### TEXT SEARCHABLE DOCUMENT

Data Evaluation Report on the Acute Toxicity of Pyroxsulam (XDE-742) Technical to Freshwater Diatom, *Navicula pelliculosa* 

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-xx APVMA ATS 40362

[A1][A2]

Data Requirement:

PMRA DATA CODE

Fresh water algae: 9.8.2

EPA DP Barcode

D332116 201

OECD Data Point EPA Guideline

850.5400 (123-2)

Test material:

Pyroxsulam (provisionally approved, ISO 175, Compendium of Pesticide Common

Names, http://www.alanwood.net/pesticides/pyroxsulam.html) or XDE-742

Purity: 98%

Common name:

XR-742 (i.e. XDE-742 or pyroxsulam)

Chemical name:

3-pyridinesulfonamide, N-(5,7-dimethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-

methoxy-4-(trifluoromethyl).

IUPAC:

N-(5,7-dimethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-methoxy-4-

(trifluoromethyl)pyridine-3-sulfonamide

CAS name:

N-(5,7-dimethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-methoxy-4-

(trifluoromethyl)-3-pyridinesulfonamide

CAS No.: Synonyms: 422556-08-9 X666742

**Chemical Structure:** 

H<sub>9</sub>C O CH<sub>9</sub>

**Primary Reviewers:** 

Daryl Murphy/David McAdam

Date:

11 May 2007

Australian Government Department of the Environment, Water, Heritage and the Arts (DEW

**Secondary Reviewers:** 

Phil Sinclair/Jack Holland-

Date: 14 May 2007

Australian Government Department of the Environment, Water, Hentage and the Arts

Émilie Larivière (#1269)

**Date:** 14 June 2007

05/03/08

Environmental Assessment Directorate, PMRA Curille Paris

Christopher Salice

Date: 8 July 2007

Environmental Protection Agency, Environmental Fate and Effects Division

Company Code Active Code DWE

Use Site Category:

JUA 13, 14

EPA PC Code

108702

<u>CITATION</u>: Hoberg, J. R. 2005. XDE-742 - Growth inhibition test with freshwater diatom (*Navicula pelliculosa*). Springborn Smithers Laboratories, 790 Main Street, Wareham, Massachusetts. Springborn Smithers Study No. 12550.6367, Sponsor Protocol/Project No. 050283. The Dow Chemical Company, Midland, Michigan 48674 for Dow AgroSciences Indianapolis, Indiana 46268. 14 June 2005. Unpublished report.



PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

**Data Requirement:** 

PMRA DATA CODE

Fresh water algae: 9.8.2

EPA DP Barcode

D332116

**OECD Data Point** 

201

EPA Guideline

850.5400 (123-2)

Test material:

Pyroxsulam (provisionally approved, ISO 175, Compendium of Pesticide Common

Names, http://www.alanwood.net/pesticides/pyroxsulam.html) or XDE-742

Purity: 98%

Common name:

XR-742 (i.e. XDE-742 or pyroxsulam)

Chemical name:

3-pyridinesulfonamide, N-(5,7-dimethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-

methoxy-4-(trifluoromethyl).

**IUPAC**:

N-(5,7-dimethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-methoxy-4-

(trifluoromethyl)pyridine-3-sulfonamide

CAS name:

N-(5,7-dimethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-methoxy-4-

(trifluoromethyl)-3-pyridinesulfonamide

CAS No.:

422556-08-9

Synonyms:

X666742

### **Chemical Structure:**

**Primary Reviewers:** 

Daryl Murphy/David McAdam

**Date:** 11 May 2007

Australian Government Department of the Environment and Water Resources

Secondary Reviewers:

Phil Sinclair/Jack Holland

Date:

14 May 2007

Australian Government Department of the Environment and Water Resources

Émilie Larivière (#1269)

Date:

14 June 2007

Environmental Assessment Directorate, PMRA

Christopher Salice

Date:

6 July, 2007

Environmental Protection Agency, Environmental Fate and Effects Division

**Company Code** 

**DWE** 

Active Code

JUA

**Use Site Category:** 

13, 14

**EPA PC Code** 

108702

<u>CITATION</u>: Hoberg, J. R. 2005. XDE-742 - Growth inhibition test with freshwater diatom (*Navicula pelliculosa*). Springborn Smithers Laboratories, 790 Main Street, Wareham, Massachusetts. Springborn Smithers Study No. 12550.6367, Sponsor Protocol/Project No. 050283. The Dow Chemical Company, Midland, Michigan 48674 for Dow AgroSciences Indianapolis, Indiana 46268. 14 June 2005. Unpublished report.

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

### **EXECUTIVE SUMMARY:**

The purpose of this study was to determine the effect of pyroxsulam on the growth of the freshwater diatom, *Navicula pelliculosa*. Cultures of *Navicula pelliculosa* were exposed to nominal concentrations of 0.10, 0.26, 0.64, 1.6, 4.0, 10 mg pyroxsulam/L (0.10, 0.29, 0.67, 1.7, 4.0, 10 mg pyroxsulam/L (measured)) under static conditions.

Treatment and the medium control groups were set in triplicate, with an initial cell density of approximately 10,000 cells/mL. The reason for not using four replicates, as required by the US guideline is not known. This is both a deviation and deficiency and reduces the sensitivity and reliability of the study. The temperature was  $23^{\circ}$ C during the test period with continuous illumination at 3200 to 5400 lux. The pH of the test and control solutions ranged from 6.8 to 7.1 at test initiation. At test termination, the test solution pH values in the control, solvent control, 0.10 and 10 mg pyroxsulam/L treatment levels were unchanged. The pH in the mid-level treatment range (0.26 to 4.0 mg pyroxsulam/L) increased to a range of 7.3 to 9.2, reported as common in static algal cultures due to photosynthesis by the algae. Conductivity measured at test initiation and termination in the treatment and control solutions was 100 µmhos/cm. Modifications to the AAP medium were identified as necessary for the correct growth of the *Navicula pelliculosa*. While the modifications are clear, the concentration of sodium selenate used  $(1.88 \,\mu\text{g/L})$  is significantly greater than that allowed according to the OECD 201 description of the AAP medium (namely  $\sim 0.007 \,\mu\text{g/L}$ ).

At 24-hour intervals, cell counts were conducted on each replicate vessel of the treatment levels and the controls. Observations of the health of the algal cells were also made at each 24-hour interval. Due to the tendency of *Navicula pelliculosa* cells to clump, the solutions were vigorously pipetted multiple times to disperse clumped cells and achieve a homogeneous suspension prior to removing a sample for cell counts. However, the success of vigorous, multiple pipetting in breaking up the aggregates/filaments is not known and the pipetting procedure is not considered to have shown to be acceptable; indeed US EPA 850.5400 specifically states that "Sonification, ultrasonic bath, blender, syringe, or any other methods of cell separation, other than manual or rotary shaking are not allowed for *Selenastrum*, *Skeletonema*, or *Navicula*."

The OECD 201 guideline's stating that the concentration series should preferably cover the range causing 5-75% inhibition of algal growth rate was not met. There was >90% inhibition at the highest concentration (10 mg/L) with respect to cell density, specific growth rate and biomass but growth stimulation was observed at all other concentrations. Whereas sustained exponential growth was achieved in the negative control and most treatments, this was not the case in the solvent control where cell density fell between 72 and 96 hours and had barely recovered to the 72 hour level at 120 hours.

This study is classified as **INVALID** because of uncertainties relating to the successful disruption of aggregates/filaments of the *Navicula pelliculosa*, the use of a smaller number of replicates than required by the US EPA, the lack of inhibitory effects at all but the highest (10 mg/L) exposure concentration and the lack of sustained exponential growth in the solvent control. Results of this study are not to be used in a risk assessment.

### I. MATERIALS AND METHODS

### **GUIDELINES FOLLOWED:**

The toxicity test was performed according to the protocol entitled "Growth Inhibition Test with Freshwater Diatom, *Navicula pelliculosa*", Springborn Smithers Laboratories Protocol No.: 032405/120-Hr Navicula//Dow. The methods described in this protocol were reported as meeting the requirements specified in:

US EPA FIFRA Subdivision J Guidelines 122-2 and 123-2 as specified in the US EPA Pesticide
Assessment Guidelines, Subdivision J. Hazard Evaluation: Nontarget Plants. Report No. EPA 540/9-82020, PB83-153940. 1982. U.S. Environmental Protection Agency, Washington, D.C.;

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

- The OECD Guideline for Testing of Chemicals. Alga, Growth Inhibition Test #201. Adopted 7 June 1984. Organization for Economic Cooperation and Development. Paris, France.; and
- The Official Journal of the European Communities. 1992. Methods for the determination of Ecotoxicity. C.3 Algal Inhibition Test. L383A Volume 35, 29 December 1992.

### **COMPLIANCE:**

The data and report for the study, "XDE-742 - Growth Inhibition Test with Freshwater Diatom Navicula pelliculosa)" were reported as produced and compiled in accordance with all pertinent OECD and US EPA Good Laboratory Practice regulations, namely

- OECD Good Laboratory Practice in the Testing of Chemicals. Paris. France, as revised 1997 and
- US EPA. Federal Insecticide, Fungicide and Rodenticide Act (FIFRA); Good Laboratory Practice Standards; Final Rule (40 CFR, Part 160). U.S. Environmental Protection Agency, Washington, DC.

with the following exceptions: routine dilution water contaminant screening analyses for pesticides, PCBs and toxic metals were conducted using standard U.S. EPA procedures by GeoLabs, Inc., Braintree, Massachusetts using standard U.S. EPA procedures and are considered facility records under Springborn Smithers Laboratories' SOP 7.92. Since the analyses were conducted following standard validated methods, these exceptions were reported as having had no impact on the study results.

### A. MATERIALS:

1. Test Material:

XR-742 (i.e. pyroxsulam or XDE-742)

**Description:** Lot No./Batch No.: White powder (Mercer, 2006) E0952-52-01/TSN103826

**Purity:** 

98.0%

**Stability of Compound** 

**Under Test Conditions:** Stable. Analytical verification of the test material was conducted at 0 and

120 hours. Mean recoveries over the 120 hour period were 100% of nominal for the nominal 0.10, 1.6, 4.0 and 10 mg pyroxsulam/L test concentrations and 110% for the nominal 0.26 and 0.64 mg pyroxsulam/L test concentrations. These results indicate the pyroxsulam was stable in the

test medium over the 120 hours of exposure.

Storage conditions of test chemicals:

The test substance was stored at room temperature in the original container

in a dark ventilated cabinet.

### Physicochemical properties of pyroxsulam.

The physicochemical properties shown in Table 1. are taken from the Study Profile Template (Mercer, 2006) which noted that the UV data were unavailable at the time of publication of the Study Profile Template.

Table 1. Summary of physicochemical properties of pyroxsulam.

| Parameter                | Values                  | Comments       |
|--------------------------|-------------------------|----------------|
| Water solubility at 20°C |                         |                |
| pH 4                     | 0.0164 g/L              | Turner (2004a) |
| pH 6                     | 0.0626 g/L              | Turner (2004a) |
| pH 7                     | 3.2 g/L                 | Turner (2004a) |
| Vapour pressure          | <1E-7                   | Madsen (2003)  |
| UV absorption            | Not                     | available      |
| pKa                      | 4.670                   | Cathie (2004)  |
| Kow                      |                         |                |
| pH 4                     | 12.1 (log Pow = 1.08)   | Turner (2004b) |
| pH 7                     | 0.097 (log Pow = -1.01) | Turner (2004b) |
| рН 9                     | 0.024 (log Pow = -1.60) | Turner (2004b) |

**Note:** The Kow values shown in the study profile template were misordered. The correct values (confirmed by examination of Turner (2004b) in Madsen (2006)) are shown above in the physicochemical properties of pyroxsulam table.

### 2. Test organism:

Name: Free

Freshwater diatom, Navicula pelliculosa (Class: Bacillariophyceae)

Strain:

Not reported

Source:

Originally from University of Texas, Austin and kept in culture at

Springborn Smithers (Wareham).

Age of inoculum:

The inoculum used to initiate the toxicity test with XDE-742 was taken from a stock culture that had been transferred to fresh medium seven days

prior to test initiation.

Method of cultivation:

Algal assay procedure (AAP) medium prepared with sterile deionised

water. The culture was maintained in a temperature-controlled

environmental chamber at  $24 \pm 2$ °C under continuous illumination (3200 to 5400 lux). The culture used for this test was maintained under the same

conditions as those used for testing.

### **B. STUDY DESIGN:**

### 1. Experimental Conditions

### a. Range-finding Study:

A preliminary range-finding exposure was conducted at nominal pyroxsulam concentrations of 0 (control and solvent control), 0.0010, 0.010, 0.10, 1.0 and 10 mg pyroxsulam/L. Following 120 hours of exposure, cell densities in the 0.0010, 0.010, 0.10, 1.0 and 10 mg pyroxsulam/L treatment levels averaged 203, 206, 226, 171 and  $3.0 \times 10^4$  cells/mL, respectively. The control and solvent control averaged 232 and  $184 \times 10^4$  cells/mL,

respectively. Based on these data, nominal pyroxsulam concentrations of 0.10, 0.26, 0.64, 1.6, 4.0 and 10 mg pyroxsulam/L were selected for the definitive exposure.

### b. Definitive Study

The definitive study was conducted under static exposure conditions from 22 to 27 April 2005 with replicate 250-mL flasks, three per treatment level and the controls. One hundred milliliters of the appropriate test solution prepared from (modified) Algal Assay Procedure (AAP) medium was then placed in each replicate flask. Nominal pyroxsulam concentrations tested were 0.10, 0.26, 0.64, 1.6, 4.0 and 10 mg pyroxsulam/L (Concentrations were adjusted for the purity of the test substance and are presented as active constituent). An untreated algal medium was used to prepare the control with a solvent control (dimethylformamide, DMF) also prepared with the concentration of DMF in the solvent control equal to the concentration of DMF present in each test solution (0.10 mL/L). An inoculum of Navicula pelliculosa cells was aseptically introduced into each flask to provide the required cell density of approximately 1.0 x 10<sup>4</sup> cells/mL. The exposure period was for 120 hours (5 days) in an incubator at  $24 \pm 2$  °C with continuous light and constant shaking. Temperature, light intensity, pH and water conductivity were determined during the course of the exposure. At 24-hour intervals, cell counts were conducted on each replicate vessel of the treatment levels and the controls with observations of the health of the algal cells also made at each 24-hour interval. Due to the tendency of Navicula pelliculosa cells to clump, the solutions were vigorously pipetted multiple times to disperse clumped cells and achieve a homogeneous suspension prior to removing a sample for cell counts. Analytical determinations of pyroxsulam in the test vessels were made at test initiation and test termination (120 hours),

The effect criteria considered were inhibition of 120-hour cell density, 0- to 72-hour total biomass (area under the growth curve) and 0 to 72-hour average growth rate relative to the performance of the appropriate control data.

In the following two tables' Criteria columns (and elsewhere as relevant), entries in italics are those given in the PMRA's Draft Evaluation Report template for acute toxicity to algae. In its examination of the initial drafts of the aquatic invertebrate DERs, the PMRA advised (email of 3/07/2007) that the criteria in the templates were understood to have come from old US guidelines and that failure to comply with these template requirements would not be a deficiency. Provided the equivalent and more recent OPPTS and/or OECD guideline requirements are met, this is agreed with.

| Table | 2. | Experimental | <b>Parameters</b> |
|-------|----|--------------|-------------------|
|       |    |              |                   |

| Parameter                                             |                                                                                                                                                                               | Details                               |                                                                   | Remarks                                                                                                                                                                                                                                                                                                                                                         |  |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                       |                                                                                                                                                                               |                                       |                                                                   | Criteria                                                                                                                                                                                                                                                                                                                                                        |  |
| Acclimation period:                                   | The inoculum used to initiate the toxicity test with pyroxsulam was taken from a stock culture that had been transferred to fresh medium seven days prior to test initiation. |                                       |                                                                   | See deviations/deficiencies table, page 31 this DER with respect to acclimatisation period.  Culturing media and conditions and algal health were considered acceptable.                                                                                                                                                                                        |  |
| Culturing media and conditions: (same as test or not) | Algal Assay Proc<br>Same as test                                                                                                                                              | edure (AAP) me                        | edium                                                             | OECD 201 states that an inoculum culture in<br>the test medium is prepared 2-4 days before<br>start of the test with the inoculum culture                                                                                                                                                                                                                       |  |
|                                                       | Parameter                                                                                                                                                                     | Culture                               | Test                                                              | incubated under the same conditions as the                                                                                                                                                                                                                                                                                                                      |  |
|                                                       | Temperature:                                                                                                                                                                  | 24 ± 2°C                              | $24 \pm 2^{\circ}\text{C}$                                        | test cultures.                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                       | Light (lux):                                                                                                                                                                  | 3200 to 5400                          | 3200 to<br>5400                                                   | US EPA OPPTS 850.5400 states that toxicity                                                                                                                                                                                                                                                                                                                      |  |
|                                                       | Photoperiod:                                                                                                                                                                  | Continuous<br>(24 hours<br>light/day) | Continuou<br>s                                                    | testing should not be performed until algal cultures are shown to be actively growing (i. capable of logarithmic growth within the test                                                                                                                                                                                                                         |  |
|                                                       | Medium:                                                                                                                                                                       | AAP                                   | AAP                                                               | period) in at least two subcultures lasting 7                                                                                                                                                                                                                                                                                                                   |  |
|                                                       | pH range:                                                                                                                                                                     | ~7.0-7.5                              | Final pH<br>adjusted to<br>7.5 ± 0.1                              | days each prior to the start of the definitive test. This guideline also states that the test begins when algae (inocula) from 3– to 7–                                                                                                                                                                                                                         |  |
|                                                       | Culture<br>Volume:                                                                                                                                                            | 200 mL                                | 100 mL                                                            | day-old stock cultures are placed in the test<br>chambers containing test solutions having the                                                                                                                                                                                                                                                                  |  |
|                                                       | Culture<br>Vessel:                                                                                                                                                            | 500 mL<br>Erlenmeyer<br>flask         | 250 mL<br>flasks                                                  | appropriate concentrations of the test substance.                                                                                                                                                                                                                                                                                                               |  |
|                                                       | Culture<br>Vessel Cap:                                                                                                                                                        | Shimadzu<br>closure                   | Stainless<br>steel caps<br>which<br>permitted<br>gas<br>exchange. | EPA recommends 3-7 day acclimation period.  OECD recommends an amount of algae suitable for the inoculation of test cultures and incubated under the conditions of the test and used when still exponentially growing, normally after an incubation period of about 3 days. When the algae cultures contain deformed or abnormal cells, they must be discarded. |  |
|                                                       | Agitation                                                                                                                                                                     | Continuous<br>at 100 ± 10<br>rpm      | Continuou<br>s at 100 ±<br>10 rpm                                 |                                                                                                                                                                                                                                                                                                                                                                 |  |

