ENVIR MENTAL PROTECTION AGENCY

Dr. Parkin

0032

DATE: February 15, 1972

Request for tolerances of 2-chloro-1-(2,4-dichlorophenyl) vinyl diethyl phosphate (Birlane) (Supona) (Chlorfenvinphos), an insecticide, of 0.05 ppm in or on whole washed turnips and rutabagas as exported from Canada to the United States.

Mr., Drew M. Baker, Chief Petitions Control Branch Pesticides Tolerances Division

Pesticide Petition No. 2E1206

Shell Chemical Company 1700 K Street, N.W. Washington, D.C. 20006

Related Petitions: PCB Ref. No. 66-11, 0F0991, 1E1082

TOXICOLOGICAL REVIEW

I. Summary of previously submitted toxicity data.

All data submitted in the present petition were submitted previously in one or more of the three earlier petitions with the exception of the acute oral and percutaneous study in rats to the currently marketed Birlane formulations.

- A. PCB Ref. No. 66-11; Dr. G.E. Whitemore (4/8/66)
 - 1. A 90 day feeding study in rats at dosage levels of 0, 10, 30, 100, and 300 ppm Birlane depressed ChE activity at all levels but produced no systemic toxicity.
 - 2. A 90 day feeding study in rats at dosage levels of \vec{G} , 1, and 3 ppm demonstrated no ChE inhibition at the 1 ppm level.

1/2

- 3. A 2 year dog feeding study at 0, 30, 200, and 1000 ppm produced abnormal ChE activity at all levels but no other effects. A no-effect level was not demonstrated.
- 4. A three generation rat reproduction study at 0. 30, 100, and 300 ppm gave evidence of a no-effect level at 30 ppm for 2 generations but not in the third generation.

Dr. Whitemore concluded that the data supported a No Residue registration for use on agricultural premises: barns (including dairy barns), feed lots, around feed troughs, manure piles, and poultry houses.

- B. 0F0991; Mr. D.L. Ritter (6/23/71)
 - 1. A three generation rat reproduction study at 0, 1, 5, and 15 ppm produced no effects at any level.
 - 2. A 2 year rat feeding study at 1, 10, 30, 100, and 300 ppm produced a no-effect level based on erythrocyte ChE at 10 ppm and based on systemic toxicity at 30 ppm.
 - 3. Acute oral LD50

rats 24 mg/kg
male rats 13.3 mg/kg
mice 117 mg/kg
chicks 37 mg/kg
hens 23 mg/kg

- 4. Acute intravenous LD₅₀
- dogs 50.4 mg/kg
- 5. one of 2 Brahman cattle orally dosed with $20~\mathrm{mg/kg}$ Birlane died while the other experienced a very severe whole blood ChE depression.
- 6. Transient conjunctivitis (cleared by day 4) was noted in 2/6 adult male albino rabbits inoculated in the right eye with 0.1 ml 4 lb/gal E.C.
- 7. Spraying of cattle once a week for 12 weeks or twice a week for 6 weeks with a 0.1% emulsion resulted in a depression of whole blood ChE (Michel).

Mr. Ritter concluded that the data supported the proposed tolerances for meat, fat and meat by-products of cattle, and milk of 0.002 ppm and eggs- meat, fat, and meat by-products of poultry of 0.001 ppm.

C. 1E1082; Mr. D.L. Ritter (in preparation)

Page 3 - PP# 2E1206

1. Acute oral LD₅₀

50			1		
Species	cies Material Vehicle		LD ₅₀ mg/kg		
Rat	Technical Technical	Propylene glycol Peanut oil	10.85-13.3 9.66-39		
N 12 46	Technical Dimethyl sul Technical Polyethylene		10-15 23.8		
Mouse Technical Technical Technical		Peanut oil Dimethyl sulfoxide Polyethylene glycol	133155 150 -200 117		
Rabbit	Technical Technical	None Peanut oil	500-1000 300-324		
Guinea-pig	Technical	10% aqueous su spn.	125-250		
Dog	Technical Technical	None Propylene glycol	>5000 >12000		

2. Acute oral LD₅₀ (Birlane isomers)

Birlane İsomer Content	Acute oral LD ₅₀		
7% cis plus 90% trans	39 and 25 mg/kg		
86% cis plus 14% trans	35 mg/kg		

00323

2

3. Acute dermal LD₅₀

Species	Material	Vehicle	. Lo ₅₀ ng/kg
Rat	Technical	Xylene	92 - 108
	Technical	(Not stated)	31
Rabbit	Technical	(None)	417*
	Technical	(None)	1250 – 2500
	Technical	(None)	3200 – 4700

* Birlane was rubbed into the skin for three minutes with a glass rod which may account for the differences in toxicity.

