PMRA Submission Number {......}

EPA MRID Number 45830721

Data Requirement: PMRA Data Code:

EPA DP Barcode: D288160

OECD Data Point: EPA Guideline: 161-1

Test material:

Common name: Penoxsulam.

Chemical names:

IUPAC:

6-(2,2-Difluoroethoxy)-N-(5,8-dimethoxy-s-triazolo[1,5-c]pyrimidin-2-yl)- α , α , α -

trifluoro-o-toluenesulfonamide,

3-(2,2-Diffluoroethoxy)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-1-(2,2-Diffluoroethoxy)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-1-(2,2-Diffluoroethoxy)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-1-(2,2-Diffluoroethoxy)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-1-(2,2-Diffluoroethoxy)-N-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl]-1-(2,2-Diffluoroethoxy[1,2,4]triazolo[1,2,4

 α, α, α -trifluorotoluene-2-sulfonamide

CAS:

2-(2,2-Difluoroethoxy)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-6-

(trifluoromethyl)benzenesulfonamide

CAS No:

219714-96-2.

Synonyms: XDE-638

SMILES string: n1c(nc2n1c(ncc2OC)OC)NS(=O)(=O)c3c(cccc3C(F)(F)F)OCC(F)F

Primary Reviewer: Lisa Koterwas

Dynamac Corporation

Signature:

Date:

QC Reviewer: Joan Gaidos

Dynamac Corporation

Signature:

Date:

Secondary Reviewer: Lucy Shanaman

EPA Reviewer

Date: October 27, 2003

Company Code:

Active Code:

Use Site Category:

EPA PC Code: 119031

CITATION: Simon, K., and J. K. Smith. 2001. Hydrolysis of XDE-638 in buffered and natural water as a function of pH. Unpublished study performed, sponsored, and submitted by Global Environmental Chemistry Laboratory-Indianapolis Lab, Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268-1054. Study No.: 000134. Experiment initiated March 2, 2000, and completed June 27, 2000 (p.3). Final report issued August 9, 2001.

PMRA Submission Number {.....}

EPA MRID Number 45830721

EXECUTIVE SUMMARY

The hydrolysis of [triazolopyrimidine-3- ¹⁴C]- and [phenyl-U- ¹⁴C]- labeled 3-(2,2-difluoroethoxy)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-α,α,α-trifluorotoluene-2-sulfonamide (penoxsulam; XDE-638) were studied at 25°C for 30 days at pH 5 (acetate), pH 7 (piperazineethanesulfonic acid), pH 9 (borate), and natural water (pH 8.0; from White River, Indiana) at a nominal application rate of 1 mg/L. This study was performed in accordance with US EPA Pesticide Assessment Guidelines Subdivision N §161-1 and in compliance with US EPA GLP Standards. Sterile glass vials were filled to capacity (ca. 10 mL) with treated sterile buffer (pH 5, 7 or 9) or natural water to minimize headspace (p.14). A single sample of each label was collected at 0, 1, 3, 7, 9, 15, 21 and 30 days. Sterility and pH were checked at each sampling interval (buffer solutions only). Aliquots were analyzed for total radioactivity using LSC and for [¹⁴C] penoxsulam by reverse-phase HPLC. [¹⁴C] Compounds were identified by comparison with unlabeled reference standards.

Test conditions were maintained throughout the experiment.

Overall radiolabeled material (both labels) averaged $100.2 \pm 1.9\%$ (range 97.0-104.0%), $99.6 \pm 2.3\%$ (range 95.5-104.8%), $99.0 \pm 2.3\%$ (range 94.7-102.2%), and $99.7 \pm 1.4\%$ (range 95.4-100.7%) of the applied in the pH 5, pH 7, pH 9 and natural water, respectively. There was no indication of a pattern of decline.

[Triazolopyrimidine-3- ¹⁴C]- and [phenyl-U- ¹⁴C]-labeled penoxsulam were stable at 25°C in pH 5, pH 7 and pH 9 buffer solutions. Penoxsulam concentrations were slightly variable, however there was no indication of a pattern of decline at any pH level for either label. At pH 5 (both labels), penoxsulam ranged from 97.0-104.0% of the applied. At pH 7 (both labels), penoxsulam ranged from 95.5-104.8%. At pH 9 (both labels), penoxsulam ranged from 92.5-102.1%. In natural water (both labels), penoxsulam ranged from 93.6-100.7% of the applied. No transformation products were reported. The reviewer calculated the residual radioactive fraction from the difference between the total recovery and the parent as percent of the applied. The residual radioactivity (both labels) was ≤3.7% of the applied for all buffer solutions and the natural water. Volatiles were not collected.

No transformation pathway was reported, however penoxsulam was stable in all experimental aqueous solutions at 25°C.

PMRA Submission Number {.....

EPA MRID Number 45830721

RESULTS SYNOPSIS:

	[14C]penoxsulam								
25°C	Half life	Transformation products	Residual Radioactivity						
pH 5									
pH:7	Stable.	None identified.	≤ 3.7% of the applied radioactivity						
pH 9	, , , , , , , , , , , , , , , , , , ,		2 3.770 of the applied (adioactivity						
Natural water	·		·						

Study Acceptability: This study is classified as acceptable and can be used to satisfy the USEPA Pesticide Assessment Guidelines, Subdivision N §161-1.

I. MATERIALS AND METHODS

GUIDELINE FOLLOWED: This study was designed in accordance with US EPA Pesticide

Assessment Guidelines, Subdivision N §161-1; Official Journal of the European Communities Method C.7; QECD, Method 111 guideline (PMRA-DACO 8.2.3.2; Trade Memorandum T-1-255, Section 6.2.A.2; and JMAFF (p.9). No significant deviations from

Subdivision N Guidelines §161-1 were noted.

COMPLIANCE: This study was conducted in compliance with USEPA GLP

Standards 40 CFR Part 160 (1989; pp.3, 9). Signed and dated GLP, Quality Assurance, and Data Confidentiality statements were provided (pp.2-5). A Certificate of Authenticity was not

provided.

A. MATERIALS:

1. Test Material [Triazolopyrimidine-3- ¹⁴C]- and [phenyl-U- ¹⁴C]- labeled

penoxsulam (p.11).

Chemical Structure: See DER Attachment 2.

Description: None reported.

PMRA Submission Number {.....}

EPA MRID Number 45830721

Purity:

[14C-TP]-label:

Radiochemical purity: 100% (p.11).

Inventory No. INV1456.

Analytical purity: Not reported. Specific activity: 28.9 mCi/mmole.

Location of the radiolabel: 3-Carbon in the triazolopyrimidine (TP) ring.

[14C-Ph]-label:

Radiochemical purity: 98.1%

Inventory No. INV1475.

Analytical purity: Not reported. Specific activity: 24.6 mCi/mmole.

Location of the radiolabel: Uniformly on the phenyl (Ph) ring.

Storage conditions of

test chemicals:

Not reported.

Physico-chemical properties of penoxsulam.

