Text Searchable Document

MRID No. 444575-01

DATA EVALUATION RECORD AQUATIC INVERTEBRATE LIFE CYCLE TEST GUIDELINE 72-4(B)

CHEMICAL: Ethoprop PC Code No.: 041101

TEST MATERIAL: Ethoprop Technical Purity: 96.8%

CITATION:

Joseph V. Sousa Authors:

Ethoprop Technical - Chronic Toxicity to Title:

Mysids (Mysidopsis bahia) Under Flow-

Through Conditions

December 11, 1997 Study Completion Date:

Springborn Laboratories, Inc., Wareham, Laboratory:

Rhone-Poulec Ag Company, Research Sponsor:

Triangle Park, NC

Laboratory Report ID: 97-10-7128

MRID No.: 444575-01 DP Barcode: D242881

4. REVIEWED BY: Karl Bullock, M.S., Environmental Scientist,

Golder Associates Inc.

Signature: Karl Belloh Date: 3/18/98

APPROVED BY: Pim Kosalwat, Ph.D., Senior Scientist,

Golder Associates Inc.

signature: P. Kosalwat Date: 3/18/98

APPROVED BY:

Date: 3/20/98 Signature:

STUDY PARAMETERS:

Age of Test Organism: ≤24 hours

Definitive Test Duration: 28 days
Study Method: Flow-Thr

Flow-Through

Type of Concentrations:

Mean Measured

CONCLUSIONS: This study is scientifically sound and fulfills the guideline requirements for an estuarine invertebrate life cycle test using mysids. Based on the most sensitive endpoints (male length and dry weight), the LOEC and NOEC for mysids exposed to Ethoprop Technical were 2.7 and 1.4 ppb ai, respectively. The geometric-mean MATC was 1.9 ppb ai.

Results Synopsis

Most sensitive endpoint: Growth (male length and dry weight)

NOEC: 1.4 ppb ai LOEC: 2.7 ppb ai MATC: 1.9 ppb ai

LOEC's for specific effects

Young/Female

Reproductive Day: 5.1 ppb ai Survival: >5.1 ppb ai Male length: 2.7 ppb ai Female dry weight: 5.1 ppb ai Female dry weight: 5.1 ppb ai

8. ADEQUACY OF THE STUDY:

A. Classification: Core.

B. Rationale: Fulfills the guideline requirements.

C. Repairability: N/A.

MAJOR GUIDELINE DEVIATIONS: Since there is no EPA SEP for a mysid life cycle toxicity test, ASTM's Standard Guide for Conducting Life-Cycle Toxicity Tests with Saltwater Mysids (E1191-90) was used as a guidance for this data evaluation. No deviations from ASTM's guidelines were noted.

10. MATERIALS AND METHODS:

A. Biological System:

Guideline Criteria	Reported Information
Species: An estuarine shrimp species, preferably Mysidopsis bahia	Mysidopsis bahia
Duration 28 days/one generation	28 days
Source (or supplier)	In-house cultures

Guideline Criteria	Reported Information
Parental Acclimation 1) Parental stock must be maintained separately from the brood culture in dilution water and under test conditions.	1. Parental stock was maintained in the dilution water at test temperature.
2) Mysids should be in good health.	2. Yes
Parental Acclimation Period At least 14 days	≥14 days
Chamber Location: Treatments should be randomly assigned to test chamber locations.	Yes
Duration of the Test: A mysid test must not be terminated before 7 days past the median time of 1st brood release in the control treatment.	Test was conducted for 28 days. Time to sexual maturation of surviving mysids was reported to be 14 days.
Brood Stock: Test started with mysids: 1) from only one brood stock or 2) from brood stock which has not obtain sexual maturity or had been maintained for > 14 days in a laboratory with same food, water, temperature, and salinity used in the test.	Mysids were obtained from in- house cultures maintained for at least 14 days, in dilution water at test temperature.

Guideline Criteria	Reported Information
Distribution: No. of mysids before pairing: Minimum of 15 mysids per compartment, 2 compartments per chamber, 2 chambers per concentration for a total of 60/level.	Before pairing: 15 mysids/compartment; 2 compartments/test chamber; 2 replicate chambers/ treatment (60 mysids/level).
No. of mysids after pairing: ≥ 20 randomly selected pairs/treatment (excess males should be held in separate compartment to replace paired males).	After pairing: Up to 10 pairs/replicate chamber (20 pairs/treatment). The remaining mysids were held in one of the original retention chambers within each aquarium.
Pairing: 1) Should be conducted when most of the mysids are sexually mature (usually 10-14 days after test initiation). 2) Should be paired on the same day.	 Pairing was conducted when the mysids reached sexual maturation. Mysids were paired in the control and all treatments on Day 14.
Feeding: 1) Mysids should be fed live brine shrimp nauplii at least once daily. 2) 150 live brine shrimp nauplii per mysid per day or 75 twice a day is recommended.	1. Mysids were fed live Artemia salina nauplii ad libitum two times daily during the test, except during the final 24 hours of the test. Feedings were supplemented with Selco® (saturated fatty acids) prior to pairing and every other day during the reproductive phase. 2. Not reported.

Guideline Criteria	Reported Information
Counts: Live adult mysids should be counted at test initiation, at pairing, and daily after pairing. Live young must be counted and removed daily. Missing or impinged animals should be recorded.	Number of surviving mysids were counted at test initiation and at 24 hour intervals. Live young were counted and removed daily beginning on Day 15 (the first day that young were present). Dead mysids were removed when observed. No occurrence of sublethal effects on behavior or appearance were noted.
Controls: Survival in any control chamber (between pairing and test termination) must not be less than 70%.	88% survival in the dilution water control based on total number of mysids exposed.
Controls: Negative control and carrier control (when applicable) are required.	A dilution water control was used.

B. Physical System:

Guideline Criteria

Test Water:

- 1) May be natural (sterilized and filtered) or a commercial mixture with a salinity between 15 and 30 g/kg, and free of pollutants.
- 2) During the test, salinity should be measured daily and the difference between highest and lowest must be less than 10 g/kg.
- 3) pH should be measured at the beginning, end of test and weekly. Measured values should be between 7.6 and 8.2, and not deviate by more than one unit for more than 48 hours.
- 4) DO must be measured at each conc. at least once a week. (see details in ASTM)

Test Temperature:

- 1) Mean measured temperature for each chamber at test termination should be within 1°C of selected test temperature. For mysid shrimp, 27°C is recommended.
- 2) Each individual measured temperature must be within 3°C of the mean of the time-weighted averages.
- 3) Whenever temperature is measured concurrently in more than one test chamber the highest & lowest temp. must not differ by more than 2°C.

