report issued April 26, 1983.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Data Requirement:

PMRA Data Code:

EPA DP Barcode:

D342560

OECD Data Point:

EPA Guideline:

162-4

Test material:

Common name:

Clofentezine.

Chemical name:

IUPAC name:

3,6-Bis(2-chlorophenyl)-1,2,4,5-tetrazine.

CAS name:

3,6-Bis(2-chlorophenyl)-1,2,4,5-tetrazine.

CAS No:

74115-24-5.

Synonyms:

NC 21314, NC 21 314, AE B084866.

SMILES string:

Clc1cccc1c2nnc(c3ccccc3Cl)nn2 (EPI Suite, v3.12 SMILES).

Primary Reviewer: Lynne Binari

Signature: June Brione
Date: 12/19/07

Signature: Hathlen Jujuson
Date: 12/19/07

Cambridge Environmental

Secondary Reviewer: Kathleen Ferguson

Cambridge Environmental

QC/QA Manager: Joan Gaidos

Cambridge Environmental

Signature:

Date: 12/19/07

Final Reviewer: Keara Moore

Signature:

EPA Reviewer

Date:

Company Code:

Active Code:

Use Site Category:

EPA PC Code:

125501

CITATION: Leake, C.R. and D.J. Arnold. 1983. The degradation of NC 21314 in surface water/sediment microcosms. Unpublished study performed by FBC Limited, Chesterford Park Research Station, Essex, United Kingdom; sponsored and submitted by Makhteshim Agan of North America (MANA), Inc., Raleigh, North Carolina (pp. 2-4). FBC Study No.: 46J and Report No.: METAB/83/17 (p. 4). Registration Document No.: NC 21314/W37 (p. 1). Experimental start and completion dates were not provided. Final report issued April 26, 1983.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

EXECUTIVE SUMMARY

The biotransformation of [tetrazine-3,6-14C]-labeled 3,6-bis(2-chlorophenyl)-1,2,4,5-tetrazine (clofentezine, NC 21314; radiochemical purity ≥97%) was studied in ditch water-sandy clay loam sediment (water not characterized; sediment pH 6.8, organic carbon 7.6%) and ditch waterclay loam sediment (water not characterized; sediment pH 6.6, organic carbon 3.5%) systems from the United Kingdom for 6 weeks under aerobic conditions in darkness at 20 ± 2 °C. Based sediment:water ratio was 1:1.3 (9 cm sediment:12 cm water, specific weights/volumes were not reported). This study was neither conducted in accordance with any specified guidelines, nor in compliance with any specific GLP regulations. The test apparatus consisted of cylindrical. silanized, glass vessels (5-cm i.d. x 30 cm) connected to a continuous flow-through (CO₂-free. humidified air, flow rate up to 10 mL/minute) system with traps for the collection of CO₂ (ethanolamine) and volatile organics (ethylene glycol, 0.1M sulfuric acid). Sediment and water were pre-incubated for 3 days, then following treatment, a single vessel per system type was collected after 0 and 2 days, and 1, 2, 3, and 6 weeks of incubation. Water layers were drawn off, partitioned with methylene chloride, acidified and partitioned again. Resulting organic phases were combined and concentrated via rotary evaporation for chromatographic analysis. Sediment was reflux extracted with methylene chloride for 18 hours, followed by methanol:water (9:1, v:v) for 18 hours. Reflux-extracted sediment was dried (40°C), ground, then Soxhlet-extracted with acetonitrile:water (8:2, v:v) for 18 hours. Aliquots of sediment extracts were separately concentrated via rotary evaporation for chromatographic analysis. The cellulose thimbles (CT) used during reflux extractions were also Soxhlet-extracted with methylene chloride and methanol for 6 hours, followed by maceration in methanol:water. Water layer extracts and remaining aqueous phases, sediment extracts, extracted sediment, CT extracts, extracted CT residue, trapping solutions and incubation vessel rinses (methylene chloride/methanol) were analyzed for total radioactivity using LSC. Water layer extracts. sediment extracts and selected vessel rinse samples were analyzed for clofentezine and its transformation products via one-dimensional, normal-phase TLC. Five reference standards, in addition to parent clofentezine, were available for identification purposes (see Table 6 below). The 0-day to 3-week water layer extracts were also analyzed for parent clofentezine by reversephase HPLC.

For both systems, one major nonvolatile transformation product.

- 2-chlorobenzoic-(2-chlorobenzylidene)-hydrazide (compound III, AE C593600), and three minor products,
 - 2,5-bis(2-chlorophenyl)-1,3,4-oxadiazole (NC 12940, compound II),
 - N',N-bis(2-chlorobenzoyl)-hydrazine (NC 12898, compound IV), and
 - 2-chlorobenzoic acid (NC 233, compound V),

were identified via TLC against reference standards; however, a second, confirmatory method was not utilized.

System parameters, such as redox potential, dissolved oxygen and pH, were not monitored in the test systems.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

There were significant losses of up to 21.8% and 16.4% of the applied radioactivity for the sandy clay loam and clay loam systems, respectively. However, there were no consistent patterns of decline of applied radioactivity for either system over the 6-week incubations. Following application of [14C]clofentezine to the water layers, parent and total residues quickly translocated from the water layers of both systems to the sediments. However, variable and incomplete recoveries and the limited number of sampling intervals preclude any meaningful comparison of clofentezine transformation rates and/or water:sediment residue partitioning between the two sediment types.

Vessel rinses recovered maximums of 8.7-8.9% of the applied for the two systems, with the residues consisting primarily of parent clofentezine (7.6-8.2% of applied).

Volatilized residues were significant totaling 29.9% and 32.0% of the applied for the sandy clay loam and clay loam sediment systems, respectively, at study termination. However, formation of ¹⁴CO₂ and volatile [¹⁴C]organic compounds were not separately distinguished.

United Kingdom ditch water-sandy clay loam sediment systems. Overall recovery of radiolabeled material averaged $87.2 \pm 5.5\%$ (range 78.2-92.7%) of the applied. Following application of [14C]clofentezine to the water layer, [14C]residue distribution ratios (water:sediment, n = 1) were 33:1 at day 0, 1:3 at 2 days, 1:5 at 2 weeks and 1:10 at 6 weeks. Extractable sediment [14C]residues increased from 2.2% of the applied at day 0 to 59.8% at 1 week and were 26.9% at study termination. Nonextractable [14C]residues increased from 0.3% at day 0 to 16.8% at 2 weeks and were 16.9% at 6 weeks. Clofentezine in the total system decreased from 82.7% of the applied at day 0 to 65.4% at 2 days, 44.1% at 1 week, 27.7% at 3 weeks and was 16.5% at 6 weeks. In the water layer, clofentezine decreased from 81.0% at day 0 to 19.1% at 2 days, 3.4% at 1 week, 1.5% at 3 weeks and was 0.5% at study termination. In the sediment, clofentezine increased from 1.7% at day 0 to 46.3% at 2 days, then decreased to 26.2% at 3 weeks and was 16.0% at 6 weeks. **Observed DT₅₀** values of clofentezine were ca. 1 day in the water layer, ca. 4 weeks in the sediment and ca. 6 days in the total system. Calculated linear half-lives ($r^2 = 0.7357-0.9950$) were 1, 4, and 3 weeks in the water, sediment and total system, respectively, with respective nonlinear half-lives ($r^2 = 0.9871-0.9996$) of 1 day, 4 weeks and 2 weeks. Compound III was detected at maximums of 7.5% (1 week), 14.8% (3 weeks) and 17.3% (1 week) of the applied in the water, sediment and total system, respectively, decreasing to 0.7%, 2.0% and 2.7%, respectively, at study termination. Minor products were detected at maximums in the water layer, sediment and total system as follows: compound II at 1.3%, 2.1% and 2.4%, respectively, compound IV at 0.2%, 1.2% and 1.4%, respectively, and compound V at 2.4%, 2.6% and 4.5%, respectively. Unidentified TLC [14C] residues, comprised of multiple components, were total maximums of 2.3%, 9.2% and 11.3% in the water layer, sediment and total system, respectively. Unanalyzed aqueous-soluble (water layer) and organosoluble (vessel rinse) [14C]residues were maximums of 2.6% and 0.7%, respectively.

<u>United Kingdom ditch water-clay loam sediment systems</u>. Overall recovery of radiolabeled material averaged $91.0 \pm 5.8\%$ (range 83.6-98.5%) of the applied. Following application of

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

[14 C]clofentezine to the water layer, [14 C]residue distribution ratios (water:sediment, n = 1) were 88:1 at day 0, 1:3 at 2 days, 1:5 at 1 week, 1:7-10 at 2-3 weeks and 1:13 at 6 weeks. Extractable sediment [14C]residues increased from 0.9% of the applied at day 0 to 52.3% at 1 week and were 30.9% at study termination. Nonextractable [14C]residues increased from 0.2% at day 0 to 26.3% at 2 weeks and were 24.8% at 6 weeks. Clofentezine in the total system decreased from 93.8% of the applied at day 0 to 54.4% at 2 days, 23.6-29.4% at 2-3 weeks and was 12.8% at 6 weeks. In the water layer, clofentezine decreased from 93.3% at day 0 to 22.8% at 2 days, 4.9% at 1 week, 1.4% at 3 weeks and was 0.2% at study termination. In the sediment, clofentezine increased from 0.5% at day 0 to 31.6% at 2 days and was 12.6% at 6 weeks. Observed DT₅₀ values of clofentezine were ca. 1 day in the water layer, ca. 5 weeks in the sediment and ca. 3 days in the total system. Calculated linear half-lives ($r^2 = 0.7552-0.8875$) were 5 days, 5 weeks and 3 weeks in the water, sediment and total system, respectively, with respective nonlinear half-lives ($r^2 = 0.9357-0.9968$) of 1 day, 6 weeks and 1 week. Compound III was detected at maximums of 4.4%, 22.6% and 27.0% of the applied in the water, sediment and total system, respectively, at 1 week, decreasing to 0.4%, 5.9% and 6.3%, respectively, at study termination. Minor products were detected at maximums in the water layer, sediment and total system as follows: compound II at 0.9%, 1.7% and 1.8%, respectively, compound IV at 0.1%, 1.7% and 1.8%, respectively, and compound V at 0.3%, 2.6% and 2.7%, respectively. Unidentified TLC [14C]residues, comprised of multiple components, were total maximums of 2.7%, 11.7% and 13.7% in the water layer, sediment and total system, respectively. Unanalyzed aqueous-soluble (water layer) and organo-soluble (vessel rinse) [14Clresidues were maximums of 1.8% and 0.4%]. respectively.

Transformation pathways consistent with the products detected in this study were proposed by the study authors. The primary pathway involved cleavage and deamination of the tetrazine ring to yield 2-chlorobenzoic-(2-chlorobenzylidene)-hydrazide (III), then hydrolysis further yielding 2-chlorobenzoic acid (V, NC 233), with ultimate formation of bound sediment residues and significant levels volatilized residues (CO₂ and volatile organic compounds were not distinguished). Other minor pathways (≤4.5% in total system) included formation of 2,5-bis(2-chlorophenyl)-1,3,4-oxadiazole (II, NC 12940) and N'N-bis(2-chlorobenzoyl)-hydrazine (IV, NC 12898).

Results Synopsis:

Test system used: Ditch water-sandy clay loam sediment from United Kingdom.

Linear half-life in water: 1.0 week ($r^2 = 0.7357$). Linear half-life in sediment: 3.7 weeks ($r^2 = 0.9950$).

Linear half-life in the total system: $2.7 \text{ weeks } (r^2 = 0.9310)$.

Non-linear half-life in water: 1.0 day ($r^2 = 0.9980$). Non-linear half-life in sediment: 3.6 weeks ($r^2 = 0.9996$).

Non-linear half-life in total system: 1.9 weeks ($r^2 = 0.9871$).

Observed DT_{50} in water: ca. 1 day.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Observed DT_{50} in sediment:

ca. 4 weeks.

Observed DT₅₀ in total system:

ca. 6 days.

Major transformation products:

2-Chlorobenzoic-(2-chlorobenzylidene)-hydrazide (compound III; maximum 7.5%, 14.8% and 17.3% of applied in water layer, sediment and total system, respectively).

Volatile residues; CO₂ + volatile organics (maximum 29.9% of applied).

Minor transformation products:

3,6-Bis(2-chlorophenyl)-1,3,4-oxadiazole (compound II, NC 12940; maximum 1,3%, 2,1% and 2.4% of applied in water layer, sediment and total system, respectively).

N'N-Bis(2-chlorobenzoyl)-hydrazine (compound IV, NC 12898; maximum 0.2%, 1.2% and 1.4% of applied in water layer, sediment and total system, respectively).

2-Chlorobenzoic acid (compound V, NC 233; maximum 2.4%, 2.6% and 4.5% of applied in water layer, sediment and total system, respectively).

Test system used: Ditch water-clay loam sediment from United Kingdom.

Linear half-life in water:

5.4 days ($r^2 = 0.8875$).

Linear half-life in sediment:

4.9 weeks ($r^2 = 0.7552$).

Linear half-life in the total system:

2.6 weeks ($r^2 = 0.7751$).

Non-linear half-life in water:

1.0 day ($r^2 = 0.9968$).

Non-linear half-life in sediment:

5.5 weeks ($r^2 = 0.9768$).

Non-linear half-life in total system: 1.1 weeks ($r^2 = 0.9357$).

Observed DT₅₀ in water:

ca. 1 day.

Observed DT₅₀ in sediment:

ca. 5 weeks.

Observed DT₅₀ in total system:

ca. 3 days.

Major transformation products:

2-Chlorobenzoic-(2-chlorobenzylidene)-hydrazide (compound III; maximum 4.4%, 22.6% and 27.0% of applied in water layer, sediment and total system, respectively).

Volatile residues; CO_2 + volatile organics (maximum 32.0% of applied).

Minor transformation products:

3,6-Bis(2-chlorophenyl)-1,3,4-oxadiazole (compound II, NC 12940; maximum 0.9%, 1.7% and 1.8% of applied in water layer, sediment and total system, respectively).

N'N-Bis(2-chlorobenzoyl)-hydrazine (compound IV, NC 12898; maximum 0.1%, 1.7% and 1.8% of applied in water layer, sediment and total system, respectively).

2-Chlorobenzoic acid (compound V, NC 233; maximum 0.3%, 2.6% and 2.7% of applied in water layer, sediment and total system, respectively).

Study Acceptability: This study is classified as supplemental. No deviations from good scientific practices were noted. Material balances were incomplete, with up to 16-22% of the applied unaccounted for. Volatilized residues, which comprised maximums of 30-32% of the applied, were not adequately identified. The test waters were not characterized.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

I. MATERIALS AND METHODS

GUIDELINE FOLLOWED:

This study was not conducted in accordance with any specified guidelines. The following significant deviations from good scientific practices or the objectives of Subdivision N guidelines were noted:

Material balances were incomplete with up to 21.8% and 16.4% of the applied unaccounted for with the sandy clay loam sediment and clay loam sediment systems, respectively.

Volatilized residues, which comprised maximums of 30-32% of the applied for the two systems, were not distinguished between ¹⁴CO₂ and volatile [¹⁴C] organic compounds. Additionally, identification of ¹⁴CO₂, if present, was not confirmed.

The test waters were not characterized; therefore, it was not established that the foreign test waters used in this study are comparable to aquatic systems that would be found at intended use sites for clofentezine in the United States.

COMPLIANCE:

This study was not conducted in compliance with any specified GLP regulations (p.3). Signed and dated Data Confidentiality and GLP statements were provided (pp.2-3). A Quality Assurance statement was not provided.

A. MATERIALS:

1. Test Materials

[Tetrazine-3,6-14C]-labeled clofentezine (p.7).

Chemical Structure:

See DER Attachment 1.

Description:

Technical; physical state not reported (p.7).

Purity: Radiochemical purity:

≥97% via HPLC and TLC verifying data and/or certificate

of analysis were not provided.

Lot/Batch No.

CFQ 2874.

Analytical purity:

Not reported.

Specific activity:

47.7 µCi/mg.

Location of the radiolabel:

At 3-C and 6-C of tetrazine ring.

Storage conditions of

test chemicals:

Not reported.