Parameter	Values	
Molecular Weight	483.37 amu	Comments
Molecular Formula	Not reported.	
Water solubility (ppm):	44 6	At pH 3.17;
Density	Not reported.	At pH 1.25.
Vapor pressure:	1.87 x 10 ⁻¹⁶ 7.16 x 10 ⁻¹⁶	At 20°C;
UV absorption	Not reported.	At 25°C.
oK.	4.37	
⟨ow/log K _{ow}	Not reported.	
delting point	Not reported.	
og K _{oc}	Not reported.	
tability of compound at room mperature ta obtained from pp.12, 45 of the	Not reported.	

PMRA Submission Number {.....}

EPA MRID Number 45830721

2. Buffer Solution: The following buffer solutions were prepared using purified water (Millipore):

Table 1a: Description of buffer solutions.

pН	Type and final molarity of buffer	Composition
5	0.05M sodium acetate trihydrate	0.05M sodium acetate trihydrate buffer adjusted with glacial acetic acid.
7	0.05M 4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid	0.05M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer adjusted with 1.0N sodium hydroxide.
9	0.05M sodium borate	0.05M sodium borate buffer adjusted with concentrated hydrochloric acid.

Data obtained from p.12 of the study report.

2b. Natural Water: The following sample of natural water was collected and analyzed prior to study initiation:

Table 1b: Description of natural water.

Parameter		Details
Location of collection	on	White River, Indianapolis, Indiana.
Storage:		Natural water was stored in an incubator at 25PC prior to use.
Temperature		Incubated at 25°C prior to use.
pН		8.0
Alkalinity (mg/L Ca	CO ₃):	284
Hardness (mg/L Ca(CO ₃):	393
Conductivity (mS/cr	n):	2.06
Total Suspended So	lids (mg/L):	24
Dissolved Oxygen (1	mg/L):	7.5
Microbial Plate	Actinomycetes	91
Count (CFU/mL):	Fungi	3
	Bacteria	1030
Other Details		Natural water was not sterilized prior to use.

Data obtained from pp.12, 13; and Table 1, p.21 of the study report.

PMRA Submission Number {.....}

EPA MRID Number 45830721

B. EXPERIMENTAL CONDITIONS

1. Preliminary Studies: A preliminary study was conducted to evaluate [triazolopyrimidine-3-14C]and [phenyl-U-14C]- labeled 3-(2,2-difluoroethoxy)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5c]pyrimidin-2-yl)-α,α,α-trifluorotoluene-2-sulfonamide (penoxsulam; XDE-638) at 50°C for 120 hours (5 days) in pH 4 (acetate), pH 7 (piperazineethanesulfonic acid), pH 9 (borate), and natural water (pH 8.0) at a nominal application rate of 1 mg/L (pH 4 and pH 9 buffers), and 10 mg/L (natural water and pH 7 buffer; p.14). [14C-TP]Penoxsulam was applied at application rates of 0.70 mg/L, 9.08 mg/L, 0.79 mg/L, and 9.96 mg/L in the pH 4, pH 7, pH 9, and natural water, respectively. [14C-Ph]Penoxsulam was applied at application rates of 0.63 mg/L, 10.23 mg/L, 0.71 mg/L, and 11.17 mg/L in the pH 4, pH 7, pH 9, and natural water, respectively (Table 4, p.24). This study was performed under the same conditions described in the definitive study. Sterile glass vials were filled to capacity (ca. 10 mL) with treated sterile buffer (pH 4, 7 or 9) or natural water to minimize headspace (p.14). A single sample of each label was collected at 0, 2, 4, 24 and 120 hours. Sterility and pH were checked at each sampling interval (buffer solutions only; p.15; Table 5, p.25). Aliquots (8 μL or 200 μL) were analyzed for total radioactivity using LSC and for [14C]penoxsulam by reverse-phase HPLC. [14C] Compounds were identified by comparison with unlabeled reference standards.

Sterility was maintained in the aqueous buffer solutions throughout the study and the pH ranged from 4.10-4.30 for the pH 4 buffer, 6.90-7.10 for the pH 7 buffer, and 8.90-9.00 for the pH 9 buffer (Table 5, p.25).

Overall radiolabeled material (both labels) averaged $99.2 \pm 8.0\%$ (range 89.9-113.5%), $100.6 \pm 5.0\%$ (range 90.4-106.3%), $105.1 \pm 3.7\%$ (range 100.0-108.6%), and $97.4 \pm 3.8\%$ (range 91.6-102.4%) of the applied in the pH 4, pH 7, pH 9, and natural water, respectively (Table 7, pp.28, 29; see Attachment 1).

[14C]Penoxsulam (both labels) was stable in all buffer solutions and natural water over 120 hours (p.17). At pH 4, penoxsulam ranged from 89.5-113.5% of the applied. At pH 7, penoxsulam ranged from 90.4-106.3%. At pH 9, penoxsulam ranged from 100.0-10.8.6%. In natural water, penoxsulam ranged from 91.6-102.4% (Table 7, pp.28, 29). Radioactive residues were $\leq 1.4\%$ of the applied. Volatiles were not collected.

PMRA Submission Number {.....}

EPA MRID Number 45830721

2. Experimental conditions

Table 2: Experimental parameters

Parameters		Details					
Duration of the	study	30 days (both labels).					
Test concentrations	Nominal (mg/L):	1					
concentrations	Measured (mg/L):	pH 5: 0.89. pH 7: 0.91-0.94. pH 9: 0.96-1.02. Natural water: 0.89-0.96.					
No. of replication	ns	Single samples from each radiolabel were collected at each sampling interval.					
Preparation of test medium	Volume used/treatment	Not reported.					
test medium	Method of sterilization	All buffered solutions (prior to dosing), glassware, and disposable laboratory equipment (pipette tips, etc.) were autoclaved. The sample preparation were reported as sterile.					
	Co-solvent	Acetonitrile, unspecified volume.					
Test apparatus (type/material/vo	lume)	Pre-labeled amber glass vials (ca. 10-mL capacity) were filled with ca. 10 mL of the [14C-TP]penoxsulam and [14C-Ph]penoxsulam bulk solutions.					
Details of traps for	or volatile, if any	Volatiles were not trapped.					
If no traps were a closed/open?	ised, is the test system	Not reported.					
Is there any indicadsorbing to the apparatus?	ation of the test material walls of the test	Not indicated.					
Experimental cor Temperature Lighting: pH Ranges:		25°C. Dark. pH 5- 5.02 to 5.09, pH 7- 6.92 to 7.03, pH 9- 8.90 to 9.02.					
Other details, if a	om pp.11, 13-15; Table 4, p	The sampling log for the study was provided in Table 3, p.23. All experiments were performed at the same time.					

Details obtained from pp.11, 13-15; Table 4, p.24; and Table 6, pp.26-27 of the study report.

3. Supplementary Experiments: No supplementary experiments were reported.

PMRA Submission Number {.....}

EPA MRID Number 45830721

4. Sampling:

Table 3: Sampling details.

