COPY

Date Out of EFB: FEB 18 1982

To:

William Miller

Product Manager 16

Registration Division (TS-767)

Fram:

Dr. Willa Garner, Chief

Review Section No. 1

Environmental Fate Branch

Hazard Evaluation Division (TS-769)

Attached please find the environmental	fate review of:				
Reg./File No.: 239-1633		and the second seco			
Chemical: Naled					
Type Product: Insecticide					
Product Name: Dibrom					
Company Name: Chevron					
Submission Purpose: Review of Soil Metabolism Study					
ZBB Code: other	ACTION CODE: 400				
Date In:11/2/81	EFB # 46	-			
Date Completed: 2/14/82	TAIS (level II)	Days			
	60	3			

1.0 INTRODUCTION

On October 2, 1981, Chevron submitted for review the following soil metabolism study, to bring its Naled data base "up to current technical standards for reregistration."

2.0 STRUCTURE

Naled: 1,2-dibromo-2,2-dichloroethyl dimethyl phosphate (\star = site of $^{14}\text{C-radiolabel}$)

See Table 1 (appended to this review) for structures of possible degradates and metabolites identified by the registrant.

3.0 DIRECTIONS FOR USE

See previous reviews.

4.0 REVIEW OF:

Pack, D.E., B.V. Tucker and H.G. Franke. 1980. The Soil Metabolism of ¹⁴C-Naled (DIBROM). Research and Development, Ortho Agricultural Chemicals Division, Ortho Agricultural Chemicals Division, Chevron Chemical Company. November 25, 1980. (Confidential)

4.1 Experimental

[Ethyl-l- 14 C] naled was prepared with a specific activity of 2.67 mCi/mMole. Due to its known rapid rate of degradation, it was cleaned up by preparative TIC immediately prior to use. At that time, the radiopurity was estimated to have been >= 99%.

The soil used was an Oakley loamy sand. Characteristics are summarized in Table 2, appended to this review. Soil was stored in one-pint mason jars for about 2 months prior to fortification. If destined for the anaerobic portion of the study, the soil was flooded with distilled water, flushed with nitrogen, then stored sealed until needed.

Twenty-five gram aliquots of soil (dry weight basis) were brought to 80% of field moisture capacity. If destined for the anaerobic portion of the study, the soil was purged with nitrogen for 10 days prior to fortification. The soils were fortified with 12 ppm (dry weight basis) $^{14}\text{C-naled}$ (4.67E6 dpm) in 28 ul acetone. The anaerobic soils were continuously purged with N₂ during fortification.

The vapor trapping system used is outlined schematically in figure 2, appended to this review. The adsorbant was 10 ml of ethanol/ 2-methoxyethanol (2:3 v/v), which was changed every 2-3 days during the first 2 months, then approximately weekly thereafter. Collection of radio- CO_2 was terminated after about 1 year. During all phases of the experiment, the temperature was maintained at 25°C.

At various times, duplicate soil samples were taken for analysis. Extraction consisted of blending with methanol, centrifugation, decantation, and reextraction (for a total of 3 times). Quantification was by LSC. Counting efficiency was estimated by have been about 81%.

The extracted soils were further processed by acidification, aqueous extraction, and ISC quantification.

Aliquots of each extract were subjected to two-dimensional TLC for identification of degradates and metabolites. Mobile phases were chloroform/acetic acid $(4:1\ v/v)$ followed by chloroform/acetic acid $(1:1\ v/v)$. Spots were locate by autoradiography utilizing Kodak type SB-5 film. Spots were scraped off, and subjected to LSC quantification. An idealized TLC plate is shown in figure 11, appended to this review.

Some of the degradates/metabolites were further identified by GC/MS (Finnigan 4023/Incos data system)

4.2 Results and Discussion

The liberation of $^{14}\text{C-CO}_2$ as a function of time is shown graphically in Figure 4, appended to this review. Approximately half the applied naled was liberated as CO_2 within 3 days under aerobic conditions, and within 6 days under anaerobic conditions. After about one week, the rate of CO_2 liberation decreased drastically, with only minor quantities being liberated up to the end of the experiment (1 year). No non-CO₂ volatiles were detected.