PMRA Submission Number {.....} EPA MRID Numbers 47192116

Physico-chemical properties of clofentezine:

Parameter		Value	Comment
Molecular weight		303.15 g/mol.	
Molecular formula	٠,	C ₁₄ H ₈ Cl ₂ N ₄ .	
Water Solubility		2.5 μg/L.	At 22°C, pH 5.
Solubility in solvents	Dichloromethane Acetone Hexane Ethanol	37 g/L. 9.3 g/L. 1 g/L. 0.5 g/L.	At 25°C.
Vapor Pressure/Volatility		Not reported.	
UV Absorption		Not reported.	
pKa		Not reported.	
K _{ow} /log K _{ow}		Not reported.	
Stability of compound at room	temperature, if provided	Not reported.	

Data obtained MRID 47192107.

2. Water-sediment collection, storage and properties

Table 1: Description of water-sediment collection and storage.

Description		Lode	Sadlers Farm		
Geographic location		Lode, Cambridgeshire, United Kingdom.	Sadlers Farm, Essex, United Kingdom.		
Ordinance Survey Map	reference	Sheet 154 1:50,000 (526641).	Sheet 154 1:50,000 (553417).		
Pesticide use history at	the collection site	Not reported.			
Collection procedures	Water:	Sediment and corresponding surfa	ace water collected from ditches		
for	Sediment:	adjacent to agricultural land; no additional details were prov			
Sampling depth for	Water:	Not reported.			
Sampling depth 101	Sediment:	ca. 8 cm.			
Storage conditions		Sediment and water were separately maintained at 20°C.			
Storage length		4 days prior to preparation of water-sediment test systems.			
Preparation	Water:	Aerated via bubbler tubes during 4-day acclimatization period.			
Treparation	Sediment:	None reported.			

Data obtained from pp.7-9 of the study report.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Table 2: Properties of the waters.

Property	Loc	de	Sadlers	s Farm
Temperature (°C)	Not reported.			
рН	Not reported.			
Redox potential (mV)	Initial	Final	Initial	Final
Redox potential (iii v)	Not reported.			
Oxygen concentration (mg/L)	Initial	Final	Initial	Final
Oxygen concentration (nig/L)	Not reported.			
Dissolved organic carbon (mg/L)	Not reported.			
Hardness (mg CaCO ₃ /L)	Not reported.			
Electrical conductivity (mmhos/cm)	Not reported.			
Migrapial biomass/population (units)	Initial	Final	Initial	Final
Microbial biomass/population (units)	Not reported.			

Table 3: Properties of the sediments.

Property	Lo	de	Sadlers	Farm	
Soil texture (BBA-German).	Sandy clay loam.		Clay loam.		
% Sand (2000-63 μm):	52.1		22.4		
% silt (63-2 μm):	26.9		42.8		
% clay (<2 μm):	21.1		34.9		
pH (soil:CaCl ₂ , 1:2.5):	6.8		6.6		
Organic carbon (%) ²	7.6		3.5		
Organic matter (%)	13.1		6.1		
CEC (meq/100 g)	35.8		22.5		
Redox potential (mV)	Initial	Final	Initial	Final	
Redox potential (mv)	Not reported.				
Bulk density (disturbed, g/cm³)	Not reported.				
Migrapial biomass/population (units)	Initial	Final	Initial	Final	
Microbial biomass/population (units)	Not reported.				

Data obtained from Table 2, p.8 of the study report.

B. EXPERIMENTAL CONDITIONS:

1. Preliminary experiments: None reported.

¹ The soil texture could not be confirmed because the particle size distribution was not according to the USDA system.

² Percent organic carbon determined using the following formula: organic carbon (%) = organic matter (%)/1.72.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

2. Experimental conditions:

Table 4: Study design.

Parameter		Sandy clay loam systems	Clay loam systems	
Duration of the test (oosttreatment)	6 weeks.		
Water: Filtered/unfiltered v Type and size of fil		Not reported.		
Amount of sediment		ca. 12 cm; water volumes (mI) were not reported.	
water per treatment Sediment:		ca. 9 cm; sediment weights (g		
Water/sediment ratio	Scament.	1.3:1 (12-cm water layer:9-cm	·	
water/seament ratio	Nominal:	1 mg/kg.	i seament layer).	
Application rate (mg a.i./L)	Actual:	198.8 μg a.i. per system (1.0 k) of the water layer (mg a.i./L) was Based on a theoretical water wapplication rate was ca. 0.84 r		
Control conditions, if used		No sterile controls were used.		
No. of replications Control, if used: Treated: Test apparatus (type/material/volume):				
		Not specified. For each water	-sediment type, a sufficient number ated with [¹⁴ C]clofentezine to allow ix sampling intervals.	
		Glass, cylindrical vessel (5-cn impinging tube and connected	n i.d. x 30 cm) fitted with an I to a continuous flow-through (CO ₂ up to 10 mL/minute) volatiles	
Details of traps for C if any:	O_2 and organic vola	iles, In sequence as follows: ethylene glycol (ethanediol, or ethanolamine (one trap), and	ne trap), trapping solution volumes were not	
If no traps were used	is the system close		itiles tranning system was used	
If no traps were used, is the system closed? Identity and final concentration of co-solvent:		Could not be determined from aliquot (amount not reported) (vehicle solution not reported) formulation blank (CR 15456, which was then dispersed in 1 volume of 10 mL with deionize	Continuous flow-through volatiles trapping system was used. Could not be determined from the information provided. An aliquot (amount not reported) of [14C]clofentezine stock solution (vehicle solution not reported) was combined (1:1, w:w) with formulation blank (CR 15456/3) to yield a 50% wettable powder which was then dispersed in 1 mL acetone and brought to a final volume of 10 mL with deionized water. An aliquot (volume not reported) of the formulated test solution containing 0.1988 mg	
Test material application method	Volume of the test solution used/treat Application metho	Not reported. (eg: Test solution was applied to the	ne surface of the water layer via	
Any indication of the the walls of the test a			ezine was not reported. Incubation were silanized (2% surfasil) prior to	

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Parameter Microbial biomass/population of sterile controls (units)		Sandy clay loam systems Clay loam syste				
		No sterile controls were used.				
Microbial		Initial	Final	Initial	Final	
biomass/population	Water:	Not reported.				
of treated (units)	Sediment:	Not reported.				
Experimental	Temperature (°C):	20 ± 2°C.				
conditions:	Continuous darkness (Yes/No):	Yes; vessels covered with black plastic and maintained in darkness.				
Other details, if any		None.				

Data were obtained from pp.6, 9-11; Table 4, p.19 of the study report.

- 3. Aerobic conditions: Water and sediment were combined in the incubation vessels and maintained at $20 \pm 2^{\circ}$ C in darkness for 3 days prior to treatment, during which time air was bubbled (0.5 L/minute) directly into the water layer via an impinging tube (p.9). Following treatment, CO₂-free, humidified air was continuously bubbled (up to 10 mL/minute) into the water layer (pp.9-10). Aerobic conditions, as determined via measured redox potentials and/or dissolved oxygen levels, were not monitored either prior to or following treatment.
- 4. Supplementary experiment: None reported.

5. Sampling:

Table 5: Sampling details.

Criteria	Sandy clay loam systems	Clay loam systems
Sampling intervals (posttreatment)	0 and 2 days, and 1, 2, 3 and 6 we	eeks.
Sampling method	Single vessel per system type was	s collected at each interval.
Method of collection of CO ₂ and organic volatile compounds	Trapping solutions were sampled weekly posttreatment.	(1 mL aliquots) and replaced
Sampling intervals/times for:		
Sterility check, if sterile controls are used:	No sterile controls were used.	
Redox potential, dissolved oxygen and pH:	Not monitored.	
Sample storage before analysis	Not reported.	
Other observations, if any	None.	

Data were obtained from pp.9, 11; Table 4, p.19 of the study report.

C. ANALYTICAL METHODS:

Separation of the sediment and water: The water layer was drawn off via siphon, then water and sediment were processed as described below (p.11).

¹ The study authors neither reported the application rate in terms of the water layer (mg a.i./L), nor provided specific volumes of water used to prepare the water-sediment systems. Based on the incubation vessel diameter (5 cm i.d., p.9) and height of the water layer (ca. 12 cm, p.10) above the sediment, the <u>theoretical</u> water volume was calculated using the following equation: $v = \pi r^2 x h$ or $[(\pi)(2.5 \text{ cm})^2](ca. 12 \text{ cm}) = ca. 236 \text{ cm}^3 = ca. 236 \text{ mL}$.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Extraction/clean up/concentration methods: Water layer samples were partitioned with methylene chloride (volume, replications not reported), then acidified to pH 2 (method not reported) and partitioned again (p.11; Figure 2, p.12). Organic phases were combined, then the pooled organic phase and the remaining aqueous phase were analyzed for total radioactivity by LSC (aliquot up to 1 mL, replicates not specified; pp.11, 13). For chromatographic analysis, an aliquot (volume not reported) of the organic phase was taken to dryness via rotary evaporation (*in vacuo*, 30°C), with the resulting residues reconstituted in methylene chloride (up to 5 mL, p.14). Procedural recoveries following concentration were monitored, but no quantitative results were provided (p.14).

Sediment was reflux extracted with methylene chloride for 18 hours, followed by reflux extraction with methanol:water (9:1, v:v) for 18 hours; extraction solvent volumes were not reported (p.13; Figure 2, p.12). Reflux-extracted sediment was dried (40°C), ground (mechanism not reported), then extracted via Soxhlet with acetonitrile:water (8:2, v:v; volume not reported) for 18 hours. Triplicate aliquots (1 mL) of each extract were analyzed for total radioactivity by LSC (p.13). For chromatographic analysis, an aliquot of each extract was concentrated as described above, with the residues reconstituted in the initial solvent (p.14).

<u>Cellulose thimbles</u> used during the reflux extractions were extracted via Soxhlet with methylene chloride and methanol for 6 hours (no additional details regarding the extraction were provided, p.13). Extracts were analyzed for total radioactivity by LSC (3 x 1 mL), and concentrated as described above for chromatographic analysis (pp.13-14). The extracted thimbles were macerated (Waring blender) in methanol:water (ratio not reported), then the resulting slurry was vacuum-filtered and the filtrate analyzed for total radioactivity by LSC (p.13).

<u>Vessel rinse</u>. The incubation vessels and impinging tubes were rinsed with methylene chloride and methanol (volumes not reported, p.13). Aliquots of the rinses were analyzed for total radioactivity by LSC), and concentrated as described above for chromatographic analysis (p.14; Figure 2, p.12).

Total ¹⁴C **measurement:** Total ¹⁴C residues were determined by summing the concentrations of residues measured in the water layer extracts and remaining aqueous phase, sediment extracts, extracted sediment, volatile trapping solutions, and vessel rinse (Table 4, p.19).

Determination of nonextractable residues: Extracted sediment was dried (40°C) and ground via mortar and pestle, then aliquots (0.2-0.3 g, triplicate) were combined with glucose (*ca.* 1:1, w:w), pressed into pellets (Parr pellet press) and analyzed for total radioactivity by LSC following combustion (p.16).

<u>Cellulose thimble residue</u>, remaining after vacuum filtration of macerate, was analyzed for total radioactivity by LSC following combustion (p.13).

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Determination of volatile residues: Aliquots (1 mL, replicates not reported) of the trapping solutions were analyzed for total radioactivity by LSC (p.9).

Derivatization method, if used: None was reported.

Identification and quantification of parent compound: concentrated water layer, sediment extract, cellulose thimble extract and vessel rinse samples were analyzed using one-dimensional TLC on normal-phase plates (Machery-Nagel, silica gel F254) developed with either toluene:ethanol:ethyl acetate:glacial acetic acid (80:10:5:0.5, v:v, SS1 or TEEA) or chloroform methanol (49:1, v:v, SS2; p.14). Following development, areas of radioactivity were detected via autoradiography (LKB Ultrafilm, ≥3 days), then scraped from the plates, combined with scintillation fluid and quantified by LSC (pp.13-14). Parent [¹⁴C]clofentezine was identified by co-chromatography with unlabeled reference standard which was visualized under UV light (254 nm; p.14; Figure 7, p.25).

Day 0- to 3-week water layer samples were also analyzed using reverse-phase HPLC under the following conditions: Zorbax ODS column (4.6 x 250 mm, 10 µm), isocratic mobile phase of 0.005M tetrabutylammonium hydroxide in methanol:water (76:24, v:v), injection volume not reported, flow rate 1.0 mL/minute, UV detector (268 nm), fraction collection (1-minute intervals) with LSC analysis (p.16). Method for identification of parent [\frac{1}{4}C]clofentezine was not provided. Retention time of parent, LC chromatograms and/or data from LSC analysis of fraction collection also not provided.

Identification and quantification of transformation products: Transformation products were separated, quantified and identified using TLC as described for the parent compound (pp.13-14; Figure 7, p.25).

A second confirmatory method was not utilized.

Table 6: Reference compounds available for identifying transformation products of clofentezine (NC 21314).

Applicant's code	Chemical Name	Purity ¹ (%)	Lot/Batch No.
NC 22505 (IB)	3,6-Bis(2-chlorophenyl)-1,2-dihydro-1,2,4,5-tetrazine	2	
NC 12940 (II)	2,5-Bis(2-chlorophenyl)-1,3,4-oxadiazole		
Ш	2-Chlorobenzoic-(2-chlorobenzylidene)-hydrazide		
NC 12898 (IV)	N',N-bis(2-Chlorobenzoyl)-hydrazine		
NC 233 (V)	2-Chlorobenzoic acid		

Data obtained from Figure 3, pp.15-16 of the study report.

¹ Purity w/w unless otherwise designated.

² Information not reported.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Detection limits (LOD, LOQ) for the parent compound and transformation products: No limits of detection (LOD)/quantification (LOQ) were reported.

II. RESULTS AND DISCUSSION

A. TEST CONDITIONS: System parameters, such as redox potential, dissolved oxygen and pH, were not monitored in the test systems. No supporting records were provided to establish that the incubation temperature was maintained at $20 \pm 2^{\circ}$ C throughout the study (p.9).

B. MATERIAL BALANCE: For both systems, although there were no consistent patterns of decline of applied radioactivity, there were significant losses of up to 21.8% and 16.4% of the applied for the sandy clay loam and clay loam systems, respectively. Variable recoveries and the limited number of sampling intervals preclude any meaningful comparison of residue partitioning between the two sediment types.

Sandy clay loam sediment (Lode) systems. Overall recovery of radiolabeled material averaged $87.2 \pm 5.5\%$ (range 78.2-92.7%, n = 6) of the applied (DER Attachment 2. Following application of [14 C]clofentezine to the water layer, [14 C]residues partitioned from the water layer to the sandy clay loam sediment with distribution ratios (water:sediment, n = 1) of 33:1 at day 0, 1:3 at 2 days, 1:5 at 2 weeks and was 1:10 at 6 weeks (DER Attachment 2).

Clay loam sediment (Sadlers Farm) systems. Overall recovery of radiolabeled material averaged $91.0 \pm 5.8\%$ (range 83.6-98.5%, n = 6) of the applied (DER Attachment 2). Following application of [14 C]clofentezine to the water layer, [14 C]residues partitioned from the water layer to the clay loam sediment with distribution ratios (water:sediment, n = 1) of 88:1 at day 0, 1:3 at 2 days, 1:5 at 1 week, 1:7-10 at 2-3 weeks and was 1:13 at 6 weeks (DER Attachment 2).

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Table 7: Biotransformation of [tetrazine-3,6-14C]clofentezine, expressed as percentage of applied radioactivity (n = 1), in United Kingdom ditch water-sandy clay loam sediment under aerobic conditions.