Reported Information

- 1. Artificial seawater prepared daily by the addition of a commercially prepared salt formula (hw-MARINEMIX®) to soft freshwater, filtered through a 10-µm filter and adjusted to a salinity of 25 ± 3%. The artificial seawater was mixed and aerated vigorously and screened for contaminants.
- 2. Salinity measured daily in each replicate was between 23 and 27% during the test.
- 3. pH measured daily in each replicate was between 8.0 and 8.3 during the test.
- 4. DO measured daily in each replicate was maintained at ≥84% of saturation throughout the test.
- 1) Mean measured temperature for each chamber at test termination was 25°C, equal to the selected test temperature.
- 2) Continuous temperature monitoring in replicate B of the control ranged from 22-27°C; daily temperature measurements in all other replicates ranged from 23-26°C. Individual daily temperature values were not provided in the raw data.
- 3) According to the summary of daily measurements, the highest and lowest temperature did not differ more than 2°C.

Guideline Criteria	Reported Information
Photoperiod: Recommend 16L/8D.	16-hour light/8-hour dark
Dosing Apparatus: Intermittent flow proportional diluters or continuous flow serial diluters with a dilution factor not greater than 0.5 (a minimum of 5 toxicant concentrations and a control).	Intermittent-flow proportional diluter with a dilution factor of approximately 0.5.
Toxicant Mixing: 1) Mixing chamber is recommended but not required; 2) Aeration should not be used for mixing;	 A mixing chamber was used. A water-driven magnetic stir plate was used for mixing.
3) It must be demonstrated that the test solution is completely mixed before intro. into the test system; 4) Flow splitting accuracy	3. Chemical analysis of test solutions resulted in mean recoveries of Ethoprop Technical ranging from 92 - 150% of nominal concentrations.
must be within 10%.	4. Not reported.
Test Vessels: 1) Material: all glass, No. 316 stainless steel, or perfluorocarbon plastic.	1. Glass 2. 39 X 20 X 25 cm with a solution volume fluctuating
2) Size: 250 ml with 200 ml fill volume is preferred; 100 ml with 80 ml fill volume acceptable.	between 4 and 7 L. 3. Retention chambers were 10- cm dia. glass petri dishes with 15-cm high Nitex® screen
3) Test compartments: 90 or 140 mm inside diameter glass Petri dish bottoms with collars made of 200-250 μ m mesh screen.	collars. Pairing chambers were glass jars (5.1-cm dia., 10-cm high) containing two 2-cm holes covered with 363- μ m Nitex® screen.

Guideline Criteria	Reported Information
Covers 1) Renewal: Test vessels should be covered with a glass plate.	1. N/A
2) Flow-through: Openings in the test compartments should be covered with nylon mesh or stainless steel screen.	2. Test compartments had Nitex® screen collars.
Flow Rate: 1) Flow rates should provide 5 to 10 volume additions per 24 hr.	1. 7.2 volume additions/24 hours
 Flow rate must maintain DO at or above 60% of saturation and maintain the toxicant level. Meter systems calibrated before study and checked twice daily during test period. 	2. DO maintained at ≥84% of saturation. Toxicant concentration was maintained between 92 and 150% of nominal concentrations. 3. Yes
Aeration: 1) Dilution water should be aerated to insure DO concentration at or near 100% saturation. 2) Test tanks may be aerated.	 Dilution water was aerated prior to use. No aeration was necessary in the test vessels.

C. Chemical System:

Guideline Criteria	Reported Information
Concentrations: 1) Minimum of 5 concentrations and a control, all replicated, plus solvent control if appropriate.	1. Dilution water control, 0.17, 0.34, 0.69, 1.4, 2.7, and 5.5 μg ai/L
 Toxicant conc. must be measured in one tank at each toxicant level every week. One concentration must adversely affect a life stage and one concentration must not affect any life stage. 	 Toxicant concentrations were measured in both replicates of each treatment on Days 0, 7, 14, 21, 23, and 28. LOEC and NOEC were obtained
4) The measured conc. of the test material of any treatment should be at least 50% of the time-weighted average measured concentration for >10% of the duration of the test.	4. Measured concentrations appeared consistent throughout the test period.
5) The measured conc. for any treatment level should not be more than 30% higher than the time-weighted average measured conc. for more than 5% of the duration of the test.	5. See above.
Solvents: 1) Should not exceed 0.1 ml/L in a flow-through system.	1. No solvent was used.
2) Following solvents are acceptable: triethylene glycol, methanol, acetone, ethanol.	2. N/A

Comments: None.

11. REPORTED RESULTS:

Reported Information
Reported Information
Yes
 Yes Average of 13.6 offspring/female in the dilution water (1.0 offspring per female reproductive day).
Data include: Survival of first-generation mysids (female and male combined) Number of young produced per female reproductive day. Dry weight and total length of each first-generation male and female survivor. None noted.
Yes

Effects Data:

Toxicant Concentration (µg ai/1)		No. of Survival Young per		Mean Total Length (mm)		Mean Dry Weight (mg)	
Nom.	Meas.	female repro. day	ଟ ଓ ଠୁ [®]	σ	} Q	ď	Q ×
Control	<0.045	1.0	88	7.7	7.6	0.98	1.2
0.17	0.25	1.3	85	7.6	7.7	0.97	1.2
0.34	0.40	1.6	83	7.8	8.0	0.98	1.4
0.69	0.65	1.4	93	7.6	7.7	0.98	1.3
1.4	1.4	1.4	83	7.6	7.8	0.92	1.3
2.7	2.7	1.2	93	7.2 ^b	7.6	0.88 ^b	1.2
5.5	5.1	0.29 ^b	65	7.1 ^b	7.3 ^b	0.78 ^b	0.87 ^b

Represents survival of all first generation mysids (i.e., those paired for spawning and those maintained as extras).

<u>Toxicity Observations</u>: No sublethal signs of toxicity were reported.

Statistical Results:

Endpoint	Method	NOEC (μg ai/L)	LOEC (µg ai/L)
Survival	Williams' Test	5.1	>5.1
Reproduction	Williams' Test	2.7	5.1
Male Length	Williams' Test	1.4	2.7
Female Length	Williams' Test	5.1	>5.1
Male Dry Weight	Williams' Test	1.4	2.7
Female Dry Weight	Williams' Test	2.7	5,1

<u>Comments</u>: For analysis of growth data, the authors used mean values rather than individual measurements. Percent survival data were arcsine square-root transformed prior to analysis. Analyses compared treatment and control means.

b Significantly reduced when compared to the control (p<0.05).