Criteria	Details
Sampling intervals	0, 1, 3, 7, 9, 15, 21, and 30 days (both labels).
Sampling method	A single vial from each radiolabel was collected at each sampling interval.
Sampling methods for the volatile compounds, if any	Volatiles were not measured.
Sampling intervals/times for: pH measurement:	pH was measured at each sampling interval.
Sterility check:	Sterility was determined at each sampling interval.
Sample storage before analysis	Not reported.
Other observation, if any:	Sterility was measured at each sampling interval by collecting an aliquot $(500~\mu\text{L})$ of each sample, transferring to approximately $10~\text{mL}$ of soy broth solution, and incubating for 3 to 5 days at 25°C. The turbidity of the solutions was the measure of sterility. The pH and sterility were not measured for natural water samples.

Details obtained from pp.13, 15 of the study report.

C. ANALYTICAL METHODS

Extraction/clean up/concentration methods, if used: Aqueous samples were measured as collected without manipulation.

Volatile residue determination: Volatiles were not trapped in the definitive study.

Total ¹⁴C measurement: Total ¹⁴C was determined from an aliquot (200- μ L) of each sample using LSC (p.15).

Derivatization method, if used: A derivatization method was not employed.

Identification and quantification of the parent: Penoxsulam was identified and quantified using a reverse-phase HPLC under the following conditions (Appendix A, p.44): YMC ODS-AQ column (250 x 4.6 mm; 5 μ), gradient mobile phase consisting of (A) water with 1% acetic acid and (B) acetonitrile with 1% acetic acid [percent A:B (v:v) 0 minutes, 70:30, 40 minutes, 30:70, 40.01 minutes, 5:95, 45 minutes, 5:95, and 45.01 minutes, 70:30], UV detection (254 nm), flow rate, 1.0 mL/minute, UV (254 nm) and radioflow detection. Penoxsulam was identified by cochromatography with a non-radiolabeled reference standard (TSN 101649; 100% analytical

PMRA Submission Number {.....}

EPA MRID Number 45830721

purity; p.12; Figures 7-10, pp.39-42). The typical retention time for the parent was 22.6 minutes with the described HPLC system (p.44). HPLC column recoveries were 90-110%.

Identification and quantification of transformation products: Identification and quantification of transformation products was not necessary because penoxsulam was stable in all buffers and natural water.

Detection limits (LOD, LOQ) for the parent: Not reported.

Detection limits (LOD, LOQ) for the transformation products: Not reported.

II. RESULTS AND DISCUSSION

A. TEST CONDITIONS: The pH 5 buffer solutions ranged from pH 5.02-5.09. The pH 7 buffer ranged from pH 6.92-7.03. The pH 9 buffer ranged from pH 8.90-9.02 (Table 6, pp.26-27). The aqueous buffer solutions remained sterile throughout all experiments.

B. MASS BALANCE: Overall radiolabeled material (both labels) averaged $100.2 \pm 1.9\%$ (range 97.0-104.0%), $99.6 \pm 2.3\%$ (range 95.5-104.8%), $99.0 \pm 2.3\%$ (range 94.7-102.2%), and $99.7 \pm 1.4\%$ (range 95.4-100.7%) of the applied in the pH 5, pH 7, pH 9 and natural water, respectively (Table 8, pp.30-31). There was no indication of a pattern of decline.

PMRA Submission Number {.....}

EPA MRID Number 45830721

Table 4a. Hydrolysis of [triazolopyrimidine-3- 14 C]- and [phenyl-U- 14 C]-labeled penoxsulam, expressed as percentage of the applied radioactivity (mean \pm s.d., n = 1) at pH 5 and 25°C.

Compound		Sampling times (days)									
Compound	Compound		1	3	7	9	15	21	30		
XDE-638 (Penoxsulam) ¹	Triazolopyrimidine	100.0	101.2	100.1	100.2	100.7	98.1	97.0	104.0		
	Phenyl	100.0	101.5	100.7	100.6	98.6	98.2	97.1	103.2		
Other		Metabolites were not measured.									
Residual	Triazolopyrimidine	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.0		
Radioactivity ²	Phenyl	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0		
Volatiles		Volatiles were not measured.									
Total % recovery	Triazolopyrimidine	100.0	101.2	101.2	100.2	100.7	98.1	97.0	104.0		
	Phenyl	100.0	101.5	100.7	100.6	100.2	98.2	97.1	103.2		

Data obtained from Table 8, p.30 of the study report.

Table 4b. Hydrolysis of [triazolopyrimidine-3- 14 C]- and [phenyl-U- 14 C]-labeled penoxsulam, expressed as percentage of the applied radioactivity (mean \pm s.d., n = 1), at pH 7 and 25°C.

Compound		Sampling times (days)									
		0	1	3	7	9	15	21	30		
XDE-638 (Penoxsulam) ¹	Triazolopyrimidine	100.0	99.4	98.7	98.7	100.0	98.4	95.5	103.2		
	Phenyl	100.0	97.6	100.4	98.0	97.1	96.5	96.1	104.8		
Other		Metabolites were not measured.									
Residual	Triazolopyrimidine	0.0	0.9	1.4	0.0	0.0	0.0	0.0	0.0		
Radioactivity ²	Phenyl	0.0	2.8	0.0	1.1	2.5	1.0	0.0	0.0		
Volatiles		Volatiles were not measured.									
Total % recovery	Triazolopyrimidine	100.0	100.3	100.1	98.7	100.0	98.4	95.5	103.2		
	Phenyl	100.0	100.4	100.4	99.1	99.6	97.5	96.1	103.2		

Data obtained from Table 8, p.30 of the study report.

¹ The percent of applied radioactivity for the parent was calculated based on the % of parent in the chromatogram and the total % recovery.

² The residual radioactivity was calculated as the difference between the total % recovery and the parent.

¹ The percent of applied radioactivity for the parent was calculated based on the % of parent in the chromatogram and the total % recovery.

² The residual radioactivity was calculated as the difference between the total % recovery and the parent.

PMRA Submission Number {.....}

EPA MRID Number 45830721

Table 4c. Hydrolysis of [triazolopyrimidine-3-14C]- and [phenyl-U-14C]-labeled penoxsulam, expressed as percentage of the applied radioactivity (mean \pm s.d., n = 1), at pH 9 and 25°C.

Compound		Sampling times (days)									
	Compound		1	3	7	9	15	21	30		
XDE-638 (Penoxsulam) ¹	Triazolopyrimidine	99.0	100.0	99.8	100.0	99.3	92.7	96.7	102.1		
	Phenyl	100.0	100.3	97.9	100.4	98.4	95.1	92.5	100.6		
Other		Metabolites were not measured.									
Residual	Triazolopyrimidine	1.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0		
Radioactivity ²	Phenyl	0.0	0.0	1.1	0.0	0.9	0.0	3.1	1.6		
Volatiles		Volatiles were not measured.									
Total % recovery	Triazolopyrimidine	100.0	100.0	99.8	100.0	99.3	94.7	96.7	102.1		
	Phenyl	100.0	100.3	99.0	100.4	99.3	95.1	95.6	102.1		

Data obtained from Table 8, p.31 of the study report.