C	,	Sampling times (posttreatment)						
Compound							6 weeks	
	Water	81.0	19.1	3.4	1.8	1.5	0.5	
Clofentezine	Sediment ¹	1.7	46.3	40.7	33.9	26.2	16.0	
	System	82.7	65.4	44.1	35.7	27.7	16.5	
	Water	<0.1	1.3	0.3	0.3	0.2	0.2	
NC 12940 (Compound II)	Sediment ¹	<0.1	0.9	1.2	2.1	0.8	<0.1	
	System	<0.1	2.2	1.5	2.4	1.0	0.2	
	Water	<0.1	1.6	7.5	6.3	1.1	0.7	
Compound III	Sediment ¹	<0.1	. 5.1	9.8	6.8	14.8	2.0	
	System	<0.1	6.7	17.3	13.1	15.9	2.7	
	Water	<0.1	0.1	0.2	0.2	0.2	0.2	
NC 12898 (Compound IV)	Sediment ¹	<0.1	1.1	1.1	1.2	0.8	1.1	
(Compound IV)	System	<0.1	1.2	1.3	1.4	1.0	1.3	
	Water	<0.1	0.2	1.9	1.4	2.4	0.2	
NC 233 (Compound V)	Sediment ¹	<0.1	1.7	2.6	2.2	1.0	0.6	
(Compound V)	System	<0.1	1.9	4.5	3.6	3.4	0.8	
	Water	2.3	1.2	2.4	1.9	2.0	0.9	
Unidentified TLC [14C]residues ²	Sediment ¹	0.4	7.7	8.9	8.0	9.2	6.7	
[C]residues	System	2.7	8.9	11.3	9.9	11.2	7.6	
Unanalyzed [14C]residues	Water ³	0.2	0.2	1.5	2.6	1.2	1.7	
Unanaryzed [C]residues	Vessel rinse	0.6				0.7	0.2	
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Water	2.5	1.4	3.9	4.5	3.2	2.6	
Total unidentified [14C]residues ⁴	Sediment/vessel rinse	1.0	7.7	8.9	8.0	9.9	6.9	
Chesiques	System	3.5	9.1	12.8	12.5	13.1	9.5	
Volatiles ⁵		<0.1	0.1	3.0	5.7	5.0	29.9	
Extractable sediment residu	ies	2.2	54.4	59.8	52.3	52.6	26.9	
Nonextractable sediment re	sidues	0.3	5.8	8.1	16.8	15.1	16.9	
	Water	83.4	23.7	17.0	14.5	8.6	4.3	
Total recovery	Sediment	2.5	60.2	67.9	69.1	67.7	43.8	
rotal recovery	Vessel rinse	0.6	8.7	4.5	2.0	0.7	0.2	
	System	86.5	92.7	92.4	91.3	82.0	78.2	

Data obtained from DER Attachment 2.

¹ Includes residues detected in vessel rinses analyzed by TLC.

² Applied radioactivity unidentified following TLC analysis consisting of one unknown (X), origin residues and additional unassigned ("Remainder") residues (DER Attachment 2).

³ Residues remaining in aqueous phase following methylene chloride partition of water layer.
4 Unidentified TLC [¹⁴C]residues plus unanalyzed [¹⁴C]residues (DER Attachment 2).
5 ¹⁴CO₂ and volatile [¹⁴C]organics were not distinguished.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Table 8: Biotransformation of [tetrazine-3,6-14C]clofentezine, expressed as percentage of applied radioactivity (n = 1), in United Kingdom ditch water-clay loam sediment under aerobic conditions.

Compound		Sampling times (posttreatment)						
Compound		0 day	2 days	1 week	2 weeks	3 weeks	6 weeks	
	Water	93.3	22.8	4.9	3.2	1.4	0.2	
Clofentezine	Sediment ¹	0.5	31.6	25.4	20.4	28.0	12.6	
	System	93.8	54.4	30.3	23.6	29.4	12.8	
3.0.10	Water	0.9	0.1	0.3	0.1	0.2	0.1	
NC 12940 (Compound II)	Sediment ¹	< 0.1	1.1	1.5	1.7	0.9	0.5	
(Compound 11)	System	0.9	1.2	1.8	1.8	1.1	0.6	
	Water	0.2	0.7	4.4	0.7	1.9	0.4	
Compound III	Sediment ¹	0.1	10.7	22.6	8.5	5.1	5.9	
	System	0.3	11.4	27.0	9.2	7.0	6.3	
N.G. 12000	Water	<0.1	<0.1	0.1	0.1	0.1	0.1	
NC 12898 (Compound IV)	Sediment ¹	<0.1	0.8	1.2	1.7	0.7	1.3	
(Compound 1 v)	System	<0.1	0.8	1.3	1.8	0.8	1.4	
NG 000	Water	0.1	<0.1	0.2	0.1	0.2	0.3	
NC 233 (Compound V)	Sediment ¹	<0.1	1.2	2.2	2.6	1.6	1.2	
(Compound V)	System	0.1	1.2	2.4	2.7	1.8	1.5	
VI 11 (16 150 G	Water	2.5	0.6	1.7	2.0	2.7	1.7	
Unidentified TLC [14C]residues ²	Sediment ¹	0.3	7.9	8.4	11.7	7.8	9.5	
[C]residues	System	2.8	8.5	10.1	13.7	10.5	11.2	
Unanalyzed [14C]residues	Water ³	<0.1	1.3	1.7	1.1	1.8	1.6	
Onanaryzeu [C]residues	Vessel rinse	0.4					0.2	
T-4-1111C1	Water	2.5	1.9	3.4	3.1	4.5	3.3	
Total unidentified [14C]residues ⁵	Sediment/vessel rinse	0.7	7.9	8.4	11.7	7.8	9.7	
	System	3.2	9.8	11.8	14.8	12.3	13.0	
Volatiles ⁵		<0.1	<0.1	3.5	3.6	12.0	32.0	
Extractable sediment residu	ies	0.9	49.1	52.3	43.8	39.9	30.9	
Nonextractable sediment re	sidues	0.2	18.0	12.7	26.3	19.1	24.8	
	Water .	97.0	25.5	13.3	7.2	8.2	4.3	
Total recovery	Sediment	1.1	67.1	65.0	70.1	59.0	55.7	
i otai recovery	Vessel rinse	0.4	4.5	8.9	3.0	4.4	0.2	
	System	98.5	97.1	90.7	83.9	83.6	92.2	

Data obtained from DER Attachment 2.

¹ Includes residues detected in vessel rinses analyzed by TLC.

² Applied radioactivity unidentified following TLC analysis consisting of one unknown (X), origin residues and additional unassigned ("Remainder") residues (DER Attachment 2).

³ Residues remaining in aqueous phase following methylene chloride partition of water layer.

⁴ Unidentified TLC [¹⁴C]residues plus unanalyzed [¹⁴C]residues (DER Attachment 2). 5 ¹⁴CO₂ and volatile [¹⁴C]organics were not distinguished.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

C. TRANSFORMATION OF PARENT COMPOUND: Parent clofentezine quickly translocated from the water layers of both systems to the sediments. However, variable and incomplete recoveries of applied radioactivity prevent any meaningful comparison of transformation rates between the sediment types.

In sandy clay loam sediment (Lode) systems, [14C]clofentezine in the total system decreased from 82.7% of the applied at day 0 to 65.4% at 2 days, 44.1% at 1 week, 27.7% at 3 weeks and was 16.5% at 6 weeks (DER Attachment 2). In the water layer [14C]clofentezine decreased from 81.0% at day 0 to 19.1% at 2 days, 3.4% at 1 week, 1.5% at 3 weeks and was 0.5% at 6 weeks. In the sediment, [14C]clofentezine increased from 1.7% at day 0 to a maximum 46.3% at 2 days, then decreased to 26.2% at 3 weeks and was 16.0% at 6 weeks.

In clay loam sediment (Sadlers Farm) systems, [14C]clofentezine in the total system decreased from 93.8% of the applied at day 0 to 54.4% at 2 days, 23.6-29.4% at 2-3 weeks, and was 12.8% at 6 weeks (DER Attachment 2). In the water layer [14C]clofentezine decreased from 93.3% at day 0 to 22.8% at 2 days, 4.9% at 1 week, 1.4% at 3 weeks and was 0.2% at 6 weeks. In the sediment, [14C]clofentezine increased from 0.5% at day 0 to a maximum 31.6% at 2 days, then decreased to 12.6% at 6 weeks.

Levels of parent [¹⁴C]clofentezine in the water layers of both systems as determined by reversephase HPLC analyses were comparable to the one-dimensional, normal-phase TLC analyses (Table 3, p.18).

HALF-LIFE/DT50/DT90: In sandy clay loam sediment (Lode) systems, observed DT₅₀ values for clofentezine were *ca.* 1 day in the water layer, *ca.* 4 weeks in the sediment and *ca.* 6 days in the total system. First-order linear regression analysis (Excel 2007) yielded half-lives for clofentezine of 1 week in the water layer (0- to 6-week intervals), 4 weeks in the sediment (2-day to 6-week intervals) and 3 weeks in the total system (all intervals), with respective nonlinear (SigmaPlot v 9.0) half-lives of 1 day, 4 weeks and 2 weeks (DER Attachment 2).

In clay loam sediment (Sadlers Farm) systems, observed DT_{50} values for clofentezine were ca. 1 day in the water layer, ca. 5 weeks in the sediment and ca. 3 days in the total system. First-order linear regression analysis yielded half-lives for clofentezine of 5 days in the water layer (0- to 6-week intervals), 5 weeks in the sediment (2-day to 6-week intervals) and 3 weeks in the total system (all intervals), with respective nonlinear (SigmaPlot v 9.0) half-lives of 1 day, 6 weeks and 1 week (DER Attachment 2).

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Half-lives/DT₅₀/DT₉₀

Phase	Half-life/DT ₅₀ ¹ (weeks)	First-order linear regression equation	r ²	DT ₅₀ (days)	DT ₉₀ (days)
	United Kingdon	n ditch water-sandy clay loam	sediment syst	ems	
Ditch water				-	
Linear/natural log	1.0	y = -0.7165x + 2.9451	0.7357	-	
Nonlinear/normal	1.0 day		0.9980		
Observed DT50	ca. 1 day				
Sandy clay loam se	diment				
Linear/natural log	3.7	y = -0.1882x + 3.8830	0.9950	N. es	
Nonlinear/normal	3.6		0.9996	~-	
Observed DT50	ca. 4				
Total system					
Linear/natural log	2.7	y = -0.2528x + 4.1979	0.9310		
Nonlinear/normal	1.9	w=	0.9871	-	
Observed DT50	ca. 6 days				
	United King	dom ditch water-clay loam se	diment systems	S	
Ditch water					
Linear/natural log	0.8 (5.4 days)	y = -0.9050x + 3.3768	0.8875		
Nonlinear/normal	1.0 day		0.9968	·	
Observed DT50	ca. 1 day				
Clay loam sedimen	it				
Linear/natural log	4.9	y = -0.1410x + 3.4603	0.7552		
Nonlinear/normal	5.5		0.9768		
Observed DT50	ca. 5				
Total system					
Linear/natural log	2.6	y = -0.2715x + 4.0627	0.7751		
Nonlinear/normal	1.1		0.9357		
Observed DT50	ca. 3 days				

¹ Determined using Excel 2007 (linear, first-order) and SigmaPlot v 9.0 (nonlinear, one-compartment/two-parameter) and individual sample data obtained from Tables 5-6, pp.21-22 of the study report (DER Attachment 2). Observed DT₅₀ values assume time 0 application as 100% to water layer.

TRANSFORMATION PRODUCTS: For both systems, one major nonvolatile transformation product,

• 2-chlorobenzoic-(2-chlorobenzylidene)-hydrazide (compound III),

and three minor products,

- 2,5-bis(2-chlorophenyl)-1,3,4-oxadiazole (NC 12940, compound II),
- N',N-bis(2-chlorobenzoyl)-hydrazine (NC 12898, compound IV), and
- 2-chlorobenzoic acid (NC 233, compound V),

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

were detected. Products were identified via one-dimensional, normal-phase TLC against reference standards; a confirmatory method was not utilized.

In sandy clay loam sediment (Lode) systems, compound III was detected at maximums of 7.5% (1 week) in the water layer, 14.8% (3 weeks) in the sediment and 17.3% (1 week) in the total system, decreasing to 0.7%, 2.0% and 2.7%, respectively, at 6 weeks (DER Attachment 2). The minor products were detected at maximums in the water layer, sediment and total system as follows: compound II at 1.3%, 2.1% and 2.4%, respectively, compound IV at 0.2%, 1.2% and 1.4%, respectively, and compound V at 2.4%, 2.6% and 4.5%, respectively. Unidentified TLC [\frac{14}{C}\]residues, comprised of Unknown X, origin residues and additional unassigned residues, were total maximums of 2.3%, 9.2% and 11.3% in the water layer, sediment and total system, respectively (DER Attachment 2). Unanalyzed aqueous-soluble (water layer) and organosoluble (vessel rinse) [\frac{14}{C}\]residues were maximums of 2.6% and 0.7%, respectively (DER Attachment 2).

In clay loam sediment (Sadlers Farm) systems, compound III was detected at maximums of 4.4%, 22.6% and 27.0% in the water layer, sediment and total system, respectively, at 1 week, decreasing to 0.7%, 8.5% and 9.2%, respectively, at 2 weeks, and was 0.4%, 5.9% and 6.3%, respectively, at 6 weeks (DER Attachment 2). The minor products were detected at maximums in the water layer, sediment and total system as follows: compound II at 0.9%, 1.7% and 1.8%, respectively, compound IV at 0.1%, 1.7% and 1.8%, respectively, and compound V at 0.3%, 2.6% and 2.7%, respectively. Unidentified TLC [\frac{14}{C}]\text{residues, comprised of Unknown X, origin residues and additional unassigned residues, were total maximums of 2.7%, 11.7% and 13.7% in the water layer, sediment and total system, respectively (DER Attachment 2). Unanalyzed aqueous-soluble (water layer) and organo-soluble (vessel rinse) [\frac{14}{C}]\text{residues were maximums of 1.8% and 0.4%, respectively (DER Attachment 2).}

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Half-lives/DT₅₀/DT₉₀ for product 2-chlorobenzoic-(2-chlorobenzylidene)-hydrazide (III)

Phase	Half-life/DT ₅₀ ¹ (weeks)	First-order linear regression equation	r ²	DT ₅₀ (days)	DT ₉₀ (days)
	United Kingdor	n ditch water-sandy clay loan	ı sediment syst	ems	
Ditch water					
Linear/natural log	ND^2				
Nonlinear/normal	ND				
Observed DT50	ca. 2.5				
Sandy clay loam se	diment				
Linear/natural log	ND ³	, . 			
Nonlinear/normal	ND				
Observed DT50	ca. 4.5	. 			
Total system					
Linear/natural log	1.8	y = -0.3782x + 3.4302	0.8695		
Nonlinear/normal	3.0		0.9569		
Observed DT50	ca. 4.5				
	United King	dom ditch water-clay loam se	diment systems	S	
Ditch water					
Linear/natural log	ND^2				
Nonlinear/normal	ND				
Observed DT50					
Clay loam sedimen	ıt				
Linear/natural log	3.2	y = -0.2179x + 2.8194	0.4933	·	
Nonlinear/normal	6.2 days		0.9490		
Observed DT50	ca. 1.5				
Total system					
Linear/natural log	3.0	y = -0.2349x + 3.0302	0.5801		
Nonlinear/normal	6.1 days		0.9512		
Observed DT50	ca. 1.5				

¹ Determined using Excel 2007 (linear, first-order) and SigmaPlot v 9.0 (nonlinear, one-compartment/two-parameter) and individual sample data obtained from Tables 5-6, pp.21-22 of the study report (DER Attachment 2).

NONEXTRACTABLE AND EXTRACTABLE RESIDUES: In sandy clay loam sediment (Lode) systems, extractable sediment [¹⁴C]residues increased from 2.2% of the applied at day 0 to 59.8% at 1 week, then decreased to 26.9% at 6 weeks (DER Attachment 2). Nonextractable sediment [¹⁴C]residues increased from 0.3% at day 0 to 16.8% at 2 weeks and were 16.9% at 6 weeks.

² Not determined; compound III detected at ≤7.5% of the applied in water layer of either system (Tables 5-6, pp.21-2).

³ Not determined due to insufficient number of sampling intervals following detection of maximum level of compound III at 3 weeks posttreatment (Table 6, p.22).

