DATA EVALUATION RECORD

MR.D. 3

1. Chemical: Endosulfan

2. Test Material: Technical, 97.2 percent

71-4

3. Study Type: Avian Reproduction

Species tested: Mallard Duck

(Anas platyrhynchos)

A. Study ID: Roberts, N., C. Phillips, A. Anderson, I. Dawe, D. Chanter and S. Cook. (1985) The Effects of Dietary Inclusion of Endosulfan-Technical (Code: HOE002671 OIZD970003) on Reproduction in the Mallard Duck. Performed by Huntingdon Research Centre, England; submitted by American Hoechst Corp., Somerville, NJ. Registration Number 8340-

13; Accession No. 256129.

5. Reviewed by: John J. Bascietto

Wildlife Biologist

EEB/HED

6. Approved by: Dave Coppage

Supervisory Biologist

EEB/HED

Signature:

Date: 13 Sept 185

Signature:

Date: 13/5/1/8/5

7. Conclusions:

The study is scientifically sound and fulfills the requirement of the Pesticide Assessment Guidelines for a reproduction study with a wild waterfowl species.

However, the conclusion of the authors (i.e., that a NOEL = 60 ppm) is rejected because it is inconsistent with the data obtained. EEB's evaluation indicates that statistically significant impairment of egg production occurred at all levels tested (30, 60, 120 ppm) in the biologically significant first half of the experimentally induced laying period. A NOEL was not established. Therefore, we conclude that endosulfan can cause significant impairment of avian reproduction at any dietary level.

Soul

8. Recommendations:

Until a "NOEL" for impairment of egg production is established, there is no assessable margin of safety for endosulfan's effects on avian reproduction.

9. Background:

The study was submitted in response to the Registration Standard, but was 2 years late.

10. Discussion of Individual Test:

N/A

11. <u>Materials and Methods</u>: (Definitive Test)

- a. Test Animals Forty-eight male and 120 female mallards (Anas platyrhynchos) were obtained to serve as test birds, plus 12 males and 12 females for use as replacement birds. Source was Mr. John Coles, County Game Farms, Ashford, Kent, England. They were about 31 weeks old on arrival at facility; 33 weeks old at start of study. Birds were maintained on a 7 hrs light/17 hrs dark photoperiod from time of arrival until week 7 of the study. Birds were individually identified by metal wing tags.
- b. Dose Dietary inclusion of toxicant to treatment groups. Toxicant was dispersed and mixed in basal diets by acetone (to dissolve) and corn oil (for dispersal). Toxicant and dispersants were added to 500 g of basal diet to make a 2 percent premix. This was stirred at 40 °C to evaporate acetone, then more basal diet was added to complete the premix and shaken in polyethene bags for 3 minutes. Aliquots of premix were used to prepare final diets, which were made in 40 kg batches in large blenders. Diet samples were taken for analysis at various times during the study.

Birds were fed control or test diets for 12 weeks prior to the start of egg production, then for an additional 12 weeks during egg production. A 4-week "withdrawal" period was added (weeks 23, 24, 25, and 26) in which birds were fed "clean" basal diets only (untreated).

c. Design - Seven days prior to treatment period the ducks were randomized to study pens. Each study pen, or replicate, consisted of two males and five females. There were 4 treatment groups: a) 0 ppm control; b) 30 ppm; c) 60 ppm; and d) 120 ppm with 6 replicates each group --a total of 48 males and 120 female ducks. An additional 12 males and 12 females were used as replacement birds.

Adult birds were maintained in galvanized steel floor pens, 1.2 m x 1.5 m with solid sides and wire mesh floors. Each pen had an automatic cup drinker and food hopper. Floors were covered with plastic padded matting to reduce risk of cracked eggs. Maximum and minimum temperature and relative humidity were recorded once daily.

At the start of week 8 lighting was increased from 7 hours per day to 16 hours per day and maintained at this level until the end of week 14. At week 15, photoperiod was lengthened by 15 minutes per week until the end of the study. (Low light intensity was used during weeks 1 to 6 to prevent birds from coming into egg production too early.)

