Text Searchable File

Data Evaluation Report on the Reproductive Effects of JAU 6476 Technical (Prothioconazole) on Avian Species Anas platyrhynchos

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Data Requirement:

PMRA DATA CODE

9.6.3.2

EPA DP Barcode **OECD Data Point** D303488 IIA 8.1.4

EPA MRID

46246044

EPA Guideline

§71-4b

Test material:

JAU 6476 Technical

Purity: 98.7 and 96.1%

Common name:

Prothioconazole

Chemical:

IUPAC name: 2-[2-(1-Chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]-1,2-dihydro-

3H-1,2,4-triazole-3-thione

CAS name: 2-[2-(1-Chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]-1,2-dihydro-

3H-1,2,4-triazole-3-thione CAS No.: 178928-70-6 Synonyms: JAU6476

Primary Reviewer: Christie E. Padova

Signature:

Staff Scientist, Dynamac Corporation

Date: 9/14/04

OC Reviewer: Teri S. Myers Staff Scientist, Dynamac Corporation Signature: Date: 9/17/04

Primary Reviewer: Kevin Costello, Geologist

Date:

OPP/EFED/ERB - III

Secondary Reviewer(s): Christopher, J. Salice OPP/EFED/ERB - IV

Date: 7/27/2005

7-27-08

Secondary Reviewer:

HC/PMRA/EAD

Date: 10/14/2005

Reference/Submission No.: 2004-0843

Company Code: BCZ Active Code: PRB

Use Site Category: 7, 13, 14 EPA PC Code: 113961

Date Evaluation Completed:

CITATION: Frieling, W.J.A.M. 2000. Reproduction Study in Mallard Duck with JAU 6476 (By Dietary Admixture). Unpublished study performed by NOTOX B.V., DD's-Hertogenbosch, The Netherlands. Laboratory Project No. 259919. Study sponsored by Bayer AG, Leverkusen, Germany. Study initiated September September 23, 1999 and completed November 7, 2000.

EXECUTIVE SUMMARY:

The one-generation reproductive toxicity of JAU 6476 Technical (prothioconazole) to groups (16 pens/treatment level) of 1 male and 1 female of 7-month old Mallard duck was assessed over approximately 21 weeks. JAU 6476 Technical was administered to the birds in the diet at mean-measured concentrations of <LOD (negative control), 248, 698, and 1978 ppm a.i. diet. Nominal concentrations were 0, 245, 700, and 2000 ppm diet.

There were no significant treatment-related effects on any adult parameter. In addition, no treatment-related effects were observed on egg production or quality, fertility, early embryonic development, hatching success, or clinical effects or body weights of chicks during the 14-day observation period.

Study author reported results indicated that late embryo survival (after 21 days) was affected by treatment at the 2000 ppm level, based on a statistically-significant reduction in the percentage of post 21-day embryonic deaths of fertile eggs (28.9 versus 20.9% for the control group). Chick survival was also affected at the 2000 ppm level, based on a statistically-significant reduction in the percentage of 14-day old survivors of normal hatchlings (87.4 versus 92.9% for the control group). However, re-analysis of the data indicate that these results may be inaccurate since they were based on parametric analyses without meeting the necessary assumptions. Reviewer calculated statistics indicate no significant effects of JAU 6476 on hatchling survival at any treatment level.

This study is scientifically sound, fulfills guideline requirements for the reproductive toxicity of JAU 6476 Technical (prothioconazole) to Mallard duck (§71-4b), and is classified as ACCEPTABLE.

Results Synopsis

Test Organism Size/Age: Approximately 7 months old at test initiation (834-1301 g)

NOEC: 1978 ppm a.i. LOEC: > 1978 ppm a.i. Endpoint(s) Affected: None.

I. MATERIALS AND METHODS

GUIDELINE FOLLOWED:

The study protocol was based on procedures outlined in the OECD Guidelines for Testing of Chemicals, No. 206 (1984); the U.S. EPA CFR 40, Part 797.2130 (1991); the U.S. EPA FIFRA Pesticides Assessment Guidelines, §71-4 (1982); the U.S. EPA FIFRA Accelerated Re-registration Phase 3 Techn. Guidance, §71-4 (1989); and the U.S. EPA OPPTS, Series 850.2300 (draft, 1996). Deviations from §71-4b are:

- 1. The homogeneity of the test substance in powdered feed was only assessed in the definitive study at the 2000 ppm treatment level. Although homogeneity assessments were conducted in preliminary experiments, the analyses were performed on pelleted feed, which was ultimately not used in the definitive study.
- 2. Adult Mallard were maintained at 12-25°C, whereas guidance recommends maintaining the birds at a relatively constant temperature of approximately 21°C.
- 3. Egg storage temperature ranged from 13.7 to 15.0°C, which is slightly lower than the recommended

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

temperature of 16°C.

- 4. The temperature of the hatching chamber ranged from 36.5 to 37.0°C, which is slightly lower than the recommended 39°C.
- 5. The analytical LOD and/or LOQ were not reported.
- 6. The day the chicks were removed from the hatcher and counted was not clearly specified
- 7. It was not specified how long the opened eggshells (used for thickness measurements) were dried.
- 8. The number of eggs laid/hen/day was not assessed.

These deviations did not affect the scientific validity or acceptability of the study.

COMPLIANCE: Signed and dated GLP, Quality Assurance, and Data Confidentiality

statements were provided. This study was conducted in accordance with

OECD GLP standards.

A. MATERIALS:

1. Test Material JAU 6476 Technical (prothioconazole)

Description: White powder

Lot No./Batch No.: FL 6233/0031 (mixed batch) and NLL 6096-38

Purity: 98.7 and 96.1%, respectively

Stability of Compound

Under Test Conditions: Stability experiments were conducted with powdered feed treated at 245 and

2000 ppm. Results demonstrated that the test substance was stable for up to

36 days under frozen (-20°C) storage conditions (89-102% of initial concentrations), and stable for up to 35 days under frozen (-20°C) storage conditions followed by 1 day under test room conditions (85-96% of initial concentrations). Based on information obtained from this study as well as the concurrently-submitted Bobwhite quail study (MRID 46246042), the

food was replaced daily to ensure stability.

Storage conditions

of test chemical: At room temperature in the dark.

OECD requires water solubility, stability in water and light, pK_{α} , P_{ow} and vapor pressure of the test compound. OECD requirements were not reported.

2. Test organism:

Table 1: Test organism.

Parameter	Details	Remarks Criteria
Species (common and scientific names):	Mallard duck (Anas platyrhynchos L.)	EPA requires: a wild waterfowl species, preferably the mallard, Anas platyrhynchos, or an upland game species, preferably the northern bobwhite, Colinus virginianus.
Age at Study Initiation:	Approximately 7 months old	EPA requires: birds should be approaching their first breeding season.
Body Weight: (mean and range)	Males: Overall range (n=64) 834-1301 g Females: Overall range (n=64)	Individual body weights were recorded at Weeks 1, 3, 5, 7, 9, 11, and 22 (test termination). EPA requires that body weights
	863-1150 g	should be recorded at test initiation and at biweekly intervals up to week eight or up to the onset of egg laying and at termination.
Source:	Mr. J. Coles, The County Game Farms, Ashford, England	Birds were phenotypically indistinguishable from wild birds.
		EPA requires that all birds should be from the same source.

B. STUDY DESIGN:

1. Experimental Conditions

- a. Range-finding Study Preliminary tests were performed to assess the homogeneity, stability, and accuracy of the test material in treated feed prepared at all test levels (p. 19). Results of these analyses are provided in Appendix VII, pp. 169-182.
- b. Definitive Study

Table 2: Experimental Parameters.

Parameter	Details	Remarks
		Criteria
Acclimation period:	5 weeks	
Conditions (same as test or not):	Same as test	
Feeding: Health (any mortality observed):	Ducks were offered a standard commercial quail breeder diet, Altromin, Lage, Germany (Type: 0770), ad libitum. No pre-test mortality was observed.	EPA recommends a 2-3 week health observation period prior to selection of birds for treatment. Birds must be generally healthy without excess mortality. Feeding should be ad libitum, and sickness,
Test duration		injuries or mortality be noted.
pre-laying exposure:	Approximately 10 weeks	
egg-laying exposure:	Approximately 11 weeks	EPA requires
withdrawal period, if used:	None	Pre-laying exposure duration At least 10 weeks prior to the onset of egg-laying. Exposure duration with egg-laying At least 10 weeks. Withdrawal period If reduced reproduction is evident, a withdrawal period of up to 3 weeks should be added to the test phase.
Pen (for parental and offspring) size:	Parents (one pair) were housed	Parental pens contained nest boxes and bathing water.
	in battery breeding cages with 1 m ² of floor space (not further specified). Offspring (in groups of five or six, by set and group) were housed in 50 x 60 x 25 cm brooders.	Pens Adequate room and arranged to prevent cross contamination Materials Nontoxic material and nonbinding material, such as galvanized steel.
construction materials:	Parental and offspring pens were constructed of wire mesh stainless steel.	Number At least 5 replicate pens are required for mallards housed in groups of 7. For other arrangements, at least 12 pens are
number:	16 parental pens (replicates) per treatment level	required, but considerably more may be needed if birds are kept in pairs. Chicks are to be housed according to parental grouping.

Parameter	Details	Remarks
		Criteria
Number of birds per pen (male:female)	2 birds/pen (1 male:1 female)	
		EPA requires one male and I female per pen. For quail, I male and 2 females is acceptable. For ducks, 2 males and 5 females is acceptable.
Number of pens per group/treatment	16 mong	
negative control: solvent control: treated:	16 pens N/A 16 pens/treatment	EPA requires at least 12 pens, but considerably more if birds are kept in pairs. At least 16 is strongly recommended.
Test concentrations (ppm diet) nominal: measured:	0 (negative control), 245, 700, and 2000 ppm <lod (control),="" 248,="" 698,="" and<="" td=""><td>Mean-measured concentrations were determined from powdered treated feed prepared prior to Weeks 1, 10, and 19 and were corrected for corresponding</td></lod>	Mean-measured concentrations were determined from powdered treated feed prepared prior to Weeks 1, 10, and 19 and were corrected for corresponding
	1978 ppm a.i. (reviewer-calculated)	procedural recoveries (p. 19 and Tables 6, 10, and 11 of Appendix VII, pp. 179 and 181).
	·	EPA requires at least two concentrations other than the control are required; three or more are recommended.
Maximum labeled field residue		
anticipated and source of information:	Not specified	EPA requires that the highest test concentrations should show a significant effect or be at or above the actual or expected field residue level. The source [i.e., maximum label rate (in lb ai/A & ppm), label registration no., label date, and site should be cited]
Solvent/vehicle, if used type:	None used	
amount:		EPA requires corn oil or other appropriate vehicle not more than 2% of diet by weight

Parameter	Details	Remarks
		Criteria
Was detailed description and nutrient analysis of the basal diet provided? (Yes/No)	Yes. Certificate of nutrient analysis of three batches of diet were provided; diets contained 22.0-24.9% protein, 6.65-6.90% fat, 4.31-4.60% fiber, and 2.56-2.76% calcium (Appendix IV, pp. 154-156).	Offspring received free access to similar diet, without the addition of test substance. Results of contaminant analysis of the diet (batch no. not reported) are provided on pp. 157-159 of Appendix IV. Based on these results, the diets contained approximately 0.4 ppm lead, 0.12 ppm cadmium, 0.1 ppm arsenic, 0.27 ppm selenium, and 70 ppm fluorine.
		EPA requires a commercial breeder feed (or its equivalent) that is appropriate for the test species.
Preparation of test diet	The appropriate amount of test material was combined with a portion of basal diet (premix), and subsequently mixed with the bulk of the diet (20 kg in total). Because of substantial loss of the test substance after pelleting the diet, powder diet was used.	Due to instability of the test material in treated feed under ambient test-room conditions (established in trials conducted for MRID 46246042), fresh feed was provided on a daily basis. A premixed containing the test
	Storage duration and temperature were not specified. New diets were prepared a few days prior to the start of Weeks 1, 4, 7, 10, 13, 16, and 19.	substance should be mechanically mixed with basal diet. If an evaporative vehicle is used, it must be completely evaporated prior to feeding.
Indicate whether stability and homogeneity of test material in diet determined (Yes/No)	Yes	

Parameter	Details	Remarks
		Criteria
Were concentrations in diet verified by chemical analysis?	Yes	Samples were analyzed from feed prepared prior to Weeks 1, 10, and 19 (Tables 6, 10, and 11 of Appendix VII, pp. 179 and 181).
		It was determined in preliminary experiments that recoveries of pelleted diet ranged from 45-51% of nominal, and that recoveries increased to 100-109% of nominal concentrations when powdered diet was analyzed (p. 25, Tables 2 and 3 of Appendix VII, pp. 176-177)
Did chemical analysis confirm that diet was stable?	Stability experiments were conducted with powdered feed treated at 245 and 2000 ppm. Results demonstrated that the test substance was stable for up to 36 days under frozen (-20°C) storage conditions (89-102% of initial concentrations), and stable for up to 35 days under frozen (-20°C) storage conditions followed by 1 day under test room conditions (84-96% of initial concentrations).	Three stability experiments were performed during the definitive study. Results are provided Tables 8, 9, and 12 of Appendix VII (pp. 169-182). Based on information obtained from this study as well as the concurrently-submitted Bobwhite quail study (MRID 46246042), the food was replaced daily to ensure stability.
and homogeneous?	Yes. Homogeneity was assessed in the first batch of powdered feed prepared at 2000 ppm by collecting samples from the 10, 50, and 90% depths (p. 19). The reviewer-calculated coefficient of variation was 1.4% (Table 7 of Appendix VII, p. 179).	
Feeding and husbandry	Feeding and husbandry conditions appeared to be adequate, given guideline recommendations.	