12. REVIEWER'S STATISTICAL RESULTS:

Endpoint	Method	NOEC (ppb ai)	LOEC (ppb ai)
Survival	Williams'	5.1	>5.1
# Young/female	Williams'	2.7	5.1
Male Length	Dunnett's	1.4	2.7
Female Length	Dunnett's	2.7	5.1
Male Dry Weight	Dunnett's	1.4	2.7
Female Dry Weight	Dunnett's	2.7	5.1

<u>Comments</u>: The reviewer used individual measurements in the analysis of growth data. Percent survival data were arcsine square-root transformed prior to analysis.

13. REVIEWER'S CONCLUSIONS: This study is scientifically sound and fulfills the guideline requirements for an invertebrate life cycle test. Based on mean measured concentrations and the most sensitive endpoints (male length and dry weight), the NOEC and LOEC were 1.4 and 2.7 ppb ai, respectively. The geometric-mean MATC was 1.9 ppb ai. The study is classified as Core.

Ethoprop Technical: Mysid Life Cycle - survival File: 44457501 Transform: ARC SINE(SQUARE ROOT(Y))

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

ION N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
Control 2	0.880	1.224	1.236
0.25 2	0.850		
0.4 2	0.835		1.236
0.65 2	0.935		1.236
1.4 2			1.236
2.7 2		for the second of the first of the second of	1.236
5.1 2	0.650	0.939	1.236
	Control 2 0.25 2 0.4 2 0.65 2 1.4 2 2.7 2	ION N MEAN Control 2 0.880 0.25 2 0.850 0.4 2 0.835 0.65 2 0.935 1.4 2 0.835 2.7 2 0.935	ION N MEAN MEAN Control 2 0.880 1.224 0.25 2 0.850 1.235 0.4 2 0.835 1.155 0.65 2 0.935 1.323 1.4 2 0.835 1.155 2.7 2 0.935 1.323 1.323 1.323 1.323

Ethoprop Technical: Mysid Life Cycle - survival

File: 44457501 Transform: ARC SINE(SQUARE ROOT(Y))

WILLIAMS TEST (Isotonic	regression	model)	TABLE 2 0	F 2
ISOTONIZED IDENTIFICATION MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
Control 1.236 0.25 1.236 0.4 1.236 0.65 1.236 1.4 1.236 2.7 1.236 5.1 0.939	0.073 0.073 0.073 0.073 0.073 1.846		1.89 2.00 2.04 2.06 2.07 2.08	k= 1, v= 7 k= 2, v= 7 k= 3, v= 7 k= 4, v= 7 k= 5, v= 7 k= 6, v= 7

Note: df used for table values are approximate when v > 20.

Ethoprop: Mysid Life Cycle - young/fem. repro. day File: 44457501 Transform: NO TRANSFORM

	WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2								
GROUP	IDENTIFICATION	N ,	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN				
1 2 3 4 5 6	Control 0.25 0.4 0.65 1.4 2.7	2 2 2 2 2 2 2	1.040 1.250 1.550 1.400 1.400 1.200	1.040 1.250 1.550 1.400 1.400 1.200	1.328 1.328 1.328 1.328 1.328 1.328				

Ethoprop: Mysid Life Cycle - young/fem. repro. day File: 44457501 Transform: NO TRANSFORM

WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 O	F 2
IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
Control 0.25 0.4 0.65 1.4 2.7 5.1	1.328 1.328 1.328 1.328 1.328 1.200 0.305	1.110 1.110 1.110 1.110 0.617 2.833		1.89 2.00 2.04 2.06 2.07 2.08	k= 1, v= 7 k= 2, v= 7 k= 3, v= 7 k= 4, v= 7 k= 5, v= 7 k= 6, v= 7

s = 0.259

Note: df used for table values are approximate when v > 20.

File:4445	5 7501. c	out Page 1 Ethoprop Te	chnical Mysid	Life Cycle 10:37 Tuesday,	March 17, 1998
			- TRT=Control		
Vaniahli.					
Variable		Mean	Std Dev	Minimum	Maximum
MLNGTH FLNGTH	31 22	7.6516129 7.5772727	0.3501152 0.3517735	6.9000000 6.9000000	8.5000000 8.2000000
MDWT FDWT	31 22	0.9761290 1.1913636	0.1380019 0.1451533	0.7500000 0.8900000	1.3300000
	-4				1.4800000
*****	77		TRT=1		
Variable	N	Mean	Std Dev	Minimum	Maximum
MLNGTH FLNGTH	23 28	7.5652174	0.4270498	6.9000000	8.4000000
MDWT FDWT	22 28	7.6714286 0.9700000 1.2257143	0.4462661	6.5000000 0.8000000	8.4000000 1.2600000
ATTILLE.			0.2159977	0.6000000	1.6700000
			TRT=11		
Variable	N	Mean	Std Dev	Minimum	
MLNGTH	23	7.7956522	0.3169145	7.2000000	Maximum
FLNGTH MDWT	27 23	7.9666667 0.9756522	0.3269909 0.1015707	7.4000000 0.8000000	8.3000000 8.5000000
FDWT	27	1.3855556	0 1809236	1.0300000	1.1600000 1.6200000
			TRT=III		
			Y		
Variable	N	Mean	Std Dev	Minimum	Maximum
MLNGTH FLNGTH	29 27	7.6241379 7.7296296	0.3987975 0.3417318	7.0000000 6.7000000	8.2000000
MDWT FDWT	29 27	0.9779310 1.2911111	0.1253674 0.2107374	0.7400000 0.8700000	8.3000000 1.2000000
					1.7200000
****	57.7		TRT=IV		
/ariable	N	Mean	Std Dev	Minimum	Maximum
LNGTH	21	7.6476190	0.2960051	7.0000000	8.1000000
FLNGTH 1DWT FDWT	29 21	7.8000000 0.9214286	0.3703280 0.0854568	7.0000000 0.7800000	8.5000000 1.0900000
DWI	29	1.2748276	0.2620063	0.6900000	1.8100000
	11		- TRT=V		
ariable	N	Mean	Std Dov		
LNGTH	3 0	7.1800000	Std Dev 0.3726883	Minimum	Maximum
LNGTH DWT	26 30	7.6346154 0.8826667	0.3474965 0.1005822	6.5000000 6.9000000	7.8000000 8.5000000
	26	1.2484615	0.2165676	0.6700000 0.7400000	1.1000000 1.6400000
		Ethoprop Techn	ical Mysid Li	fe Cycle	