Summary of Design

	No. of		Birds per Replicates		Birds per Treatment	
Group	Treatment	Replicates	M	F	<u>M</u>	F
A	Control	6	2	5	12	30
В	30 ppm	6	2	5	12	30
C	60 ppm	. 6	2	5	12	30
Ď	120 ppm	6	2	5	12	30

Chicks were housed in floor pens with concrete floors. Each pen contained two automatic drinkers and one food hopper. Wood shavings were used as bedding. A 300-watt infra-red lamp placed at bird level supplied additional heat. Chicks were fed standard chick diet with no antibiotic or other growth promoter.

- d. <u>Statistics</u> Generally, analysis of variance (ANOVA) was used to statistically examine differences of the following parameters between groups and control.
 - Adult food consumption
 - 2. Adult mortality and body weight
 - 3. Number of eggs laid and proportion damaged
 - 4. Egg weight
 - 5. Egg shell thickness
 - 6. Number of infertilities, embryonic deaths, and hatchings
 - 7. Numbers of 14-day old surviving chicks
 - Chick bodyweights at hatching and 14 days later.

Specific statistical methods are described in the Appendix to this DER.

12. Reported Results:

The authors reported the following:

- At all dietary levels of endosulfan general behavior and health as well as food consumption were not affected. Bodyweights were reduced the first 2 weeks at 60 ppm and markedly so at 120 ppm. After first 2 weeks, bodyweight gains were similar in all groups.
- No treatment-related mortality was observed.
- Autopsies of birds dying on test and those sacrificed after the study ended revealed no treatment-related findings.
- Adult mortality was not significantly different among groups during the prelaying period; however, there-was a significant (p <0.05) difference during the egg-laying period at 120 ppm. The majority of deaths occurred in female birds and was thought to be mostly due to "bullying."
- A dietary concentration of 120 ppm impaired egg production, and resulted in a higher proportion of cracked and broken eggs than in the control during the first half of the egg production period.
- "At dietary concentrations of 30 ppm and 60 ppm the egg production was within the range of normal variation and there was no indication of any reproductive impairment as assessed from egg weights, egg shell thickness, number of infertile eggs, early and late embryonic death, hatching, chick health and mortalities, chick bodyweights and number of 14-day survivors." (p.i)

13. Study Authors' Conclusions/QA Measures

The study authors concluded: "Under the conditions of this test, and taking the results as a whole, it was concluded that the dietary concentration of 60 ppm of Endosulfan technical, equivalent to an estimated intake of approximately 10 mg/kg/day, represented the "no toxic effect level" for reproductive impairment in the Mallard duck." (p. i)

14. Reviewer's Discussion and Interpretation of the Study

a. Test Procedures: The test was conducted in close agreement with protocols for avian reproduction studies recommended by the Pesticide Assessment Guidelines, Subdivision E.

However, the dose levels were based on a preliminary feeding study, not on expected environmental concentrations, although the levels tested would be expected in a limited number of uses.

- b. Statistical Analysis: EEB accepts the statistical analysis presented by the registrant (Appendix 12 of report attached).
- c. Discussion/Results: Although several mortalities of treatment and control birds occurred during this study, most deaths are attributable to aggression. Enough replacement replicates were available to obtain statistical validity. We emphasize that the mortality observed, while high only in treatment groups, does not invalidate this test because these deaths are clearly attributable to aggression.

Regarding the ANOVA for egg production, the number of eggs produced was not corrected for mortalities during the laying period. The report claims that this is the correct approach because if the mortalities were related to treatments, correction would introduce bias into the analysis. [N.B. - the report also finds that mortalities were not treatment-related, but rather due to "bullying" by males. Two females died at 30 ppm during egg production; one female at 60 ppm; four females at 120 ppm. None were replaced during this period (early in the egg-laying phase - weeks 10, 11, and 12). EEB agrees with noncorrection approach taken to avoid introducing bias.]

When a general linear model was applied to replicate data, it was found that all treatment groups laid significantly fewer eggs than controls during weeks ll to 16 (first half of laying period). Block analysis showed no significant differences; treatment analysis showed the following P values for differences from controls: 30 ppm, P < 0.05; 60 ppm, P < 0.05; 120 ppm, P < 0.01 (a strenger statistical correlation at 120 ppm could be an artifact because of the smaller number of producing hens in this group). During weeks 17 to 22 (second half of laying period) only the high treatment, 120 ppm, produced significantly fewer eggs than the control (P < 0.01).