Parameter	Details	Remarks
		Criteria
Test conditions (pre-laying) temperature:	12-25°C	Light intensity during the study ranged from 50-180 lux (p. 18).
relative humidity:	30-97%	
photo-period:	7 hr light/day up through Week 8; 17 hr light/day thereafter.	EPA Requires Temperature: About 21°C (70°F) Relative humidity: About 55% Lighting First 8 weeks: 7 h per day. Thereafter: 16-17 h per day. At least 6 foot candles at bird level.
Egg Collection and Incubation		
Egg collection and storage collection interval:	Daily	
storage temperature:	13.7-15.0°C	
storage humidity:	57-82%	EPA requires eggs to be collected daily; egg storage temperature approximately 16°C (61°F); humidity approximately 65%.
Were eggs candled for cracks prior to		
setting for incubation?	Yes	EPA requires eggs to be candled on day 0
Were eggs set weekly?	Yes	
Incubation conditions temperature:	36.9-37.9°C	
humidity:	55-70%	
When candling was done for fertility?	Day 14 for fertility and Day 21 for viability.	EPA requires: Quail: approx. day 11 Ducks: approx. day 14

PMRA Submission Number 2004-0843

Parameter	Details	Remarks
		Criteria
When the eggs were transferred to the hatcher?	Day 25	EPA requires: Bobwhite: day 21 Mallard: day 23
Hatching conditions temperature:	36.5-37.0°C	
humidity: photoperiod:	58-80% 14 hours light/day (chicks)	EPA requires: temperature of 39°C (102°F) humidity of 70%
Day the hatched eggs were removed and counted	Not clearly specified. Chicks hatched on Days 27-28, and were not taken out of the incubator until completely dry.	EPA requires Bobwhite: day 24 Mallard: day 27
Were egg shells washed and dried for at least 48 hrs before measuring?	Opened egg shells were washed and dried for an unspecified period of time.	
Egg shell thickness no. of eggs used: intervals:	All eggs laid on a single day. Once weekly beginning in Week	
mode of measurement:	Four points around the equatorial circumference were measured to the nearest 0.01 mm.	EPA requires newly hatched eggs be collected at least once every two weeks. Thickness of the shell plus membrane should be measured to the nearest 0.01 mm; 3 - 4 measurements per shell.
Reference chemical, if used	None used	

EPA MRID Number 46246044

2. Observations:

Table 3: Observations.

Parameter	Details	Remarks/Criteria
Parameters measured		
Parental: (mortality, body weight, mean feed consumption)	- mortality - body weight - food consumption - signs of toxicity - necropsy	
Egg collection and subsequent development: (no. of eggs laid, no. of eggs cracked, shell thickness, no. of eggs set, no. of viable embryos, no. of live 3 week embryos, no. hatched, no. of 14-day survivors, average weight of 14-day-old survivors, mortality, gross pathology, others)	- eggs laid - eggs cracked/broken - eggshell thickness - egg weight - eggs set - number of fertile eggs - number of live 14-day embryos - number of live 21-day embryos - number of normal hatchlings - number of 14-day survivors - hatchling body weight at 1 and 14 days - abnormalities of hatchlings	EPA requires: • Eggs laid/pen • Eggs cracked/pen • Eggs set/pen • Viable embryos/pen • Live 3-week embryos/pen • Normal hatchlings/pen • 14-day-old survivors/pen • 14-day-old survivors (mean per pen) • Egg shell thickness • Food consumption (mean per pen) • Initial and final body weight (mean per pen)
Indicate if the test material was regurgitated	No indications of dietary regurgitation.	
Observation intervals (for various parameters)	Adult: mortality and signs of toxicity were recorded at least once daily; body weights were recorded at Weeks 1, 3, 5, 7, 9, and 22 and food consumption was determined daily. Hatchling mortality and signs of toxicity were recorded weekly.	Body weights and food consumption must be measured at least biweekly.
Were raw data included?	Yes, sufficient.	

I. RESULTS AND DISCUSSION:

A. MORTALITY:

No treatment-related mortality was observed during the study (p. 25). However, three incidental mortalities occurred during the test: one in the control group, one in the 245 ppm group, and one in the 700 ppm group. No mortality occurred at the 2000 ppm level (Table 1, p. 31).

One hen from the control group (animal no. 66) was found dead during Week 20. The animal exhibited nodules of the left and right legs during Weeks 16 through 20 prior to death (p. 53 of Table 11). Necropsy revealed an enlarged pale liver, a hemorrhagic cyst of the ovaries, and an enlarged spleen (p. 82 of Table 15). Necropsy of the pen-mate (animal no. 2) was unremarkable.

One hen from the 245 ppm group (animal no. 81) was found dead during Week 19. The animal exhibited nodules of the left and right legs during Weeks 16 through 19 prior to death (p. 55 of Table 11). Necropsy revealed a thickened yellowish and dark red liver, and an enlarged, dark red spleen (p. 84 of Table 15). Necropsy of the pen-mate (animal no. 17) was unremarkable.

One drake from the 700 ppm group (animal no. 40) was found dead during Week 12, without exhibiting prior clinical effects. Necropsy revealed nodules of the underside of the webs (feet) and an enlarged, dark red and irregular surface of the spleen (p. 78 of Table 15). Necropsy of the pen-mate (animal no. 104) was unremarkable.

No other mortalities were observed during the study, and due to the nature of lesions observed at necropsy, none of the mortalities were considered to be related to treatment.

Table 4: Effect of JAU 6476 Technical (prothioconazole) on Mortality of Anas platyrhynchos.

Treatment, ppm a.i. measured (and nominal) concentrations		Observation Period						
	Week 7		Week 14		Week 22			
	No Male	. Dead Female	No Male	o. Dead Female	No. Male	Dead Female		
Control	0	0	0	0	0	1		
248 (245)	0	0	0	0	0	1		
698 (700)	0	0	1	0	1	0		
1978 (2000)	0	0	0	0	0	0		

B. REPRODUCTIVE AND OTHER ENDPOINTS:

<u>Abnormal Effects/Behavior</u>: No treatment-related signs of toxicity were observed (p. 25). Observations such as abnormal gait/posture, ventro-lateral recumbency, uncoordinated movements, alopecia, swellings, scabs, ulcers, wounds, nodules, and ungroomed plumage were noted in all dose groups including the control group to a comparable degree (Table 2, pp. 32-36).

Food Consumption: No conclusive treatment-related effects on food consumption were observed (pp. 25-26). A statistically-significant reduction in food consumption was observed at the 245 ppm level during Weeks 3, 4, and 5 and at the 2000 ppm level during Weeks 10, 11, and 14 (Table 5, pp. 40-41). Also, overall (mean of means) food consumption was decreased at these levels (105 g/animal/day for the 245 and 2000 ppm groups versus 118 g/animal/day for the control group). The study author reported that since no dose relationship was observed, and no consistency was observed, that these differences were not considered to be related to treatment. Overall feed consumption averaged 118, 105, 116, and 105 g/bird/day for the control, 245, 700, and 2000 ppm groups, respectively.

<u>Body Weight</u>: No treatment-related effects on body weight or body weight gains were observed (p. 25 and Tables 3 and 4, pp. 37-39).

Necropsy: No treatment-related findings were observed at necropsy (p. 26 and Table 6, pp. 42-43).

<u>Reproductive Effects</u>: No treatment-related effects were observed on egg production, egg quality, fertility, or early embryonic development (Tables 7-9, pp. 44-46). Egg weights were statistically increased at the 245 and 2000 ppm levels compared to the control; however, the study author reported that since a dose-response was not observed, that these differences were not considered to be related to treatment.

Late embryo survival (after 21 days) was affected by treatment at the 2000 ppm level, based on a statistically-significant reduction in the percentage of post 21-day embryonic deaths of fertile eggs (28.9 versus 20.9% for the control group). Chick survival was also affected at the 2000 ppm level, based on a statistically-significant reduction in the percentage of 14-day old survivors of normal hatchlings (87.4 versus 92.9% for the control group).

There were no treatment-related clinical effects during the 14-day chick maintenance period, and no treatment-related effects on chick body weights (Tables 9-10, pp. 46-47). The most common clinical observations were weak and crippled chicks. Incidental observations (mainly observed between Weeks 13 and 16) included abnormal behavior, abnormal beak/neck, abnormal gait, abnormal posture leg/neck and head down; findings were noted in the control and test groups to a comparable degree and were not considered to be related to treatment (p. 27).

Table 5: Reproductive and other parameters (nominal concentrations; study author-reported).

Parameter	Control	245 ppm	700 ppm	2000 ppm	NOEC/ LOEC		
Eggs laid	612	702	644	742	N/A		
Eggs laid/hen	38.3	43.9	40.3	46.4	2000 ppm >2000 ppm		
Eggs laid/hen/day		Not determined.					
Eggs cracked	14	5	10	3	N/A		
Eggs cracked/eggs laid (%)	2.3	0.7	1.6	0.4	2000 ppm >2000 ppm		
Eggs broken	9	5	8	4	N/A		

Parameter	Control	245 ppm	700 ppm	2000 ppm	NOEC/ LOEC
Eggs broken/eggs laid (%)	1.5	0.7	1.2	0.5	2000 ppm >2000 ppm
Mean egg weight (g ± SD)	58.8 ± 4.5	60.5 ± 5.0*	59.3 ± 5.0	60.3 ± 4.3*	2000 ppm >2000 ppm
Shell thickness (mm ± SD)	0.37 ± 0.02	0.37 ± 0.02	0.37 ± 0.02	0.37 ± 0.02	2000 ppm >2000 ppm
Eggs set	539	639	576	683	N/A
Fertile eggs/egg set (%)	90.4	90.9	91.0	94.3	2000 ppm >2000 ppm
Viable 14-day old embryos	447	534	484	603	N/A
Viable 14-day old embryos/eggs set (%)	82.9	83.6	84.0	88.3	2000 ppm >2000 ppm
Live 21-day old embryos	442	518	476	599	N/A
Live 21-day old embryos/eggs set (%)	82.0	81.1	82.6	87.7	2000 ppm >2000 ppm
Live 21-day old embryos/fertile eggs (%)	90.8	89.2	90.8	93.0	2000 ppm >2000 ppm
No. of normal hatchlings	340	381	373	412	N/A
No. of normal hatchlings/eggs set (%)	63.1	59.6	64.8	60.3	2000 ppm >2000 ppm
No. of normal hatchlings/fertile eggs (%)	69.8	65.6	71.2	64.0	2000 ppm >2000 ppm
No. of normal hatchlings/live 14-day old embryos (%)	76.1	71.3	77.1	68.3	2000 ppm >2000 ppm
No. of normal hatchlings/live 21-day old embryos (%)	76.9	73.6	78.4	68.8	2000 ppm >2000 ppm
Hatchling weight (g)	36.4	37.9	37.0	37.1	2000 ppm >2000 ppm
No. of 14-day old survivors	316	348	338	360	N/A
No. of 14-day old survivors/hen	19.8	21.8	21.1	22.5	2000 ppm >2000 ppm
No. of 14-day old survivors/No. of normal hatchlings (%)	92.9	91.3	90.6	87.4*	700 ppm 2000 ppm

Parameter	Control	245 ppm	700 ppm	2000 ppm	NOEC/ LOEC
14-day old survivors weight (g)	151.2	148.3	144.2*	149.5	2000 ppm >2000 ppm
Mean adult food consumption (g/pen/day)	118	105	116	105	2000 ppm >2000 ppm
Weight of adult males, (g ± SD) at start of treatment: at Week 9: at Week 22 (study termination):	1058 ± 91.4 1091 ± 125.1 1117 ± 94.3	1060 ± 97.7 1066 ±118.8 1136 ±118.6	1064 ±79.6 1086 ±94.2 1142 ±110.6	1085 ±108.5 1148 ±117.6 1158 ±117.3	2000 ppm >2000 ppm
Weight of adult females, g at start of treatment: at Week 9: at Week 22 (study termination):	1011 ±75.0 1028 ±102.4 1154 ±123.0.	997 ±83.5 1055 ±115.0 1158 ±131.3	978 ±68.1 989 ±110.2 1074 ±84.1	1003 ±70.1 1045 ±101.2 1129 ±116.2	2000 ppm >2000 ppm
Gross pathology (proportion of birds with pathological incidents	4/32	5/32	4/32	6/32	2000 ppm >2000 ppm

N/A = Not statistically-analyzed.

C. REPORTED STATISTICS:

Parental endpoints statistically analyzed included adult body weight, adult body weight gain, and adult food consumption. These variables were assumed to follow a normal distribution, and were analyzed using the Dunnett t-test.

Reproductive endpoints statistically analyzed included number of eggs laid per pen, percentage of eggs cracked of eggs laid, percentage of eggs broken of eggs laid, rate of viability (fertile/infertile eggs as percentage of eggs set), live 14- and 21-day old embryos as percentage of eggs set, live 21-day old embryos as percentage of fertile eggs, normal hatchlings as percentage of eggs set, normal hatchlings as percentage of fertile eggs, normal hatchlings as percentage of 14-day old embryos, normal hatchlings as percentage of 21-day old embryos, early and late embryonic death as percentage of fertile eggs, number of 14-day old survivors as percentage of normal hatchlings, number of 14-day old survivors expressed per hen, mean eggshell thickness, mean egg weight on day of incubation, mean body weight of hatchlings and surviving chicks, and mean chicks growth rate.

Continuous variables (i.e., eggshell thickness, egg weights, chick weights, number of eggs laid per pen, normal hatchlings per pen, and 14-day old survivors per pen) were assumed to follow a normal distribution, and were analyzed using one-way ANOVA, followed by Dunnett's test (many-to-one t-test).

Ratio variables were assumed not to be normally distributed, and the data were first arc-sine transformed, then analyzed using one-way ANOVA, followed by Dunnett's t-test.

For reproductive endpoints, sample units were the weekly data per pen, except for egg shell thickness, egg weights, and chick weights, where the sample unit was the individual measurement. Nominal concentrations were used for all comparisons.

D. VERIFICATION OF STATISTICAL RESULTS:

Statistical Method: Analysis was conducted using "chicks.sas" (Ver. 3; March 2002), a SAS program provided by EFED/OPP/USEPA. Data for all endpoints were examined graphically using box plots to determine if they exhibited a dose-dependent response, which was ultimately used to select the multiple comparison test to detect LOAEC and NOAEC. Data for each endpoint were tested to determine if their distributions were normal and if their variances were homogeneous using Shapiro-Wilk's and Levene's tests, respectively. Data that satisfied these assumptions were subjected to Dunnett's and William's tests and data that did not satisfy these assumptions were subjected to the non-parametric MannWhitney-U (with a Bonferroni adjustment) and Jonckheere's tests. Data for dead birds were excluded from the analyses. See Appendix I for output of reviewer's statistical verification and graphs for affected endpoints to support any reviewer-generated conclusions that may differ from those reported in the study.