4. Intravenous LD₅₀

Species	Material	Vehicle	LD ₅₀ mg/kg
Rat (m)	Technical	Emulsion in 'Lipomul'	6.6
Dog (mongrel)	Technical	Emulsion in 'Lipomul'	50.4
1			

5. Intraperitoneal LD_{50}

Species	Material	Vehicle	LD ₅₀ mg/kg
Rat (f)	Technical	Polyethylene glycol	8.5
Mouse (m)		Polyethylene glycol	37
Mouse (m)		Not Stated	89.3

6. Subcutaneous LD₅₀

Guinea pigs Technical Birlane

500 mg/kg

0032

7. Respiratory studies (14 days)

Species	Material	Concentration	Deaths
,	Technical	2.0 mg/1 (290 ppm)	8 rats, 4 mice
10 rats, 10 mice	48% w/v Birlane	2.0 mg/l	l rat, O mice
•	24% w/v Birlane	2.4 mg/l	

8. Acute oral and dermal LD_{50} of Birlane formulations

(See next page for chart)

- 9. Dermal irritation and sensitization Birlane is a primary skin irritant at levels of 0.5% Technical and above in tests conducted on guinea pigs.
- 10. Demyelination tests conducted in 16 month old white Leghorn hens inoculated i.p. for 10 days with 0, 100, 150, 200, and 300 mg/kg were negative.
- 11. Mixtures of Birlane with Diazinon, Malathion, Methyl parathion, and Ronnel (fenchlorphos) showed strong potentiation while Gusathion (azinphos) was mildly potentiated. Seventeen other insecticides showed no ability for potentiation with Birlane.
- 12. Calves (12 wk old) and yearling cattle may safely ingest 10 mg/kg body weight of Birlane while it may safely be applied topically at 0.1% concentrations on calves and 0.15% on yearling cattle.

ا استخراء س

8. Acute oral and dermal LD_{50} of Birlane formulations

	oral LD50 V	Oral LD50 Value in Rat	Dermal LD50	Dermal LD50 Value in Rat	
Formulation	mg/kg active ingredient	mg/kg active mg/kg total ingredient formulation	mg/kg active ingredient	mg/kg total formulation	
24% EC	11.5	46.7	72	110	
35% Higuid seed-dressing	9.2	30.8	32	107	
40% powder seed-dressing	7.1	17.8	(2000 M)* (1600 F)	(5000 M) (4000 F)	
25% NP	5.2	20.8	(2000 M) 26 (97 F)	(8000 M) 140 (388 F)	
10% Granules)	ł	(800)	(8000)	
5% FSD	7.2	144.0	32	079	
20% EC -	12.1	52.8	32	140	
20% EC -	7.9	34.4	17.3	7.7	
20% EC -	15	77.8	38.5	186	

* Figures in brackets denote values obtained by applying the formulation in the dry state

** Solvents

INERT INGREDIENT INFORMATION IS NOT INCLUDED

13. Toxicity in Brahman and European cattle

Formulation	Dosage	Route	Cattle type	No. treat- ment	No. showing clinical symptoms of intoxication	Average cholinesterase (% of normal)
25% W.P.	10 ng/kg	0ral	Brahman	1	-	45
25% W.P.	10 mg/kg	Oral	European	2		63
25% W.P.	20 mg/kg	Oral	Brahman	2	2	13
25% W.P.	20 mg/kg	Oral	European	2	-	28
25% W.P.	0.25%	Topical	Brahman- Cross	2	-	45
25% W.P.	0.25%	Topical	European	3	-	85
24.1% E.C.	0.15%	Topical	Brahman- Cross	1	-	73
24.1% E.C.	0.15%	Topical	European	4	-	85

- 14. Dipping sheep in 0.2% and 0.08% Birlane resulted in a depression of blood cholinesterase.
- 15. Repeated dipping of the hands and forearms of 2 volunteers in 0.05% Birlane in water resulted in a 45 50% reduction of plasma ChE (Michel); rbc ChE unaffected.
- 16. Birlane applied to the forearms of 9 volunteers at 5 10 mg/kg for up to 4 hours failed to produce unequivocal alterations.
- 17. When a dust or wettable powder formulation were applied to the forearms of 9 volunteers, amounts in excess of 10 mg/kg were required to elicit rbc and plasma ChE inhibition.

18. Poute of elimination of Birlane

Species	Administered		Urine (96 hr)	Feces (96 hr)	Expired Gases (96 hr)	Milk (24 hr)
Rats	Oral	67.5%	87.2%	11.2%	1.4%	
Dogs	Oral	86.0%	89.4%	4.73%		
Man	Oral	94.0%		- Allen Agrico		
Cow	Topical	17.6%	26.7%	1.48%		
Cow	Intramuscula	r				0.2%

19. Acute oral ${\rm LD}_{50}$ of Birlane metabolites

Metabolite			Species	LD ₅₀ mg/kg	
: 2	2,4-dichloroacetophenone	111	Rat	>2,600	
2	chloro-1- (2',4' dichlorophenyl vinyl ethyl hydrogen phosphate) IX	Rat	>1,000	
2	,4-dichlorophenacyl chloride	II	Rat	1,450	
2	2,4-dichloromandelic acid	VI	Rat	>1,000	

20. Fish LC₅₀

Species	2 hours	96 hours
Harlequin Fish	3 - 10 ppm	0.3 ppm
Guppies	3 ppm	0.3 ppm
Mosquito Fish	100% mortality ppm and ab	at 24 hr. at levels of 0.015 ove.