Differences in numbers of eggs produced in each period (first weeks 11 to 16; second—weeks 17 to 22) were less for the treatment groups, the control group: low P < 0.05, intermediate P < 0.01, high P < 0.01. In all cases however, actual egg production was greater during weeks 11 to 16 of the study, as would be expected, since this initial period is less physiologically stressful (compared to the overall test). It is interesting to

note that while supressing egg production in all treatment groups, the toxicant also reduced the <u>difference</u> (deficit) in egg production numbers accompanying the induced lengthy production period.

It is our judgment at this time that the impairment of egg production during the important (and perhaps more representative as an actual breeding scenario) initial half of the egg laying phase, i.e., weeks 11 to 16 of the study, represents a biologically significant effect. This effect is adverse, i.e., significantly reduces the potential to reproduce young, occurs at all dietary levels tested, and is directly caused by the toxicant, endosulfan.

A statistical difference between the first and second halves of the laying period is again encountered with significantly (P < 0.01) more eggs cracked by the high treatment during weeks 11 to 16 compared to the controls.

Eggs mass was significantly lower in all treatment groups for weeks 11 to 16, and for 120 ppm weeks 17 to 22.

The other reproductive parameters examined did not show statistical differences between treatments and controls either between first and second laying periods, or the overall test.

The study is scientifically sound and fulfills the requirements of the Pesticide Assessment Guidelines, Subdivision E. However, the conclusions of the author (NOEL = 60 ppm) are rejected as they are inconsistent with the data obtained.

The study shows that endosulfan impaired the reproductive capacity of the treated mallards, with statistical significance. This was evident through analysis of variance of egg production in the initial one-half of the induced laying period (considered as biologically significant). This occurred at all levels tested (30, 60, and 120 ppm). A "no-effect" level was not established. Until a NOEL is established, it is assumed that these effects could occur at any level of endosulfan. This means there is no assessable margin of safety.

d. Adequacy of Study:

- 1. Classification: Core
- 2. Rationale: Guidelines study
- 3. Repair: N/A

15. One-liner Completed:

September 10, 1985

16. CBI Appendix:

Data, results and statistical analyses attached.

Endosulfan	OECD 6
Page is not included in this copy. Pages 8 through 28 are not included.	
The material not included contains the information:	following type of
Identity of product inert ingredients.	
Identity of product impurities.	
Description of the product manufacturing	process.
Description of quality control procedures	5.
Identity of the source of product ingred	ients.
Sales or other commercial/financial info	rmation.
A draft product label.	
The product confidential statement of for	cmula.
Information about a pending registration	action.
FIFRA registration data.	
The document is a duplicate of page(s)	•
The document is not responsive to the rec	quest.
The information not included is generally consby product registrants. If you have any quest the individual who prepared the response to you	ions, please contact

•

TABLE S1

Allocation of treatment to pens

R	oom 9C	Room	PA
1C	5D	132	170
2A	6B	14C	18A
3D	7A	15B	19C
4B	8C	16D .	20в
	T:	[220
9D	11A	21A	23C
roc	12B	22B	24D

A: Control
B: Endosulfan 30 ppm
C: Endosulfan 60 ppm
D: Endosulfan 120 ppm
--- Block boundaries

TABLE S2

Analysis of variance of total food consumption (weeks 1-22)

Source of variation	Degrees of freedom	Sums of squares	Mean square	Variance ratio
Treatment Blocks	3 5	481310 1254982	160437 250996	0.76 1.18
Residual	15	3181713	212114	•
Total	.23	4918005	213826	

TABLE S3

Mean total food consumption of adult birds (g/bird/day)

.Treatment group	Pre-laying weeks 1-10	Egg-laying weeks 11-22	Full study weeks 1-22
Control	1574	2135	3708
Low	1577	2255	3831
Intermediate	1778	2322	4099
High	1718	2184	3902
Residual variance	49257	104938	212114

TABLE S4

Treatment means (averaged over sex) for rate of change and mean bodyweights

Treatment group	Rate of change in bodyweight (g/fortnight)	Mean bodyweight (g) over 70-day period
Control	31.4	1046
Low .	16.7**	1011*
Intermediate	12.5**	989**
High	8.9**	945**
Residual variance	335.7	6083
Treat 1	12.20***	12.14***
Block ²	2.59*	1.56
Sex ³	1.29	17.02***
Int4	0.53	0.24

F-ratios: 1 Treatment effect (3,158 d.f.)