Table 4d. Hydrolysis of [triazolopyrimidine-3-14C]- and [phenyl-U-14C]-labeled penoxsulam, expressed as percentage of the applied radioactivity (mean \pm s.d., n = 1), in natural water at 25°C.

Compound	Sampling times (days)										
		0	1	3	7	9	15	21	30		
XDE-638 (Penoxsulam) ¹	Triazolopyrimidine	98.8	100.6	100.3	98.4	100.0	100.2	96,9	100.7		
	Phenyl	96.3	99.8	100.0	100.6	100.0	99.2	93.6	99.3		
Other		Metabolites were not measured.									
Residual	Triazolopyrimidine	1.2	0.0	0.0	2.2	0.0	0.0	0.0	0.0		
Radioactivity ²	Phenyl	3.7	0.0	0.0	0.0	0.9	0.0	1.8			
Volatiles		Volatiles were not measured.									
Total %	Triazolopyrimidine	100.0	100.6	100.3	100.6	100.0	100,2	96.9	100.7		
recovery	Phenyl	100.0	99.8	100.0	100.6	100.0	99.2	95.4	100.7 100.2		

Data obtained from Table 8, p.31 of the study report.

¹ The percent of applied radioactivity for the parent was calculated based on the % of parent in the chromatogram and the total % recovery.

² The residual radioactivity was calculated as the difference between the total % recovery and the parent.

¹ The percent of applied radioactivity for the parent was calculated based on the % of parent in the chromatogram and

² The residual radioactivity was calculated as the difference between the total % recovery and the parent.

PMRA Submission Number {.....}

EPA MRID Number 45830721

C. TRANSFORMATION OF PARENT COMPOUND: [Triazolopyrimidine-3- \(^{14}C\)]- and [phenyl-U- \(^{14}C\)]-labeled penoxsulam were stable at 25°C in pH 5, pH 7 and pH 9 buffer solutions (Table 8, pp.30-31). Penoxsulam concentrations were slightly, however there was no indication of a pattern of decline at any pH level for either label. At pH 5 (both labels), penoxsulam ranged from 97.0-104.0% of the applied. At pH 7 (both labels), penoxsulam ranged from 95.5-104.8%. At pH 9 (both labels), penoxsulam ranged from 92.5-102.1%. In natural water (both labels), penoxsulam ranged from 93.6-100.7% of the applied.

HALF-LIVES/DT50: [14C]Penoxsulam was stable at 25°C at pH 5, pH 7, pH 9, and natural water, therefore half-lives were not calculated.

Half-lives/DT50s/DT90s

Temperature	<u>-</u>	First order linear			
remperature	Half-life	Regression equation	DT50	DT90	
25°C, [Triazolor	yrimidine-3- 14C]- and [phenyl-U- 14C]-labeled	l penoxsulam	<u></u>	
pH 5		Stabl e		NA	NA
pH 7		Stable		NA	NA NA
pH 9		Stable		NA	NA NA
natural water		Stable		NA	NA NA

^{*} Data obtained from Table 8, pp.30-31.

NA = Not applicable.

TRANSFORMATION PRODUCTS: No transformation products were reported. The study authors only provided data for the total recovery and parent (Table 8, pp.30-31). The reviewer calculated the residual radioactive fraction from the difference between the total recovery and the parent as percent of the applied. The residual radioactivity (both labels) was $\leq 3.7\%$ of the applied for all buffer solutions and the natural water.

VOLATILIZATION: Volatiles were not collected.

TRANSFORMATION PATHWAY: No transformation pathway was reported, however penoxsularn was stable in all experimental aqueous solutions at 25°C (p.17).

Table 5: Chemical name and CAS number for the transformation products of penoxsulam.

Applicant's Code Name	CAS Number	Chemical Name		emical mula	Molecular weight (g/mol)	SMILES string
<u></u>		N	one.			

PMRA Submission Number {.....}

EPA MRID Number 45830721

D. SUPPLEMENTARY EXPERIMENT-RESULTS: No supplementary experiments were reported.

III. STUDY DEFICIENCIES: No major study deficiencies were noted.

IV. REVIEWER'S COMMENTS:

- 1. No justification for the nominal application rate of the test material was reported. The nominal application rate was 1 mg/L in the definitive study, 1 mg/L (pH 4 and pH 9) and 10 mg/L (pH 7 and natural water) in the preliminary study (p.14). Clarification is needed.
- 2. The Limits of Detection and Limits of Quanitification for LSC and HPLC were not reported.
- 3. Only single samples of each radiolabel were collected and reported (Table 8, pp.30-31). Duplicate samples collected at each sampling interval for each label would be preferable.
- 4. The volume and concentration of test material applied to each treatment of buffer solution or natural water, and the amount of co-solvent (acetonitrile) in the stock and/or test solutions was not reported. More details involving the preparation of the test medium should have been included.
- 5. The material balance was reported as percent applied. However, the percent radioactivity of the parent is presented as the "% Parent in Chromatogram". The reviewer assumed this corresponded to the percent recovery of the parent and calculated the percent applied based on the total radioactivity (Table 8, pp.30-31). The residual radioactivity was calculated as the difference between the material balance and parent as percent of applied.
- 6. Based on statistical analysis (t-test performed using Microsoft Excel spreadsheet, v. 7.0), the study author concluded that degradation did not occur in any buffer solutions or natural water at the 99% confidence limit (pp.16-17; Table 9, p.32).
- 7. It was not clear if TLC analysis was used to confirm the identity of the parent in the preliminary and definitive studies. The TLC analysis was not reported in the materials and methods of the study and no data or example chromatographs are reported. However, a TLC method was reported as part of the study's "Analytical Methods and Calculations" section (pp.14, 15; Appendix A, pp.43-45). The method reported involved using TLC with silica gel, phosphorescent plates (20 cm x 20 cm; Whatman LK6F) which were developed using a toluene:ethyl acetate:acetic acid mobile phase (45:55:1). Identification was by comparison of R_f values with non-radiolabeled reference standard.
- The method of pH measurement (definitive study) and the aliquot size for HPLC measurements (preliminary and definitive studies) were not reported by the study authors (pp.14, 15).

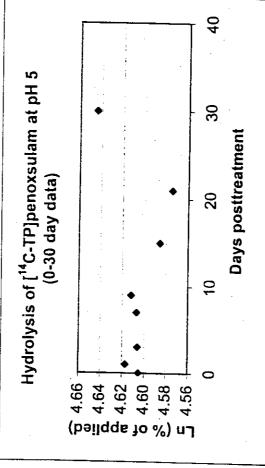
PMRA Submission Number {.....}

EPA MRID Number 45830721

V. REFERENCES:

- 1. U.S. Environmental Protection Agency. 1982. Pesticide Assessment Guidelines, Subdivision N, Chemistry: Environmental Fate, Section 161-1. Hydrolysis studies. Office of Pesticide and Toxic Substances, Washington, DC. EPA 540/9-82-021.
- 2. U.S. Environmental Protection Agency. 1989. FIFRA Accelerated Reregistration, Phase 3 Technical Guidance. Office of the Prevention, Pesticides, and Toxic Substances, Washington, DC. EPA 540/09-90-078.
- 3. U.S. Environmental Protection Agency. 1993. Pesticide Registration Rejection Rate Analysis Environmental Fate. Office of the Prevention, Pesticides, and Toxic Substances, Washington, DC. EPA 738-R-93-010.

