DATA EVALUATION RECORD

- 1. CHEMICAL: Metolachlor (108801)
- 2. FORMULATION: Technical
- 3. CITATION: Vilkas, A.G. (1976) Acute Toxicity of CGA-24705
 Technical to the Water Flea Daphnia magna,
 Received Nov. 23, 1976 under 100-587. (Unpublished report prepared by Aquatic Environmental Sciences, Union Carbide Corp. for CIBA-GERGY Corp., Greensboro, N.C.: CDL: 226955-C)
- 4. REASON FOR REVIEW: Generic Standard for Metolachle.
- 5. REVIEWED BY: H.T. Craven Homy Biologist

 Efficacy and Ecological Effects Branch registration Division
- 6. DATE REVIEWED: 2/2/78
- 7. TEST TYPE: Freshwater aquatic invertebrate acute 48 hr.
 - A. TEST ID: ES HI
 - B. TEST SPECIES: Daphnia magna Stanus
 - C. TEST MATERIAL: Technical Metolachlor
 - D. REPORTED RESULTS

The 48 hr. LC_{50} to \underline{D} . Magna is 25.1 (21.6-29.2) rg/1 (ppm). The 48 hr. no effect level was observed to be 5.6 mg/1 (ppm).

E. COMMENTS

The study is scientifically sound and with an \mathcal{C}_{50} of 25.1 ppm metolachlor is slightly toxic to equation invertebrates. The study does fulfill the requirement for an aquatic invertebrate acute \mathcal{LC}_{50} .

MATERIALS AND METHODS

- A. Five test levels ranging from 5.6 to 56 mg/l and two controls (acetone and acetone free) were established. Protocol followed that recommded by U.S. EPA (1975).
- B. Statistical analysis: The LC_{50} values were calculated according to Thompson (1947).

DISCUSSION/RESULTS

No mortality occurred in any of the four replicates for each of the two controls throughout the test nor in the two lower dosage levels - 5.6 and 10.0 ppm - during the first 24 hours. After 48 hours 5% mortality occurred at 10.0 ppm. The no effect level was reported as 5.6 ppm. The 48 hour LC_{50} with 95% C.L. was 25.1 (21.6-29.2) ppm.

REVIEWER'S EVALUATION

A. Test Procedure

The test complies with the recommended EPA protocol (1975).

B. Statistical Analysis

The Environmental Safety section determined that the testing facility performed a modified Thompson (1947) by discarding the lowest dosage level to make K=3 to calculate an f value. The result of this revision yielded a 48 hr. LC_{50} of 25.7 ppm. Further confirmation of the 48 hr. LC_{50} value was done by Finney probit (see copy of printout). Probit analysis produced an LC_{50} with 95% C.L. of 24.9 (21.4-29.1) ppm.

- C. Validation
 - 1. Category: Core

COMMENTS

The study is scientifically sound and with an LC $_{\!\!\!0}$ of 25.1 ppm is slightly toxic to aquatic invertebrates. The study does fulfill the requirement for an aquatic invertebrate acute LC $_{\!\!\!0}$.

MATERIALS AND METHODS

- A. Five test levels ranging from 5.6 to 56 mg/l and two controls (acetone and acetone free) were established. Protocol followed that recommended by U.S. EPA (1975).
- B. Statistical analysis: The LC_{50} values were calculated according to Thompson (1947).

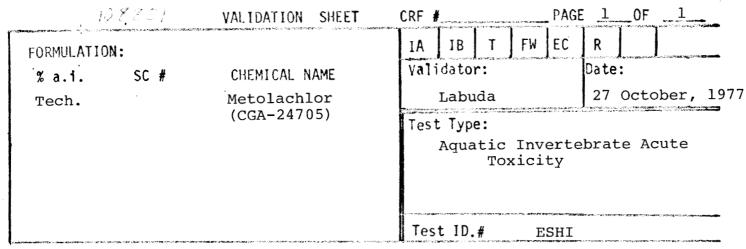
DISCUSSION/RESULTS

No mortality occurred in any of the four replicates for each of the two controls throughout the test nor in the two lower dosage levels - 5.6 and 10.0 ppm - during the first 24 hours. After 48 hours 5% mortality occurred at 10.0 ppm. The no effect level was reported as 5.6 ppm. The 48 hour LC_{50} with 95% C.L. was 25.1 (21.6-29.2) ppm.