-2 Block effect (5,158 d.f.)

3 Sex effect (1,158 d.f.)

4 Treatment.sex interaction (3,155 d.f.)

TABLE S5

Day 154 Bodyweights-treatment means (averaged over sex)

Treatment	Day 154		
group	Bodyweights (g)		
Control	1073		
Low	1033*		
Intermediate	1027*		
High	1001**		
Residual variance	6691		
Treat ¹	5.06**		
Block ²	2.25*		
Sex ³	36.07***		
Int*	0.78		

F-ratios: 1 Treatment effect (3,147 d.f.)

2 Block effect (5,147 d.f.)

3 Sex effect (1,147 d.f.)

4 Treatment.sex interaction (3,144 d.f.)

(continued)

TABLE S6

Data and analysis of numbers of eggs laid (per pen) in weeks 11-16

Treatment

		Control	Low	Intermediate	High
91 1-	,	140	123	122	
Block	2	140 141	113	133 98	22 90
	3	113	106	95	38
	4	152	61	94	20
	5	115	93	103	27
	6	130	78	57	75
Means	1	132	96*	97*	45**

Residual variance: 558.3 Treat¹ 13.61*** Block² 1.04

(continued)

TABLE S7

Data and analysis of numbers of eggs laid (per pen) in weeks 17-22

Treatment

		Control	Low	Intermediate	High
Block	1	28	39	40	0
	2	55	52	36	14
	3	53	39	76	28
	4	41	6	22	0
	.5	43	31	53	3
	6	46	39	. 52	46
Means	1	44	34	46	15**

Residual variance : 147.1 Treat¹ 8.34 ** Block² 3.91 *

(continued)

TABLE SS

Mean difference in numbers of eggs laid (per pen) between periods

Treatment	Differences in numbers of eggs laid			
dronb				
Control	-87.5			
Low	-61.3*			
Intermediate	-50.2**			
High	-30.2**-			
Residual variance	401.0			
Treat	8.56**			
Block ²	2.70			

TABLE S9

Proportion of eggs damaged in weeks 11-16 and estimated probabilities of damage for each treatment

	Control	Low	Intermediate	High
Block 1	0.02	0.03	0.04	0.05
2	0.02	0.03	0.03	0.08
3	0.04	0.07	0.04	0.08
4	0.08	0.02	0.03	0.05
5	0.01	0.02	0.03	0.37
6	0.02	0.01	0.05	0.05
Estimated probability				
of damage:	0.03	0.03	0.03	0.10**

(continued)

TABLE S10

Proportion of eggs damaged in weeks 17-22 and estimated probabilities of damage for each treatment

	Control	Low	Intermediate	High
Block 1	0.04	0.03	0.10	-
2	0.05	0.10	0.03	0.07
3	0.04	0.10	0.16	0.07
4	0.17	0.00	0.05	-
Š	0.05	0.06	0.06	0.00
6	0.04	0.05	0.10	0.07
Estimated probability				
of damage:	0.06	0.07	0.09	0.06

⁻ No eggs laid

TABLE S11

Data and analysis of total egg mass (g/pen) weeks 11-16

Treatment

•		Control	Low	Intermediate	High
Block	1	8349	7507	7868	1285
	2	8441	6905	5668	5052
	3	6789	6600	5172	2148
	4	9256	3673	5829	1150
	5	6920	5628	6189	1735
	6	7779	4497	3012	4747
Means	:	7922	5802*	5623*	2686**

Residual variance : 2259879-Treat 1 12.29*** Block 2 0.84

(continued)

TABLE S12

Data and analysis of total egg mass (g/pen) weeks 17-22

Treatment

		Control	Low	Intermediate	High
Block	1	1633	2455	2599	_
BIOCK	2	3323	3303	2153	805
	3	3314	2609	4522	1814
	4	2517	358	1369	-
	5	2718	1912	3163	179
	6	2814	2428	2872	3181
Means		2720	2178	2780	1126*

Residual variance: 700442 Treat 1 3.56* Block 2 2.45

F-ratios: 1 Treatment effect (3,13 d.f.)
2 Block effect (5,13 d.f.)