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

In clay loam sediment (Sadlers Farm) systems, extractable sediment [¹⁴C]residues increased from 0.9% of the applied at day 0 to 52.3% at 1 week, then decreased to 30.9% at 6 weeks (DER Attachment 2). Nonextractable sediment [¹⁴C]residues increased from 0.2% at day 0 to 26.3% at 2 weeks and were 24.8% at 6 weeks.

<u>For both systems</u>, vessel rinses recovered maximums of 8.7-8.9% of the applied, comprised primarily of parent [¹⁴C]clofentezine (7.6-8.2% of applied; Tables 5-6, pp.21-22).

VOLATILIZATION: Formation of ¹⁴CO₂ and volatile [¹⁴C]organic compounds were not separately distinguished. At study termination (6 weeks), total volatile [¹⁴C]compounds were maximums of 29.9% and 32.0% of the applied for the sandy clay loam sediment (Lode) and clay loam sediment (Sadlers Farm) systems, respectively, (DER Attachment 2).

TRANSFORMATION PATHWAY: The study authors provided transformation pathways that were consistent with the transformation products detected in this study, with the exception that compound IB [3,6-bis(2-chlorophenyl)-1,2-dihydro-1,2,4,5-tetrazine] was not detected in this study (p.18; Figure 5, p.23). The primary pathway involved cleavage and deamination of the tetrazine ring to yield 2-chlorobenzoic-(2-chlorobenzylidene)-hydrazide (III), then hydrolysis further yielding 2-chlorobenzoic acid (V, NC 233), with ultimate formation of bound sediment residues and significant levels of volatilized residues (CO₂ and volatile organic compounds were not distinguished). Other minor pathways (\leq 4.5% in total system) included formation of 2,5-bis(2-chlorophenyl)-1,3,4-oxadiazole (II, NC 12940) and N'N-bis(2-chlorobenzoyl)-hydrazine (IV, NC 12898).

Table 9: Chemical names and CAS numbers for the transformation products of clofentezine.¹

Applicants Code Name	CAS Number	Chemical Name	Chemical Formula	MW (g/mol)	Smiles String
NC 12940, II	2	2,5-Bis(2-chlorophenyl)-1,3,4-oxadiazole			
AE C593600;		2-Chlorobenzoic-(2-chlorobenzylidene)-hydrazide	<u></u>	- -	
NC 12898, IV		N',N-Bis(2-chlorobenzoyl)-hydrazine			
NC 233, V		2-Chlorobenzoic acid			

Information obtained from pp.15-16 of the study report.

2 Information not provided.

D. SUPPLEMENTARY EXPERIMENT-RESULTS: None reported.

¹ Identifications via TLC co-chromatography against reference standards.

³ Code name AE C593600 obtained from MRID 47192104.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

III. STUDY DEFICIENCIES

- 1. Material balances were incomplete, with up to 16-22% of the applied unaccounted for.
- 2. Volatilized residues were not adequately identified.
- 3. The test waters were not characterized.

IV. REVIEWER'S COMMENTS

1. All mean results and standard deviations presented in this review were determined using Microsoft Excel 2007 (12.0.6024.5000) MSO (12.0.6017.5000) software (DER Attachment 2). Standard deviations were determined using the "biased" or "n" method which determines the standard deviation of the entire sample population. Material balance summations reported by the study author (Table 4, p.19) were verified and, with the following exceptions, there was consistent agreement (within ± 0.1% of applied) between the study authors' reported values and those determined by the reviewer (DER Attachment 2). Summations of clofentezine and transformation products in the total system were not provided by the study author and were determined by the reviewer (DER Attachment 2).

The following discrepancies between results determined by the reviewer and those reported by the study authors were noted:

- a) For the 1-week sandy clay loam sediment system, the study authors reported "Total Recovered" as 92.7% of applied (Table 4, p.19), whereas, the reviewer determined a result of 92.4% (DER Attachment 2).
- b) Similarly for the 2-day and 1-week clay loam sediment systems, the study authors reported "Total Recovered" as 93.1% and 91.4%, respectively (Table 4, p.19), whereas, the reviewer determined results of 97.1% and 90.7%, respectively (DER Attachment 2).
- 2. Material balances were incomplete with up to 21.8% and 16.4% of the applied unaccounted for with the sandy clay loam sediment (Lode) and clay loam sediment (Sadlers Farm) systems, respectively. The study authors contended that "an adequate balance of radioactivity was maintained throughout the experiment" (p.17). Of twelve systems that were analyzed, five of the twelve had material balance recoveries <90% of the applied, with four of the five "low balance" systems having recoveries <85% of applied.
- 3. Volatilized residues, which comprised maximums of 29.9-32.0% of the applied for the two systems, were not distinguished between ¹⁴CO₂ and volatile [¹⁴C] organic compounds. Additionally, identification of ¹⁴CO₂, if present, was not confirmed.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

4. A U.S.A. soil/sediment was not used, and it was not established that the foreign test sediments used in this study are comparable to soils/sediments that would be found at intended use sites for clofentezine in the United States. Two sediments from the United Kingdom, classified as a sandy clay loam and a clay loam according to German BBA textural classifications, were used in this study. However, FAO soil classifications were not provided to allow for adequate comparisons.

V. REFERENCES

- 1. U.S. Environmental Protection Agency. 1982. Pesticide Assessment Guidelines, Subdivision N, Chemistry: Environmental Fate, Section 162-4, Aerobic Aquatic Metabolism Studies. Office of Pesticide and Toxic Substances, Washington, DC. EPA 540/9-82-021.
- 2. U.S. Environmental Protection Agency. 1989. FIFRA Accelerated Reregistration, Phase 3 Technical Guidance. Office of the Prevention, Pesticides, and Toxic Substances, Washington, DC. EPA 540/09-90-078.
- 3. U.S. Environmental Protection Agency. 1993. Pesticide Registration Rejection Rate Analysis Environmental Fate. Office of the Prevention, Pesticides, and Toxic Substances, Washington, DC. EPA 738-R-93-010.

Data	Evaluation Record o	a the aerobic biot	transformation	of clofentezine	(NC 21314) in
wate	r-sediment system				

PN	1RA	Subm	ission	Number	{

EPA MRID Numbers 47192116

Attachment 1: Structures of Parent Compound and Transformation Products

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Clofentezine [NC 21314, NC 21 314, AE B084866]

IUPAC Name:

3,6-Bis(2-chlorophenyl)-1,2,4,5-tetrazine.

CAS Name:

3,6-Bis(2-chlorophenyl)-1,2,4,5-tetrazine.

CAS Number:

74115-24-5.

SMILES String:

Clc1ccccc1c2nnc(c3ccccc3Cl)nn2 (EPI Suite, v3.12 SMILES).

Unlabeled

$$N=N$$

[Tetrazine-3,6-14C]Clofentezine

$$N-N$$
 $N=N$
 CI

* = Location of the radiolabel.

Data Evaluation Record on the aerobic biotransformation of clofentezine	(NC 21314) in
water-sediment system	

PMRA Submission Number	-{	
------------------------	----	--

EPA MRID Numbers 47192116

Identified Compounds

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

Clofentezine [NC 21314, NC 21 314, AE B084866]

IUPAC Name:

3,6-Bis(2-chlorophenyl)-1,2,4,5-tetrazine.

CAS Name:

3,6-Bis(2-chlorophenyl)-1,2,4,5-tetrazine.

CAS Number:

74115-24-5.

SMILES String: Clc1ccccc1c2nnc(c3ccccc3Cl)nn2 (EPI Suite, v3.12 SMILES).

$$N=N$$

NC 12 940 [Compound II]

IUPAC Name:

2,5-Bis (2-chlorophenyl) 1,3,4 oxadiazole.

CAS Name:

Not reported.

CAS Number:

Not reported.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

AE C593600 [R1, M1, Compound III]

IUPAC Name:

2-Chlorobenzoic (2-chlorobenzylidene) hydrazide.

2-Chlorobenzoic acid (2-chlorobenzylidene)hydrazide.

CAS Name:

2-Chlorobenzoic acid {(2-chlorophenyl)methylene}hydrazide.

CAS Number:

Not reported.

NC 12 898 [Compound IV]

IUPAC Name:

N', N-Bis (2-chlorobenzoyl) hydrazine.

CAS Name:

Not reported.

CAS Number:

Not reported.

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

NC 233 [R3, Compound V]

IUPAC Name:

2-Chlorobenzoic acid.

CAS Name:

Not reported.

CAS Number:

Not reported.

Carbon Dioxide

IUPAC Name:

Carbon dioxide.

CAS Name:

Carbon dioxide.

CAS Number:

124-38-9.

o=c=o

Data	Evaluation	Record on	the aerobic	biotransformation	of clofentezine	(NC 21314) in
wate	r-sediment s	system				

DV UD Y	Carlona	::	Maranham	•
PIVIKA	Suom	1881011	Number -	

EPA MRID Numbers 47192116

Unidentified Reference Compounds

PMRA Submission Number {.....}

EPA MRID Numbers 47192116

NC 22 505 [Compound IB]

IUPAC Name:

3,6-Bis (2-chlorophenyl)-1,2-dihydro-1,2,4,5 tetrazine.

CAS Name:

Not reported.

CAS Number:

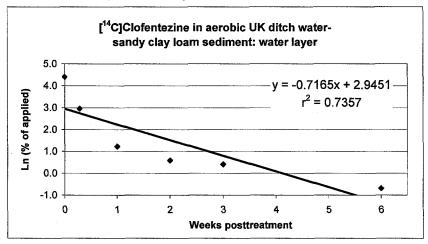
Not reported.

Page 30 of 30

Attachment 2: Excel and SigmaPlot Spreadsheets

Chemical: Clofentezine (NC 21314).

PC: 125501 MRID: 47192116 Guideline: 162-4


Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems.

Half-life determination.

Sandy clay loam sediment (Lode) systems: water layer. Half-life (weeks) 1.0 (0- to 6-week data (0- to 6-week data)

	Clofentezine				
Weeks Posttreatment	(% of Applied)	Ln (% applied)			
O	81.0	4.394449155			
0.3	19.1	2.949688335			
1	3.4	1.223775432			
2	1.8	0.587786665			
3	1.5	0.405465108			
6	0.5	-0.693147181			

Results from Table 6, p. 22 of the study report.

SUMMARY OUTPUT

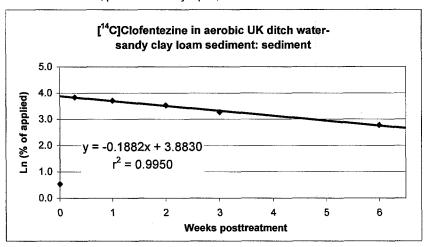
Regression Statistics					
Multiple R	0.857719042				
R Square	0.735681955				
Adjusted R Square	0.669602443				
Standard Error	1.072059657				
Observations	6				

	df		SS	MS	F	Sig F
Regression	1	12	2.79561568	12.796	11.13328383	0.0289256
Residual	4	4.	597247632	1.1493		
Total	. 5	17	7.39286331			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	2.945106204	0.620388162	4.7472	0.008989411	1.2226325	4.6675799	1.22263253	4.667579879
X Variable 1	-0.716492302	0.214733542	-3.337	0.028925648	-1.312688	-0.1202964	-1.31268819	-0.12029641

Chemical: Clofentezine (NC 21314). PC: 125501

PC: 125501 MRID: 47192116 Guideline: 162-4


Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems.

Half-life determination.

Sandy clay loam sediment (Lode) systems: sediment.

Half-life (weeks)	3.7 (2-day to 6-week data
	Clofe	ntezine
Weeks Posttreatment	(% of Applied)	Ln (% applied)
0	1.7	0.530628251
0.3	46.3	3.835141961
1	40.7	3.706228092
2	33.9	3.523415014
3	26.2	3.265759411
6	16.0	2.772588722

Results from Table 6, p. 22 of the study report; clofentezine in sediment extract + vessel rinse.

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.997473611						
R Square	0.994953605						
Adjusted R Square	0.993271474						
Standard Error	0.034507537						
Observations	5						

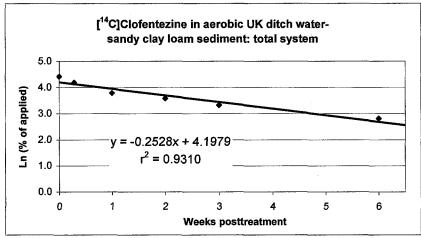
AITOVI	in the second se				
	df	SS	MS	F	Sig F
Regression	1	0.704321282	0.7043	591.483835	0.0001524
Residual	3	0.00357231	0.0012		
Total	4	0.707893593			

	an and a second	The second secon						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.882960917	0.024485472	158.58	5.52898E-07	3.8050372	3.9608846	3.80503722	3.960884617
X Variable 1	-0.188159299	0.007736673	-24.32	0.000152377	-0.212781	-0.1635378	-0.21278085	-0.16353775

Chemical: Clofentezine (NC 21314).

PC: 125501 MRID: 47192116 Guideline: 162-4

Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems.


Half-life determination.

Sandy clay loam sediment (Lode) systems: total system.

Half-life (weeks) (0- to 6-week data)

i . II	Ciole	litezirie
Weeks Posttreatment	(% of Applied)	Ln (% applied)
0	82.7	4.415219602
0.3	65.4	4.180522258
1	44.1	3.786459782
2	35.7	3.575150689
3	27.7	3.321432413
6	16.5	2.803360381
5 1/ 1 / 1/		

Results imported from Profile SCL worksheet.

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.964885677						
R Square	0.931004371						
Adjusted R Square	0.913755463						
Standard Error	0.171766244						
Observations	6						

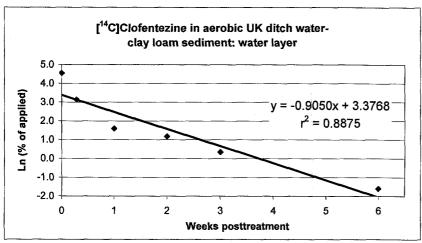
	. df	SS	MS	F	Sig F
Regression	1	1.592449857	1.5924	53.97468665	0.0018279
Residual	4	0.11801457	0.0295		
Total	5	1.710464427	7		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	4.197920232	0.099399081	42.233	1.87898E-06	3.9219441	4.4738963	3.92194414	4.473896322
X Variable 1	-0.252763184	0.034404777	7.347	0.001827875	-0.348286	-0.1572402	-0.34828616	-0.15724021

Chemical: Clofentezine (NC 21314).

PC: 125501 MRID: 47192116 Guideline: 162-4

Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems. Half-life determination.


Clay loam sediment (Sadlers Farm) systems: water layer.

Half-life (weeks) 0.8 (0- to 6-week data)

Clofentezine

	Clofe	ntezine
Weeks Posttreatment	(% of Applied)	Ln (% applied)
0	93.3	4.535820108
0.3	22.8	3.126760536
1	4.9	1.589235205
2	3.2	1.16315081
3	1.4	0.336472237
6	0.2	-1.609437912

Results from Table 5, p. 21 of the study report.

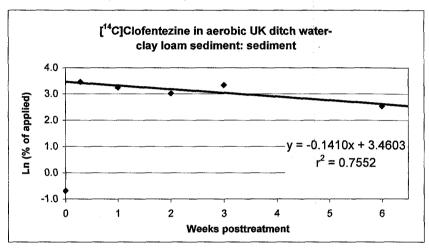
SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.942068114					
R Square	0.887492331					
Adjusted R Square	0.859365414					
Standard Error	0.804365685					
Observations	6					

	df	SS	MS	F	Sig F
Regression	1	20.41500752	20.415	31.55313201	0.0049369
Residual	4	2.588016621	0.647		
Total	5	23.00302414			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.376792483	0.465476847	7.2545	0.001916993	2.0844216	4.6691634	2.08442157	4.669163395
X Variable 1	-0.905014853	0.161114441	-5.617	0.004936942	-1.35234	-0.4576895	-1.35234026	-0.45768945

PC: 125501 MRID: 47192116 Guideline: 162-4


Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems.

Half-life determination.