Attachment 1


Excel Spreadsheets

PC Code: 119031 MRID: 45830721 Guideline No.: 161-1

['4C-TP]XDE-638 Experiment

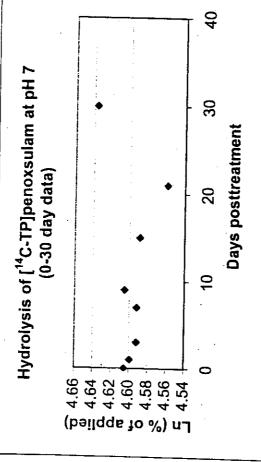
	(% applied) In (% applied XDE-638)	4.6052	4.6171	4.6062	4.6072	4.6121	4.5860	4.5747	4.6444
XDE-638	(% applied)	100.0	101.2	100.1	100.2	100.7	98.1	0.76	104.0
	Days	0	_	ო	_	6	15	21	30

In (% applied	4.60	4 6201
XDE-638 (% applied)	100.0	101.5
Days	0	_
		2

	(% applied) In (% applied XDE-638)	4.6052	4.6201	4.6121	4.6112	4.5941	4.5870	4.5757	4.6367
XDE-638	(% applied)	100.0	101.5	100.7	100.6	98.9	98.2	97.1	103.2
	Days	0	_	ო	7	ග	15	7	30

		40
lam at pH 5	•	30 ient
Hydrolysis of [¹⁴C-PH]penoxsulam at pH 5 (0-30 day data)	•	20 Days posttreatment
sis of [¹4C-F (0-30 o	•	10 Days
Hydroly	(% of applied) n. 4.58	0 } 1

Chemical Name: Penoxsulam PC Code: 119031 MRID: 45830721 Guideline No.: 161-1 pH 5 Combined labels


	XDE-638	
Days	(% applied)	In (% applied XDE-638)
0	100.0	4.6052
0	100.0	4.6052
-	101.2	4.6171
₹	101.5	4.6201
က	100.1	4.6062
က	100.7	4.6121
7	100.2	4.6072
7	100.6	4.6112
O	100.7	4.6121
o.	98.9	4.5941
15	98.1	4.5860
15	98.2	4.5870
21	0.76	4.5747
21	97.1	4.5757
30	104.0	4.6444
30	103.2	4.6367

:	1 04	
**	30	ent
•	20	Days posttreatment
• •	10	Day
4.66 4.64 4.62 4.60 4.58	4.30	
	4.66 4.62 • • • • • • • • • • • • • • • • • • •	20 30

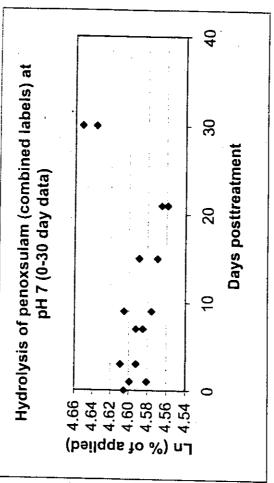
PC Code: 119031 MRID: 45830721 Guideline No.: 161-1

pH 7 [¹⁴C-TP]XDE-638 Experiment

	 -	_							
	(% applied) In (% applied XDE-638)	4.6052	4.5992	4.5921	4.5921	4.6052	4.5890	4.5591	4.6367
XDE-638	(% applied)	100.0	99.4	2'86	98.7	100.0	98.4	95.5	103.2
	Days	0	-	ဗ	7	ග	15	21	30

en
Ë
Expe
œ
ဆို
9
Î
ပ်
=

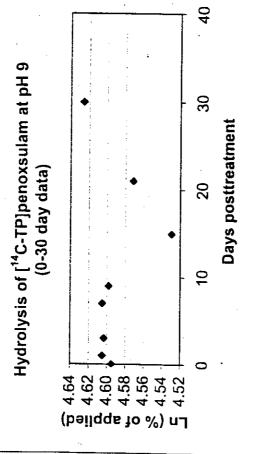
	In (% applied XDE-638)	4.6052	4.5809	4.6092	4.5850	4.5757	4.5695	4.5654	4.6521
XDE-638	(pa	100.0	9.76	100.4	0.86	97.1	96.5	96.1	104.8
	Days	0	-	ო	۲.	б 	15	21	30

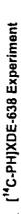

•		. 04	
lam at pH 7	•	30	ent
Hydrolysis of [¹⁴ C-PH]penoxsulam at pH 7 (0-30 day data)	•	50	Days posttreatment
sis of [¹ ⁴ C-F (0-30		10	Days
Hydroly	Ln (% of applied) 4.66 4.62 4.58 4.53	0	

PC Code: 119031 MRID: 45830721 Guideline No.: 161-1 pH 7

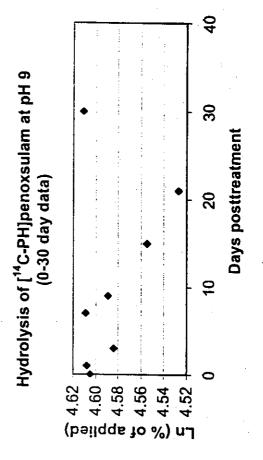
Combined labels

_		_															
	In (% applied XDE-638)	4.6052	4.6052	4.5992	4.5809	4.5921	4.6092	4.5921	4.5850	4.6052	4.5757	4.5890	4.5695	4.5591	4.5654	4.6367	4.6521
XDE-638	(% applied)	100.0	100.0	99.4	97.6	98.7	100.4	98.7	98.0	100.0	97.1	98.4	96.5	95.5	96.1	103.2	104.8
	Days	0	0	-	-	ო	က	7	7	G:	O	15	15	71	21	30	30


PC Code: 119031 MRID: 45830721

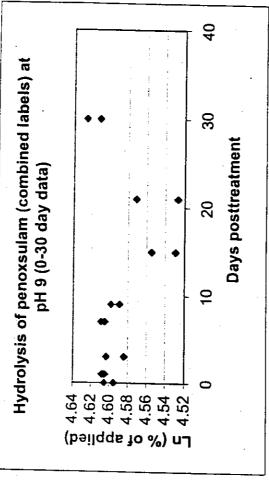

Guideline No.: 161-1

pH 9


[14C-TP]XDE-638 Experiment

	XDE-638	
Days	(% applied)	(% applied) In (% applied XDE-638)
0	99.0	4.5951
-	100.0	4.6052
က	8'66	4.6032
7	100.0	4.6052
6	99.3	4.5981
15	92.7	4.5294
21	96.7	4.5716
30	, 102.1	4.6260