| Health: (any mortality observed)  | Observations of the health of the algal cells were made at each 24-hour interval. |                                                                                                                                                                                                                                                     |
|-----------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test system Static/static renewal | Static                                                                            | Test system is acceptable.                                                                                                                                                                                                                          |
| Renewal rate for static renewal   | Not applicable (N/A).                                                             | Requirements considered met.  OECD 201 does not specifically refer to static tests but can be interpreted as referring to them as no mention is made of renewal of test solutions. US EPA OPPTS 850.5400 both indicate static tests are acceptable. |
|                                   |                                                                                   | EPA expects the test concentrations to be renewed every 3 to 4 days (one renewal for the 7 day test, 3-4 renewals for the 14 day test).                                                                                                             |
| Incubation facility               | Temperature controlled environmental chamber                                      | Incubation facility is acceptable.                                                                                                                                                                                                                  |
|                                   |                                                                                   | Requirements considered met.                                                                                                                                                                                                                        |
|                                   |                                                                                   | OECD 201 refers to use of a cabinet or chamber in which the chosen incubation temperature can be maintained at $\pm$ 2°C.                                                                                                                           |
|                                   |                                                                                   | US EPA OPPTS 850.5400 refers to use of a growth chamber or controlled environment room that can hold the test containers and maintain the necessary growth parameters (e.g. temperature, lighting).                                                 |
| Duration of the test              | 120-hours                                                                         | See deviations/deficiencies table, page 31 of this DER.                                                                                                                                                                                             |
|                                   |                                                                                   | Test duration is acceptable. OECD 201 refers to the test normally being for 72 hours but with shorter or longer periods allowed provided that guideline's validity criteria are met.                                                                |
|                                   |                                                                                   | US EPA OPPTS 850.5400 refers to cell counts at 24, 48, 72 and 96 hours.                                                                                                                                                                             |
|                                   |                                                                                   | EPA requires: 96-120 hours OECD: 72 hours with the 2006 version stating shorter or longer periods allowed provided all validity criteria specified in that version are met.                                                                         |

| <u> </u>                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| <u>Test vessel</u> Material:<br>(glass/stainless steel) | Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Requirements considered met.                                                          |
| Size:                                                   | 250 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OECD 201 states that the test vessels will                                            |
| Fill volume:                                            | 100 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | normally be glass flasks of dimensions that                                           |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | allow a sufficient volume of culture for                                              |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | measurements during the test and a sufficient                                         |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mass transfer of CO <sub>2</sub> from the atmosphere.                                 |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r                                                                                     |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | US EPA OPPTS 850.5400 states Erlenmeyer                                               |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | flasks should be used for test containers and                                         |
| ·                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | may be of any volume between 125 and 500                                              |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mL as long as the same size is used                                                   |
| -                                                       | No. of the second secon | throughout a test and the test solution volume                                        |
| · ·                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | does not exceed 50 percent of the flask                                               |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | volume.                                                                               |
| ·                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OECD recommends 250 ml conical flasks are                                             |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | suitable when the volume of the test solution is 100 ml or use a culturing apparatus. |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mi or use a culturing apparatus.                                                      |
| Details of growth                                       | Algal Assay Procedure (AAP) medium with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | See deviations/deficiencies table, page 31 of                                         |
| medium name                                             | additions of sodium silicate and sodium selenate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | this DER with respect to details of the growth                                        |
|                                                         | $(Na_2SeO_4).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | medium.                                                                               |
| 1                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |
|                                                         | The addition of sodium selenate was noted in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OECD 201 refers to AAP medium and                                                     |
|                                                         | study report's description of the composition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | provides a comparison (Annex 3) of the US                                             |
| )                                                       | the AAP medium as being an additional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA AAP medium and the OECD 201                                                       |
|                                                         | nutritional requirement (see Remarks column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | medium. The guideline identifies both as                                              |
|                                                         | regarding the use of sodium selenate and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | suitable growth media. The guideline also                                             |
|                                                         | disodium silicate).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | states that in tests with the diatom Navicula                                         |
| ·                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pelliculosa, both media must be supplemented                                          |
|                                                         | The concentrations of ingredients listed in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with Na <sub>2</sub> SiO <sub>3</sub> .9H <sub>2</sub> 0 to obtain a concentration    |
|                                                         | study report as being in the AAP medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of 1.4 mg Si/L. Although Annex 3 of the                                               |
|                                                         | corresponded to the values listed in OECD 201's AAP medium recipe, except for the silicon level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | guideline, which contains the AAP composition, does not identify sodium               |
|                                                         | And medium recipe, except for the sincon level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | selenate as a constituent of the medium, it                                           |
|                                                         | The amount of hydrated sodium silicate present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | goes on to describe the preparation of the US                                         |
|                                                         | was reported as 20 mg/L, calculated as equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA medium and notes that sodium selenate                                             |
|                                                         | to ~2 mg Si/L, cf. the 1.4 mg Si/L recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | is used only in the medium for stock cultures                                         |
|                                                         | by OECD 201.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of diatom species at a final concentration in                                         |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the AAP medium of ~0.007 µg/L.                                                        |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · : · · · ·                                                                           |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | US EPA OPPTS 850.5400 does not                                                        |
| ,                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | specifically refer to media composition,                                              |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | instead referring to other sources for this                                           |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | information.                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA recommends 20X-AAP medium                                                         |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EFA recommenus 20A-AAF meatum                                                         |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

| pH at test initiation:  | The control media had a pH of 6.9 at test initiation.                                    |                                               |                                                                                                                 | See deviations/deficiencies table, page 31 of this DER with respect to initial pH. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                          |                                               |                                                                                                                 |                                                                                    | OECD 201 states that the pH of AAP medium is 7.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |                                                                                          |                                               |                                                                                                                 |                                                                                    | US EPA OPPTS 850.5400 states that the pH of the nutrient medium is to be 7.5 ( $\pm$ 0.1) for <i>Navicula</i> at the start of the test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         |                                                                                          |                                               |                                                                                                                 |                                                                                    | The study report stated that the initial pH of the AAP medium was adjusted, if necessary, to $7.5 \pm 0.1$ prior to use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                                                                                          |                                               |                                                                                                                 |                                                                                    | The reason for the control pH being 6.9 at time 0 is not immediately apparent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pH at test termination: | The initial and final pH values of the control and test solutions were:                  |                                               | OECD (2006) recommends the pH of the control medium should not increase by more than 1.5 units during the test. |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | Nominal Concentrations mg pyroxsulam/L Control Solvent Control 0.10 0.26 0.64 1.6 4.0 10 | 7.0<br>7.1<br>7.1<br>7.1<br>7.1<br>7.0<br>6.8 | 6.9<br>7.0<br>7.1<br>7.4<br>9.2<br>8.7<br>7.3<br>6.8                                                            |                                                                                    | than 1.5 units during the test.  US EPA OPPTS 850.5400 states that the pH of the nutrient medium is to be 7.5 (± 0.1) for Navicula at the start of the test.  The US EPA guideline also states that if the test chemical is highly acidic and reduces the pH of the test solution below 5.0 at the first measurement, appropriate adjustments to pH should be considered, and the test solution measured for pH on each day of the test.  EPA pH: Skeletonema costatum = ~8.0 Others = ~7.5 from beginning to end of the test. EPA salinity: 30-35 ppt.  OECD: pH is measured at beginning of the test and at 72 hours, it should not normally deviate by more than one unit during the |

| Chelator used:                                                                            | Yes, Na <sub>2</sub> EDTA in the AAP medium                                                                                                                                                                                                                                                                                 | Requirements for chelator considered met.                                                                                                                    |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                           |                                                                                                                                                                                                                                                                                                                             | The presence of EDTA as a chelator is considered acceptable on the basis of its permitted presence in both the US EPA AAP medium and the OECD TG 201 medium. |
|                                                                                           |                                                                                                                                                                                                                                                                                                                             | EPA recommends 20X-AAP medium and no chelators.                                                                                                              |
|                                                                                           |                                                                                                                                                                                                                                                                                                                             | OECD recommends the medium pH after equilibration with air be ~8 with less than .001 mmol/l of chelator, if used.                                            |
|                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |
| Carbon source:                                                                            | Not reported.                                                                                                                                                                                                                                                                                                               | Requirements for carbon source considered met.                                                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |
|                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |
|                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |
| Salinity (for marine algae)                                                               | N/A, Navicula pelliculosa is a freshwater diatom.                                                                                                                                                                                                                                                                           | Requirement not considered relevant.                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |
|                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |
|                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |
| If non-standard nutrient<br>medium was used,<br>detailed composition<br>provided (Yes/No) | A modified standard medium used (AAP medium modified by addition of sodium selenate at a concentration greater than indicated by OECD 201 for the US EPA AAP medium and by addition of sodium silicate. The use of sodium selenate and sodium silicate was identified in the test report as a required additional nutrient. | Requirement considered met with respect to a detailed description of the medium being given in the study report.                                             |

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

| Dilution water source/type:                                                                   | Sterile deionised water with source unidentified.                                                                                                                                                                                                                                                                                                                                                                                                                                    | Requirements considered met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH:                                                                                           | Not given. The pH of the medium was adjusted to 7.5.                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA pH: <u>Skeletonema costatum</u> = ~8.0 Others =<br>~7.5 from beginning to end of the test. EPA salinity: 30-35 ppt. EPA is against the use of dechloring the decidence of the salinity.                                                                                                                                                                                                                                                                                                                                                                                  |
| salinity (for marine algae):                                                                  | Salinity not applicable, <i>Navicula pelliculosa</i> is a freshwater species.                                                                                                                                                                                                                                                                                                                                                                                                        | beginning of the test and at 72 hours, it should not normally deviate by more than one unit during the test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| water pretreatment (if any):                                                                  | The AAP medium was prepared with sterile, deionised water.                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total Organic Carbon:                                                                         | A representative sample of AAP medium was analyzed monthly for total organic carbon (TOC) concentration. The TOC concentration was 0.53 mg/L for April 2005.                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| particulate matter:<br>metals:<br>pesticides:<br>chlorine:                                    | Not determined. Representative samples of the dilution water source used to prepare the medium were analyzed for the presence of pesticides, PCBs and toxic metals by GeoLabs, Inc., Braintree, Massachusetts. None of these compounds have been detected at concentrations that are considered toxic in any of the water samples analyzed in agreement with ASTM (ASTM, 2002) standard practice.                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Indicate how the test material is added to the medium (added directly or used stock solution) | A 100 mg pyroxsulam/mL primary stock solution was prepared prior to test initiation by placing 2.5510 g of pyroxsulam (2.5000 g as 100% pyroxsulam) in a 25-mL volumetric flask and bringing it to volume with dimethylformamide (DMF). The resulting stock solution was clear and brown in color with no visible undissolved test substance. Secondary stock solutions were prepared by dilution with DMF and then diluted with AAP medium to give the nominal test concentrations. | Description in the study report considered satisfactory.  Concentrations were adjusted for the purity of the test substance and are presented as active constituent (pyroxsulam).  All test solutions were clear and colorless with no visible undissolved test substance.  Untreated algal medium was used to prepare the control. A solvent control was prepared by bringing 0.10 mL of DMF to a final volume of 1000 mL with AAP medium. The concentration of DMF in the solvent control was equal to the concentration of DMF present in each test solution (0.10 mL/L). |
|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Aeration or agitation | An orbital shaker table provided a shaking table rate of $100 \pm 10$ rpm. | Requirement considered met.                                                                                                                                                                                                                                                                                            |
|-----------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | No reference was made to aeration.                                         | OECD 201 states that during the test it is necessary to keep the algae in suspension and to facilitate transfer of CO <sub>2</sub> . To this end constant shaking or stirring should be used and reference is made to an orbital or reciprocate shaker being used at ~150 rpm.                                         |
|                       |                                                                            | US EPA OPPTS 850.5400 states that test containers should be placed on a rotary shaking apparatus and oscillated at approximately 100 cycles/min for <i>Selenastrum</i> and at approximately 60 cycles/min for <i>Skeletonema</i> during the test. No oscillation rate is referred to for <i>Navicula</i> .             |
| Initial cells density | 10,000 cells/mL (for each replicate)                                       | Requirement considered met.                                                                                                                                                                                                                                                                                            |
|                       |                                                                            | OECD 201 recommends an initial cell concentration for <i>Navicula pelliculosa</i> of 1 X 10 <sup>4</sup> cells/mL.                                                                                                                                                                                                     |
|                       |                                                                            | US EPA OPPTS 850.5400 states that each test chamber in the definitive study should contain equal volumes of test solution and approximately 1 X 10 <sup>4</sup> Navicula cells per millilitre of test solution                                                                                                         |
|                       |                                                                            | EPA requires an initial number of 3,000 - 10,000 cells/mL. For Anabaena flos-aquae, cell counts on day 2 are not required. OECD recommends that the initial cell concentration be approximately 10,000 cells/ml for S. capricornutum and S. subspicatus. When other species are used the biomass should be comparable. |

| Number of replicates Control: | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | See deviations/deficiencies table, page 31 of this DER with respect to number of replicates used.                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OECD 201 states that the test design should include three replicates at each test concentration and that the number of control replicates must be at least three, and ideally should be twice the number of replicates used for each test concentration. This was effectively achieved once the controls were pooled having no difference between the untreated and solvent controls.  The US EPA OPPTS refers to use of four replicates for <i>N. pelliculosa</i> . |
| Solvent control:  Treatments  | 3 inoculated with algae In order to estimate the impact that the presence of algal biomass had on the test substance concentration, an additional replicate flask of the 0.64 mg pyroxsulam/L (nominal) treatment level was prepared. This flask, which was not inoculated with algae, was analyzed at 120 hours of exposure for pyroxsulam concentration. The results of this analysis were compared with the results for the 0.64 mg pyroxsulam/L solution containing algae. | EPA requires a negative and/or solvent control with 3 or more replicates per dose. Navicula sp. tests should be conducted with four replicates. OECD preferably three replicates at each test concentration and ideally twice that number of controls. When a vehicle is used to solubilize the test substance, additional controls containing the vehicle at the highest concentration used in the test.                                                            |

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

### Test concentrations

Nominal:

0.10, 0.26, 0.64, 1.6, 4.0, 10 mg/L

Measured:

These nominal concentrations are in the ratio of

1 to 2.5 or 1 to 2.6.

Nominal and measured concentrations at 0 and 120 hours were:

| Nominal*           | Measured Concentration* |            |                 |      |
|--------------------|-------------------------|------------|-----------------|------|
|                    | 0 h                     | 120 h      | Meana           | %**  |
| Control            | <0.0<br>13              | <0.013     | NA <sup>b</sup> | NA   |
| Solvent<br>Control | <0.0<br>13              | <0.013     | NA              | NA   |
| 0.10               | 0.10                    | 0.10       | 0.10            | 100  |
| 0.26               | 0.29                    | 0.30       | 0.29            | 110  |
| 0.64               | 0.67                    | 0.67/0.67° | 0.67            | 110  |
| 1.6                | 1.7                     | 1.6        | 1.7             | ·100 |
| 4.0                | 4.0                     | 4.0        | 4.0             | 100  |
| 10                 | 10                      | 10         | 10              | 100  |

<sup>\*</sup> mg pyroxsulam/L. \*\* Percentage of nominal concentration.

See deviations/deficiencies table, page 31 of this DER with respect to test concentrations geometric series ratio.

OECD 201 states that, for the final definitive test, at least five concentrations, arranged in a geometric series with a factor not exceeding 3.2, should be selected. The guideline also states that the concentration series should preferably cover the range causing 5-75 % inhibition of algal growth rate. There was >90% inhibition at the highest concentration with respect to cell density, specific growth rate and biomass but at all other concentrations, there was growth stimulation.

US EPA OPPTS 850.5400 states algae should be exposed to five or more concentrations of the test chemical in a geometric series in which the ratio is between 1.5 and 2.0 (e.g. 2, 4, 8, 16, 32, and 64 mg/L).

EPA requires at least 5 test concentrations, with each at least 60% of the next higher one. OECD recommends at least five concentrations arranged in a geometric series, with the lowest concentration tested should have no observed effect on the growth of the algae. The highest concentration tested should inhibit growth by at least 50% relative to the control and, preferably, stop growth completely.

a Mean measured concentrations and percent of nominal were calculated using actual analytical data and not the rounded (2 significant figures) data presented in the study report.

b NA = Not Applicable.

c Result of the additional sample without alone r

c Result of the additional sample without algae present to determine biological uptake/degradation.