REVIEWER'S EVALUATION

- A. Test Procedure
- The test complies with the recommended EPA protocol (1975).

 B. Statistical Analysis


 Validation
 - 1. Category: Core

CONCLUSIONS

The study is scientifically sound and with an LC $_{50}$ of 25.1 ppm is slightly toxic to aquatic invertebrates. The study does fulfill the requirement for an aquatic invertebrate acute LC $_{50}$.

The Eminomental Defety sectioned determined took the testing facility performed a modified Thompson (1947) by discarding the lowest doorge level to make K=3 to calculate an of value. The newself of this revision yielded a 48 hr. hCso of 25.7ppm. Stutter confirmation of the 48 hr. hCso value was done by Firmsy Problet (see copy of print, out). Prolit amblysic produced an hCso! with 956 C.h. of 24.9 (21.4-29.1) ppm.

methoden Captina Shot 78 (0. 476) 151 204 2429531 <u>2</u>1.986. 29.115. *** 15.151 11.930 19,241 LD10 LOCE UPÇE **41**2058 32,431 52,050 TOCT FD40 UPCL

CITATION:

Aquatic Environemntal Sciences

Union Carbide Corporation

Tarrytown, New York 26 May, 1976

"Acute Toxicity of CGA-24705 Technical to the Water Flea

(Daphnia magna)"

RESULTS:

 $24-hr. LC_{50} > 32.0 mg/1$

48-hr. $LC_{50} = 25.1 \text{ mg/1 } (21.6-29.2)*$

48-hr. no effect level = 5.6 mg/l

* 95% Confidence Interval.

VALIDATION CATEGORY: Core

VALIDATION CATEGORY RATIONALE: N.A.

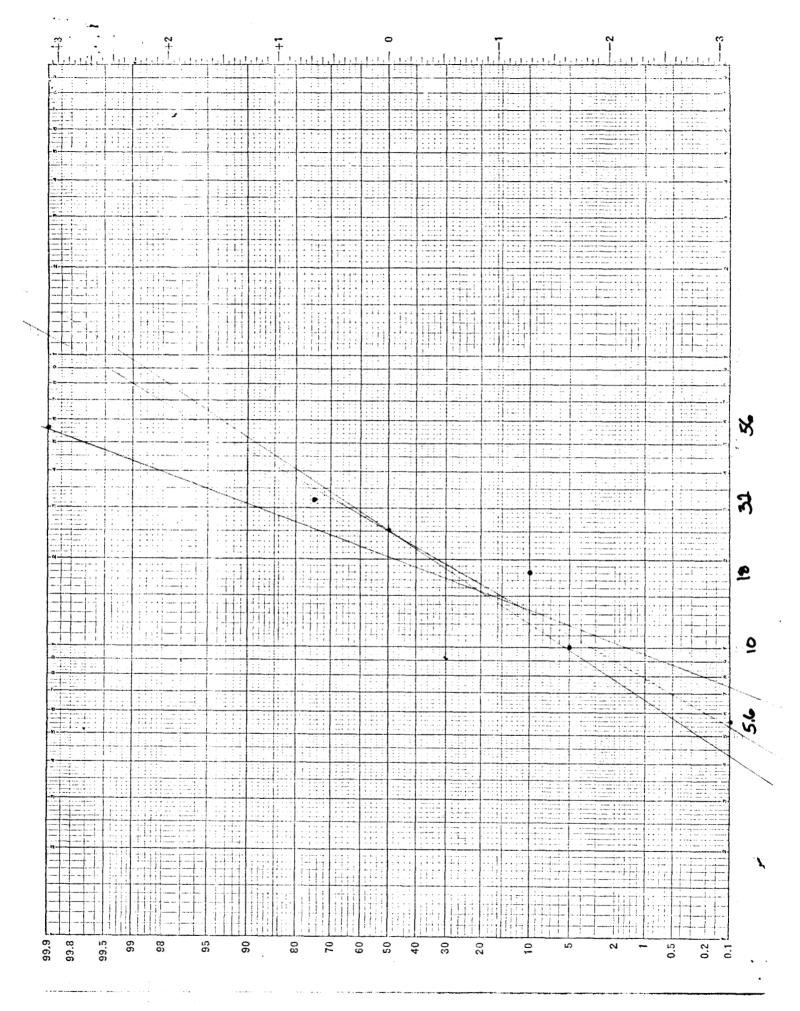
CATEGORY REPAIRABILITY/RATIONALE:

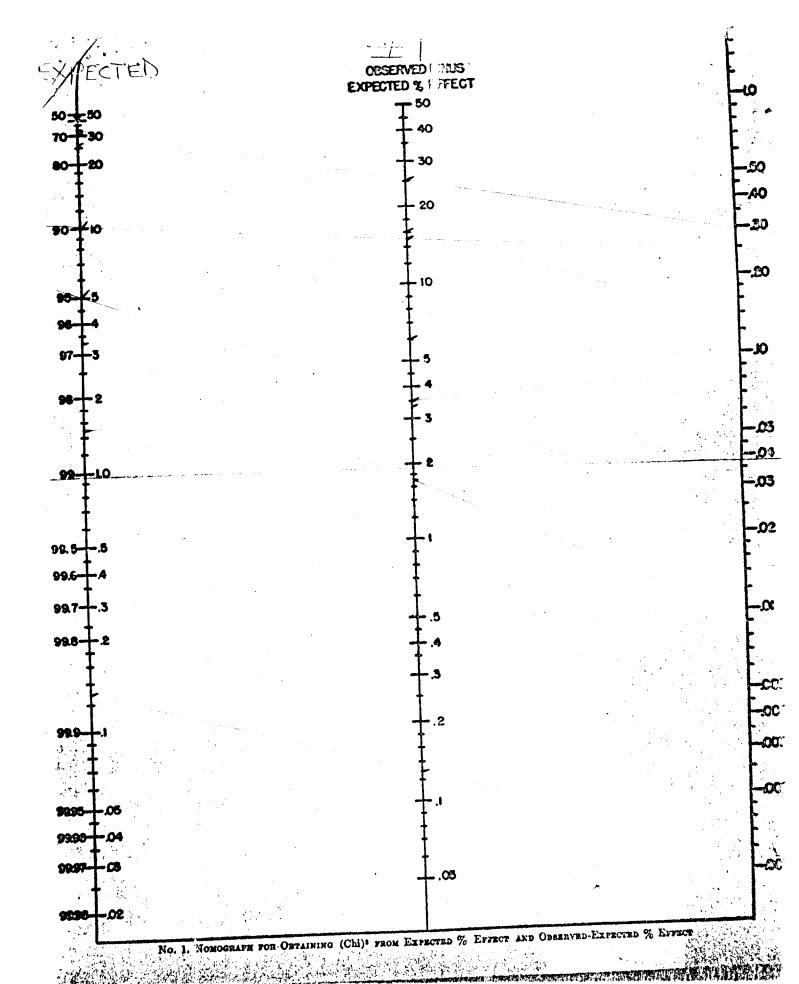
Data Evaluation Record

1. CHEMICAL: Metobachlor (108801)

2. FORMULATION: Technical

- 3. CITATION: Vilkas, A.G.; (1976) Acute toxicity of CGA-24705 technical to the water flea <u>Daphnia magna</u> Straus. Aquatic Environmental Sciences. Received 11/76 under 100-LIT. (Unpublished report prepared by Ciba-Geigy Corp. Greensboro NC (226955).
- 4. REASON FOR REVIEW: Generic Standard for Metabachlor
- 5. REVIEWED BY: H.T. Craven
 Biologist
 Efficacy and Ecological Effects Branch
 Registration Division
- 6. DATA REVIEWED: 2/2/78
- 7. TEST TYPE: Fresh water aquatic invertebrate acute 48 hr.
- 🧥 TEST ID: ES HI
- 6. TEST SPECIES: Daphnia magna Straus
- Comparison TEST MATERIAL: CGA Technical (**)
- (). REPORTED RESULTS


The 48 hr LC $_{50}$ to <u>D. magna</u> is 25.1 (21.6-29.2) mg/l (ppm). The 48 hr. no effect level was observed to be 5.6 mg/l (ppm).