File:444575		5 - 6			1	0:37 Tue	esday,	March	17,	19
			<u>- 25,-5-</u>	TRT=V				: 		
Variable	N				. 1945. . 1945.					
	N .		ean 	Std	Dev	Mir	nimum		Maxin	num
MLNGTH FLNGTH MDWT FDWT	14 25 14 25	7.05714 7.30000 0.78428 0.87400	000 857	0.3588 0.3291 0.0972 0.1505	403 478	6.400 6.700 0.620 0.620	0000	8. 0.	80000 00000 95000 19000	000
		Ethoprop	Tech	nical My	sid L	ife Cycl 0:37 Tue	e eday			. <u>.</u>
		Genera	al Line	ear Mode evel Inf	ls Pr	ocedure	suay,	riai Cii	17,	17
	Clas	1.0	els	Values	or ma t	ion				
	TRT		7			VI III IV				
	REP		2	A B		1 111 IV	V VI			
	Nu	mber of	observ	ations i	in dat	a set =	200			
		Group	0bs	Depende	ent Va	ıriables				
		1	171	MLNGTH	ere e Rodens					
		2	184	FLNGTH	FNUT		ariana. Na 131			
		3	170	MDWT						
OTE: Variabl	es in	each gro	oup ar	e consis	tent	with res	pect t	o the		
present		ibacilice () III)S:	sing vat	ues.				\$ 1 - 1	* **
		tnoprop	Techn	ical Mys	id Li 10	fe Cycle :37 Tues	dav. M	arch	17 1	90
		General	Line	ar Model:						
ependent Var	iable:							i i regione		
ource		DF		Sum of Squares		Mean Square		مرا	Pr	
del		7	9.	5608692	1.	.3658385		.26	0.0	-
ror		163	21.	7001834	* .	1331300		.20	0.0	UU ;
rrected Tot	al	170	31.	2610526						11.
	R	Square		c.v.	R	oot MSE		MI NG	TH Me	aan
	0.	305840	4	.850181	(- 1, -1,	0.3649			7.52	
urce		DF	Ту	pe I SS	Mean	Square	F Val	ue	Pr >	F
,		6	9. 0.	4541240 1067452	1.	5756873 1067452		84 80	0.00	001
The second second					٠.	1001425	٠.	-		

9.5367255 0.1067452 1.5894542 0.1067452 11.94 0.80 0.0001 0.3719 Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure Least Squares Means

TRT	MLNGTH LSMEAN	LSMEAN Number
Control	7.64916935	1
.1	7.56851088	2
II.	7.79235868	3
· III	7.62500862	4
IV	7.65363097	5
٧	7.17831666	6
VI	7.04992855	7

Pr > |T | HO: LSMEAN(i)=LSMEAN(j)

1/	j 1	2	3	4	5	6	7
1	•	0.4239	0.1558	0.7982	0.9657	0.0001	-0.0001
2	0.4239		0.0395	0.5801	0.4409	0.0002	0.0001
3	0.1558	0.0395		0.1027		0.0001	0.0001
4	0.7982	0.5801	0.1027		0.7849	0.0001	0.0001
5	0.9657	0.4409	0.2116	0.7849		0.0001	0.0001
		0.0002	0.0001	0.0001	0.0001		0.2792
7	0.0001	0.0001	0.0001	0.0001	0.0001	0.2792	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Bonferroni (Dunn) T tests for variable: MLNGTH

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 163 MSE= 0.13313 Critical Value of T= 3.08644

Comparisons significant at the 0.05 level are indicated by ****.

TRT Comparison	Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneous Upper Confidence Limit	
II - Control II - IV II - III II - III II - V III - VI	-0.16588 -0.19186 -0.14292 -0.10165 0.30354 0.35677	0.14404 0.14803 0.17151 0.23043 0.61565 0.73851	0.45396 0.48793 0.48595 0.56252 0.92776 ** 1.12025 **	
Control - II Control - IV Control - III Control - I Control - V Control - VI	-0.45396 -0.31428 -0.26346 -0.22352 0.18320 0.23185	-0.14404 0.00399 0.02747 0.08640 0.47161 0.59447	0.16588 0.32227 0.31841 0.39631 0.76003 ***	

٠	Fi	le:	44457	'501.	out	`.Pa	age	4
		4						

IV IV IV IV IV	- II - Control - III - I - V	-0.48793 -0.32227 -0.29920 -0.25750 0.14721 0.20192	-0.14803 -0.00399 0.02348 0.08240 0.46762 0.59048	0.19186 0.31428 0.34616 0.42230 0.78803 0.97903	***
111 111 111 111 111	- II - Control - IV - I - V - VI	-0.48595 -0.31841 -0.34616 -0.25552 0.15087 0.20050	-0.17151 -0.02747 -0.02348 0.05892 0.44414 0.56700	0.14292 0.26346 0.29920 0.37336 0.73740 0.93349	***
	- II - Control - IV - III - V	-0.56252 -0.39631 -0.42230 -0.37336 0.07311 0.12633	-0.23043 -0.08640 -0.08240 -0.05892 0.38522 0.50807	0.10165 0.22352 0.25750 0.25552 0.69733 0.88981	*****
V V V V V	- II - Control - - IV - III - I - VI	-0.92776 -0.76003 -0.78803 -0.73740 -0.69733 -0.24164	-0.61565 -0.47161 -0.46762 -0.44414 -0.38522 0.12286	-0.30354 -0.18320 -0.14721 -0.15087 -0.07311 0.48736	*** *** *** *** ***
VI VI VI VI VI	- II - Control - IV - III - I Ethoprop	-1.12025 -0.95709 -0.97903 -0.93349 -0.88981 Technical My		-0.35677 -0.23185 -0.20192 -0.20050 -0.12633 cle	*** *** *** *** ***

General Linear Models Procedure

	Simultaneous Lower	Difference	Simultaneous Upper
TRT Comparison	Confidence Limit	Between Means	Confidence Limit
VI V	-0.48736	-0.12286	0.24164

Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Dunnett's One-tailed T tests for variable: MLNGTH

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 163 MSE= 0.13313 Critical Value of Dunnett's T= 2.338

Comparisons significant at the 0.05 level are indicated by ****!