- No eggs laid

TABLE S13

Mean rates of change in egg weight and mean intercepts for treatments

Treatment group	Rate of change in egg weight (g/egg/week)	Intercept (g/egg)
Control	0.35	62
Low	0.51	62
Intermediate	0.50	60
High	0.78	64
Residual variance	0.1991	142.6
Treat ¹	0.99	2.24
Block ²	1.22	1.26

TABLE S14

Mean shell thickness (mm)

		Week								
Treatment group	11	13	15	17	19	21				
Control Low Intermediate High	0.31 0.32 0.29 0.30	0.31 0.31 0.30 •	0.31 0.30 0.30 0.29	0.34 0.35 0.31 0.34	0.30 0.29 0.30 0.28	0.31 0.33 0.31 0.33				
Residual variance	4.05 x10-4	3.37 x10-4	9.38 x10-4	1.83 x10-4	2.76 x10-4	_+				
Residual d.f. Treat ¹ Block ²	16 2.44 0.88	20 0.40 2.07	20 0.39 1.23	16 6.00* 0.83	15 0.37 1.19					

F-ratios: 1 Treatment effect (3, Residual d.f.)
2 Block effect (5, Residual d.f.)

⁻⁺ Too few observations for analysis

(continued)

TABLE S15a

Observed proportions infertile of those set weeks 11-16

		Control		Low		Intermediate		High	
		Prop.	No. set	Prop.	No. set	Prop.	No. set	Prop.	No. set
Block	1	0.00	124	0.00	103	0.04	116	0.79	19
T. T	2	0.12	129	0.00	97	0.07	83	0.01	74
	3.	0.03	98	0.05	87	0.01	80	0.03	32
	4	0.00	127	0.00	55	0.00	81	0.06	17
	5	0.03	104	0.00	84	0.04	91	0.00	13
	6	0.03	115	0.00	73	0.02	49	0.02	64

TABLE S15b

Observed proportions infertile of those set weeks 17-22

		Control		Low		Inter	mediate	High		
		Prop.	No. set	Prop.	No. set	Prop.	No. set	Prop.	No. set	
Block	1	0.00	23	0.00	35	0.81	32		_	
	2	0.46	52	0.05	42	0.72	32		0	
	3	0.02	49	0.19	37	0.02		0.07	15	
	4	0.00	31	0.00	5		61	0.00	24	
	5	0.03	39	0.12	25	0.56	18	-	0	
	6	0.00	37	0.00	34	0.69 0.55	51 49	1.00	3 43	

(continued)

TABLE S16a

Observed proportion of early embryonic deaths of those fertile weeks 11-16

		Control			Low		Intermediate			High			
		Prop.	No.	fert.	Prop.	No.	fert.	Prop.	No.	fert.	Prop.	No.	fert.
Block	1	0.01		124	0.02		103	0.00		111	1.00	•	4
	2	0.03		114	0.00		97	0.03		77	0.03	•	73
	3	0.04		95	0.01		83	0.00		79	0.00		31
	4	0.00		127	0.00		55	0.02		81	0.00		16
	5	0.02		101	0.01		84	0.01		87	0.08		13
	6	0.04		111	0.03		73	0.00		48	0.02	(63

(continued)

TABLE S16b

Observed proportion of early embryonic deaths of those fertile weeks 17-22

		Control			Low			Intermediate			High		
		Prop.	No.	fert.	Prop.	No.	fert.	Prop.	No.	fert.	Prop.	No.	fert.
Block	1	0.00		23	0.06		35	0.50		6	*		* -
J	2	0.04		28	0.05		40	0.89		9	0.00		14
	3	0.08		48	0.03		30	0.03		50	0.00		24
	4	0.00		31	0.00		5	0.25		8	*		
	5	0.00		38	0.00		22	0.19	:	16	-		0
	6	0.00		37	0.06		34	0.18		22	0.02		40

^{*} Excluded from analysis

TABLE S17a

Observed proportions of late embryonic deaths of those set on Day 14 weeks 11-16

		Co	ntrol	Low		Inte	rmediate	High		
		Prop.	No. set	Prop.	No. set	Prop.	No. set	Prop.	No. set	
Block	1	0.06	123	0.11	101	0.09	111	-	0	
	2	0.07	111	0.12	97	0.12	75	0.03	71	
	3	0.18	91	0.05	82	0.09	79	0.13	31	
	4	0.04	127	0.11	55	0.18	79	0.19	16	
	5	0.10	99	0.14	83	0.14	86	0.17	12	
	6	0.10	107	0.10	71	0.27	48	0.03	62	