*	(% applied) In (% applied XDE-638)	4.6052	4.6082	4.5839	4.6092	4.5890	4.5549	4.5272	4.6112
XDE-638	(% applied)	100.0	100.3	97.9	100.4	98.4	95.1	92.5	100.3
	Days	0	-	က	_	G	15	71	30

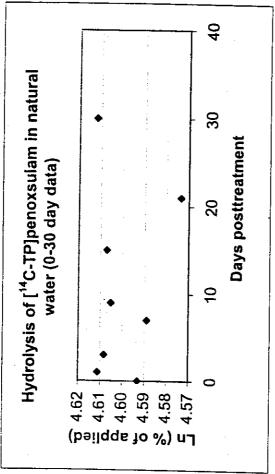


PC Code: 119031 MRID: 45830721

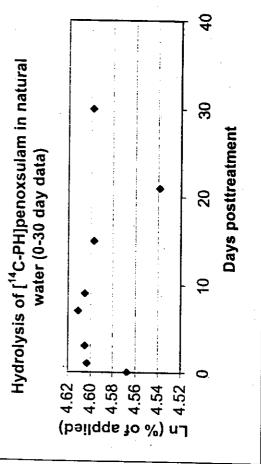
Guideline No.: 161-1 pH 9

w
7
ŏ
G
=
Q
Φ
_
2
Ë
ō
ٽ

	_																
	(% applied) In (% applied XDE-638)	4.5951	4.6052	4.6052	4.6082	4.6032	4.5839	4.6052	4.6092	4.5981	4.5890	4.5294	4.5549	4.5716	4.5272	4.6260	4.6112 🐔
XDE-638	(% applied)	0.66	100.0	100.0	100.3	8.66	67.6	100.0	100.4	99.3	98.4	92.7	95.1	96.7	92.5	102.1	100.6
	Days	0	0	-	-	က	က	7	7	6	o,	15	15	21	21	39	30


PC Code: 119031 MRID: 45830721

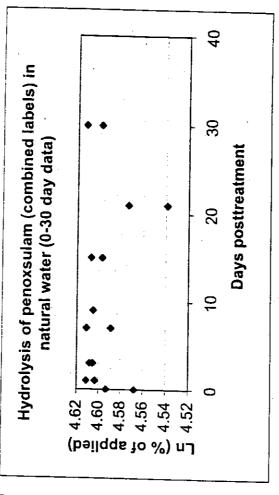
Guideline No.: 161-1


Natural Water

[14C-TP]XDE-638 Experiment

_		_						_	
	(% applied) In (% applied XDE-638)	4.5931	4.6112	4.6082	4.5890	4.6052	4.6072	4.5737	4.6121
XDE-638	(% applied)	98.8	100.6	100.3	98.4	100.0	100.2	6.96	100.7
	Days	0	-	က	7	G	15	21	30

DE-638	% applied) In (% applied XDE-638)	96.3 4.5675	99.8 4.6032	100.0 4.6052	100.6 4.6112	00.0 4.6052	99.2 4.5971	93.6 4.5390	99.3 4.5981
XDE-638	(% applied) In	96.3	8.66	100.0	100.6	100.0	99.2	93.6	99.3
	Days	0	-	က	7	o	15	21	30


Chemical Name: Penoxsulam PC Code: 119031

PC Code: 119031 MRID: 45830721

Guideline No.: 161-1

Natural water Combined labels

	In (% applied XDE-638)	4.5931	4.5675	4.6112	4.6032	4.6082	4.6052	4.5890	4.6112	4.6052	4.6052	4.6072	4.5971	4.5737	4.5390	4.6121	4.5981 🕯
XDE-638	(% applied)	98.8	96.3	100.6	8.66	100.3	100.0	98.4	100.6	100.0	100.0	100.2	. 99.2	96.9	93.6	100.7	99.3
	Days	0	0	-	-	რ	က	7	7	6	O	15	15	21	21	30	30

PC Code: 119031 MRID: 45830721 Guideline No.: 161-1

[¹⁴C-TP]XDE-638 Experiment

pH 5

Days	Total (% applied)	% Total	XDE-638 (% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
. 0	100.0	1	100.0	100.0	0.0
-1	101.2	1.012	100.0	101.2	0.0
3	101.2	1.012	98. 9	100.1	1.1
7	100.2	1.002	100.0	100.2	0.0
9	100.7	1.007	100.0	100.7	0.0
15	98.1	0.981	100.0	98.1	0.0
21	97.0	0.97	100.0	97.0	0.0
30	104.0	1.04	100.0	104.0	0.0
Mean	100.3				<u> </u>

[¹⁴C-PH]XDE-638 Experiment

pH 5

_	Total		XDE-638	XDE-638	Radioactive Fraction
Days	(% applied)	% Total	_ (% recovered)	(% applied)	(% applied)
0	100.0	1	100.0	100.0	0.0
1'	101.5	1.015	100.0	101.5	0.0
. 3	100.7	1.007	100.0	100.7	0.0
7	100.6	1.006	100.0	100.6	0.0
9	100.2	1.002	98.7	98.9	1.3
15	98.2	0.982	100.0	98.2	0.0
21	97.1	0.971	100.0	97.1	0.0
30	103.2	1.032	100.0	103.2	0.0
Mean	100.2				0.0

Mean 100.2 SD 1.9

Overall 100.2 St. Dev. 1.9

Data obtained from Table 8, p. 30 of the study report.

(24)

PC Code: 119031 MRID: 45830721 Guideline No.: 161-1

[14C-TP]XDE-638 Experiment

pH 7

Total (% applied)	% Total	XDE-638 (% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
100.0	1	100.0	100.0	0.0
100.3	. 1.003	99.1	99.4	0.9
100.1	1.001	98.6		1.4
98.7	0.987	100.0		0.0
100.0	1	100.0		0.0
98.4	0.984	100.0		0.0
95.5	0.955			0.0
103.2	1.032	100.0		0.0
	(% applied) 100.0 100.3 100.1 98.7 100.0 98.4 95.5	(% applied) % Total 100.0 1 100.3 1.003 100.1 1.001 98.7 0.987 100.0 1 98.4 0.984 95.5 0.955	(% applied) % Total (% recovered) 100.0 1 100.0 100.3 1.003 99.1 100.1 1.001 98.6 98.7 0.987 100.0 100.0 1 100.0 98.4 0.984 100.0 95.5 0.955 100.0	(% applied) % Total (% recovered) (% applied) 100.0 1 100.0 100.0 100.3 1.003 99.1 99.4 100.1 1.001 98.6 98.7 98.7 0.987 100.0 98.7 100.0 1 100.0 100.0 98.4 0.984 100.0 98.4 95.5 0.955 100.0 95.5

Mean 99.5 SD 2

[¹⁴C-PH]XDE-638 Experiment

pH 7

Days	Total (% applied)	% Total	XDE-638 (% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
0 -	100.0	1	100.0	100.0	0.0
1	100.4	1.004	97.2	97.6	2.8
3	100.4	1.004	100.0	100.4	0.0
7	99.1	0.991	98.9	98.0	1.1
9	99.6	0.996	97.5	97.1	2.5
. 15	97.5	0.975	99.0	96.5	1.0
21	96.1	0.961	100.0	96.1	
30	104.8	1.048	100.0	104.8	0.0 0.0

Mean: 99.7 SD 2.5

Overall 99.6 St. Dev. \$ 2.3

Data obtained from Table 8, p. 30 of the study report.