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

| Solvent (type, percentage, if used)            | Dimethylformamide (DMF). 0.10 mL of DMF in a final volume of 1000 mL of AAP medium. The concentration of DMF in the solvent control was equal to the concentration of DMF present in each test solution (0.10 mL/L, i.e. $100~\mu$ L/L). | Requirement considered met.  OECD 201 states solvents may be used as carriers but the concentration of solvent should not exceed 100 µl/L, and the same concentration of solvent should be added to all cultures (including controls) in the test series. Also that when solvents are used to prepare the test solutions, the solvent controls rather than the controls without solvents should be used in calculation of percent inhibition.  US EPA OPPTS 850.5400 states that if a carrier (or solvent) other than nutrient medium is absolutely necessary to dissolve the chemical, the volume used should not exceed the minimum volume necessary to dissolve or suspend the chemical in the test solution. The upper limit of carrier volume is 0.5 mL/L and the same amount of carrier should be added to each concentration.                                                                                                                                                                 |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method and interval of analytical verification | Test solutions were analyzed for the presence of pyroxsulam at 0 and 120 hours using HPLC. The limit of detection was 0.0155 mg pyroxsulam/L                                                                                             | Requirement considered met.  Methodology was validated (20 April 2005) to quantify the amount of pyroxsulam present in recovery samples prepared in AAP medium (a freshwater algal medium). Recovery samples were analyzed by automated injection on a high performance liquid chromatographic system equipped with ultraviolet detection (HPLC/UV). This method was validated by fortification of AAP medium with pyroxsulam at concentrations of 0.0500, 2.00 and 35.0 mg/L. Recoveries averaged 100 ± 1.85% with a limit of quantitation of 0.0155 mg/L. Defined limits for acceptance of quality control sample performance in subsequent studies were set at 70.0 to 120%.  Analytical results for the recovery of pyroxsulam from AAP medium were presented as were representative chromatograms from the analysis of a calibration standard, recovery sample and a control sample. A typical linear regression analysis for pyroxsulam (r² = 0.99998) was also presented in the study report. |

| Temperature:  24 ±2°C specified, measured temperature was 23°C over the 120 hours of the exposure period.  DECD 201 states the cultures should be maintained at a temperature in the range to 24°C, controlled at ±2°C. The 1984 OECD guideline set the range as 21 to 2  US EPA OPPTS 850.5400 states the test temperature is to be 24°C for Navicula a that excursions from the test temperature should be no greater than ± 2°C.  EPA temperature: Skeletonema: 20°C, Other 25°C; EPA photoperiod: S. costatum 14 hr h 10 hr dark, Others: Continuous: EPA light: Anabaena: 2.0 Ktux (±15%). Others: 4 - 5 K (±15%). OECD recommended the temperature the range of 21 to 25°C maintained at ±2°C continuous uniform illumination provided at approximately 8000 Lux measured with a sp. collector.  Photoperiod:  Continuous  Photoperiod:  Continuous  Photoperiod requirement considered me one sufficient conditions and continuous light a sufficient period of time to measure reduction of the specific growth rate.  US EPA OPPTS 850.5400 states that techambers containing Navicula must be illuminated continuously.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . '                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| temperature is to be 24°C for Navicula a that excursions from the test temperature should be no greater than ± 2°C.  EPA temperature: Skeletonema: 20°C, Other 25°C; EPA photoperiod: S. costatum 14 hr li 10 hr dark, Others: Continuous; EPA light: Anabaena: 2.0 Klux (±15%) Others: 4-5 k (±15%) OECD recommended the temperature the range of 21 to 25°C maintained at ±2°C continuous uniform illumination provided at approximately 8000 Lux measured with a sp. collector.  Photoperiod:  Continuous  Photoperiod requirement considered me  OECD 201 states that the cultures are al unrestricted exponential growth under n sufficient conditions and continuous light a sufficient period of time to measure reduction of the specific growth rate.  US EPA OPPTS 850.5400 states that tes chambers containing Navicula must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of 21                     |
| 25°C; EPA photoperiod: S. costatum 14 hr h 10 hr dark, Others: Continuous; EPA light: Anabaena: 2.0 Klux (±15%), Others: 4 - 5 K (±15%) OECD recommended the temperatu the range of 21 to 25°C maintained at ± 2°C continuous uniform illumination provided at approximately 8000 Lux measured with a sp. collector.  Photoperiod:  Continuous  Photoperiod requirement considered me  OECD 201 states that the cultures are al unrestricted exponential growth under m sufficient conditions and continuous ligh a sufficient period of time to measure reduction of the specific growth rate.  US EPA OPPTS 850.5400 states that tes chambers containing Navicula must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| OECD 201 states that the cultures are all unrestricted exponential growth under me sufficient conditions and continuous light a sufficient period of time to measure reduction of the specific growth rate.  US EPA OPPTS 850.5400 states that teach chambers containing Navicula must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ght/<br>ux<br>e in<br>und |
| unrestricted exponential growth under measure sufficient conditions and continuous light a sufficient period of time to measure reduction of the specific growth rate.  US EPA OPPTS 850.5400 states that teach chambers containing Navicula must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| chambers containing Navicula must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trient                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :                         |
| Light intensity and quality:  The measured light intensity ranges (as lux) over quality:  Requirement considered met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
| OECD 201 refers to light intensity at the of the test solutions from the range of 60 $\mu$ E·m <sup>-2</sup> s <sup>-1</sup> , which it states is equivalent to to to to to to $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $5400$ $540$ | -120<br>a                 |
| The photosynthetically active radiation (PAR) measured at test initiation ranged from 63 to 87 $\mu E/m2/s$ . fluorescent lights providing 4300 lux for Navicula are to be used and that these lashould have a photosynthetically active radiation of approximately 66.5 $\pm 10\%$ mEin/m²/sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |

| PMRA Submission Number 2006 | 5-4727; ID 1323248 | <b>EPA MRID Number 469084-32</b> | APVMA ATS 40362 |
|-----------------------------|--------------------|----------------------------------|-----------------|
|                             |                    |                                  |                 |

| Reference chemical (if used) name: | N/A                                                                                                     | A reference chemical was not used.                                                                                                                                                                                                                                                       |
|------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| concentrations:                    |                                                                                                         | OECD 201 notes that a reference substance may be tested as a means of checking test procedures and that this should be done at least twice a year. US EPA OPPTS 850.5400 also states that positive controls using zinc chloride as a reference chemical should also be run periodically. |
|                                    |                                                                                                         | The study report could profitably have presented the most recent results from reference chemicals test against algae in their laboratory.                                                                                                                                                |
| Other parameters, if any           | Conductivity was determined as 100 µmohs/cm in all vessels, test and controls, at both 0 and 120 hours. | Requirement considered met.                                                                                                                                                                                                                                                              |

### 2. Observations:

Table 3. Observation parameters

| Parameters                                                                  | Details                                                                                                                                                                                                                                                                                                                     | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                             |                                                                                                                                                                                                                                                                                                                             | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Parameters measured including the growth inhibition/other toxicity symptoms | Cell densities (cells/mL) were determined and used to calculate area under the growth curve and growth rate.  pH, temperature, light intensity and concentrations of pyroxsulam in the test solutions were also determined over the course of the study.  Observations of algal health were also made at 24 hour intervals. | Requirement considered met with the parameters determined acceptable.  OECD 201 refers to growth and growth inhibition being quantified from measurements of the algal biomass as a function of time.  US EPA OPPTS 850.5400 refers to enumeration of the algal cells to determine inhibition or stimulation of growth and the pattern of growth in test containers compared to controls.  EPA recommends the growth of the algae expressed as the cell count per mL, biomass per volume, or degree of growth as determined by spectrophotometric means. |  |

Measurement technique for cell density and other end points.

Cell density calculated using a haemocytometer and compound microscope at 24 hour intervals. Observations of the health of the algal cells were made at each 24-hour interval. Due to the tendency of *Navicula pelliculosa* cells to clump, the solutions were vigorously pipetted multiple times to disperse clumped cells and achieve a homogeneous suspension prior to removing a sample for cell counts.

Appropriate instrumental techniques were used for physico-chemical parameters listed above.

See deviations/deficiencies table, page 31 of this DER with respect to formation of aggregates of *N. pelliculosa*.

EPA recommends the measurement technique of cell counts or chlorophyll a. OECD recommends the electronic particle counter, microscope with counting chamber, fluorimeter, spectrophotometer, and colorimeter. (note: in order to provide useful measurements at low cell concentrations when using a spectrophotometer, it may be necessary to use cuvettes with a light path of at least 4 cm).

Measurement techniques used are considered acceptable.

OECD 201 refers to cell counts, being made using an electronic particle counter, a microscope with counting chamber, or a flow cytometer. Other biomass surrogates can be measured using a flow cytometer, fluorimeter, spectrophotometer or colorimeter.

US EPA OPPTS 850.5400 refers to the algal growth response being determined by an indirect (spectrophotometry, electronic cell counters, dry weight, etc.) or a direct (actual microscopic cell count of at least 400 cells per flask) method.

OECD 201 also notes that *Navicula* pelliculosa may form aggregates under certain growth conditions. Due to production of lipids the algal cells sometimes tend to accumulate in the surface film. Under those circumstances special measures have to be taken when subsamples are taken for biomass determination in order to obtain representative samples. Vigorous shaking, e.g. using a vortex mixer may be required.

US EPA OPPTS 850.5400 states that the procedure used to break up the filaments should result in consistent filament lengths across treatments and replicates. Sonification, ultrasonic bath, blender, syringe, or any other methods of cell separation, other than manual or rotary shaking are **not** allowed for *Selenastrum*, *Skeletonema*, or *Navicula*.

| Observation intervals      | 24, 48, 72, 96 and 120 hours                                                                                                                                                                    | Requirement considered met with the observation intervals considered appropriate.                                                 |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                                                 | OECD 201 refers to algal biomass in each flask being determined daily.                                                            |
|                            |                                                                                                                                                                                                 | US EPA OPPTS 850.5400 states that at the end of 96 h, and, if possible, at the end of 24, 48, and 72 h, the algal growth response |
|                            |                                                                                                                                                                                                 | (number or weight of algal cells per millilitre) in all test containers and controls is to be determined.                         |
|                            |                                                                                                                                                                                                 | EPA and OECD: every 24 hours.                                                                                                     |
| Other observations, if any | Abnormalities (thin cell walls) in the appearance of the algal cells were reported in the 10 mg pyroxsulam/L test concentration at 24 and 48 hours - no other cell abnormalities were reported. | Requirement considered met.  Observation made is appropriate.                                                                     |

| Indicate whether there was exponential growth in the control | Yes, based on results for the control.  Mean cell density in the control increased by 24-fold and by 19.75-fold in the solvent control by test termination (120 hours).  At 72 hours there was a mean of 16.92 X 10 <sup>4</sup> cells/mL in the control and of 20.58 X 10 <sup>4</sup> cells/mL in the solvent control, i.e. the OECD's 16-fold factor is met.  At 96 hours, the mean cell count in the control was 22.67 X 10 <sup>4</sup> cells/mL and, in the solvent control, 14.67 X 10 <sup>4</sup> cells/mL, i.e. the OECD's 16-fold factor is met for the control but not the solvent control.  The 0-72 hour mean pooled control growth rate was 0.98 day in the AAP medium used.  The 0-120 hour mean pooled control growth rate was 0.61 day again in the AAP medium used.  A plotting of mean control and solvent control cell counts against time using the Microsoft Excel Chart Wizard function and fitting the data points to an exponential curve (data and curves shown on page 47 of this DER) returned respective R <sup>2</sup> value of 0.8822 and 0.8037, values taken as indicative | Requirement considered met with respect to 72 hour results, however, the solvent control results are indicative of some problem having occurred.  OECD 201 requires, inter alia, that biomass in the control cultures should have increased by a factor of at least 16 within the 72 hour test period which corresponds to a specific growth rate of 0.92 day <sup>-1</sup> . The guideline also states that for Navicula pelliculosa, the most frequently observed growth rate in OECD medium at light intensity approx. 70 µE m <sup>-2</sup> s <sup>-1</sup> and 21°C the growth rate should be 1.4 day <sup>-1</sup> . No comment is made on the rate in AAP medium.  US EPA OPPTS 850.5400 states that algal growth in controls should reach the logarithmic growth phase by 96 h (at which time the number of algal cells should be approximately 3.5 X 10 <sup>6</sup> /mL for Selenastrum, but there is no value given for Navicula pelliculosa).  EPA requires control cell count at termination to be 2X initial count or by a factor of at least 16 during the test. OECD: cell concentration in control cultures should have increased by a factor of at least 16 within three days or for species that grow slower, test duration should be increased to obtain at least 16-fold growth. |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              | returned respective R <sup>2</sup> value of 0.8822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Water quality was acceptable? (Yes/No)                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameter considered met on basis of successful growth of the controls and details provided on the medium's preparation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

| Were raw data included? | As laboratory notes, no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Requirement considered met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | The study report stated that determination of stability and characterization, verification of the test and reference substance identity, maintenance of records on the test and reference substance, and archival of a sample of the test and reference substance are the responsibility of the Study Sponsor.  OECD 201 lists the results which must be presented in the test report. These are not considered to necessarily include raw, i.e. laboratory data. The tabulated data, presented as individual replicate values, in the study report are considered to have complied with the OECD requirement. | While raw data were not submitted, the tabulated results presented were of the individual replicate values and were sufficient to allow statistical analysis by the reviewer.  While US EPA OPPTS 850.5400 states that the sponsor must submit to the EPA all data developed by the test including those that are suggestive or predictive of acute phytotoxicity, advice from the US EPA was that, because the tabulated results presented in the study report were sufficient to allow statistical analysis, the guideline would be considered met. |

### **II. RESULTS and DISCUSSION:**

### A. INHIBITORY EFFECTS:

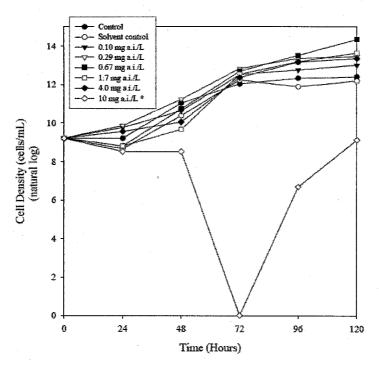
At test termination (120 hours), cells exposed to the treatment levels tested and the controls were observed to be normal, except at 10 mg pyroxsulam/L where cell were noted to be abnormal with thin cell walls at 24 and 48 h. The 120-hours cell density in the control and solvent control averaged 24.33 and 19.75 x 10<sup>4</sup> cells/mL, respectively. A daily increase in the control and solvent control cell density was observed over the 120-hour test period, but this slowed as the test progressed. Cell density was stimulated in most treatment solutions relative to the control data, with the peak cell density present at 0.67 mg pyroxsulam/L and 669% stimulation of growth compared to pool controls. A significant reduction in cell density was observed at 10 mg pyroxsulam/L, which was consistent with the results of the preliminary study, compared to the pooled controls. The results from the 10 mg pyroxsulam/L replicates showed clearly toxic effects (Table 4. , page Figure 1, page 23 of this DER). Whereas sustained exponential growth was achieved in the negative control and most treatments, this was not the case in the solvent control where cell density fell between 72 and 96 hours and was still below to the 72 hour level at 120 hours (mean solvent control counts at 72, 96 and 120 hours were, respectively, 20.58 X 10<sup>4</sup>, 14.67 X 10<sup>4</sup> and 19.75 X 10<sup>4</sup> cells/mL).

The total biomass in the control and solvent control averaged 14.04 and 12.56 x 10<sup>4</sup> cells day/mL. The 0-72 hours growth rate in the control and solvent control averaged 0.95 and 1.01 days per day. Statistical analysis determined no significant difference between the control and solvent control growth rates. The 0-72 hour growth rate in the 10 mg pyroxsulam/L treatment level could not be calculated since the cell density was zero. Thus, significant reduction in growth rate was determined in the 10 mg pyroxsulam/L treatment level as compared with the control data.

The analytical result of the 120-hour sample from the 0.64 mg pyroxsulam/L nominal treatment level without algae present was 0.67 mg pyroxsulam/L. The equivalent test solution with algae present was 0.67 mg pyroxsulam/L, indicating that the presence of algae in the test solution had no effect on the concentrations of pyroxsulam present in solution.

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

The effect of pyroxsulam on the freshwater diatom, Navicula pelliculosa, with respect to mean cell density (0 to 24, 48, 72, 96 and 120 hours), mean specific growth and biomass (both 0-72 hours) are shown in, respectively, Table 4. and Table 5. (growth and biomass).


Table 4. Effect of pyroxsulam on the mean cell density of freshwater diatom Navicula pelliculosa. Standard

deviations are shown in brackets.

| Treatment (mean                                    | Initial cell        | Mean cell density (x10 <sup>4</sup> ) at |                |                 |                  |                   |                              |
|----------------------------------------------------|---------------------|------------------------------------------|----------------|-----------------|------------------|-------------------|------------------------------|
| measured<br>concentration (mg<br>pyroxsulam/L)     | density             | 24 hours                                 | 48 hours       | 72-hours        | 96-hours         | 120-hours         | %<br>inhibition <sup>1</sup> |
| Negative control                                   | 1 x 10 <sup>4</sup> | 1.00<br>(0.43)                           | 6.25<br>(2.88) | 16.92<br>(1.01) | 22.67<br>(12.68) | 24.33<br>(11.73)  | N/A                          |
| Solvent control                                    | 1 x 10 <sup>4</sup> | 0.58 (0.29)                              | 3.25<br>(1.30) | 20.58<br>(5.64) | 14.67<br>(4.78)  | 19.75<br>(2.05)   | N/A                          |
| 0.10                                               | 1 x 10 <sup>4</sup> | 1.75<br>(1.09)                           | 4.17 (1.38)    | 27.25<br>(2.50) | 34.5<br>(7.58)   | 44.42<br>(9.79)   | -102 <sup>2</sup>            |
| 0.29                                               | 1 x 10 <sup>4</sup> | 1.92<br>(0.52)                           | 7.58<br>(2.77) | 37.33<br>(5.70) | 63.25<br>(16.54) | 69.58<br>(2.43)   | -216                         |
| 0.67                                               | 1 x 10 <sup>4</sup> | 0.67 (0.38)                              | 4.58 (2.84)    | 32.33<br>(4.47) | 74.17<br>(7.34)  | 169.56<br>(58.46) | -669                         |
| 1.7                                                | 1 x 10 <sup>4</sup> | 0.67 (0.38)                              | 1.58 (2.84)    | 27.5<br>(4.47)  | 52.92<br>(7.34)  | 84.42<br>(3.64)   | -283                         |
| 4.0                                                | 1 x 10 <sup>4</sup> | 1.42 (0.80)                              | 2.33 (0.38)    | 23.42<br>(7.51) | 52.5<br>(16.04)  | 63.08<br>(11.61)  | -186                         |
| 10                                                 | 1 x 10 <sup>4</sup> | 0.50 (0.43)                              | 0.50 (0.25)    | 0.00 (0.00)     | 0.08 (0.14)      | 0.92*<br>(1.18)   | 96                           |
| Reference chemical (if used)  N/A (not applicable) |                     |                                          |                |                 |                  |                   |                              |

<sup>\*</sup>Significantly different from the control (William's Test, p≤0.05) Percent inhibition relative to pooled controls. Negative inhibition shows stimulation of cell growth.

The algal growth curves (cell density versus time) for N. pelliculosa exposed to pyroxsulam are shown in Figure 1 with the drop in cell numbers in the solvent control after 72 hours most noticeable.



Significantly reduced as compared to the pooled control,

Figure 1. Algal growth curves (cell density [natural logs] vs. time) for Navicula pelliculosa exposed to pyroxsulam (from Hoberg, 2005).

| Treatment measured                  | Mean Specific Growthours | h Rate per day, 0-72            | Biomass (Mean Area Under the Grow<br>Curve), 0-72 hours |                                 |  |
|-------------------------------------|--------------------------|---------------------------------|---------------------------------------------------------|---------------------------------|--|
| concentrations (mg<br>pyroxsulam/L) |                          | Percent Inhibition <sup>1</sup> | 0-72 h                                                  | Percent Inhibition <sup>1</sup> |  |
| Negative control                    | 0.95                     |                                 | 14.04                                                   |                                 |  |
| Solvent control                     | 1.01                     |                                 | 12.56                                                   |                                 |  |
| 0.10                                | 1.11                     | -13 <sup>2</sup>                | 18.22                                                   | -37                             |  |
| 0.29                                | 1.22                     | -24                             | 27.37                                                   | -106                            |  |
| 0.67                                | 1.17                     | -19                             | 20.40                                                   | -53                             |  |
| 1.7                                 | 1.11                     | -13                             | 14.69                                                   | -10                             |  |
| 4.0                                 | 1.05                     | -7                              | 13.94                                                   | -5                              |  |
| 10                                  | 0.0*                     | 100                             | -1.53*                                                  | 112                             |  |

<sup>\*</sup> Significantly different from the control (Dunnett's Test, p≤0.05) ¹ Percent inhibition relative to pooled controls. ² Negative inhibition shows stimulation of cell growth.