Table 6. Reproductive and other parameters (mean-measured concentrations; reviewer-reported).

Parameter	Control	248 ppm	698 ppm	1978 ppm	NOEC/ LOEC
Eggs laid/pen	37.8	45.7	42.8	46.4	1978 ppm >1978 ppm
Eggs cracked/pen	0.93	0.33	0.67	0.19	1978 ppm >1978 ppm
Eggs not cracked/eggs laid (%)	98.0	99.2	98.5	99.6	1978 ppm >1978 ppm
Eggs set/pen	33.3	41.7	38.3	42.7	1978 ppm >1978 ppm
Shell thickness	0.37	0.37	0.37	0.37	1978 ppm >1978 ppm
Eggs set/eggs laid (%)	87.4	91.1	90.4	92.3	1978 ppm >1978 ppm
Viable embryo/pen	29.9	37.8	34.9	40.2	1978 ppm >1978 ppm
Viable embryos/eggs set (%)	88.3	90.3	90.7	95.0	1978 ppm >1978 ppm
Live embryos/pen	27.3	33.6	31.7	37.4	1978 ppm >1978 ppm
Live embryo/viable embryo (%)	84.6	87.9	90.2	93.5	1978 ppm >1978 ppm
No. of hatchlings/pen	21.2	24.7	24.9	25.8	1978 ppm >1978 ppm
No. of hatchlings/eggs laid (%)	50.6	51.8	59.0	56.0	1978 ppm >1978 ppm

Parameter	Control	248 ppm	698 ppm	1978 ppm	NOEC/ LOEC
No. of hatchlings/eggs set (%)	57.3	56.8	65.4	60.7	1978 ppm >1978 ppm
No. of hatchlings/live embryos (%)	77.4	70.6	79.4	68.5	1978 ppm >1978 ppm
Hatchling survival/pen	19.9	22.4	22.5	22.5	1978 ppm >1978 ppm
Hatchling survival/eggs set (%)	53.6	51.4	58.8	53.0	1978 ppm >1978 ppm
Hatchling survival/no. of hatchlings (%)	93.5	90.2	89.9	86.8	1978 ppm >1978 ppm
Hatchling weight (g)	36.5	37.3	36.6	37.3	1978 ppm >1978 ppm
Survivor weight (g)	147.9	144.5	142.1	147.5	1978 ppm >1978 ppm
Mean food consumption (g/bird/day)	115.3	106.8	116.5	126.1	1978 ppm >1978 ppm
Male weight gain (g)	59.1	75.4	76.1	72.6	1978 ppm >1978 ppm
Female weight gain (g)	143.8	156.7	93.6	125.8	1978 ppm >1978 ppm

E. STUDY DEFICIENCIES:

There were no significant deviations from U.S. EPA guideline §71-4b that affected the validity or acceptability of this study.

F. REVIEWER'S COMMENTS:

Results of the reviewer's statistical analyses for some endpoints differed from those of the study author. First, the study author used nominal exposure levels instead of measured exposure levels. Secondly, the study author's analysis detected significant reductions in late embryonic survival (percentage of post 21-day embryonic death of fertile eggs) and chick survival (percentage of 14-day old survivors of normal hatchlings), while the reviewer's analysis did not. Late embryonic survival as a function of the percentage of post 21-day embryonic death of fertile eggs was not analyzed by the reviewer and the reviewer presumes that differences in the statistical methods used to analyze chick survival (study author used a parametric test, while the reviewer used a non-parametric test) is likely the reason why the reviewer's analysis did not detect a significant reduction in this endpoint. Given that the reviewers statistical analysis indicated that some data did not meet the assumptions required for parametric tests, the reviewers results are reported in the Conclusions and Executive Summary.

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Procedural recoveries were conducted concurrently with sample analysis (Appendix VII, pp. 169-182). Mean recoveries of JAU 6476 from feed fortified with JAU 6476 (prothioconazole) in acetonitrile at 243 to 2045 ppm ranged from 80 to 99% of nominal concentrations (Table 5 of Appendix VII, p. 178). Sample concentrations were corrected for the mean procedural recovery analyzed on the same day and concentration level.

In Week 3 of treatment, animal numbers 97 and 98 were exchanged because they frequently moved to each other's pen (p. 17). This was considered not be affect the study integrity, because both animals were of the same dose group (females from the 700 ppm group) and this exchange resulted in fewer movements into each other's pen.

G. CONCLUSIONS:

This study is scientifically sound, fulfills U.S. EPA guideline §71-4b, and is classified as ACCEPTABLE.

NOEC: 1978 ppm a.i. LOEC: >1978 ppm a.i. Endpoint(s) Affected: None.

III. REFERENCES:

Dunnet, C.W. 1955. A Multiple Comparison Procedure for Comparing Several Treatments with a Control. J. Amer. Stat. Assoc. 50:1096-121.

Miller, R.G. 1981. Simultaneous Statistical Inference. Springer Verlag. New York.

Fisher, R.A. 1950. Statistical Method for Research Workers. Oliver and Boyd, Edinburgh.

SAS. 1988. SAS Institute Inc., SAS/STAT User's Guide. Release 6.03 Edition. Cary, NC: SAS Institute Inc. 1028 pp.

APPENDIX I. OUTPUT OF REVIEWER'S STATISTICAL VERIFICATION:

PRINTOUT OF RAW DATA Note Time IL ECC ENC_EL ES ES_EL VE VE_ES S. LE LE_VE NH NH_EL NH_ES	Mal:	lard r	epro	, I	Prothioco	onazo	ole, MR	ID 46	246044			<u></u> -		
Ctrl 41 1 97.56 37 90.24 35 94.59 33 94.29 28 68.29 75.68	PRI													
Ctrl	Obs	TRT	EL E				_							NH_ES
1				1	97.56	37	90.24	35	94.59	33	94.29	28	68.29	75.68
4 Ctrl 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 3.5 86.62 6 ctrl 40 0 100.00 36 90.00 36 100.00 34 94.44 24 60.00 66.67 7 Ctrl 37 0 100.00 22 86.21 48 100.00 36 90.00 3 94.44 24 60.00 66.67 7 10 100.00 37 75.00 3 100.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0					•	•	•			•	•			•
5 Ctr1 32 0 100.00 29 90.63 17 58.62 17 100.00 34 94.44 24 60.00 66.67 7 Ctr1 57 3 94.74 48 84.21 48 100.00 32 93.75 44 77.19 91.67 8 Ctr1 37 0 100.00 27 87.10 5 18.52 4 80.00 3 9.68 11.11 10 Ctr1 4 0 100.00 375.00 3 100.00 0 </td <td></td> <td></td> <td></td> <td></td> <td>97.87</td> <td></td> <td>93.62</td> <td></td> <td>97.73</td> <td></td> <td>95.35</td> <td></td> <td>76.60</td> <td>81.82</td>					97.87		93.62		97.73		95.35		76.60	81.82
6 Ctr1 40 0 100.00 36 90.00 36 100.00 45 93.75 44 77.19 91.67 8 Ctr1 37 0 100.00 32 86.49 31 96.88 26 83.87 13 35.14 40.63 9 Ctr1 31 0 100.00 3 75.00 3 100.00 40 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>•</td></t<>											•			•
C ctr1 57 3 94.74 48 84.21 48 100.00 45 93.75 44 77.19 91.67 S Ctr1 31 0 100.00 27 87.10 5 18.52 4 80.00 3 9.68 11.11 10 Ctr1 4 0 100.00 375.00 3 100.00 0 0.00 <td></td>														
8														
9														
10														
11 Ctr1 63 4 93.65 53 84.13 53 100.00 49 92.45 33 52.38 62.26 12 12 Ctr1 34 0 100.00 32 94.12 32 100.00 28 87.50 17 50.00 53.13 14 Ctr1 50 1 98.00 44 88.00 37 84.09 36 97.00 24 48.00 54.55 15 Ctr1 58 1 98.28 52 89.66 51 98.08 46 90.20 37 63.79 71.15 16 Ctr1 39 3 92.31 31 79.49 29 93.55 27 93.10 23 58.97 74.15 17 Dosel														
12														
13 Ctrl 34 0 100.00 32 94.12 32 100.00 28 87.50 17 50.00 53.13 15 Ctrl 58 1 98.28 52 89.66 51 98.08 46 99.20 23 63.79 71.15 16 Ctrl 39 3 92.31 31 79.49 29 93.55 27 93.10 23 58.97 74.19 17 Dosel . <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
144 Ctr1 50 1 98.208 52 89.66 51 98.08 46 90.20 37 63.79 71.15 16 Ctr1 39 3 92.31 31 79.49 29 93.55 27 93.10 23 58.97 74.19 17 Dosel 67 0 100.00 62 92.54 62 100.00 53 85.48 52 77.61 83.87 19 Dosel 41 0 100.00 44 91.67 43 97.33 33 100.00 29 66.91 61.00 64 83.87 20 Dosel 40 1 97.50 36 90.00 21 58.33 16 76.19 11 27.50 30.56 21 Dosel 40 100.00 23 99.00 21 58.33 16 76.19 21 27.50 30.56 22 Dosel 40 100.00														
15														
16 Ctr1 39 3 92.31 \$1.79.49 29 93.55 \$27 93.10 \$23 \$8.97 74.19 17 Dosel														
17														
18 Dose1 47 0 100.00 62 92.54 62 100.00 53 85.48 52 77.61 83.87 19 Dose1 48 0 100.00 44 91.67 43 97.73 43 100.00 29 60.42 65.91 21 Dose1 48 0 100.00 43 89.58 42 97.67 39 92.66 25 100.00 43 89.58 42 97.67 39 92.66 56 54.17 60.47 24 Dose1 25 0 100.00 51 92.73 41 80.39 36 87.80 22 40.00 43.14 24 Dose1 49 79.78 39 92.86 38 97.02 24 47.83 55.00 25 Dose1 48 0 100.00 53 91.38 52 98.11 51 98.08 46 79.31 86.79					92.31		79.49		93.55	2/	93.10	23	58.97	74.19
19 Dosel 41 0 100.00 37 90.24 36 97.30 35 97.22 24 58.54 64.86 20 Dosel 48 0 100.00 44 91.67 43 97.73 43 100.00 29 60.42 65.91 20 Dosel 48 0 100.00 43 89.58 42 97.67 39 92.86 26 54.17 60.47 20 Dosel 58 0 100.00 23 92.02 23 100.00 22 95.65 10 40.00 43.48 24 Dosel 48 1 97.92 42 87.50 39 92.86 38 97.44 32 66.67 76.19 27 Dosel 48 1 97.83 40 86.96 38 95.00 33 86.84 22 47.83 55.00 28 Dosel 40 0 100.00 41 91.11 39 95.12 25 64.10					100.00		02 54		100.00		OE 40		77 (1	
Dosel 48														
21 Dosel 40 1 97.50 36 90.00 21 58.33 16 76.19 11 27.50 30.56 22 Dosel 25 0 100.00 23 92.00 23 100.00 22 95.65 10 40.00 43.48 24 Dosel 55 0 100.00 51 92.73 41 80.39 36 87.80 22 40.00 43.48 25 Dosel 48 1 97.92 42 87.50 39 92.86 38 97.44 32 66.67 76.19 26 Dosel 58 0 100.00 53 91.38 52 98.11 51 98.08 46 79.31 86.79 27 Dosel 46 0 100.00 42 95.45 36 85.71 35 97.22 34 77.27 80.95 28 Dosel 345 0 100.00 41 91.11 39 95.12 25 64.10														
22 Dosel 48 0 100.00 43 89.58 42 97.67 39 92.86 26 54.17 60.47 23 Dosel 55 0 100.00 23 92.00 23 100.00 22 95.65 10 40.00 43.14 25 Dosel 58 0 100.00 51 92.73 41 80.39 92.86 38 97.44 32 66.67 76.19 26 Dosel 46 1 97.83 40 86.96 38 95.00 33 86.84 22 47.83 55.00 28 Dosel 46 0 100.00 42 95.45 36 85.71 35 97.22 34 77.27 80.95 29 Dosel 45 0 100.00 44 93.11 39 95.12 25 64.10 19 42.22 46.34 30 Dosel 45 0 100.00 42 91.18 39 95.12 20														
23														
24 Dose1 55 0 100.00 51 92.73 41 80.39 36 87.80 22 40.00 43.14 25 Dose1 48 1 97.92 42 87.50 39 92.86 38 97.44 32 66.67 76.19 27 Dose1 46 1 97.83 40 86.96 38 95.00 33 86.84 42 47.83 55.00 28 Dose1 44 0 100.00 42 95.45 36 85.71 35 97.22 34 77.27 80.95 29 Dose1 45 0 100.00 44 93.62 41 93.18 39 95.12 20 42.55 46.63 30 Dose1 47 0 100.00 42 91.30 40 95.24 37 92.50 24 52.17 57.14 34 Dose2 45 0 100.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
25 Dosel 48 1 97.92 42 87.50 39 92.86 38 97.44 32 66.67 76.19 26 Dosel 46 1 97.83 40 86.96 38 95.00 33 86.84 22 47.83 55.00 28 Dosel 45 0 100.00 41 91.11 39 95.12 25 64.10 19 42.22 46.34 30 Dosel 34 1 97.06 31 91.18 30 96.77 22 73.33 13 38.24 41.94 31 Dosel 47 0 100.00 44 93.62 41 93.18 39 95.12 20 42.55 45.45 32 Dosel 47 0 100.00 42 91.30 40 95.24 37 92.50 24 52.17 57.14 41 Dosel 247 0 100.00 45 100.00 48 88.89 38 63.33														
26 Dosel 58 0 100.00 53 91.38 52 98.11 51 98.08 46 79.31 86.79 27 Dosel 44 1 97.83 40 86.96 38 95.00 33 86.84 22 47.83 55.00 28 Dosel 45 0 100.00 42 95.45 36 85.71 35 97.22 34 77.27 80.95 29 Dosel 45 0 100.00 41 91.18 30 96.77 22 73.33 13 38.24 41.94 30 Dosel 47 0 100.00 42 91.30 40 995.24 37 70.12 25.00 27.78 33 Dose2 46 0 100.00 36 83.72 36 100.00 34 94.44 27 62.79 75.00 35 Dose2 46 1 98.33 54 90.00 54 100.00 48 88.89 38 <td></td>														
27 Dosel 46 1 97.83 40 86.96 38 95.00 33 86.84 22 47.83 55.00 28 Dosel 44 0 100.00 42 95.45 36 85.71 35 97.22 34 77.27 80.95 30 Dosel 45 0 100.00 41 91.11 39 95.12 25 64.10 19 42.22 46.34 31 Dosel 47 0 100.00 44 93.62 41 93.18 39 95.12 20 42.55 45.45 32 Dosel 40 1 97.50 36 90.00 24 66.67 17 70.83 10 25.00 27.78 33 Dose2 43 0 100.00 36 83.72 36 100.00 34 94.44 27 62.79 75.00 35 Dose2 15 0 100.00 15 100.00 48 88.89 38 63.33														
28 Dose1 44 0 100.00 42 95.45 36 85.71 35 97.22 34 77.27 80.95 29 Dose1 45 0 100.00 41 91.11 39 95.12 25 64.10 19 42.22 46.34 30 Dose1 47 0 100.00 44 93.62 41 93.18 39 95.12 20 42.55 45.45 32 Dose1 40 1 97.50 36 90.00 24 66.67 17 70.83 10 25.00 27.78 33 Dose2 46 1 00.00 36 83.72 36 100.00 34 94.44 27 62.79 75.00 35 Dose2 60 1 98.33 54 90.00 54 100.00 48 88.89 38 63.33 70.37 36 Dose2 10 100.00 15 <				_										
29 Dose1 45 0 100.00 41 91.11 39 95.12 25 64.10 19 42.22 46.34 30 Dose1 34 1 97.06 31 91.18 30 96.77 22 73.33 13 38.24 41.94 31 Dose1 47 0 100.00 44 93.62 41 93.18 39 95.12 20 42.55 45.45 32 Dose2 46 0 100.00 42 91.30 40 95.24 37 92.50 24 52.17 57.14 34 Dose2 43 0 100.00 36 83.72 36 100.00 34 94.44 27 62.79 75.04 35 Dose2 15 0 100.00 15 100.00 14 93.33 13 86.67 37 75.00 0 100.00 42 89.36 41 90.00 21 84.00 83 86.67 86.67 37														
30 Dosel 34 1 97.06 31 91.18 30 96.77 22 73.33 13 38.24 41.94 31 Dosel 47 0 100.00 44 93.62 41 93.18 39 95.12 20 42.55 45.45 32 Dosel 40 1 97.50 36 90.00 24 66.67 17 70.83 10 25.00 27.78 33 Dose2 46 0 100.00 36 83.72 36 100.00 34 94.44 27 62.79 75.00 35 Dose2 60 1 98.33 54 90.00 54 100.00 48 88.89 38 63.33 70.37 36 Dose2 15 0 100.00 15 100.00 14 93.33 13 86.67 86.67 37 Dose2 47 0 100.00 42 89.36 41 97.62 38 92.68 31 65.96														
31 Dose1 47 0 100.00 44 93.62 41 93.18 39 95.12 20 42.55 45.45 32 Dose1 40 1 97.50 36 90.00 24 66.67 17 70.83 10 25.00 27.78 33 Dose2 46 0 100.00 42 91.30 40 95.24 37 92.50 24 52.17 57.14 34 Dose2 43 0 100.00 36 83.72 36 100.00 34 94.44 27 62.79 75.00 35 Dose2 15 0 100.00 15 100.00 14 93.33 13 86.67 86.67 37 Dose2 15 0 100.00 14 100.00 14 93.33 13 86.67 86.67 37 Dose2 10 100.00 42 89.36 41 97.62 38				_										
32 Dose1 40 1 97.50 36 90.00 24 66.67 17 70.83 10 25.00 27.78 33 Dose2 46 0 100.00 42 91.30 40 95.24 37 92.50 24 52.17 57.14 34 Dose2 43 0 100.00 36 83.72 36 100.00 34 94.44 27 62.79 75.00 35 Dose2 15 0 100.00 15 100.00 14 93.33 13 86.67 86.67 37 Dose2 14 0 100.00 14 100.00 9 64.29 7 77.78 7 50.00 50.00 38 Dose2 30 2 93.33 25 83.33 25 100.00 21 84.00 18 60.00 72.00 39 Dose2 47 0 100.00 42 89.36 41 97.62 38 92.68 31 65.96														
33 Dose2 46 0 100.00 42 91.30 40 95.24 37 92.50 24 52.17 57.14 34 Dose2 43 0 100.00 36 83.72 36 100.00 34 94.44 27 62.79 75.00 35 Dose2 60 1 98.33 54 90.00 54 100.00 14 93.33 13 86.67 86.67 37 Dose2 14 0 100.00 15 100.00 9 64.29 7 77.78 7 50.00 50.00 38 Dose2 30 2 93.33 25 83.33 25 100.00 21 84.00 18 60.00 72.00 39 Dose2 47 0 100.00 42 89.36 41 97.62 38 92.68 31 65.96 73.81 40 Dose2 50 0 100.00 48 89.31 47 97.92 40 85.11														
34 Dose2 43 0 100.00 36 83.72 36 100.00 34 94.44 27 62.79 75.00 35 Dose2 60 1 98.33 54 90.00 54 100.00 48 88.89 38 63.33 70.37 36 Dose2 15 0 100.00 15 100.00 14 93.33 13 86.67 86.67 37 Dose2 14 0 100.00 14 100.00 9 64.29 7 77.78 7 50.00 50.00 38 Dose2 47 0 100.00 42 89.36 41 97.62 38 92.68 31 65.96 73.81 40 Dose2 47 0 100.00 44 88.00 43 97.73 40 93.02 34 68.00 77.27 42 Dose2 50 0 100.00 48 92.31 <				0		42	91.30	40		37				
35 Dose2 60 1 98.33 54 90.00 54 100.00 48 88.89 38 63.33 70.37 36 Dose2 15 0 100.00 15 100.00 14 93.33 13 86.67 86.67 37 Dose2 14 0 100.00 14 100.00 9 64.29 7 77.78 7 50.00 50.00 38 Dose2 30 2 93.33 25 83.33 25 100.00 21 84.00 18 60.00 72.00 39 Dose2 47 0 100.00 42 89.36 41 97.62 38 92.68 31 65.96 73.81 40 Dose2 50 0 100.00 48 89.31 47 97.92 40 85.11 32 61.54 66.67 43 Dose2 46 2 95.65 41 89.13 41 100.00 39 95.12 32 69.57				0	100.00	36	83.72	36	100.00	34		27		
37 Dose2 14 0 100.00 14 100.00 9 64.29 7 77.78 7 50.00 50.00 38 Dose2 30 2 93.33 25 83.33 25 100.00 21 84.00 18 60.00 72.00 39 Dose2 47 0 100.00 42 89.36 41 97.62 38 92.68 31 65.96 73.81 40 Dose2 50 0 100.00 44 88.00 43 97.73 40 93.02 34 68.00 77.27 42 Dose2 52 0 100.00 48 92.31 47 97.92 40 85.11 32 61.54 66.67 43 Dose2 46 2 95.65 41 89.13 41 100.00 39 95.12 32 69.57 78.05 44 Dose2 41 0 100.00 <td< td=""><td>35</td><td>Dose2</td><td>60</td><td>1</td><td>98.33</td><td>54</td><td>90.00</td><td>54</td><td>100.00</td><td>48</td><td>88.89</td><td>38</td><td>63.33</td><td>70.37</td></td<>	35	Dose2	60	1	98.33	54	90.00	54	100.00	48	88.89	38	63.33	70.37
38 Dose2 30 2 93.33 25 83.33 25 100.00 21 84.00 18 60.00 72.00 39 Dose2 47 0 100.00 42 89.36 41 97.62 38 92.68 31 65.96 73.81 40 Dose2 .	36	Dose2	15	0	100.00	15	100.00	15	100.00	14	93.33	13	86.67	86.67
39 Dose2 47	37	Dose2	14	0	100.00	14	100.00	9	64.29	7	77.78	7	50.00	50.00
40 Dose2 . <td>38</td> <td>Dose2</td> <td>30</td> <td>2</td> <td>93.33</td> <td>25</td> <td></td> <td>25</td> <td>100.00</td> <td>21</td> <td>84.00</td> <td>18</td> <td>60.00</td> <td>72.00</td>	38	Dose2	30	2	93.33	25		25	100.00	21	84.00	18	60.00	72.00
41 Dose2 50 0 100.00 44 88.00 43 97.73 40 93.02 34 68.00 77.27 42 Dose2 52 0 100.00 48 92.31 47 97.92 40 85.11 32 61.54 66.67 43 Dose2 46 2 95.65 41 89.13 41 100.00 39 95.12 32 69.57 78.05 44 Dose2 62 0 100.00 53 85.48 49 92.45 46 93.88 37 59.68 69.81 45 Dose2 41 0 100.00 38 92.68 21 55.26 19 90.48 11 26.83 28.95 46 Dose2 55 3 94.55 48 87.27 30 62.50 29 96.67 20 36.36 41.67 47 Dose2 38 0 100.00 36 94.74 35 97.22 32 91.43 29 76.32 80.56	39	Dose2	47	0	100.00	42	89.36	41	97.62	38	92.68	31	65.96	73.81
42 Dose2 52 0 100.00 48 92.31 47 97.92 40 85.11 32 61.54 66.67 43 Dose2 46 2 95.65 41 89.13 41 100.00 39 95.12 32 69.57 78.05 44 Dose2 62 0 100.00 53 85.48 49 92.45 46 93.88 37 59.68 69.81 45 Dose2 41 0 100.00 38 92.68 21 55.26 19 90.48 11 26.83 28.95 46 Dose2 55 3 94.55 48 87.27 30 62.50 29 96.67 20 36.36 41.67 47 Dose2 38 0 100.00 36 94.74 35 97.22 32 91.43 29 76.32 80.56 48 Dose3 41 0 100.00 <t< td=""><td></td><td>Dose2</td><td></td><td></td><td>•</td><td></td><td>•</td><td></td><td>•</td><td></td><td>•</td><td></td><td>•</td><td>•</td></t<>		Dose2			•		•		•		•		•	•
43 Dose2 46 2 95.65 41 89.13 41 100.00 39 95.12 32 69.57 78.05 44 Dose2 62 0 100.00 53 85.48 49 92.45 46 93.88 37 59.68 69.81 45 Dose2 41 0 100.00 38 92.68 21 55.26 19 90.48 11 26.83 28.95 46 Dose2 55 3 94.55 48 87.27 30 62.50 29 96.67 20 36.36 41.67 47 Dose2 38 0 100.00 36 94.74 35 97.22 32 91.43 29 76.32 80.56 48 Dose3 41 0 100.00 35 85.37 34 97.14 30 88.24 27 65.85 77.14 50 Dose3 40 100.00 39 <														
44 Dose2 62 0 100.00 53 85.48 49 92.45 46 93.88 37 59.68 69.81 45 Dose2 41 0 100.00 38 92.68 21 55.26 19 90.48 11 26.83 28.95 46 Dose2 55 3 94.55 48 87.27 30 62.50 29 96.67 20 36.36 41.67 47 Dose2 38 0 100.00 36 94.74 35 97.22 32 91.43 29 76.32 80.56 48 Dose3 41 0 100.00 35 85.37 34 97.14 30 88.24 27 65.85 77.14 50 Dose3 40 100.00 39 97.50 34 87.18 34 100.00 30 75.00 76.92 51 Dose3 63 100.00 57 90.48														
45 Dose2 41 0 100.00 38 92.68 21 55.26 19 90.48 11 26.83 28.95 46 Dose2 55 3 94.55 48 87.27 30 62.50 29 96.67 20 36.36 41.67 47 Dose2 38 0 100.00 36 94.74 35 97.22 32 91.43 29 76.32 80.56 48 Dose2 43 2 95.35 38 88.37 38 100.00 32 84.21 20 46.51 52.63 49 Dose3 41 0 100.00 35 85.37 34 97.14 30 88.24 27 65.85 77.14 50 Dose3 40 0 100.00 39 97.50 34 87.18 34 100.00 30 75.00 76.92 51 Dose3 63 0 100.00 57 90.48 54 94.74 47 87.04 41 65.08 71.93 52 Dose3 19 0 100.00 18 94.74 18 100.00 18 100.00 9 47.37 50.00 53 Dose3 40 0 100.00 39 97.50 39 100.00 37 94.87 17 42.50 43.59 54 Dose3 51 0 100.00 47 92.16 44 93.62 44 100.00 41 80.39 87.23 55 Dose3 58 0 100.00 54 93.10 38 70.37 36 94.74 29 50.00 53.70 56 Dose3 56 1 98.21 49 87.50 46 93.88 32 69.57 25 44.64 51.02														
46 Dose2 55 3 94.55 48 87.27 30 62.50 29 96.67 20 36.36 41.67 47 Dose2 38 0 100.00 36 94.74 35 97.22 32 91.43 29 76.32 80.56 48 Dose2 43 2 95.35 38 88.37 38 100.00 32 84.21 20 46.51 52.63 49 Dose3 41 0 100.00 35 85.37 34 97.14 30 88.24 27 65.85 77.14 50 Dose3 40 0 100.00 39 97.50 34 87.18 34 100.00 30 75.00 76.92 51 Dose3 63 0 100.00 57 90.48 54 94.74 47 87.04 41 65.08 71.93 52 Dose3 19 0 100.00 <				_										
47 Dose2 38 0 100.00 36 94.74 35 97.22 32 91.43 29 76.32 80.56 48 Dose2 43 2 95.35 38 88.37 38 100.00 32 84.21 20 46.51 52.63 49 Dose3 41 0 100.00 35 85.37 34 97.14 30 88.24 27 65.85 77.14 50 Dose3 40 0 100.00 39 97.50 34 87.18 34 100.00 30 75.00 76.92 51 Dose3 63 0 100.00 57 90.48 54 94.74 47 87.04 41 65.08 71.93 52 Dose3 19 0 100.00 18 94.74 18 100.00 18 100.00 9 47.37 50.00 53 Dose3 51 0 100.00														
48 Dose2 43 2 95.35 38 88.37 38 100.00 32 84.21 20 46.51 52.63 49 Dose3 41 0 100.00 35 85.37 34 97.14 30 88.24 27 65.85 77.14 50 Dose3 40 0 100.00 39 97.50 34 87.18 34 100.00 30 75.00 76.92 51 Dose3 63 0 100.00 57 90.48 54 94.74 47 87.04 41 65.08 71.93 52 Dose3 19 0 100.00 18 94.74 18 100.00 18 100.00 9 47.37 50.00 53 Dose3 40 0 100.00 39 97.50 39 100.00 37 94.87 17 42.50 43.59 54 Dose3 51 0 100.00														
49 Dose3 41 0 100.00 35 85.37 34 97.14 30 88.24 27 65.85 77.14 50 Dose3 40 0 100.00 39 97.50 34 87.18 34 100.00 30 75.00 76.92 51 Dose3 63 0 100.00 57 90.48 54 94.74 47 87.04 41 65.08 71.93 52 Dose3 19 0 100.00 18 94.74 18 100.00 18 100.00 9 47.37 50.00 53 Dose3 40 0 100.00 39 97.50 39 100.00 37 94.87 17 42.50 43.59 54 Dose3 51 0 100.00 47 92.16 44 93.62 44 100.00 41 80.39 87.23 55 Dose3 58 0 100.00														
50 Dose3 40 0 100.00 39 97.50 34 87.18 34 100.00 30 75.00 76.92 51 Dose3 63 0 100.00 57 90.48 54 94.74 47 87.04 41 65.08 71.93 52 Dose3 19 0 100.00 18 94.74 18 100.00 18 100.00 9 47.37 50.00 53 Dose3 40 0 100.00 39 97.50 39 100.00 37 94.87 17 42.50 43.59 54 Dose3 51 0 100.00 47 92.16 44 93.62 44 100.00 41 80.39 87.23 55 Dose3 58 0 100.00 54 93.10 38 70.37 36 94.74 29 50.00 53.70 56 Dose3 50 1 98.21														
51 Dose3 63 0 100.00 57 90.48 54 94.74 47 87.04 41 65.08 71.93 52 Dose3 19 0 100.00 18 94.74 18 100.00 18 100.00 9 47.37 50.00 53 Dose3 40 0 100.00 39 97.50 39 100.00 37 94.87 17 42.50 43.59 54 Dose3 51 0 100.00 47 92.16 44 93.62 44 100.00 41 80.39 87.23 55 Dose3 58 0 100.00 54 93.10 38 70.37 36 94.74 29 50.00 53.70 56 Dose3 60 0 100.00 54 90.00 52 96.30 50 96.15 24 40.00 44.44 57 Dose3 56 1 98.21 49 87.50 46 93.88 32 69.57 25 44.64 51.02														
52 Dose3 19 0 100.00 18 94.74 18 100.00 18 100.00 9 47.37 50.00 53 Dose3 40 0 100.00 39 97.50 39 100.00 37 94.87 17 42.50 43.59 54 Dose3 51 0 100.00 47 92.16 44 93.62 44 100.00 41 80.39 87.23 55 Dose3 58 0 100.00 54 93.10 38 70.37 36 94.74 29 50.00 53.70 56 Dose3 60 0 100.00 54 90.00 52 96.30 50 96.15 24 40.00 44.44 57 Dose3 56 1 98.21 49 87.50 46 93.88 32 69.57 25 44.64 51.02														
53 Dose3 40 0 100.00 39 97.50 39 100.00 37 94.87 17 42.50 43.59 54 Dose3 51 0 100.00 47 92.16 44 93.62 44 100.00 41 80.39 87.23 55 Dose3 58 0 100.00 54 93.10 38 70.37 36 94.74 29 50.00 53.70 56 Dose3 60 0 100.00 54 90.00 52 96.30 50 96.15 24 40.00 44.44 57 Dose3 56 1 98.21 49 87.50 46 93.88 32 69.57 25 44.64 51.02														
54 Dose3 51 0 100.00 47 92.16 44 93.62 44 100.00 41 80.39 87.23 55 Dose3 58 0 100.00 54 93.10 38 70.37 36 94.74 29 50.00 53.70 56 Dose3 60 0 100.00 54 90.00 52 96.30 50 96.15 24 40.00 44.44 57 Dose3 56 1 98.21 49 87.50 46 93.88 32 69.57 25 44.64 51.02														
55 Dose3 58 0 100.00 54 93.10 38 70.37 36 94.74 29 50.00 53.70 56 Dose3 60 0 100.00 54 90.00 52 96.30 50 96.15 24 40.00 44.44 57 Dose3 56 1 98.21 49 87.50 46 93.88 32 69.57 25 44.64 51.02														
56 Dose3 60 0 100.00 54 90.00 52 96.30 50 96.15 24 40.00 44.44 57 Dose3 56 1 98.21 49 87.50 46 93.88 32 69.57 25 44.64 51.02														
57 Dose3 56 1 98.21 49 87.50 46 93.88 32 69.57 25 44.64 51.02														
														51 02