F. SUMMARY OF CONCLUSIONS

rictalization

The study is scientifically sound and with an LC_{50} of 25.1 ppm $_{\Lambda}$ is slightly toxic to aquatic invertebrates. The study does fulfill the requirements) for an aquatic invertebrate acute LC_{50} .

st Species Daph ource / ob	Analysi	is by: A.G. Vik	$\frac{3}{6} \frac{P(3)}{\text{Tit}}$	le)	-2. -2. No. (Date)
Concentration	No. dead/ /No. tested	Observed %	Expected & Mortallity	0-25	to Chi(Nomo #
16.6007		10. (48.8)	95 69	3.4	0,0235
- 12.5) = -	7.5	26	16	0,132
10 m			3.3	1.7 C.13	0.6090
- · · · · · · · · · · · · · · · · · · ·	3/2:		0.13	-	
tal Fish Tested	=		Total	-	0,1829 =
mber of Doses (K) ==	Chi2= Total	Cont. X Total	<u>. 1000</u> X	= <u> </u>
grees of freedom	(K-5) = 3	Chi ² (p=.05)	for 🖟 deg	ng of fr	reedom = 7.8°
• • • • • • • • • • • • • • • • • • • •		,,			
DETERMINE fLC_5 LC_{84} LC_{50} LC_{16} $fLC_{50} = S^2 \cdot 77/$			/IC50 4 LC50/ 2 used between 2) =		
LC_{8l_4} LC_{50} LC_{16} $fLC_{50} = S^2 \cdot 77/$ DETERMINE fS:	√N' = S llest dose plotted ed above)	N'(Fish √N' = (Nomo. #a	used hetweer		
LC ₈₄ LC ₅₀ LC ₁₆ fLC ₅₀ = S ^{2.77} / DETERMINE fS: R (Largest/Sna S (As determine)	√N' = S llest dose plotted ed above)	N'(Fish √N' = (Nomo. #a	used betweer.		
LC84 LC50 LC16 fLC50 = S ^{2.77} / DETERMINE fS: R (Largest/Sma S (As determin A (Nomo. #3 us fS = A ^{10(K-1)} /	llest dose plotted ed above) ing R and S) $K^{VII'} = A$	N'(Fish.	used betweer.		
LC ₈ h _L LC ₅ O LC ₁ 6 fLC ₅ O = S ^{2.77} / DETERMINE fS: R (Largest/Smas (As determina A (Nomo. #3 us) fS = A ^{10(K-1)} / DETERMINE fLC _y	llest dose plotted ed above) ing R and S) KVII' = A	N'(Fish VN' = (Nono. %	used between () =		
LC ₈₄ LC ₅₀ LC ₁₆ fLC ₅₀ = S ^{2.77} / DETERMINE fS: R (Largest/Smas (As determina A (Nomo. #3 us) fS = A ^{10(K-1)} / DETERMINE fLC _y	llest dose plotted ed above) ing R and S) $K^{VII'} = A$	N'(Fish VN' = (Nono. %	used between () =		
LC84 LC50 LC16 fLC50 = S ^{2.77} / DETERMINE fS: R (Largest/Sna S (As determina A (Nomo. #3 us fS = A ^{10(K-1)} / DETERMINE fLCy (fS) ^X = fS ^{2.33}	llest dose plotted ed above) ing R and S) KVII' = A i or 1.30 (Table 3	N'(Fish VN' = (Nomo. //2) =	used between () =		
LC84 LC50 LC16 fLC50 = S ^{2.77} / DETERMINE fS: R (Largest/Sma S (As determin A (Nomo. #3 us fS = A ^{10(K-1)} / DETERMINE fLCy (fS) ^X = fS ^{2.33}	llest dose plotted ed above) ing R and S) KVII' = A i or 1.30 (Table 3 using (fS) and f	N'(Fish N' = (Nomo. #2) = LC50) =	used between () =		
LC84 LC50 LC16 fLC50 = S ^{2.77} / DETERMINE fS: R (Largest/Sma S (As determin A (Nomo. #3 us fS = A ^{10(K-1)} / DETERMINE fLCy (fS) ^X = fS ^{2.33}	llest dose plotted ed above) ing R and S) KVII' = A i or 1.30 (Table 3	N'(Fish N' = (Nomo. #2) = LC50) =	used between () =		
LC84 LC50 LC16 fLC50 = S ^{2.77} / DETERMINE fS: R (Largest/Sma S (As determin A (Nomo. #3 us fS = A ^{10(K-1)} / DETERMINE fLCy (fS) ^X = fS ^{2.33}	llest dose plotted ed above) ing R and S) KVII' = A i or 1.30 (Table 3 using (fS) and f	N'(Fish N' Fish N' E N' E N' E Nomo Nomo Nomo Nomo Nomo Nomo E N' E N'	used between () =	lóß an	id පිසින් E) =