The 0-72 hour mean specific growth rates for the 0.10 to 4.0 mg pyroxsulam/L showed stimulation relative to the controls. The same effect was observed in the 0-72 hour mean biomass results. The OECD 201 recommendation that the concentration series should preferably cover the range causing 5-75 % inhibition of algal growth rate was not met on the basis of the mean specific growth rates presented in Table 5.

Graphical representations of the 0-72 hours average growth rate and total biomass, taken from the study report, as shown in Figure 2 and Figure 3.

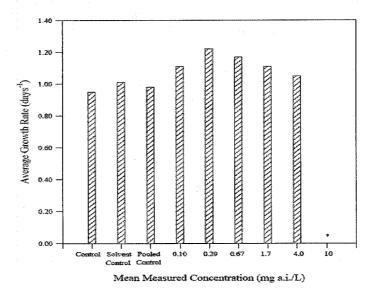



Figure 2. Average growth rate (0 to 72-hour) for Navicula pelliculosa exposed to pyroxsulam (from Hoberg, 2005).

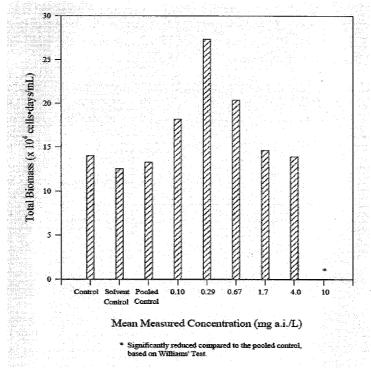



Figure 3. Total biomass (total area under the growth curve 0 to 72 hours) for *Navicula pelliculosa* exposed to pyroxsulam (from Hoberg, 2005).

### Validity of test

OECD 201 (2006) requires that, for the test to be valid, the following performance criteria should be met:

- the biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period;
- the mean coefficient of variation for section-by-section specific growth rates (days 0-1, 1-2 and 2-3, for 72-hour tests) in the control cultures (See Annex 1 under "coefficient of variation") must not exceed 35%; and
- the coefficient of variation of average specific growth rates during the whole test period in replicate control cultures must not exceed 7% in tests with *Pseudokirchneriella subcapitata* and *Desmodesmus subspicatus*. For other less frequently tested species, the value should not exceed 10%.

In contrast, OECD 201 (1984), the guideline version the study followed, requires only that the cell concentration in the control cultures should have increased by a factor of at least 16 within three days.

US EPA OPPTS 850.5400 states that algal growth in controls should reach the logarithmic growth phase by 96 h (at which time the number of algal cells should be approximately 1.5 X 10<sup>6</sup>/mL for *Skeletonema* or 3.5 X 10<sup>6</sup>/mL for *Selenastrum*. No reference to coefficient of variation requirements was identified in this US EPA guideline.

With respect to exponential growth, this requirement appears to have been met for the controls but was variable for the solvent control (see page 20 of this DER under the parameter "Indicate whether there was an exponential growth in the control").

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

The 0-24, 24-48 and 48-72 hour control replicate growth rates were calculated from the initial (10,000 cells/mL), 24, 48 and 72 hour cell density counts using the growth rate formula shown under "Verification of Statistical Results" on page 27 of this DER. The values and calculated statistics, including the overall mean % coefficient of variation (%CV) used by the study reviewer are as shown in Table 6:

Table 6. Reviewer calculated growth rates for the 0-24, 24-48 and 48-72 hour periods and associated means, standard deviations and percentage coefficients of variation.

| Reviewer calculated growth rates (/day) for the control replicates |         |         |         |  |  |
|--------------------------------------------------------------------|---------|---------|---------|--|--|
| Replicate                                                          | 0-24 h  | 24-48 h | 48-72 h |  |  |
| 1                                                                  | -0.29   | 1.47    | 1.59    |  |  |
| 2                                                                  | 0.41    | 1.47    | 0.95    |  |  |
| 3                                                                  | -0.29   | 2.48    | 0.69    |  |  |
| Mean                                                               | -0.06   | 1.81    | 1.08    |  |  |
| Standard deviation                                                 | 0.40    | 0.59    | 0.46    |  |  |
| %CV                                                                | -706.64 | 32.56   | 43.10   |  |  |

The %CV values for the 0-24 and 48-72 hour growth rate values exceed the 35% limit set by OECD 201 (2006).

The 0-72 hours mean %CV was 7.1% (mean 0.04, standard deviation 0.003, see page 43 of this DER for the data and ToxCalc results) which meets the 2006 OECD guideline requirement of not exceeding 10%. Over the entire test, as specified by the 2006 version of OECD 201, the 0-120 hour %CV was 10.2 (mean 0.61, standard deviation 0.062), considered to also meet the OECD requirement.

If the study report's pooled mean control growth rate and standard deviation values are used, the 0-72 hour %CV value is (0.07X100/0.98) or 7.1, the same as the reviewer calculated value.

Because the study was conducted following the 1984 version of the OECD 201 guideline, this has not been considered a deficiency, but the low growth rate in the initial 24 hours and the high %CV are likely to have reduced the reliability and sensitivity of the study.

The statistical endpoints reported in the study report were as shown in Table 11.

Table 7. Statistical endpoint values for the toxicity of pyroxsulam to N. pelliculosa.

| Hour | EC Type | NOEC              | Value             | 95% Confidence Limits |
|------|---------|-------------------|-------------------|-----------------------|
|      |         | (mg pyroxsulam/L) | (mg pyroxsulam/L) | (mg pyroxsulam/L)     |
| 72   | ErC50   | 4.0               | 6.9               | 6.4-7.0               |
|      | EbC50   | 4.0               | 5.8               | 3.9-6.6               |
| 120  | EC50    | 4.0               | 6.8               | 5.9-7.1               |
|      | EC25    | 4.0               | 5.1               | 3.9-5.5               |

ErC50 for growth rate, EbC50 for biomass (area under growth curve) and EC50 is for cell density

### **B. REPORTED STATISTICS:**

The cell density in each test flask was calculated for each daily interval by dividing the number of cells counted by the number of fields examined. Means and standard deviations for cell density for each treatment and the controls were calculated from individual replicate values. The study report stated that a t-test was used to compare the cell density, total biomass and average growth rate of the control to that of the solvent control. If no significant difference was determined, control and solvent control data were pooled for further statistical analysis to determine treatment level effects. If a significant difference was detected, the treatment data were compared to the solvent control data. The 120-hour cell density in the control and solvent control averaged 24.33 and 19.75  $\times$  10<sup>4</sup> cells/mL, respectively (pooled control = 22.04  $\times$  10<sup>4</sup> cells/mL). Based on the results of statistical analysis performed for 120

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

hour cell density, 0-72 hour total biomass and 0-72 hour average growth rate, the NOEC, the highest test concentration which demonstrated no statistically adverse effect ( $p \le 0.05$ ) when compared to the appropriate control data, was determined. The data were first checked for normality using Shapiro-Wilks' test and for homogeneity of variance using Bartlett's test. If the data sets passed the tests for homogeneity and normality then William's Test was used to determine the NOEC. TOXSTAT was used to calculate the EC values and 95% confidence limits.

The EC25 and EC50 values (concentrations of test substance which reduced cell density by 25 and 50%, respectively) and the 95% confidence limits were calculated for cell densities after 24, 48, 72, 96 and 120 hours of exposure. Additionally, EC50 values were calculated for 0-72 hour total biomass (EbC50) and average growth rate (ErC50). The EC25 and EC50 values and their 95% confidence limits were determined by linear regression of response (percent reduction of cell density, biomass and growth rate as compared with the appropriate control) versus the mean measured concentration (Norberg-King, 1993). A computer program, TOXSTAT® (Gulley et al., 1996) was used to calculate the EC values and 95% confidence limits. If less than the required response was observed (i.e. <50% response), the EC value was empirically estimated to be greater than the highest concentration tested.

### C. VERIFICATION OF STATISTICAL RESULTS:

Statistical Method(s): Replicate data for cell density were tested (ToxCalc<sup>TM</sup> v5.0.23j. Copyright 1994-2005 Tidepool Scientific Software, McKinleyville, CA 95519 USA) for normality and homogeneity by, respectively, the Shapiro-Wilk's and Bartlett's tests and for difference between the mean cell counts and mean specific growth rates and mean biomass results of the pyroxsulam exposed algae and the mean of the pooled controls by Bonferroni's t test. Negative and solvent controls were compared and pooled if there were no statistically significant differences. All NOEC values were determined using the ToxCalc package.

The study report's mean cell density values (and associated standard deviations) were recalculated from the summary cell count data presented in the report and found to be identical to reported means and standard deviations for cell density.

The cell density percentage inhibition results given in the study report were recalculated with the results found to be equal to those reported.

Using the cell density data presented in the study report and the following formula for calculation of growth rate, viz.

$$\mu_{i-j} = \frac{\ln N_j - \ln N_i}{t_i - t_i}$$

Where:

 $\mu$  = mean specific growth rate from moment i to j (days<sup>-1</sup>)

Ln = natural logarithm

Ni = initial cell density at time i (cells/ml x 10<sup>4</sup>)

Nj = cell density at time j

ti = the moment time for the start of the period

tj = the moment time for the end of the period

The 72 hours specific growth rate values for control and test replicates presented in the study report were recalculated and shown to be similar to those given in the study report with the small differences attributed to rounding differences between the reported replicate data and the actual raw data results.

The growth rate percentage inhibition results given in the study report were recalculated and the results found equal to those reported.

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

Similarly, the cell density data were used in the following formula for calculation of the biomass-(area under the curve) values, viz.

$$A = \frac{N_1 - N_0}{2} \times t_1 + \frac{N_1 + N_2 - 2N_0}{2} \times (t_2 - t_1) + \frac{N_{n-1} + N_n - 2N_0}{2} \times (t_n - t_{n-1})$$

Where:

A = area under the growth curve

 $N_0$  = nominal number of cells/mL (x 10<sup>4</sup>) at t<sub>0</sub>  $N_1$  = measured number of cells/mL (x 10<sup>4</sup>) at t<sub>1</sub>  $N_n$  = measured number of cells/mL (x 10<sup>4</sup>) at t<sub>n</sub>

 $t_1$  = Time of first measurement after beginning of test  $t_n$  = time of n<sup>th</sup> measurement after beginning of test

The 72 hours biomass values for control and test replicates presented in the study report were recalculated and shown to be similar to those given in the study report with the small differences presumably due to rounding differences between the reported replicate data and the actual raw data results.

The biomass percentage inhibition results given in the study report were recalculated with the results equal to those reported.

The reviewer calculated end points were:

### Cell density 96 h:

EC50:

7.01 mg pyroxsulam/L

95% C.I.: 5.67-7.01 mg pyroxsulam/L

NOEC:

10 mg pyroxsulam/L

(Note that the 24, 48, 72 and 120 hour cell densities were also recalculated – with the values obtainable from the ToxCalc results shown in Appendix 1 on pages 38, 39, 40 and 42 respectively.)

### Specific growth rate 0-72 h:

ErC50:

6.80 mg pyroxsulam/L

95% C.I.: 6.18-7.12 mg pyroxsulam/L

NOEC:

4 mg pyroxsulam/L

The ToxCalc results for the specific growth rate are shown in Appendix 1, pages 43 and 44 of this DER.

The reviewer calculated mean and standard deviation 0-72 hour specific growth rate results and the reported mean and standard deviations are shown in Table 8. These are considered equivalent.

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

Table 8. Reviewer calculated and study report mean and standard deviation values for the 0-72 hour specific growth rate values for *Navicula pelliculosa* exposed to control and pyroxsulam containing solutions. Standard deviations are shown in brackets.

| Mean measured concentrations mg pyroxsulam/L | Calculated (day <sup>-1</sup> ) | Reported (day <sup>-1</sup> )    |
|----------------------------------------------|---------------------------------|----------------------------------|
| Control                                      | 0.94 (0.2)                      | 0.95 (0.02)                      |
| Solvent                                      | 1.00 (0.10)                     | 1.01 (0.10)                      |
| Pooled controls                              | 0.97 (0.07)                     | 0.98 (0.07)                      |
| 0.1                                          | 1.10 (0.03)                     | 1.11 (0.03)                      |
| 0.29                                         | 1.20 (0.05)                     | 1.22 (0.05)                      |
| 0.67                                         | 1.16 (0.04)                     | 1.17 (0.05)                      |
| 1.7                                          | 1.10 (0.06)                     | 1.11 (0.06)                      |
| 4                                            | 1.04 (0.11)                     | 1.05 (0.11)                      |
| 10                                           | , ,                             | Cell density was zero, so growth |
|                                              | Not calculated.                 | could not be calculated.         |

### Biomass 0-72 h:

EbC50:

5.71 mg pyroxsulam/L

95% C.I.: 2.20-7.08 mg pyroxsulam/L

NOEC:

4 mg pyroxsulam/L

The reviewer calculated biomass ToxCalc results are shown on pages 45 and 46 of this DER.

The reviewer calculated mean and standard deviation 0-72 hour biomass results and the reported mean and standard deviations are shown in Table 9. These are considered similar.

Table 9. Reviewer calculated and study report mean and standard deviation values for the 0-72 hour biomass for *Navicula pelliculosa* exposed to control and pyroxsulam containing solutions. Standard deviations are shown in brackets.

| Mean measured concentrations mg pyroxsulam/L | Calculated biomass<br>( X 10 <sup>4</sup> cells/mL) | Reported biomass<br>(X 10 <sup>4</sup> cells/mL) |
|----------------------------------------------|-----------------------------------------------------|--------------------------------------------------|
| Control                                      | 13.21 (3.42)                                        | 14.04 (3.54)                                     |
| Solvent                                      | 11.63 (3.97)                                        | 12.56 (4.25)                                     |
| Pooled controls                              | 12.42 (3.43)                                        | 13.3 (3.59)                                      |
| 0.1                                          | 17.04 (1.76)                                        | 18.22 (1.90)                                     |
| 0.29                                         | 25.67 (3.44)                                        | 27.37 (3.6)                                      |
| 0.67                                         | 18.92 (1.82)                                        | 20.4 (1.93)                                      |
| 1.7                                          | 13.50 (3.31)                                        | 14.69 (3.54)                                     |
| 4                                            | 12.96 (4.75)                                        | 13.94 (5.04)                                     |
| 10                                           | -1.50 (0.50)                                        | -1.53 (0.48)                                     |

The endpoints reported in the study report and those calculated in the assessment of the study are shown in Table 10.

Table 10. Reported and reviewer calculated toxicity endpoints.

| Toxicity endpoint                                       | Mean measured pyroxsulam concentration, mg/L (95% confidence limits) |                                                                             |
|---------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 96 hour cell density                                    | As presented in the study report                                     | As calculated by the ToxCalc program                                        |
| EC50                                                    | 7.0 (6.3-7.0)                                                        | 7.00 (5.67-7.01)                                                            |
| EC25                                                    | 5.5 (4.4-5.5)                                                        | 5.5 (3.5-5.5)                                                               |
| 120 hour cell density                                   |                                                                      |                                                                             |
| EC50                                                    | 6.8 (5.9-7.1)                                                        | 6.33 (4.76-7.42)                                                            |
| EC25                                                    | 5.1 (3.9-5.5)                                                        | 4.4 (2.3-6.1)                                                               |
| NOEC                                                    | 4.0                                                                  | 4.0                                                                         |
| 0-72 hour mean specific<br>growth rate<br>ErC50<br>NOEC | 6.9 (6.4-7.0)<br>4.0                                                 | 6.80 (6.18-7.12)<br>4.0                                                     |
| 0-72 hour biomass<br>EbC50                              | 5.8 (3.9-6.6)                                                        | 5.71 (2.20-7.08 with the 10 mg/L result excluded and 2.38-6.96 if included) |
| NOEC                                                    | 4.0                                                                  | 4.0                                                                         |

The reviewer calculated endpoints are considered to be comparable to those reported in the study report.

### D. STUDY DEFICIENCIES:

Table 11 summarises deficiencies and deviations from the OECD 201 and US EPA OPPTS 850.5400 Guidelines.

Table 11. Deviations from Guidelines and other deficiencies

| Parameter   | Study reported results                       | OECD 201 Freshwater alga and                                                   | US EPA OPPTS 850.5400 Algal                 |
|-------------|----------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|
|             | 1                                            | Cyanobacteria, Growth Inhibition                                               | Toxicity,                                   |
|             |                                              | Test                                                                           | Tiers I and II                              |
| Acclimation | The inoculum used to                         | OECD 201 states that an inoculum                                               | US EPA OPPTS 850.5400 states that           |
| period:     | initiate the toxicity test                   | culture in the test medium is prepared 2-                                      | toxicity testing should not be performed    |
| <b>F</b>    | with pyroxsulam was                          | 4 days before start of the test with the                                       | until algal cultures are shown to be        |
|             | taken from a stock                           | inoculum culture incubated under the                                           | actively growing (i.e. capable of           |
|             | culture that had been                        | same conditions as the test cultures.                                          | logarithmic growth within the test          |
|             | transferred to fresh                         |                                                                                | period) in at least two subcultures lasting |
|             | medium seven days prior                      |                                                                                | 7 days each prior to the start of the       |
|             | to test initiation.                          |                                                                                | definitive test. This guideline also refers |
|             |                                              |                                                                                | to the test beginning when algae            |
|             |                                              | ·                                                                              | (inocula) from 3- to 7-day-old stock        |
|             |                                              |                                                                                | cultures are placed in the test chambers    |
|             |                                              |                                                                                | containing test solutions having the        |
|             |                                              |                                                                                | appropriate concentrations of the test      |
| ·           |                                              |                                                                                | substance.                                  |
|             |                                              |                                                                                |                                             |
| Duration of | 120 hours                                    | OECD 201 refers to the test normally                                           | US EPA OPPTS 850.5400 refers to cell        |
| the test    | ·                                            | being for 72 hours but with shorter or                                         | counts at 24, 48, 72 and 96 hours           |
|             |                                              | longer periods allowed provided that                                           |                                             |
| a a         | ·                                            | guideline's validity criteria are met.                                         |                                             |
|             |                                              |                                                                                |                                             |
| Details of  | Algal Assay Procedure                        | OECD 201 refers to AAP medium and                                              | US EPA OPPTS 850.5400 does not              |
| growth      | (AAP) medium modified                        | provides a comparison (Annex 3) of the                                         | specifically refer to media composition,    |
| medium      | by additions of sodium                       | US EPA AAP medium and the OECD                                                 | instead referring to other sources for this |
| Name        | silicate and sodium                          | 201 medium. The guideline identifies                                           | information.                                |
|             | selenate (Na <sub>2</sub> SeO <sub>4</sub> ) | both as suitable growth media. The                                             |                                             |
|             | The addition of sodium                       | guideline also states that in tests with the                                   |                                             |
|             | selenate was noted in the                    | diatom Navicula pelliculosa, both media must be supplemented with              |                                             |
|             | study report's description                   | Na <sub>2</sub> SiO <sub>3</sub> . 9H <sub>2</sub> 0 to obtain a concentration |                                             |
|             | of the composition of the                    | of 1.4 mg Si/L. The calculated                                                 |                                             |
|             | AAP medium as being                          | concentration of silicon in the medium                                         |                                             |
|             | an additional nutritional                    | was ~2 mg/L, a value not considered                                            | ·                                           |
|             | requirement.                                 | significantly different from the 1.4 mg/L                                      |                                             |
|             | 10quiromons.                                 | level.                                                                         |                                             |
|             |                                              | /                                                                              |                                             |
|             | The amount of hydrated                       | With respect to sodium selenate, OECD                                          |                                             |
|             | sodium silicate present                      | 201 states that the US EPA AAP                                                 |                                             |
|             | was reported as 20 mg/L,                     | medium can only contain sodium                                                 |                                             |
|             | calculated as equivalent                     | selenate when the medium is used to                                            |                                             |
|             | to ~2 mg Si/L, cf. the 1.4                   | grow stock cultures of diatoms.                                                |                                             |
|             | mg Si/L recommended                          |                                                                                |                                             |
| •           | by OECD 201.                                 | The guideline's wording regarding use of                                       | <br>                                        |
|             |                                              | sodium selenate can be interpreted as                                          |                                             |