59	Dose3	46 0	100.	00 44	95.65	44 100	0.00	43 97	7.73 38	82.61	86.36
60	Dose3		100.		91.67		5.45		5.71 13	27.08	29.55
61	Dose3		100.		92.50		0.00		1.59 29	72.50	78.38
62	Dose3		95.		88.89		0.00		5.00 27	60.00	67.50
			100.		95.00		0.00				
63	Dose3								7.37 30	75.00	78.95
64	Dose3		100.		91.49		0.00	43 100	0.00 28	59.57	65.12
				loconazo		4624604	44				
				(continu							
	TRT	NH_LE	HS	HS_ES		THICK I		SURVWT	FOOD		WTGAINF
1	Ctrl	84.85	5 24	64.86	85.71	0.36	35	157	117	190	51
2	Ctrl	•		•		•	•				•
3	Ctrl	87.80	34	77.27	94.44	0.37	35	156	128	98	241
4	Ctrl		0			•			78	-48	-26
5	Ctrl	100.00) 17	58.62	100.00	0.40	40	183	118	68	275
6	Ctrl	70.59	23	63.89	95.83	0.37	37	159	110	0	175
7	Ctrl	97.78		85.42	93.18		35	139	101	83	159
8	Ctrl	50.00		31.25	76.92		41	137	140	77	202
9	Ctrl	75.00		11.11	100.00		36	134	109	180	228
10	Ctrl	, 3.00	0	0.00	100.00	0.37			94	-33	84
11	Ctrl	67.3		60.38	96.97		37	146	136	-33	175
12	Ctrl	79.1		54.84	89.47		34	135			9
									122	102	
13	Ctrl	60.7		46.88	88.24		38	130	73	-63	163
14	Ctrl	66.6		54.55	100.00		32	125	128	8	119
15	Ctrl	80.43		67.31	94.59		39	164	114	-3	287
16	Ctrl	85.19	23	74.19	100.00	0.35	37	158	161	220	15
17	Dose1	•	•	•	•	-	•	•			•
18	Dose1	98.1	L 50	80.65	96.15		37	152	127	12	223
19	Dose1	68.5	7 16	43.24	66.67		37	130	87	4	113
20	Dose1	67.4	1 29	65.91	100.00	0.38	41	168	100	150	225
21	Dose1	68.75	10	27.78	90.91	0.40	37	131	138	66	95
22	Dose1	66.6	7 18	41.86	69.23	0.36	36	138	103	99	252
23	Dose1	45.45	5 9	39.13	90.00	0.37	34	136	95	194	156
24	Dose1	61.13		39.22	90.91	0.36	37	143	112	38	289
25	Dose1	84.2		76.19	100.00		40	149	118	129	121
26	Dose1	90.20		84.91	97.83		40	146	97	91	421
27	Dose1	66.6		50.00	90.91		41	153	116	109	207
28	Dose1	97.1		73.81	91.18		37	144	107	95	211
29	Dose1	76.00		41.46	89.47		37	175	85	39	63
30	Dose1	59.0		35.48	84.62		38	131	102	14	-4
31	Dose1	51.2		43.18	95.00		34	138	110	97	119
32	Dose1	58.82		27.78	100.00		34	134	105	-6	-140
				52.38	91.67		40				
33	Dose2	64.8						136	98	2	210
34	Dose2	79.4		66.67	88.89		37	117	113	54	123
35	Dose2	79.1		61.11	86.84		34	148	139	21	121
36	Dose2	92.80		80.00	92.31		35	131	83	236	143
37		100.0		42.86	85.71		35	134	140	159	188
38	Dose2	85.7		48.00	66.67		35	121	126	71	69
39	Dose2	81.5	3 29	69.05	93.55		41	151	109	37	196
40	Dose2	•		•	•	•	•		•	•	•
41	Dose2	85.0		72.73	94.12		40	156	121	36	205
42	Dose2	80.0		58.33	87.50		33	143	106	-47	-31
43	Dose2	82.0	5 31	75.61	96.88	0.37	38	151	121	3	78
44	Dose2	80.4	3 3 5	66.04	94.59		37	126	108	90	109
45	Dose2	57.89	11	28.95	100.00	0.37	31	133	108	280	-75
46	Dose2	68.9		37.50	90.00		37	172	130	71	81
47	Dose2	90.6		80.56	100.00		37	168	123	184	-95
48	Dose2	62.5		42.11	80.00		39	144	123	-55	82
49	Dose3	90.00		68.57	88.88		36	155	100	-34	11
50	Dose3	88.2		71.79	93.33		37	167	143	-19	19
51	Dose3	87.2		70.18	97.56		38	160	143	-32	266
52	Dose3	50.00		50.00	100.00		41	151	126	-66	203
53	Dose3	45.9		41.03	94.12		40	136	89	222	203 127
J J	DOSES	- 3.3	. 10	±1.00	J ≒ •±2	. 0.36	4 ∪	100	0,7	444	141

-	cies <i>Ana:</i> R A Subm			2004-0843	:				EΡΛ	MDID	Number 4	6246044
1 177	101 04011	11331011 140	illioci 2	2001 0013					LIA	WIND	Nullibel 4	0240044
54	Dose3	93.18	40	85.11	97.56	0.35	39	154	142	93	223	
55	Dose3	80.56	29	53.70	100.00	0.39	36	160	146	186	199	
56	Dose3	48.00	23	42.59	95.83	0.39	41	150	136	-16	237	
57	Dose3	78.13	22	44.90	88.00	0.38	38	136	102	64	116	
58	Dose3	10.26	3		75.00	0.40	39	146	128	172	273	
59	Dose3	88.37	22	50.00	57.89	0.38	35	125	123	72	74	
60 61	Dose3	36.11	9 27	20.45	69.23 93.10	0.36 0.37	34	140	161	147	-22	
62	Dose3 Dose3	82.86 71.05	19	72.97 47.50	70.37	0.37	33 38	148 138	120 140	164 73	1 -10	
63	Dose3	81.08		71.05	90.00	0.38	36	147	114	106	194	
64	Dose3	65.12	22	51.16	78.57	0.37	37	147	104	29	101	
•	Dobes	00.11		32120	, 0.0,		J.	11,	101	23	101	
					e, MRID 4 EL (Eg							
mpc	መሮ ሰፑ አ	сстирет	ONG E	וגפגפ פסי	METRIC AM	אז עכדכ	•					
								lpha-leve	-1=0 01			
								residuals		ha-lev	e1=0.05	
								otherwise				ses.
				ro-Wilks		enes	Lever		clusion		- · · · · · · · · · · · · · · · · · · ·	
	Test S	tat	P-v	alue	Test	Stat	P-val	.ue				
	0.93	2	0.	002	1.1	178	0.32	6 USE	NON-PARA	METRIC	TESTS	
	++++++			. + + + + + + + .	*****		. + + + + +	*****				
	IC SUMM									^ ^ ^ ^ ^ ^	^ ~ ^ ~ ~ ~ ~ ~	
	vel N	Mea		StdDev	StdI	Err	Coef	of War	95% Conf	Inter	rva 1	
	trl 15			17.61	4.5		46.5		28.05,			
-	osel 15	45	73	9.87	2.5		21.5		40.27,			
D	ose2 15	42.	80	14.09	3.6	54	32.9	3	35.00,		60	
D	ose3 16	46.	38	10.52	2.6	53	22.6	8	40.77,	51.	98	
_	7	11				0 5	. ~ .	7.	0 - 7			
	vel	Medi		Min	Max		Contr	ol(means)	*Redu	ction(means)	
	trl ose1	39. 46.		0.00 25.00	63.(67.(120.9	10	20	. 99		
	ose1 ose2	46.		14.00	62.0		113.2			.23		
	ose3	46.		19.00	63.0		122.6			.69		
	0503	40.	50	13.00	03.0		122.0	, ,	22	. 0 5		
***	*****	*****	****	*****	*****	*****	*****	*****	*****	****	*****	
NON	-PARAME	TRIC AN	IALYSE	ES - 1	use alpha	a-level	.=0.05	for all t	tests			
	Kruska	l-Walli	s tes	_	ality amo	_		groups				
	Degre	es of F	reedo		tStat	P-valu						
		3			3.31	0.34	16					
Man	nuthit (E	lon) - t	ectin	a each	trt medi:	an eign	oif le	ess than o	control			
								ip, test:		ive tr	end	
0011	· · · · · · · · · · · · · · · · · · ·		abbo	unco uoo	c respon	JO 1010		iip, cebe.	ing negac	.1.0 01	CIIC	
Le	vel	Mediar	ı	MannWh.	it(Bon ad	djust)p	-value	Joncl	cheere p-	value		
	trl	39.00										
	ose1	46.00				.000			0.927			
	ose2	46.00				.000			0.861			
Г	ose3	46.50)		1	.000			0.931			
CTI	MMARY			,	NOEC		LOEC					
	mmakı MannWhi	t (Bonf	adi.		Dose3			hest dose	2			
	Jonckhe		. aajt		Dose3			nest dose nest dose				
	- 0						- 4.25	,	-			

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE NEG_EC (Eggs Cracked)

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion
Test Stat P-value Test Stat P-value