Clay loam sediment (Sadlers Farm) systems: sediment.

mait-life (weeks)	4.9	2-day to 6-week data				
	Clofentezine					
Weeks Posttreatment	(% of Applied)	Ln (% applied)				
0	0.5	-0.693147181				
0.3	31.6	3.453157121				
	25.4	3.234749174				
2	20.4	3.015534901				
3	28.0	3.33220451				
6	12.6	2.533696814				

Results from Table 5, p. 21 of the study report; clofentezine in sediment extract + vessel rinse.

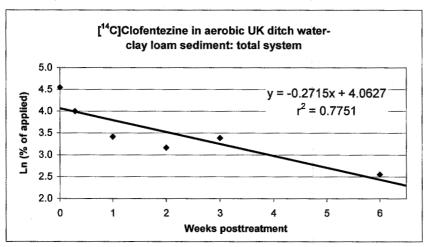
SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.86900999					
R Square	0.755178363					
Adjusted R Square	0.673571151					
Standard Error	0.206724701					
Observations	5					

	df	SS	MS	F	Sig F
Regression	1	0.395462895	0.3955	9.253818885	0.0557787
Residual	3	0.128205306	0.0427		
Total	4	0.523668201			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.460304936	0.1466854	23.59	0.000166911	2.9934865	3.9271233	2.99348653	3.927123345
X Variable 1	-0.140991571	0.046348177	-3.042	0.055778707	-0.288492	0.006509	-0.28849215	0.006509012

PC: 125501 MRID: 47192116 Guideline: 162-4


Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems.

Half-life determination.

Clay loam sediment (Sadlers Farm) systems: total system.

Half-life (weeks)	2.6	(0- to 6-week data)				
	Clofentezine					
Weeks Posttreatment	(% of Applied)	Ln (% applied)				
0	93.8	4.541164856				
0.3	54.4	3.996364154				
1,	30.3	3.411147713				
2	23.6	3.161246712				
3	29.4	3.380994674				
6	12.8	2.549445171				

Results imported from Profile CL worksheet.

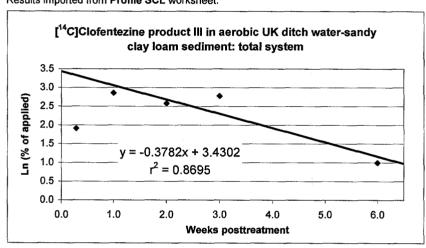
SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.880423918					
R Square	0.775146276					
Adjusted R Square	0.718932845					
Standard Error	0.365039283					
Observations	6					

	df	SS	MS	F	Sig F
Regression	1	1.837480657	7 1.8375	13.78934291	0.0205928
Residual	4	0.53301471	0.1333		
Total	5	2.370495368	3		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	4.062684573	0.211243887	19.232	4.30773E-05	3.4761775	4.6491916	3.47617752	4.64919163
X Variable 1	-0.271514059	0.073117366	-3.713	0.020592783	-0.47452	-0.0685077	-0.47452041	-0.06850771

PC: 125501 MRID: 47192116 Guideline: 162-4


Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems. Half-life determination.

Sandy clay loam sediment (Lode) systems: total system.

Half-life (weeks) 1.8 (1- to 6-week data)

	Compound III ¹				
Weeks Posttreatment	(% of Applied)	Ln (% applied)			
0	<0.1	(not detected)			
0.3	6.7	1.902107526			
1	17.3	2.850706502			
2	13.1	2.57261223			
3	15.9	2.766319109			
6	2.7	0.993251773			

1 2-Chlorobenzoic-(2-chlorobenzylidene)-hydrazide. Results imported from **Profile SCL** worksheet.

SUMMARY OUTPUT

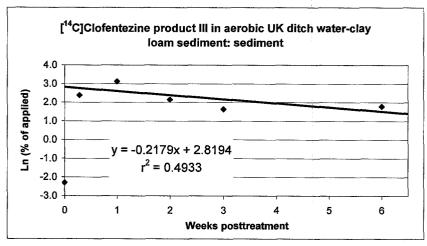
Regression Statistics						
Multiple R	0.932472401					
R Square	0.869504778					
Adjusted R Square	0.804257167					
Standard Error	0.387604118					
Observations	4					

	df		SS	MS	F	Sig F
Regression		1	2.002092423	2.0021	13.32623161	0.0675276
Residual		2	0.300473905	0.1502		
Total		3	2.302566328			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.430208814	0.366251466	9.3657	0.011209016	1.8543559	5.0060617	1.85435595	5.006061682
X Variable 1	-0.378162137	0.103591558	-3,651	0.067527599	-0.823881	0.0675564	-0.82388064	0.067556363

PC: 125501 MRID: 47192116 Guideline: 162-4

Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems. Half-life determination.


Clay loam sediment (Sadlers Farm) systems: sediment.

Half-life (weeks) 3.2 (1- to 6-week data)

	Compound III ¹				
Weeks Posttreatment	(% of Applied)	Ln (% applied)			
0	0.1	-2.302585093			
0.3	10.7	2.370243741			
1	22.6	3.117949906			
2	8.5	2.140066163			
3	5.1	1.62924054			
6	5.9	1.774952351			

1 2-Chlorobenzoic-(2-chlorobenzylidene)-hydrazide.

Results from Table 5, p. 21 of the study report; clofentezine in sediment extract + vessel rinse.

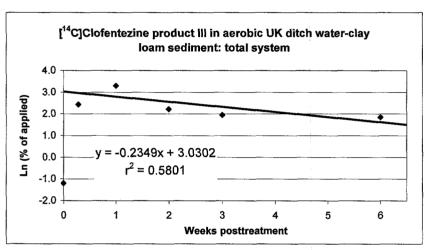
SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.702365787				
R Square	0.493317699				
Adjusted R Square	0.239976548				
Standard Error	0.58436368				
Observations	4				

	df	SS	MS	F	Sig F
Regression	1	0.664947547	0.6649	1.947246616	0.2976342
Residual	2	0.682961821	0.3415		
Total	3	1.347909368			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	2.819361295	0.552171776	5.1059	0.036282517	0.4435579	5.1951647	0.4435579	5.195164693
X Variable 1	-0.217936352	0.156177763	-1. <u>39</u> 5	0.297634213	-0.889915	0.4540423	-0.88991503	0.454042326

PC: 125501 MRID: 47192116 Guideline: 162-4


Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems.

Half-life determination.

Clay loam sediment (Sadlers Farm) systems: total system. Half-life (weeks) 3.0 (1- to 6-week data)

nait-life (weeks)	3.0(r- to 6-week data)		
	Compound III ¹			
Weeks Posttreatment	(% of Applied)	Ln (% applied)		
0	0.3	-1.203972804		
0.3	11.4	2.433613355		
1	27.0	3.295836866		
2	9.2	2.219203484		
3	7.0	1.945910149		
6	6.3	1 840549633		

1 2-Chlorobenzoic-(2-chlorobenzylidene)-hydrazide.
Results imported from **Profile CL** worksheet.

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.761655673			
R Square	0.580119365			
Adjusted R Square	0.370179047			
Standard Error	0.52883385			
Observations	4			

	df	SS	MS	F	Sig F
Regression	1	0.77278735	1 0.7728	2.763258486	0.2383443
Residual	2	0.55933048	32 0.2797		
Total	3	1.33211783	33		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.030209672	0.499701019	6.064	0.026132841	0.8801697	5.1802496	0.88016972	5.180249625
X Variable 1	-0.23494488	0.141336792	-1.662	0.238344326	-0.843068	0.3731783	-0.84306801	0.373178252

PC: 125501 MRID: 47192116 Guideline: 162-4

Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems. Nonlinear half-lives (exponential decay/single compartment, 2 parameter):

Clofentezine:

UK ditch water-sandy clay loam sediment systems.

Phase water sediment system Half-life (weeks) 0.14 3.6 1.9

Half-life (days) 0.97

R squared 0.9980 0.9996 0.9871

UK ditch water-clay loam sediment systems.

Phase water sediment system

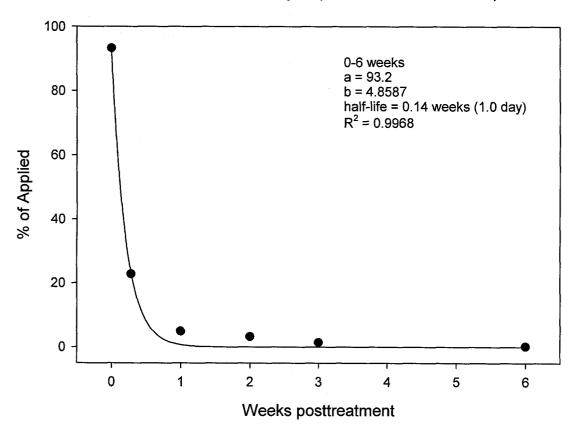
Half-life (weeks) 0.14 5.5 1.1

Half-life (days) 1.00

R squared 0.9968 0.9768 0.9357

Clofentezine product III:

UK ditch water-sandy clay loam sediment systems.


Phase water sediment system
Half-life (weeks) ND ND 3.0
R squared 0.9569

UK ditch water-clay loam sediment systems.PhasewatersedimentsystemHalf-life (weeks)ND0.890.88Half-life (days)6.26.1

R squared 0.9490 0.9512

PC: 125501 MRID: 47192116 Guideline: 162-4)

[¹⁴C]Clofentezine in aerobic UK ditch water-clay loam sediment: water layer (1/2 model, nonlinear)

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-clay loam sediment: water layer

[Tetrazine-3,6-¹⁴C]-label Nonlinear Regression

Data Source: Data 1 in 125501 47192116 162-4 CL H2O.JNB

Equation: Single, 2 Parameter

R Rsqr Adj Rsqr Standard Error of Estimate

0.9984 0.9968 0.9952

2.7325

-	Coefficient S	Std. Error	t	P	VIF
a	93.2178 2.	7320	34.1208	<0.0001	1.0619
b	4.8587 0.4	4212	11.5349	0.0003	1.0619

Analysis of Variance:

	DF	SS	MS
Regression	2	9231.1138	4615.5569
Residual	4	29.8662	7.4666
Total	6	9260.9800	1543.4967

Statistical Tests:

PRESS

50393.2682

Durbin-Watson Statistic

0.9180 Failed

Normality Test

Passed (P = 0.2168)

K-S Statistic = 0.4030

Significance Level = 0.2168

Constant Variance Test

Passed (P = 0.0600)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row	Predicted	Residual	Std. Res.	Stud. Res.	Stud. Del. Res.
1	93.2178	0.0822	0.0301	1.5596	2.1574<
2	23.2601	-0.4601	-0.1684	-1.5560	-2.1448<
3	0.7234	4.1766	1.5285	1.5378	2.0829<
4	0.0056	3.1944	1.1690	1.1690	1.2478
5	4.3569E-00	5 1.4000	0.5123	0.5123	0.4590
6	2.0364E-01	1 0.2000	0.0732	0.0732	0.0634

Row	Cook's D	DFFITS					
1	3267.9875<	0.9996	111.8350<				
2	102.1728<	0.9883	-19.7042				
3	0.0145	0.0121	0.2303				

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-clay loam sediment: water layer

[Tetrazine-3,6-14C]-label

4	2.0152E-006 2.9491E-006	0.0021
5	5.2712E-011 4.0163E-010	9.1990E-006
6	9.4500E-025 3.5279E-022	1.1914E-012

95% Confidence:

Row	Predicted	Regr. 5%	Regr. 95%	Pop. 5%	Pop. 95%
1	93.2178	35.6326	100.8030	82.4897	103.9459
2	23.2601	15.7180	30.8022	12.5624	33.9577
3	0.7234	-0.1104	1.5572	-6.9089	8.3557
4	0.0056	-0.0074	0.0186	-7.5810	7.5923
5	4.3569E-005	-0.0001	0.0002	-7.5866	7.5867
6	2.0364E-011	-1.2213E-010	1.6286E-010	-7.5866	7.5866

Fit Equation Description:

```
[Variables]
```

x = col(1)

y = col(2)

 $reciprocal_y = 1/abs(y)$

reciprocal ysquare = $1/y^2$

'Automatic Initial Parameter Estimate Functions

F(q)=if(size(x)>1, if(total(abs(y))>0, ape(x,log(abs(y)),1,0,1), -306), 0)

asign(q)=if(mean(q)>=0,1,-1)

[Parameters]

 $a = if(F(0)[1] < 307, if(F(0)[1] > -307, asign(y)*10^F(0)[1], asign(y)*10^(-307)), asign(y)*10^307)$ "Auto {{previous: 93.2178}}

b = if(x50(x,y)-min(x)=0, 1, -ln(.5)/(x50(x,y)-min(x))) "Auto {{previous: 4.8587}}

[Equation]

f = a*exp(-b*x)

fit f to y

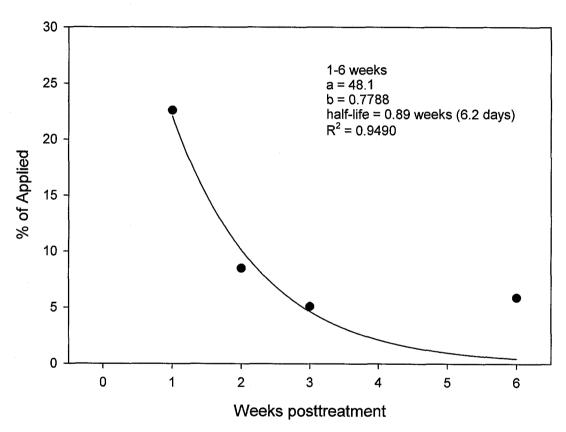
"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare

[Constraints]

b>0

[Options]


tolerance=1e-10

stepsize=1

iterations=200

PC: 125501 MRID: 47192116 Guideline: 162-4)

[¹⁴C]Clofentezine product III in aerobic UK ditch waterclay loam sediment: sediment (1/2 model, nonlinear)

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-clay loam sediment: sediment

[Tetrazine-3,6-¹⁴C]-label Clofentezine product III Nonlinear Regression

Data Source: Data 1 in 125501 47192116 162-4 CL III Sed.JNB

Equation: Single, 2 Parameter

R	Rsqr	Adj Rsqr	Standard Error of Estimate

0.9742 0.9490 0.8980

4.0526

	Coefficient	Std. Error	t	P	VIF
a	48.0654 20	0.7309	2.3185	0.1463	6.9204<
b	0.7788	0.3217	2.4209	0.1365	6.9204<

Analysis of Variance:

	DF	SS	MS
Regression	2	610.9827	305.4914
Residual	2	32.8473	16.4236
Total	4	643.8300	160.9575

Statistical Tests:

PRESS

454.4919

Durbin-Watson Statistic

1.0345 Failed

Normality Test

Passed (P = 0.7537)

K-S Statistic = 0.3099

Significance Level = 0.7537

Constant Variance Test

Failed (P = < 0.0001)

Power of performed test with alpha = 0.0500: 0.5824

The power of the performed test (0.5824) is below the desired power of 0.8000. You should interpret the negative findings cautiously.