TABLE S17b

Observed proportions of late embryonic deaths of those set on Day 14 weeks 17-22

		Control			Low	Inte	rmediate	High		
		Prop.	No. set	Prop.	No. set	Prop.	No. set	Prop.	No. set	
Block 3	1	0.04	23	0.15	33	0.00	3	*	•	
	2	0.11	27	0.00	38	0.00	i	0.07	14	
	3	0.25	44	0.17	29	0.12	58	0.08	24	
	4	0.03	31	0.20	5	0.17	6	*	•	
9	5	0.03	38	0.05	22	0.00	13		Ó	
	6	0.03	37	0.06	32	0.11	18	0.10	39	

^{*} Excluded from analysis

TABLE S18a

Observed proportions hatching of those set on Day 21 weeks 11-16

	,	Control		Low		Inter	mediate	High	
		Prop.	No. set	Prop.	No. set	Prop.	No. set	Prop.	No. set
Block	1	0.63	116	0.74	90	0.80	101	_	, 0
	2	0.70	103	0.80	85	0.58	66	0.58	69
	3	0.81	75	0.73	78	0.58	72	0.63	27
	4	0.80	122	0.57	49	0.38	65	0.46	13
	5	0.70	89	0.55	71	0.59	74	0.90	10
	6	0.73	96	0.69	64	0.51	35	0.42	60

TABLE S18b

Observed proportions hatching of those set on Day 21 weeks 17-22

	•	Control		Low		Inter	mediate	High	
		Prop.	No. set	Prop.	No. set	Prop.	No. set	Prop.	No. set
Block	1	0.73	22	0.71	28	0.67	3	*	*
	2	0.88	24	0.79	38	1.00	1	0.69	13
	3	0.82	33	0.79	24	0.78	51	0.91	22
	4	0.90	30	0.50	4	0.80	5	•	*
	5	0.78	37	0.52	21	0.77	13	*	•
	6	0.81	36	0.87	30	0.69	16	0.77	35

^{*} Excluded from analysis

(continued)

TABLE S19a

Observed proportions hatching of those fertile weeks 11-16

•		C	ontr	01	,	Low		Inter	medi	ate	H	igh	
		Prop.	No.	fert.	Prop.	No.	fert.	Prop.	No.	fert.	Prop.	No.	fert.
Block	1	0.59		124	0.65		103	0.73		111	0.00	.*	4
	2	0.63		114	0.70		97	0.49		77	0.55	•	73
	3	0.64		95	0.69		83	0.53		79	0.55		31
	4	0.76		127	0.51		55	0.31		81	0.38		16
	5	0.61		101	0.46		84	0.51		87	0.69		13
	6	0.63		111	0.60		73	0.38		48	0.40	!	63

TABLE S19b

Observed proportions hatching of those fertile weeks 17-22

		Con	trol	1	Low	Inter	mediate	. H	igh
		Prop.	No. fert.						
Block	1	0.70	23	0.57	35	0.33	. 6	•	*
	2	0.75	28	0.75	40	0.11	9	0.64	14
	3	0.56	48	0.63	30	0.67	60	0.83	24
	4	0.87	31	0.40	5	0.50	8	*	*
	5	0.76	38	0.50	22	0.63	16	_	0
	6	0.78	37	0.76	34	0.50	22	0.67	40

^{*} Excluded from analysis

1

(continued)

TABLE S20

Estimated probabilities of infertility, early and late embryonic death and hatching for each period