TRT Comparison	Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneous Upper Confidence Limit
II - Control	-0.09070	0.14404	0.37878
IV - Control	-0.24507		0.23708

III I V VI	Control Control Control Control	-0.24784 -0.32114 -0.69007 -0.86913	-0.08640 -0.47161 -	0.19289 0.14835 0.25316 0.31981	***
	Ethoprop	Technical Mys	id Life Cycle 10:37 Tues	day, Marc	h 17, 1998
	General	Linear Model	s Procedure		
Dependent Varial	ble: FLNGTH	S			
Source	DF	Sum of Squares			Pr > F
Model	7	6.9686252	0.9955179	7.66	0.0001
Error	176	22.8808857	0.1300050		
Corrected Total	183	29.8495109			
	R-Square	c.v.	Root MSE	FL	NGTH Mean
	0.233459	4.696880	0.3606		7.6766
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRT REP	6 1	6.5985892 0.3700360	1.0997649 0.3700360	8.46 2.85	0.0001 0.0934
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRT REP	6 1 Ethoprop	6.5425953 0.3700360 Technical Mysi	1.0904326 0.3700360 d Life Cycle 10:37 Tuesc	4 * 4 \$ \$ \$ \$ \$ \$	0.0001 0.0934
	General	Linear Models	化二氯甲二氯甲烷 化氯化二氯		
Dependent Variab	le: FDWT				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	7	4.0042926	0.5720418	13.72	0.0001
Error	176	7.3382378	0.0416945		
Corrected Total	183	11.3425304			
	R-Square	c.v.	Root MSE		FDWT Mean
	0.353033	16.76696	0.2042		1.2178
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRT REP	6	3.9957897 0.0085029	0.6659649 0.0085029	15.97 0.20	0.0001 0.6521
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRT REP	6 1	4.0014407 0.0085029	0.6669068 0.0085029	16.00 0.20	0.0001 0.6521
	Ethoprop T	echnical Mysic	l Life Cycle		

10:37 Tuesday, March 17, 1998

File:44457501.out Page 5

File:44457501.out Page 6

General Linear Models Procedure Least Squares Means

IRI	FLNGTH LSMEAN	LSMEAN Number
Control	7.57727273	1
I	7.68109102	2
H	7.96833672	3
III	7.72461947	Ž
ΙV	7.79533537	5
V	7.63461538	6
VI	7.30180366	7

Pr > |T | HO: LSMEAN(i)=LSMEAN(j)

i/j 1	2	3		5	4	7
1	0.3143	0.0002	0.1567	0.0339	0.5837	0.0097
2 0.3143		0.0036	0.6563	0.2352	0.6372	0.0002
3 0.0002	0.0036	0,0440	0.0140	0.0747	0.0009	0.0001
4 0.1567 5 0.0339	0.6563 0.2352	0.0140	0.4643	0.4643	0.3651	0.0001
6 0.5837	0.6372	0.0009	0.4643	0.1008	0.1008	0.0001
7 0.0097	0.0002	0.0001	0.0001	0.0001	0.0012	0.0012

TRT	FDWT LSMEAN	L SMEAN Number
Control 1	. 19136364	1
1 1	.22424959	2
II 1	.38530240	3
	29187059	Ž
	.27553468	5
	24846154	ã.
	87372659	7

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

	- 14		1 1 1		rando de la filia de la companio		120
1/	1	2	3	- 4	5	6	7
1	ili.	0.5732	0.0011	0.0885	0.1468	0.3357	0.0001
2	0.5732	•	0.0039	0.2230	0.3463		
3	0.0011	0.0039		0.0948			
4	0.0885	0.2230	0.0948	-7. · · · · · ·			0.0001
5	0.1468	0.3463	0.0461	0.7652			0.0001
6	0.3357	0.6644	0.0157	0.4404	0.6242		0.0001
7	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Bonferroni (Dunn) T tests for variable: FLNGTH

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 176 MSE= 0.130005 Critical Value of T= 3.08282

Comparisons significant at the 0.05 level are indicated by *****.

:44457501.out Pag TRT Comparison	ge 7 - Simultaneou Lower Confidence Limit	Difference			
II - IV II - III II - I II - I II - V II - V II - VI	-0.13060 -0.06549 -0.00457 0.02663 0.07014 0.35815	0.16667 0.23704 0.29524 0.33205 0.38939 0.66667	0.46393 0.53956 0.59505 0.63747 0.70865 0.97518	*** *** ***	
IV - II IV - III IV - I IV - V IV - Contro IV - VI	-0.46393 -0.22689 -0.16593 -0.13482 ol -0.09154 0.19664	-0.16667 0.07037 0.12857 0.16538 0.22273 0.50000	0.13060 0.36763 0.42307 0.46559 0.53700 0.80336	***	
	-0.53956 -0.36763 -0.24161 -0.21041 ol -0.16689 0.12111	-0.23704 -0.07037 0.05820 0.09501 0.15236 0.42963	0.06549 0.22689 0.35801 0.40043 0.47161 0.73815		
I - II I - IV I - III I - Contro I - VI	-0.59505 -0.42307 -0.35801 -0.26592 -0.22253 0.06557	-0.29524 -0.12857 -0.05820 0.03681 0.09416 0.37143	0.00457 0.16593 0.24161 0.33955 0.41084 0.67728	***	
V - 11 V - IV V - III V - 1 V - Contro V - VI	-0.63747 -0.46559 -0.40043 -0.33955 1 -0.26465 0.02326	-0.33205 -0.16538 -0.09501 -0.03681 0.05734 0.33462	-0.02663 0.13482 0.21041 0.26592 0.37934 0.64597	***	- twent
Control - II Control - IV Control - III Control - I Control - V Control - VI	-0.70865 -0.53700 -0.47161 -0.41084 -0.37934 -0.04766	-0.38939 -0.22273 -0.15236 -0.09416 -0.05734 0.27727	-0.07014 0.09154 0.16689 0.22253 0.26465 0.60221	***	treatment II > con
VI - II VI - IV VI - I VI - V Ethop	-0.97518 -0.80336 -0.73815 -0.67728 -0.64597 orop Technical My	-0.66667 -0.50000 -0.42963 -0.37143 -0.33462 /sid Life Cyc	-0.35815 -0.19664 -0.12111 -0.06557 -0.02326 cle uesday, Marc	*** *** *** ***	DOR
Ger	neral Linear Mode				

	TRT	Lower Confidence	Difference Between	Simultaneous Upper Confidence
	Comparison	Limit	Means	Limit
۷I	- Control	-0.60221	-0.27727	0.04766

Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

File:44457501.out Page 8

Bonferroni (Dunn) T tests for variable: FDWT

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 176 MSE= 0.041695 Critical Value of T= 3.08282

Comparisons significant at the 0.05 level are indicated by *****.