Regression Diagnostics:

Row	Predicted	Residual	Std. Res.	Stud. Res.	Stud. Del. Res.
1	22.0605	0.5395	0.1331	0.8154	0.7057
2	10.1251	-1.6251	-0.4010	-0.5917	-0.4607
3	4.6471	0.4529	0.1118	0.1516	0.1078
4	0.4493	5.4507	1.3450	1.3650	3.6919<

Row	Cook's D	ist Leverage	DFFITS
1	12.1421<	0.9734	4.2648<

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-clay loam sediment: sediment

[Tetrazine-3,6-¹⁴C]-label Clofentezine product III

2	0.2061	0.5407	-0.4999
3	0.0097	0.4568	0.0989
4	0.0280	0.0291	0.6397

95% Confidence:

Row	Predicted	Regr. 5%	Regr. 95%	Pop. 5%	Pop. 95%
1	22.0605	4.8575	39.2636	-2.4342	46.5553
2	10.1251	-2.6972	22.9474	-11.5188	31.7690
3	4.6471	-7.1375	16.4317	-16.3987	25.6929
4	0.4493	-2.5276	3.4262	-17.2400	18.1385

Fit Equation Description:

[Variables]

x = col(1)

y = col(2)

reciprocal y = 1/abs(y)

reciprocal ysquare = $1/y^2$

'Automatic Initial Parameter Estimate Functions

F(q)=if(size(x)>1, if(total(abs(y))>0, ape(x,log(abs(y)),1,0,1), -306), 0)

asign(q)=if(mean(q)>=0,1,-1)

[Parameters]

 $a = if(F(0)[1] < 307, if(F(0)[1] > -307, asign(y)*10^F(0)[1], asign(y)*10^(-307)), asign(y)*10^307)$ "Auto {{previous: 48.0654}}

b = if(x50(x,y)-min(x)=0, 1, -ln(.5)/(x50(x,y)-min(x))) "Auto {{previous: 0.778773}}

[Equation]

f = a*exp(-b*x)

fit f to y

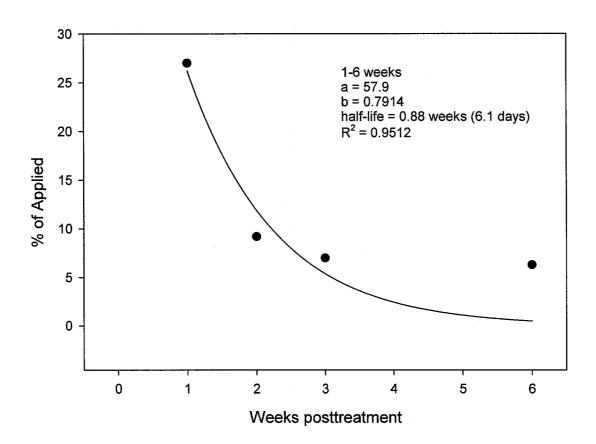
"fit f to y with weight reciprocal y

"fit f to y with weight reciprocal ysquare

[Constraints]

b>0

[Options]


tolerance=1e-10

stepsize=1

iterations=200

PC: 125501 MRID: 47192116 Guideline: 162-4)

[¹⁴C]Clofentezine product III in aerobic UK ditch waterclay loam sediment: total system (1/2 model, nonlinear)

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-clay loam sediment: total system

[Tetrazine-3,6-¹⁴C]-label Clofentezine product III Nonlinear Regression

Data Source: Data 1 in 125501 47192116 162-4 CL III Tot sys.JNB

Equation: Single, 2 Parameter

R Rsqr Adj Rsqr Star	ndard Error of Estimate
----------------------	-------------------------

0.9753 0.9512 0.9024

4.6925

	Coefficient	Std. Error	t	P	VIF
a	57.8648 24	.5679	2.3553	0.1427	7.0265<
b	0.7914 0	.3187	2.4830	0.1311	7.0265<

Analysis of Variance:

	DF	SS	MS
Regression	2	858.2914	429.1457
Residual	2	44.0386	22.0193
Total	4	902.3300	225.5825

Statistical Tests:

PRESS

1007.0044

Durbin-Watson Statistic

1.0893 Failed

Normality Test

Passed (P = 0.6524)

K-S Statistic = 0.3379

Significance Level = 0.6524

Constant Variance Test

Failed (P = < 0.0001)

Power of performed test with alpha = 0.0500: 0.5912

The power of the performed test (0.5912) is below the desired power of 0.8000. You should interpret the negative findings cautiously.

Regression Diagnostics:

Row	Predicted	Residual	Std. Res.	Stud. Res.	Stud. Del. Res.
1	26.2251	0.7749	0.1651	1.0353	1.0746
2	11.8856	-2.6856	-0.5723	-0.8506	-0.7529
3	5.3867	1.6133	0.3438	0.4642	0.3475
4	0.5015	5.7985	1.2357	1.2525	1.9074

Row	Cook's D	ist Leverage	DFFITS
1	20.5289<	0.9746	6.6510<

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-clay loam sediment: total system

[Tetrazine-3,6-¹⁴C]-label Clofentezine product III

2	0.4374	0.5473	-0.8279
3	0.0887	0.4515	0.3153
4	0.0215	0.0266	0.3156

95% Confidence:

Row	Predicted	Regr. 5%	Regr. 95%	Pop. 5%	Pop. 95%
1	26.2251	6.2935	46.1567	-2.1458	54.5960
2	11.8856	-3.0514	26.8225	-13.2292	37.0004
3	5.3867	-8.1792	18.9526	-18.9377	29.7111
4	0.5015	-2.7944	3.7973	-19.9559	20.9588

Fit Equation Description:

[Variables]

x = col(1)

y = col(2)

reciprocal y = 1/abs(y)

reciprocal ysquare = 1/y^2

'Automatic Initial Parameter Estimate Functions

F(q)=if(size(x)>1, if(total(abs(y))>0, ape(x,log(abs(y)),1,0,1), -306), 0)

asign(q)=if(mean(q)>=0,1,-1)

[Parameters]

 $a = if(F(0)[1] < 307, if(F(0)[1] > -307, asign(y)*10^F(0)[1], asign(y)*10^(-307)), asign(y)*10^307)$ "Auto {{previous: 57.8648}}

b = if(x50(x,y)-min(x)=0, 1, -ln(.5)/(x50(x,y)-min(x))) "Auto {{previous: 0.791393}}

[Equation]

f = a*exp(-b*x)

fit f to y

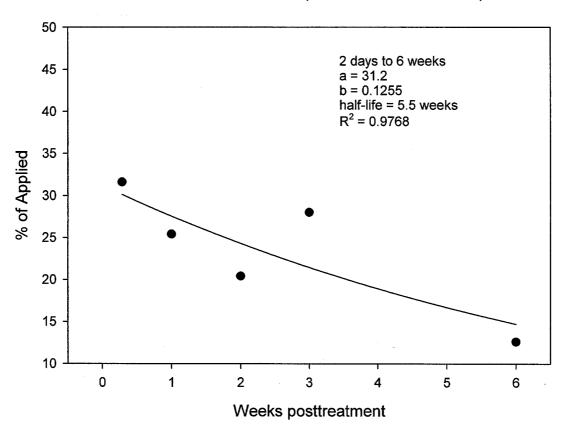
"fit f to y with weight reciprocal y

"fit f to y with weight reciprocal ysquare

[Constraints]

b>0

[Options]


tolerance=1e-10

stepsize=1

iterations=200

PC: 125501 MRID: 47192116 Guideline: 162-4)

[¹⁴C]Clofentezine in aerobic UK ditch water-clay loam sediment: sediment (1/2 model, nonlinear)

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-clay loam sediment: sediment

[Tetrazine-3,6-14C]-label Nonlinear Regression

Data Source: Data 1 in 125501 47192116 162-4 CL Sed.JNB

Equation: Single, 2 Parameter

R Rsqr Adj Rsqr Standard Error of Estimate

0.9884 0.9768 0.9614

4.8147

	Coefficient	Std. Error	t	P	VIF
a	31.2321	1.0765	7.6616	0.0046	2.1555
b	0.1255	0.0575	2.1829	0.1170	2.1555

Analysis of Variance:

	DF	SS	MS
Regression	2	2933.0965	1466.5482
Residual	3	69.5435	23.1812
Total	5	3002.6400	600.5280

Statistical Tests:

PRESS

163.8589

Durbin-Watson Statistic

2.8895 Failed

Normality Test

Passed (P = 0.7012)

K-S Statistic = 0.2935

Significance Level = 0.7012

Constant Variance Test

Passed (P = 0.0500)

Power of performed test with alpha = 0.0500: 0.9530

Regression Diagnostics:

1108100	non Diagnostic	,			
Row	Predicted	Residual	Std. Res.	Stud. Res.	Stud. Del. Res.
1	30.1321	1.4679	0.3049	0.4570	0.3868
2	27.5486	-2.1486	-0.4463	-0.5358	-0.4600
3	24.2995	-3.8995	-0.8099	-0.9118	-0.8756
4	21.4337	6.5663	1.3638	1.6004	3.4176<
5	14.7093	-2.1093	-0.4381	-0.7450	-0.6738

Row	Cook's I	DFFITS	
1	0.1301	0.5549	0.4319
2	0.0633	0.3062	-0.3056
3	0.1111	0.2109	-0.4527
4	0.4830	0.2738	2.0987<

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-clay loam sediment: sediment

[Tetrazine-3,6-14C]-label

5 0.5250 0.6542 -0.9268

95% Confidence:

Row	Predicte	ed Regr. 5%	Regr. 95%	Pop. 5%	Pop. 95%
1	30.1321	18.7186	41.5455	11.0260	49.2381
2	27.5486	19.0698	36.0274	10.0367	45.0605
3	24.2995	17.2627	31.3364	7.4385	41.1605
4	21.4337	13.4155	29.4518	4.1401	38.7272
5	14.7093	2.3162	27.1024	-4.9977	34.4163

Fit Equation Description:

```
[Variables]
```

x = col(1)

y = col(2)

 $reciprocal_y = 1/abs(y)$

reciprocal_ysquare = $1/y^2$

'Automatic Initial Parameter Estimate Functions

F(q)=if(size(x)>1, if(total(abs(y))>0, ape(x,log(abs(y)),1,0,1), -306), 0)

asign(q)=if(mean(q)>=0,1,-1)

[Parameters]

 $a = if(F(0)[1] < 307, if(F(0)[1] > -307, asign(y)*10^F(0)[1], asign(y)*10^(-307)), asign(y)*10^307)$ "Auto {{previous: 31.2321}}

b = if(x50(x,y)-min(x)=0, 1, -ln(.5)/(x50(x,y)-min(x))) "Auto {{previous: 0.125494}}

[Equation]

f = a*exp(-b*x)

fit f to y

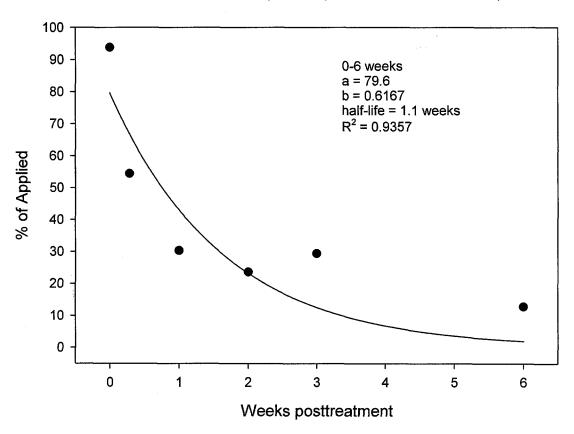
"fit f to y with weight reciprocal y

"fit f to y with weight reciprocal ysquare

[Constraints]

b>0

[Options]


tolerance=1e-10

stepsize=1

iterations=200

Chemical: Clofentezine (NC 21314) PC: 125501 MRID: 47192116 Guideline: 162-4)

[¹⁴C]Clofentezine in aerobic UK ditch water-clay loam sediment: total system (1/2 model, nonlinear)

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-clay loam sediment: total system

[Tetrazine-3,6-¹⁴C]-label Nonlinear Regression

Data Source: Data 1 in 125501 47192116 162-4 CL Tot sys.JNB

Equation: Single, 2 Parameter

R	Rsqr	Adj Rsqr	Standard Error of Estimate

0.9673 0.9357 0.9036

15.1400

	Coefficient	Std. Error	t	P	VIF
a	79.6301 12	2.2892	6.4797	0.0029	1.3865
b	0.6167	.2318	2.6601	0.0564	1.3865

Analysis of Variance:

	DF	SS	MS
Regression	2	13344.1761	6672.0880
Residual	4	916.8739	229.2185
Total	6	14261.0500	2376.8417

Statistical Tests:

PRESS

3082.0346

Durbin-Watson Statistic

1.2907 Failed

Normality Test

Passed (P = 0.5933)

K-S Statistic = 0.2946

Significance Level = 0.5933

Constant Variance Test

Passed (P = 0.0600)

Power of performed test with alpha = 0.0500: 0.9439

Regression Diagnostics:

Row	Predict	ed Residual	Std. Res.	Stud. Res.	Stud. Del. Res.
1	79.6301	14.1699	0.9359	1.6024	2.3192<
2	66.7654	-12.3654	-0.8167	-1.0042	-1.0057
3	42.9769	-12.6769	-0.8373	-1.0158	-1.0213
4	23.1949	0.4051	0.0268	0.0341	0.0295
5	12.5185	16.8815	1.1150	1.3046	1.4906
6	1.9680	10.8320	0.7155	0.7262	0.6749

Row	Cook's I	DFFITS	
1	2.4797	0.6589	3.2230<
2	0.2581	0.3386	-0.7195
3	0.2435	0.3206	-0.7015

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-clay loam sediment: total system

[Tetrazine-3,6-14C]-label

4	0.0004	0.3832	0.0233
5	0.3140	0.2695	0.9055
6	0.0079	0.0293	0.1172

95% Confidence:

Row	Predicte	d Regr. 5%	Regr. 95%	Pop. 5%	Pop. 95%
1	79.6301	45.5099	113.7504	25.4900	133.7703
2	66.7654	42.3064	91.2243	18.1320	115.3987
3	42.9769	19.1764	66.7774	-5.3287	91.2825
4	23.1949	-2.8257	49.2156	-26.2423	72.6321
5	12.5185	-9.3046	34.3415	-34.8441	59.8810
6	1.9680	-5.2233	9.1593	-40.6780	44.6140

Fit Equation Description:

[Variables]

x = col(1)

y = col(2)

 $reciprocal_y = 1/abs(y)$

reciprocal_ysquare = 1/y^2

'Automatic Initial Parameter Estimate Functions

F(q)=if(size(x)>1, if(total(abs(y))>0, ape(x,log(abs(y)),1,0,1), -306), 0)

asign(q)=if(mean(q)>=0,1,-1)

[Parameters]

 $a = if(F(0)[1] < 307, if(F(0)[1] > -307, asign(y)*10^F(0)[1], asign(y)*10^(-307)), asign(y)*10^307)$ "Auto

{{previous: 79.6301}}

b = if(x50(x,y)-min(x)=0, 1, -ln(.5)/(x50(x,y)-min(x))) "Auto {{previous: 0.61673}}

[Equation]

f = a*exp(-b*x)

fit f to y

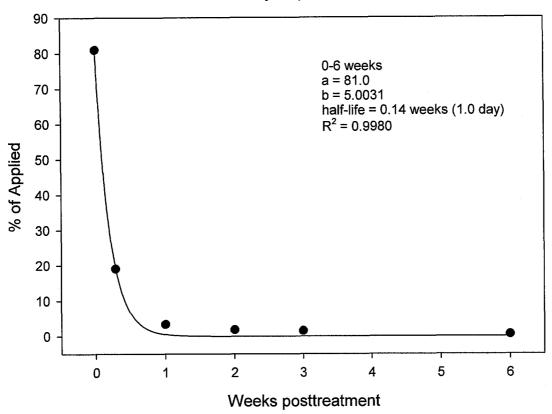
"fit f to y with weight reciprocal y

"fit f to y with weight reciprocal_ysquare

[Constraints]

b>0

[Options]


tolerance=1e-10

stepsize=1

iterations=200

PC: 125501 MRID: 47192116 Guideline: 162-4)

[¹⁴C]Clofentezine in aerobic UK ditch water-sandy clay loam sediment: water layer (1/2 model, nonlinear)

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-sandy clay loam sediment: water layer

[Tetrazine-3,6-¹⁴C]-label Nonlinear Regression

Data Source: Data 1 in 125501 47192116 162-4 SCL H2O.JNB

Equation: Single, 2 Parameter

R Rsqr Adj Rsqr Standard Error of Estimate

0.9990 0.9980 0.9970

1.8686

	Coefficient	Std. Error	t	P	VIF
a	80.9515 1	1.8684	43.3271	< 0.0001	1.0571
b	5.0031).3453	14.4908	0.0001	1.0571

Analysis of Variance:

	DF	SS	MS
Regression	2	6929.1427	3464.5713
Residual	4	13.9673	3.4918
Total	6	6943.1100	1157.1850

Statistical Tests:

PRESS

30991.3762

Durbin-Watson Statistic

0.8717 Failed

Normality Test

Passed (P = 0.2094)

K-S Statistic = 0.4062

Significance Level = 0.2094

Constant Variance Test

Passed (P = 0.0600)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row	Predicted	Residual	Std. Res.	Stud. Res.	Stud. Del. Res.
1	80.9515	0.0485	0.0259	1.5516	2.1296<
2	19.3828	-0.2828	-0.1514	-1.5490	-2.1208<
3	0.5437	2.8563	1.5285	1.5361	2.0773<
4	0.0037	1.7963	0.9613	0.9613	0.9494
5	2.4533E-00	5 1.5000	0.8027	0.8027	0.7590
6	7.4346E-01	2 0.5000	0.2676	0.2676	0.2338

Row	Cook's D	ist Leverage	DFFITS
1	4308.8237<	0.9997	127.4118<
2	124.4628<	0.9905	-21.6007
3	0.0117	0.0098	0.2069

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-sandy clay loam sediment: water layer

[Tetrazine-3,6-14C]-label

4	8.2953E-007 1.7953E-006	0.0013
5	5.8986E-011 1.8309E-010	1.0270E-005
6	2.4195E-024 6.7587E-023	1.9223E-012

95% Confidence:

Row	Predicted Regr. 5%	Regr. 95%	Pop. 5%	Pop. 95%
1	80.9515 75.7641	86.1390	73.6149	88.2882
2	19.3828 14.2195	24.5462	12.0632	26.7025
3	0.5437 0.0295	1.0580	- 4.6699	5.7574
4	0.0037 -0.0033	0.0106	-5.1845	5.1918
5	2.4533E-005-4.5669E-005	9.4734E-005	-5.1882	5.1882
6	7.4346E-012-3.5218E-011	5.0087E-011	-5.1882	5.1882

Fit Equation Description:

```
[Variables]
```

x = col(1)

y = col(2)

reciprocal y = 1/abs(y)

reciprocal ysquare = $1/y^2$

'Automatic Initial Parameter Estimate Functions

F(q)=if(size(x)>1, if(total(abs(y))>0, ape(x,log(abs(y)),1,0,1), -306), 0)

asign(q)=if(mean(q)>=0,1,-1)

[Parameters]

 $a = if(F(0)[1] < 307, if(F(0)[1] > -307, asign(y)*10^F(0)[1], asign(y)*10^(-307)), asign(y)*10^307)$ "Auto

{{previous: 80.9515}}

b = if(x50(x,y)-min(x)=0, 1, -ln(.5)/(x50(x,y)-min(x))) "Auto {{previous: 5.00312}}

[Equation]

f = a*exp(-b*x)

fit f to y

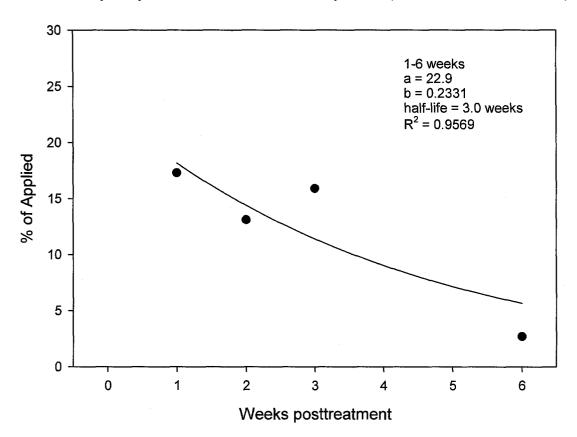
"fit f to y with weight reciprocal y

"fit f to y with weight reciprocal_ysquare

[Constraints]

b>0

[Options]


tolerance=1e-10

stepsize=1

iterations=200

PC: 125501 MRID: 47192116 Guideline: 162-4)

[14C]Clofentezine product III in aerobic UK ditch watersandy clay loam sediment: total system (1/2 model, nonlinear)

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-sandy clay loam sediment: total system

[Tetrazine-3,6-¹⁴C]-label Clofentezine product III Nonlinear Regression

Data Source: Data 1 in 125501 47192116 162-4 SCL III Tot sys.JNB

Equation: Single, 2 Parameter

R Rsqr Adj Rsqr Standard Error of Estimate

0.9782 0.9569 0.9139

3.9668

Coefficient Std. Error P VIF t 22.9453 6.5346 0.0724 3.5114 3.6057 a 0.2331 0.1276 1.8270 b 0.2092 3.6057

Analysis of Variance:

 DF
 SS
 MS

 Regression 2
 699.5296
 349.7648

 Residual 2
 31.4704
 15.7352

 Total 4
 731.0000
 182.7500

Statistical Tests:

PRESS

119.4693

Durbin-Watson Statistic

2.8424 Failed

Normality Test

Passed (P = 0.5848)

K-S Statistic = 0.3565

Significance Level = 0.5848

Constant Variance Test

Failed (P = < 0.0001)

Power of performed test with alpha = 0.0500: 0.6160

The power of the performed test (0.6160) is below the desired power of 0.8000. You should interpret the negative findings cautiously.

Regression Diagnostics:

	TOTAL TO SEE STOOMS	·•			
Row	Predicted	Residual	Std. Res.	Stud. Res.	Stud. Del. Res.
1	18.1735	-0.8735	-0.2202	-0.4380	-0.3258
2	14.3941	-1.2941	-0.3262	-0.3895	-0.2865
3	11.4007	4.4993	1.1343	1.4062	9.3807<
4	5.6645	-2.9645	-0.7473	-1.1889	-1.5525

Row	Cook's Di	st Leverage	DFFITS
1	0.2836	0.7473	-0.5601

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-sandy clay loam sediment: total system

[Tetrazine-3,6-¹⁴C]-label Clofentezine product III

2	0.0323	0.2985	-0.1869
3	0.5310	0.3494	6.8747<
4	1.0820	0.6049	-1.9209

95% Confidence:

Row	Predicted	Regr. 5%	Regr. 95%	Pop. 5%	Pop. 95%
1	18.1735	3.4196	32.9275	-4.3871	40.7341
2	14.3941	5.0699	23.7183	-5.0544	33.8426
3	11.4007	1.3118	21.4895	-8.4258	31.2271
4	5.6645	-7.6096	18.9387	-15.9573	27.2864

Fit Equation Description:

```
[Variables]
```

x = col(1)

y = col(2)

 $reciprocal_y = 1/abs(y)$

reciprocal_ysquare = 1/y^2

'Automatic Initial Parameter Estimate Functions

F(q)=if(size(x)>1, if(total(abs(y))>0, ape(x,log(abs(y)),1,0,1), -306), 0)

asign(q)=if(mean(q)>=0,1,-1)

[Parameters]

 $a = if(F(0)[1] < 307, if(F(0)[1] > -307, asign(y)*10^F(0)[1], asign(y)*10^(-307)), asign(y)*10^307) "Auto {\{previous: 22.9453\}}$

b = if(x50(x,y)-min(x)=0, 1, -ln(.5)/(x50(x,y)-min(x))) "Auto {{previous: 0.233148}}

[Equation]

f = a*exp(-b*x)

fit f to y

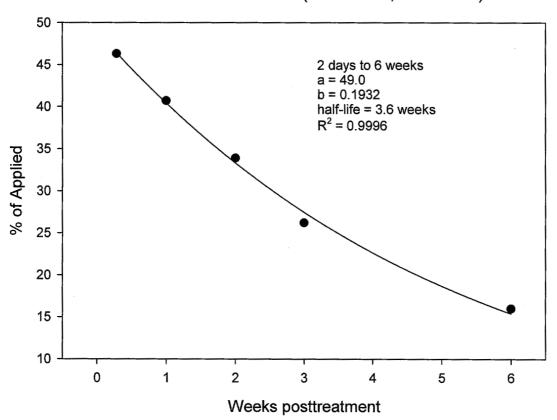
"fit f to y with weight reciprocal y

"fit f to y with weight reciprocal ysquare

[Constraints]

b>0

[Options]


tolerance=1e-10

stepsize=1

iterations=200

PC: 125501 MRID: 47192116 Guideline: 162-4)

[¹⁴C]Clofentezine in aerobic UK ditch water-sandy clay loam sediment: sediment (1/2 model, nonlinear)

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-sandy clay loam sediment: sediment

[Tetrazine-3,6-14C]-label Nonlinear Regression

Data Source: Data 1 in 125501 47192116 162-4 SCL Sed.JNB

Equation: Single, 2 Parameter

R Rsqr Adj Rsqr Standard Error of Estimate

0.9998 0.9996 0.9993

0.8957

Coefficient Std. Error P VIF t 49.0383 0.8292 59.1404 < 0.0001 2.0989 a þ 0.1932 0.0088 21.8618 0.0002 2.0989

Analysis of Variance:

	DF	SS	MS
Regression	2	5889.4232	2944.7116
Residual	3	2.4068	0.8023
Total	5	5891.8300	1178.3660

Statistical Tests:

PRESS

5.9798

Durbin-Watson Statistic

2.9861 Failed

Normality Test

Passed (P = 0.8749)

K-S Statistic = 0.2461

Significance Level = 0.8749

Constant Variance Test

Passed (P = 0.0500)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row	Predicted	Residual	Std. Res.	Stud. Res.	Stud. Del. Res.
1	46.4051	-0.1051	-0. 1174	-0.1901	-0.1562
2	40.4244	0.2756	0.3077	0.3681	0.3075
3	33.3236	0.5764	0.6436	0.7332	0.6607
4	27.4701	-1.2701	-1.4180	-1.7192	-11.5411<
5	15.3881	0.6119	0.6832	0.9977	0.9965

Row	Cook's I	Dist Leverage	DFFITS
1	0.0293	0.6187	-0.1989
2	0.0292	0.3010	0.2018
3	0.0800	0.2295	0.3606

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-sandy clay loam sediment: sediment

[Tetrazine-3,6-14C]-label

4	0.6946	0.3197	-7.9124
5	0.5636	0.5311	1.0605

95% Confidence:

Row	Predicte	ed Regr. 5%	Regr. 95%	Pop. 5%	Pop. 95%
1	46.4051	44.1630	48.6473	42.7785	50.0318
2	40.4244	38.8605	41.9883	37.1731	43.6757
3	33.3236	31.9581	34.6890	30.1629	36.4842
4	27.4701	25.8582	29.0819	24.1954	30.7447
5	15.3881	13.3108	17.4653	11.8610	18.9151

Fit Equation Description:

```
[Variables]
```

x = col(1)

y = col(2)

 $reciprocal_y = 1/abs(y)$

reciprocal ysquare = $1/y^2$

'Automatic Initial Parameter Estimate Functions

F(q)=if(size(x)>1, if(total(abs(y))>0, ape(x,log(abs(y)),1,0,1), -306), 0)

asign(q)=if(mean(q)>=0,1,-1)

[Parameters]

 $a = if(F(0)[1] < 307, if(F(0)[1] > -307, asign(y)*10^F(0)[1], asign(y)*10^(-307)), asign(y)*10^307)$ "Auto {{previous: 49.0383}}

b = if(x50(x,y)-min(x)=0, 1, -ln(.5)/(x50(x,y)-min(x))) "Auto {{previous: 0.193168}}

[Equation]

f = a*exp(-b*x)

fit f to y

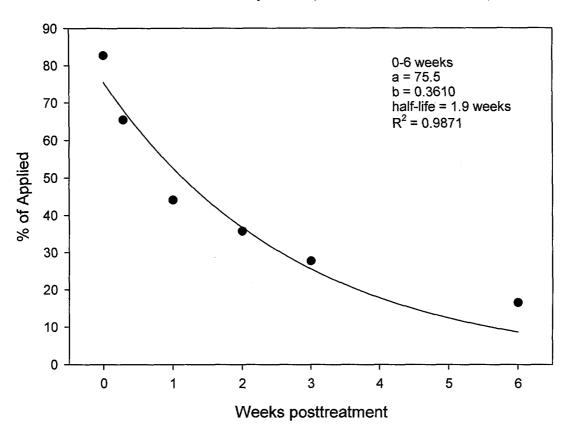
"fit f to y with weight reciprocal y

"fit f to y with weight reciprocal_ysquare

[Constraints]

b>0

[Options]


tolerance=1e-10

stepsize=1

iterations=200

PC: 125501 MRID: 47192116 Guideline: 162-4)

[¹⁴C]Clofentezine in aerobic UK ditch water-sandy clay loam sediment: total system (1/2 model, nonlinear)

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-sandy clay loam sediment: total system

[Tetrazine-3,6-¹⁴C]-label Nonlinear Regression

Data Source: Data 1 in 125501 47192116 162-4 SCL Tot sys.JNB

Equation: Single, 2 Parameter

R Rsqr Adj Rsqr Standard Error of Estimate

0.9935 0.9871 0.9806

7.0502

	Coefficient	Std. Error	t	P	VIF
a	75.4902 5	.2605	14.3503	0.0001	1.4826
b	0.3610 0	.0656	5.4992	0.0053	1.4826

Analysis of Variance:

	DF	SS	MS
Regression	2	15176.4665	7588.2332
Residual	4	198.8235	49.7059
Total	6	15375.2900	2562.5483

Statistical Tests:

PRESS

508.8364

Durbin-Watson Statistic

1.1623 Failed

Normality Test

Passed (P = 0.9253)

K-S Statistic = 0.2094

Significance Level = 0.9253

Constant Variance Test

Passed (P = 0.0600)

Power of performed test with alpha = 0.0500: 0.9987

Regression Diagnostics:

11051 401	TOUR DIMENTO	•			
Row	Predicted	Residual	Std. Res.	Stud. Res.	Stud. Del. Res.
1	75.4902	7.2098	1.0226	1.5360	2.0770<
2	68.0919	-2.6919	-0.3818	-0.4724	-0.4210
3	52.6147	-8.5147	-1.2077	-1.3672	-1.6223
4	36.6710	-0.9710	- 0.1377	-0.1664	-0.1446
5	25.5587	2.1413	0.3037	0.3820	0.3370
6	8.6534	7.8466	1.1130	1.2396	1.3679

Row	Cook's 1	DFFITS	
1	1.4816	0.5567	2.3277<
2	0.0592	0.3467	-0.3067

PC: 125501 MRID: 47192116 Guideline: 162-4

UK ditch water-sandy clay loam sediment: total system

[Tetrazine-3,6-14C]-label

3	0.2632	0.2197	-0.8609
4	0.0064	0.3153	-0.0982
5	0.0424	0.3677	0.2570
6	0.1847	0.1939	0.6708

95% Confidence:

Row	Predicted	Regr. 5%	Regr. 95%	Pop. 5%	Pop. 95%
1	75.4902	60.8847	90.0957	51.0671	99.9133
2	68.0919	56.5669	79.6168	45.3764	90.8073
3	52.6147	43.4389	61.7904	30.9962	74.2332
4	36.6710	25.6798	47.6623	14.2217	59.1204
5	25.5587	13.6884	37.4291	2.6662	48.4513
6	8.6534	0.0350	17.2719	-12.7345	30.0414

Fit Equation Description:

```
[Variables]
```

x = col(1)

y = col(2)

reciprocal y = 1/abs(y)

reciprocal vsquare = $1/v^2$

'Automatic Initial Parameter Estimate Functions

F(q)=if(size(x)>1, if(total(abs(y))>0, ape(x,log(abs(y)),1,0,1), -306), 0)

asign(q)=if(mean(q)>=0,1,-1)

[Parameters]

 $a = if(F(0)[1] < 307, if(F(0)[1] > -307, asign(y)*10^F(0)[1], asign(y)*10^(-307)), asign(y)*10^307)$ "Auto {{previous: 75.4902}}

b = if(x50(x,y)-min(x)=0, 1, -ln(.5)/(x50(x,y)-min(x))) "Auto {{previous: 0.361008}}

[Equation]

f = a*exp(-b*x)

fit f to y

"fit f to y with weight reciprocal y

"fit f to y with weight reciprocal ysquare

[Constraints]

b>0

[Options]

tolerance=1e-10

stepsize=1

iterations=200

PC: 125501 MRID: 47192116 Guideline: 162-4

Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems. Confirmation of summations (material balances) and determination of means/standard deviations for applied radioactivity.

Sandy clay loam sediment (Lode) systems.