Š

Page 8 - PP# 2E1206

21. Acute toxicity of birds

Species	Material/Vehicle	Route	LD ₅₀ mg/kg
Chicken			
wk. old 1 wk. old	Technical/Polyethylene glycol Technical/Polyethylene glycol	Oral intra- peritoneal	3€.3 23.1
Rhode Island Red Hens: 2 years	Technical/Polyethylene glycol	Oral	approx. 240
White Leghorns 2 months	Technical/Undiluted	Oral	44 - 62.5
Japanese Quail	Technical/Undiluted	Oral	27.0
Pheasant	Technical/Undiluted	0ral	100.0
<u>Pigeon</u>	Technical/Undiluted	Oral	13.8

22. Subacute and chronic toxicity of birds

Species	Dose	Duration	Results
Hens	0.08%	1 year	No significant effects
Pheasants	0.08%	3 months	No significant effects

Mr. Ritter concluded that the data supported the proposed tolerances of 0.03 ppm in the flesh of cattle and sheep and of 0.15 ppm in the fat of cattle and sheep

II. New toxicity data.

The Acute Oral and Percutaneous Toxicities to Rats of Some Currently Marketed Birlane Formulations (Tunstall Laboratory; TLGR.0016.70)

A. Procedure

Four specific-pathogen free 12-13 week old Carsworth Farm E strain rats/sex/dosage level were observed for toxic signs for 10 days following treatment by the oral or percutaneous route with various Birlane formulations. For the oral studies, the Birlane was administered intraesophageally. In the percutaneous test the Birlane formulation was applied to the shorn dorso-lumbar area, covered

003235

24 hours, and then washed away with weak detergent solution 3235

Methods of application of the formulations tested

Formulation	Oral	Percutaneous
24% emulsifiable concentrate	1% a.m.* aqueous dilution	Undfluted
35% liquid seed dressing	1% a.m. dilution in Dimethylformamide	Undiluted
25% wettable powder	1% a.m. aqueous suspension	1. Dry 2. 3% a.m. aqueous suspension
5% field strength dust	1% a.m. aqueous suspension	1. Dry 2. 3% a.m. aqueous suspension
40% powder seed dressing	1% a.m. aqueous suspension	Dry
10% granules		Dry

^{*} a.m. = active material

B. Results

1. The acute oral toxicity values of five Birlane formulations to rats.

Oral LD ₅₀ values (mg/kg active material)	Oral LD ₅₀ values (mg/kg total formulation)
11.5	46.7
9.2	30.8
t 7.2	• 144
5.2	20.8
ing 7.1	17.8
	11.5 9.2 t 7.2 5.2

Marie Marie

rormulation	LD ₅₀ values (mg/kg active material)	LD ₅₀ values (mg/kg total formulation)	LD ₅₀ values LD ₅₀ values (mg/kg total material) formulation	LD ₅₀ values (mg/kg total formulation)	les 11 1on)
24% emulsifiable concentrate	27	110	1		
35% liquid seed dressing	32	107	l	ļ	
25% wettable powder	56	104	Male >2,000	Male	×8,000
5% field strength dust	32	079	Male >800	remale Male	388
40% powder Beed dressing	1	1	>2,0	remale Nale	20,000
10% granules		I	Female 1,600 > 800	Femule >8,0	000,4

CONCLUSIONS

ne rat is the most sensitive animal to Eirlane (Supona) toxicity.

1 the 2 year feeding study a no-effect level, based on rbc ChE,

1 10 ppm was determined. With a 10-fold safety margin, a dietary

1 take of 1 ppm or 0.05 mg/day would be safe in man.

rmips constitute 0.03% of the diet while rutabagas are present ily in trace amounts. At a proposed tolerance of 0.05 ppm Birlane i or in these foods, man would be expected to ingest 0.000025 mg/day. total of 0.004625 mg/day of Birlane would be anticipated when the eximum residues on sheep and beef fat and sheep and beef mea. (see .L. Ritter memo, in preparation, PP# 1E1082) are also considered. is is far below the maximum daily intake which is regarded as being ife for man.

me proposed usage of this pesticide is specifically for turnips for apport and direct human consumption, so it is not reasonably expected or residues of Birlane to occur in the edible tissues and by-products animals.

RECOMMENDATIONS

used on the toxicology data submitted, the proposed tolerance of 05 ppm of 2-chloro-1-(2,3-dichlorophenyl) vinyl diethyl phosphate irlane) (Supona) (Chlorfenyinphos) in or on whole washed turnips and stabagas as exported from Canada to the United States is safe.

llen (=).

lliam E. Parkin, DVM, DrPH xicology Branch, PTD

S OGFitzhugh
JGCummings
PRD/EPA
Atlanta Branch (Lewis)
Perrine Branch
Division Reading File
Branch Reading File
PP# 2E1206
WEParkin

/CHW1111ams;2/1/72

P:ss:2/16/72;init:CHWilliams - 400 3/16/72

OFF:1/17/7-

00

•

7