| pH at test initiation:  Number of replicates Control, solvent control and treatments: | The concentration of sodium selenate in the medium was 1.88 µg/L, cf. the calculated concentration in the AAP medium of ~0.007 µg/L recommended by OECD 201.  pH values in the control vessels at 0 hours were 6.9 (control) and 7.0 (solvent control).  3 replicates in each case. | meaning that this chemical can only be used in the stock diatom cultures and not the test cultures, which, if correct, appears unusual.  This difference between the concentration of sodium selenate used and that indicated by OECD 201 appears large, but the successful growth of the control diatoms is taken to indicate no adverse effect had occurred as a result of this.  OECD 201 states that the pH of AAP medium is 7.5.  OECD 201 states that the test design should include three replicates at each test concentration and that the number of control replicates must be at least three, and ideally should be twice the number of replicates used for each test | US EPA OPPTS 850.5400 states that the pH of the nutrient medium is to be 7.5 (± 0.1) for <i>Navicula</i> at the start of the test  The US EPA OPPTS refers to use of four replicates for <i>N. pelliculosa</i> , |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test concentrations Nominal: (Factor used for test series)                            | 0.10, 0.26, 0.64, 1.6, 4.0, 10 mg/L  Ratio between nominal concentrations: 0.26/0.10 = 2.6 0.64/0.26 = 2.5 1.6/0.64 = 2.5 4.0/1.6 = 2.5 10/4.0 = 2.5                                                                                                                                | concentration.  OECD 201 states that, for the final definitive test, at least five concentrations, arranged in a geometric series with a factor not exceeding 3.2, should be selected.  The guideline also states that the concentration series should preferably cover the range causing 5-75 % inhibition of algal growth rate. There was >90% inhibition at the highest concentration with respect to cell density, specific growth rate and biomass but at all other concentrations, there was growth stimulation.                                                                                                                                                           | US EPA OPPTS 850.5400 states algae should be exposed to five or more concentrations of the test chemical in a geometric series in which the ratio is between 1.5 and 2.0 (e.g. 2, 4, 8, 16, 32, and 64 mg/L).    |

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

| Measurement technique for cell density and other end points. | Due to the tendency of Navicula pelliculosa cells to clump, the solutions were vigorously pipetted multiple times to disperse clumped cells and achieve a homogeneous suspension prior to removing a sample for cell counts. | OECD 201 also notes that Navicula pelliculosa may form aggregates under certain growth conditions. Due to production of lipids the algal cells sometimes tend to accumulate in the surface film. Under those circumstances special measures have to be taken when sub-samples are taken for biomass determination in order to obtain representative samples. Vigorous shaking, e.g. using a vortex mixer may be required. | US EPA OPPTS 850.5400 states that the procedure used to break up the filaments should result in consistent filament lengths across treatments and replicates. Sonification, ultrasonic bath, blender, syringe, or any other methods of cell separation, other than manual or rotary shaking are <b>not</b> allowed for . <i>Navicula</i> . |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validity of test                                             | The %CV values for the 0-24 and the 48-72 hour periods were reviewer calculated as -706% and 43% with such values indicative of noncompliance with the 35% limit set by the 2006 OECD 201 guideline.                         | OECD 201 (2006) requires that, for the test to be valid, the mean coefficient of variation for section-by-section specific growth rates (days 0-1, 1-2 and 2-3, for 72-hour tests) in the control cultures must not exceed 35%.                                                                                                                                                                                           | No %CV requirement.                                                                                                                                                                                                                                                                                                                        |

### Comments on these deficiencies/deviations

The use of a 7, rather than 2-4, day old culture to obtain the *N. pelliculosa* cells is required by the US EPA OPPTS 850.5400 guideline and, while exceeding the OECD 201 2 to 4 day requirement for the culture age, is not considered to be a significant deviation from the latter guideline. The successful growth of the control cultures adds support to this belief although it is noted that the counts in the control and solvent controls averaged, respectively, 1 X 10<sup>4</sup> and 0.58 X 10<sup>4</sup> cells/mL after 24 hours, indicative of a lag phase. The reason for the study being taken out to 120 hours was not identified in the study report, but in itself the use of a 120 hour period is not considered to be a significant deviation or deficiency. Furthermore, the data presented allowed calculation of endpoints at 24, 48, etc. hours.

The modifications to the AAP medium were identified as necessary for the correct growth of the *Navicula pelliculosa*. While the modifications are clear with a close reading of the study report, it is considered that reference to "modified AAP" throughout the study report would have been a better description because the concentration of sodium selenate used (1.88  $\mu$ g/L) is significantly greater than that allowed according to the OECD 201 description of the AAP medium (namely ~0.007  $\mu$ g/L).

The reason for not using four replicates, as required by the US guideline is not known. This is both a deviation and deficiency and reduces the sensitivity and reliability of the study.

While the ratio of the nominal concentrations exceeds the US EPA guideline requirement of being between 1.5 and 2.0 (the values were 2.5 or 2.6), this deviation from the US EPA guideline is not considered a serious deficiency. However, the OECD 201 guideline's stating that the concentration series should preferably cover the range causing 5-75 % inhibition of algal growth rate was not met. There was >90% inhibition at the highest concentration (10 mg/L) with respect to cell density, specific growth rate and biomass but at all other concentrations, there was growth stimulation.

While the need to break up the *Navicula pelliculosa* aggregates/filaments is identified by both guidelines and recognised in the study report, the success of vigorous, multiple pipetting in breaking up the aggregates/filaments is not known and the pipetting procedure is not considered to have shown been to be acceptable, especially as the US EPA 850.5400 specifically states, "Sonification, ultrasonic bath, blender, syringe, or any other methods of cell separation, other than manual or rotary shaking are not allowed for *Selenastrum*, *Skeletonema*, or *Navicula*." The "Validity of test" deficiencies regarding the %CV values for the 0-24 and 48-72 hour periods is considered most likely also related to the failure to properly break up aggregates/filaments.

While not included in the table of deviations, the observation the marked decline in the mean numbers of cells in the solvent control at 72 hours is also indicative of an unexplained event having occurred in the control solvent samples.

At 96 hours, the mean cell count in the control was 22.67 X 10<sup>4</sup> cells/mL and, in the solvent control, 14.67 X 10<sup>4</sup> cells/mL, i.e. the OECD's 16-fold factor is met for the control but not the solvent control.

### **E. REVIEWER'S COMMENTS:**

While the results from the study are considered to show that pyroxsulam is moderately toxic to the freshwater diatom, *Navicula pelliculosa*, the issues of the modification of the AAP medium, the use of three rather than four replicates as required by the US EPA, the uncertainty as to whether the vigorous pipetting sufficiently disrupted the aggregates/filaments, and the absence of sustained exponential growth in the solvent control have resulted in classifying the study as INVALID. Additionally, only one concentration tested resulted in inhibition of algal growth, all others indicated varying degrees of growth stimulation. Such a result is not considered to be routinely expected.

It was also noted that there was considerable variation between replicates in several treatment levels, especially at 120 h samples. This may be due to the diatoms clumping, as indicated in the report, and not being sufficiently agitated (shaken) to break up the clumps. Whereas sustained exponential growth was achieved in the negative control and most treatments, this was not the case in the solvent control where cell density fell between 72 and 96 hours and had barely recovered to the 72 hour level at 120 hours.

This variation between replicates and the strong stimulation, which may be due to sampling problems, provide further reason for classifying the study as INVALID.

Results are therefore not reported in the Executive Summary or the Conclusions Sections of this DER, and should not be used in a risk assessment.

F. CONCLUSIONS: This study is classified as INVALID because of uncertainties relating to the successful disruption of aggregates/filaments of the *Navicula pelliculosa*, the use of a smaller number of replicates than required by the US EPA, the lack of inhibitory effects at all but the highest (10 mg/L) exposure concentration and the lack of sustained exponential growth in the solvent control. Results should not be used in a risk assessment. This study is of limited utility due to the issues of the modification of the AAP medium, the use of three rather than four replicates as required by the US EPA, the uncertainty as to whether the vigorous pipetting sufficiently disrupted the aggregates/filaments, and the absence of sustained exponential growth in the solvent control. These have resulted in classifying the study as invalid.

The study's O-72 hour ErC5O of 6.9 mg pyroxsulam/L is an order of magnitude greater than the O-72 hour ErC5O value of 0.695 mg pyroxsulam/L determined in the DER for the effect of pyroxsulam on the freshwater green alga, *Pseudokirchneriella subcapitata*. Because of the uncertainty associated with this study and its calculated endpoints, the reviewer is not confident that pyroxsulam's toxicity to *Navicula pelliculosa* has conclusively been demonstrated as likely to be less than to *Pseudokirchnerialla subcapitata*.

DEW recommends that the *Navicula* study be repeated, based upon current OECD and US EPA guideline requirements.

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

#### **III. REFERENCES:**

ASTM. 2002. Conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. Standard E729-96. American Society for Testing and Materials, 100 Barr Harbor drive, West Conshohocken, PA 19428.

Cathie, C. (2004). Determination of Dissociation Constant of XR-742 using UV-Visible Spectrophotometry. 30 August 2004. Unpublished report of Dow AgroSciences LLC, Indianapolis, Indiana.

EC, 1992. Official Journal of the European Communities. 1992. Methods for the determination of Ecotoxicity. C.3 Algal Inhibition Test. L383A Volume 35, 29 December 1992.

Gulley, D.D., Boetler, A.M. and Bergman, H.L. 1996 Toxstat Release 3.5. University of Wyoming, Laramie, Wyoming.

Horning, W.B. and C.I. Weber. 1985. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA/600/4-85/014. Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio.

Madsen, S. (2003). Determination of the Surface Tension, Density, and Vapour Pressure of the Pure Active Ingredient XDE-742. 09 October 2003. Unpublished report of Dow AgroSciences LLC, Indianapolis, Indiana.

Madsen, S. (2006). Group B: Physical and Chemical Properties of XDE-742. Dow AgroSciences LLC Supply R&D Laboratory, Analytical/Product Chemistry Center of Expertise, 9330 Zionsville Road Indianapolis, Indiana 46268, Huntingdon Life Sciences Ltd., Woolley Road, Alconbury Huntingdon Cambridgeshire, PE28 4HS, England, Dow AgroSciences LLC, 89 Paritutu Road, New Plymouth, New Zealand, and BASF Aktiengesellschaft, BASF Agricultural Center Limburgerhof, Crop Protection Division, Ecology and Environmental Analytics, 57114 Limburgerhof, Germany. LABORATORY STUDY ID NAFST-06-086. 15-June-2006. Unpublished report.

Mercer, J. 2006. Study Profile Template (SPT) for XDE-742 Growth inhibition test with the freshwater diatom (*Navicula pelliculosa*). Springborn Smithers Laboratories, 790 Main Street, Wareham, MA. Springborn Smithers study number: 12550.6367.SPT, DAS study number: 050283.SPT. The Dow Chemical Company Midland, MI 48674 USA for Dow AgroSciences LLC, Indianapolis, IN 46268 USA. 8 February 2006. Unpublished report.

Miller, W.E., J.C. Greene and T. Shiroyama. 1978. *The Selenastrum capricornutum* Printz algal assay bottle test. EPA 600/9-78-018. U.S. Environmental Protection Agency, Corvallis, Oregon.

Norberg-King, Teresa J. 1993. A Linear Interpolation Method for Sublethal Toxicity: The Inhibition Concentration (ICp) Approach. National Effluent Toxicity Assessment Center, Environmental Research Laboratory – Duluth, U.S. Environmental protection Agency, Duluth, Minnesota. Technical report 03-93.

OECD. 1984. Guideline for Testing of Chemicals. Alga, Growth Inhibition Test #201. Adopted 7 June 1984. Organization for Economic Cooperation and Development. Paris, France.

OECD. 1997. Good Laboratory Practice in the Testing of Chemicals. Paris. France, as revised 1997.

Sokal, R.R. and F.J. Rohlf. 1981. Biometry 2nd Edition. W.H. Freeman and Co., New York, NY. 859 pp.

Turner, B. J. (2004a). Determination of Water Solubility for XDE-742. 22 December 2004. Unpublished report of Dow AgroSciences LLC, Indianapolis, Indiana.

Turner, B. J. (2004b). Determination of Octanol/Water Partition Coefficient for XDE-742. 22 December 2004. Unpublished report of Dow AgroSciences LLC, Indianapolis, Indiana.

U.S. EPA. 1982. Pesticide Assessment Guidelines, Subdivision J. Hazard Evaluation: Nontarget Plants. Report No. EPA 540/9-82-020, PB83-153940. U.S. Environmental Protection Agency, Washington, D.C.

U.S. EPA. Federal Insecticide, Fungicide and Rodenticide Act (FIFRA); Good Laboratory Practice Standards; Final Rule (40 CFR, Part 160). U.S. Environmental Protection Agency, Washington, DC.

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

Weber, C.I., W.H. Peltier, T.J. Norberg-King, W.B. Horning II, F.A. Kessler, J.R. Menkedick, T.W. Neiheisel, P.A. Lewis, D.J. Klemm, Q.H. Pickering, E.L. Robinson, J.M. Lazorchak, L.J. Wymer and R.W. Freyberg (eds.). 1989. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. 2nd ed. EPA/600/4/89/001. Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH.

Williams, D.A. 1971. A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics* 27: 103-117.

Williams, D.A. 1972. A comparison of several dose levels with a zero control. Biometrics 28:519-531.

### APPENDIX I. OUTPUT OF REVIEWER'S STATISTICAL VERIFICATION:

### Cell density - 24 hours

The ToxCalc analysis of the 24 hour algal cell count data (untransformed) gave the following results. Cell count data is given a cells/mL.

| Conc-mg/L             | 110          | 2            | 3 3            | <b>三音系列</b>  |             |            | No.                                    | - 617A            | 10.5                                  |                  |         |         |
|-----------------------|--------------|--------------|----------------|--------------|-------------|------------|----------------------------------------|-------------------|---------------------------------------|------------------|---------|---------|
| D-Control             | 7500         | 15000        | 7500           |              |             |            |                                        |                   |                                       |                  |         |         |
| S-Control             | 7500         | 7500         | 2500           |              |             |            |                                        |                   |                                       |                  |         |         |
| 0.1                   | 12500        | 30000        | 10000          |              |             |            |                                        |                   |                                       |                  |         |         |
| 0.29                  | 15000        | 17500        | 25000          |              | •           |            |                                        |                   |                                       |                  |         |         |
| 0.67                  | 10000        | 2500         | 7500           |              |             |            |                                        |                   |                                       |                  |         |         |
| 1.7                   | 2500         | 10000        | 7500           |              | j           | r          |                                        |                   |                                       |                  |         |         |
| 4                     | 5000         | 17500        | 20000          |              |             |            |                                        |                   |                                       |                  |         |         |
| 10                    | 7500         | 7500         | 0              |              |             |            |                                        |                   |                                       |                  |         |         |
|                       |              |              |                | Transforn    | n: Untran   | sformed    |                                        | Salaha S          | 1-Tailed                              |                  | Isot    | onic    |
| Conc-mg/L             | Mean         | N-Mean       | Mean           | Min          | Max         | CV%        | N                                      | t-Stat            | Critical                              | MSD              | Mean    | N-Mean  |
| Pooled                | 7916.667     | 1.0000       | 7916.667       | 2500         | 15000       | 50.592     | 6                                      |                   |                                       |                  | 14861.1 | 1.0000  |
| 0.1                   | 17500        | 2.2105       | 17500          | 10000        | 30000       | 62.270     | 3                                      | -2.287            | 2.655                                 | 11124.1          | 14861.1 | 1.0000  |
| 0.29                  | 19166.67     | 2.4211       | 19166.67       | 15000        | 25000       | 27.152     | 3                                      | -2.685            | 2.655                                 | 11124.1          | 14861.1 | 1.0000  |
| 0.67                  | 6666.667     | 0.8421       | 6666.667       | 2500         | 10000       | 57.282     | 3                                      | 0.298             | 2.655                                 | 11124.1          | 9166.67 | 0.6168  |
| 1.7                   | 6666.667     | 0.8421       | 6666.667       | 2500         | 10000       | 57.282     | 3                                      | 0.298             | 2.655                                 | 11124.1          | 9166.67 | 0.6168  |
| 4                     | 14166.67     | 1.7895       | 14166.67       | 5000         | 20000       | 56.727     | 3                                      | -1.492            | 2.655                                 | 11124.1          | 9166.67 | 0.6168  |
| 10                    | 5000         | 0.6316       | 5000           | 0            | 7500        | 86.603     | 3                                      | 0.696             |                                       | 11124.1          | 5000    | 0.3364  |
| <b>Auxiliary Test</b> | ts           |              |                |              | La constant |            | Statistic                              | TOPUS BERN TO SEE | Critical                              |                  | Skew    | Kurt    |
| Shapiro-Wilk's        | Test indica  | ites norma   | al distributio | n (p > 0.0   | 1)          |            | 0.9742                                 |                   | 0.884                                 |                  | 0.36812 | 0.16555 |
| Bartlett's Test       | indicates e  | qual variar  | nces $(p = 0.$ | .58)         |             |            | 4.72432                                |                   | 16.8119                               |                  |         |         |
| The control me        | eans are no  | t significar | ntly differen  | t (p = 0.24) | )           |            | 1.38675                                |                   | 2.77645                               |                  |         |         |
| Hypothesis T          | est (1-tail, | 0.05)        | NOEC           | LOEC         | ChV         | TU         | MSDu                                   | MSDp              | MSB                                   | MSE              | F-Prob  | df      |
| Bonferroni t Te       | est          |              | 10             | >10          |             |            | 11124.1                                | 1.40515           | 1.1E+08                               | 3.5E+07          | 0.0348  | 6, 17   |
| Treatments vs         | Pooled Co    | ntrois       |                |              |             |            |                                        |                   |                                       |                  |         |         |
|                       | 116 15 16    |              | 3.444          | Linea        | r Interpo   | lation (20 | 00 Resan                               | ples)             | 48.45                                 | 2000             |         |         |
| Point                 | mg/L         | SD           | 95% CL         | (Ехр)        | Skew        | 447        |                                        | THE STATE OF      | 1456 align                            |                  |         |         |
| IC05                  | 0.3396       | 0.4164       | 0.3032         | 0.5162       | 9.9602      |            |                                        |                   |                                       |                  |         |         |
| IC10                  | 0.3892       | 0.6126       | 0.3270         | 0.7425       | 7.1060      |            |                                        |                   |                                       |                  |         |         |
| IC15                  | 0.4388       | 1.0076       | 0.3492         | 6.7401       | 3.9510      |            | 1.0                                    | <del></del>       | · · · · · · · · · · · · · · · · · · · |                  |         | _       |
| IC20                  | 0.4883       | 1.4480       | 0.3690         | 8.1883       | 2.5540      |            | 0.9<br>0.8                             | 1                 |                                       |                  |         |         |
| IC25                  | 0.5379       | 1.9426       | 0.3887         | 9.5860       | 1.5984      |            | 0.7                                    | 1                 |                                       | _                |         |         |
| IC40                  | 4.3600       |              |                |              |             |            | 0.6<br>0.5                             | ]                 |                                       |                  |         |         |
| IC50                  | 6.5000       |              |                |              |             |            | 0.4<br>0.3<br>0.2                      | ] ♦ ◆             | -                                     |                  |         |         |
|                       |              |              |                |              |             |            | 0.2                                    | ]/                |                                       | ,,               |         |         |
|                       |              |              |                |              |             |            | 0.1                                    | # \               |                                       | 1                |         |         |
|                       |              |              | -              |              |             |            |                                        | <b>f</b> : \      |                                       | go <sup>rt</sup> |         |         |
|                       |              |              |                |              |             |            | <b>Q</b> -0.2                          | <b>]</b> : \      | ٠,٠                                   |                  |         |         |
|                       |              |              |                |              |             |            | -0.1<br>-0.03<br>-0.04<br>-0.5<br>-0.5 | <b>3</b> { \      | بمغرب المعارب                         |                  |         |         |
|                       |              |              |                |              | •           |            | <b>ĕ</b> -0.5                          | <b>4</b> :        | /                                     |                  |         |         |
|                       |              |              |                |              |             |            | -0.7<br>-0.8                           | 4                 |                                       |                  |         |         |
|                       |              |              |                |              |             |            | -0.9<br>-1.0                           | <u>1:</u>         |                                       |                  | -       |         |
|                       |              |              |                |              |             |            | -1.1                                   | #                 | 5                                     | 10               |         | 15      |