	\	Nate laye	r		Sedimen	t				Study
Day/	Extract	Nonext.	Total	Extract	Nonext.	Total	Volatiles ¹	Vessel ²	Mat bal	Mat bal
Week	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR
0	83.2	0.2	83.4	2.2	0.3	2.5	0.0	0.6	86.5	86.5
2	23.5	0.2	23.7	54.4	5.8	60.2	0.1	8.7	92.7	92.7
1	15.5	1.5	17.0	59.8	8.1	67.9	3.0	4.5	92.4	92.7
2	11.9	2.6	14.5	52.3	16.8	69.1	5.7	2.0	91.3	91.3
3	7.4	1.2	8.6	52.6	15.1	67.7	5.0	0.7	82.0	82.0
6	2.6	1.7	4.3	26.9	16.9	43.8	29.9	0.2	78.2	78.2
									07.0	07.0

Mean	87.2	87.2
std dev.	5.5	5.6
maximum	92.7	92.7
minimum	78.2	78.2
n =	6	6

Clay loam sediment (Sadlers Farm) systems.

	1	Nate layer			Sedimen	t				Study
Day/	Extract	Nonext.	Total	Extract	Nonext.	Total	Volatiles ¹	Vessel ²	Mat bal	Mat bal
Week	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR
0	97.0	0.0	97.0	0.9	0.2	1.1	0.0	0.4	98.5	98.5
2	24.2	1.3	25.5	49.1	18.0	67.1	0.0	4.5	97.1	93.1
1	11.6	1.7	13.3	52.3	12.7	65.0	3.5	8.9	90.7	91.4
_2	6.1	1.1	7.2	43.8	26.3	70.1	3.6	3.0	83.9	83.9
3	6.4	1.8	8.2	39.9	19.1	59.0	12.0	4.4	83.6	83.6
6	2.7	1.6	4.3	30.9	24.8	55.7	32.0	0.2	92.2	92.2

¹ Separate results for ethylene glycol, ethanolamine and sulfuric acid trapping solutions not reported.

2 Vessel rinse.

Results from Tables 4, p. 19 of the study report.

 Mean
 91.0
 90.5

 std dev.
 5.8
 5.3

 maximum
 98.5
 98.5

 minimum
 83.6
 83.6

 n =
 6
 6

Means and standard deviations calculated using Microsoft program functions @average (A1:A2) and @stdevp (A1:A2). Shaded block indicates result does not agree (>0.1%) with that reported by the study authors (Reviewer's Comment No. 1).

PC: 125501 MRID: 47192116 Guideline: 162-4

Aerobic aquatic metabolism of [tetrazine-3,6-14C]clofentezine in two United Kingdom water-sediment systems.

[¹⁴C]Residue water phase:sediment ratios.

Sandy clay loam sediment (Lode) systems.

Total [14C]residues in sediment.

		Sediment	
Day/	Ext.	Nonext	Total
Week	% AR	% AR	% AR
0	2.2	0.3	2.5
2	54.4	5.8	60.2
1	59.8	8.1	67.9
2	52.3	16.8	69.1
3	52.6	15.1	67.7
6	26.9	16.9	43.8

[14C] water phase:sediment ratios.

Day/	Water	Sed	Ratio	Ratio
Week	% AR	% AR	W:S	S:W
0	83.4	2.5	33	0
2	23.7	60.2	0	3
1	17.0	67.9	0	4
2	14.5	69.1	0	5
3	8.6	67.7	0	8
6	4.3	43.8	0	10

Clay loam sediment (Sadlers Farm) systems.

Total [14C]residues in sediment.

		Sediment	
Day/	Ext.	Nonext	Total
Week	% AR	% AR	% AR
0	0.9	0.2	1.1
2	49.1	18.0	67.1
1	52.3	12.7	65.0
2	43.8	26.3	70.1
3	39.9	19.1	59.0
6	30.9	24.8	55.7

[¹⁴C] water phase:sediment ratios.

Day/	Water	Sed	Ratio	Ratio
Week	% AR	% AR	W:S	S:W
0	97.0	1.1	88	0
2	25.5		0	3
1	13.3	65.0	0	5
2	7.2	70.1	0	10
3	8.2	59.0	0	7
6	4.3	55.7	0	13

Results imported from Mat bals worksheet.

Means and standard deviations calculated using Microsoft program functions @average (A1:A2) and @stdevp (A1:A2).

PC: 125501 MRID: 47192116 Guideline: 162-4

Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems. Determination of parent clofentezine and transformation products in total system.

Sandy clay loam sediment (Lode) systems.

	F TOU														
 		C	lofentezi	ne				NC 12940	(11)				111		
Day/	Water	Sed.	Vessel ¹	S+V ²	System	Water	Sed.	Vessel ¹	S+V ²	System	Water	Sed.	Vessel ¹	S+V ²	System
Week	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR
0	81.0	1.7		1.7	82.7				0.0	0.0				0.0	0.0
2	19.1	38.7	7.6	46.3	65.4	1.3	0.7	0.2	0.9	2.2	1.6	4.9	0.2	5.1	6.7
1	3.4	36.6	4.1	40.7	44.1	0.3	1.0	0.2	1.2	1.5	7.5	9.7	0.1	9.8	17.3
2	1.8	32.3	1.6	33.9			2.0	0.1	2.1	2.4	6.3	6.6	0.2	6.8	13.1
3	1.5	26.2		26.2	27.7	0.2	0.8		0.8	1.0	1.1	14.8		14.8	
6	0.5	16.0		16.0	16.5	0.2			0.0	0.2	0.7	2.0		2.0	2.7
		N	C 12898	(IV)				NC 233 (V)						
Day/	Water	Sed.	Vessel ¹	S+V ²	System	Water	Sed.	Vessel ¹	S+V ²	System					
Week	% AR	% AR	% AR	% AR	% AR	07 AD	24.								
				70 7 11 1	70 AR	% AR	% AR	% AR	% AR	% AR					
비				0.0		===	<u>% AR</u>	% AR	% AR 0.0	% AR 0.0					
2	0.1	1.1			0.0		% AR 1.6								
2	0.1 0.2			0.0	0.0 1.2	0.2		0.1	0.0	0.0					
1 2	0.2	1.1		0.0 1.1	0.0 1.2 1.3	0.2 1.9	1.6	0.1	0.0 1.7	0.0 1.9					
1	0.2 0.2	1.1 1.2		0.0 1.1 1.1	0.0 1.2 1.3 1.4	0.2 1.9 1.4	1.6 2.6	0.1	0.0 1.7 2.6	0.0 1.9 4.5					

¹ Vessel rinse.

Results from Table 6, p. 22 of the study report; blank cell = either <0.1% of applied or NA (not analyzed, <1% of applied).

² Summation of Sediment + Vessel rinse residues.

PC: 125501 MRID: 47192116 Guideline: 162-4

Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems. Determination of total unidentified/unaccounted for residues.

Sandy clay loam sediment (Lode) systems.

			lo	lentifife	d			TLC Unio	dentified	ı	TLC	Not	Total
Day/		Parent		III	IV	٧	Unk X	Origin	Rem	Total	Unacct ¹	analyzed ²	Unided ³
Week	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR
							Wate	r layer					
0		81.0						0.6	1.7	2.3	-0.1	0.2	2.5
2	23.5	19.1	1.3	1.6	0.1	0.2	0.3		0.9	1.2	0.0		
1	15.5	3.4	0.3	7.5	0.2	1.9	1.4	0.2	0.8	2.4	-0.2	1.5	3.9
2	11.9	1.8	0.3	6.3	0.2	1.4	1.2	0.1	0.6	1.9	0.0		
3	7.4	1.5	0.2	1.1	0.2	2.4	1.5	0.1	0.4	2.0	0.0		
6	2.6	0.5	0.2	0.7	0.2	0.2		0.1	0.3	0.9	-0.1	1.7	2.6
							Sedi	ment					
0	2.2	1.7						0.1	0.3	0.4	0.1		0.4
2	54.4	38.7	0.7	4.9	1.1	1.6		1.8	5.2	7.1	0.3		7.1
1	59.8	36.6	1.0	9.7	1.1	2.6	0.2	3.1	5.5	8.8	0.0		8.8
2	52.3	32.3	2.0	6.6	1.2	2.1	0.9	3.1	4.0	8.0	0.1		8.0
3	52.6	26.2	0.8	14.8	8.0	1.0		2.0	6.9	9.2	-0.2		9.2
6	26.9	16.0		2.0	1.1	0.6		1.9	4.8	6.7	0.5		6.7
							Vesse	l rinse					
0	0.6											0.6	0.6
2	8.7	7.6	0.2	0.2		0.1		0.1	0.5	0.6	0.0		0.6
1	4.5	4.1	0.2	0.1					0.1	0.1	0.0		0.1
2	2.0	1.6	0.1	0.2		0.1				0.0	0.0		0.0
3	0.7											0.7	0.7
6	0.2											0.2	0.2
							Total	system					
0	86.0	82.7	0.0	0.0	0.0	0.0	0.0	0.7	2.0	2.7	0.6	0.8	3.5
2	86.6	65.4	2.2	6.7	1.2	1.9	0.4	1.9	6.6	8.9		0.2	9.1
1	79.8	44.1	1.5	17.3	1.3	4.5	1.6	3.3	6.4	11.3	-0.2	1.5	12.8
2	66.2	35.7	2.4	13.1	1.4	3.6	2.1	3.2	4.6	9.9	0.1	2.6	12.5
3	60.7	27.7	1.0	15.9	1.0	3.4	1.8	2.1	7.3	11.2	0.5		13.1
6	29.7	16.5	0.2	2.7	1.3	0.8	0.5	2.0	5.1	7.6	0.6	1.9	

^{1 [14}C]Residues unaccounted for following TLC analysis.

Results from Table 4, p. 19; Table 6, p. 22 of the study report and imported from Profile SCL worksheet.

² Either [14C]residues remaining after methylene chloride partition of water layer or vessel rinses not TLC analyzed.

³ Total TLC Unidentified + Not analyzed.

PC: 125501

MRID: 47192116 Guideline: 162-4

Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems. Determination of parent clofentezine and transformation products in total system.

Clay loam sediment (Sadlers Farm) systems.

		J	Clofentezine	ine			~	NC 12940 (II)	(E)				=		
Day/	Water	Sed.	Vessel	S+V ²	System	Water	Sed.	Vessel	S+V ²	System	Water	Sed.	Vessel	S+V ²	System
Week	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR
0	93.3	0.5		0.5	93.8	6.0			0.0	0.0	0.2	0.1		0.1	0.3
2	22.8	27.5	4.1	31.6	54.4	0.1	1.0	0.1	1.1	1.2	0.7	10.7		10.7	11.4
_	4.9	17.2	8.2	25.4	30.3	0.3	1.2	0.3	1.5	1.8	4.4	22.2	0.4	22.6	27.0
2	3.2	17.7	2.7	20.4	23.6	0.1	1.6	0.1	1.7	1.8	0.7	8.4	0.1	8.5	9.2
3	1.4	24.2	3.8	28.0	29.4	0.2	0.8	0.1	0.0	1.1	1.9	4.8	0.3	5.1	7.0
9	0.5	12.6		12.6	12.8	0.1	0.5		0.5	9.0	0.4	5.9		5.9	6.3
		Ž	NC 12898 (IV	<u>(IS)</u>				NC 233 (V	S						
Day/	Water	Sed.	Vessel	S+V ²	System	Water	Sed.	Vessel	S+V ²	System					
Week	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR					
0				0.0	0.0	0.1			0.0	0.1					
2		0.8		0.8	0.8		1.2		1.2	1.2					
1	0.1	1.2		1.2	1.3	0.2	2.2		2.2	2.4					
2	0.1	1.7		1.7	1.8	0.1	2.6		2.6	2.7					
3	0.1	0.7		0.7	0.8	0.5	1.5	0.1	1.6	1.8					
9	0.1	1.3		1.3	1.4	6.0	1.2		1.2	1.5					

1 Vessel rinse.
2 Summation of Sediment + Vessel rinse residues.

Results from Table 5, p. 21 of the study report; blank cell = either <0.1% of applied or NA (not analyzed, <1% of applied).

PC: 125501 MRID: 47192116 Guideline: 162-4

Aerobic aquatic metabolism of [tetrazine-3,6-¹⁴C]clofentezine in two United Kingdom water-sediment systems. Determination of total unidentified/unaccounted for residues.

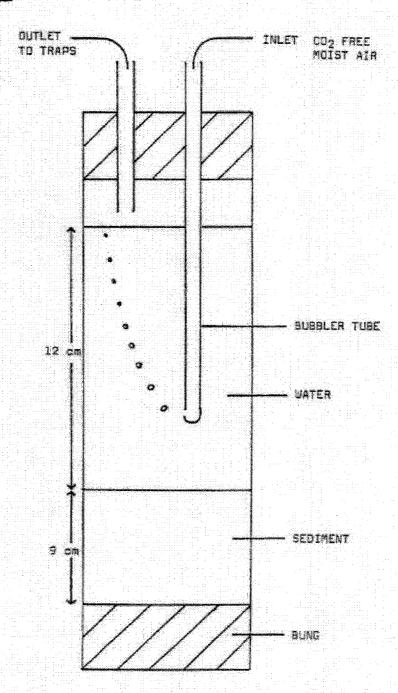
Clay loam sediment (Sadlers Farm) systems.

				lentifife				FLC Uni	dentified	1	TLC	Not	Total
Day/		Parent	ll	[1]	IV	V	Unk X	Origin	Rem	Total	Unacct ¹	analyzed ²	Unided ³
Week	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR	% AR
							Wate	r layer					
0	97.0		0.9	0.2		0.1		0.3	2.2	2.5			2.5
2	24.2	22.8	0.1	0.7			0.2		0.4	0.6			1.9
1	11.6	4.9	0.3	4.4	0.1	0.2	1.1	0.1	0.5	1.7			3.4
2	6.1	3.2	0.1	0.7	0.1	0.1	1.6	0.1	0.3	2.0			3.1
3	6.4	1.4	0.2	1.9	0.1	0.2	2.1	0.2	0.4	2.7			
6	2.7	0.2	0.1	0.4	0.1	0.3		0.4	0.5	1.7	-0.1	1.6	3.3
							Sedi	ment			Marrie		
0	0.9			0.1				0.1	0.2	0.3			0.3
2	49.1	27.5	1.0	10.7	0.8	1.2	1.0	2.3	4.4	7.7	0.2		7.7
1	52.3	17.2	1.2	22.2	1.2	2.2	0.5	2.6	5.1	8.2			8.2
2	43.8	17.7	1.6	8.4	1.7	2.6		4.1	5.6	11.6			11.6
3	39.9	24.2	0.8	4.8	0.7	1.5	0.3	2.0	5.4	7.7	0.2		7.7
6	30.9	12.6	0.5	5.9	1.3	1.2		3.6	5.0	9.5	-0.1		9.5
							Vesse	l rinse					
0												0.4	
2	4.5	4.1	0.1						0.2	0.2	0.1		0.2
1	8.9	8.2	0.3	0.4					0.2	0.2			0.2
2	3.0	2.7	0.1	0.1					0.1	0.1	0.0		0.1
3	4.4	3.8	0.1	0.3		0.1			0.1	0.1	0.0		0.1
6	0.2						<u> </u>					0.2	0.2
								system					
0	98.3	93.8	0.9	0.3	0.0	0.1		0.4	2.4	2.8			
2	77.8	54.4	1.2	11.4	0.8	1.2		2.3	5.0	8.5			
1	72.8	30.3	1.8	27.0	1.3	2.4	1.6	2.7	5.8	10.1			11.8
2	52.9	23.6	1.8	9.2	1.8	2.7		4.2	6.0	13.7	0.1	1.1	14.8
3	50.7	29.4	1.1	7.0	0.8	1.8		2.2	5.9	10.5		1.8	
6	33.8	12.8	0.6	6.3	1.4	1.5	1.7	4.0	5.5	11.2	0.0	1.8	13.0

^{1 [14}C]Residues unaccounted for following TLC analysis.

Results from Table 4, p. 19; Table 5, p. 21 of the study report and imported from Profile CL worksheet.

² Either [14C]residues remaining after methylene chloride partition of water layer or vessel rinses not TLC analyzed.


³ Total TLC Unidentified + Not analyzed.

Attachment 3: Transformation Pathway Presented by Registrant Illustration of Test System

Figure 5

Proposed degradation pathway

FIGURE 1