	Infer from init	Infertility from those initially set	Early e death those	Early embryonic death from those fertile	Late endeath fi	Late embryonic death from those set'on Day 14	Hatchir those s	Hatching from those set on Day 21	Hatching from those fertile	g from ertile
	lst	2nd	lst	2nd	lst	2nd	1st	2nd	lst	2nd
Control	0.03	90.0	0.05	0.05	0.0	0.07	0.73	0.83	0.65	0.72
Low	0.01	0.04	0.01	0.03	0.11	0.07	0.69	0.75	0.61	99.0
Intermediate	0.05	0.53	0.01	0.24	0.14	90.0	0.59	0.75	0.51	0.56
High	0.06	0.07	0.04	0.01	90.0	90.0	0.54	0.77	0.50	0.71
Residual d.f.	15	13	15	12	14	12	14	12	14	12
Treat	1.38	**06.9	0.27	5.114	1.49	0.14	2.43	1.05	2.38	1.23
Block 4	9	7.10	0.17	07.1	•	CT - 7	50.0	F . 4%	?	6.63
lst : weeks 11-15										

2nd : weeks 17-22

Treatment effect (3, Residual d.f.) Block effect (5, Residual d.f.) F-ratios :

TABLE S21a

Observed proportions of 14-day old surviving chicks and estimated probabilities of surviving weeks 11-16

Treatment

		Co	ntrol	•	Low	Inter	mediate	H	igh
•		Prop.	No. hat.	Prop.	No. hat.	Prop.	No. hat.	Prop.	No. hat.
Block	1	0.89	73	0.85	67	0.89	81	•	•
	2	0.88	72	0.85	68	0.58	38	0.85	40
	3	0.84	61	0.89	57	0.83	42	0.88	F -
	4	0.87	97	0.79	28	0.68	25	0.83	17
	5	0.76	62	0.90	39	0.84	44		6
	6	0.90		0.93	44	0.94	18	0.78 0.76	9 25
Estimated									
probability	7	.0.	. 86	0	.87	0	.80	0	. 83

F-ratios: Treatment effect (3,14 d.f.) - 1.07 Block effect (5,14 d.f.) - 1.01

^{*} Excluded from analysis

TABLE S21b

Observed proportions of 14-day old surviving chicks and estimated probabilities of surviving weeks 17-22

Treatment

	Cor	ntrol		Low	Inter	mediate	н	igh
	Prop.	No. hat.						
Block 1	1.00	16	0.95	20	1.00	2	*	•
2	0.95	21	1.00	30	1.00	1	1.00	9
3	0.89	27	0.95	19	0.95	40	1.00	20
4	1.00	27	1.00	2	1.00	4	*	
5	0.83	29	1.00	11	1.00	10	*	
. 6 .	0.97	29	1.00	26	1.00	11	1.00	27
Estimated probability		.98		1.00		1.00		1.00

F-ratios: Treatment effect (3,12 d.f.) - 5.46*
Block effect (5,12 d.f.) - 4.09*

^{*} Excluded from analysis

(continued)

TABLE S22

Nean initial chick bodyweights (g) for treatments

Week

Treatment group	11	12	13	71	15	16	11	18	19	20
Control Low Intermediate High	35 20 30 30	36 37 36	35 35 35 35	36 37 33 4	8 8 8 8 8 8 8 8	33 33 34	38 35 38 38	32 37	38 37 40	36 37 36 36
Residual variance Residual d.f. Treat! Block ²	24.6 12 1.85 0.23	40.1 11 0.67 0.60	37.2 14 1.77 0.97	48.1 13 2.61 0.59	37.5 11 0.69 0.17	45.9 10 1.22 0.08	12.0 10 6.62** 2.31	4 40	14.1 5 1.13 1.12	4 64

F-ratios: 1 Treatment effect (3, Residual d.f.)
2 Block effect (5, Residual d.f.)

-+ Too few observations for analysis

(continued)

TABLE S23

Mean chick bodyweights (g) at Day 14 for treatments

					Week						
rreatment	11	12	13	14	15	91	11	91	19	50	21
Control	165	223	221	186	214	172	186	157	193	200	243
Intermediate High	217 159	188*	199 220	181	196 180*	176 185	169 195	143	207	206	218 208
Residual variance Residual d.f. Treat! Block?	3462 12 5.68** 0.30	2703 10 4.63* 2.78	988 14 9.75***	1272 12 8.07** 1.11	1564 10 6.22* 0.92	5965 7 0.21 0.27	1598 10 1.55 0.88	1707 9 0.90 0.46	469 5 6.62* 2.93	1535 5 2.59 2.06	†

150 229 152 110

22

P-ratios: 1 Treatment effect (3, Residual d.f.)
2 Block effect (5, Residual d.f.)

Too few observations for analysis

+