### Cell density - 48 hours

The ToxCalc analysis of the 48 hour algal cell count data (untransformed) gave the following results. Cell count data is given a cells/mL.

| uata is given a       | cells/IIIL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           | *                                                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|---------|
| -Сопс-mg/L            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                | 3 4 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 11 21 21                                                                                                   | 7 2 3     |                                                                                        |              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |         | 2 ANT   |
| D-Control             | 32500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65000            | 90000          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           |                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,,,          |         |         |
| S-Control             | 40000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17500            | 40000          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | *         |                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
| 0.1                   | 42500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27500            | 55000          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           |                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,              |         |         |
| 0.29                  | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105000           | 72500          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           |                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
| 0.67                  | 22500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77500            | 37500          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           |                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
| 1.7                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22500            | 7500           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           |                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
| 4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20000            | 27500          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           |                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
| 10                    | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2500             | 5000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sharan ay a san a s |           |                                                                                        |              | ente Santa de la Caracteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 10.00   |         |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                | Marie Company and the Company of the | n: Untran                                                                                                     |           |                                                                                        |              | 1-Tailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5. 5.7         |         | nic     |
| _Conc-mg/L            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-Mean           | Mean           | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max.                                                                                                          | CV%       | N                                                                                      | I-Stat       | Critical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MSD            |         | N-Mean  |
| Pooled                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000           | 47500          | 17500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90000                                                                                                         | 54.493    | .6                                                                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 55000   | 1.0000  |
|                       | 41666.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 41666.67       | 27500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55000                                                                                                         | 33.045    | 3                                                                                      | 0.406        | 2.655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 55000   | 1.0000  |
|                       | 75833.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 75833.33       | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105000                                                                                                        | 36.463    | 3                                                                                      | -1.970       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38186.1        | 55000   | 1.0000  |
|                       | 45833.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 45833.33       | 22500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77500                                                                                                         | 62.032    | 3                                                                                      | 0.116        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38186.1        |         | 0.8333  |
|                       | 15833.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 15833.33       | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22500                                                                                                         | 48.238    | 3                                                                                      | 2.202        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38186.1        | 19583.3 | 0.3561  |
|                       | 23333.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 23333.33       | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27500                                                                                                         | 16.366    | 3                                                                                      | 1.680        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38186.1        | 19583.3 | 0.3561  |
| *10                   | APPENDANCE OF THE PROPERTY OF  | 0.1053           | 5000           | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7500                                                                                                          | 50.000    | 3                                                                                      | 2.955        | demonstration and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38186.1        | 5000    | 0.0909  |
| <b>Auxillary Test</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           | Statistic                                                                              | 9-26-7       | Critical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B. Same        | Skew    | Kurt    |
| Shapiro-Wilk's        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1)                                                                                                            |           | 0.94689                                                                                |              | 0.884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 0.67586 | 0.65797 |
| Bartlett's Test       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           | 13.2621                                                                                |              | 16.8119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |         |         |
| The control me        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           | 1.64317                                                                                |              | 2.77645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Page 1         |         |         |
| Hypothesis T          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05)            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ChV                                                                                                           | TU        | MSDu                                                                                   | MSDp         | MSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSE            | F-Prob  | df      |
| Bonferroni t Te       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 4              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.32456                                                                                                       |           | 38186.1                                                                                | 0.80392      | 1.7E+09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.1E+08        | 0.00894 | 6, 17   |
| Treatments vs         | Pooled Col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ntrois           | and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | -100      | N. D                                                                                   | and the same |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maja:          |         | allies. |
| THE PERSON OF         | and the state of t | CO.              | OFW OF         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r Interpol                                                                                                    | alion (zi | n nesan                                                                                | pies         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300            | 988     |         |
| Point 🐰 🖫             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SD               | 95% CL         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Skew                                                                                                          | 7 .       |                                                                                        | s policina   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | He E    |         |
| IC05                  | 0.4040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2278           | 0.0000         | 0.9746<br>1.0513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0199<br>-0.1607                                                                                             |           |                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
| IC10<br>IC15          | 0.5180<br>0.6320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2370<br>0.2389 | 0.0000         | 1.1279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.1607                                                                                                       |           | 1.0                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
| IC20                  | 0.0320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2369           | 0.0626         | 1.2096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.2535                                                                                                       |           | 0.9                                                                                    | ]            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              |         |         |
|                       | 0.7419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           |                                                                                        | 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
| IC25                  | U.0480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | A 1506         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           | 0.8                                                                                    | -1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | 1       |
| 1040                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2577           | 0.1596         | 1.2963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.2829                                                                                                       |           | 0.8<br>0.7                                                                             | ] .          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | 1.      |
| IC40                  | 1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2956           | 0.1413         | 1.5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5802                                                                                                       |           |                                                                                        | ***          | <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |         |         |
| IC40<br>IC50          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |           | 0.7<br>0.6<br>0.5                                                                      | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
|                       | 1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2956           | 0.1413         | 1.5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5802                                                                                                       |           | 0.7<br>0.6<br>0.5<br>0.4                                                               | 1            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Januar .       |         |         |
|                       | 1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2956           | 0.1413         | 1.5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5802                                                                                                       |           | 0.7<br>0.6<br>0.5<br>0.4                                                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second |         |         |
|                       | 1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2956           | 0.1413         | 1.5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5802                                                                                                       |           | 0.7<br>0.6<br>0.5<br>0.4                                                               |              | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Januar .       |         |         |
|                       | 1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2956           | 0.1413         | 1.5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5802                                                                                                       |           | 0.7<br>0.6<br>0.5<br>0.4                                                               |              | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |         |         |
|                       | 1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2956           | 0.1413         | 1.5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5802                                                                                                       |           | 0.7<br>0.6<br>0.5<br>0.4<br>95 0.3<br>0.2<br>0.1<br>0.0                                |              | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |         |         |
|                       | 1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2956           | 0.1413         | 1.5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5802                                                                                                       |           | 0.7<br>0.6<br>0.5<br>0.4                                                               |              | A STATE OF THE STA |                |         |         |
|                       | 1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2956           | 0.1413         | 1.5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5802                                                                                                       |           | 0.7<br>0.6<br>0.5<br>0.4<br>93<br>0.2<br>0.1<br>0.0<br>-0.1                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
|                       | 1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2956           | 0.1413         | 1.5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5802                                                                                                       |           | Bestpoors<br>0.5<br>0.4<br>0.2<br>0.0<br>0.1<br>0.1<br>0.2<br>0.3<br>0.3<br>0.4<br>0.3 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |
|                       | 1.1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2956           | 0.1413         | 1.5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5802                                                                                                       |           | 98 0.3<br>0.4<br>98 0.3<br>0.2<br>0.1<br>0.0<br>0.1<br>0.2<br>0.3                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |         |

10

Dose mg/L

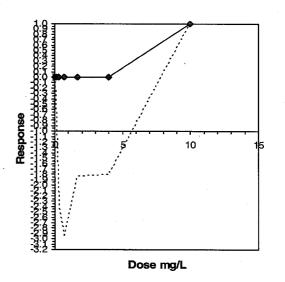
15

### Cell density - 72 hours

The ToxCalc analysis of the 72 hour algal cell count data (untransformed) gave the following results. Cell count data is given a cells/mL.

| data is given a       | cells/mL.        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                               |            |                                         |          |                                       |                |              |                   |
|-----------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------|------------|-----------------------------------------|----------|---------------------------------------|----------------|--------------|-------------------|
| Conc-mg/L             | 301 30           | 2                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 1 - 50 - 40 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | l A L      |                                         | Elements | 7 H 12                                |                | 5 2 300      |                   |
| D-Control             | 160000           | 167500           | 180000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                               |            |                                         |          |                                       |                |              |                   |
| S-Control             | 260000           | 147500           | 210000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                               |            |                                         |          |                                       |                |              |                   |
| 0.1                   | 247500           | 272500           | 297500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                               |            |                                         |          |                                       |                |              |                   |
| 0.29                  | 362500           | 322500           | 435000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                               |            |                                         |          |                                       |                |              |                   |
| 0.67                  | 375000           | 297500           | 297500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                               |            |                                         |          |                                       |                |              | `                 |
| 1.7                   | 277500           | 322500           | 225000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                               |            |                                         |          |                                       |                |              |                   |
| 4                     |                  | 237500           | 307500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                               |            |                                         |          |                                       |                |              |                   |
| 10                    | 0                | 0                | CONTRACTOR OF THE PROPERTY OF  |                  |                                               |            |                                         |          |                                       | Mike Links     |              | 290 <u>24</u> 033 |
|                       |                  | and the second   | Commence of the Commence of th | ranstori<br>Min  | n: Untran<br>Max                              | cv%        | N                                       | t-Stat   | 1-Tailed<br>Critical                  |                | Isoto        | onic<br>N-Mean    |
| Conc-mg/L<br>Pooled   | Mean<br>187500   | N-Mean<br>1.0000 | 187500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 147500           | 260000                                        | 22.087     | 6                                       | e-otat   | Cilucai                               | MOD.           | 289167       | 1.0000            |
| 0.1                   | 272500           | 1.4533           | 272500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 247500           | 297500                                        | 9.174      | 3                                       | -2.599   | 2 655                                 | 86826.3        | 289167       | 1.0000            |
|                       | 373333.3         |                  | 373333.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 435000                                        | 15.275     | 3                                       | -5.682   |                                       | 86826.3        | 289167       | 1.0000            |
|                       | 323333.3         |                  | 323333.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 375000                                        | 13.839     | 3                                       | -4.154   |                                       | 86826.3        | 289167       | 1.0000            |
| 1.7                   | 275000           | 1.4667           | 275000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225000           | 322500                                        | 17.745     | 3                                       | -2.676   |                                       | 86826.3        | 275000       | 0.9510            |
|                       | 234166.7         |                  | 234166.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 157500           | 307500                                        | 32.052     | 3                                       | -1.427   |                                       | 86826.3        | 234167       | 0.8098            |
| *10                   |                  | 0.0000           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                | 0                                             | 0.000      | 3                                       | 5.733    |                                       | 86826.3        | 0            | 0.0000            |
| <b>Auxiliary Test</b> | ls :             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                               |            | Statistic                               |          | Critical:                             |                | Skew         | Kurt              |
| Shapiro-Wilk's        |                  | tes norma        | al distributio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n (p > 0.0       | 1)                                            |            | 0.95562                                 |          | 0.884                                 |                | 0.32485      | -0.3641           |
| Equality of vari      |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                               |            |                                         |          |                                       |                |              |                   |
| The control me        |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (p = 0.33)     | )                                             |            | 1.10905                                 |          | 2.77645                               |                |              |                   |
| Hypothesis T          |                  | 0.05)            | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOEC             | ChV                                           | TU         | MSDu                                    | MSDp     |                                       |                | F-Prob       |                   |
| Bonferroni t Te       |                  |                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 10             | 6.32456                                       |            | 86826.3                                 | 0.46307  | 4.5E+10                               | 2.1E+09        | 5.6E-07      | 6, 17             |
| Treatments vs         | Pooled Co        | ntrols           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                               |            |                                         |          |                                       | Harmania and A | illio        | Section 1989      |
|                       |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | r Interpo                                     | lation (20 | X) Hesan                                | ples)    | State of the second                   | 2.8            |              |                   |
| Point                 | mg/L             | SD               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Exp)            | Skew                                          | he first   | E F Y sate                              | 15       |                                       |                | D1 - 10 - 20 | - Figure 175      |
| IC05                  | 1.7164           | 0.9326           | 0.5368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.8501           | 1.0062                                        |            |                                         |          |                                       |                |              |                   |
| IC10<br>IC15          | 2.5308<br>3.3452 | 1.0208<br>0.9587 | 0.5795<br>0.6039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.8415<br>5.8329 | 0.4560<br>-0.0532                             |            | 1.0                                     |          |                                       |                |              |                   |
| IC20                  | 3.3452<br>4.0726 | 0.9567           | 1.2244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.8764           | -0.0532                                       |            | 1.0<br>0.9                              | 1        |                                       | Į.             |              |                   |
| IC25                  | 4.4431           | 0.3070           | 1.8761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.1342           | -0.3094                                       |            | 0.8                                     | ₫        |                                       |                |              |                   |
| IC40                  | 5.5544           | 0.7750           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.9073           | -0.6387                                       |            | 0.7<br>0.6                              | ₫        |                                       | /:             |              | ,                 |
| IC50                  | 6.2954           | 0.5771           | 3.8151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.4228           | -0.8468                                       |            | 0.5                                     | 3        |                                       |                |              |                   |
| 1000                  | 0.2001           | 0.0711           | 0.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.1220           | 0.0.00                                        |            | 0.4                                     | ]        |                                       | /              |              |                   |
|                       |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                               |            | 0.3<br>0.2                              | 3        |                                       |                |              |                   |
|                       |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                               |            |                                         |          |                                       |                |              |                   |
|                       |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                               |            | <b>8</b> 0.1                            | ]        | , , , , , , , , , , , , , , , , , , , |                |              |                   |
|                       |                  |                  | *<br>- 24<br>- 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                               |            | 98 0.1<br>0.0<br>0.0                    |          |                                       |                |              |                   |
|                       |                  |                  | e<br>Personal<br>Personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                               |            | 98 0.1<br>0.0<br>-0.1<br>-0.2           |          |                                       |                |              |                   |
|                       |                  |                  | e<br>George                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                               |            | 9500 0.1<br>0.0<br>-0.1<br>-0.2<br>-0.3 |          |                                       |                |              |                   |
|                       |                  |                  | e<br>Verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                               |            | 98 0.1<br>0.0<br>-0.1<br>-0.2           | ,        |                                       |                |              |                   |

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

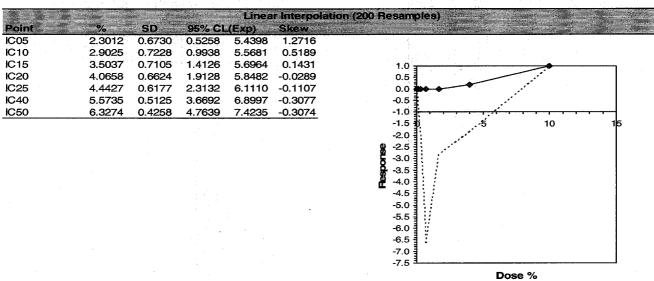

### Cell density - 96 hours

The ToxCalc analysis of the 96 hour algal cell count data (untransformed) gave the following results. Cell count data is given a cells/mL.