0.823 <.001 5.636 0.002 USE NON-PARAMETRIC TESTS

BASIC SUMMA	RY STATIS	rics				
Level N	Mean	StdDev	StdErr	Coef of Var	95% Conf. I:	nterval
Ctrl 15	0.93	1.33	0.34	142.98	0.19,	1.67
Dosel 15	0.33	0.49	0.13	146.39	0.06,	0.60
Dose2 15	0.67	1.05	0.27	156.98	0.09,	1.25
Dose3 16	0.19	0.54	0.14	290.08	0.00,	0.48
Level	Median	Min	Max	%of Control(means)	%Reduct	ion(means)
Ctrl	0.00	0.00	4.00	•		
Dose1	0.00	0.00	1.00	35.71	64.2	9
Dose2	0.00	0.00	3.00	71.43	28.5	7
Dose3	0.00	0.00	2.00	20.09	79.9	1

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value 4.62 0.202

MannWhit(Bon) - testing each trt median signif. greater than control Jonckheere - test assumes dose-response relationship, testing positive trend

Level	Median	MannWhit(Bon adjust)p-value	Jonckheere p-value
Ctrl	0.00		•
Dosel	0.00	1.000	0.858
Dose2	0.00	1.000	0.735
Dose3	0.00	1.000	0.968

NOEC LOEC SUMMARY

MannWhit (Bonf adjust) Dose3 >highest dose >highest dose Jonckheere Dose3

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044
ANALYSIS RESULTS FOR VARIABLE ENC_EL ((EL-EC)/EL (%))
TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Snapiro-Wilks	Snapiro-wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.825	<.001	5.451	0.002	USE NON-PARAMETRIC TESTS

BASIC SU	JMMARY	STATIS'	rics			
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval
Ctrl	14	98.03	2.63	0.70	2.69	96.51, 99.55
Dose1	15	99.19	1.20	0.31	1.21	98.52, 99.85
Dose2	15	98.48	2.43	0.63	2.47	97.13, 99.83
Dose3	16	99.61	1.17	0.29	1.17	98.99, 100.00
Level		Median	Min	Max	%of Control(means)	%Reduction(means)
Ctrl		99.14	92.31	100.00	•	•
Dose1		100.00	97.06	100.00	101.18	-1.18
Dose2		100.00	93.33	100.00	100.46	-0.46
Dose3		100.00	95.56	100.00	101.61	-1.61

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups Degrees of Freedom TestStat P-value $3 \hspace{1.5cm} \text{P-value}$ 0.174

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon adjust)p-value	Jonckheere p-value
Ctrl	99.14	•	•
Dose1	100.00	1.000	0.810
Dose2	100.00	1.000	0.743
Dose3	100.00	1.000	0.975

SUMMARY	NOEC	LOEC
MannWhit (Bonf adjust)	Dose3	>highest dose
Jonckheere	Dose3	>highest dose

PMRA Submission Number 2004-0843

Shapiro-Wilks Shapiro-Wilks

43.50

Dose3

EPA MRID Number 46246044

-28.32

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE ES (Eggs Set)

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Levenes Levenes Conclusion

128.32

	t Stat .933		-value 0.002	Test Sta 1.051		E NON-PARAM	TRIC TESTS
******** BASIC SI				*****	******		
			-	C+ 3D	0.5	050 0 5	
Level		Mean		StdErr	Coef of Var	95% Conf.]	Interval
Ctr1	15	33.27	15.36	3.97	46.17	24.76,	41.77
Dose1	15	41.67	9.23	2.38	22.16	36.55,	46.78
Dose2	15	38.27	12.07	3.12	31.54	31.58,	44.95
Dose3	16	42.69	9.26	2.31	21.69	37.75,	47.62
Leve1		Median	Min	Max	%of Control(mean	s) %Reduct	cion(means)
Ctrl		32.00	0.00	53.00			,,
Dose1		42.00	23.00	62.00	125.25	-25.2	25
Dose2		41.00	14.00	54.00	115.03	-15.0	

57.00

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value 3 4.89 0.180

18.00

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon adjust)p-value	Jonckheere p-value
Ctrl	32.00		
Dose1	42.00	1.000	0.930
Dose2	41.00	1.000	0.856
Dose3	43.50	1.000	0.972

SUMMARY NOEC LOEC

MannWhit (Bonf adjust) Dose3 >highest dose Jonckheere Dose3 >highest dose

PMRA Submission Number 2004-0843

Level Ctrl Dose1 Dose2

Dose3

Mallard repro, Prothioconazole, MRID 46246044

EPA MRID Number 46246044

90.52,

-3.39

-5.62

94.14

ANALYSIS RESULTS FOR VARIABLE ES_EL (EggsSet/EggsLaid (%)) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Conclusion Test Stat P-value Test Stat P-value 0.981 0.483 2.850 0.045 USE NON-PARAMETRIC TESTS ***************************** BASIC SUMMARY STATISTICS Level N Mean StdDev StdErr Coef of Var Ctrl 14 87.42 5.31 1.42 6.08 Dosel 15 91.06 2.18 0.56 2.40 Dose2 15 90.38 5.03 1.30 5.56 Dose3 16 92.33 3.40 0.85 3.69 95% Conf.Interval 84.35, 90.48 89.85, 92.27 93.17 87.60,

100.00

97.50

 Median
 Min
 Max
 %of Control(means)
 %Reduction(means)

 88.83
 75.00
 94.12
 .
 .

 91.18
 86.96
 95.45
 104.17
 -4.17

103.39

105.62

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value 3 9.15 0.027

85.37

89.36 83.33

92.33

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon adjust)p-value	Jonckheere p-value
Ctrl	88.83	•	
Dose1	91.18	1.000	0.983
Dose2	89.36	1.000	0.844
Dose3	92.33	1.000	0.993

LOEC SUMMARY NOEC

MannWhit (Bonf adjust) Dose3 >highest dose Jonckheere Dose3 >highest dose

PMRA Submission Number 2004-0843

Williams

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044
ANALYSIS RESULTS FOR VARIABLE VE (Viable Embryo(d14))

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wil		piro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P	-value	Test Stat	P-value	
0.957		0.032	2.484	0.070	USE PARAMETRIC TESTS
*****	*****	*****	*****	*****	*******
BASIC SUMMARY	STATIS	TICS			
Level N	Mean	StdDev	StdErr	Coef of Va	r 95% Conf.Interval
Ctrl 15	29.93	16.91	4.37	56.49	20.57, 39.30
Dosel 15	37.80	10.74	2.77	28.41	31.85, 43.75
Dose2 15	34.93	12.73	3.29	36.44	27.88, 41.98
Dose3 16	40.25	8.14	2.04	20.23	35.91, 44.59

%of Control(means) Level Median Min Max %Reduction (means) Ctrl 32.00 0.00 53.00 39.00 21.00 62.00 126.28 -26.28 Dose1 Dose2 38.00 9.00 54.00 116.70 -16.7040.50 18.00 54.00 Dose3 134.47

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Analysis of Variance (ANOVA) - overall F-test

Numerator df Denominator df F-stat P-value 3 57 1.93 0.134

Dose3

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level Mean		Dunnett	Isotonic Williams		Tukey p-values				
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5
Ctrl	29.93		35.80	•	0.320	0.693	0.110		
Dose1	37.80	0.995	35.80	0.948		0.922	0.947		
Dose2	34.93	0.972	35.80	0.962	•		0.639		
Dose3	40.25	0.999	35.80	0.970	•	•	•	•	•
SUMMARY	ζ		NOEC		LOEC				
Dunne	ett		Dose	:3	>highe:	st dose			

>highest dose

PMRA Submission Number 2004-0843

```
Mallard repro, Prothioconazole, MRID 46246044
ANALYSIS RESULTS FOR VARIABLE VE_ES ( ViableEmbryo/EggsSet (%) )
TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS
Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01
Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05
Use parametric analyses if neither test rejected, otherwise non-parametric analyses.
  Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion
    Test Stat
                   P-value
                                   Test Stat
                                               P-value
                                                0.084
      0.679
                     < .001
                                     2.336
                                                          USE NON-PARAMETRIC TESTS
************************
BASIC SUMMARY STATISTICS
                                  StdErr
 Level N
            Mean StdDev
                                            Coef of Var
                                                              95% Conf.Interval
                                  6.11

      Ctrl
      14
      88.26
      22.88
      6.11

      Dosel
      15
      90.32
      12.56
      3.24

      Dose2
      15
      90.68
      15.77
      4.07

      Dose3
      16
      94.99
      7.61
      1.90

                                              25.92
                                                                75.05, 100.00
                                                                83.37,
                                                                         97.28
                                               13.91
                                               17.39
                                                                81.95,
                                                                         99.42
                                   1.90
                                                8.01
                                                                90.93,
                                                                        99.04
           Median Min
97.30 18.52
                               Max
100.00
 Level
                                  Max %of Control(means) %Reduction(means)
  Ctrl
                                               102.34
                                                                     -2.34
  Dose1
              95.12 58.33
                                 100.00
  Dose2
              97.73
                        55.26
                                   100.00
                                               102.75
                                                                     -2.75
  Dose3
              96.72
                        70.37
                                   100.00
                                               107.62
                                                                     -7.62
***********************
NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests
    Kruskal-Wallis test - equality among treatment groups
Degrees of Freedom TestStat P-value
                              2.07
           3
                                         0.558
MannWhit(Bon) - testing each trt median signif. less than control
Jonckheere - test assumes dose-response relationship, testing negative trend
 Level
           Median
                        MannWhit(Bon adjust)p-value
                                                         Jonckheere p-value
  Ctrl
           97.30
            95.12
  Dose1
                                      0.616
                                                               0.196
            97.73
                                      1.000
  Dose2
                                                               0.637
           96.72
  Dose3
                                      0.960
                                                               0.785
 SUMMARY
                              NOEC
                                              LOEC
   MannWhit (Bonf adjust)
                               Dose3
                                               >highest dose
   Jonckheere
                                                >highest dose
                               Dose3
```

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE LE (Live Embryo(d21))

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

De parameter a			00000, 0011.	orwine new parametric .	~
Shapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion	
Test Stat	P-value	Test Stat	P-value		
0.962	0.057	2.563	0.064	USE PARAMETRIC TESTS	
*****	*****	****	*****	*******	*

 BASIC SUMMARY STATISTICS

 Level N
 Mean StdDev
 StdErr
 Coef of Var
 95% Conf.Interval

 Ctrl 15
 27.33
 16.10
 4.16
 58.89
 18.42, 36.25

 Dosel 15
 33.60
 11.29
 2.91
 33.59
 27.35, 39.85

 Dose2 15
 31.73
 11.77
 3.04
 37.10
 25.21, 38.25

 Dose3 16
 37.44
 7.49
 1.87
 20.01
 33.45, 41.43

Level	Median	Min	Max	%of Control(means)	%Reduction(means)
Ctrl	28.00	0.00	49.00	•	•
Dose1	35.00	16.00	53.00	122.93	-22.93
Dose2	34.00	7.00	48.00	116.10	-16.10
Dose3	37.00	18.00	50.00	136.97	-36.97

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test

Numerator df Denominator df F-stat P-value 3 57 1.89 0.141

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Mean	Dunnett	Isotonic	Williams	Tukey p-values				
	p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5
27.33		32.61		0.485	0.747	0.100		
33.60	0.989	32.61	0.937		0.974	0.810	•	
31.73	0.965	32.61	0.954			0.552		
37.44	0.999	32.61	0.963	•	•			•
	27.33 33.60 31.73	p-value 27.33 . 33.60 0.989 31.73 0.965	p-value mean 27.33 . 32.61 33.60 0.989 32.61 31.73 0.965 32.61	p-value mean p-value 27.33 . 32.61 . 33.60 0.989 32.61 0.937 31.73 0.965 32.61 0.954	p-value mean p-value Dose1 27.33 . 32.61 . 0.485 33.60 0.989 32.61 0.937 . 31.73 0.965 32.61 0.954 .	p-value mean p-value Dose1 Dose2 27.33 . 32.61 . 0.485 0.747 33.60 0.989 32.61 0.937 . 0.974 31.73 0.965 32.61 0.954 . .	p-value mean p-value Dose1 Dose2 Dose3 27.33 . 32.61 . 0.485 0.747 0.100 33.60 0.989 32.61 0.937 . 0.974 0.810 31.73 0.965 32.61 0.954 0.552 37.44 0.999 32.61 0.963	p-value mean p-value Dosel Dose2 Dose3 Dose4 27.33 . 32.61 . 0.485 0.747 0.100 . 33.60 0.989 32.61 0.937 . 0.974 0.810 . 31.73 0.965 32.61 0.954 0.552 . 37.44 0.999 32.61 0.963

SUMMARY	NOEC	LOEC
Dunnett	Dose3	>highest dose
Williams	Dose3	>highest dose

PMRA Submission Number 2004-0843

```
Mallard repro, Prothioconazole, MRID 46246044
ANALYSIS RESULTS FOR VARIABLE LE_VE ( LiveEmbryo/ViableEmbryo (%) )
TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS
Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01
Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05
Use parametric analyses if neither test rejected, otherwise non-parametric analyses.
 Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion
   Test Stat
                P-value
                               Test Stat
                                           P-value
                                 1.978
     0.633
                   <.001
                                           0.128
                                                     USE NON-PARAMETRIC TESTS
********************
BASIC SUMMARY STATISTICS
Level N Mean StdDev StdErr Coef of Var
Ctrl 14 84.64 25.03 6.69 29.57
Dosel 15 87.88 11.54 2.98 13.14
Dose2 15 90.24 5.24 1.35 5.81
Dose3 16 93.51 7.84 1.96 8.38
                                                         95% Conf.Interval
                                                          70.19,
                                                                  99.10
                                                          81.49.
                                                                   94.27
                                                          87.33,
                                                                   93.14
                                                          89.33, 97.68
                            Max %of Control(means) %Reduction(means)
100.00 . . . .
100.00 103.82 -3.82
                    Min
Level
          Median
 Ctrl
             92.78
                      0.00
                    64.10
 Dose1
             92.86
             92.50
                      77.78
                                96.67
                                           106.61
 Dose2
                                                              -6.61
 Dose3
             95.06 69.57
                               100.00
                                           110.47
                                                             -10.47
NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests
   Kruskal-Wallis test - equality among treatment groups
    Degrees of Freedom TestStat
                                  P-value
                                     0.106
          3
                           6.12
MannWhit(Bon) - testing each trt median signif. less than control
Jonckheere - test assumes dose-response relationship, testing negative trend
          Median
                      MannWhit(Bon adjust)p-value
Level
                                                   Jonckheere p-value
 Ctrl
          92.78
                                  1.000
 Dose1
          92.86
                                                          0.595
 Dose2
          92.50
                                  1.000
                                                          0.423
          95.06
                                  1.000
 Dose3
                                                         0.962
SUMMARY
                            NOEC
                                          LOEC
  MannWhit (Bonf adjust)
                           Dose3
                                           >highest dose
  Jonckheere
                            Dose3
                                           >highest dose
```