General Linear Models Procedure

TRT Comparison	Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneous Upper Confidence Limit		
II - III II - IV II - V II - I II - Control II - VI	-0.07688 -0.05762 -0.03587 -0.00995 0.01339 0.33684	0.09444 0.11073 0.13709 0.15984 0.19419 0.51156	0.26577 0.27907 0.31006 0.32963 0.37499 0.68627	***	
111 - 11 111 - 1V 111 - V 111 - C 111 - Control 111 - VI	-0.26577 -0.15206 -0.13031 -0.10439 -0.08105 0.24239	-0.09444 0.01628 0.04265 0.06540 0.09975 0.41711	0.07688 0.18463 0.21561 0.23519 0.28054 0.59183	***	
IV - II IV - III IV - V IV - I IV - Control IV - VI	-0.27907 -0.18463 -0.14365 -0.11767 -0.09451 0.22903	-0.11073 -0.01628 0.02637 0.04911 0.08346 0.40083	0.05762 0.15206 0.19638 0.21589 0.26144 0.57262	***	
V - II V - III V - IV V - I V - Control V - VI	-0.31006 -0.21561 -0.19638 -0.14870 -0.12525 0.19814	-0.13709 -0.04265 -0.02637 0.02275 0.05710 0.37446	0.03587 0.13031 0.14365 0.19419 0.23945 0.55079	***	
- II - III - III - IV - V - Control - VI	-0.32963 -0.23519 -0.21589 -0.19419 -0.14499 0.17850	-0.15984 -0.06540 -0.04911 -0.02275 0.03435 0.35171	0.00995 0.10439 0.11767 0.14870 0.21369 0.52493	***	
Control - II Control - III Control - IV Control - V Control - I Control - VI	-0.37499 -0.28054 -0.26144 -0.23945 -0.21369 0.13335	-0.19419 -0.09975 -0.08346 -0.05710 -0.03435 0.31736	0.08105 0.09451 0.12525 0.14499	*** ***	treatment I > control
VI - II VI - III VI - IV VI - V VI - I Ethoprop	-0.68627 -0.59183 -0.57262 -0.55079 -0.52493 Technical Mys		-0.24239 -0.22903 -0.19814 -0.17850	*** *** *** ***	1998

File:44457501.out Page 9 Simultaneous Simultaneous Lower Difference Upper TRT Confidence Between Confidence Comparison Limit Means Limit - Control -0.50138 -0.31736 -0.13335

> Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Dunnett's One-tailed T tests for variable: FLNGTH

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 176 MSE= 0.130005 Critical Value of Dunnett's T= 2.289

Comparisons significant at the 0.05 level are indicated by ****!

TRT Comparison	Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneous Upper Confidence Limit	
II - Control IV - Control III - Control II - Control V - Control VI - Control	0.15233 -0.01064 -0.08471 -0.14100 -0.18176 -0.51856	0.38939 0.22273 0.15236 0.09416 0.05734 -0.27727	0.62646 0.45609 0.38942 0.32931 0.29644 -0.03599 ***	

Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Dunnett's One-tailed T tests for variable: FDWT

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 176 MSE= 0.041695 Critical Value of Dunnett's T= 2.289

Comparisons significant at the 0.05 level are indicated by ****!

TRT Comparison	Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneous Upper Confidence Limit
II - Control III - Control IV - Control V - Control I - Control VI - Control	0.05994	0.19419	0.32845
	-0.03451	0.09975	0.23400
	-0.04869	0.08346	0.21562
	-0.07831	0.05710	0.19251
	-0.09882	0.03435	0.16752
	-0.45401	-0.31736	-0.18072 ***

Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

File:44457501.ou Dependent Variab	t Page 10 le: MDWT				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	7	0.5791074	0.0827296	6.44	0.0001
Error	162	2.0803449	0.0128416		
Corrected Total	169	2.6594524			
	R-Square	c.v.	Root MSE		MDWT Mean
	0.217754	12.10009	0.1133		0.9365
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRT REP	6 1	0.5744891 0.0046183	0.0957482 0.0046183	7.46 0.36	0.0001 0.5495
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRT REP	6 1	0.5783281 0.0046183	0.0963880 0.0046183	7.51 0.36	0.0001 0.5495

Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure Least Squares Means

TRT	MDWT LSMEAN	LSMEA! Numbe
Control	0.97561956	1
1	0.97047859	· 2
II 🔻	0.97496550	3
III	0.97811257	4
IV	0.92268203	5
٧	0.88231570	6
VI	0.78278157	7
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second s	

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/i 1	- 2	3	4	5	4	
1	0.8711	0.9833	0.9323	0.1017	0.0016	0.0001
2 0.8711		0.8947	0.8120	0.1690	0.0063	0.0001
3 0.9833 4 0.9323	0.8947 0.8120		0.9210	0.1300		
5 0.1017	0.1690		0.0902	0.0902		0.0001
6 0.0016	0.0063		0.0902	0.2139	0.2139	0.0005
7 0.0001	0.0001			0.0005	0.0075	0.0075

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Bonferroni (Dunn) T tests for variable: MDWT

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than Tukey's for all pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 162 MSE= 0.012842 Critical Value of T= 3.08674

Comparisons significant at the 0.05 level are indicated by ****!

III - Control -0.08856	ą.
III - IV -0.04372 0.05650 0.15673 III - V 0.00417 0.09526 0.18636 *** III - VI 0.07981 0.19365 0.30748 ***	
Control - III -0.09217 -0.00180 0.08856 Control - II -0.09579 0.00048 0.09674 Control - I -0.09138 0.00613 0.10364 Control - IV -0.04416 0.05470 0.15356 Control - V 0.00388 0.09346 0.18305 *** Control - VI 0.07921 0.19184 0.30448 ***	
II - III -0.09995 -0.00228 0.09539 II - Control -0.09674 -0.00048 0.09579 II -1 -0.09866 0.00565 0.10997 II -1V -0.05135 0.05422 0.15980 II - V -0.00396 0.09299 0.18993 II - VI 0.07279 0.19137 0.30994 ***	
I - III -0.10683 -0.00793 0.09097 I - Control -0.10364 -0.00613 0.09138 I - II -0.10997 -0.00565 0.09866 I - IV -0.05814 0.04857 0.15529 I - V -0.01085 0.08733 0.18552 I - VI 0.06613 0.18571 0.30530 ***	
IV - III -0.15673 -0.05650 0.04372 IV - Control -0.15356 -0.05470 0.04416 IV - II -0.15980 -0.05422 0.05135 IV - I -0.15529 -0.04857 0.05814 IV - V -0.06076 0.03876 0.13829 IV - VI 0.01645 0.13714 0.25783 ***	
V - III -0.18636 -0.09526 -0.00417 *** V - Control -0.18305 -0.09346 -0.00388 *** V - II -0.18993 -0.09299 0.00396 V - I -0.18552 -0.08733 0.01085 V - IV -0.13829 -0.03876 0.06076 V - VI -0.01484 0.09838 0.21160	
VI - III -0.30748 -0.19365 -0.07981 *** VI - Control -0.30448 -0.19184 -0.07921 *** VI - II -0.30994 -0.19137 -0.07279 *** VI - I -0.30530 -0.18571 -0.06613 *** VI - IV -0.25783 -0.13714 -0.01645 *** Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 195	7