With time the percentage of soil-unextractables increased. In the anaerobic experiment, this level was significantly higher than in the aerobic experiment.

The major metabolite was identified as dichloroacetic acid in both experiments.

4.3 Conclusions

Under the conditions of the experiment, naled degraded rapidly both aerobically and anaerobically, with the liberation of $\rm CO_2$. Half-degradation times were 3 and 6 days, respectively, with the major soil degradate being dichloroacetic acid. No other volatiles could be detected.

Naled, and its degradates quickly became tightly bound to the soil, and were mostly unextractable after the first few weeks. This would suggest extremely low potential for leaching, at least in this soil type.

5.0 CONCLUSIONS

The reporting of the soil residue data is confused, as is the material balance. However, the study did appear to have been done thoroughly and carefully. The reported half-degradation times should be valid.

6.0 RECOMMENDATION

 \sim ()/(.)

Emili Regelman

Chemist

EFB/HED (TS-769) February 14, 1982

CODE	STRUCTURE	CHEMICAL NAME	TLC A*	R _f 's B*
NA (Naled)	CH ₃ O Cl CH ₃ O O-CH-C-Cl Br Br	l, 2-Dibromo-2, 2-dichloro- ethyl dimethyl phosphate	0,89	0.90
DV (Dichloryos)	CH ₃ O O Cl CH ₃ O O-CH=C Cl	2, 2-Dichlorovinyl dimethyl phosphate	0.81	0.82
DeMe-Na	CH ₃ O O Cl HO O-CH-C-Cl Br Br	1, 2-Dibromo-2, 2-dichloro- ethyl dimethyl phosphoric acid	0.15	0.56
DeMe-Dv	CH ₃ O O Cl HO O-CH=C Cl	2,2-Dichlorovinyl methyl phosphoric acid	0.10	0,52
DCAA	с1 ₂ сн-соон	Dichloroacetic acid	0.22	0,51
DCA	с1 ₂ сн-сно	Dichloroacetaldehyde		
BDCA	BrCl ₂ C-CHO	Bromodichloroacetaldehyde	0.63	0.64
DCE	C1 ₂ CH-СН ₂ OH	2, 2-Dichloroethanol		
OxA	СООН СООН	Oxalic acid	0	0
GxA	СНО I СООН	Glyoxylic acid	0.07	0.20

TABLE 1 (cont.)

Codes, Structures, Chemical Names and TLC R_f 's of Compounds Used in this Study

CODE	STRUCTURE	CHEMICAL NAME	TLC	R _f 's B*
GcA	СН ₂ -ОН СООН	Glycolic acid	0.10	0.36
EG	СН ₂ -ОН СН ₂ -ОН	Ethylene glycol	0.16	0.44

* TLC Solvent systems

A - Chloroform - Acetic Acid (4:1 v/v)

B - Chloroform - Acetic Acid (1:1 v/v)

TABLE 2

SOIL PROPERTIES

ource Oakley, O	
Series	0akley
Classification	Sandy loam
% sand	85
% silt	6
% clay	9
% organic matter	1.4
pH	7.3
Water Holding Capacty (%)	2.4
Cation Exch. Cap. (meq/100 g)	7.5

FIGURE 2

14
CO2
Collection Apparatus

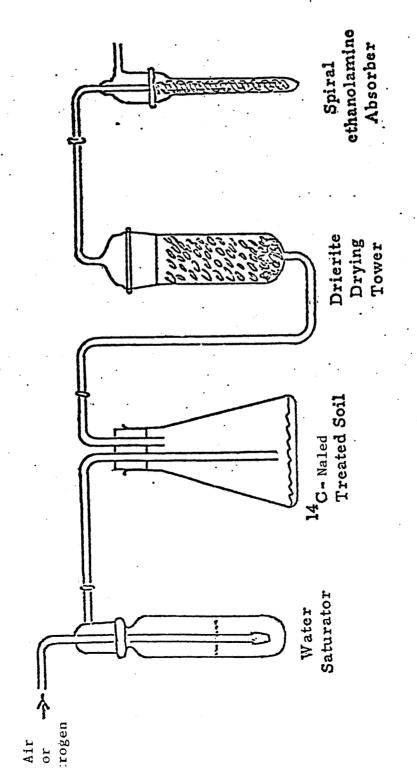


Figure 4

LIBERATION OF 14 CO 2

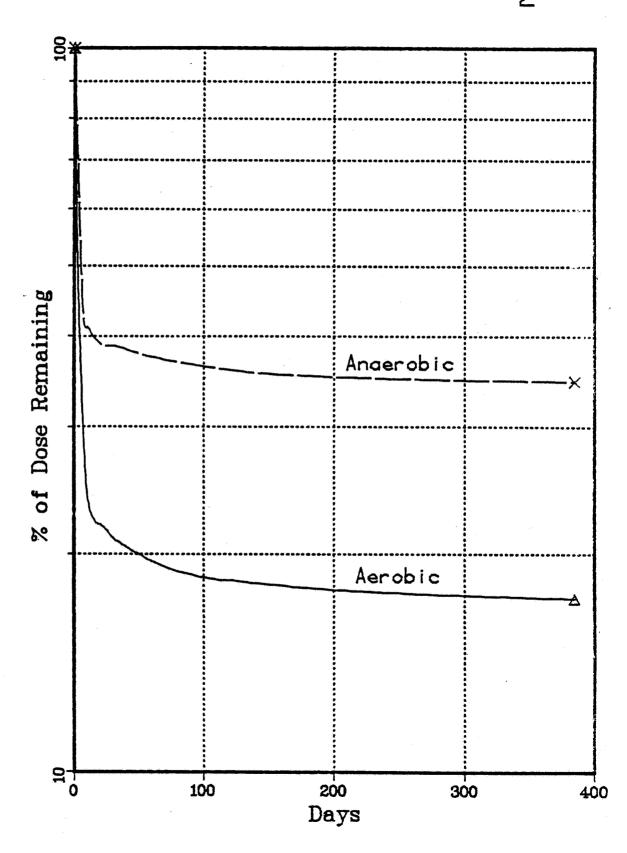
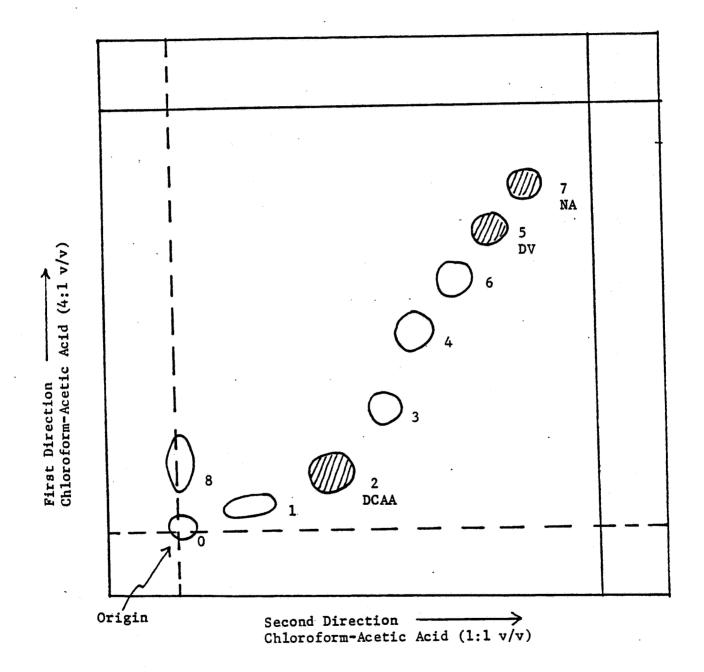



Figure 11

Idealized Composite Chromatogram