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE NH (Number Hatched)

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS
Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.984	0.633	0.523	0.668	USE PARAMETRIC TESTS

BASIC SU	ЛММ АRY	STATIS	FICS			
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval
Ctrl	15	21.20	13.44	3.47	63.42	13.75, 28.65
Dose1	15	24.67	12.49	3.23	50.65	17.75, 31.59
Dose2	15	24.87	9.68	2.50	38.93	19.51, 30.23
Dose3	16	25.75	10.57	2.64	41.06	20.12, 31.38
Level		Median	Min	Max	%of Control(means) %Reduction(means)
Ctrl		23.00	0.00	44.00	•	•
Dose1		22.00	10.00	52.00	116.35	-16.35
Dose2		27.00	7.00	38.00	117.30	-17.30
Dose3		27.50	4.00	41.00	121.46	-21.46

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 3 57 0.45 0.717

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams	Tukey p-values				
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5
Ctrl	21.20		24.15		0.846	0.823	0.698		
Dose1	24.67	0.945	24.15	0.835		1.000	0.994		
Dose2	24.87	0.951	24.15	0.864			0.997	•	•
Dose3	25.75	0.972	24.15	0.881	•	•	÷	•	•

SUMMARY NOEC LOEC

Dunnett Dose3 >highest dose
Williams Dose3 >highest dose

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE NH_EL (NumberHatched/EggsLaid (%)) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion P-value Test Stat P-value Test Stat 0.954 0.025 0.656 0.582 USE PARAMETRIC TESTS **************** BASIC SUMMARY STATISTICS Level N Mean StdDev StdErr Coef of Var 95% Conf.Interval Ctrl 14 50.65 22.44 6.00 44.31 37.69, 63.60 Dosel 15 51.82 17.69 4.57 34.14 42.02, 61.62 Dose2 15 59.05 15.07 3.89 25.52 50.70, 67.39 Dose3 16 56.00 20.48 5.12 36.57 45.08, 66.91
 Median
 Min
 Max
 % of Control (means)
 % Reduction (means)

 54.50
 0.00
 77.19
 .
 .

 47.83
 25.00
 79.31
 102.32
 -2.32

 61.54
 26.83
 86.67
 116.59
 -16.59
 Level Ctrl Dose1 Dose2 Dose3 59.79 8.33 82.61 110.56 -10.56 ****************************** PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 3 56 0.61 0.614 Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett p-value	Isotonic mean	Williams p-value	Dose1	Dose2	Tukey p- Dose3	values Dose4	Dose5
Ctrl	50.65		54.47		0.998	0.639	0.869		
Dose1	51.82	0.800	54.47	0.789	•	0.729	0.929		
Dose2	59.05	0.977	54.47	0.821			0.970	•	
Dose3	56.00	0.936	54.47	0.840	•	•			•
SUMMARY Dunne Willi	tt		NOEC Dose Dose	_	_	st dose st dose			

PMRA Submission Number 2004-0843

3

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE NH_ES (NumberHatched/EggsSet (%)) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion Test Stat P-value Test Stat P-value 0.953 0.021 0.616 0.608 USE PARAMETRIC TESTS ************************* BASIC SUMMARY STATISTICS Level N Mean StdDev StdErr Coef of Var Ctrl 14 57.34 25.49 6.81 44.46 Dosel 15 56.85 19.11 4.93 33.61 Dose2 15 65.37 16.03 4.14 24.51 Dose3 16 60.67 21.91 5.48 36.12 95% Conf.Interval 42.62, 72.06 46.27, 67.43 56.50, 74.25 48.99, 72.35 Median Min 61.78 0.00 Level Ctrl 0.00 55.00 27.78 Dose1 Dose2 70.37 28.95 86.67 114.01 -14.01 Dose3 66.31 8.89 87.23 105.81 -5.81

0.53

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests
Analysis of Variance (ANOVA) - overall F-test
Numerator df Denominator df F-stat P-value

56

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams			Tukey p-	values	
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5
Ctrl	57.34	•	60.11	•	1.000	0.729	0.972		
Dose1	56.85	0.720	60.11	0.727	•	0.679	0.956		
Dose2	65.37	0.966	60.11	0.761			0.923	•	
Dose3	60.67	0.875	60.11	0.781	•	•	•	•	•
SUMMARY Dunne Willi	tt		NOEC Dose Dose		LOEC >highes >highes				

PMRA Submission Number 2004-0843

Jonckheere

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE NH_LE (NumberHatched/LiveEmbryo (%)) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion Test Stat P-value Test Stat P-value 0.961 0.058 3.527 0.021 USE NON-PARAMETRIC TESTS ********************* BASIC SUMMARY STATISTICS Level N Mean StdDev StdErr Coef of Var Ctrl 13 77.35 14.32 3.97 18.51 Dosel 15 70.63 15.75 4.07 22.30 Dosel 15 79.40 11.60 3.00 14.61 Dosel 16 68.51 23.86 5.97 34.83 95% Conf.Interval 68.70, 86.00 79.36 61.91, 72.98, 85.83 55.79, 81.22 Max 100.00 98.11 Level Median Min Max %of Control(means) %Reduction(means) Ctrl 79.17 50.00 . 91.32 67.44 45.45 8.68 Dose1 80.43 57.89 100.00 102.66 Dose2 -2.6679.34 10.26 93.18 88.57 Dose3 NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups Degrees of Freedom TestStat P-value 2.71 0.438 MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend Level Median MannWhit(Bon adjust)p-value Jonckheere p-value Ctrl 79.17 0.336 0.102 67.44 Dose1 Dose2 80.43 1.000 0.688 79.34 1.000 Dose3 0.454 SUMMARY NOEC LOEC MannWhit (Bonf adjust) Dose3 >highest dose

Dose3

>highest dose

PMRA Submission Number 2004-0843

3

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE HS (Hatching Survival(d14))

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion

Snapiro-Wilks	Snapiro-wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.985	0.662	0.789	0.505	USE PARAMETRIC TESTS

BASIC SU	JMMARY	STATIS	TICS				
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval	
Ctrl	15	19.87	12.78	3.30	64.34	12.79, 26.95	
Dose1	15	22.47	12.57	3.25	55.95	15.51, 29.43	
Dose2	15	22.53	9.39	2.42	41.66	17.33, 27.73	
Dose3	16	22.50	10.09	2.52	44.86	17.12, 27.88	
Level		Median	Min	Max	%of Control(means) %Reduction(means)
Ctrl		23.00	0.00	41.00	<u>.</u>		
Dose1		19.00	9.00	50.00	113.09	-13.09	
Dose2		24.00	6.00	35.00	113.42	-13.42	
Dose3		22.50	3.00	40.00	113.26	-13.26	

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 57 0.21 0.892

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level Mean		Dunnett	Isotonic	Williams	Tukey p-values				
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5
Ctrl	19.87		21.85	•	0.922	0.916	0.915		
Dose1	22.47	0.917	21.85	0.770	•	1.000	1.000		
Dose2	22.53	0.920	21.85	0.803		•	1.000		
Dose3	22.50	0.921	21.85	0.823	•			•	•

SUMMARY NOEC LOEC Dunnett Dose3 >highest dose Williams Dose3 >highest dose

PMRA Submission Number 2004-0843

Mallard repro, Prothioconazole, MRID 46246044

EPA MRID Number 46246044

Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval
Ctrl	14	53.61	24.36	6.51	45.44	39.55, 67.68
Dose1	15	51.37	19.46	5.02	37.87	40.60, 62.15
Dose2	15	58.79	16.17	4.17	27.50	49.84, 67.75
Dose3	16	52.98	20.37	5.09	38.44	42.13, 63.83
Level		Median	Min	Max	%of Control (means)	%Reduction(means)
Level Ctrl		Median 59.50	Min 0.00	Max 85.42	<pre>%of Control(means)</pre>	%Reduction(means)
					,	%Reduction(means) 4.18
Ctrl		59.50	0.00	85.42	•	•
Ctrl Dosel		59.50 43.18	0.00 27.78	85.42 84.91	95.82	4.18

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests
Analysis of Variance (ANOVA) - overall F-test
Numerator df Denominator df F-stat P-value
3 56 0.38 0.769

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams		1	Tukey p-	values	
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5
Ctrl	53.61		54.61		0.991	0.901	1.000	•	
Dose1	51.37	0.625	54.61	0.639		0.747	0.996		
Dose2	58.79	0.924	54.61	0.674		•	0.854		
Dose3	52.98	0.712	52.98	0.598	•	•	•		
SUMMARY	·		NOEC		LOEC				

SUMMARY NOEC LOEC

Dunnett Dose3 >highest dose
Williams Dose3 >highest dose

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE HS_NH (HatchingSurvival/NumberHatched (%)) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion Test Stat P-value Test Stat P-value 0.890 < .001 2.096 0.111 USE NON-PARAMETRIC TESTS BASIC SUMMARY STATISTICS Level N Mean StdDev StdErr Coef of Var 95% Conf.Interval Ctrl 13 93.49 6.88 1.91 7.36 89.33, 97.65 Dosel 15 90.19 10.12 2.61 11.22 84.59, 95.79 Dose2 15 89.91 8.39 2.17 9.33 85.27, 94.56 Dose3 16 86.84 12.74 3.19 14.67 80.05, 93.63 Min Max 76.92 100.00 Level Median Max %of Control(means) %Reduction(means) 94.59 Ctrl 96.47 Dose1 90.91 66.67 100.00 3.53 91.67 100.00 96.18 Dose2 66.67 3.82 Dose3 91.55 57.89 100.00 92.89 7.11 ******************************* NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups Degrees of Freedom TestStat P-value 3 2.51 0.474 MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend Level Median MannWhit(Bon adjust)p-value Jonckheere p-value 94.59 Ctrl 0.717 Dose1 90.91 0.229 91.67 Dose2 0.286 0.105 Dose3 91.55 0.254 0.069 LOEC SUMMARY NOEC MannWhit (Bonf adjust) Dose3 >highest dose Jonckheere Dose3 >highest dose

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE THICK (Eggshell thickness) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion P-value Test Stat P-value Test Stat 0.970 0.169 0.659 0.581 USE PARAMETRIC TESTS *********************** BASIC SUMMARY STATISTICS
 Level N
 Mean
 StdDev
 StdErr
 Coef of Var
 95% Conf.Interval

 Ctrl 14
 0.37
 0.01
 0.00
 3.96
 0.36, 0.38

 Dosel 15
 0.37
 0.01
 0.00
 3.82
 0.36, 0.38

 Dose2 12
 0.37
 0.01
 0.00
 3.21
 0.36, 0.38

 Dose3 16
 0.37
 0.02
 0.00
 4.12
 0.36, 0.38

 Median
 Min
 Max
 % of Control (means)
 % Reduction (means)

 0.37
 0.35
 0.40
 .
 .

 0.37
 0.35
 0.40
 100.39
 -0.39
 Level Ctrl Dose1 100.84 Dose2 0.37 0.35 0.39 -0.84 0.38 0.35 0.40 Dose3 101.24 -1.24**************** PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 3 53 0.29 0.834

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett p-value	Isotonic mean	Williams p-value	Dosel	Dose2	Tukey p-v Dose3	values Dose4	Dose5
Ctrl	0.37		0.37		0.993	0.945	0.817		
Dose1	0.37	0.836	0.37	0.755		0.990	0.928		
Dose2	0.37	0.904	0.37	0.780			0.993		
Dose3	0.37	0.952	0.37	0.808		•			•
SUMMARY Dunne Willi	tt		NOEC Dose Dose	_	_	st dose st dose			

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE HATWT (Hatchling Weight)

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Snapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.982	0.510	0.192	0.901	USE PARAMETRIC TESTS

BASIC SU	MMARY	STATIST	rics				
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval	
Ctrl	13	36.52	2.43	0.67	6.65	35.05, 37.98	
Dose1	15	37.34	2.41	0.62	6.44	36.01, 38.67	
Dose2	15	36.61	2.72	0.70	7.42	35.11, 38.12	
Dose3	16	37.27	2.22	0.56	5.97	36.08, 38.45	
Level]	Median	Min	Max	%of Control(means)	%Reduction(means)	
Ctrl		36.80	31.90	41.10	•	•	
Dose1		37.10	33.60	41.20	102.26	-2.26	
		5,.10	33.00	41.40	102.20	-4.20	
Dose2		36.90	31.30	41.00	100.27	-0.27	
Dose2 Dose3							

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests
Analysis of Variance (ANOVA) - overall F-test

Numerator df Denominator df F-stat P-value 3 55 0.45 0.719

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level Mean		Dunnett	Isotonic	Williams	Tukey p-values					
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5	
Ctrl	36.52		36.96		0.810	1.000	0.843			
Dose1	37.34	0.949	36.96	0.769	•	0.848	1.000			
Dose2	36.61	0.776	36.95	0.799			0.878			
Dose3	37.27	0.941	36.95	0.819	•	•	•		•	
~	_									