| CONC-MUL.             | 4.48                                                                                                           | <b>2</b> 44                              | 50               |             |                                              | She Sheeps 3 | and the second section of the section of the section of the second section of the secti | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tuliani in | Buddelling Trans | per sage. | 250 E 100 E |
|-----------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|-------------|----------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|-----------|-------------|
| D-Control             | 360000                                                                                                         | 212500                                   | 107500           |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 100              |           |             |
| S-Control             | 132500                                                                                                         | 200000                                   | 107500           |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |           |             |
| 0.1                   | 302500                                                                                                         | 432500                                   | 300000           |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |           |             |
| 0.29                  | 820000                                                                                                         | 507500                                   | 570000           |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |           |             |
| 0.67                  | 755000                                                                                                         | 662500                                   | 807500           |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |           |             |
| 1.7                   | 595000                                                                                                         | 447500                                   | 545000           |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |           |             |
| 4                     | 350000                                                                                                         | 560000                                   | 665000           |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  |           |             |
| 10                    | 2500                                                                                                           | 0                                        | 0                |             |                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #14 You (17 Ho Way Addition of the Control of the C |            |                  |           |             |
|                       | AND DE                                                                                                         | en e | 4000             | Transform   | ne Untran                                    | sformed      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-Talled   |                  | Isot      | onic        |
| Conc-mg/L             | Mean                                                                                                           | N-Mean                                   | Mean             | - Min       | · Max                                        | CV%          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t-Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Critical   | MSD              | Mean      | N-Mean      |
| Pooled                | 186666.7                                                                                                       | 1.0000                                   | 186666.7         | 107500      | 360000                                       | 51.584       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  | 493333    | 1.0000      |
| 0.1                   | 345000                                                                                                         | 1.8482                                   | 345000           | 300000      | 432500                                       | 21.967       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.655      | 196384           | 493333    | 1.0000      |
| 0.29                  | 632500                                                                                                         | 3.3884                                   | 632500           | 507500      | 820000                                       | 26.144       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -6.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.655      | 196384           | 493333    | 1.0000      |
| 0.67                  | 741666.7                                                                                                       | 3.9732                                   | 741666.7         | 662500      | 807500                                       | 9.898        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -7.503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.655      | 196384           | 493333    | 1.0000      |
| 1.7                   | 529166.7                                                                                                       | 2.8348                                   | 529166.7         | 447500      | 595000                                       | 14.176       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.655      | 196384           | 493333    | 1.0000      |
| 4                     | 525000                                                                                                         | 2.8125                                   | 525000           | 350000      | 665000                                       | 30.551       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.655      | 196384           | 493333    | 1.0000      |
| 10                    | 833.3333                                                                                                       | 0.0045                                   | 833.3333         | 0           | 2500                                         | 173.205      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.655      | 196384           | 833.333   | 0.0017      |
| <b>Auxiliary Test</b> | Maria de la companya | 4 图 3                                    | i jina           | AND C       |                                              |              | Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Critical   | F                | Skew      | Kurt        |
| Shapiro-Wilk's        | Test indica                                                                                                    | ites norma                               | al distributio   | n (p > 0.0  | 1)                                           |              | 0.9666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.884      |                  | 0.3871    | 0.01485     |
| Bartlett's Test       | indicates e                                                                                                    | qual variar                              | ices ( $p = 0$ . | 02)         |                                              |              | 15.7133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.8119    |                  |           |             |
| The control me        | eans are no                                                                                                    | t significa                              | ntly different   | t(p = 0.36) | <u>)                                    </u> |              | 1.02209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.77645    |                  |           |             |
| Hypothesis T          | est (1-tail,                                                                                                   | 0.05)                                    | NOEC             | LOEC        | ChV                                          | TU           | MSDu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSDp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSB        | MSE              | F-Prob    | af at       |
| Bonferroni t Te       | est                                                                                                            |                                          | 10               | >10         |                                              |              | 196384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.05205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3E+11    | 1.1E+10          | 5.8E-07   | 6, 17       |

Treatments vs Pooled Controls

|       |        |        |        | Linea  | r Interpolat | on (200 Resamples) |
|-------|--------|--------|--------|--------|--------------|--------------------|
| Point | mg/L   | SD     | 95% CL | (Exp)  | Skew         |                    |
| IC05  | 4.3005 | 0.7671 | 0.2584 | 4.3014 | -2.0795      |                    |
| IC10  | 4.6010 | 0.5681 | 1.2950 | 4.6028 | -2.9720      |                    |
| IC15  | 4.9015 | 0.4121 | 2.3266 | 4.9042 | -3.1830      | J.8 =              |
| IC20  | 5.2020 | 0.3633 | 3.0001 | 5.2056 | -2.9594      | 8.8                |
| IC25  | 5.5025 | 0.3309 | 3.5114 | 5.5070 | -2.8959      | 8:5                |
| IC40  | 6.4041 | 0.2655 | 4.8080 | 6.4112 | -2.9225      | 8:3 1              |
| IC50  | 7.0051 | 0.2212 | 5.6725 | 7.0140 | -2.9250      | β:◊ ••••           |




PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

### Cell density - 120 hours

The ToxCalc analysis of the 120 hour algal cell count data (untransformed) gave the following results. Cell count data is given a cells/mL.

| Conc-mg/L             | 11       | 2       | 3             | oli e   |                    | A COLUMN  | a diam'nus | o*        | 15,000     |              |         | The state of |
|-----------------------|----------|---------|---------------|---------|--------------------|-----------|------------|-----------|------------|--------------|---------|--------------|
| B-Control             | 375000   | 205000  | 150000        |         |                    |           | -          | 0         |            |              |         |              |
| S-Control             | 180000   | 220000  | 192500        |         |                    |           |            |           |            |              |         |              |
| 0.1                   | 337500   | 530000  | 465000        |         |                    |           |            |           |            |              |         |              |
| 0.29                  | 690000   | 722500  | 675000        |         |                    |           |            |           |            |              |         |              |
| 0.67                  | 1260000  | 1466700 | 2360000       |         |                    |           |            |           |            |              |         |              |
| 1.7                   | 882500   | 840000  | 810000        |         |                    |           |            |           |            |              |         |              |
| 4                     | 525000   | 755000  | 612500        |         |                    |           |            |           |            |              |         |              |
| 10                    | 25000    | . 0     | 5000          |         |                    |           |            |           | ** **      |              |         | manage.      |
| 100 July 1988         |          | 7.0W    | glampin (T)   | Transfo | orm: Log (         | X + 1)    |            |           | 1-Tailed   | 1,000        | Isoto   |              |
| Conc- mg/L            | Mean     | N-Mean  | Mean          | Min     | Max                | CV%       | N          | t-Stat    | Critical   | MSD          | Mean    | N-Mean       |
| Pooled                | 220417   | 1.0000  | 5.3240        | 5.1761  | 5.5740             | 2.536     | 6          |           |            |              | 780030  | 1.0000       |
| 0.1                   | 444167   | 2.0151  | 5.6400        | 5.5283  | 5.7243             | 1.788     | 3          | -0.547    | 2.655      | 1.5331       | 780030  | 1.0000       |
| 0.29                  | 695833   | 3.1569  | 5.8423        | 5.8293  | 5.8588             | 0.258     | 3          | -0.898    | 2.655      | 1.5331       | 780030  | 1.0000       |
| 0.67                  | 1695567  | 7.6926  | 6.2132        | 6.1004  | 6.3729             | 2.288     | 3          | -1.540    | 2.655      | 1.5331       | 780030  | 1.0000       |
| 1.7                   | 844167   | 3.8299  | 5.9262        | 5.9085  | 5.9457             | 0.315     | 3          | -1.043    | 2.655      | 1.5331       | 780030  | 1.0000       |
| 4                     | 630833   | 2.8620  | 5.7951        | 5.7202  | 5.8779             | 1.367     | 3          | -0.816    | 2.655      | 1.5331       | 630833  | 0.8087       |
| *10                   | 10000    | 0.0454  | 2.6990        | 0.0000  | 4.3980             | 87.565    | 3          | 4.546     | 2.655      | 1.5331       | 10000   | 0.0128       |
| <b>Auxiliary Test</b> |          | - 2.4   | 7 4 4         | - 107.0 | g -44 - F - T      |           | Statistic  |           | Critical   | ALTH E       | Skew    | Kurt         |
| Shapiro-Wilk's        |          |         |               |         |                    | )         | 0.57542    |           | 0.884      |              | -1.8837 | 11.068       |
| Bartlett's Test       |          |         |               |         |                    |           | 59.1877    |           | 16.8119    |              |         |              |
| The control me        |          |         |               |         |                    |           | 0.50109    |           | 2.77645    |              |         |              |
| Hypothesis T          |          | , 0.05) | NOEC          | LOEC    | - ChV              | TU        | MSDu       | MSDp      | MSB        | MSE          | F-Prob  | df .         |
| Bonferroni t Te       | st       |         | 4             | 10      | 6.32456            | 25        | 204685     | 0.9707    | 4.31532    | 0.66687      | 0.00108 | 6, 17        |
|                       |          |         |               |         | Santon endousement |           |            |           |            |              |         |              |
|                       | action . | de de   | Mark John St. | Linea   | r Interpol         | ation (20 | 0 Resam    | oles) - " | 4212 (200) | Silicania (S |         |              |



PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

Specific growth rate (0-72 hours) – statistical analysis for means and difference from the means based on exclusion of the 10 mg/L result (no cell growth).

The ToxCalc analysis of the 0-72 hour mean specific growth rate data (untransformed, as day 1) gave the following results. Growth rate data in units of day 1. Data points were calculated by the reviewer from the cell density data.

|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   | •                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            |                    |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|-----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------|--------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Conc-mg/L       | 11               | 2 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 4                 | All of the second |                  | 2.6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                            | The section        | e ( South           | 7 5 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * 37              |
| B-Control       | 0.0385           | 0.0391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0401              |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            | THE REAL PROPERTY. | Michigan Laboration |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| S-Control       | 0.0453           | 0.0374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0423              |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 0.1             | 0.0446           | 0.0459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0471              |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 0.29            | 0.0499           | 0.0482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0524              |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 0.67            | 0.0503           | 0.0471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0471              |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 1.7             | 0.0462           | 0.0482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0432              |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 4               | 0.0383           | 0.0440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0476              |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 10              | 0.0000           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000              | erg v             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CONTROL SOCIETY |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   | n:Untran         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 7 P 19 19 19 19 19 19 19 19 19 19 19 19 19 | 1-Talled           | - 600<br>5-0        | AT A SHIP OF THE PARTY OF THE P | mic               |
| Conc-mg/L       | Mean             | Bullian and the second state of the second sta | Mean                | Min               |                  | CV%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | t-Stat                                     | Critical           | MSD                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-Mean            |
| Pooled          | 0.0405           | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0405              | 0.0374            | 0.0453           | 7.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6         | 0.740                                      | 0.000              | 0.0054              | 0.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000            |
| 0.1             | 0.0459           | 1.1338<br>1.2402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0459              | 0.0446            | 0.0471           | 2.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3         | -2.742                                     | 2.602              | 0.0051              | 0.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000            |
| 0.29<br>0.67    | 0.0502<br>0.0482 | 1.1914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0502<br>0.0482    | 0.0482            | 0.0524<br>0.0503 | 4.175<br>3.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 3<br>3  | -4.923                                     | 2.602              | 0.0051              | 0.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000            |
| 1.7             | 0.0462           | 1.1342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0459              | 0.0471            | 0.0503           | 5.474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3         | -3.922<br>-2.750                           | 2.602<br>2.602     | 0.0051<br>0.0051    | 0.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000            |
| 4               | 0.0433           | 1.0701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0433              | 0.0432            | 0.0462           | 10.826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3         | -1.437                                     | 2.602              | 0.0051              | 0.0459<br>0.0433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9937<br>0.9376  |
| 10              | 0.0000           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000              | 0.0000            | 0.0000           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3         | -1.437                                     | 2.002              | 0.0051              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| Auxiliary Test  |                  | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000              | 0.0000            | 0.0000           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Statistic |                                            | Critical           |                     | Skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000<br>Kurt    |
| Shapiro-Wilk's  |                  | ates norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al dietribu         | rtion (n >        | 0.01)            | Communication of the Communica | 0.98266   |                                            | 0.873              | Su godlant          | 0.15091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0288           |
| Bartlett's Test |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   | 0.01)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.36042   |                                            | 15.0863            |                     | 0.15091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0200           |
| The control me  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   | 37)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.01204   |                                            | 2.77645            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Hypothesis Ti   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   | ChV              | TU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MSDu      | MSDp                                       | MSB                | MSE                 | F-Prob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | df .              |
| Bonferroni t Te |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                   | 10                | 6.32456          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00514   |                                            | 5E-05              | 7.8E-06             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. 15             |
| Treatments vs   |                  | ontrols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            |                    |                     | 0.00202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0, .0             |
| Said Sile       | we a             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apple of the Second | Lines             | r interpol       | ation (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 Resam   | ples)                                      | 75                 | **                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Point           | M %              | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95% CL              | (Exp)             | Skew             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 441                                        | 2 1966             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| IC05            | 3.4915           | 0.8159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4775              | 4.7851            | -0.4616          | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| IC10            | 4.2405           | 0.4007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3534              | 4.8157            | -1.2514          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| IC15            | 4.5605           | 0.2729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3674              | 5.1037            | -0.8458          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0       | · · · · · · · · · · · · · · · · · · ·      |                    | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| IC20            | 4.8805           | 0.2457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.8953              | 5.3917            | -0.5957          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9       |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| IC25            | 5.2004           | 0.2304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.2768              | 5.6797            | -0.5957          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8       |                                            |                    | F.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| IC40            | 6.1603           | 0.1843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.4214              | 6.5438            | -0.5957          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7       |                                            | <i>!</i>           | •                   | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| IC50            | 6.8003           | 0.1536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.1845              | 7.1198            | -0.5957          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6       |                                            | ļ!                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5       |                                            | <i> </i> ;         |                     | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4       |                                            | /;                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3       |                                            | //                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4       |                                            | //                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1       |                                            |                    |                     | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0       | -                                          | -                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.1      |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.2      | , • • <sup>- •</sup>                       |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.3      |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.4      |                                            |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.41      |                                            | 5                  | 10                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J         |                                            | -                  |                     | . 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                            | Dose m             | y/L                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

Note that these results come from excluding the 10 mg/L results from the initial analysis. If that result is included, the following results are obtained:

Specific growth rate (0-72 hours) – data from the 10 mg/L results included in the statistical analysis. Growth rate data in units of day<sup>-1</sup>.

|                        | us or any  | •      |          |                       |                   |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|------------|--------|----------|-----------------------|-------------------|-----------|----------------------------------------|---------|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conc-mg/L              | 1 1        | 2      | 3        | arike ora             |                   | 1 6 4 4   | 4 2 4                                  |         | 120000    |            | 940<br>946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D-Control              | 0.0385     | 0.0391 | 0.0401   |                       |                   | 1         |                                        |         |           |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S-Control              | 0.0453     | 0.0374 | 0.0423   |                       |                   |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1                    | 0.0446     | 0.0459 | 0.0471   |                       |                   |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.29                   | 0.0499     | 0.0482 | 0.0524   |                       |                   |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.67                   | 0.0503     | 0.0471 | 0.0471   |                       |                   |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.7                    | 0.0462     | 0.0482 | 0.0432   |                       |                   |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                      | 0.0383     | 0.0440 | 0.0476   |                       |                   |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                     | 0.0000     | 0.0000 | 0.0000   |                       |                   |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THE PROPERTY OF THE PROPERTY O |
|                        |            |        | 2.500    |                       | rm: Log (         |           | To Godine                              |         | 1-Tailed  | 2 100 ST   | C40 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Conc-mg/L              |            | N-Mean | Mean     | Min                   | Max               | CV%       | N.                                     | t-Stat  | Critical  | MSD        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N-Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Pooled                 | 0.0405     | 1.0000 | 0.0172   | 0.0159                | 0.0192            | 6.970     | 6                                      |         |           |            | 0.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1                    | 0.0459     | 1.1338 | 0.0195   | 0.0189                | 0.0200            | 2.726     | 3                                      | -2.922  |           | 0.0020     | 0.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.29                   | 0.0502     | 1.2402 | 0.0213   | 0.0205                | 0.0222            | 4.074     | 3                                      | -5.234  |           | 0.0020     | 0.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.67                   | 0.0482     | 1.1914 | 0.0204   | 0.0200                | 0.0213            | 3.761     | 3                                      | -4.174  | -         | 0.0020     | 0.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.7                    | 0.0459     | 1.1342 | 0.0195   | 0.0184                | 0.0205            | 5.354     | . 3                                    | -2.930  |           | 0.0020     | 0.0459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4                      | 0.0433     | 1.0701 | 0.0184   | 0.0163                | 0.0202            | 10.606    | 3                                      | -1.530  |           | 0.0020     | 0.0433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *10                    | 0.0000     | 0.0000 | 0.0000   | 0.0000                | 0.0000            | 0.000     | 3                                      | 22.317  |           | 0.0020     | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Auxiliary Tests</b> |            | 10     | 2900k // |                       |                   |           | Statistic                              | Øc. 3   | Critical  | 25         | Skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kurt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Shapiro-Wilk's         |            |        |          | n (p > 0.0            | 1)                |           | 0.9784                                 |         | 0.884     |            | 0.15757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.42429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Equality of varia      |            |        |          |                       |                   |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The control mea        |            |        |          |                       |                   |           | 1.01059                                |         | 2.77645   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hypothesis Te          |            | 0.05)  | NOEC     |                       |                   | TU        | MSDu                                   | MSDp    |           | MSE        | F-Prob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bonferroni t Tes       |            |        | 4        | 10                    | 6.32456           |           | 0.0049                                 | 0.00471 | 0.00017   | 1.2E-06    | 1.7E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6, 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Treatments vs I        | Pooled Cor | ntrols |          | 2.2                   |                   |           | ,                                      |         | N/m       |            | State - State | NEC TO SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Point 1                | mg/L       | SD     | 95% CL   | and the second second | r Interpo<br>Skew | ation (20 | 0 Resam                                | ples)   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IC05                   | 3.4915     | 0.8111 | 0.5507   | 4.7851                | -0.1571           |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IC10                   | 4.2405     | 0.4409 | 2.2838   | 4.8157                | -1.0769           |           |                                        |         |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IC15                   | 4.5605     | 0.2866 | 3.3114   | 5.1037                | -0.8292           |           | 1.0                                    | T       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ٦ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IC20                   | 4.8805     | 0.2521 | 3.8814   | 5.3917                | -0.4440           |           | 0.9                                    | 4       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IC25                   | 5.2004     | 0.2363 | 4.2638   | 5.6797                | -0.4440           |           | 0.8                                    | 1       |           | F          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IC40                   | 6.1603     | 0.1890 | 5.4110   | 6.5438                | -0.4440           |           | 0.7                                    | 1       |           | Į:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IC50                   | 6.8003     | 0.1575 | 6.1759   | 7.1198                | -0.4440           |           | 0.6                                    |         |           | J.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |            |        |          |                       |                   |           | 0.5                                    | }       | /         | <i>l</i> ; |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |            |        |          |                       |                   |           |                                        | -       | <i>[:</i> | f          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |            |        |          |                       |                   |           | <b>5</b> 0.4                           | 7       |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |            |        |          |                       |                   |           | 95000000000000000000000000000000000000 | 1       | //        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |            |        |          |                       |                   |           | <b>%</b> 0.2                           | 1       | //        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |            |        |          |                       |                   |           | 0.1                                    | 1 _     | 4         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

-0.1 -0.2 -0.3 -0.4

5

Dose mg/L

10

PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

Biomass (area under the curve) for 0-72 hours – data from the 10 mg/L results excluded from the statistical analysis.