General Linear Models Procedure

	Simul taneous	Simultaneous		
TRT Comparison	Lower Confidence Limit	Difference Between Means	Upper Confidence Limit	
VI - V	-0.21160	-0.09838	0.01484	

File:44457501.out Page 12

Ethoprop Technical Mysid Life Cycle 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Dunnett's One-tailed T tests for variable: MDWT

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 162 MSE= 0.012842 Critical Value of Dunnett's T= 2.338

Comparisons significant at the 0.05 level are indicated by ****!

TRT: Comparison	Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneous Upper Confidence Limit	
III - Control	-0.06666	0.00180	0.07026	
II - Control	-0.07340	-0.00048	0.07245	
I - Control	-0.08000	-0.00613	0.06774	1,5
IV - Control	-0.12960	-0.05470	0.02019	
V Control	-0.16133	-0.09346	-0.02559 **	* 1
VI - Control	-0.27717	-0.19184	-0.10651 **	*

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 10:37 Tuesday, March 17, 1998

General Linear Models Procedure Class Level Information

	Class Le	vels	Valu	es		
	REP	2	A B			
٠.	TRT	7	Cont	rol I II	111 1	V V VI

Number of observations in data set = 200

Group	0bs	Depende	ent V	/ariab	les
1	171	MLNGTH			
2	184	FLNGTH	FDWT	7	
3	170	MDWT			

NOTE: Variables in each group are consistent with respect to the presence or absence of missing values.

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM
10:37 Tuesday, March 17, 1998

General Linear Models Procedure

ì	Dependent	Variable: MLN	IGTH				
	Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
	Model		13	11.756996	0.904384	7.28	0.0001

File:44457501.out Error	Page 13 157	19.504056	0.124230		
Corrected Total	170	31.261053			α,
	R-Square	c.v.	Root MSE	MLNO	TH Mean
	0.376091	4.685249	0.3525		7.5228
Source	DF	Type I SS	Mean Square	F Value	Pr > F
REP TRT REP*TRT	1 6 6	0.0241438 9.5367255 2.1961272	1.5894542		0.6599 0.0001 0.0094
Source	DF	Type III SS	Mean Square	F Value	Pr > F
REP TRT REP*TRT	1 6 6	0.0944327 9.1035023 2.1961272	1.5172504	12.21	0.3846 0.0001 0.0094
Tests of Hypothese	s using th	e Type III MS	for REP*TRT	as an error	term
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRT	-6	9.1035023	1.5172504	4.15	0.0537

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 10:37 Tuesday, March 17, 1998

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for REP*TRT as an Error term

MLNGTH LSMEAN	LSMEA! Number
.64705882	- 1
.60269231	ż
.80653846	3
.62452381	4
	5
.07111111	7
	LSMEAN .64705882 .60269231 .80653846 .62452381 .65528846 .18482143

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

		_				All the second
_i/j 1	0 0005	2 5	4	5	6	7
2 0 0000	0.8002	0.3782	0.8904	0.9639	0.0249	0.0286
2 0.8002		0.3005	0.9019		- 0.0480	0.0456
3 0.3782			0.3249	0.4476	0.0103	0.0131
4 0.8904	0.9019	0.3249		0.8673	0.0317	0.0342
5 0.9639	0.7871	0.4476	0.8673		0.0364	0.0358
6 0.0249	0.0480			0.0364		0.5935
7 0.0286	0.0456	0.0131	0.0342	0.0358	0.5935	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

File:44457501.out Page 14 Dunnett's One-tailed T tests for variable: MLNGTH

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 6 MSE= 0.366021 Critical Value of Dunnett's T= 2.974

Comparisons significant at the 0.05 level are indicated by *****.

TRT Comparison	Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneous Upper Confidence Limit	
II - Control	-0.3511	0.1440	0.6392	
IV - Control	-0.5125	-0.0040	0.5046	
III - Control	-0.4923	-0.0275	0.4374	
I - Control	-0.5816	-0.0864	0.4088	٠
V - Control	-0.9324	-0.4716	-0.0108 ***	,
VI - Control	-1.1739	-0.5945	-0.0151 ***	ď

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Dependent Variabl	e: FLNGTH				
Source	DF	Sum of Squares		F Value	Pr > F
Model	13	9.2038684	0.7079899	5.83	0.0001
Error	170	20.6456425	0.1214450		
Corrected Total	183	29.8495109			
	R-Square	c.v.	Root MSE	FLN	IGTH Mean
	0.308342	4.539616	0.3485		7.6766
Source	DF、	Type I SS	Mean Square	F Value	Pr > F
REP TRT REP*TRT	1 6 6	0.4260298 6.5425953 2.2352432	0.4260298 1.0904326 0.3725405	8.98	0.0628 0.0001 0.0071
Source	DF-	Type III SS	Mean Square	F Value	Pr > F
RÉP TRT REP*TRT	1 6 6	0.3955110 6.5736155 2.2352432	0.3955110 1.0956026 0.3725405		0.0729 0.0001 0.0071
Tests of Hypothese	s using th	e Type III MS	for REP*TRT	as an erro	r term
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRT ANALYSIS	USING TRT	*REP INTERACT	1.0956026 ION AS THE ERI 10:37 Tuesda	2.94 ROR TERM ay, March	0.1075 17, 1998

General Linear Models Procedure

Dependent Variable: FDWT

			1 22 . 1	Sum of	Mean	3.15	
Sour	ce	7.3	DF	Squares	Square	F Value	Pr > F

File:44457501.out Model	Page 15 13	4.7539954	0.3656920	9.44	0.0001
Error	170	6.5885350	0.0387561		
Corrected Total	183	11.3425304			
	R-Square	c.v.	Root MSE		FDWT Mean
	0.419130	16.16533	0.1969		1.2178
Source	DF	Type I SS	Mean Square	F Value	Pr > F
REP TRT REP*TRT	1 6 6	0.0028519 4.0014407 0.7497028		17.21	0.7865 0.0001 0.0050
Source	DF	Type III SS	Mean Square	F Value	Pr > F
REP TRT REP*TRT	1 6 6	0.0034393 4.0447713 0.7497028	0.0034393 0.6741286 0.1249505	17.39	0.7661 0.0001 0.0050
Tests of Hypothese	s using th	ne Type III MS	for REP*TRT	as an erro	or term
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRT	.6	4.0447713	0.6741286	5.40	0.0298