SUMMARY	NOEC	LOEC
Dunnett	Dose3	>highest dose
Williams	Dose3	>highest dose

PMRA Submission Number 2004-0843

SUMMARY

Dunnett

Williams

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE SURVWT (Survivor Wt (d14)) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Conclusion Test Stat P-value Test Stat P-value 0.972 0.1941.526 0.218 USE PARAMETRIC TESTS ***************** BASIC SUMMARY STATISTICS StdErr Coef of Var Level N Ctrl 13 95% Conf.Interval Mean StdDev Dosel 15 144.53 13.30 3.43 Dosel 15 142.07 16.03 4.14 Dosel 16 147.50 10.74 2.68 11.16 137.95, 157.90 9.20 137.17, 151.90 133.19, 150.95 11.29 7.28 141.78, 153.22 Median Min Max 146.00 125.00 183.00 Level Max %of Control(means) %Reduction(means) Ctrl 97.71 2.29 Dose1 143.00 130.00 175.00 143.00 117.00 Dose2 172.00 96.04 3.96 Dose3 147.50 125.00 167.00 99.71 0.29 ************************* PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 55 3 0.55 0.652 Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC Dunnett Isotonic Williams Mean Tukey p-values p-value mean p-value Dose1 Dose2 Dose3 Dose4 Dose5 Ctrl 147.92 147.92 0.922 0.698 1.000 Dosel 144.53 0.473 144.76 • 0.964 0.937 0.334 Dose2 142.07 0.283 144.76 0.357 0.712 . . Dose3 147.50 0.709 144.76 0.366

NOEC

Dose3

Dose3

LOEC

>highest dose

>highest dose

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE FOOD (Food Consumption)

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05
Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion

-	t Stat		pilo-wilks -value	Test Stat	P-value	Conclusion
0	.992		0.954	1.196	0.319	USE PARAMETRIC TESTS
*****	****	*****	****	*****	*****	*******
BASIC S	UMMARY	ZITATE	TICS			
Level	N	Mean	StdDev	StdErr	Coef of Vai	r 95% Conf.Interval
Ctrl	15	115.27	23.01	5.94	19.96	102.52, 128.01
Dose1	15	106.80	14.19	3.66	13.29	98.94, 114.66
Dose2	15	116.53	15.22	3.93	13.06	108.10, 124.96
Dose3	16	126.06	20.09	5.02	15.93	115.36, 136.77

Level %of Control(means) Median Min Max %Reduction(means) 117.00 73.00 161.00 Ctrl 92.65 7.35 105.00 85.00 138.00 Dose1 101.10 Dose2 121.00 83.00 140.00 -1.10 Dose3 127.00 89.00 161.00 109.37 -9.37

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Analysis of Variance (ANOVA) - overall F-test

Numerator df Denominator df F-stat P-value 3 57 2.82 0.047

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams	Tukey p-values				
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5
Ctrl	115.27		116.33		0.596	0.998	0.374		
Dose1	106.80	0.231	116.33	0.649	•	0.480	0.027	•	
Dose2	116.53	0.811	116.33	0.684	•	•	0.485		
Dose3	126.06	0.994	116.33	0.704					•

SUMMARY	NOEC	LOEC
Dunnett	Dose3	>highest dose
Williams	Dose3	>highest dose

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044 ANALYSIS RESULTS FOR VARIABLE WTGAINM (Male wt gain)

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

					rejected, ot.			metric analy	yses
_			-		Levenes		lusion		
					at P-value				
0.	969		0.125	1.115	0.350	USE	PARAMETRI	C TESTS	
							•		
******	*****	*****	*****	******	******	*****	*****	*****	*
BASIC SU	JMMARY	STATIS	TICS						
Level	N	Mean	StdDev	StdErr	Coef of '	Var	95% Conf.	Interval	
Ctrl	15	59.13	88.40	22.82	149.49		10.18,	108.09	
Dose1	15	75.40	58.32	15.06	77.34		43.11,	107.69	
Dose2	15	76.13	98.47	25.42	129.33		21.60.		
					123.37		24.86,	120.27	
Level	М	edian	Min	Max	%of Control	(means)	%Reduc	tion(means)	
Ctrl		68.00	-63.00	220.00		, ,			
Dose1		91.00	-6.00	194.00	127.51		-27.	51	
Dose2		54.00	-55.00	280.00	128.75		-28.	75	
Dose3		72.50	-66.00	222.00	122.71		-22.	71	
*****	*****	*****	*****	*****	*****	*****	*****	*****	*
			- use al ance (ANOVA		=0.05 for al	l tests			
Nun	erator	df	Denominato	r df F-	-stat	P-value			
	3		57			0.942			

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Mean	Dunnett	Įsotonic	Williams	Tukey p-values					
	p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5	
59.13		70.84		0.953	0.947	0.971			
75.40	0.897	70.84	0.734	•	1.000	1.000			
76.13	0.902	70.84	0.768			0.999			
72.56	0.879	70.84	0.788	•	•	•	•	•	
tt .ams				_					
	75.40 76.13 72.56	p-value 59.13 . 75.40 0.897 76.13 0.902 72.56 0.879	p-value mean 59.13 . 70.84 75.40 0.897 70.84 76.13 0.902 70.84 72.56 0.879 70.84 NOEC Dose	p-value mean p-value 59.13 . 70.84 . 75.40 0.897 70.84 0.734 76.13 0.902 70.84 0.768 72.56 0.879 70.84 0.788 NOEC Dose3	p-value mean p-value Dose1 59.13 . 70.84 . 0.953 75.40 0.897 70.84 0.734 . 76.13 0.902 70.84 0.768 . 72.56 0.879 70.84 0.788 . NOEC LOEC Dose3 >highe	p-value mean p-value Dose1 Dose2 59.13 . 70.84 . 0.953 0.947 75.40 0.897 70.84 0.734 . 1.000 76.13 0.902 70.84 0.768 72.56 0.879 70.84 0.788 NOEC LOEC Dose3 LOEC >highest dose	p-value mean p-value Dose1 Dose2 Dose3 59.13 . 70.84 . 0.953 0.947 0.971 75.40 0.897 70.84 0.734 . 1.000 1.000 76.13 0.902 70.84 0.768 0.999 72.56 0.879 70.84 0.788 NOEC LOEC Dose3 >highest dose	p-value mean p-value Dose1 Dose2 Dose3 Dose4 59.13 . 70.84 . 0.953 0.947 0.971 . 75.40 0.897 70.84 0.734 . 1.000 1.000 . 76.13 0.902 70.84 0.768 0.999 . 72.56 0.879 70.84 0.788 NOEC LOEC Dose3 >highest dose	

PMRA Submission Number 2004-0843

3

EPA MRID Number 46246044

Mallard repro, Prothioconazole, MRID 46246044
ANALYSIS RESULTS FOR VARIABLE WTGAINF (Female wt gain)

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS
Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01
Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05
Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.978	0.343	0.432	0.731	USE PARAMETRIC TESTS

BASIC SUMM	ARY STATIS	TICS			
Level N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval
Ctrl 15	143.80	98.77	25.50	68.69	89.10, 198.50
Dosel 15	156.73	131.48	33.95	83.89	83.92, 229.55
Dose2 15	93.60	96.48	24.91	103.07	40.17, 147.03
Dose3 16	125.75	104.23	26.06	82.88	70.21, 181.29
Level	Median	Min	Max	%of Control(means)	%Reduction(means)
Level Ctrl	Median 163.00	Min -26.00	Max 287.00	% of Control (means)	%Reduction(means)
				%of Control(means) 108.99	<pre>%Reduction(means)8.99</pre>
Ctrl	163.00	-26.00	287.00	•	•
Ctrl Dose1	163.00 156.00	-26.00 -140.00	287.00 421.00	108.99	-8.99

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests
Analysis of Variance (ANOVA) - overall F-test
Numerator df Denominator df F-stat P-value

57

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams	Tukey p-values					
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5	
Ctrl	143.80		150.27		0.988	0.588	0.967			
Dose1	156.73	0.851	150.27	0.652		0.391	0.857	•		
Dose2	93.60	0.227	110.19	0.256			0.843	•		
Dose3	125.75	0.558	110.19	0.260	•	٠	•	•	•	
CIBOAND	3.7		MORG		TORG					

0.95

0.421

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

EAD Assessment of USEPA DER

Reviewer: Émilie Larivière (#1269); PMRA Date: October 14, 2005

PMRA Submission Number: 2004-0843

Study Type: Avian Reproduction - Mallard Duck

Frieling, W.J.A.M. 2000. Reproduction Study in Mallard Duck with JAU 6476 (By Dietary Admixture). Unpublished study performed by NOTOX B.V., DD's-Hertogenbosch, The Netherlands. Laboratory Project No. 259919. Study sponsored by Bayer AG, Leverkusen, Germany. Study initiated September September 23, 1999 and completed November 7, 2000.

PMRA DATA CODE: 9.6.3.2 EPA DP Barcode: D303488 OECD Data Point: IIA 8.1.4 EPA MRID: 46246044 EPA Guideline: §71-4b

Reviewing Agency: US EPA

EAD Executive Summary:

The one-generation reproductive toxicity of JAU 6476 Technical (prothioconazole; purity 98.7 and 96.1%) to groups (16 pens/treatment level) of 1 male and 1 female of 7-month old mallard ducks (*Anas platyrhynchos*) was assessed over approximately 21 weeks. The study followed OECD Guideline 206 and U.S. EPA CFR 40, Part 797.2130 (1991), §71-4 (1982) and OPPTS, Series 850.2300 (*draft*, 1996) and was in compliance with OECD Principles of GLP. Prothioconazole was administered to the birds in the diet at mean measured concentrations of <LOD (negative control), 248, 698, and 1978 mg a.i./kg diet. Nominal concentrations were 0, 245, 700, and 2000 mg a.i./kg diet.

There were no significant treatment-related effects on any adult parameter. In addition, no treatment-related effects were observed on egg production or quality, fertility, early embryonic development, hatching success, or clinical effects or body weights of chicks during the 14-day observation period.

Study author reported results indicated that late embryo survival (after 21 days) was affected by treatment at the 1978 mg a.i./kg diet level, based on a statistically-significant reduction in the percentage of post 21-day embryonic deaths of fertile eggs (28.9 versus 20.9% for the control group). Chick survival was also affected at the 1978 mg a.i./kg diet level, based on a statistically-

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

significant reduction in the percentage of 14-day old survivors of normal hatchlings (87.4 versus 92.9% for the control group). However, re-analysis of the data by the EPA reviewer indicate that these results may be inaccurate since they were based on parametric analyses without meeting the necessary assumptions. EAD-reviewer parametric statistical analyses using arcsin square root transformed data showed no significant differences between treatments. EPA and EAD reviewer-calculated statistics indicate no significant effects of prothioconazole on hatchling survival at any treatment level. The NOEC is therefore set at 1978 mg a.i./kg diet.

Results Synopsis

Test Organism Size/Age: Approximately 7 months old at test initiation (834-1301 g)

NOEC: 1978 mg a.i./kg diet LOEC: > 1978 mg a.i./kg diet Endpoint(s) Affected: None.

Evaluator Comments:

- 1. The appropriate PMRA information (PMRA Submission Number, PMRA Data Code, PMRA company code, PMRA active ingredient code, PMRA use site category, OECD data point, name of PMRA secondary reviewer) was added to the EPA-DER as well as information on the chemical name (IUPAC name and synonym) available from the PMRA Chemistry review.
- 2. The validity criteria according to OECD Guideline 206 and U.S. EPA OPPTS 850.2300 are met. Mortality in the controls was less than 10%; the average number of 14-day old survivors per hen in the controls was 19.8, greater than the criteria of 14 of the OECD and 10 of the U.S. EPA guidelines; the average eggshell thickness for the control group was greater than 0.34 mm.
- 3. The maximum expected field residue level was not provided, however, the highest level tested was at an appropriate level to approximate field exposure for this species based on currently proposed uses. In addition, OECD Guideline 206 recommends a maximum test concentration of 1000 ppm.
- 4.The EAD reviewer verified the statistical analyses for the survival of 14 day hatchlings related to the number of eggs hatched, as well as for the post 21 day embryonic death of fertile eggs and obtained no significant differences between treatments, contrary to the results of the study author. These data were arcsin square root transformed prior to running an ANOVA. Data from dead birds were not included in the analyses. Assumptions of homogeneity of variance and normality were met. The lack of significant differences is also supported by results for other incubation parameters (fertile eggs, early and late embryonic death) which were more favourable at the 1978

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

mg a.i./kg level compared to the other levels, including the control group. The EAD reviewer agrees with the EPA reviewer that the NOEC should be set at 1978 mg a.i./kg diet. The EAD reviewer reviewed the data for the other endpoints and did not feel that redoing other statistical analyses was warranted.

5. The EAD reviewer agrees with the conclusions of the EPA reviewer.

Study Acceptability: This study is scientifically sound, fulfills guideline requirements for the reproductive toxicity of prothioconazole to Mallard duck, and is classified as ACCEPTABLE.

Statistical analyses of the EAD reviewer.

Arcsin transformed data

post 21 d death of fertile eggs (%) (data from dead birds removed)

One Way Analysis of Variance Friday, October 14, 2005, 13:48:06

Data source: Data 1 in Notebook

Normality Test: Passed (P > 0.200)

Equal Variance Test: Passed (P = 0.734)

Group Name	N	Missing	Mean	Std Dev	SEM
control	14	0	23.219	12.964	3.465
245 mg/kg	15	0	28.181	10.865	2.805
700 mg/kg	15	0	23.945	9.571	2.471
2000 mg/kg	16	0	31.630	14.390	3.597

Source of Variation DF SS MS F P
Between Groups 3 703.229 234.410 1.596 0.201

Residual 56 8225.942 146.892

Total 59 8929.172

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.201).

Power of performed test with alpha = 0.050: 0.161

The power of the performed test (0.161) is below the desired power of 0.800. You should interpret the negative findings cautiously.

Arcsin transformed data

14 day survivors of fertile eggs (%) (data from dead birds removed)

One Way Analysis of Variance Friday, October 14, 2005, 13:49:05

Data source: Data 1 in Notebook

Normality Test: Passed (P > 0.200)

Equal Variance Test: Passed (P = 0.684)

Group Name N Missing Mean Std Dev SEM control 14 1 78.160 9.534 2.644 245 mg/kg 15 0 74.531 10.721 2.768

PMRA Submission Number 2004-0843

EPA MRID Number 46246044

700 mg/kg	15	U	73.3	89 9.032	2.332	
2000 mg/kg	16	0	71.4	47 11.819	2.955	
Source of Variat	ion	DF	SS	MS	F	P
Between Groups		3	336.633	112.21	1.039	0.382
Residual		55	5937.394	107.95	53	
Total		58	6274.027	'		

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.382).

Power of performed test with alpha = 0.050: 0.056

The power of the performed test (0.056) is below the desired power of 0.800.

You should interpret the negative findings cautiously.