PC Code: 119031 MRID: 45830721 Guideline No.: 161-1

[¹⁴C-TP]XDE-638 Experiment

pH 9

Day s _	Total (% applied)	% Total	XDE-638 (% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
0	100.0	1	99.0	99.0	1.0
1	100.0	1	100.0	100.0	0.0
3	99.8	0.998	100.0	99.8	0.0
7	100.0	1	100.0	100.0	0.0
9	99.3	0.993	100.0	99.3	0.0
15	94.7	0.947	97.9	92.7	2.0
21	96.7	0.967	100.0	96.7	
30	102.1	1.021	100.0	102.1	0.0 0.0

[14C-PH]XDE-638 Experiment

pH9

Total (% applied)	% Total	XDE-638 (% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
100.0	1	100.0		0.0
100.3	1.003	100.0		0.0
99.0	0.99	98.9		
100.4	1.004			1.1
99.3	0.993			0.0
95.1				0.9
				0.0
102.2				3.1 1.6
	(% applied) 100.0 100.3 99.0 100.4 99.3 95.1 95.6	(% applied) % Total 100.0 1 100.3 1.003 99.0 0.99 100.4 1.004 99.3 0.993 95.1 0.951 95.6 0.956	(% applied) % Total (% recovered) 100.0 1 100.0 100.3 1.003 100.0 99.0 0.99 98.9 100.4 1.004 100.0 99.3 0.993 99.1 95.1 0.951 100.0 95.6 0.956 96.8	(% applied) % Total (% recovered) (% applied) 100.0 1 100.0 100.0 100.3 1.003 100.0 100.3 99.0 0.99 98.9 97.9 100.4 1.004 100.0 100.4 99.3 0.993 99.1 98.4 95.1 0.951 100.0 95.1 95.6 0.956 96.8 92.5

Mean 99.0 SD 2.4

Overall 99.0 St Dev: 2.3

Data obtained from Table 8, p. 31 of the study report.

PC Code: 119031 MRID: 45830721 Guideline No.: 161-1

[¹⁴C-TP]XDE-638 Experiment

Natural Water

Days	Total (% applied)	% Total	XDE-638 (% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
- 0	100.0	1	98.8	98.8	1.2
1	100.6	1.006	100.0	100.6	0.0
3	100.3	1.003	100.0	100.3	0.0
7	100.6	1.006	97.8	98.4	2.2
9	100.0	1	100.0	100.0	0.0
15	100.2	1.002	100.0	100.2	0.0
21	9 6.9	0.969	100.0	96.9	0.0
30	100.7	1.007	100.0	100.7	0.0
/lean ⅓	4.6 99. 9				0.0

[¹⁴C-PH]XDE-638 Experiment

Natural Water

(% applied)	% Total	(% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
100.0	1	96.3		3.7
99.8	0.998	100.0		0.0
100.0	1	100.0	–	0.0
100.6	1.006	100.0	-	0.0
100.0	1			0.0
99.2	0.992			
95.4	0.954			0.0
100.2	1.002			1.8 0.9
	99.8 100.0 100.6 100.0 99.2 95.4	99.8 0.998 100.0 1 100.6 1.006 100.0 1 99.2 0.992 95.4 0.954 100.2 1.002	99.8 0.998 100.0 100.0 1 100.0 100.6 1.006 100.0 100.0 1 100.0 99.2 0.992 100.0 95.4 0.954 98.1 100.2 1.002 99.1	99.8 0.998 100.0 99.8 100.0 1 100.0 100.0 100.6 1.006 100.0 100.6 100.0 1 100.0 100.0 99.2 0.992 100.0 99.2 95.4 0.954 98.1 93.6 100.2 1.002 99.1 99.3

Mean: 99.4 SD: 1.7

Overall 99.7 St. Dev. 1.4

Data obtained from Table 8, p. 31 of the study report.

PC Code: 119031 MRID: 45830721 Guideline No.: 161-1

Preliminary Study at 50°C

Hours	Total (% applied)	% Total	XDE-638 (% recovered)	pH 4 XDE-638 (% applied)	Radioactive Fraction (% applied)
0	100.0	1	100.0	100.0	0.0
2	90.8	0.908	98.6	89.5	1.3
4	94.2	0.942	98.8	93.1	
24	89.9	0.899	100.0	89.9	1.1
120	90.7	0.907	100.0	90.7	0.0 0.0

PH]XDE-638 Experiment					
Hours	Total (% applied)	% Total	XDE-638 (% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
0	100.0	1	100.0	100.0	0.0
2	98.9	0.989	100.0	98.9	0.0
4	108.5	1.085	100.0	108.5	0.0
24	113.5	1.135	100.0	113.5	0.0
120	105.0	1.05	100.0	105.0	0.0

The same of the sa	CONTRACTOR AND DESCRIPTION OF	*		
Ouccoll	Nad	The Viette Viete	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Uverall	Market Land		.99.22	27
The state of the state of the state of	Va	37 14 300	Septimental Control	14.50
St. Dov	27.5		0.0	The same of the same of
COLL DEV.		15 28 58 58 F	* O.U.>	Con the
AND DESCRIPTION OF THE PARTY OF	444.7	G. Martin Co.	110	(Fibers) France or

Data obtained from Table 7, p. 28 of the study report.

PC Code: 119031 MRID: 45830721 Guideline No.: 161-1

Preliminary Study at 50°C

C-TP]XDE-638 Experiment			V25		
Uaa	Total	o. -	XDE-638	XDE-638	Radioactive Fraction
Hours	(% applied)	% Total	(% recovered)	(% applied)	(% applied)
0	100.0	1	100.0	100.0	0.0
2	103.0	1.03	98.9	101.9	1.1
4	101.2	1.012	100.0	101.2	0.0
24	106.3	1.063	100.0	106.3	0.0
120	90.4	0.904	100.0	90.4	0.0

	638 Experiment		pH 7				
11-	Total		XDE-638	XDE-638	Radioactive Fraction		
Hours	(% applied)	<u>%</u> Total	(% recovered)	(% applied)	(% applied)		
0	100.0	1	100,0	100.0	0.0		
2	104.4	1.044	100.0	104.4	0.0		
4,	103.4	1.034	100.0	103.4	0.0		
24	103.6	1.036	100.0	103.6	0.0		
120	93.3	0.933	98.5	91.9	1.4		

•	
Overall'	100.68
CK Day	En
JI. Dev.	J.U. 3.