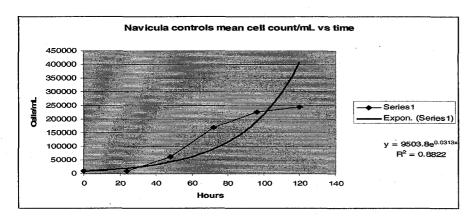
ToxCalc analysis of the reported biomass results (untransformed) gave the following results. Biomass data were calculated by the reviewer from the reported cell counts and are expressed as cell count X 10,000 cells/mL.

| Conc-mg/L                             | 7 #6 1                                                                                   | 2                                                        | 3 1                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           | FREE                                                                                                                                                                                        | 8 5 JUL 10       |          | J. 2  | Line II.             | B Just  |
|---------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-------|----------------------|---------|
| D-Contro                              |                                                                                          | 13.875                                                   | 16.250                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                                                                                                                             |                  |          |       | 1988                 |         |
| S-Contro                              |                                                                                          | 7.375                                                    | 12.250                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                          |           |                                                                                                                                                                                             |                  |          |       |                      |         |
| 0.                                    |                                                                                          | 16.875                                                   | 18.875                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                                                                                                                             |                  |          |       |                      |         |
| 0.29                                  | 9 22.125                                                                                 | 25.875                                                   | 29.000                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                                                                                                                             |                  |          |       |                      |         |
| 0.6                                   | 7 19.500                                                                                 | 20.375                                                   | 16.875                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                                                                                                                             |                  |          |       |                      |         |
| 1.                                    | 7 13.375                                                                                 | 16.875                                                   | 10.250                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                                                                                                                             |                  |          |       |                      |         |
|                                       | 4 8.125                                                                                  | 13.125                                                   | 17.625                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                                                                                                                             |                  |          |       |                      |         |
| *10                                   | 0.000                                                                                    | 0.000                                                    | 0.000                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           |                                                                                                                                                                                             |                  |          |       |                      |         |
|                                       |                                                                                          |                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n: Untran                                                                  | sformed   | 3.677                                                                                                                                                                                       |                  | 1-Tailed | 100   | Isoto                | onic    |
| "Conc⊱mg/L                            |                                                                                          | N-Mean                                                   | Mean                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max                                                                        | CV%       | N                                                                                                                                                                                           | t-Stat           | Critical | MSD   | Mean                 | N-Mean  |
| Poole                                 |                                                                                          | 1.0000                                                   | 12.417                                                             | 7.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.250                                                                     | 27.619    | 6                                                                                                                                                                                           |                  |          |       | 18.510               | 1.0000  |
| 0.                                    |                                                                                          | 1.3725                                                   | 17.042                                                             | 15.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.875                                                                     | 10.304    | 3                                                                                                                                                                                           | -1.988           | 2.602    | 6.056 | 18.510               | 1.0000  |
| 0.29                                  |                                                                                          | 2.0671                                                   | 25.667                                                             | 22.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.000                                                                     | 13.411    | 3                                                                                                                                                                                           | -5.694           |          | 6.056 | 18.510               | 1.0000  |
| 0.6                                   |                                                                                          | 1.5235                                                   | 18.917                                                             | 16.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.375                                                                     | 9.629     | 3                                                                                                                                                                                           | -2.793           | 2.602    | 6.056 | 18.510               | 1.0000  |
| 1.                                    |                                                                                          | 1.0872                                                   | 13.500                                                             | 10.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.875                                                                     | 24.550    | 3                                                                                                                                                                                           | -0.466           |          | 6.056 | 13.500               | 0.7293  |
|                                       | 4 12.958                                                                                 | 1.0436                                                   | 12.958                                                             | 8.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.625                                                                     | 36.673    | 3                                                                                                                                                                                           | -0.233           | 2.602    | 6.056 | 12.958               | 0.7001  |
| 1                                     |                                                                                          | 0.0000                                                   | 0.000                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                      | 0.000     | 3                                                                                                                                                                                           |                  |          |       | 0.000                | 0.0000  |
| Auxiliary Te                          | sts 💮                                                                                    |                                                          | 41                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | 4 1 1 1 T | Statistic                                                                                                                                                                                   |                  | Critical |       | Skew                 | Kurt    |
| Shapiro-Wilk                          | 's Test indica                                                                           | ates normal                                              | distribution                                                       | n (p > 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1)                                                                         |           | 0.96295                                                                                                                                                                                     |                  | 0.873    |       | -0.2125              | -0.8603 |
| Bartlett's Tes                        |                                                                                          | •                                                        |                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |           | 2.37124                                                                                                                                                                                     |                  | 15.0863  |       |                      |         |
| The control n                         | neans are no                                                                             | t significan                                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |           | 0.52276                                                                                                                                                                                     |                  | 2.77645  |       |                      |         |
| Hypothesis                            | Tect (1.tail                                                                             | 0 05) ·                                                  | NOEC                                                               | INFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .⊹ChV .                                                                    | TU        | MSDu                                                                                                                                                                                        | MSDp             | MSB      | MSE   | F-Prob               | df      |
|                                       |                                                                                          | Y- YW 2000                                               | 110-0                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 911.5                                                                      |           |                                                                                                                                                                                             | MANA             | WOD.     | 3104  | I TIOU               |         |
| Bonferroni t                          | Test                                                                                     |                                                          | 4                                                                  | CALL BY CONTRACTOR OF THE PARTY | 6.32456                                                                    |           | 6.05578                                                                                                                                                                                     | 0.48771          | 86.4592  |       | 7.6E-04              | 5, 15   |
|                                       | Test                                                                                     |                                                          |                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.32456                                                                    |           | 6.05578                                                                                                                                                                                     | 0.48771          |          |       | On the second second |         |
| Bonferroni t                          | Test                                                                                     | ntrols                                                   | 4                                                                  | 10<br>Linea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.32456<br>r Interpo                                                       |           | 6.05578                                                                                                                                                                                     | 0.48771          |          |       | On the second second |         |
| Bonferroni t                          | Test                                                                                     |                                                          | 4                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.32456<br>r Interpo                                                       |           | 6.05578                                                                                                                                                                                     | 0.48771          |          |       | On the second second |         |
| Bonferroni t Treatments v  Point IC05 | Test<br>vs Pooled Co<br>mg/L<br>0.8603                                                   | ontrols<br>SD<br>0.1477                                  | 95% CL<br>0.2897                                                   | 10<br>Linea<br>(Exp)<br>1.4114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.32456 r Interpol Skew 0.1929                                             |           | 6.05578                                                                                                                                                                                     | 0.48771          |          |       | On the second second |         |
| Point IC05 IC10                       | Test<br>vs Pooled Co<br>mg/L                                                             | ntrols  SD  0.1477  0.3876                               | 4<br>95% CL                                                        | 10<br>Linea<br>(Exp)<br>1.4114<br>2.1739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.32456<br>r Interpol<br>Skew                                              |           | 6.05578                                                                                                                                                                                     | 0.48771          |          |       | On the second second |         |
| Point IC05 IC10 IC15                  | Test<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408                               | ontrols  SD  0.1477  0.3876  0.6113                      | 95% CL<br>0.2897<br>0.5680<br>0.8484                               | 10<br>Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.32456  r Interpol Skew 0.1929 5.2454 3.6304                              |           | 6.05578 <b>1.</b> 0                                                                                                                                                                         | 0.48771          |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20             | Test<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310                     | ontrols  SD  0.1477  0.3876  0.6113  0.9060              | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744                     | 10<br><b>Linea</b><br><b>(Exp)</b><br>1.4114<br>2.1739<br>5.9273<br>6.3619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpol Skew 0.1929 5.2454 3.6304 1.9868                       |           | 6.05578<br><b>1.</b> 0<br>0.9                                                                                                                                                               | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25        | Test<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213           | ontrols  SD  0.1477  0.3876  0.6113  0.9060  1.2359      | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117           | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.32456 r Interpo Skew 0.1929 5.2454 3.6304 1.9868 0.6283                  |           | 6.05578 <b>1.</b> 0                                                                                                                                                                         | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.9<br>0.8<br>0.7<br>0.6                                                                                                                                               | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25        | Test<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213           | ontrols  SD  0.1477  0.3876  0.6113  0.9060  1.2359      | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117           | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.32456 r Interpo Skew 0.1929 5.2454 3.6304 1.9868 0.6283                  |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5                                                                                                                                                      | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.9<br>0.8<br>0.7<br>0.6                                                                                                                                               | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.4<br>0.3                                                                                                                                        | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.4<br>0.3                                                                                                                                        | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.4<br>0.3                                                                                                                                        | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.4<br>0.3<br>0.2<br>0.1<br>90 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                  | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.4<br>0.3<br>0.2<br>0.1<br>su 0.0<br>0.1<br>su 0.0<br>0.1<br>su 0.0<br>0.1                                                                       | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.4<br>0.3<br>0.2<br>98<br>0.0<br>0.0<br>1.0<br>0.9<br>0.4<br>0.3<br>0.2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0    | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.4<br>0.3<br>0.2<br>9s.000<br>0.0<br>1.000<br>0.9<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                        | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.4<br>0.3<br>0.2<br>98<br>0.0<br>0.0<br>1.0<br>0.9<br>0.4<br>0.3<br>0.2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0    | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.4<br>0.3<br>0.2<br>98.00<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                         | 0.48771<br>ples) |          |       | On the second second |         |
| Point IC05 IC10 IC15 IC20 IC25 IC40   | rest<br>vs Pooled Co<br>mg/L<br>0.8603<br>1.0505<br>1.2408<br>1.4310<br>1.6213<br>4.8576 | 0.1477<br>0.3876<br>0.6113<br>0.9060<br>1.2359<br>0.9465 | 95% CL<br>0.2897<br>0.5680<br>0.8484<br>0.9744<br>1.1117<br>0.9021 | Linea<br>(Exp)<br>1.4114<br>2.1739<br>5.9273<br>6.3619<br>6.7964<br>6.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.32456  r Interpolication Skew 0.1929 5.2454 3.6304 1.9868 0.6283 -1.0586 |           | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.4<br>0.3<br>0.2<br>9 0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.2<br>0.3<br>0.2<br>0.1<br>0.0<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.48771<br>ples) |          |       | On the second second |         |

Note that these results come from excluding the 10 mg/L results from the initial ToxCalc analysis. If that result is included, the following results are obtained:

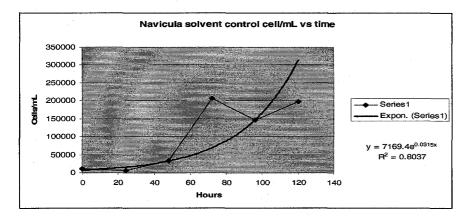
Biomass (area under the curve) for 0-72 hours – data from the 10 mg/L results included in the statistical analysis. Biomass data were calculated by the reviewer from the reported cell counts and are expressed as cell count X 10,000 cells/mL.

| D-Control   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D-Control   9,500   13,875   16,250   S-Control   15,250   7,375   12,250   0.1   15,375   16,875   18,875   0.29   22,125   25,875   29,000   0.67   19,500   20,375   16,875   10,250   4   8,125   13,125   17,625   10   0,000   0,000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1 15.375 16.875 29.000 0.67 19.500 20.375 16.875 1.7 13.375 16.875 10.250 4 8.125 13.125 17.625 10 0,000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.7 13.375 16.875 10.250 4 8.125 13.125 17.625 10 0.000 0.000 0.000    Transform: Untransformed   1-Tailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Transform: Unitransformed   1-Tailed   1-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pooled   12-417   1.0000   12-417   7.375   16.250   27.619   6   18.510   1.0000   1.0000   1.017   7.375   16.250   27.619   6   18.510   1.0000   1.0000   1.017   17.042   1.3725   17.042   15.375   18.875   10.304   3   -2.116   2.655   5.803   18.510   1.0000   0.29   25.667   2.0671   25.667   22.125   29.000   13.411   3   -6.062   2.655   5.803   18.510   1.0000   0.67   18.917   1.5235   18.917   16.875   20.375   9.629   3   -2.974   2.655   5.803   18.510   1.0000   1.7   13.500   1.0872   13.500   10.250   16.875   24.550   3   -0.496   2.655   5.803   18.510   1.0000   1.7   13.500   1.0872   13.500   10.250   16.875   24.550   3   -0.496   2.655   5.803   18.500   0.7293   4   12.958   1.0436   12.958   8.125   17.625   36.673   3   -0.248   2.655   5.803   12.958   0.7001   *10   0.000   0.0000   0.000   0.000   0.000   0.000   0.000   3   5.681   2.655   5.803   0.000   0.0000   0.000   0.0000   0.0000   0.0000   0.0000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9000   0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pooled   12.417   1.0000   12.417   7.375   16.250   27.619   6   18.510   1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pooled   12.417   1.0000   12.417   7.375   16.250   27.619   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.7 13.500 1.0872 13.500 10.250 16.875 24.550 3 -0.496 2.655 5.803 13.500 0.7293 4 12.958 1.0436 12.958 8.125 17.625 36.673 3 -0.248 2.655 5.803 12.958 0.7001 *10 0.000 0.000 0.000 0.000 0.000 0.000 3 5.681 2.655 5.803 0.000 0.0000 0.000    Auxiliary Tests  Shapiro-Wilk's Test indicates normal distribution (p > 0.01) 0.95916 0.884 -0.225 -0.507 Equality of variance cannot be confirmed  The control means are not significantly different (p = 0.63) 0.52276 2.77645  Hypothesis Test (1-tail, 0.05) NOEC LOEC ChV TU MSDu MSDp MSB MSE F-Prob df Deferment to the control of the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| *10 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 3 5.681 2.655 5.803 0.000 0.0000  Auxiliary Tests  Statistic  Critical  Skew Kurt  Shapiro-Wilk's Test indicates normal distribution (p > 0.01)  Equality of variance cannot be confirmed  The control means are not significantly different (p = 0.63)  The control means are not significantly different (p = 0.63)  NOEC LOEC ChV TU MSDu MSDp MSB MSE F-Prob df  Bonferroni t Test  4 10 6.32456  Treatments vs Pooled Controls  Linear Interpolation (200 Resamples)  Point mg/L SD 95% CL(Exp) Skew  IC05 0.8603 0.1465 0.2863 1.2522 -0.0992  IC10 1.0505 0.3066 0.5405 1.8496 5.7523  IC15 1.2408 0.6140 0.7938 5.7221 3.4076  IC20 1.4310 0.8492 0.9016 6.1688 2.1238 0.8  IC25 1.6213 1.1798 1.0672 6.6154 0.7458 0.7  IC40 4.8576 1.0151 0.0000 6.3560 -1.2186 0.6  IC50 5.7146 0.7344 2.3838 6.9633 -11295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Statistic   Critical   Skew   Kurt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Shapiro-Wilk's Test indicates normal distribution (p > 0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Equality of variance cannot be confirmed The control means are not significantly different (p = 0.63)  Hypothesis Test (1-tail, 0.05)  NOEC LOEC ChV TU MSDu MSDp MSB MSE F-Prob df  Bonferroni t Test 4 10 6.32456 5.8032 0.46737 185.89 9.55515 9.5E-07 6, 17  Treatments vs Pooled Controls  Linear Interpolation (200 Resamples)  Point mg/L SD 95% CL(Exp) Skew  IC05 0.8603 0.1465 0.2863 1.2522 -0.0992  IC10 1.0505 0.3066 0.5405 1.8496 5.7523  IC15 1.2408 0.6140 0.7938 5.7221 3.4076 1.0  IC20 1.4310 0.8492 0.9016 6.1688 2.1238 0.9  IC25 1.6213 1.1798 1.0672 6.6154 0.7458 0.7  IC40 4.8576 1.0151 0.0000 6.3560 -1.2186 0.6  IC50 5.7146 0.7344 2.3838 6.9633 -1 1295 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The control means are not significantly different (p = 0.63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hypothesis Test (1-tail, 0.05) NOEC LOEC ChV TU MSDu MSDp MSB MSE F-Prob df  Bonferroni t Test 4 10 6.32456 5.8032 0.46737 185.89 9.55515 9.5E-07 6, 17  Treatments vs Pooled Controls    Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bonferroni t Test 4 10 6.32456 5.8032 0.46737 185.89 9.55515 9.5E-07 6, 17 Treatments vs Pooled Controls    Linear Interpolation (200 Resamples)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Treatments vs Pooled Controls    Cinear Interpolation (200 Resamples)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Point         mg/L         SD         95% CL(Exp)         Skew           ICO5         0.8603         0.1465         0.2863         1.2522         -0.0992           IC10         1.0505         0.3066         0.5405         1.8496         5.7523           IC15         1.2408         0.6140         0.7938         5.7221         3.4076         1.0           IC20         1.4310         0.8492         0.9016         6.1688         2.1238         0.9           IC25         1.6213         1.1798         1.0672         6.6154         0.7458         0.7           IC40         4.8576         1.0151         0.0000         6.3560         -1.2186         0.6           IC50         5.7146         0.7344         2.3838         6.9633         -1 1295         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IC05     0.8603     0.1465     0.2863     1.2522     -0.0992       IC10     1.0505     0.3066     0.5405     1.8496     5.7523       IC15     1.2408     0.6140     0.7938     5.7221     3.4076     1.0       IC20     1.4310     0.8492     0.9016     6.1688     2.1238     0.9       IC25     1.6213     1.1798     1.0672     6.6154     0.7458     0.7       IC40     4.8576     1.0151     0.0000     6.3560     -1.2186     0.6       IC50     5.7146     0.7344     2.3838     6.9633     -1.1295     0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IC15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IC20     1.4310     0.8492     0.9016     6.1688     2.1238     0.9 1       IC25     1.6213     1.1798     1.0672     6.6154     0.7458     0.7 1       IC40     4.8576     1.0151     0.0000     6.3560     -1.2186     0.6 1       IC50     5.7146     0.7344     2.3838     6.9633     -1.1295     0.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IC25 1.6213 1.1798 1.0672 6.6154 0.7458 0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IC40 4.8576 1.0151 0.0000 6.3560 -1.2186 0.6 1 1.050 5.7146 0.7344 2.3838 6.9633 -1.1295 0.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IC50 5.7146 0.7344 2.3838 6.9633 -1.1295 0.5 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.4 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} 0.3 \\ 0.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| W ^ ^ ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>2</b> 0.0 <b>1</b> 0.1 <b>1</b> 0.0 <b>1</b> 0.1 <b>1</b> 0.1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>6</b> -0.1 <b>9 9</b> -0.2 <b>9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Q</b> -0.1 <b>Q</b> -0.2 <b>Q</b> -0.3 <b>Q</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>SOLUTION</b> -0.1 -0.1 -0.4 -0.4 -0.5 -0.4 -0.6 -0.4 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |


PMRA Submission Number 2006-4727; ID 1323248 EPA MRID Number 469084-32 APVMA ATS 40362

### Exponential growth in the controls (page 20 of this DER refers)

To investigate the goodness of fit of the mean control and solvent control cell counts over time with exponential growth, the mean control and solvent control cell counts were separately plotted against time using the Microsoft Excel Chart Wizard function and the resultant curve fitted to an exponential curve. The data used and the Excel outputs are shown below:


#### **Control results**

| Time (hours)               | 0     | 24    | 48    | 72     | 96     | 120    |
|----------------------------|-------|-------|-------|--------|--------|--------|
| Mean cell count (cells/mL) | 10000 | 10000 | 62500 | 169167 | 226667 | 243333 |



#### Solvent control results

| Time (hours)               | 0     | 24   | 48    | 72     | 96     | 120    |
|----------------------------|-------|------|-------|--------|--------|--------|
| Mean cell count (cells/mL) | 10000 | 5833 | 32500 | 205833 | 146667 | 197500 |