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 10:37 Tuesday, March 17, 1998

> General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for REP*TRT as an Error term

TRT	FLNGTH LSMEAN	LSMEAN Number
Control	7.57727273	. 1
I	7.72459893	2
11	7.96675824	3
111	7.74083333	4
IV	7.79423077	5
ν -	7.63461538	6
VI	7.30288462	7

Pr > |T| HO: LSMEAN(i)=LSMEAN(i)

- 1/	1	2	3	4	5	6	7
- 1		0.4339	0.0681	0.3881	0.2564	0.7567	0.1751
2	0.4339		0.1963	0.9258	0.6861	0.6118	0.0477
- 3	0.0681	0.1963		0.2241	0.3325	0.0950	0.0078
. 4	0.3881	0.9258	0.2241		0.7560	0.5511	0.0420
5	0.2564	0.6861	0.3325	0.7560		0.3714	0.0259
- 6	0.7567	0.6118	0.0950	0.5511	0.3714		0.1005
7	0.1751	0.0477	0.0078	0.0420	0.0259	0.1005	

Standard Errors and Probabilities calculated using the Type III MS for REP*TRI as an Error term

TRT	FDWT LSMEAN	LSMEAN Number
Control	1 10174747	•

```
File:44457501.out Page 16

I 1.24042781 2
II 1.38521978 3
III 1.30525000 4
IV 1.27783654 5
V 1.24846154 6
VI 0.87506410 7
```

	12.0	100			e. 1	**	
1/	j 1	2	3	4	5	6	7
1		0.6468	0.1049	0.3061	0.4212	0.5973	0.0222
~2 ·	0.6468		0.1842	0.5278	0.7075	0.9369	0.0099
3	0.1049	0.1842	•	0.4392	0.3006	0.2089	0.0020
4	0.3061	0.5278	0.4392		0.7828	0.5812	0.0047
5	0.4212	0.7075	0.3006	0.7828		0.7693	0.0059
6.	0.5973	0.9369	0.2089	0.5812	0.7693		0.0093
`7	0.0222	0.0099	0.0020	0.0047	0.0059	0.0093	

Pr > IT HO: LSMEAN(i)=LSMEAN(i)

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM
10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Dunnett's One-tailed T tests for variable: FLNGTH

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 6 MSE= 0.372541 Critical Value of Dunnett's T= 2.881

Comparisons significant at the 0.05 level are indicated by !***!

	TRT Comparison	Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneous Upper Confidence Limit
II	- Control	-0.1156	0.3894	0.8944
IV	- Control	-0.2744	0.2227	0.7199
iii	- Control	-0.3527	0.1524	0.6574
	- Control	-0.4068	0.0942	0.5951
VI	- Control	-0.4520	0.0573	0.5667
	- Control	-0.7913	-0.2773	0.2367

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM
10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Dunnett's One-tailed T tests for variable: FDWT

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 6 MSE= 0.12495 Critical Value of Dunnett's T= 2.881

Comparisons significant at the 0.05 level are indicated by !***!

	Simultaneous	Simultaneous
	Lower Difference	Upper
TRT	Confidence Between	Confidence
Comparison	Limit Means	Limit

File:44457501.out Page 17 Control -0.09829 H Control -0.19273 0.09975 IV Control -0.20445 0.08346 Control

Control

Control

V١

-0.23790

-0.25577

-0.61505

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 10:37 Tuesday, March 17, 1998

0.05710

0.03435

-0.31736

General Linear Models Procedure

Dependent Variab	le: MDWT				
Source	DF	Sum of Squares		F Value	Pr > F
Model	13	0.7391411	0.0568570	4.62	0.0001
Error	156	1.9203113	0.0123097		
Corrected Total	169	2.6594524			
	R-Square	c.v.	Root MSE		MDWT Mean
	0.277930	11.84683	0.1109		0.9365
Source	DF	Type I SS	Mean Square	F Value	Pr > F
REP TRT REP*TRT	1 6 6	0.0007793 0.5783281 0.1600337	0.0007793 0.0963880 0.0266723	0.06 7.83 2.17	0.8017 0.0001 0.0490
Source	DF	Type III SS	Mean Square	F Value	Pr > F
REP TRT REP*TRT	1 6 6	0.0091223 0.5327207 0.1600337	0.0091223 0.0887868 0.0266723	0.74 7.21 2.17	0.3906 0.0001 0.0490
Tests of Hypothes	es using th	e Type III MS	for REP*TRT a	as an erro	r term
Source	DF	Type III SS		F Value	Pr > F
TRT	6	0.5327207	0.0887868	3.33	0.0845

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 10:37 Tuesday, March 17, 1998

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for REP*TRT as an Error term

TRT	MDWT LSMEAN	LSMEAN Number
Control	0.97281513	1
11	0.97246154	3
IV	0.97626190 0.92812500	4 5
۷I	0.88401786 0.78244444	6

|File:44457501.out Page 18 Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

> 0.9940 0.9377 0.3790 0.0788 0.9975 0.9975 0.9968 0.9406 0.4133 0.1022 0.9940 0.9968 0.9366 0.4117 0.1001 0.0158 0.9377 0.9406 0.9366 0.3511 0.0735 0.0122 0.3790 0.4133 0.4117 0.3511 0.3873 0.0471 0.0788 0.1022 0.1001 0.0735 0.3873 0.1115 0.0127 0.0161 0.0158 0.0122 0.0471 0.1115

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 10:37 Tuesday, March 17, 1998

General Linear Models Procedure

Dunnett's One-tailed T tests for variable: MDWT

NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.

Alpha= 0.05 Confidence= 0.95 df= 6 MSE= 0.026672 Critical Value of Dunnett's T= 2.975

Comparisons significant at the 0.05 level are indicated by ****

TRT Comparison	Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneou Upper Confidence Limit	1
III - Control	-0.12373 -0.13420	0.00180 -0.00048	0.12734 0.13325	
I - Control IV - Control	-0.14159 -0.19203	-0.00613 -0.05470	0.12933 0.08263	
V - Control VI - Control	-0.21791 -0.34831	-0.09346 -0.19184	0.03099	***