Data obtained from Table 7, p. 28 of the study report.

PC Code: 119031 MRID: 45830721 Guideline No.: 161-1

Preliminary Study at 50°C

	Total		XDE-638 (% recovered)	pH 9 XDE-638	Radioactive Fraction (% applied)
Hours	(% applied)	% Total		(% applied)	
0	100.0	1	100.0	100.0	0.0
2	102.8	1.028	100,0	102.8	0.0
4	108.3	1.083	100.0		0.0
24	106.7	1.067		108.3	0.0
120			100.0	106.7	0.0
120	108.5 105.3	1.085	98. 9	107.3	1.2

PH]XDE-638 Experiment Total					
Hours	(% applied)	% Total	XDE-638 (% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
0	100.0	1	100.0	100.0	0.0
2	101.2	1.012	100.0	101.2	0.0
4	108.0	1.08	100.0	108.0	0.0
24	107.3	1.073	100.0	107.3	0.0
120	108.6	1.086	100.0	108.6	0.0

Data obtained from Table 7, p. 29 of the study report.

PC Code: 119031 MRID: 45830721 Guideline No.: 161-1

Preliminary Study at 50°C

[1ªC-TP]XDE-638 Experiment			Natural Water		
Hours	Total (% applied)	% Total	XDE-638 (% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
0 .	100.0	1	98.8	98.8	12
2	102.4	1.024	100.0	102.4	0.0
4	92.6	0.926	100.0	92.6	0.0
24	91.6	0.916	100.0	91.6	0.0
120	93.0	0.93	98.6	91.7	1.3

C-PH]XDE-638 Experiment					
Hours	Total (% applied)	% Total	XDE-638 (% recovered)	XDE-638 (% applied)	Radioactive Fraction (% applied)
0 .	100.0	1	99.0	99.0	1.0
2	100.1	1.001	100.0	100.1	0.0
4	98. 6	0.986	100.0	98.6	0.0
24	99.5	0.995	100.0	99.5	0.0
120	96.5	0.965	100.0	96.5	0.0

The second second	- wind Stringer Director	Marie Committee of the	***************************************
Overall	77.73		4
"Principle to the board of the control of the contr	- de -	L'airbia	300 E 3 E
CI Daniel	Walter .	2.4	
OK DEV	200	772 S	A

Data obtained from Table 7, p. 29 of the study report.

Attachment 2

Structures of Parent and Transformation Products

Penoxsulam

IUPAC name:

3-(2,2-Difluoroethoxy)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)- α , α , α -trifluorotoluene-2-sulfonamide

CAS name:

2-(2,2-Difluoroethoxy)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-

2-yl)-6-(trifluoromethyl)benzenesulfonamide

CAS No:

219714-96-2

Unlabeled

[Phenyl-U-14C] label

[Triazolopyrimidine-2-14C] label

* Position of the radiolabel.

5-OH-XDE-638

IUPAC name:

6-(2,2-Difluoroethoxy)-N-(5,6-dihydro-8-methoxy-5-oxo-s-triazolo[1,5-

c]pyrimidin-2-yl)- α,α,α -trifluoro-o-toluenesulfonamide

CAS name:

2-(2,2-Difluoroethoxy)-N-(5,6-dihydro-8-methoxy-5-

oxo[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-6-

(trifluoromethyl)benzenesulfonamide

CAS No:

ÑΑ

Unlabeled

[Triazolopyrimidine-2-14C] label

* Position of the radiolabel.

BSTCA

IUPAC name: $3-[6-(2,2-Difluoroethoxy)-\alpha,\alpha,\alpha-(trifluoro-o-toluenesulfonamido]-s-$

triazole-5-carboxylic acid

CAS name: 3-[[[2-(2,2-Difluoroethoxy)-6-(trifluoromethyl)phenyl]-sulfonyl]amino]-

1H-1,2,4-triazole-5-carboxylic acid

CAS No: NA

Unlabeled

[Triazolopyrimidine-2-14C] label

* Position of the radiolabel.

BST

IUPAC name:

6-(2,2-Difluoroethoxy)- α , α , α -trifluoro-N-s-triazol-3-yl-o-

toluenesulfonamide

CAS name:

2-(2,2-Difluoroethoxy)-N-1H-1,2,4-triazole-3-yl-6-(trifluoromethyl)benzenesulfonamide

CAS No:

NA

Unlabeled

[Triazolopyrimidine-2-14C] label

BSTCA-methyl

IUPAC name:

Methyl 3-[6-(2,2-difluoroethoxy)- α , α , α -trifluoro-o-toluenesulfonamido]-s-

triazole-5-carboxylate

CAS name:

Methyl 3-[[[2-(2,2-difluoroethoxy)-6-

(trifluoromethyl)phenyl]sulfonyl]amino]-1H-1,2,4-triazole-5-carboxylate

CAS No:

NA

BSA

IUPAC name:

CAS name: CAS No:

6-(2,2-Difluoroethoxy)- α , α , α -trifluoro-o-toluenesulfonic acid 2-(2,2-Difluoroethoxy)-6-(trifluoromethyl)benzenesulfonic acid

5,8-diOH

IUPAC name:

NA

CAS name:

2-(2,2-Difluoroethoxy)-6-trifluoromethyl-N-(5,8-dihydroxy-[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide

CAS No:

TPSA

IUPAC name:

NA

CAS name:

5,8-Dimethoxy[1,2,4]triazolo-[1,5-c]pyrimidin-2-yl-sulfamic acid

CAS No:

2-Amino TP

IUPAC name: CAS name:

2-Amino-5,8-dimethoxy-s-triazolo[1,5-<u>c</u>]pyrimidine 5,8-Dimethoxy[1,2,4]triazolo[1,5-<u>c</u>]pyrimidin-2-amine

CAS No:

NA

5-OH, 2-Amino TP

IUPAC name:

NA

CAS name:

8-Methoxy[1,2,4]triazolo-[1,5-c]pyrimidin-5-ol-2-amine

CAS No:

2-Amino TCA

IUPAC name:

NA

CAS name:

2-Amino-1,3,4-triazole-5-carboxylic acid

CAS No:

NA

2-Amino-1,3,4-triazole

IUPAC name:

NA

CAS name:

2-Amino-1,3,4-triazole

CAS No:

Sulfonamide

IUPAC name:

2-(2,2-Difluoroethoxy)-6-(trifluoromethyl)-benzenesulfonamide

CAS name:

2-(2,2-Difluoroethoxy)-6-(trifluoromethyl)-benzenesulfonamide

CAS No:

NA

Sulfonylformamidine

IUPAC name:

2-(2,2-Difluoroethoxy)-N-[(E)iminomethyl-6-

(trifluoromethyl)benzenesulfonamide

CAS name:

2-(2,2-Difluoroethoxy)-N-(iminomethyl-6-(trifluoromethyl)-

benzenesulfonamide

CAS No:

