UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

DATE: June 9, 2016

SUBJECT: Malathion: Human Health Draft Risk Assessment for Registration Review

PC Code: 057701 DP Barcode: D414107 Decision No.: 481955 Registration No.: NA

Petition No.: NA Regulatory Action: Registration Review

Risk Assessment Type: Single Chemical/Aggregate
TXR No.: NA
CAS No.: 121-75-5
MRID No.: NA
40 CFR: §180.111

FROM: Shalu Shelat, Environmental Health Scientist

Sheila Piper, Chemist Shele Rep

Mohsen Sahafeyan, Chemist Yung Yang, Ph.D., Toxicologist 476.

Risk Assessment Branch VI (RAB6) Health Effects Division (HED; 7509P)

THROUGH: Donna S. Davis, Branch Chief

RAB6/HED (7509P)

and

Thurston Morton, Risk Assessment Review Committee (RARC) Reviewer

William Irwin, RARC Reviewer

TO: Steven Snyderman, Chemical Review Manager

Avivah Jakob, Team Leader Kelly Sherman, Branch Chief

Risk Management and Implementation Branch 3 Pesticide Re-Evaluation Division (PRD) (7508P)

This document provides the HED's human health risk assessment for the Registration Review of malathion (*O*, *O*-dimethyl dithiophosphate of diethyl mercaptosuccinate). The hazard characterization and endpoint selection were provided by Yung Yang; the residue chemistry assessment was provided by Mohsen Sahafeyan; the dietary exposure assessments were provided by Sheila Piper; the occupational and residential exposure assessment and risk assessment were provided by Shalu Shelat; and the drinking water assessment was provided by Andrew Shelby of the Environmental Fate and Effects Division (EFED).

Table of Contents

1.0	Executive Summary	4
2.0	HED Recommendations.	8
2.1	Data Deficiencies	8
2.2	Tolerance Considerations	8
2.2.	1 Enforcement Analytical Method	8
2.2.	2 International Harmonization	9
2.2.	3 Recommended Tolerances	9
2.3	Label Recommendations	10
2.3.	1 Recommendations from Residue Reviews	10
2.3.	2 Recommendations from Occupational Assessment	11
2.3.	3 Recommendations from Residential Assessment	11
3.0	Introduction	11
3.1	Chemical Identity	11
3.2	Physical/Chemical Characteristics	12
3.3	Pesticide Use Pattern	
3.4	Anticipated Exposure Pathways	
3.5	Consideration of Environmental Justice	13
4.0	Hazard Characterization and Dose-Response Assessment	14
4.1	Toxicology Studies Available for Analysis	
4.2	Absorption, Distribution, Metabolism, & Excretion (ADME)	
4.2.	•	
4.3.	Toxicological Effects	16
4.3.	1 Critical Durations of Exposure	16
4.4	Literature Search and Review	17
4.4.	1 Literature Review on Neurodevelopment Effects	17
4.4.	2 Incident and Epidemiological Data Review	23
4.5	Safety Factor for Infants and Children (FQPA SF)	25
4.5.		
4.5.	=	
4.5.	3 Evidence of Sensitivity/Susceptibility in the Developing or Young Animal	25
4.5.		
4.6	Toxicity Endpoint and Point of Departure Selections.	
4.6.	1 Dose-Response Assessment	26
4.6.	2 Toxicity Adjustment Factor for Malaoxon	29
4.6.	3 Recommendation for Combining Routes of Exposures for Risk Assessment	30
4.6.		
4.6.	5 Summary of Points of Departure and Toxicity Endpoints Used in Human Risk	
Ass	essment	31
4.7	Endocrine Disruption	32
5.0	Dietary Exposure and Risk Assessment	33
5.1	Metabolite/Degradate Residue Profile	
5.1.	· · · · · · · · · · · · · · · · · · ·	
5.1.		
5.1.	,	
5.1.	<u>*</u>	
5.2	Food Residue Profile	

5.3 Water Residue Profile	35
5.4 Dietary Risk Assessment	36
5.4.1 Overview of Residue Data Used	36
5.4.2 Percent Crop Treated Used in Dietary Assessment	37
5.4.3 Acute Dietary Risk Assessment	
5.4.4 Steady-State Dietary Risk Assessment	
5.4.5 Cancer Dietary Risk Assessment	
5.4.6. Dietary Assessment Summary Tables	39
6.0 Residential (Non-Occupational) Exposure/Risk Characterization	40
6.1 Residential Handler Exposure	41
6.2 Post-Application Exposure	46
7.0 Non-Occupational Spray Drift Exposure and Risk Estimates	51
7.1 Combined Risk Estimates from Spray Drift	54
8.0 Residential Bystander Post-Application Inhalation Exposure	56
9.0 Aggregate Exposure/Risk Characterization	62
9.1 Acute Aggregate Risk	
9.2 Steady State Aggregate Risk	62
9.3 Cancer Aggregate Risk	62
10.0 Cumulative Exposure/Risk Characterization	62
11.0 Occupational Exposure/Risk Characterization	63
11.1 Short- and Intermediate-Term and Steady-State Handler Exposure/Risk I	Estimates . 63
11.2 Steady-State Post-Application Exposure/Risk Estimates	
11.2.1 Occupational Post-application Inhalation Exposure/Risk Estimates	
11.2.2 Occupational Post-application Dermal Exposure/Risk Estimates	71
Appendix A. International Residue Limits	77
Appendix B. Physiochemical Properties of Malathion and Malaoxon	
Appendix C: Malathion Use Summary Table	
Appendix D. Toxicology Data Requirements, Toxicity Profiles, and Summary of OF	
Cholinesterase Policy & Use of BMD Modeling	
Appendix E. Summary of Malathion Specific Dislodgeable Foliar Residue and Turf	f
Transferable Residue Data	106
Appendix F: Inputs for Malathion Mosquitocide Applications - 2012 Residential SC	
Algorithms; Use of Well Mixed Box Model; AgDISP (V8.2.6) Inputs	113
Appendix G: Non-Occupational (Bystander) Exposure and Risk Estimates for the S	pray Drift
Assessment	
Appendix H: Details of Malathion and Malaoxon Air Monitoring Studies	
Appendix I: Summary of Occupational Handler Risk Assessment for Malathion	
Appendix J: Summary of Occupational Post-application Risk Assessment for Malat	
Malaoxon	
Appendix K Registered Label Summary for Malathion	256

1.0 Executive Summary

Malathion is a non-systemic, wide spectrum organophosphorus (OP) insecticide. It is used in the agricultural production of a wide variety of food/feed crops to control insects such as aphids, leafhoppers, and Japanese beetles. Malathion is also used in the Cotton Boll Weevil Eradication Program, Fruit Fly (Medfly) Control Program, and for mosquito-borne disease control. It is also available to the home gardener for outdoor residential uses which include vegetable gardens, home orchards, and ornamentals. Malathion is formulated as a technical, a dust, an emulsifiable concentrate (EC), a ready-to-use (RTU) product, a pressurized liquid, and a wettable powder (WP). Several of the 95% liquids are intended for ultra-low-volume (ULV) applications. Malathion can be applied using ground or aerial equipment, thermal and non-thermal fogger, ground boom, airblast sprayer, chemigation, and a variety of hand-held equipment such as backpack sprayers, low pressure handwands, hose-end sprayers, and power dusters. Permanent tolerances have been established in 40 CFR §180.111 for the total residues of the insecticide malathion (*O*, *O*-dimethyl dithiophosphate of diethyl mercaptosuccinate) including its oxygen analog in/on various plants and livestock commodities.

Like other OPs, the initiating event in the adverse outcome pathway (AOP)/ mode of action (MOA), for malathion involves inhibition of the enzyme acetylcholinesterase (AChE) via phosphorylation of the serine residue at the active site of the enzyme. This inhibition leads to accumulation of acetylcholine and ultimately to neurotoxicity in the central and/or peripheral nervous system. Malathion requires metabolic activation to an oxon to inhibit AChE. OPs also exhibit a phenomenon known as steady-state AChE inhibition (AChEI). After repeated dosing at the same dose level, the degree of inhibition comes into equilibrium with the production of new, uninhibited enzyme. Therefore, steady-state exposure assessments (21 days and longer) were conducted instead of the typical chronic duration dietary assessment.

The toxicology database for malathion is complete for risk assessment. Malathion has high quality dose response data across multiple lifestages, durations, and routes for both red blood cell (RBC) and brain AChEI. RBC AChEI was more sensitive than brain AChEI in all species and there is no sex difference. Accordingly, RBC AChEI is the critical endpoint for oral and dermal risk assessments. However, for inhalation exposure, histopathological lesions of the nasal cavity and larynx were observed at a dose lower than the dose causing AChEI. Therefore, the point of departure (POD) based on histopathological lesions of portal-of-entry effects was selected for inhalation risk assessment. Clinical signs of neurotoxicity (such as, tremors, salivation, urogenital staining, and decreased motor activity) were seen throughout the database of experimental toxicity studies at doses higher (10-fold) than those causing AChEI.

Rat and rabbit developmental toxicity studies revealed no evidence of quantitative and/or qualitative susceptibility; developmental effects were seen in the presence of comparable maternal toxicity. In the rat reproduction study, decreased pup body weights were observed during lactation period in the F_{1a} and F_{2b} pups in the absence of maternal toxicity indicating quantitative susceptibility. In the developmental neurotoxicity study, several clinical signs and changes to brain morphometrics were noted in offspring in the presence of limited maternal toxicity (increased salivation), indicating qualitative susceptibility. Although AChE activity was not measured in the developmental and reproduction studies, the POD used for risk assessment, based on AChEI, are protective of the susceptibility seen in these studies. In the acute and repeated dose comparative cholinesterase assay (CCA) studies, fetal animals were not more

sensitive than pregnant animals to AChEI and pregnant animals were comparable to non-pregnant animals. The CCA studies demonstrate that PND 11 pups are more sensitive than adults to AChEI. For OPs, there is also uncertainty in the human dose-response relationship for neurodevelopmental effects.

Malathion is classified as "suggestive evidence of carcinogenicity but not sufficient to assess human carcinogenic potential" by all routes of exposure.

Malathion exhibits low toxicity in acute lethality studies via the oral, dermal, or inhalation route (Toxicity Category III or IV). It exhibits only slight eye and dermal irritation and is not a dermal sensitizer. There is no convincing evidence for potential interaction with the estrogen, androgen or thyroid pathway.

Malathion is metabolized to its oxon (malaoxon) in both insects and mammals and in the environment through photo-oxidation. The oxon is the active AChE inhibiting metabolite of malathion and is more potent than the parent. In order to account for the increased toxicity from exposure to malaoxon, a toxicity adjustment factor (TAF) was calculated from CCA studies to be 22X, which means that malaoxon is estimated to be 22 times more toxic than malathion. This TAF was applied to residues of malaoxon for risk assessment of all exposure durations, routes, and scenarios.

For oral and dermal exposure scenarios, the PODs are based on the most sensitive effect, RBC AChEI. However, for inhalation exposure scenario, the POD is based on portal of entry effects, which were observed at a dose lower than the dose causing AChEI. For oral and dermal exposures, an uncertainty factor (UF) of 1000X (10X for interspecies extrapolation, 10X for intraspecies variation and 10X for FQPA SF) is applied to population subgroups that include infants, children, youth and women of childbearing age; the FQPA SF of 10X is retained to account for uncertainty in knowing whether neurodevelopmental effects occur at doses lower than OP effects. An UF of 100X is applied to the population subgroup of adults 50-99 years old for which the FQPA SF is not retained. For inhalation exposure, a total UF of 3000X (3X for interspecies extrapolation, 10X for intraspecies variation, 10X for FQPA SF, and 10X for LOAEL to NOAEL extrapolation uncertainty factor was reduced from 10X to 3X due to the human equivalent concentration (HEC) calculation accounting for pharmacokinetic (not pharmacodynamic) interspecies differences, and an additional 10X was applied for LOAEL to NOAEL extrapolation.

The existing residue chemistry database for malathion is adequate for risk assessment purposes. The residues of concern for both tolerance expression and risk assessment include malathion and malaoxon. The acute and steady state dietary exposure assessment incorporated the latest USDA Pesticide Data Program (PDP) monitoring data for malathion and its metabolite (malaoxon), field trial data (when monitoring data were unavailable), empirical and default DEEM processing factors, percent crop treated (PCT) estimates and a TAF of 22X for the oxon was applied to food and drinking water. Malathion has also been used in public health mosquito control, and an adulticide use was included in the dietary exposure assessment. While the registrant has petitioned for tolerances based on the adulticide use for those crops without registered agricultural uses, these tolerances have not been formally established.

The Environmental Fate and Effects Division (EFED) provided daily time series outputs of malathion in drinking water for six different application scenarios. The WA cherry maximum aerial scenario results in the highest estimated drinking water concentration. Malathion dietary exposure for food alone is 27% of the acute population adjusted dose (aPAD) for the U.S. population, and children 1-2 years old, the most highly exposed population subgroup, is 74% of the aPAD at the 99.9th percentile. Combined dietary exposure from food and drinking water is 240% of the aPAD for the U.S. population and 690% of the aPAD for all infants (<1 year old), the highest exposed population subgroup.

The food only steady state exposure and estimated risk values are below HED's level of concern; the U.S. population is 24% of the steady state population adjusted dose (ssPAD) and 48% of the ssPAD for children 1-2 years old, the most highly exposed population subgroup. Combined dietary exposure from food and drinking water is 170% of the ssPAD for the U.S. population and 470% of the ssPAD all infants (<1 year old), the most highly exposed population subgroup. Further characterization and refinement of drinking water exposure is being considered while taking into account types and magnitudes of exceedances demonstrated in the dietary assessment. These additional characterizations and refinements may include use of typical rates, application timing with respect to individual run-off events, spatial distribution of usage footprint, and sensitivity to scenario curve number.

The existing exposure database for malathion is adequate for risk assessment purposes. Residential adult handler dermal and inhalation exposure and risk estimates were calculated for the registered uses of malathion. In general, dermal risk estimates ranged from 17 to 3100 (LOC = 1,000) and inhalation risk estimates ranged from 48 to 2,000,000 (LOC = 3,000). The residential handler inhalation exposure and risk estimates indicate that MOEs are not of concern to HED (i.e., $MOE \ge 3000$) for most scenarios with the exception of the following scenarios: manually-pressurized handwand application to outdoor perimeter areas of households (MOE = 1,900); hose-end sprayer application to standing water/mosquito areas (MOE = 1,500), backpack application for outdoor building perimeter and mosquitos (MOE = 250 and 720), and for mosquito control misting/fogger applications (MOEs = 240 and 48). Dermal exposure and risk estimates, however, are of concern (i.e., MOEs < 1000) for most scenarios.

Residential post-application dermal exposure and risk estimates were assessed for all residential uses for malathion as well as for the pick—your-own scenario. Additionally, residential post-application dermal and inhalation exposure was assessed for exposures following public health mosquitocide/adulticide applications with malathion. All dermal exposure and risk estimates for adults and children (1 to <2 years old and 6 to <11 years old) were of concern to HED (MOEs <1000) for the aerial mosquitocide applications, residential garden uses, and pick-your-own scenarios ranging from MOEs of 55 to 340. Inhalation exposure from the aerial mosquitocide applications were also of concern to HED (MOE of 700, LOC = 3000) for adults and children. The dermal, incidental oral, and inhalation post-application exposures and risk estimates from the ground-based mosquitocide ULV applications were not of concern to HED (dermal MOEs \ge 1000 and inhalation MOEs \ge 3000).

A quantitative non-occupational spray drift assessment was conducted for the registered uses of malathion. The assessment considers both malathion residues and residues of the major metabolite, malaoxon. Adult dermal and children's (1 to < 2 year old) dermal and incidental oral risk estimates from indirect exposure related to spray drift result in MOEs < 1000 at the edge of

the field for many scenarios and a range of buffers depending on the spray drift scenario (e.g., no buffers to buffers >300 feet). Results indicate that the major spray drift risk concern is from aerial applications, however, groundboom and airblast scenarios also result in risks of concern for many of the registered application rates.

Volatilization of pesticides may be a source of post-application inhalation exposure to individuals nearby pesticide applications. The Agency has developed a Volatilization Screening Tool and a subsequent Volatilization Screening Analysis to be conducted during Registration Review. Because malathion and malaoxon have also been detected in multiple ambient air studies, the Agency has developed a preliminary bystander volatilization exposure assessment. Based on the currently available inhalation toxicity and air monitoring data, the analysis resulted in no risks of concern (MOEs \geq 3,000) with the exception of one application based monitoring study for which the residential bystander MOEs = 1,000.

The acute aggregate risk assessment combines exposures to malathion and malaoxon from food and drinking water only. There are acute aggregate risk estimates of concern. The steady state aggregate assessment includes the steady state dietary (food and water) and residential exposures. There are steady state aggregate risks of concern. However, because there are risks of concern associated with dietary and residential exposure individually, a quantitative steady state aggregate risk assessment was not conducted.

Occupational handler dermal and inhalation exposure and risk estimates were calculated for the registered uses of malathion. The occupational handler exposure and risk estimates indicate that the steady-state dermal and short-/intermediate-term inhalation MOEs are of concern to HED (i.e., $MOE \leq 1000$ and 3000) for many scenarios, assuming the use of label-required clothing and personal protective equipment (PPE). In general, MOEs for mixing/loading for all application types and applying via handheld and airblast equipment, resulted in MOEs of concern at most application rates.

Occupational post-application dermal exposure and risk estimates were assessed for all registered uses of malathion using submitted chemical-specific dislodgeable foliar residue (DFR) data. The post-application assessment considers both malathion residues and residues of the major metabolite, malaoxon. Current product-label REIs range from 12 to 24 hours depending on the crop. These REIs are in line with the 40 CFR 156.208 (c) (2) assignments for active ingredients that are classified as Toxicity Category III and IV for acute dermal, eye irritation, and primary skin irritation. However, based on the current exposure assessment, post-application risk estimates remain of concern in some situations up to 9 days with one scenario as high as 13 days after application (i.e., dermal MOEs < 1000).

Based on the Agency's current practices, a quantitative non-cancer occupational post-application inhalation exposure assessment was not performed for malathion at this time. If new policies or procedures are put into place, the Agency may revisit the need for a quantitative occupational post-application inhalation exposure assessment for malathion.

This risk assessment relies in part on data from studies in which adult human subjects were intentionally exposed to a pesticide or other chemical. These data, which include studies from Pesticide Handler Exposure Database (PHED) 1.1, Outdoor Residential Exposure Task Force (ORETF), the Agricultural Handlers Exposure Task Force (AHETF) database, and the

Agricultural Reentry Task Force (ARTF) database are (1) subject to ethics review pursuant to 40 CFR 26, (2) have received that review, and (3) are compliant with applicable ethics requirements. For certain studies, the ethics review may have included review by the Human Studies Review Board. Descriptions of data sources, as well as guidance on their use, can be found at the Agency website¹.

2.0 HED Recommendations

2.1 Data Deficiencies

None.

2.2 Tolerance Considerations

2.2.1 Enforcement Analytical Method

Plant Commodities: Malathion is adequately recovered using a GLC method with flame photometric detection (FPD) operating in the phosphorus mode for enforcement purposes. Method-1866 determines residues of malathion and malaoxon in/on plant commodities and has a limit of quantitation (LOQ) of 0.05 ppm for each compound. The method has undergone a successful independent laboratory validation, and acceptable radiovalidation data have also been submitted and evaluated. Samples of raw agricultural and processed commodities from recent field trials and processing studies were analyzed by Method-1866 or its modifications.

Presently, the Pesticide Analytical Manual (PAM) Volume II lists a TLC method, a GLC method with KCl thermionic detection, and a spectrophotometric method as Methods I, II, and III, respectively, for the enforcement of malathion tolerances (expressed as malathion *per se*) in/on plant commodities.

Livestock commodities: No analytical enforcement method for residues in livestock tissues is required as residues of malathion in livestock commodities represent a Category 3 situation under 40 CFR §180.6(a), i.e., there is no reasonable expectation of malathion residues being transferred from treated feed items to livestock commodities. The current tolerances on livestock commodities should be removed.

Page 8 of 258

¹ http://www.epa.gov/pesticides/science/handler-exposure-data.html and http://www.epa.gov/pesticides/science/post-app-exposure-data.html

Multiresidue Methods: The reregistration requirements for multiresidue method testing for residues of malathion and malaoxon are satisfied. The 2/97 FDA PESTDATA database (PAM Volume I, Appendix I) indicates that malathion is completely recovered (>80%) using multiresidue methods PAM Volume I Sections 302 (Luke method; Protocol D), 303 (Mills, Onley, and Gaither method; Protocol E), and 304 (Mills method for fatty food). Malaoxon is completely recovered (>80%) using multiresidue method PAM Volume I Sections 302 (Luke method; Protocol D) but is not recovered using method Sections 303 (Mills, Onley, and Gaither method; Protocol E), and 304 (Mills method for fatty food). I) indicates that malathion is completely recovered (>80%) using multiresidue methods PAM Volume I Sections 302 (Luke method; Protocol D), 303 (Mills, Onley, and Gaither method; Protocol E), and 304 (Mills method for fatty food). Malaoxon is completely recovered (>80%) using multiresidue method PAM Volume I Sections 302 (Luke method; Protocol D) but is not recovered using method Sections 303 (Mills, Onley, and Gaither method; Protocol E), and 304 (Mills method for fatty food). I) indicates that malathion is completely recovered (>80%) using multiresidue methods PAM Volume I Sections 302 (Luke method; Protocol D), 303 (Mills, Onley, and Gaither method; Protocol E), and 304 (Mills method for fatty food). Malaoxon is completely recovered (>80%) using multiresidue method PAM Volume I Sections 302 (Luke method; Protocol D) but is not recovered using method Sections 303 (Mills, Onley, and Gaither method; Protocol E), and 304 (Mills method for fatty food).

2.2.2 International Harmonization

The Codex Alimentarius Commission has established several maximum residue limits (MRLs) for residues of malathion in/on various raw agricultural and processed commodities. The Codex MRLs are expressed in terms of malathion *per se*. The Codex MRLs and the U.S. tolerances will be incompatible when the U.S. tolerance expression for plant commodities is revised to include both residues of malathion and the metabolite, malaoxon. For a list of US tolerances and international residue levels see Appendix A.

2.2.3 Recommended Tolerances

The RED document (1999 and revised one in May 2009) cited some data deficiencies on preand post-harvest wheat, sorghum (forage and hay only) and cotton gin-byproduct, and Data Call Ins (DCIs) were issued. In response to those deficiencies, the registrant, Cheminova, submitted relevant studies. Those studies were reviewed after the 2009 RED was issued and satisfied the DCIs. As a result of those reviews, HED re-evaluated the current tolerances for some of the registered raw agricultural commodities (RACs) and recommended for amendment of existing tolerances or new tolerances on some feed items; for the purpose of registration review, those tolerances are shown in Table 2.2.3 below. HED notes that the tolerances listed in Table 2.2.3 below, are subject to safety findings in order to be established. In addition, the need for these, and whether these tolerances can be issued, will be reevaluated once the Organophosphate Cumulative Risk Assessment is revised. The recommended tolerances on feed items in Table 2.2.3 do not impact the tolerance status for livestock tissues.

Table 2.2.3. Tolerance Summary for Malathion							
Commodity	Established/Proposed	Recommended	Comments				
Commounty	Tolerance (ppm)	Tolerance (ppm)	Correct Commodity Definition				
Barley, hay ¹		30					
Cotton, gin byproduct		2000					
Page 9 of 258							

Table 2.2.3. Tolerance Summary for Malathion							
Commodity	Established/Proposed Tolerance (ppm)	Recommended Tolerance (ppm)	Comments Correct Commodity Definition				
Oat, hay ¹	(FF)	30					
Sorghum, forage	8	40					
Sorghum, stover		40					
Wheat, hay ²		30					
Wheat, grain	8	15					
Aspirated grain fractions ³		2700					

¹Barley and oat hay tolerances are translated from wheat hay as mentioned in 2009 RED.

Furthermore, in the post 2009 RED, the Agency was petitioned for tolerances on all unregistered crops to cover residues from malathion public health (mosquito adulticide) uses as there is a need to cover some rural areas for mosquito control. HED considered this request and recommended a tolerance of 1.0 ppm on all unregistered crops from malathion mosquito adulticide uses (M. Sahafeyan, D420237, 06/07/2016). At such time as the Agency is able to make a safety finding, this tolerance should appear under 40 CFR, §180.111 (a) as:

A tolerance of 1.0 ppm is established for residues of the insecticide malathion, including its metabolites and degradates, in or on all raw agricultural commodities, except those otherwise listed in this section, from use of the pesticide for area pest (mosquito and fly) control. Compliance with the tolerance levels specified is to be determined by measuring only the sum of malathion (*O*,*O*-dimethyl dithiophosphate of diethyl mercaptosuccinate) and its metabolite, malaoxon (O,O-dimethyl thiophosphate of diethyl mercaptosuccinate), calculated as the stoichiometric equivalent of malathion, in or on the commodity.

The tolerance expression for malathion [40 CFR §180.111] has also been reviewed and should be updated as follows based on HED's Interim Guidance on Tolerance Expressions (S. Knizner, 27-MAY-2009).

Tolerances are established for residues of the insecticide, malathion including its metabolites and degradates, in or on the following food commodities. Compliance with the tolerance levels specified below is to be determined by measuring only the sum of malathion (*O*, *O*-dimethyl dithiophosphate of diethyl mercaptosuccinate) and its metabolite, malaoxon (O,O-dimethyl thiophosphate of diethyl mercaptosuccinate), calculated as the stoichiometric equivalent of malathion, in or on the following commodities.

2.3 Label Recommendations

2.3.1 Recommendations from Residue Reviews

HED further recommends that the following language be included on any malathion labels that have adulticide (public health) use:

²Recommended tolerance is for wheat hay resulting from either a SU formulation in ULV applications using aerial equipment with total rate not exceeding 2.25 lb ai/A (in 3 applications) and PHI of not less than 6 days or from an EC formulation using ground equipment with total rate not exceeding 4.39 lb ai/A (in 3 applications) and PHI of not less than 6 days.

³ The recommended tolerance of 2700 ppm for aspirate grain fractions (AGF) is based on combined maximum residues of malathion and malaoxon (2691 ppm) in post-harvest wheat treatment (Piper, S., DP#292680, 3/12/09).

Use in agricultural areas must be in a manner as to ensure that residues do not exceed the established federal tolerance for the active ingredient in or on raw agricultural commodities resulting from use for wide area pest control.

2.3.2 Recommendations from Occupational Assessment

Exposure and risk estimates of concern have been identified for occupational handlers. Additionally, post-application exposure and risk estimates have shown that current REIs may not be adequate for many post-application activities.

2.3.3 Recommendations from Residential Assessment

Exposure and risk estimates of concern have been identified for both residential handlers and post-application scenarios. Some of the registered malathion product labels with residential use sites (e.g., home ornamental and vegetable gardens as well as spot and perimeter outdoor uses for insect and mosquito control) require that handlers wear specific clothing (e.g., long sleeve shirt/long pants) and/or use personal protective equipment (PPE). Therefore, HED has made the assumption that these products are not for homeowner use, and has not conducted a quantitative residential handler assessment. The labels that were identified by the registrant to be homeowner uses but were reviewed to show PPE are as follows: EPA Reg Nos 45385-43; 47000-107; 28293-123; 33955-394; 4-412; 10088-56.

3.0 Introduction

3.1 Chemical Identity

TABLE 3.1. Malathion and Mala	oxon Nomenclature.			
Compound	Chemical Structure O P S O O P S O O O O O O O O O O O O			
Common name	O—————————————————————————————————————			
IUPAC name	Diethyl (dimethoxythiophosphorylthio)succinate			
CAS name	O,O-dimethyl phosphorodithioate of diethyl mercaptosuccinate			
CAS#	121-75-5			
End-use product/(EP)	Technical (91-95% ai), dust (1-10% ai), emulsifiable concentrate (3-82% ai), ready-to-use (1.5-95% ai), pressurized liquid (0.5-3% ai), and wettable powder (6-50% ai)			

TABLE 3.1. Malathion and Mala	Malathion and Malaoxon Nomenclature.				
Common name	Malaoxon				
IUPAC name	2-(dimethoxyphosphorylthio)butanedioic acid diethyl ester				
CAS name	O,O-dimethyl thiophosphate of diethyl mercaptosuccinate				
CAS#	1634-78-2				
End-use product/(EP)	Not Registered				

3.2 Physical/Chemical Characteristics

Malathion is a colorless (pure form) to deep brown to yellow liquid with a mercaptan odor and a boiling point of 156-157°C. Malathion is soluble in water and readily soluble in most alcohols, esters, and is only slightly soluble in aliphatic hydrocarbons. It has a log octanol-water partition coefficient of 2.36. Malathion residues, in general, are soluble and do not adsorb strongly to soils. It has a vapor pressure of 4.0 x 10-5 mm Hg. A table of physical/chemical properties for malathion can be found in Appendix B.

3.3 Pesticide Use Pattern

Malathion is a non-systemic, wide spectrum OP insecticide. It is used in the agricultural production of a wide variety of food/feed crops to control insects such as aphids, leafhoppers, and Japanese beetles. Malathion is also used in the cotton boll weevil and mormon cricket eradication programs and as a general wide-area treatment for mosquito-borne disease control (adulticide). It is also available to the home gardener for outdoor residential uses which include vegetable gardens, home orchards, various ornamentals and lawns as well as outdoor mosquito and insect control. The Agency has been informed by the basic producer (Cheminova A/S letters dated March 10, 1998 and March 18, 2002) that certain formulations and use sites will not be supported for reregistration and these uses are cancelled.

Malathion is formulated as a technical (91-95% ai), a dust (1-10% ai), an emulsifiable concentrate (3-82% ai), a ready-to-use (1.5-95% ai), a pressurized liquid (0.5-3% ai), and a wettable powder (6-50% ai). Several of the 95% liquids are intended for ULV applications. Malathion can be applied using ground or aerial equipment, thermal and non-thermal fogger, ground boom, airblast sprayer, chemigation, and a variety of hand-held equipment such as backpack sprayers, low pressure handwands, hose-end sprayers, and power dusters. For most use sites/crops, the maximum application rates range from 0.18 lb ai/A to 10 lbs ai/A with the exception of cull pile applications which are registered for 299 lbs ai/A.

Most of the malathion registered labels require single layer of clothing in addition to some PPE. Occupational handlers are required to wear a single layer of clothing (long-sleeved shirt and long pants), shoes plus socks, protective eyewear (either goggles or face shield), chemical-resistant apron, chemical-resistant headgear, and chemical-resistant gloves. Only one label (EPA Reg No.

1015-69), requires the use of coveralls and a NIOSH approved respirator with any N, R, P, or HE filter. This end-use product is the only registered dust formulation for malathion. Depending on the crop, the registered labels for malathion recommend a range of restricted entry intervals (REIs) from 12 hours to 24 hours.

A full description of the use pattern for malathion is provided in Appendix C.

3.4 Anticipated Exposure Pathways

Humans may be exposed to malathion, and its metabolite malaoxon, in food and drinking water, since malathion may be applied directly to growing crops and application may result in malathion reaching sources of drinking water. There are also residential uses of malathion; therefore, there is the potential for short-term inhalation and steady state non-occupational exposure (dermal and incidental oral) to malathion and malaoxon as a result of registered uses. There is also the potential for non-occupational bystander dermal and incidental oral exposures as a result of spray drift. Due to the potential for environmental transformation of malathion to malaoxon, the handler scenarios consider exposure to the parent, malathion only, and post-application scenarios consider exposure to the parent and the malaoxon metabolite.

Based on the registered use pattern for malathion, short- and intermediate-term inhalation and steady state dermal exposures are anticipated for occupational handlers and post-application workers.

3.5 Consideration of Environmental Justice

Potential areas of environmental justice concerns, to the extent possible, were considered in this human health risk assessment, in accordance with U.S. Executive Order 12898, "Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations," (http://www.eh.doe.gov/oepa/guidance/justice/eo12898.pdf). As a part of every pesticide risk assessment, OPP considers a large variety of consumer subgroups according to well-established procedures. In line with OPP policy, HED estimates risks to population subgroups from pesticide exposures that are based on patterns of that subgroup's food and water consumption, and activities in and around the home that involve pesticide use in a residential setting. Extensive data on food consumption patterns are compiled from the U.S. Department of Agriculture's National Health and Nutrition Examination Survey, What We Eat in America, (NHANES/WWEIA) and are used in pesticide risk assessments for all registered food uses of a pesticide. These data are analyzed and categorized by subgroups based on age, season of the year, ethnic group, and region of the country. Additionally, OPP is able to assess dietary exposure to smaller, specialized subgroups and exposure assessments are performed when conditions or circumstances warrant. Whenever appropriate, non-dietary exposures based on home use of pesticide products and associated risks for adult applicators and for toddlers, youths, and adults entering or playing on treated areas post-application are evaluated. Further considerations are currently in development as OPP has committed resources and expertise to the development of specialized software and models that consider exposure to bystanders and farm workers as well as lifestyle and traditional dietary patterns among specific subgroups.

4.0 Hazard Characterization and Dose-Response Assessment

Malathion is a member of the OP class of pesticides. Like other OPs, the initiating event in the adverse outcome pathway (AOP)/ mode of action (MOA) for malathion involves inhibition of the enzyme AChE via phosphorylation of the serine residue at the active site of the enzyme. This inhibition leads to accumulation of acetylcholine and ultimately to neurotoxicity in the central and/or peripheral nervous system (see Figure 1). Malathion must be metabolized (activated) to the oxon metabolite (malaoxon), which is the active AChE inhibiting moiety. For malathion and malaoxon, AChE inhibition (AChEI) is a sensitive endpoint in the toxicology database in multiple species, durations, lifestages, and routes. AChEI is the focus of this hazard characterization; the availability of reliable AChE inhibition dose response data is one of the key determinants in evaluating the toxicology database.

Figure 1. Adverse outcome pathway for OPs

In 2006, HED conducted an extensive human health risk assessment for malathion to support the Reregistration Eligibility Decision (RED) (D330680, S. Piper, 7/31/2006). In 2009, additional data from a CCA study was incorporated into the risk assessment for malathion for continued post-harvest use on rice (D361372, S. Piper, 12/10/2009). Under the current registration review, the hazard assessment is being updated based on new data received and new policies implemented post-RED. This assessment is based on the same endpoints selected in the RED since the decision logic for compartment/age group/duration is the same; however, it reflects slight changes in the values of the points of departure (POD) due to updated BMD-code (Bench Mark Dose Software 2.4 and primarily exponential modeling) (D420970, Bever and Holman, 7/1/2014). The dermal toxicity study was reassessed using a benchmark response (BMR) of 10%, instead of 20% as done previously in the RED, since the Agency no longer uses a BMR greater than 10% if peripheral AChE data (e.g., heart, lung, skeletal muscle, etc.) are not available. Since no peripheral AChE data exist for malathion, the 10% BMR will be used for registration review. Based on CCA studies with malathion and malaoxon (the oxygen degradate of malathion), with updated BMD-code modeling, the revised acute and steady state TAFs are calculated to be 22X (previously, it was 61X in the 2006 RED), which means that malaoxon is estimated to be 22 times more toxic than malathion. This TAF was applied to residues of malaoxon for risk assessment of all exposure durations, routes, and scenarios.

4.1 Toxicology Studies Available for Analysis

The toxicology database on malathion is complete for risk assessment. Toxicology data requirements and the toxicological profile are presented in Appendix D. There are acceptable studies available for toxicity endpoint selection. They include the following:

o Chronic oral toxicity studies in rats and dogs

- o Carcinogenicity studies in rats and mice
- o Developmental studies in rats and rabbits
- Reproduction study in rats
- o Acute and subchronic neurotoxicity studies in rats
- o Developmental neurotoxicity (DNT) study in rats
- o Acute and repeated dose CCA studies in juvenile and adult rats
- o Repeated, gestational AChE study in pregnant rat and fetuses
- o Delayed neurotoxicity study in hens
- o Subchronic dermal toxicity in rabbits
- o Repeated dosing inhalation studies in rats
- o Immunotoxicity study in mice
- o Complete mutagenicity study battery
- Metabolism studies in rats

The malaoxon studies available for risk assessment include:

- o Acute and repeated dose CCA studies in juvenile rats
- o Carcinogenicity studies in rats and mice
- o Complete mutagenicity study battery

4.2 Absorption, Distribution, Metabolism, & Excretion (ADME)

Malathion, like some other OPs, requires metabolic activation to its oxon metabolite (malaoxon) to inhibit AChE, with subsequent metabolism that leads to detoxification. Generally, absorption and distribution are rapid with extensive metabolism and no accumulation in the tissues.

Both malathion and malaoxon are detoxified by carboxyesterases leading to polar, water-soluble, compounds that are excreted. Mammalian systems show greater carboxyesterase activity, as compared with insects, so that the toxic agent malaoxon builds up more in insects than in mammals. This accounts for the increased toxicity of malathion in insects. Also, since detoxification enzymes are less developed at birth, pups have less capacity to detoxify which leads to a higher internal dose of parent/oxon for AChEI suggesting young animals may be more susceptible compared to adult animals.

In a rat metabolism study, malathion is excreted in the urine (80-90%) in the first 24 hours of exposure. Unchanged malathion was typically found to be the major residue in rats. Dicarboxylic acid and monocarboxylic acid metabolites account for the majority of the radioactivity. In the rat study, radioactivity did not bioaccumulate in any of the organ/tissues analyzed. A rat metabolism study is not available for malaoxon.

4.2.1 Dermal Absorption

Dermal absorption data are not available for malathion. Previously, a dermal absorption factor of 10% was estimated by comparison of the NOAELs and LOAELs in the oral developmental toxicity study and the 21-day dermal toxicity study in the same species (rabbits). However, a route specific dermal study was used to assess dermal exposure; therefore, a dermal absorption factor it is not needed for risk assessment.

4.3. Toxicological Effects

Malathion is an OP with a neurotoxic AOP; neurotoxicity is the most sensitive effect in all species, routes and lifestages, after oral and dermal exposure and is being used in deriving points of departure. Malathion has quality dose response data across multiple lifestages, durations, and routes for both RBC and brain AChE inhibition. Many of these studies have been evaluated using benchmark dose (BMD) modeling techniques. Based on the available data, RBC AChEI is substantially more sensitive than brain AChEI for all lifestages evaluated (adults, juveniles, pregnant dams, and fetuses) after oral and dermal exposure, and there is no sex difference regarding AChEI. However, endpoints from portal of entry effects (histopathological lesions of the nasal cavity and larynx) are shown to be more sensitive than AChEI after inhalation exposure.

Clinical signs of neurotoxicity (such as, tremors, salivation, urogenital staining, and decreased motor activity) can be found throughout the database of experimental toxicity studies at doses higher (10-fold) than those causing AChEI.

Rat and rabbit developmental toxicity studies revealed no evidence of quantitative and/or qualitative susceptibility. No maternal or developmental toxicity was observed in the rat developmental toxicity study up to the highest dose tested. In the rabbit developmental study, increased incidences of mean resorption sites were observed that can be attributed to fetal or maternal toxicity. Quantitative susceptibility was seen in the rat reproduction study where decreased pup body weights were observed during lactation period in the F_{1a} and F_{2b} pups in the absence of maternal toxicity (including reproductive toxicity). In the developmental neurotoxicity study there was evidence of qualitative susceptibility. Clinical signs (whole body tremors, hypoactivity, prostrate posture, partially closed eyelids) and brain morphometrics (increased thickness of the corpus callosum in PND 63-67 males and females) were seen in offspring animals in the presence of limited maternal effects (post dosing salivation). Although AChE activity was not measured in the developmental and reproduction studies, the PODs used for risk assessment, based on AChEI, are protective of the susceptibility seen in the studies. In the acute and repeat dose CCA studies, fetal animals were not more sensitive than pregnant animals to AChEI and pregnant animals were comparable to non-pregnant animals. However, young animals (PND 11) were more susceptible to RBC AChEI compared to adult animals. For OPs, there is also uncertainty in the human dose-response relationship for neurodevelopmental effects (see Section 4.4.1).

Malathion is classified as "suggestive evidence of carcinogenicity but not sufficient to assess human carcinogenic potential" by all routes of exposure (see Section 4.6.4).

Malathion exhibits low toxicity in acute lethality studies via the oral, dermal, or inhalation route (Toxicity Category III or IV). It exhibits only slight eye and dermal irritation and is not a dermal sensitizer. There is no convincing evidence for potential interaction with the estrogen, androgen or thyroid pathway.

4.3.1 Critical Durations of Exposure

One of the key elements in risk assessment is the appropriate integration of temporality between the exposure and hazard assessments. One advantage of an AOP understanding is that human

Page 16 of 258

health risk assessments can be refined, focused on the most relevant durations of exposure. The following text provides an analysis of the temporal pattern of AChEI from acute, single dosing and repeated dosing studies in laboratory animals for malathion. This analysis provides the basis for determining which exposure durations are appropriate for assessing human health risk. Table 4.3.1.1 provides a summary of the lifestage sensitivity from high quality, well-designed CCA studies (acute and repeat phases) with malathion. Malathion has extensive AChEI data; for purposes of trend evaluation only selected data are shown below.

Table 4.3.1.1 – Malathion BMD ₁₀ Results (mg/kg/day) for RBC AChE Inhibition Over Time in Male and Female Rats						
Days of dosing	Malathion Study/MRID	Sex/Lifestage	Compartment	BMD R BMD ₁₀ (mg/kg/day)	Results BMDL ₁₀ (mg/kg/day)	
		Single Dose	Studies			
Single dose (Adult)	MRID 45566201 CCA Study - Single dose	Adult Females /males	RBC	No BMD model obt NOAEL of RBC AC and LOAEL is 450	ChEI is 150 mg/kg	
	•	Multiple Dose	s Studies			
11 days of exposure	MRID 45566201 CCA Study	Adult Males	RBC	27.9	24.7	
11 days of exposure	-Repeat Doses	Adult (Non-pregnant,	RBC	24.0	21.0	
15 days of ann assuma		females)	DDC	21.0	17.1	
15 days of exposure (GD 6-20)		Adult (pregnant females)	RBC	21.8	17.1	

OPs exhibit a phenomenon known as steady state AChEI. After repeated dosing at the same dose, the degree of inhibition comes into equilibrium with the production of new, uninhibited enzyme. At this point, the amount of AChEI at a given dose remains consistent across duration. In general, OPs reach steady state within 2-3 weeks but this can vary among OPs. For malathion, the results in Table 4.3.1.1 show a clear pattern of steady state reached by 11-15 days of exposure. As such, the endpoint selection for malathion focuses on acute (single day) effects, and steady state effects (21 days and longer).

Although the durations of the toxicity and exposure assessments may differ among the OPs, an exact match is not necessary and would suggest a level of precision that the toxicity data do not support. Given this, the 21-day and longer exposure assessment is scientifically supportable and also provides consistency with the OP cumulative risk assessment (OP Cumulative Risk Assessment (CRA; 2002, 2006) and across the single chemical risk assessment for the OPs. As such, the single chemical OP assessment will evaluate steady state (a 21-day assessment) instead of the typical chronic duration dietary assessment. The steady state point of departure is protective of any exposure duration longer than 21-days, including chronic exposure, since cholinesterase inhibition does not increase after reaching maximum inhibition or steady state.

4.4 Literature Search and Review

4.4.1 Literature Review on Neurodevelopment Effects

For the OPs, historically the Agency has used inhibition of AChE as the POD for human health risk assessment; at present time, this policy continues. This science policy is based on decades of work which shows that AChE inhibition is the initial event in the pathway to acute cholinergic

neurotoxicity. The use of AChE inhibition data for deriving PODs was supported by the FIFRA SAP (2008, 2012) for chlorpyrifos as the most robust source of dose-response data for extrapolating risk and is the source of data for PODs for malathion. A detailed review of the epidemiological studies used in this review can be found either in the 2014 chlorpyrifos revised draft human health risk assessment (D424485, D. Drew et al., 12/29/2014) or in the 2015 literature review for other organophosphates (OPP/USEPA; D331251; 9/15/15).

Newer lines of research on OPs in the areas of potential AOPs, in vivo animal studies, and notably epidemiological studies in mothers and children, have raised some uncertainty about the agency's risk assessment approach with regard to the potential for neurodevelopmental effects in fetuses and children. Many of these studies have been the subject of review by the agency over the last several years as part of efforts to develop a risk assessment for chlorpyrifos (D424485, D. Drew et al., 12/29/2014). Initially, the agency focused on studies from three US cohorts: 1) The Mothers and Newborn Study of North Manhattan and South Bronx performed by the Columbia Children's Center for Environmental Health (CCCEH) at Columbia University; 2) the Mt. Sinai Inner-City Toxicants, Child Growth and Development Study or the "Mt. Sinai Child Growth and Development Study;" and 3) the Center for Health Assessment of Mothers and Children of Salinas Valley (CHAMACOS) conducted by researchers at University of California Berkeley. The agency has evaluated these studies and sought external peer review (FIFRA SAP reviews in 2008 and 2012; federal panel, 2013²) and concludes they are of high quality. In the three US epidemiology cohort studies, mother-infant pairs were recruited for the purpose of studying the potential health effects of environmental exposures during pregnancy on subsequent child development. Each of these cohorts evaluated the association between prenatal chlorpyrifos and/or OP exposure (with adverse neurodevelopmental outcomes in children through age 7 years. For the 2014 chlorpyrifos revised human health risk assessment (D424485, D. Drew et al., 12/29/2014), EPA included epidemiologic research results from these three US prospective birth cohort studies but primarily focused on the results of CCCEH since this cohort has published studies on the association between cord blood levels of chlorpyrifos and neurodevelopmental outcomes. The agency retained the FQPA 10X Safety Factor (SF) in the 2014 chlorpyrifos revised risk assessment, in large part, based on the findings of these studies.

In the 2015 updated literature review (OPP/USEPA; D331251; 9/15/15), the agency conducted a systematic review expanding the scope of the 2012/2014 review focused on US cohort studies with particular emphasis on chlorpyrifos. The expanded 2015 review includes consideration of the epidemiological data on any OP pesticide, study designs beyond prospective cohort studies, and non-U.S. based studies. The updated literature review identified seven studies which were relevant (Bouchard et al., 2010; Fortenberry et al., 2014; Furlong et al., 2014; Guodong et al., 2012; Oulhote and Bouchard, 2013; Zhang et al., 2014; Shelton et al., 2014). These seven studies have been evaluated in context with studies from the 2012/2014 review (D424485, D. Drew et al., 12/29/2014). Only a brief summary is provided below.

The OP exposure being assessed in many of these studies used concentrations of urinary dialkyl phosphate metabolites (DAPs) as the urinary biomarker. Total DAPs is a non-specific measure of OP exposure and is the sum of six separate molecules - three dimethyl alkylphosphate (DMAP) molecules of DMP, DMTP, DMDTP, and three diethyl alkylphosphate (DEAP)

² http://www.regulations.gov/#!documentDetail:D=EPA-HO-OPP-2008-0850-0170

molecules of DEP, DETP, and DEDTP. Each metabolite is a breakdown product from multiple OPs (Table 4.4.-1; CDC, 2008)³. Specifically, DMP, DMTP, and DMDTP are associated with 18, 13, and 5 OPs, whereas DEP, DETP, and DEDTP are associated with 10, 10, and 4 OPs, respectively. Thus, using urinary DAPs alone as an exposure measure, it is not possible to separate the exposure and associated effects for single, specific OPs.

Pesticide	DMP	DMTP	DMDTP	DEP	DETP	DEDTP
Azinphos methyl	X	X	X			
Chlorethoxyphos				X	X	
Chlorpyrifos				X	X	
Chlorpyrifos methyl	X	X				
Coumaphos				X	X	
Dichlorvos (DDVP)	X					
Diazinon				X	X	
Dicrotophos	X					
Dimethoate	X	X	X			
Disulfoton				X	X	X
Ethion				X	X	X
Fenitrothion	X	X				
Fenthion	X	X				
Isazaphos-methyl	X	X				
Malathion	X	X	X			
Methidathion	X	X	X			
Methyl parathion	X	X				
Naled	X					
Oxydemeton-methyl	X	X				
Parathion				X	X	
Phorate				X	X	X
Phosmet	X	X	X			
Pirimiphos-methyl	X	X				
Sulfotepp				X	X	
Temephos	X	X				
Terbufos				X	X	X
Tetrachlorviphos	X					
Trichlorfon	X					_

DMP = dimethylphosphate; DEP = diethylphosphate; DMTP = dimethylthiophosphate; DMDTP = dimethyldithiophosphate; DETP = diethylthiophosphate; DEDTP = diethyldithiophosphate.

For studies which measured urinary 3,5,6-trichloro-2-pyridinol (TCPy) (e.g., Fortenberry et al., 2014; Eskenazi et al., 2007; Whyatt et al., 2009), this metabolite can be derived from chlorpyrifos, chlorpyrifos-methyl, and the herbicide triclopyr. TCPy is also the primary environmental degradate of chlorpyrifos, chlorpyrifos-methyl, and triclopyr; thus exposure can be found directly on food treated with these pesticides. CCCEH studies have largely used chlorpyrifos measured in cord blood as the specific biomarker (e.g., Lovasi et al., 2010; Whyatt

³ http://www.cdc.gov/nchs/data/nhanes/nhanes 03 04/126opd c met organophosphorus pesticides.pdf Page 19 of 258

et al., 2004; Rauh et al., 2011). The CHARGE study (Shelton et al., 2015) did not measure biomarkers but instead used geospatial analysis to focus on the residential proximity to OP exposure using data from the California Department of Pesticide Regulation, with five OPs accounting for a total of 73% of the pesticide applied near residential settings (chlorpyrifos, acephate, diazinon, bensulide, and dimethoate).

Similarly, DAPs can be found directly on food following OP applications (Zhang et al., 2008; Chen et al., 2012). Specifically, studies have shown that DAPs may form as environmental degradates from abiotic hydrolysis, photolysis, and plant metabolism (Zhang et al., 2008; Chen et al., 2012; Racke et al., 1994). Furthermore, since these DAPs are excreted more rapidly and extensively than the parent OPs (Zhang et al., 2008; Forsberg et al., 2008), direct exposure to DAPs may lead to an overestimate of OP exposure when using urinary DAPs as a biomarker of OP exposure. The agency recognizes that this is a source of uncertainty when using DAPs for assessing OP exposure and will continue to monitor this issue in future assessments.

With respect to neurological effects near birth, the CHAMACOS and Mt. Sinai cohorts measured neurological effects at birth, and observed a putative association with total DEAP, total DMAP, and total DAP exposure (Engel et al., 2007; Young et al., 2005). Similarly, a Chinese study (Zhang et al., 2014) reported statistically significant associations between for total DEAPs, total DMAPs, and total DAPs from prenatal OP pesticide exposure and neonatal neurodevelopment assessed 3 days after birth. However, another cross-sectional Chinese study, Guodong et al. (2012), observed no association with urinary DAPs and a developmental quotient score for 23-25 month old children.

In addition, there has been a limited evaluation of the association between malathion carboxylic acid (MDA, a malathion metabolite) exposure and neurological effects at or near birth in the CHAMACOS and Mt. Sinai cohorts. Specifically, there was no association observed between MDA exposure above the limit of detection and neurological effects at birth in the CHAMACOS cohort (Eskenazi et al, 2007), whereas MDA exposure above the limit of detection was associated with an elevated risk of abnormal neonatal reflexes in the Mt. Sinai cohort (Engel et al, 2007).

The 3 US cohorts (CCCEH, Mt. Sinai, CHAMACOS) each reported evidence of impaired mental and psychomotor development, albeit not consistent by age at time of testing (ranging from 6 month to 36 months across the three cohorts). Attentional problems and ADHD were reported by three prospective cohorts [Rauh et al., 2006; Eskenazi et al., 2007; Marks et al., 2010; and Fortenberry et al. (2014)] investigators with additional support from a case control study, Bouchard et al. (2010). The exposure metric varied among these studies. Specifically, Fortenberry et al. (2014) found suggestive evidence of an association with TCPy and ADHD in boys, whereas statistically significant associations were observed by Rauh et al. (2006) with chlorpyrifos exposure and ADHD. Eskenazi et al. (2007) reported associations with total DMAPs and total DAPs and ADHD; Marks et al. (2010) reported associations with total DEAP, DMAP, and total DAP exposure and ADHD. In a national cross-sectional study of Canadian children, using 2007-2009 data for children age 6-11 years (Oulhote and Bouchard, 2013), there were no overall statistically significant associations observed between child urinary DEAP, DMAP, or total DAP metabolite levels and parentally reported behavioral problems. In contrast, Bouchard et al. (2010), looking at U.S. children age 8-15 years in the 2000-2004 National Health and Nutrition Examination Survey (NHANES), observed a positive association between

attention and behavior problems and total DAPs and DMAPs, but not DEAPs. As part of their analysis, Oulhote and Bouchard (2013) noted that their outcome assessment for behavioral problems may not have been as sensitive as Bouchard et al. (2010), which may in part account for the difference in the observed results from these studies.

In addition, the three US cohorts and the CHARGE study have reported suggestive or positive associations between OP exposure and autism spectrum disorders (Rauh et al., 2006; Shelton et al., 2014; Eskenazi et al., 2007; Furlong et al., 2014). Specifically, Furlong et al. (2014) documented suggestive evidence of an association between total DEAP exposure and reciprocal social responsiveness among blacks and boys. Eskenazi et al. (2007) reported a statistically significant association between pervasive developmental disorder (PDD) and total DAP exposure, whereas Eskenazi et al. (2010) reported non-significant, but suggestive, increased odds of PDD of 2.0 (0.8 to 5.1; p=0.14). Rauh et al. (2006) documented a significant association between PDD and specifically chlorpyrifos exposure. Both PDD and reciprocal social responsiveness are related to the autism spectrum disorder. Using a different exposure assessment method (geospatial analysis and residential proximity to total OP exposure), Shelton et al. (2014) also showed statistically significant associations between total OP exposure and ASD. While these studies vary in the magnitude of the overall strength of association, they have consistently observed a positive association between OP exposure and ASD. Finally, CCCEH, Mt. Sinai, CHAMACOS have reported an inverse relation between the respective prenatal measures of chlorpyrifos and intelligence measures at age 7 years (Rauh et al., 2011; Engel et al., 2011; Bouchard et al., 2011).

Across the epidemiology database of studies, the maternal urine, cord blood, and other (meconium) measures provide evidence that exposure did occur to the fetus during gestation but the actual level of such exposure during the critical window(s) of susceptibility is not known. While significant uncertainties remain about the actual exposure levels experienced by mothers and infant participants in the children's health cohorts, it is unlikely that these exposures resulted in AChE inhibition. As part of the CHAMACOS study, Eskenazi et al. (2004) measured AChE activity and showed that no differences in AChE activity were observed. The biomarker data (chlorpyrifos) from the Columbia University studies are supported by the agency's dose reconstruction analysis using the PBPK-PD model (D424485, D. Drew et al., 12/29/2014). Following the recommendation of the FIFRA SAP (2012), the agency conducted a dose reconstruction analysis of residential uses available prior to 2000 for pregnant women and young children inside the home. The PBPK-PD model results indicate for the highest exposure considered (i.e., indoor broadcast use of a 1% chlorpyrifos formulation) <1% RBC AChE inhibition was produced in pregnant women. While uncertainty exists as to actual OP exposure at (unknown) critical windows of exposure, EPA believes it is unlikely individuals in the epidemiology studies experienced RBC AChE inhibition.

A review of the scientific literature on potential modes of action/adverse outcome pathways (MOA/AOP)⁴ leading to effects on the developing brain was conducted for the 2012 FIFRA SAP meeting (USEPA, 2012) and updated for the December 2014 chlorpyrifos revised risk assessment (D424485, D. Drew et al., 12/29/2014). In short, multiple biologically plausible hypotheses and pathways are being pursued by researchers that include targets other than AChE

⁴ Mode of action (MOA) and adverse outcome pathways (AOPs) describe a set of measureable key events that make up the biological processes leading to an adverse outcome and the causal linkages between such events.

inhibition, including cholinergic and non-cholinergic systems, signaling pathways, proteins, and others. However, no one pathway has sufficient data to be considered more credible than the others. The fact that there are, however, sparse AOP data to support the *in vitro* to *in vivo* extrapolation, or the extrapolation from biological perturbation to adverse consequence significantly limits their quantitative use in risk assessment. The SAP concurred with the agency in 2008 and 2012 about the lack of definable key events in a MOA/AOP leading to developmental neurobehavioral effects. However, since the 2014 literature review, there are no substantive changes in the ability to define and quantitate steps in an MOA/AOP leading from exposure to effects on the developing brain. Published and submitted guideline DNT laboratory animal studies have been reviewed for OPs as part of the 2012/2014 review (D424485, D. Drew et al., 12/29/2014) and the updated 2015 review (OPP/USEPA; D331251; 9/15/15). Neurobehavioral alterations in laboratory animals were often reported, albeit at AChE inhibiting doses, but there was generally a lack of consistency in terms of pattern, timing, or dose-response for these effects, and a number of studies were of lower quality. However, this information does provide evidence of long-lasting neurodevelopmental disorders in rats and mice following gestational exposure.

At this time, a MOA(s)/AOP(s) has/have not been established for neurodevelopmental outcomes. This growing body of literature does demonstrate, however, that OPs are biologically active on a number of processes that affect the developing brain. Moreover, there is a large body of in vivo laboratory studies which show long-term behavioral effects from early life exposure, albeit at doses which cause AChE inhibition. EPA considers the results of the toxicological studies relevant to the human population, as qualitatively supported by the results of epidemiology studies. The agency acknowledges the lack of established MOA/AOP pathway and uncertainties associated with the lack of ability to make strong causal linkages and unknown window(s) of susceptibility. These uncertainties do not undermine or reduce the confidence in the findings of the epidemiology studies. The epidemiology studies reviewed in the 2012/2014 and 2015 literature reviews represent different investigators, locations, points in time, exposure assessment procedures, and outcome measurements. Despite all these differences in study design, with the exception of two negative studies in the 2015 literature review (Guodong et al., 2012; Oulhote and Bouchard, 2013), authors have identified associations with neurodevelopmental outcomes associated with OP exposure across four cohorts and twelve study citations. Specifically, there is evidence of delays in mental development in infants (24-36 months), attention problems and autism spectrum disorder in early childhood, and intelligence decrements in school age children who were exposed to OPs during gestation. Investigators reported strong measures of statistical association across several of these evaluations (odds ratios 2-4 fold increased in some instances), and observed evidence of exposures-response trends in some instances, e.g., intelligence measures.

As section 408(b)(2)(C) of the FFDCA instructs EPA, in making its "reasonable certainty of no harm" finding, that in "the case of threshold effects, an additional tenfold margin of safety for the pesticide chemical residue and other sources of exposure shall be applied for infants and children to take into account potential pre- and postnatal toxicity and completeness of data with respect to exposure and toxicity to infants and children." Section 408 (b)(2)(C) further states that "the Administrator may use a different margin of safety for the pesticide chemical residue only if, on the basis of reliable data, such margin will be safe for infants and children." Given the totality of the evidence, there is sufficient uncertainty in the human dose-response relationship for neurodevelopmental effects which prevents the agency from reducing or removing the statutory

10X FQPA Safety Factor. For the malathion draft risk assessment, a value of 10X FQPA SF has been retained. Similarly, a database uncertainty factor of 10X will be applied for occupational risk assessments. The agency will continue to evaluate the epidemiology studies and pursue approaches for quantitative or semi-quantitative comparisons between doses which elicit AChE inhibition and those which are associated with neurodevelopmental outcomes prior to a revised human health risk assessment.

4.4.2 Incident and Epidemiological Data Review

Malathion Tier II Incident Report, D423155, 9/30/14, S. Recore, et al. Addendum to Tier II Incident Report dated 09/30/14, D426077, 6/10/2016, C. Williams, et al.

HED's review of the available acute pesticide poisoning event reporting and surveillance systems indicate acute exposure to malathion results in predictable and documented organophosphate acute effects. These include neurological, gastrointestinal and respiratory effects, primarily. HED did not identify any aberrant effects outside of those anticipated and documented as a result of general OP toxicity. Acute adverse health effects due to OP/malathion exposure are generally mild to moderate and are reversible with primary medical intervention. Exposure scenarios observed in the acute event reporting databases are the same identified in the risk assessment, and do not indicate higher than average potential for human error, misuse or accidental exposure. The time period of HED's review of acute pesticide poisoning events reported to various reporting and surveillance systems overlaps the period of cancellation of indoor residential uses and significant modifications to the label including removal of certain agricultural crops (2008). While it is not possible to discern whether a specific event is the result of a currently available or cancelled product or use site, in general the reduction in poisoning events over time is likely due to the product cancellations or use site restrictions that took place at the time of the malathion RED.

Medical case reports indicate that although malathion is considered one of the least toxic organophosphate pesticides, exposure to malathion at sufficiently high doses from accidental or intentional misuse can cause severe acute cholinergic crisis, Intermediate syndrome, Organophosphate Induced Delayed Neuropathy and a Parkinson's-like syndrome. These health effects have been documented in the past, and are not outside the scope of what is expected upon high acute exposure to a neurotoxic, cholinesterase-inhibiting pesticide.

Malathion is currently classified as having "suggestive evidence of carcinogenicity" based upon animal cancer bioassays although data are insufficient to (quantitatively) assess the carcinogenic potential of the chemical. The epidemiology database concerning malathion is relatively large with a variety of health outcomes evaluated. The size of the total database likely reflects the high prevalence of use of this OP insecticide, as well as the long duration of use in agriculture as well as the residential environment (malathion was first registered for use in the U.S. several decades ago). In the majority of these studies, authors conclude there is no evidence of an association with malathion use, specifically. However, EPA does note a few areas of suggestive associations in which malathion may play a role in the health outcome. These data should be further investigated by researchers and will be followed by EPA as additional data are published. At the time of this writing, the review of the available epidemiologic evidence considered independently is not sufficient to support a conclusion that additional hazard identification and exposure-response modeling in needed within the risk assessment.

There are over two dozen studies of the potential carcinogenic effect of malathion exposure in the human population. Overall, the data do not provide compelling evidence that malathion plays a role in the development of these cancers; however this review highlighted several malathion-chronic disease associations that EPA will continue to follow. Specifically, this involves the literature concerning the preliminary, suggestive association with not total prostate cancer, but rather the aggressive form of the disease; replication in a study population external to the AHS is warranted. In investigations of malathion exposure and various sub-types of lymphohematopoietic cancers, authors either did not report significant, positive associations with malathion use (Hodgkin lymphoma, soft tissue sarcoma), or could not fully exclude the role of chance or bias in the interpretation of the modest positive associations observed (leukemia, multiple myeloma), or the results across studies were inconsistent in nature (NHL). Prospective studies of the association between chronic pesticide exposure and lymphohematopoietic cancer are needed to overcome the limitations of population based case-control studies, including recall bias and exposure misclassification.

In a series of studies of adverse respiratory health effects studied primarily within the AHS, the role of malathion remains difficult to discern. These studies were hypothesis-generating in nature, making multiple statistical comparisons in relation to each respiratory health effect. There is some evidence of a positive statistical association between malathion use and wheeze, asthma and chronic bronchitis; however, each of these studies were hypothesis-generating in nature in which authors performed multiple statistical comparisons primarily using a cross-sectional design. We note that there is inconsistent evidence of a role—protective, adverse, or otherwise --for pre-existing atopy (allergy, eczema) in the relation between chemical exposure and wheeze. Therefore, the role for malathion exposure in adverse respiratory health outcomes remains a challenge to discern, and additional studies will be evaluated as they become available.

Similarly, there are several studies of the potential role of malathion exposure and adverse birth outcomes or developmental effects within this database. Studies of in utero malathion exposure (maternal urinary concentration of MDA) and birth outcomes (e.g., birth weight and length) (2 studies), adverse neurodevelopmental effects (2 studies), and birth defects (3 studies) did not observe evidence of a positive statistical association. In a prospective cohort study (Mt. Sinai birth cohort study), authors reported a significant association with the number of abnormal reflexes in the exposed neonate; however there is only one study of this particular association. EPA will continue to monitor the three major US environmental public health birth cohort studies as well as other data sources for additional information concerning malathion exposure specifically as these data become available.

Studies of malathion exposure in association with myocardial infarction; hyper- and hypothyroid disease; retinal degeneration; Parkinson's disease; neurological functioning in adults; and male reproductive effect (semen parameters) are negative (no statistical evidence of an association with malathion specifically). EPA notes most of these studies were hypothesisgenerating in nature, multiple statistical tests were performed, and authors proffered few a priori hypotheses. In a study of insulin resistance and diabetes, authors reported a significant relation with malathion; however the complex relationships between co-factors in the association and the quality of statistical adjustment within the study requires additional research before a role for malathion can be elucidated.

The malathion cancer epidemiology studies are mostly null or demonstrate statistically non-significant findings. For those studies in which results were suggestive, malathion was not hypothesized as a risk factor for disease (they were hypothesis- generating in nature) and many studies were performed within only a few study populations (such as the AHS or the pooled Midwest case-control study series). The recent preliminary finding with not total prostate cancer but only the aggressive from of the disease lacks a biological understanding at this time. EPA will continue to monitor this literature as it develops.

4.5 Safety Factor for Infants and Children (FQPA SF)

As noted above, the lack of an established MOA/AOP makes quantitative use of the epidemiology studies in risk assessment challenging, particularly with respect to determining dose-response, critical duration of exposure, and window(s) of susceptibility. Furthermore, exposure levels in the range measured in the epidemiology studies are likely low enough that they are unlikely to result in AChE inhibition. Epidemiology studies consistently identified associations with neurodevelopmental outcomes associated with prenatal OP exposure such as delays in mental development in infants (24-36 months), attention problems and autism spectrum disorder in early childhood, and intelligence decrements in school age children. Therefore, there is a need to protect infants, children, youths, and women of childbearing age from exposures that may cause these effects; this need prevents the Agency from reducing or removing the statutory FQPA Safety Factor. Thus, the FQPA 10X Safety Factor will be retained for malathion for the population subgroups that include infants, children, youth, and women of childbearing age for all exposure scenarios.⁵

4.5.1 Completeness of the Toxicology Database

The existing toxicological database is complete and adequate for risk assessment. Available malathion studies for FQPA evaluation include developmental studies in the rat and rabbit, reproductive toxicity studies, CCA studies (acute, repeated dose, gestational), and neurotoxicity studies (acute, subchronic, and developmental). In addition, CCA studies (acute and repeated dose) for malaoxon in juvenile rats are also available.

4.5.2 Evidence of Neurotoxicity

Malathion is an OP with a neurotoxic MOA/AOP; neurotoxicity (AChEI) is the most sensitive effect in all species, routes, and lifestages after oral and dermal exposure; oral and dermal risk assessments are based on AChEI. For inhalation exposure, portal-of-entry (histopathological lesions of the nasal cavity and larynx) effects are observed at a dose lower than the dose causing AChEI and are used for risk assessment and are considered protective of neurotoxicity by the inhalation route.

4.5.3 Evidence of Sensitivity/Susceptibility in the Developing or Young Animal

As described in Section 4.3, there is evidence that following acute or repeated dosing to malathion, young animals (PND 11) are more sensitive than adult animals to RBC AChEI.

⁵ HED's standard toxicological, exposure, and risk assessment approaches are consistent with the requirements of EPA's children's environmental health policy (https://www.epa.gov/children/epas-policy-evaluating-risk-children).

Therefore, data from pups, the most sensitive lifestage, were used to determine the appropriate POD for risk assessments for acute and steady state dietary and incidental oral exposure scenarios. The risk assessments are also protective of the increased susceptibility observed in the rat reproduction and developmental neurotoxicity studies.

In addition, as discussed in Section 4.4.1, there is uncertainty in the human dose-response relationship for neurodevelopmental effects and this warrants retention of the FQPA Safety Factor for the population subgroups that include infants, children, youth, and women of childbearing age for all exposure scenarios.

4.5.4 Residual Uncertainty in the Exposure Database

There are no residual uncertainties in the exposure database. The mostly refined dietary risk assessment uses food residue levels from monitoring data and from empirical studies and model-estimated drinking water concentrations from maximum application rates. Residential exposure assessments use data from surrogate and chemical-specific sources. The exposure assumptions will not underestimate risks.

4.6 Toxicity Endpoint and Point of Departure Selections

4.6.1 Dose-Response Assessment

Table 4.6.5.1 summarizes the toxicity endpoints and PODs selected from the malathion database. This endpoint selection was based on a weight-of-the evidence (WOE) evaluation using the following considerations:

- Relative sensitivity of the brain and RBC compartments: For malathion and malaoxon, across most studies, durations, lifestages, and routes, the RBC compartment tends to be more sensitive. As such OPP has emphasized the use of RBC data in POD derivation for malathion.
- Potentially susceptible populations (fetuses, juveniles, pregnancy): The available AChE data across multiple lifestages (adults, pregnant adults, fetus, juveniles) shows that that PND 11 pups are more sensitive than adults to RBC AChEI. Fetuses are not more sensitive than pregnant animals and pregnant dams have a similar sensitivity to non-pregnant female adults. Additionally, there is no sex difference on RBC AChEI.
- Route of exposure: It is preferred to match, to the degree possible, the route of exposure in the toxicity study with that of the exposure scenario(s) of interest. In the case of malathion, there are oral, dermal, and inhalation studies which contain high quality dose response AChE data.
- Duration of exposure: It is preferred to match, to the degree possible, the duration of toxicity study with that of the exposure duration of interest. In the case of malathion, there are single day and repeated dosing oral studies, but only repeated dosing dermal and inhalation studies are available. In addition, there are single day and repeated dosing oral studies with malaoxon.
- Consistency across studies: In cases where multiple datasets are available for a single duration, it is important to evaluate the extent to which data are consistent (or not) across studies. The malathion database is consistent across studies which allows for PODs to be derived from multiple critical studies thereby increasing the confidence in such values.

Acute Dietary

Multiple CCA studies provided the best dataset for this exposure scenario since the dose and endpoint selections were based on pups, the most sensitive lifestage. The malathion database is consistent across studies which allows for PODs to be derived from multiple critical studies and, therefore, increasing the confidence in the values. As shown in the Appendix D3. Table C.1, the BMDL₁₀ values from acute and repeated dosing in juvenile rat pups range from 10 to 14 mg/kg/day. A POD of 10 mg/kg/day was selected for acute dietary (all populations) exposure scenarios which are lower than any PODs for adult oral exposure. An uncertainty factor (UF) of 1000X (10X for interspecies extrapolation, 10X for intraspecies variation and 10X for FQPA SF due to uncertainty in the human dose-response relationship for neurodevelopmental effects (see Section 4.4.1)) is applied to the POD to obtain an acute population adjusted dose (aPAD) of 0.01 mg/kg (aRfD=0.1 mg/kg) for exposure scenarios with infants, children, youth, and women of childbearing age. The only population subgroup for which the FQPA SF is not retained is adults 50-99 years old; therefore, the aPAD for this population subgroup is 0.1 mg/kg/day (aRfD=0.1 mg/kg).

Steady-State Dietary

Similar to acute dietary, multiple CCA studies provided the best dataset for this exposure scenario. Since similar BMDL₁₀ values were obtained following acute or repeated exposures in juvenile rat pups with results ranged from 10 to 14 mg/kg/day. A POD of 10 mg/kg/day was selected for steady-state dietary (all populations) exposure scenarios and was considered appropriate since the dose and endpoint selections were based on pups, the most sensitive lifestage. An uncertainty factor (UF) of 1000X (10X for interspecies extrapolation, 10X for intraspecies variation and 10X for FQPA SF due to uncertainty in the human dose-response relationship for neurodevelopmental effects (see Section 4.4.1)) is applied to the POD to obtain a steady state population adjusted dose (ssPAD) of 0.01 mg/kg (ssRfD= 0.1 mg/kg/day) for exposure scenarios with infants, children, youth, and women of childbearing age. The only population subgroup for which the FQPA SF is not retained is adults 50-99 years old; therefore, the ssPAD for this population subgroup is 0.1 mg/kg/day (ssRfD=0.1 mg/kg/day).

Incidental Oral, Steady State

For the purpose of assessing potential risk associated with incidental oral exposure from steady state durations resulting from spray drift, a POD of 10 mg/kg/day was selected from multiple CCA studies as described above. Sub-populations of interest (infants, toddlers, young children) are accounted for because the endpoint is based on pups, the most sensitive lifestage. An uncertainty factor (UF) of 1000X (10x for interspecies extrapolation, 10X for intraspecies variation and 10X for FQPA SF due to uncertainty in the human dose-response relationship for neurodevelopmental effects (see Section 4.4.1)) is applied.

Dermal, Steady State

Based on the use pattern for malathion, only a steady-state dermal POD is required. A steady state dermal POD of 80 mg/kg/day (BMDL₁₀) was selected from a 21-day dermal toxicity study in rabbits (MRID 46790501) based on RBC AChEI in the female rabbits. The corresponding

BMD₁₀ was 124 mg/kg/day. A total uncertainty factor of 1000X is appropriate for dermal exposures (10X for interspecies extrapolation, 10X for intraspecies variation, and a 10X FQPA SF for residential assessments or a database uncertainty factor in occupational assessments due to uncertainty in the human dose-response relationship for neurodevelopmental effects (see Section 4.4.1)).

As discussed above, there is evidence that young animals are more susceptible compared to adult animals following acute or repeated oral doses exposure to malathion. Although the rabbit dermal study only uses adult animals, a dermal POD derived from adult animals is considered protective of the young. An alternative approach to assessing dermal exposure to children would be to use the oral POD of 10 mg/kg/day derived from the pup data to extrapolate a dermal POD with a conservative dermal absorption factor (10%). The route to route extrapolation of the pup effects would yield a dermal equivalent POD of 100 mg/kg/day which is higher than the rabbit dermal BMDL₁₀ of 80 mg/kg/day. Therefore, a dermal POD of 80 mg/kg derived from adult animals is considered protective of the young.

Inhalation, Short (1-30 days) and intermediate (1-6 months)

Based on the use pattern for malathion, only a short (1-30 days) and intermediate-term (1-6 months) exposure is anticipated. A route-specific inhalation study was used for inhalation risk assessment based on portal-of-entry effects such as histopathological lesions of the nasal cavity and the larynx at the LOAEL of 0.1 mg/L. The portal-of-entry NOAEL was not established in this study. This inhalation endpoint was selected because the lesions were noted at a dose lower than the dose which resulted in AChEI and the lesions were observed in both short- and long-term studies; therefore, the POD based on portal-of-entry is considered protective of AChEI. Also, since inhalation exposure is only expected for occupational and residential handlers, using data derived from adults animals is appropriate given fetuses are not more sensitive than pregnant animals and pregnant dams have a similar sensitivity to non-pregnant female adults. As a result, the selected endpoint is considered protective of pregnant workers.

The methods and dosimetry equations described in EPA's reference concentration (RfC) guidance (1994) are suited for calculating HECs based on the inhalation toxicity point of departure (NOAEL, LOAEL, or BMDL) for use in MOE calculations. The regional-deposited-dose ratio (RDDR), which accounts for the particulate diameter (mass median aerodynamic diameter [MMAD] and geometric standard deviation [σ_g] of aerosols), can be used to estimate the different dose fractions deposited along the respiratory tract. The RDDR is also based on interspecies differences in ventilation and respiratory-tract surface areas. Thus, the RDDR can be used to adjust an observed inhalation particulate exposure of an animal to the predicted inhalation exposure for a human.

The standard interspecies extrapolation uncertainty factor can be reduced from 10X to 3X due to the HEC calculation accounting for pharmacokinetic (not pharmacodynamic) interspecies differences. The intraspecies uncertainty factor remains at 10X. For inhalation exposures, the maximum total uncertainty factor of 3000X (3X for interspecies extrapolation, 10X for intraspecies variation, 10X for a LOAEL to NOAEL extrapolation and 10X database uncertainty factor incorporating uncertainty in the human dose-response relationship for neurodevelopmental effects (see Section 4.4.1) was applied.

4.6.2 Toxicity Adjustment Factor for Malaoxon

Malaoxon, the oxygen degradate of malathion, can be formed in the environment under certain conditions. As the oxon metabolite of malathion, malaoxon is a more potent AChE inhibitor. EPA has performed BMD modeling on CCA studies of malathion and malaoxon to evaluate relative potency for malathion and malaoxon and to estimate a TAF to account for the increased potency of malaoxon in estimates of risk.

Ideally, TAFs are needed for acute and 'steady state' exposure durations. As shown in the OP cumulative risk assessment, for most OPs, AChEI reaches steady state following approximately 21 days of oral exposure (USEPA, 2002). Once steady state is reached BMD values are generally consistent and do not change with longer exposures.

As described in the guidance document for cumulative risk assessment (USEPA, 2002), comparisons of toxic potency should be made using a uniform basis of comparison, by using to the extent possible a common response derived from a comparable measurement methodology, species, and sex for all the exposure routes of interest. Dose-response modeling is preferred over the use of NOAEL/LOAELs (i.e., no or low observed adverse effect levels) for determining relative toxic potency and calculating TAFs since NOAELs and LOAELs do not necessarily reflect the relationship between dose and response for a given chemical, nor do they reflect a uniform response across different chemicals.

To calculate the ratio of toxicity between malathion and malaoxon, the Agency utilized BMD modeling of the data from a special acute and repeat dose CCA studies with malaoxon and malathion in juvenile animals, which was used to determine the TAFs. In the 2006 RED, the Agency estimated a steady state TAF for RBC AChEI to be 61X with upper and lower confidence limit of 170 and 22, respectively. In the current risk assessment, based on CCA studies with malathion and malaoxon with up-dated BMD modeling on RBC AChEI in pup female rats, the acute and steady state TAF is calculated to be 22X, meaning malaoxon is estimated to be 22 times more toxic than malathion (Table 4.6.2.1 and 4.6.2.2). This TAF is applied to residues of malaoxon for risk assessment of all exposure durations, routes, and scenarios.

Table 4.6.2.1 Benchmark dose calculations (BMD ₁₀) for RBC cholinesterase inhibition in pup rats (PND 11) with single dose of malathion and malaoxon.						
MALE FEMALE						
Malathion	13.8	12.9				
Malaoxon NF 0.60						
'Acute' Toxicity Adjustment Factor	'Acute' Toxicity Adjustment Factor NA 21.5 (≈ 22X)					

NF indicates that no BMD model obtained good fit.

NA indicates not applicable.

The TAF was calculated using the malathion (female RBC AChEI) BMD $_{10}$ of 12.9 divided by the malaoxon BMD $_{10}$ of 0.60, therefore, 12.9/0.60 = 21.5 (\approx 22) (MRID 47373704)

Table 4.6.2.2 Benchmark dose calculations (BMD $_{10}$) for RBC cholinesterase inhibition in pup rats (PND 11-21) with repeated doses of malathion and malaoxon.					
	MALE	FEMALE			
Malathion	13.3	13.1			
Malaoxon	0.84	0.61			
'Steady State' Toxicity Adjustment Factor 15.8 21.5 (≈ 22X)					
The TAF was calculated using the malathion (female RBC AChEI) BMD ₁₀ of 13.1 divided by the malaoxon BMD ₁₀ of 0.61, therefore, $13.1/0.61 = 21.5 \approx 22$ (MRID 46822201)					

4.6.3 Recommendation for Combining Routes of Exposures for Risk Assessment

According to FQPA (1996), when there are potential residual exposures to a pesticide, an aggregate risk assessment must consider exposures from 3 major routes: oral, dermal, and inhalation. PODs for the oral and dermal routes are derived from RBC AChEI; therefore, these routes may be combined. Although inhibition of RBC AChE was also observed by the inhalation route, the POD for inhalation is derived from portal of entry effects (histopathological lesions of the nasal cavity and the larynx) and therefore, the inhalation exposure estimates should not be combined with the dermal and oral routes.

4.6.4 Cancer Classification and Risk Assessment Recommendation

In accordance with the EPA *Proposed Guidelines for Carcinogen Risk Assessment* (July 1999), the Cancer Assessment Review Committee (CARC) classified malathion as "suggestive evidence of carcinogenicity but not sufficient to assess human carcinogenic potential" by all routes of exposure (TXR# 014145, 4/28/2000). Although the cancer classification was based on the agency's 1999 Proposed Guidelines for Carcinogen Risk Assessment, the descriptor (*i.e.*, suggestive evidence of carcinogenicity) is identical to the description of the cancer classification scheme (*i.e.*, suggestive evidence of carcinogenic potential) put forth in the agency's 2005 Final Guidelines for Carcinogen Risk Assessment. Additionally, no new carcinogenicity studies in laboratory animals have been submitted to the agency since the 2000 evaluation by the CARC. Furthermore, in 2014 and 2016, OPP conducted a complete review of the available epidemiological data on malathion (D423155 and D426077, see section 4.4.2). Based on the weight of the evidence consideration of the available epidemiological and animal carcinogenicity data, HED concludes that the epidemiological studies will not likely impact the cancer risk assessment for malathion. As such, a reevaluation by the CARC is not warranted at this time.

The classification for malathion as "suggestive evidence of carcinogenicity" was based on the following factors: (i) liver tumors in male and female B6C3F1 mice and in female Fischer 344 rats were seen only at excessive doses; (ii) there are a few rare tumors (oral palate mucosa - female, and nasal respiratory epithelium - male and female) seen in Fischer 344 rats. With the exception of one nasal and one oral tumor in female rats, all other tumor types were determined to occur at excessive doses or were unrelated to treatment with malathion since these tumors cannot be distinguished as either treatment related or due to random occurrence; (iii) the evidence for mutagenicity is not supportive of a mutagenic concern in carcinogenicity; and (iv) malaoxon, a structurally related chemical, is not carcinogenic in male or female Fischer 344 rats

and B6C3F1 mice. The tumors observed in the studies were seen at doses almost 100 times higher than the PODs selected for risk assessment. The Agency has determined that quantification of risk using a non-linear approach (*i.e.*, the chronic reference dose) will adequately protect for all chronic toxicity, including carcinogenicity, likely to result from exposure to malathion.

4.6.5 Summary of Points of Departure and Toxicity Endpoints Used in Human Risk Assessment

Table 4.6.5.1. Summary of Toxicological Doses and Endpoints for Malathion in Dietary and Non-Occupational Human Health Risk Assessments.						
Exposure Scenario	Point of Departure (POD)	Uncertainty/FQP A Safety Factors	RfD, PAD, Level of Concern for Risk Assessment	Study and Toxicological Effects		
Acute Dietary (all populations except adults 50- 99 years old)	POD=10 mg/kg/day	$UF_A = 10X$ $UF_H = 10X$ $FQPA SF = 10X*$	aRfD = 0.1 mg/kg/day aPAD = 0.01 mg/kg/day	CCA Studies (MRID 45566201, 46822201, 47373704) Inhibition of RBC AChE in rat pups (PND 11). BMDL ₁₀ ranged 10-14 mg/kg/day BMD ₁₀ ranged 13-18 mg/kg/day		
Acute Dietary (adults 50-99 years old)	POD=10 mg/kg/day	$UF_A = 10X$ $UF_H = 10X$ $FQPA SF = 1X$	aRfD = 0.1 mg/kg/day aPAD = 0.1 mg/kg/day	CCA Studies (MRID 45566201, 46822201, 47373704) Inhibition of RBC AChE in rat pups (PND 11). BMDL ₁₀ ranged 10-14 mg/kg/day BMD ₁₀ ranged 13-18 mg/kg/day		
Steady-State Dietary (all populations except adults 50- 99 years old)	POD=10 mg/kg/day	$UF_A = 10X$ $UF_H = 10X$ $FQPA SF = 10X*$	ssRfD = 0.1 mg/kg/day ssPAD = 0.01 mg/kg/day	CCA Studies (MRID 45566201, 46822201, 47373704) Inhibition of RBC AChE in rat pups (PND 11). BMDL ₁₀ ranged 10-14 mg/kg/day BMD ₁₀ ranged 13-18 mg/kg/day		
Steady-State Dietary (adults 50-99 years old)	POD=10 mg/kg/day	$UF_A = 10X$ $UF_H = 10X$ $FQPA SF = 1X$	ssRfD = 0.1 mg/kg/day ssPAD = 0.1 mg/kg/day	CCA Studies (MRID 45566201, 46822201, 47373704) Inhibition of RBC AChE in rat pups (PND 11). BMDL ₁₀ ranged 10-14 mg/kg/day BMD ₁₀ ranged 13-18 mg/kg/day		
Incidental Oral, Steady-State	POD=10 mg/kg/day	$UF_A = 10X$ $UF_H = 10X$ $FQPA SF = 10X*$	Residential LOC for MOE = 1000	CCA Studies (MRID 45566201, 46822201, 47373704) Inhibition of RBC AChE in rat pups (PND 11). BMDL ₁₀ ranged 10-14 mg/kg/day BMD ₁₀ ranged 13-18 mg/kg/day		
Dermal, Steady-State	BMDL ₁₀ = 80 mg/kg/day	$UF_{A} = 10X$ $UF_{H} = 10X$ $FQPA SF = 10X*$	Residential LOC for MOE = 1000	21-day dermal toxicity study in rabbits (MRID 46790501) Inhibition of RBC AChE in adult rabbits. BMD ₁₀ = 124 mg/kg/day		
Inhalation, Short (1-30 days) and Intermediate (1-6 months)- Term(All populations)	LOAEL = 0.1 mg/L HEC=0.00941 mg/L HED=1.25 mg/kg/day	$UF_{A} = 3X$ $UF_{H} = 10X$ $UF_{L} = 10X$ $FQPA SF = 10X*$	Residential LOC for MOE = 3000	90-day inhalation toxicity study (MRID 43266601) Histopathological lesions of the nasal cavity and the larynx in respiratory epithelium. Portal-of-Entry LOAEL= 0.1 mg/L (the lowest dose tested)		

Table 4.6.5.1. Summary of Toxicological Doses and Endpoints for Malathion in Dietary and Non-Occupational							
Human Health F	Human Health Risk Assessments.						
Exposure	Exposure Point of Uncertainty/FQP RfD, PAD,						
Scenario	Departure	A Safety Factors	Level of Concern for	Study and Toxicological Effects			
Section 10							
	Residential handler (adults only): HED=1.25 mg/kg/day						
	Residential post-a	pplication outdoor (ad	ults and children): HEC =	$0.053 \text{ mg/L} (52.7 \text{ mg/m}^3)$			
	Residential by-stander post-application (adults and children): HEC= 0.00941 mg/L (9.411 mg/m ³)						
Cancer (oral,	Classification: "Suggestive evidence of carcinogenicity, but not sufficient to assess human carcinogenic						
dermal,	potential". Quantification of risk using a non-linear approach (i.e. the chronic reference dose) will adequately						
inhalation)	protect for all chro	protect for all chronic toxicity including carcinogenicity.					

Point of Departure (PoD) = A data point or an estimated point that is derived from observed dose-response data and used to mark the beginning of extrapolation to determine risk associated with lower environmentally relevant human exposures. NOAEL = no observed adverse effect level. LOAEL = lowest observed adverse effect level. HEC= Human equivalent concentration. HED = Human equivalent dose. UF = uncertainty factor. UFA = extrapolation from animal to human (interspecies). UFH = potential variation in sensitivity among members of the human population (intraspecies). UFL = extrapolation from LOAEL to NOAEL. FQPA SF = FQPA Safety Factor. PAD = population adjusted dose. RfD = reference dose. RfC = reference concentration. (a = acute. ss = steady state or maximal. AChE inhibition which occurs around 2-3 weeks for OPs and is a specific exposure assessment conducted for OPs instead of the traditional short, intermediate, or chronic assessments. The SS assessment is protective of longer durations of exposure, including chronic).*The 10X FQPA SF is retained for infants, children, youth, and women of childbearing age for all exposure scenarios due to uncertainty in the human dose-response relationship for neurodevelopmental effects (see Section 4.4.1). This includes all exposure scenarios, except the dietary exposure scenarios for the population subgroup adults 50-99 for which the FQPA SF has been reduced to 1X. MOE = margin of exposure. LOC = level of concern. N/A = not applicable.

Table 4.6.5.2 Summary of Toxicological Doses and Endpoints for Malathion for Use in Occupational Human Health Risk Assessments								
Exposure/ Scenario	Point of Departure	Uncertainty Factors	Level of Concern for Risk Assessment	Study and Toxicological Effects				
Dermal, Steady-State	BMDL ₁₀ = 80 mg/kg/day	$UF_{A} = 10X$ $UF_{H} = 10X$ $UF_{DB} = 10X$	Occupational LOC for MOE = 1000	21-day dermal toxicity study in rabbits (MRID 46790501) Inhibition of RBC AChE in adult rabbits. BMD ₁₀ = 124 mg/kg/day				
Inhalation, Short (1-30 days) and Intermediate (1-6 months)-Term	LOAEL = 0.1 mg/L HED= 3.74 mg/kg/day HEC= 0.04 mg/L	$\begin{array}{c} UF_A=3X\\ UF_H=10X\\ UF_L=10X\\ UF_{DB}=10X \end{array}$	Occupational LOC for MOE = 3000	90-day inhalation toxicity study (MRID 43266601) Histopathology in respiratory epithelium. Portal-of-Entry LOAEL= 0.1 mg/L (The lowest dose tested)				
Cancer (oral, dermal, inhalation)	Classification: "Suggestive evidence of carcinogenicity, but not sufficient to assess human carcinogenic potential". Quantification of risk using a non-linear approach (i.e. the chronic reference dose) will adequately protect for all chronic toxicity including carcinogenicity.							

Point of Departure (PoD) = A data point or an estimated point that is derived from observed dose-response data and used to mark the beginning of extrapolation to determine risk associated with lower environmentally relevant human exposures. NOAEL = no observed adverse effect level. LOAEL = lowest observed adverse effect level. HED = Human equivalent dose. Steady state (SS)= maximal AChE inhibition which occurs around 2-3 weeks for OPs and is a specific exposure assessment conducted for OPs instead of the traditional short, intermediate, or chronic assessments. The SS assessment is protective of longer durations including chronic. UF = uncertainty factor. UFA = extrapolation from animal to human (interspecies). UFH = potential variation in sensitivity among members of the human population (intraspecies). UFL= extrapolation from LOAEL to NOAEL. UFDB = database uncertainty factor for uncertainty in the human dose-response relationship for neurodevelopmental effects (see Section 4.4.1). MOE = margin of exposure. LOC = level of concern. N/A = not applicable.

4.7 Endocrine Disruption

As required by FIFRA and FFDCA, EPA reviews numerous studies to assess potential adverse outcomes from exposure to chemicals. Collectively, these studies include acute, subchronic and chronic toxicity, including assessments of carcinogenicity, neurotoxicity, developmental, reproductive, and general or systemic toxicity. These studies include endpoints which may be

susceptible to endocrine influence, including effects on endocrine target organ histopathology, organ weights, estrus cyclicity, sexual maturation, fertility, pregnancy rates, reproductive loss, and sex ratios in offspring. For ecological hazard assessments, EPA evaluates acute tests and chronic studies that assess growth, developmental and reproductive effects in different taxonomic groups. As part of its most recent reregistration decision for malathion, EPA reviewed these data and selected the most sensitive endpoints for relevant risk assessment scenarios from the existing hazard database. However, as required by FFDCA section 408(p), malathion is subject to the endocrine screening part of the Endocrine Disruptor Screening Program (EDSP).

EPA has developed the EDSP to determine whether certain substances (including pesticide active and other ingredients) may have an effect in humans or wildlife similar to an effect produced by a "naturally occurring estrogen, or other such endocrine effects as the Administrator may designate." The EDSP employs a two-tiered approach to making the statutorily required determinations. Tier 1 consists of a battery of 11 screening assays to identify the potential of a chemical substance to interact with the estrogen, androgen, or thyroid (E, A, or T) hormonal systems. Chemicals that go through Tier 1 screening and are found to have the potential to interact with E, A, or T hormonal systems will proceed to the next stage of the EDSP where EPA will determine which, if any, of the Tier 2 tests are necessary based on the available data. Tier 2 testing is designed to identify any adverse endocrine-related effects caused by the substance, and establish a dose-response relationship between the dose and the E, A, or T effect.

Under FFDCA section 408(p), the Agency must screen all pesticide chemicals. Between October 2009 and February 2010, EPA issued test orders/data call-ins for the first group of 67 chemicals, which contains 58 pesticide active ingredients and 9 inert ingredients. A second list of chemicals identified for EDSP screening was published on June 14, 2013⁶ and includes some pesticides scheduled for Registration Review and chemicals found in water. Neither of these lists should be construed as a list of known or likely endocrine disruptors.

Malathion is on List 1 for which EPA has received all the required Tier 1 assay data. The Agency has reviewed all assay data received for the appropriate List 1 chemicals and the conclusions of those reviews are available in the chemical-specific public dockets (see Docket# EPA-HQ-OPP-2009-0317) for malathion. There is no convincing evidence for potential interaction with the estrogen, androgen or thyroid pathway. For further information on the status of the EDSP, the policies and procedures, the lists of chemicals, future lists, the test guidelines and the Tier 1 screening battery, please visit our website.⁷

5.0 Dietary Exposure and Risk Assessment

Dietary Exposure Memo: DP428996, 06/07/2016, S. Piper.

5.1 Metabolite/Degradate Residue Profile

_

⁶ See http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPPT-2009-0477-0074 for the final second list of chemicals.

⁷ http://www.epa.gov/endo/

5.1.1 Summary of Plant and Animal Metabolism Studies

The qualitative nature of the residue in plants is adequately understood. The metabolic pathway for malathion in plants is similar: oxidation of malathion to malaoxon and de-esterification to form mono- and dicarboxylic acids and succinate derivatives. The residues to be regulated in plants are malathion and its oxygen analog, malaoxon.

The qualitative nature of the residues in animals is adequately understood. Based on the request for cancellation of all direct animal treatment uses (see FR vol. 56, No. 52, FRL-3874-4), residues of malathion in livestock commodities represent a Category 3 situation under 40 CFR §180.6(a), i.e., there is no reasonable expectation of malathion residues being transferred from treated feed items to livestock commodities. The current tolerances on livestock commodities should be revoked.

5.1.2 Summary of Environmental Degradation

The environmental fate data on malathion indicate that it is relatively mobile and shows little persistence in soil and water. The primary route of dissipation of malathion in surface soils appears to be aerobic metabolism. Aerobic soil metabolism data indicate that half-life values for malathion range from several hours to nearly 11 days. The persistence of malathion is decreased with microbial activity, moisture, and high pH. While malathion exhibits short soil persistence, which reduces the likelihood it will leach to groundwater, its low Kd value, and data from various studies, and groundwater detections in three states (CA, MS, and VA) indicate that malathion does have potential to leach to groundwater. Other important routes of dissipation from soil, suggested by the data, include leaching, plant uptake, and surface runoff.

Limited fate data are available for the degradate malaoxon. However, based on its chemical similarity to malathion, it is expected that malaoxon will have similar fate properties as its parent. Malaoxon is shown to form under dry and microbially inactive environmental conditions, such as on dry soil, concrete, or roofing material, where oxidation can occur.

5.1.3 Comparison of Metabolic Pathways

Malathion metabolic pathway is similar in all plants. Further, the metabolic pathway in ruminants, poultry, and rats appears similar. The major residue in both plants and animals is the parent compound, and metabolism in both plants and animals appears to occur via oxidation of malathion to malaoxon and de-esterification to form mono- and dicarboxylic acids and succinate derivatives. Malaoxon, when present, comprises a small portion of the total radioactivity. Rat metabolism studies also showed that when orally administered, malathion is excreted primarily in the urine in the first 24 hours following exposure, with lesser amounts excreted in the feces. Radioactivity did not bioaccumulate in any of the organs/tissues analyzed.

5.1.4 Residues of Concern Summary and Rationale

Based on available plant metabolism data, the HED Metabolism Committee (B. Dementi, D178477, 8/8/1992) has determined that the malathion residues of concern in plants consists of malathion and its metabolite malaoxon. The tolerance expression (currently expressed in terms of malathion *per se*) should be revised to include malathion and malaoxon.

Table 5.1.5 Summary of Metabolites and Degradates to be included in the Risk Assessment and Tolerance Expression								
Matrix		Residues included in Risk Assessment	Residues included in Tolerance Expression					
Plants	Primary Crop	malathion and malaoxon	malathion and malaoxon					
	Rotational Crop	malathion and malaoxon	malathion and malaoxon					
Livestock	Ruminant	180.6(a)(3)	180.6(a)(3)					
	Poultry	180.6(a)(3)	180.6(a)(3)					
Drinking Water		malathion and malaoxon	Not Applicable					

5.2 Food Residue Profile

While late and post-season applications may result in surface residues, malathion is readily taken up and translocated by plants. Oxidation of malathion to form malaoxon occurs in plants, however, malathion is typically found to be the major residue in all plants. Field trial data suggests that malathion and malaoxon residues may be found at detectable levels in foods and processed commodities; however, monitoring data show low number of samples with detectable residues of the parent compound, and malaoxon residues were generally undetectable in most crops except blueberries, strawberries and kale. PDP monitoring data found detectable residue of malathion in strawberries (1485 samples/345 detects), caneberries (1477 samples/73 detects), wheat grain (1361 samples/884 detects), wheat flour (1331 samples/587 detects), celery (1480 samples/300 detects), snap peas (1487 samples/107 detects), kale (802 samples/37 detects), and green onions (744 samples/36 detects). Malaoxon residues were in general undetectable in most crops except strawberries (218 detects; max residue 0.04 ppm), blueberries (9 detects; max residue 0.013 ppm), and kale (3 detects; max residue 0.05 ppm).

Residue Chemistry Summary:

The residue chemistry database for malathion is complete. A deficiency cited in 1994 (DP196880; 05/26/1994; R. Perfetti) for limited field rotational crop trials is no longer applicable as malathion is now registered for direct application on almost all rotatable crops.

5.3 Water Residue Profile

The estimated drinking water concentrations (EDWCs) for malathion residues in surface water were generated using the Surface Water Concentration Calculator (SWCC) computer model, which is derived from the Pesticide Root Zone Model and Exposure Analysis Modeling System (PRZM/EXAMs) to generate EDWCs. The residue of concern for risk assessment in drinking water is the parent and malaoxon. Malathion exposed to chlorine in drinking water treatment facilities is expected to be rapidly and assumes 100% conversion to malaoxon. A TAF of 22x was applied to take into account conversion to malaoxon.

EDWCs in Groundwater

As a screening level assessment for groundwater exposure to malathion, PRZM-GW was run using the Florida avocado application parameters (2 applications of 4.7 lbs a.i./A) to represent the highest possible labeled application rate for the six currently available PRZM-GW scenarios. The Florida citrus PRZM-GW scenario estimated the highest concentrations; however, EDWCs from surface water modeling are at least two orders of magnitude larger than those estimated from this screening level approach for groundwater, no further groundwater estimates were derived.

Assessment of Agricultural Uses

Twenty modeled scenarios were chosen to represent a range of malathion agricultural uses with large usage and the geographic area encompassed. In an effort to model uses with highest exposure potential, EFED prepared six 30-year time series files for select malathion uses based on highest 1-in-10-year annual averages. Four of the scenarios were applications for agricultural uses that are modeled using a 25 foot buffer to waterbodies and two scenarios were ULV applications which were modeled with a 50 foot buffer to waterbodies per label restrictions. Parameterizations for these scenarios are presented in Table 5.3 below.

Table 5.3. Application information for modeled agricultural scenarios based on maximum labeled application rates.								
SWCC Scenario	Application Method	Application Rate (lbs a.i./ac)	Number of Applications	Application Interval	First Application Date			
Florida Cabbage	Aerial	1.25	6	7	1-Jan			
Florida Strawberry	Aerial	2	4	7	15-Jan; 1-May*			
Mississippi Cotton	Aerial	2.5	3	7	1-Jun			
Mississippi Cotton	Aerial/ULV	1.22	3	7	1-Jun			
Washington Cherry	Aerial	1.75	4	3	1-Jan			
Washington Cherry	Aerial/ULV	1.22	6	7	1-Jan			

^{* 2} applications performed per season; ULV=Ultra Low Volume parameterization

Drinking Water Estimates for Steady-State Assessment

For steady state, the daily time series were recalculated using 21-day forward rolling averages. In the 21-day rolling average distributions, the first data point is the average of days 1-21, the second data point is the average of days 2-22, the third data point is the average of days 3-23, etc. The 21-day rolling average continues until the last 20 days of residues of the final distribution year (1990). For these residues, the average was taken only of the remaining days, resulting in residue values that are not true 21-day averages.

5.4 Dietary Risk Assessment

Highly refined acute and steady-state dietary exposure and risk assessments for malathion and its metabolite malaoxon were conducted using DEEM-FCID Version 3.16. This model uses 2003-2008 food consumption data from USDA's NHANES/WWEIA. Acute and steady-state assessments were conducted for food only, drinking water only, and for food and drinking water.

5.4.1 Overview of Residue Data Used

PDP monitoring data were used for all crops in the dietary risk assessment of malathion when available. If monitoring data were not available for a particular commodity (e.g., horseradish), but were available for a similar commodity (carrots), the available data were translated to the similar crop (HED SOP 99.3; HED SOP 2000.1) with similar use patterns. Field trial data was used for nuts (chestnuts, macadamia nuts, pecan, and walnuts), cotton, dates, figs, guava, spearmint, peppermint, and passion fruit. Only dates, mints, guava and cotton had detectable residues of malaoxon. All residue distribution files (RDFs) were adjusted to account for the malaoxon TAF of 22X.

Malathion is an insecticide that is used outdoors to control a wide variety of insects in agricultural crops, including for use in the Cotton Boll Weevil Eradication Program and for mosquito-borne disease control (adulticide use). While tolerances are established to support the direct application to agricultural crops, there are no tolerances established on any crops for which there is not a direct application for residues of malathion that may result from the adulticide use. While the registrant has petitioned for these tolerances, they have not been formally established. However, for this assessment, the proposed tolerances or the translated residue and/or monitoring data on which they are based, are included in this assessment. The Agency notes that malathion is registered on almost all major crops in terms of acreage and consumption. Amongst the unregistered crops, only bananas, cilantro, and honey were analyzed by PDP for malathion from 2001-2010. For all other unregistered crops, estimated residues were translated from monitoring data on similar crops.

The most recent dietary memo (S. Piper; 06/07/2016; D428996) summarizes the residue inputs (RDFs used, point estimates, processing factors, PCT, etc.), residue data used for each commodity, procedures for combining residues of malathion and malaoxon, and all of the RDF files used for the acute and steady-state assessments.

5.4.2 Percent Crop Treated Used in Dietary Assessment

A Screening Level Usage Analysis (SLUA) memo was provided by BEAD (J. Alsadek, 04/01/2015). The acute and steady-state analyses incorporated maximum PCT for the following commodities: alfalfa: <2.5%; apple: <2.5%; apricot: <2.5%; asparagus: 10%; avocado: 5%; barley: 5%; bean, green: <2.5%; blueberries: 40%; broccoli: 5%; Brussel sprouts: 20%; cabbage: 5%; caneberries: 70%; canola: 10%; cantaloupes: 5%; carrots: 20%; cauliflower: 5%; celery: 30%; cherries: 25%; corn: <2.5%; cotton: 20%; cucumbers: 5%; dates: 10%; dry bean/peas: <2.5%; eggplant: 5%; fig: 10%; garlic: 10%; grapefruit: 15%; grapes: <2.5%; lemons: <2.5%; lettuce: 15%; oats: <2.5%; onions 10%; oranges: 20%; peaches: 5%; peanuts: 2.5%; pears: <2.5%; peas, green: 2.5%; sorghum: <2.5%; supplements: <2.5%; spinach: 5%; squash: strawberries: 55%; sugar beets: <2.5%; sugarcane: <2.5%; sunflowers: <2.5%; sweet corn: <2.5%; tangerines: 25%; tomatoes: 5%; walnuts: 15%; watermelons: 5%; and wheat: <2.5%.

5.4.3 Acute Dietary Risk Assessment

Acute assessments were conducted for food only, drinking water only, and for food and drinking water to characterize dietary exposure. The food only acute dietary risk estimates are below HED's LOC (<100% of the aPAD) for the U.S. population and all population subgroups at the

99.9th percentile. Malathion dietary exposure for food alone is 27% of the aPAD for the U.S. population, and children 1-2 years old, the most highly exposed population subgroup, is 74% of the aPAD at the 99.9th percentile. The results for all population subgroups (general U.S. population, all infants (<1 year old), children 1-2, children 3-5, children 6-12, youth 13-19, females 13-49, adults 20-49, and adults 50-99 years) for all runs are summarized in Table 5.4.6.1.

For the acute drinking water only runs, six different application scenarios (FL cabbage, FL strawberry, MS cotton, WA cherry, WA cherry ULV and MS cotton ULV) were analyzed. The WA cherry maximum aerial scenario results in the highest estimated drinking water concentration. The WA cherry maximum aerial scenario results in drinking water only dietary estimates are above HED's level of concern (>100 % of the aPAD) at the 99.9th percentile. For drinking water only, the WA cherry scenario results for all infants (<1 year old) is 690% of the aPAD, the highest exposed population subgroup. The results for all application scenarios, including the scenario that resulted in the highest exposure, are summarized below in Table 5.4.6.2. Combined dietary exposure from food and the highest drinking water scenario is 240% of the aPAD for the U.S. population and 690% of the aPAD for all infants (<1 year old), the highest exposed population subgroups. The results for all population subgroups for all runs are summarized in Table 5.4.6.3.

5.4.4 Steady-State Dietary Risk Assessment

Steady state assessments were conducted for food only, drinking water only, and for food and drinking water. The food only steady-state estimates are below HED's LOC (<100% of the ssPAD) for the U.S. population and all population subgroups at the 99.9th percentile. The U.S. population utilized 24% of the ssPAD and children 1-2 years old, the most highly exposed population subgroup, utilized 48% of the ssPAD. The results for all population subgroups for all runs are summarized in Table 5.4.6.4.

For the steady state drinking water only runs, six different application scenarios (FL cabbage, FL strawberry, MS cotton, WA cherry, WA cherry ULV and MS cotton ULV) were analyzed. The WA cherry maximum aerial scenario results in the highest estimated drinking water concentration. The WA cherry maximum aerial scenario results in drinking water only dietary estimates are above HED's level of concern (>100 % of the ssPAD) at the 99.9th percentile. For drinking water only, the WA cherry scenario results for all infants (<1 year old) is 480% of the aPAD, the highest exposed population subgroup. The results for all application scenarios, including the scenario that resulted in the highest exposure, are summarized below in Table 5.4.6.5.

The food and drinking water steady-state analyses were conducted using the water scenario that resulted in the highest estimated drinking water risks (WA cherry scenario). Combining the food exposure with the WA cherry maximum aerial scenario results in dietary (food and water) estimates that are above HED's level of concern (>100 % of the ssPAD). Combined dietary exposure from food and drinking water is 170% of the ssPAD for the U.S. population and 470% of the ssPAD all infants (<1 year old), the most highly exposed population subgroup. The results are provided below in Table 5.4.6.6.

5.4.5 Cancer Dietary Risk Assessment

Malathion is classified as "suggestive evidence of carcinogenicity, but not sufficient to assess human carcinogenic potential." Therefore, a quantitative cancer dietary exposure analysis is not appropriate.

5.4.6. Dietary Assessment Summary Tables

Table 5.4.6.1. Summary of Acute Dietary (Food Only) Exposure and Risk for Malathion												
		95 th Perce	entile	99th Percentile		99.9th Percentile						
Population Subgroup	aPAD (mkd)	Exposure (mkd)	% aPAD	Exposure (mkd)	% aPAD	Exposure (mkd)	% aPAD					
General U.S. Population	0.01	0.000328	3	0.000683	7	0.002701	27					
All Infants (<1 year old)	0.01	0.000437	4	0.000679	7	0.003694	37					
Children 1-2 years old	0.01	0.000661	7	0.001520	15	0.007434	74					
Children 3-5 years old	0.01	0.000527	5	0.001170	12	0.004276	43					
Children 6-12 years old	0.01	0.000344	3	0.000815	8	0.004107	41					
Youth 13-19 years old	0.01	0.000203	2	0.000455	5	0.002361	24					
Adults 20-49 years old	0.01	0.000274	3	0.000588	6	0.002899	29					
Adults 50-99 years old	0.1	0.000252	<1	0.000597	<1	0.001642	2					
Females 13-49 years old	0.01	0.000211	2	0.000473	5	0.003144	31					

mkd = mg/kg/day, aPAD= acute population adjusted dose; Highest exposure at the 99.9th percentile is in bold font

Table 5.4.6.2. Summary of Acute Assessment Results for Maximum Application Rate of Drinking Water Only **Drinking Water** Acute WATER ONLY Acute WATER ONLY Scenario (All Infants <1 year old) (Children 1-2 years old) 99.9th 99.9th Exposure Exposure % Exposure % Exposure % (mkd) aPAD (mkd) aPAD (mkd) aPAD (mkd) aPAD FL Cabbage 0.002846 28 0.024218 240 0.0001707 17 0.013005 130 FL Strawberry 0.002205 22 0.034855 350 0.001458 15 0.018610 190 MS Cotton 0.000157 2 0.015996 160 0.000231 2 0.00855086 **WA Cherry** 14 690 360 0.001354 0.068773 0.001564 16 0.036267 WA Cherry ULV 0.000010 <1 0.000066 <1 0.000006<1 0.000036 <1 MS Cotton ULV <1 <1 <1 0.000024 <1 0.0000010.000046 0.000001

mkd = mg/kg/day. aPAD= acute population adjusted dose; Highest exposure at the 99.9th percentile is in bold font

Table 5.4.6.3. Summary of Acute Dietary (Food and WA Cherry Drinking Water) Exposure and Risk for Malathion											
		95 th Perc	entile	99 th Perce	entile	99.9th Percentile					
Population Subgroup	aPAD	Exposure	%	Exposure	%	Exposure	%				
	(mkd)	(mkd)	aPAD	(mkd)	aPAD	(mkd)	aPAD				
General U.S. Population	0.01	0.001462	15	0.008444	84	0.024399	240				
All Infants (<1 year old)	0.01	0.001832	18	0.025723	260	0.068903	690				
Children 1-2 years old	0.01	0.002393	24	0.012608	130	0.037478	380				
Children 3-5 years old	0.01	0.001901	19	0.010497	110	0.028678	290				
Children 6-12 years old	0.01	0.001394	14	0.007678	77	0.022784	230				
Youth 13-19 years old	0.01	0.000968	10	0.006321	63	0.019591	200				
Adults 20-49 years old	0.01	0.001437	14	0.008573	86	0.023019	230				
Adults 50-99 years old	0.1	0.001561	2	0.008142	8	0.021052	21				
Females 13-49 years old	0.01	0.001369	14	0.008596	86	0.023309	230				

mkd = mg/kg/day. aPAD= acute population adjusted dose; Highest exposure at the 99.9th percentile is in bold font

Table 5.4.6.4. Summary of Steady State Dietary (Food Only) Exposure and Risk for Malathion												
		95 th Perc	entile	99th Percentile		99.9th Per	centile					
Population Subgroup	ssPAD (mkd)	Exposure (mkd)	% ssPAD	Exposure (mkd)	% ssPAD	Exposure (mkd)	% ssPAD					
General U.S. Population	0.01	0.000313	3	0.000607	6	0.002413	24					
All Infants (<1 year old)	0.01	0.000430	4	0.000676	7	0.002251	23					
Children 1-2 years old	0.01	0.000646	6	0.001399	14	0.004761	48					
Children 3-5 years old	0.01	0.000497	5	0.000936	9	0.002872	29					
Children 6-12 years old	0.01	0.000329	3	0.000713	7	0.003251	33					
Youth 13-19 years old	0.01	0.000188	2	0.000420	4	0.001379	14					
Adults 20-49 years old	0.01	0.000254	3	0.000519	5	0.002814	28					
Adults 50-99 years old	0.1	0.000239	<1	0.000516	<1	0.001365	1					
Females 13-49 years old	0.01	0.000199	2	0.000428	4	0.002646	26					

mkd = mg/kg/day. ssPAD = steady-state population-adjusted dose. Highest exposure at the 99.9th percentile is in bold font

Table 5.4.6.5. Summary of Steady State Assessment Results for Maximum Application Rate of Drinking Water Only Drinking Water Steady State WATER ONLY Steady State WATER ONLY Scenario (All Infants <1 year old) (Children 1-2 years old) 99.9th 99.9th % Exposure % Exposure Exposure % Exposure % (mkd) ssPAD (mkd) ssPAD (mkd) ssPAD (mkd) ssPAD FL Cabbage 0.00349535 0.016537 170 0.001786 18 0.008952 90 100 FL Strawberry 0.00302530 0.019562 200 0.00155416 0.009984 MS Cotton 0.000750 8 0.011172110 0.000512 5 0.00553255 36 480 0.002779 28 240 WA Cherry 0.003595 0.047901 0.024247 WA Cherry 0.000011 <1 0.000049 <1 0.000006 <1 0.000027 <1 ULV MS Cotton 0.000001 <1 0.000044 <1 0.000022 <1 0.004829 <1 **ULV**

mkd = mg/kg/day. ssPAD= acute population adjusted dose; Highest exposure at the 99.9th percentile is in bold font

Table 5.4.6.6. Summary of Ste	Table 5.4.6.6. Summary of Steady State Dietary (Food and WA Cherry Drinking Water) Exposure and Risk for												
Malathion													
		95 th Pero	centile	99th Perc	entile	99.9th Percentile							
Population Subgroup	ssPAD	Exposure	%	Exposure	%	Exposure	%						
	(mkd)	(mkd)	ssPAD	(mkd)	ssPAD	(mkd)	ssPAD						
General U.S. Population	0.01	0.002147	21	0.006825	68	0.016610	170						
All Infants (<1 year old)	0.01	0.003910	39	0.021553	220	0.047290	470						
Children 1-2 years old	0.01	0.003291	33	0.010527	110	0.024835	250						
Children 3-5 years old	0.01	0.002765	28	0.008419	84	0.019446	190						
Children 6-12 years old	0.01	0.001986	20	0.006118	61	0.014652	150						
Youth 13-19 years old	0.01	0.001450	15	0.005283	53	0.012409	120						
Adults 20-49 years old	0.01	0.002180	22	0.006866	69	0.015436	150						
Adults 50-99 years old	0.1	0.002210	2	0.006460	6	0.014391	14						
Females 13-49 years old	0.01	0.002110	21	0.007007	70	0.015356	150						

mkd = mg/kg/day. ssPAD = steady-state population-adjusted dose. Highest exposure at the 99.9th percentile is in bold font

6.0 Residential (Non-Occupational) Exposure/Risk Characterization

Occupational and Residential Exposure Memo: DP431434, 06/09/2016, S. Shelat.

The registered residential uses have been assessed as part of Registration Review. There have been no new uses registered since the last residential risk assessment (J. Arthur, D330678, 7/6/2006). The existing residential uses have been reassessed in this document to reflect updates to HED's 2012 Residential SOPs⁸, changes for body weight assumptions, along with changes to the toxicological profile for assessing malathion.

Malathion is currently registered for use in outdoor residential ornamentals, vegetable gardens, building perimeter treatment, and outdoor areas for mosquito and flying insect applications. Malathion is not a restricted use pesticide and may result in potential exposure to both handlers (adults) and in post-application scenarios (adults and children) for those uses. Malathion is also registered for pick-your-own farm applications and, therefore, may result in post-application exposure for individuals entering into previously treated areas.

For adults, when an endpoint is not sex-specific (i.e., the endpoints are based on developmental or fetal effects) a body weight of 80 kg is typically used in risk assessment; however, in this case, a female-specific body weight of 69 kg was used. While the endpoints of concern, RBC AChE inhibition and inhalation portal of entry effects, are not sex-specific, the female-specific body weight was used to protect for pregnant women due to uncertainty in the human dose-response relationship for neurodevelopmental effects (See Section 4.4).

6.1 Residential Handler Exposure

HED uses the term "handlers" to describe those individuals who are involved in the pesticide application process. HED believes that there are distinct tasks related to applications and that exposures can vary depending on the specifics of each task. Residential handlers are addressed somewhat differently by HED as homeowners are assumed to complete all elements of an application without use of any protective equipment.

The quantitative exposure/risk assessment developed for residential handlers is based on the following scenarios for gardens and trees and outdoor perimeter/spot applications:

- Manually-pressurized handwand;
- Hose-end sprayer;
- Backpack

• Sprinkler can; and

• Outdoor handheld fogger/mister (using surrogate unit exposure data from RTU aerosol can).

Some of the registered malathion product labels with residential use sites (e.g., home ornamental and vegetable gardens as well as spot and perimeter outdoor uses for insect and mosquito control) require that handlers wear specific clothing (e.g., long sleeve shirt/long pants) and/or use personal protective equipment (PPE). Therefore, HED has made the assumption that these products are not for homeowner use, and has not conducted a quantitative residential handler

⁸ Available: http://www2.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedure-residential-exposure

assessment. The labels that were identified by the registrant to be homeowner uses but were reviewed to show PPE are as follows: EPA Reg Nos 45385-43; 47000-107; 28293-123; 33955-394; 4-412; 10088-56. A number of labels were assessed as part of the residential handler assessment which did not include recommendations or requirements for PPE (e.g., 4-99; 46515-19; 7401-10; 829-175; 289-739) as well as consideration of some uses that were reviewed as part of the 2006 RED.

Summary of Residential Handler Non-Cancer Exposure and Risk Estimates

The residential handler exposure and risk estimates indicate that the inhalation MOEs are not of concern to HED (i.e., $MOE \ge 3000$) for most scenarios with the exception of the following scenarios: manually-pressurized handwand application to outdoor perimeter areas of households (MOE = 1,900); hose-end sprayer application to standing water/mosquito areas (MOE = 1,500), backpack application for outdoor building perimeter and mosquitos (MOE = 250 and 720), and for mosquito control misting/fogger applications (MOEs = 240 and 48). Dermal exposure and risk estimates, however, are of concern (i.e., MOEs < 1000) for most scenarios. The risk estimates are presented below in Table 6.1.1.

Table 6.1.1.	. Residential Handl	ler Non-cancei	r Exposure a	nd Risk Estima	tes for Malathion	•			
		Dermal Unit Inhalation		Maximum	Area Treated or	Derr	nal	Inhala	tion
Exposure Scenario	Target Crops	Exposure (mg/lb ai)	Unit Exposure (mg/lb ai)	Application Rate ¹	Amount Handled Daily ²	Dose (mg/kg/day) ³	MOE ⁴ LOC=1000	Dose (mg/kg/day) ⁵	MOE ⁶ LOC=3000
		•		Mixer/Loa	ader/Applicator		•		
	Homeowner Ornamentals			0.023 lbs ai/gallon	5 gallons	0.11	760	0.00003	42,000
	Homeowner Outdoor Building Perimeter Treatments			0.5 lbs ai/gallon	5 gallons	2.3	35	0.00065	1,900
pressurized handwand (liquids) Hove Vege	Homeowner Vegetables/ Small Fruits- Low rates	63	0.018	0.0000256 lb ai/ft²	1200 ft²	0.028	2900	0.000008	160,000
	Homeowner Vegetables/ Small Fruits- Medium rates			0.0000512 lb ai/ft²		0.056	1400	0.000016	78,000
	Homeowner Vegetables/ Small Fruits- High rates			0.0001 lb ai/ft ²		0.11	730	0.000031	40,000
	Homeowner Vegetables/ Small Fruits- Low rates			0.0000256 lb ai/ft²		0.026	3100	0.00000062	2,000,000
Hose-end	Homeowner Vegetables/ Small Fruits- Medium rates			0.0000512 lb ai/ft²	1200 ft²	0.052	1500	0.0000012	1,000,000
Sprayer (liquids)	Homeowner Vegetables/ Small Fruits- High rates	58	58 0.0014	0.0001 lb ai/ft ²		0.1	790	0.0000024	510,000
	Homeowner Ornamentals			0.023 lbs ai/gallon	11 gallons	0.21	380	0.0000051	240,000
	Homeowner Outdoor Building			0.5 lbs ai/gallon	11 gallons	4.6	17	0.00011	11,000

Table 6.1.1. Residential Handler Non-cancer Exposure and Risk Estimates for Malathion.											
		Dermal Unit Inhalatio		Maximum	Area Treated or	Dern	nal	Inhala	tion		
Exposure Scenario	Target Crops	Exposure	Unit Exposure	Application	Amount Handled	Dose	MOE ⁴	Dose	MOE ⁶		
Section 10		(mg/lb ai)	(mg/lb ai)	Rate ¹	Daily ²	(mg/kg/day) ³	LOC=1000	(mg/kg/day) ⁵	LOC=3000		
	Perimeter										
	Treatments										
	Homeowner Vegetables/ Small			0.0000256 lb		0.058	1400	0.000062	20,000		
	Fruits- Low rates			ai/ft²		0.020	1100	0.000002	20,000		
	Homeowner										
	Vegetables/ Small Fruits- Medium			0.0000512 lb ai/ft ²	1200 ft ²	0.12	690	0.00012	10,000		
	rates			ai/it							
Backpack	Homeowner	130	0.14	_							
	Vegetables/ Small Fruits- High rates	130	0.14	0.0001 lb ai/ft ²		0.23	350	0.00024	5,100		
	Homeowner			0.023 lbs							
	Ornamentals			ai/gallon	5 gallons	0.22	370	0.00023	5,400		
	Homeowner			0.5.11							
	Outdoor Building Perimeter			0.5 lbs ai/gallon	5 gallons	4.7	17	0.0051	250		
	Treatments			ai/gailoii							
	Homeowner			0.0000256 lb							
	Vegetables/ Small Fruits- Low rates			ai/ft^2		0.026	3100	0.00000062	2,000,000		
	Homeowner										
	Vegetables/ Small			0.0000512 lb	1200 ft²	0.052	1500	0.0000012	1,000,000		
Sprinkler	Fruits- Medium rates			ai/ft²	1200 It	0.032	1300	0.0000012	1,000,000		
can	Homeowner	58	0.0014								
	Vegetables/ Small			0.0001 lb ai/ft ²		0.1	790	0.0000024	510,000		
	Fruits- High rates										
	Homeowner			0.023 lbs	5 callons	0.007	920	0.0000022	540,000		
	Ornamentals			ai/gallon	5 gallons	0.097	830	0.0000023	540,000		

Table 6.1.1	Table 6.1.1. Residential Handler Non-cancer Exposure and Risk Estimates for Malathion.												
		Dermal Unit	Inhalation	Maximum	Area Treated or	Dern	nal	Inhala	tion				
Exposure Scenario	Target Crops	Exposure	Unit Exposure		Amount Handled	Dose	MOE^4	Dose	MOE^6				
Scenario	(mg/lb a	(mg/lb ai)	(mg/lb ai)	Rate ¹	Daily ²	(mg/kg/day) ³	LOC=1000	(mg/kg/day) ⁵	LOC=3000				
Hose-end Sprayer		13.4	0.022	5.1 lbs ai/acre	0.5 acres	0.5	160	0.00081	1,500				
Manually- pressurized handwand	Standing Water/Mosquito	63	0.018	0.17 lbs ai/gallon	5 gallons	0.78	100	0.00022	5,600				
Backpack		130	0.14	0.17 lbs ai/gallon	5 gallons	1.6	50	0.0017	720				
Outdoor Fogger/	Outdoor Yard	370	3.0	0.12 lbs ai/day	1 gallon	0.64	120	0.0052	240				
- 20	Mosquito Control ⁷	370	5.0	0.12 108 al/day	5 gallons	3.2	25	0.026	48				

¹ Based on registered labels (Section 3.3 and Appendix C). Malathion is registered on a variety of homeowner fruit and vegetable plants. The target site and rate combinations can be found in Appendix C.

² Based on HED's 2012 Residential SOPs (http://www2.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedure-residential-exposure).; For outdoor mosquito control, the 1 gallon and 5 gallon assumption are used to represent the range in volume of publically available equipment for fogger and misting handheld applications.

³ Dermal Dose = Dermal Unit Exposure (mg/lb ai) × Application Rate (lb ai/acre or gal) × Area Treated or Amount Handled (A/day or gallons/day) × Dermal Absorption Factor (100 %) ÷ Body Weight (69kg).

⁴ Dermal MOE = Dermal NOAEL (80mg/kg/day) ÷ Dermal Dose (mg/kg/day).

⁵ Inhalation Dose = Inhalation Unit Exposure (mg/lb ai) × Application Rate (lb ai/acre or gal) × Area Treated or Amount Handled (A/day or gallons/day) ÷ BW (69kg).

⁶ Inhalation MOE = Inhalation HED (1.25mg/kg/day) ÷ Inhalation Dose (mg/kg/day).

⁷ Based on registered label (EPA Reg No. 10088-56). The aerosol can unit exposures were used as a surrogate application scenario to represent the adult mosquito control use which states to apply the spray mixture as a fine mist or fog to lower outside foundations of homes or shrubs.

6.2 Post-Application Exposure

There is the potential for post-application exposure for individuals exposed as a result of being in an environment that has been previously treated with malathion. Malathion can be used in areas frequented by the general population including residential gardens, pick-your-own farm settings, and as a result of aerial and ground-based ULV mosquito adulticide applications made directly in residential areas. The quantitative exposure and risk assessment for residential post-application exposures is based on the following scenarios from the registered uses:

- Adult post-application dermal exposure from gardens treated with malathion.
- Children (6<11) years old post-application dermal exposure from gardens treated with malathion.
- Adult post-application dermal exposure from pick-your-own farms treated with malathion.
- Children (6<11) years old post-application dermal exposure from pick-your-own farms treated with malathion.
- Adult post-application dermal exposure from contact with turf following the deposition
 of malathion residues from aerial and ground public health mosquito adulticide
 application.
- Adult post-application inhalation exposure from airborne malathion following aerial and ground public health mosquito adulticide application.
- Children 1 to < 2 years old post-application dermal exposure from contact with turf following the deposition of malathion residues from aerial and ground public health mosquito adulticide application.
- Children 1 to < 2 years old post-application incidental oral (hand-to-mouth) exposure from contact with turf following the deposition of malathion residues from aerial and ground public health mosquito adulticide application.
- Children 1 to < 2 years old post-application incidental oral (object-to-mouth) exposure from contact with toys containing residues from turf following the deposition of malathion residues from public health mosquito adulticide application.
- Children 1 to < 2 years old post-application inhalation exposure from airborne malathion following public health mosquito adulticide application.

A post-application assessment was not conducted for the perimeter and spot lawn applications of malathion. These include the application to edging use (e.g., along fence rows), a foundation perimeter treatment (e.g., 3 foot band around the perimeter of a house), or a specific spot treatment (e.g., ant mounds). Additionally, post-application assessment of the outdoor residential mosquito control application was not conducted because the direct residential application is directed towards the lower outside foundations of homes or as a spot treatment for yards and lawns. These types of uses can result in residues on turf but residential exposure is expected to be negligible.

The lifestages selected for each post-application scenario are based on an analysis provided as an Appendix in the 2012 Residential SOPs⁹. While not the only lifestage potentially exposed for these post-application scenarios, the lifestage that is included in the quantitative assessment is health protective for the exposures and risk estimates for any other potentially exposed lifestage.

For adults, when an endpoint is not sex-specific (i.e., the endpoints are based on developmental or fetal effects) a body weight of 80 kg is typically used in risk assessment; however, in this case, a female-specific body weight of 69 kg was used. While the endpoints of concern, RBC AChE inhibition and inhalation portal of entry effects, are not sex-specific, the female-specific body weight was used to protect for pregnant women due to uncertainty in the human dose-response relationship for neurodevelopmental effects (See Section 4.4.1).

DFR Data: A total of six chemical-specific DFR data sets have been submitted for malathion on the following crops: grapes (MRID 450059-10), wine grapes (MRID 454919-01), apples (MRID 451382-02), summer squash (MRID 454919-02), blackberries (MRID 451382-01), and nursery stock (MRID 454695-01). All six studies have been reviewed by HED (see Appendix E) and found to be acceptable for risk assessment. HED also notes that the studies did not discuss measurements for malaoxon. Malathion is registered on a variety of plants (i.e., vegetable, fruit, and ornamentals) grown in residential garden settings. For the post-application residential scenarios, HED has used an average DFR value from the malathion chemical-specific studies to represent the post-application exposures and risk estimates. EPA ran new DFR regressions for the post-application risk assessment in order to assess potential risk from the oxon product as well as the parent malathion. The dissipation curve was based on malathion DFRs plus estimated malaoxon residue. The oxon was estimated to be 5% of the parent residue. A toxicity factor of 22 was also applied to malaoxon residue. A full discussion of the DFR data can be found in Appendix E and D431434.

TTR Data: TTR data (A Transferrable Residue Study - Malathion Residues in Turf) is available for malathion. A HED review of MRID 439450-01 was completed in 2000 (J. Arthur, D240569, 1/10/2000) and the updated regression analysis was completed as part of this assessment. TTR residues have been used in the post-application exposure assessment following the deposition of malathion residues from public health mosquito adulticide application.

The transferable residue study on turf was conducted with the pesticide malathion formulated as the end use product Malathion 57EC. Four geographic sites were included in this study to represent the different use areas in the United States. EPA ran new TTR regressions for the post-application risk assessment in order to assess potential risk from the oxon product as well as the malathion. The dissipation curve was based on malathion TTRs plus estimated malaoxon residue. The oxon was estimated to be 5% of the parent residue. A toxicity factor of 22 was also applied to malaoxon residue. A full discussion of the TTR data can be found in Appendix E and D431434.

Page 47 of 258

⁹ Available: http://www2.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedures-residential-pesticide

Public Health Mosquito Adulticide Use

The post-application exposure potential from public health mosquito adulticide applications has been considered for both ground based truck foggers and also from aerial applications. For assessment of the mosquito adulticide use, the algorithms and inputs presented in the 2012 Residential SOPs, Lawns/Turf section were used, coupled with the available TTR data described above. The deposition of malathion from these applications are not based on the application rate alone, but also using the AgDISP (v8.2.6) model or empirical data to determine how much pesticide is deposited on residential lawns as a result of mosquito adulticide treatments at the maximum application rates for each. The TTR data are then used to determine the fraction of the total residue deposited following the mosquitocide application which can result in exposures to impacted individuals. Inhalation exposures are estimated using AgDRIFT for aerial applications, and a recently developed, Well Mixed Box (WMB) Model approach based on the Residential SOPs for outdoor foggers.

The inputs used in the *AgDISP* calculations are presented in Appendix F. Because the resulting fraction of deposition and air concentration are determined by the application parameters, HED has also provided a sensitivity analysis of the application parameters that may differ between different applications. The figures below, which represent a mosquitocide release at a minimum of 100 feet and 1 mile per hour wind speed, are based on registered mosquitocide uses (e.g., EPA Reg 67760-34).

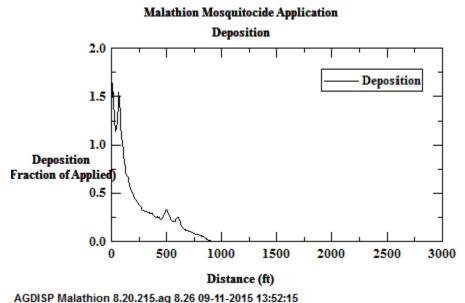
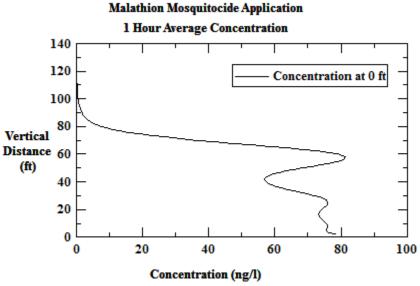



Figure 6.2.1. Estimated malathion deposition downwind from the field edge from aerial treatment of mosquito adulticide at release height of 100 feet. Where the fraction of application rate for deposition was determined to be greater than 1, the maximum fraction of 1 will be used for the disposition value.

AGDISP Malathion 8.20.215.ag 8.26 09-11-2015 13:52:15

Figure 6.2.2. Estimated malathion air concentration at the field edge from aerial treatment of mosquito adulticide at a release height of 100 feet. $0.75 \text{ ng/l} = 0.075 \text{mg/m}^3$ is the concentration at breathing height for adults and children.

Table 6.2.1 below provides a sensitivity analysis for application parameters that may differ from the minimum label requirements.

Table 6.2.1. Sensitivity Analysis for the Mosquitocide ULV Application Parameters									
Droplet Size	Fraction of Application Rate for Deposition (unitless) Air concentration at bring height (mg/m3)								
Current Label Parameters ¹									
60 um >1 (1.65) ² 0.075									
	Refinements								
	300 feet release height and various dropl	et sizes ³							
60 um	0.41	0.012							
50 um	0.26	0.01							
45 um	0.18	0.008							

- 1. The ULV mosquitocide labels require applications to occur when the wind speed is greater than or equal to 1 mph and not to apply by fixed wing aircraft at a height less than 100 feet or by helicopter at a height less than 75 feet unless specifically approved by the state or tribe based on public health needs.
- 2. Where the fraction of application rate for deposition was determined to be greater than 1, the maximum fraction of 1 will be used for the exposure calculations.
- 3. The AgDISP output graphs that represent the refinements are provided in Appendix F.

<u>Summary of Residential Post-application Non-Cancer Exposure and Risk Estimates</u> The residential post-application exposure and risk estimates indicate that there are numerous children and adult residential exposure scenarios that are of concern for all post-application scenarios (i.e., MOEs < 3000 for inhalation and MOEs < 1000 for incidental oral and dermal). The risk estimates are presented below in Table 6.2.2.

Table 6.2.2 Malaoxon	2. Residential	Post-applicat	ion Non-can	cer Exposure	and Risk	Estimates for Malat	hion and	
Lifestage	Post-applicat Scen		Application	Dose (mg/kg/day)	MOEs ³	Combined Routes ⁴	Combined	
Lifestage	Use Site	Route of Exposure	Rate ¹	(mg/kg/day) 2	MOES	Combined Routes	MOEs ⁵	
Adult	Gardens	Dermal		1.5	55			
Child 6< 11 years old	(vegetable and ornamentals)	Dermal	0.034 (lbs ai/gal)	0.86	93			
Adult	Pick-your- own Farms	Dermal	2	0.923	87			
Child 6< 11 years old	Low Crops (i.e., strawberries)	Dermal	(lbs ai/A)	0.414	190		N/A	
Adult Pick-your-		Dermal	2	0.958	84			
Child 6< 11	High Crops (i.e., apples)	Dermal	3 (lbs ai/A)	0.429	190			
Adult		Dermal		0.24	340		N/A	
Adult		Inhalation		N/A	700		N/A	
	Aerial Based	Dermal Inhalation		0.40 N/A	200	X		
Children 1 to < 2	ULV Mosquitocide Applications	Hand-to- Mouth	0.23 (lbs ai/A)	0.008	7 00 1,200	X	170	
years old	Tippii wii ons	Object-to- Mouth		0.00025	40,000		N/A	
		Soil Ingestion		0.0000078	1,300,000		N/A	
Adult		Dermal		0.012	8,100		N/A	
Auuit		Inhalation		N/A	3700		N/A	
	Ground Based	Dermal		0.02	4,700	X		
	ULV	Inhalation	0.11	N/A	3700		4,000	
Children 1 to < 2	Mosquitocide Applications	Hand-to- Mouth	(lbs ai/A)	0.0003	29,000	X	.,	
years old	-FF34MOIIS	Object-to- Mouth		0.00001	950,000		N/A	
		Soil Ingestion		0.0000037	2,700,000		N/A	

¹ Based on registered labels (Section 3.4 and Appendix C). The "pick-your-own" post-application rates and DFR adjustment are based on the maximum agricultural application rates rather than the residential application rates. The maximum application rate for strawberries is 2 lbs au/acre and for peaches (representative orchard crop) is 3 lbs ai/acre.

As the mosquitocide estimated risks are sensitive to several different application parameters, such as release height and droplet size. Table 6.2.3, below provides risk estimates reflecting variation of those key parameters. Additionally, the table below provides information beyond the traditional Day 0 assessment to allow for additional characterization of the rapid dissipation of malathion residues with time. Lastly, the table provides a range of MOEs incorporating the maximum, minimum and average transferrable residues from the TTR study cited above.

TABLE 6.2.3. Aerial Mosquitocide AgDISP Sensitivity Analysis										
Risk Estimate Sco	marias		MOEs	1		Inhalation Day 0				
Kisk Estillate Sco		Day 0	Day 1	Day 2	Day 3	Inhalation Day 0				
	Cı	urrent Label Par	ameters ²							
100 foot release100% aerial deposition	Adult dermal	340 – 1400 (570)	1,400	5,800	24,000					
• 60 µm droplet	1< 2 years Dermal + HtM	170 – 700 (280)	700	2,900	12,000	700				
		Sensitivity Ana	alysis							
• 300 foot release	Adult dermal	820 – 3,400 (1400)	3,400	14,000	60,000					
41% aerial deposition60 μm	1< 2 years Dermal + HtM	410 – 1,700 (680)	1,700	7,200	30,000	4,400				
• 300 foot release	Adult dermal	1,300 – 5,300 (2,200)	5,400	23,000	94,000					
26% aerial deposition50 μm	1< 2 years Dermal + HtM	650 – 2,700 (1100)	2,700	11,000	47,000	5,300				
 300 foot release 18% aerial deposition 45 μm 	Adult dermal	1,900 – 7,800 (3200)	7,800	33,000	140,000					
	1<2 years Dermal + HtM	940 – 3,900 (1,600)	4,000	16,000	68,000	6,600				

¹ MOE = Margin of Exposure; Range represents estimated risk based on the highest and lowest Day 0 transferable residues from the previously cited TTR study. Values in parenthesis represents estimated risk based on the average Day 0 transferable residue from the four studied sites.

7.0 Non-Occupational Spray Drift Exposure and Risk Estimates

Occupational and Residential Exposure Memo: D431434, 06/09/16, S. Shelat.

² Dose (mg/kg/day) equations provided in Appendix F.

³ Dermal and Incidental Oral MOE = POD (80 or 10 mg/kg/day) \div Dose (mg/kg/day); Inhalation MOE = HEC (52.7 mg/m³) \div Air concentration (mg/m³).

⁴ X indicates the exposure scenario is included in the combined MOE.

⁵ Combined MOE = $\hat{1}$ ÷ (1/dermal MOE) + (1/inhalation MOE) + (1/incidental oral MOE), where applicable ; N/A = Not applicable

² Based on registered labels (Section 3.4 and Appendix C)

Off-target movement of pesticides can occur via many types of pathways and it is governed by a variety of factors. Sprays that are released and do not deposit in the application area end up off-target and can lead to exposures to those it may directly contact. They can also deposit on surfaces where contact with residues can eventually lead to indirect exposures (*e.g.*, children playing on lawns where residues have deposited next to treated fields). The potential risk estimates from these residues can be calculated using drift modeling onto 50 feet wide lawns coupled with methods employed for residential risk assessments for turf products.

The approach to be used for quantitatively incorporating spray drift into risk assessment is based on a premise of compliant applications which, by definition, should not result in direct exposures to individuals because of existing label language and other regulatory requirements intended to prevent them. ¹⁰ Direct exposures would include inhalation of the spray plume or being sprayed directly. Rather, the exposures addressed here are thought to occur indirectly through contact with impacted areas, such as residential lawns, when compliant applications are conducted. Given this premise, exposures for children (1 to 2 years old) and adults who have contact with turf where residues are assumed to have deposited via spray drift thus resulting in an indirect exposure are the focus of this analysis analogous to how exposures to turf products are considered in risk assessment.

In order to evaluate the drift potential and associated risks, an approach based on drift modeling coupled with techniques used to evaluate residential uses of pesticides was utilized. Essentially, a residential turf assessment, based on exposure to deposited residues, has been completed to address drift from the agricultural applications of malathion. In the spray drift scenario, the deposited residue value was determined based on the amount of spray drift that may occur at varying distances from the edge of the treated field using the AgDRIFT (v2.1.1) model and the *Residential Exposure Assessment Standard Operating Procedures Addenda 1: Consideration of Spray Drift Policy*. Once the deposited residue values were determined, the remainder of the spray drift assessment was based on the algorithms and input values specified in the recently revised (2012) *Standard Operating Procedures For Residential Risk Assessment (SOPs)*.

For malathion, chemical-specific TTR data are available, therefore, the estimated TTR are based on a chemical specific transferable residue as discussed in Section 6.2.

A screening approach was developed based on the use of the AgDRIFT model in situations where specific label guidance that defines application parameters is not available. AgDRIFT is appropriate for use only when applications are made by aircraft, airblast orchard sprayers, and groundboom sprayers. When AgDRIFT was developed, a series of screening values (i.e., the Tier 1 option) were incorporated into the model and represent each equipment type and use under varied conditions. The screening options specifically recommended in this methodology were selected because they are plausible and represent a reasonable upper bound level of drift for

_

¹⁰ This approach is consistent with the requirements of the EPA's Worker Protection Standard.

¹¹http://www.agdrift.com/

common application methods in agriculture. These screening options are consistent with how spray drift is considered in a number of ecological risk assessments and in the process used to develop drinking water concentrations used for risk assessment. In all cases, each scenario is to be evaluated unless it is not plausible based on the anticipated use pattern (e.g., herbicides are not typically applied to tree canopies) or specific label prohibitions (e.g., aerial applications are not allowed). Section 7.1 provides the screening level drift related risk estimates. In many cases, risks are of concern when the screening level estimates for spray drift are used as the basis for the analysis. In order to account for this issue and to provide additional risk management options additional spray drift deposition fractions were also considered. These drift estimates represent plausible options for pesticide labels.

Spray drift assessments have been conducted to illustrate the potential for exposure from spray drift from typical agricultural applications of malathion. In addition to these scenarios, malathion also is used by several eradication programs that were assessed separately in the previous risk assessment (J. Arthur, D330678, 7/6/2006). These programs are described below:

- **Boll Weevil Eradication Program**: The Boll Weevil Eradication Program (BWEP) is a special project under the direction of the United States Department of Agriculture. This program is unique in that it attempts to systematically eradicate the boll weevil pest in cotton-growing regions of the US. This comprehensive and systematic approach was considered to be sufficiently different from normal agricultural use of malathion. In the BWEP, malathion is applied to cotton using ultra low volume (ULV) techniques (96.5% ai), at a maximum rate of 1.23 lb ai/acre, primarily by fixed-wing aircraft. This assessment covers bystander exposure in areas adjacent to areas that have been sprayed for boll weevil eradication.
- Fruit Fly Eradication Treatment: Treatment programs to control fruit fly pests have been undertaken in the states of California, Florida and Texas. Applications are usually made by helicopters flying at 200 to 300 feet altitude, or fixed-wing aircraft flying at 500 feet altitude. Sensitive areas, such as bodies of water are usually given a 200-foot, nospray buffer zone. Malathion end-use products are mixed with protein hydrolase bait which is sprayed aerially or by ground sprayers, settles on target surfaces, and is eaten by the target fruit fly pests. This use is a Special Local Needs (SLN) use through several 24C labels for fruit fly treatments. The maximum application on most labels is 0.18 lb ai/acre, however one label, CA820063, is registered for a maximum application rate of 0.5 lb ai/acre.
- USDA-APHIS Rangeland Grasshopper and Mormon Cricket Suppression Program: This program applies malathion in a manner similar to the BWEP, only at a lower application rate (maximum of 0.62 lb ai/acre).

The application programs listed above have previously been assessed separately because a spray drift assessment had not been routinely completed in the human health risk assessments. With

the initiation of Registration Review and the finalization of the *Residential Exposure Assessment Standard Operating Procedures Addenda 1: Consideration of Spray Drift Policy*, the potential indirect non-occupational exposures from nearby commercial or agricultural applications will be completed per the spray drift policy.

7.1 Combined Risk Estimates from Spray Drift

The spray drift risk estimates are based on an estimated deposited residue concentration as a result of the screening level agricultural application scenarios. Malathion is registered on various agricultural crops and non-crop areas. Most of the registered products are applied either via aerial, chemigation, groundboom, airblast or with handheld equipment. The recommended drift scenario screening level options are listed below:

- Groundboom applications are based on the AgDRIFT option for high boom height and using very fine to fine spray type using the 90th percentile results.
- Orchard airblast applications are based on the AgDRIFT option for Sparse (Young/Dormant) tree canopies.
- <u>Aerial applications</u> are based on the use of AgDRIFT Tier 1 aerial option for a fine to medium spray type and a series of other parameters which will be described in more detail below (e.g., wind vector assumed to be 10 mph in a downwind direction for entire application/drift event). 12

Dermal risk estimates were calculated for adults. Dermal and incidental oral risk estimates for children (1 to <2 years old) were combined because the toxicity endpoint for each route of exposure is the inhibition of RBC cholinesterase (ChE). The total applicable LOC is 1000, so MOEs < 1000 represent risk estimates of concern.

Adult dermal and children's (1 to < 2 year old) dermal and incidental oral risk estimates related to spray drift result in a range of buffers depending on the spray drift scenario. The screening level risk estimates are summarized in Table 7.1.1. In addition to the screening level spray drift scenarios as described above, additional results are provided in Appendix G which represent viable drift reduction technologies (DRTs) that represent potential risk management options. In particular, different spray qualities have been considered as well as the impact of other application conditions (e.g., boom height, use of a helicopter instead of fixed wing aircraft, crop canopy conditions). Results indicate that the major risk concern is from aerial applications. Appropriate drift reduction technologies such as changing the spray type/nozzle configuration to coarser spray applications may result in less drift and reduced risk concerns (i.e., higher MOEs)

Page 54 of 258

¹² AgDrift allows for consideration of even finer spray patterns characterized as very fine to fine. However, this spray pattern was not selected as the common screening basis since it is used less commonly for most agriculture. If assessors identify this use pattern it should be used as the screening criteria and deposition values associated with it are provided in the table. In the case of malathion, fine to very fine is appropriate for ULV applications which include the uses associated with the boll weevil eradication program and for the mormon cricket suppression program.

from aerial applications. Similarly, using coarser sprays and lowering boom height for groundboom sprayers reduces risk concerns.

Table 7.1.1. Summary	of Spray Drift F	Suffers for	Malathion.						
THOSE TOTAL SAME OF THE SAME O			Dermal Buffer Su	ımmarv		Children 1 < 2 years Buffer Summary			
G.	Application					nal + Incidental O			
Crops	rate ¹ (lb	Buffers	Necessary to reac 1000 (ft)	h MOE of	Buffers Necessary to reach MOE of 1000 (ft)				
	ai/A)	Aerial	Groundboom	Airblast	Aerial	Groundboom	Airblast		
Fencerows/Hedgerows	10.6	>300	300	100	>300	>300	150		
Citrus (CA)	7.5	>300	250	100	>300	>300	125		
Kumquat, Citrus		200	405		200	2.50	400		
(including FL, except lemons in FL)	4.5	>300	125	75	>300	250	100		
Nectarines, Peaches	3	>300	75	50	>300	200	75		
Chestnut, Cotton, Pecans, Walnut	2.5	300	75	50	>300	150	75		
Apples	2.23	250	75	50	>300	125	75		
Arugula, Amaranth,									
Caneberries, Chervil, Chrysanthemum, Corn									
salad, Dock(sorrel),									
Figs, Orach,	2.0	250	50	50	>300	125	75		
Ornamentals, Purslane,									
Strawberries, Celtuce,									
Florence fennel, Gooseberry, Pineapple									
Chayote fruit, Cherries,									
Cucumber, Summer	1.75	200	50	50	>300	100	50		
squash									
Chayote root,									
Eggplant, Garlic,									
Leeks, Onions, Peppers, Bell Peppers,	1.56	200	50	25	>300	100	50		
Potatoes, Shallots,	1.50	200	30	23	- 300	100	50		
Sweet potatoes,									
Tomatoes, Yams									
Apricot, Beans, Celery,									
Lentils, Parsley, Tangerines,	1.5	200	50	25	>300	75	50		
Watermelon,									
Alfalfa, Asparagus,									
Barley, Beets,									
Broccoli, Brussel									
Sprouts, Cabbage, Carrot, Cauliflower,									
Chinese greens,									
Clover, Currant,									
Dandelion, Endive,	1.25	150	25	25	300	75	50		
Bermuda Grass, Forage									
and hay grass, Guava,									
Horseradish, Kohlrabi, Lemons (FL),									
Lespedeza, Papaya,									
Parsnip, Pears, Rice,									
Salsify, Trefoil,									

Table 7.1.1. Summary	of Spray Drift F	Ruffers for	Malathion						
Table 7.1.1. Summary	Application		Dermal Buffer St	ummary		Children 1 < 2 years Buffer Summary (Dermal + Incidental Oral)			
Crops	rate ¹ (lb ai/A)	Buffers	Buffers Necessary to reach MOE of 1000 (ft)			Buffers Necessary to reach MOE of 1000 (ft)			
		Aerial	Groundboom	Airblast	Aerial	Groundboom	Airblast		
Turnips, Vetch, Watercress, Wild Rice Cotton - Boll Weevil Eradication Chayote root, Eggplant, Garlic,	1.22	125	n/a	n/a	300	n/a	n/a		
Leeks, Onions, Peppers, Bell Peppers, Potatoes, Shallots, Sweet potatoes,	1.0^{2}	100	25	25	250	50	50		
Tomatoes, Yams Blueberry (high and low bush), Honeydew Barley, Beans, Corn,	0.77 (ULV)	75	10	10	200	50	25		
Hops, Lespedeza, Lupine, Oats, Rice, Rye, Sorghum, Wheat, Citrus USDA-APHIS Rangeland Grasshopper and Mormon Cricket Suppression Program	0.61 (ULV)	75	10	10	125	25	25		
Flax	0.5	50	10	0	100	25	25		
Kumquat, Tangerines	0.18 (ULV)	0	0	0	10	0	0		

1. The mosquitocide applications are performed at an application rate of 0.23 lbs ai/acre and have been assessed separately in Section 5.2, and therefore, not included as part of the spray drift assessment.

8.0 Residential Bystander Post-Application Inhalation Exposure

Occupational and Residential Exposure Memo: D431434, 06/09/16, S. Shelat.

Volatilization of pesticides may be a source of post-application inhalation exposure to individuals nearby pesticide applications. The Agency sought expert advice and input on issues related to volatilization of pesticides from its Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel (SAP) in December 2009, and received the SAP's final report on March 2, 2010 (http://www.epa.gov/scipoly/SAP/meetings/2009/120109meeting.html). The Agency has evaluated the SAP report and has developed a Volatilization Screening Tool and a subsequent Volatilization Screening

Analysis (http://www.regulations.gov/#!docketDetail;D=EPA-HQ-OPP-2014-0219). During Registration Review, the Agency will utilize this analysis to determine if data (*i.e.*, flux studies) or further analysis are required for malathion.

^{2.} Some application rates were identified in the master label report to range from 0.92-0.98 lbs ai/acre. These crops (i.e., Christmas tree plantations, Fence row/hedgerows, Honeydew, Macadamia nuts, Mango, Mint, Muskmelons, Non-agricultural/Uncultivated Areas/Soils, Pasture/Rangeland, and Shallot) have been considered under the 1.0 lbs ai/acre rate or another crop category for consideration in the spray drift assessment.

The Agency has also developed a preliminary bystander volatilization inhalation exposure assessment for malathion utilizing the currently available inhalation toxicity and air monitoring data. Malathion and malaoxon were detected in multiple ambient studies. Reported detections include:

- California Department of Pesticide Regulation (CDPR) Air Monitoring Network data (AMN)
 - o 2014 Salinas, California data; Shafter, California data, and Ripon, California data
 - o 2013 Salinas, California data; Shafter, California data, and Ripon, California data
 - o 2012 Salinas, California data; Shafter, California data, and Ripon, California data
 - o 2011 Salinas, California data; Shafter, California data, and Ripon, California data
- one 2003 report for application and air monitoring in Lompoc, CA (CDPR);
- one 1999 report for application and ambient air monitoring in Imperial County (CDPR)
- one 1985 (reprinted in 1995) report for residential air monitoring in Monterey County
- one 2009 report for pesticide air monitoring in Parlier, CA
- one 2009 Organophosphate Pesticide Air Monitoring Project conducted by Washington University School of Public Health

Details of each individual study are provided in Appendix H.

Application site air monitoring (i.e., also known as field volatility) refers to the collection of air samples around the edges of a treated field during and after a pesticide application. Samples are generally collected for short intervals (e.g., < 8 hours), for at least the first day or two after application with subsequent samples increasing in duration. In this type of study, it is typically known when an application occurred, the equipment used for the application, and the application rate. Application site monitoring data represents an exposure to vapors at or near the field edge resulting from an application.

Ambient air monitoring typically is focused on characterizing the airborne pesticide levels within a localized airshed or community structure of some definition (e.g., city, township, or municipality). This type of monitoring effort also can be focused on capturing chronic background levels or other temporal characteristics of interest such as focusing on seasonal pesticide use patterns. Typically, samples are generally taken for 24 consecutive hours and collected at the same site over an extended period of time (e.g., several weeks or months). In contrast to application site air monitoring, information on the precise timing and location of pesticide applications are rarely collected in ambient air monitoring studies. However, this does not mean that an application did not occur near an ambient sampler during the monitoring period

The malathion and malaoxon bystander volatilization inhalation exposure assessment compares the maximum 24 hour air concentration detected in each of the monitoring studies to the HEC for residential bystanders (9.41 mg/m³). This comparison was done to represent a potential resident who lives next to a treated field and may be exposed to the peak concentration of malathion and/or malaoxon volatilizing off the field over a 24-hour period. In addition, the arithmetic mean malathion and malaoxon air concentration from each study was compared to the HEC for

residential bystanders. This comparison was done to represent a potential seasonal exposure. Table 8.1 provides malathion and malaoxon volatilization MOE calculations for each site. None of the air concentrations results in acute or short-/intermediate-term risks of concern risks of concern with the exception of the malaoxon measurements from the application site specific monitoring done in Imperial, CA. In that study, air monitoring was conducted over a three day period to coincide with application of malathion on alfalfa. Of the 28 samples collected for malaoxon, 12 were found to be above the estimated quantitation limit (EQL) with the highest concentration observed of 440 ng/L. This measurement resulted in an MOE of 1,000 (LOC = 3,000).

Table 8.1: RESIDENTIAL BYSTANDER: Preliminary Volatilization MOE Analysis									
Study	Year of Study	Chemical ^d	Number of samples	Duration of samples	Duration of sampling period for average concentrations	Maximum Air Concentration (ng/m³)	Average Air Concentration (ng/m³)	Acute MOEs ^a (LOC = 3,000)	Short-term MOEs ^t (LOC = 3,000)
					Ambient Air Data				
(CalDPR)	2000	Malathion	451	24-hour	Highest 14 day	7.6	1.23	1,240,000	3,810,000
Lompoc, CA	2000	Malaoxon	451		average	2.2	0.43	190,000	500,000
(CARB)	1999	Malathion	60	24-hour	3 week average	90	19	100,000	500,000
Imperial, CA	1999	Malaoxon	60	24-110u1		28	13	20,000	30,000
(CDPR and CARB)	2000	Malathion	468	24.1	Highest 14 day	21	3.14	450,000	3,000,000
Parlier, CA	2009	Malaoxon	468	24-hour	average	16	3.6	30,000	120,000
(CDPR AMN) ^c		Malathion	52		Highest 4 week average	trace (12.6)	9.8	750,000	960,000
Salinas		Malaoxon	52			trace (5.3)	5.3	80,000	80,000
(CDPR AMN) ^c	2014	Malathion	52	24-hour		trace (12.6)	4	750,000	2,350,000
Shafter	2014	Malaoxon	52			trace (5.3)	3	80,000	140,000
(CDPR AMN) ^c		Malathion	53			not detected (1.1)	1.1	8,550,000	8,550,000
Ripon		Malaoxon	53			trace (5.3)	4.1	80,000	100,000
(CDPR AMN) ^c		Malathion	52		Highest 4 week average	trace (12.6)	12.6	750,000	750,000
Salinas		Malaoxon	52			trace (5.3)	3.8	80,000	110,000
(CDPR AMN) ^c	2013	Malathion	52	24-hour		trace (12.6)	6.9	750,000	1,360,000
Shafter	2013	Malaoxon	52	24-hour		trace (5.3)	4.1	80,000	100,000
(CDPR AMN) ^c Ripon		Malathion	53			trace (12.6)	4	750,000	2,350,000
		Malaoxon	53			trace (5.3)	5.3	80,000	80,000
(CDPR AMN) ^c		Malathion	52	24-hour	Highest 4 week average	trace (12.6)	12.6	750,000	750,000
Salinas		Malaoxon	52			trace (5.3)	5.3	80,000	80,000
(CDPR AMN) ^c	2012	Malathion	52			trace (12.6)	4	750,000	2,350,000
Shafter	2012	Malaoxon	52			10.7	4.3	40,000	100,000
(CDPR AMN) ^c	1	Malathion	52			not detected (1.1)	1.1	8,550,000	8,550,000
Ripon		Malaoxon	52			trace (5.3)	5.3	80,000	80,000
(CDPR AMN) ^c		Malathion	47	24-hour	Highest 4 week average	12.5	5.7	750,000	1,650,000
Salinas	[Malaoxon	47			trace (4.0)	trace (4.0)	110,000	110,000
(CDPR AMN) ^c	2011	Malathion	47			not detected (1.1)	not detected (1.1)	8,550,000	8,550,000
Shafter		Malaoxon	47			trace (4.0)	trace (1.5)	110,000	290,000
(CDPR AMN) ^c	[Malathion	48			trace (10.5)	trace (3.4)	900,000	2,770,000

Table 8.1: RESIDENTIAL BYSTANDER: Preliminary Volatilization MOE Analysis									
Study	Year of Study	Chemical ^d	Number of samples	Duration of samples	Duration of sampling period for average concentrations	Maximum Air Concentration (ng/m³)	Average Air Concentration (ng/m³)	Acute MOEs ^a (LOC = 3,000)	Short-term MOEs ^b (LOC = 3,000)
Ripon		Malaoxon	48			trace (4.0)	trace (3.2)	110,000	130,000
Application Site Data									
Imperial, CA	1999	Malathion	28	2 hour	3 day	2400	N/A	4,000	N/A
(CARB)	1999	Malaoxon	28	8 hour	ur 3 day	440	N/A	1,000	N/A

- a. Acute MOE = Residential Bystander HEC (9,410,000 ng/m³) / Study maximum air concentration (ng/m³). LOC = 3,000
- b. Short-term MOE = Residential Bystander HEC $(9,410,000 \text{ ng/m}^3)$ / Study arithmethic mean air concentration (ng/m^3) . LOC = 3,000
- c. All non-detects and trace concentrations reported as identified in the individual study reports. For non-detects, assumed 1/2 Limit of Detection (LOD) of 2.2 ng/m³ for malathion and 1.3 ng/m³ for malaoxon. For trace concentrations, assumed concentration halfway between LOD and Limit of Quantitation of (LOQ) 9.3 ng/m³ for malathion and 9.3 ng/m³ for malaoxon. In the 2014 report, CDPR reports the LOQ for malathion to be 23.1 ng/m³.
- d. All detected or measured malaoxon air concentrations were multiplied by 22X to account for the TAF for malaoxon.

Some of the limitations and considerations that have been identified that should be considered in the interpretation of these results include:

- Most of the data utilized in this preliminary assessment are 24-hour air samples. When this data are used, an assumption is made that an individual is exposed to the same air concentration for 24-hours every day. However, this is not always the case as real world time-activity data indicate that many parts of the population move from site to site on a daily basis (*e.g.*, go to work and back).
- This assessment is only representative of outdoor concentrations (*i.e.*, the exposure and risk estimates assume an individual is outdoors all the time). It does not take into account potential effects of air conditioning systems and similar air filtration systems which could potentially reduce air concentrations of malathion and malaoxon indoors. The Agency believes that indoor concentrations will be at worst equivalent to outdoor concentrations and may potentially be lower.
- Most of the data used for this analysis have been generated in California (with one study in Washington); however, malathion is used in many regions of the country. Therefore, the results based on the limited available air monitoring data were used to represent the rest of the country due to a lack of adequate information for any other region. It is unclear what potential impacts this extrapolation might have on the risk assessment. Factors such as meteorology and cultural practices may impact the overall amounts of malathion that volatilize from a treated field as well as the rate at which it volatilizes.
- As part of the December 2009 SAP, the Agency presented their analysis of several models that could be used as screening tools to predict the air concentration and volatilization flux based on intrinsic properties and transport behaviors of pesticides. These models would allow the Agency to better represent the potential volatilization of semi-volatile pesticides across various regions of the country. The SAP provided a number of comments regarding the Agency's model analysis, including the recommendation to evaluate some additional models. The Agency is currently in the process of evaluating the SAP's comments. As appropriate, the Agency will revise the modeling approach presented to the SAP for determining the rate of volatilization (flux) for semi-volatile pesticides and for estimating air concentrations of applied pesticides in the atmosphere under varying environmental conditions. After any policies or procedures are put into place, the Agency may revisit the malathion residential bystander exposure and risk assessment
- The residential bystander estimated exposure should not be included in the human health risk assessment aggregate since this is only a preliminary assessment and is not considered a refined assessment for the reasons noted above. There are limitations associated with the air monitoring data that are available, such as the fact that most are 24-hour air samples and that the measurement techniques do not distinguish between aerosols and vapors. In addition, as noted in the above bullet, this assessment assumes residents are outdoors during the entire exposure duration.

9.0 Aggregate Exposure/Risk Characterization

In accordance with the FQPA, when there are food uses of a chemical, aggregate risk assessments must be conducted that consider exposures from three major routes: oral, dermal, and inhalation. The main pathways of exposure for malathion include: dietary (food and water) and residential. In an aggregate assessment, exposures from relevant routes and pathways are added together and compared to quantitative estimates of hazard (e.g., a NOAEL or PAD), or the risks themselves can be aggregated. When aggregating exposures and risks from various sources, HED considers both the route and duration of exposure.

9.1 Acute Aggregate Risk

The acute aggregate risk assessment combines exposures to malathion and malaoxon from food and drinking water only. There are acute aggregate risk estimates of concern (see Section 5.4.3 Acute Dietary Assessment and Table 5.4.6.3).

9.2 Steady State Aggregate Risk

The steady-state aggregate assessment combines steady-state dietary (food and water) and residential exposures. The inhalation POD is based on portal of entry effects. This effect is not the same as the steady state effect of the inhibition of RBC acetylcholinesterase seen in the dermal and oral toxicity studies. Due to the difference in effects between these routes of exposure, exposures from the inhalation route cannot be aggregated with the dermal and oral routes of exposure.

Although there is the potential to aggregate steady state dermal and oral exposures from dietary and residential pathways, there are risks of concern associated with the steady-state dietary exposures as well as with many of the residential exposure scenarios. Due to the risks of concern presented by the individual scenarios, both residential and dietary, a steady state aggregate risk assessment was not conducted.

9.3 Cancer Aggregate Risk

Malathion is classified as "suggestive evidence of carcinogenicity, but not sufficient to assess human carcinogenic potential." Therefore, a cancer dietary exposure analysis is not required.

10.0 Cumulative Exposure/Risk Characterization

OPs, like malathion, share the ability to inhibit AChE through phosphorylation of the serine residue on the enzyme leading to accumulation of acetylcholine and ultimately cholinergic neurotoxicity. This shared MOA/AOP is the basis for the OP common mechanism grouping per *OPP's Guidance For Identifying Pesticide Chemicals and Other Substances that have a Common Mechanism of Toxicity (USEPA, 1999)*. The 2002 and 2006 cumulative risk assessments (CRAs) used brain AChE inhibition in female rats as the source of dose response data for the relative potency factors and PODs for each OP, including malathion. Prior to the

completion of registration review, OPP will update the OP CRA on AChE inhibition to incorporate new toxicity and exposure information available since 2006.

As described in Section 4.4, OPP has retained the FQPA Safety Factor for OPs, including malathion, due to uncertainties associated with neurodevelopmental effects in children and exposure to OPs. There is a lack of an established MOA/AOP for the neurodevelopment outcomes which precludes the Agency from formally establishing a common mechanism group per the *Guidance For Identifying Pesticide Chemicals and Other Substances that have a Common Mechanism of Toxicity* (USEPA, 1999) based on that outcome. Moreover, the lack of a recognized MOA/AOP and other uncertainties with exposure assessment in the epidemiology studies prevent the Agency from establishing a causal relationship between OP exposure and neurodevelopmental outcomes. The Agency will continue to evaluate the epidemiology studies associated with neurodevelopmental outcomes and OP exposure prior to the release of the revised PRA. During this period, the Agency will determine whether or not it is appropriate to apply the draft guidance document entitled, *Pesticide Cumulative Risk Assessment: Framework for Screening Analysis* for the neurodevelopment outcomes.

11.0 Occupational Exposure/Risk Characterization

Occupational and Residential Exposure Memo: DP431434, 06/09/16, S. Shelat.

11.1 Short- and Intermediate-Term and Steady-State Handler Exposure/Risk Estimates

HED uses the term handlers to describe those individuals who are involved in the pesticide application process. HED believes that there are distinct job functions or tasks related to applications and exposures can vary depending on the specifics of each task. Job requirements (amount of chemical used in each application), the kinds of equipment used, the target being treated, and the level of protection used by a handler can cause exposure levels to differ in a manner specific to each application event. For occupational handlers, exposure is anticipated to be to the parent, malathion, only.

The quantitative exposure/risk assessment developed for occupational handlers is based on the following scenarios which cover all the registered uses of malathion:

- Mixing/loading liquids to support aerial applications,
- Mixing/loading liquids to support airblast applications,
- Mixing/loading liquids to support chemigation applications,
- Mixing/loading liquids to support groundboom applications,
- Mixing/loading liquids to support dip applications,
- Loading dust via power duster,
- Mixing/loading liquids to support aerial and ground ULV applications,
- Applying sprays via aerial application,
- Applying sprays via groundboom application,
- Applying sprays via airblast application,
- Applying via dip application,
- Flagging to support aerial applications,
- Mixing/loading/applying liquids via backpack,
- Mixing/loading/applying liquids via mechanically-pressurized handgun,

- Mixing/loading/applying liquids via manually-pressurized handwand,
- Mixing/loading/applying liquids via handheld fogger,
- Applying dust via power duster, and
- Applying via aerial and ground ULV applications.

Occupational Handler Exposure Data and Assumptions

A series of assumptions and exposure factors served as the basis for completing the occupational handler risk assessments. Assumptions and factors, as well as algorithms used to estimate non-cancer exposure and dose for occupational handlers are detailed in the most recent ORE memo (S. Shelat; D431434; 06/09/2016).

For adults, when an endpoint is not sex-specific (i.e., the endpoints are based on developmental or fetal effects) a body weight of 80 kg is typically used in risk assessment; however, in this case, a female-specific body weight of 69 kg was used. While the endpoints of concern, RBC AChE inhibition and inhalation portal of entry effects, are not sex-specific, the female-specific body weight was used to protect for pregnant women due to uncertainty in the human dose-response relationship for neurodevelopmental effects (See Section 4.4).

The steady-state approach is appropriate for malathion given the toxicological and exposure profile. The steady-state dermal endpoint selection for malathion overlaps with HED's traditional short-term exposure duration endpoint selection and is considered health protective for occupational handlers that apply commercially over longer periods of time (i.e., intermediate-term exposures).

MRID: 46634105 Determination of Dermal and Inhalation Exposure to Workers during Closed-System Loading and ULV Application of a Liquid Pesticide Product to Cotton." (DP Barcode: 324585; Decision#: 330654)

The purpose of the study was to determine the dermal and inhalation exposure of handlers from the closed-system loading of a liquid pesticide in support of large volume aerial spraying, as well as the dermal and inhalation exposure of pilots spraying large acreage crops (cotton) with an ULV formulation by fixed-wing aircraft. EPA estimated dermal and inhalation unit exposure values as $\mu g/lb$ ai handled. Inhalation unit exposure values were calculated assuming a breathing rate of 0.0167 m³/minute for loaders (NAFTA light inhalation rate) and 0.0083 m³/minute for applicators (NAFTA sedentary inhalation rate). Both generic and chemical-specific data were used as part of the assessment for ULV applications.

While there are certain issues with regard to the conduct and results of the study, none are sufficient to preclude the use of the exposure data for exposure/risk assessment purposes. It is important to note that the hand exposure data were obtained using gloved hands, and therefore, the use of these data in exposure/risk assessments must assume that workers will be wearing gloves during the mixing/loading activity.

Lastly, there remains a data gap for the power duster for grain storage facilities and the handheld fogger for mushroom houses. For malathion, the dust formulation (EPA Reg No. 1015-69) is

only registered for post-harvest application to raw agricultural commodities (wheat, corn, oats, barley, and rye). The mixer/loader scenario for the power duster has been assessed using the wettable powder loader unit exposures. The applicator scenario for the power duster has not been quantitatively assessed due to lack applicable unit exposures currently available. The mixer/loader/applicator handheld fogger scenario has not been quantitatively assessed due to a lack representative data to lack applicable unit exposures currently available.

Estimates of dermal and inhalation exposure were calculated for baseline attire in addition to various levels of PPE. Results are presented for "baseline," defined as a single layer of clothing consisting of a long sleeved shirt, long pants, shoes plus socks, no protective gloves, and no respirator, as well as baseline with various levels of PPE as necessary (e.g., gloves, respirator, etc). Most of the liquid formulation malathion registered labels require handlers to wear a single layer of clothing (long sleeved shirt and long pants), shoes plus socks, protective eyewear (either goggles or face shield), chemical-resistant gloves, and chemical-resistant apron. One label (EPA Reg No. 4-122) also required handlers to wear coveralls. The dust formulation malathion registered label requires handlers to wear coveralls over long-sleeved shirts, long pants, shoes and socks, protective eyewear, chemical-resistant gloves, and NIOSH approved respirator with any N, R, P, or HE filter, along with chemical-resistant headgear when overheard exposure is expected.

Summary of Occupational Handler Non-Cancer Exposure and Risk Estimates

The occupational handler exposure and risk estimates indicate that most dermal and inhalation MOEs are of concern to HED (i.e., dermal MOE < 1000, inhalation MOE < 3000) for most scenarios assuming the use of label-required PPE (gloves). Table 11.1.1 provided a risk estimate summary of the exposure scenario, application method, and application rate combinations that do not result in risks of concern (i.e., dermal MOE \geq 1000, inhalation MOE \geq 3000) with the label-required PPE. Application rates greater than those identified may require risk mitigation. The risk estimates for all registered occupational malathion uses and risk mitigation options (i.e., PPE and engineering controls) is provided in Appendix I.

In general, most typical, high-acreage, and non-agricultural uses are of concern for dermal exposure with label required PPE (i.e., gloves). Additionally, some scenarios do not reach acceptable MOEs even with the highest level of risk mitigation. For inhalation exposure, most scenarios reach the acceptable MOE of 3000 at label required PPE (no respirator) with the exception of higher use rates and applying via airblast equipment.

HED has no data to assess exposures to pilots using open cockpits. The only data available is for exposure to pilots in enclosed cockpits. Therefore, risks to pilots are assessed using the engineering control (enclosed cockpits) and baseline attire (long-sleeve shirt, long pants, shoes, and socks); per the Agency's Worker Protection Standard stipulations for engineering controls, pilots are not required to wear protective gloves for the duration of the application. Dermal risk estimates do not reach acceptable MOEs (MOEs < 1000) with engineering controls for a number of higher application rates.

The Agency matches quantitative occupational exposure assessment with appropriate characterization of exposure potential. While HED presents quantitative risk estimates for human

flaggers where appropriate, agricultural aviation has changed dramatically over the past two decades. According the 2012 National Agricultural Aviation Association (NAAA) survey of their membership, the use of GPS for swath guidance in agricultural aviation has grown steadily from the mid 1990's. Over the same time period, the use of human flaggers for aerial pesticide applications has decreased steadily from ~15% in the late 1990's to only 1% in the most recent (2012) NAAA survey. The Agency will continue to monitor all available information sources to best assess and characterize the exposure potential for human flaggers in agricultural aerial applications. HED recommends that the PPE on the registered malathion labels for flaggers be revised to reflect the information provided below in Table 11.1.1. To reach acceptable MOEs for flagging activities associated with application rates greater than 0.63 lbs ai/acre, risk mitigation may be considered.

Table 11.1.1 Risk Estinated PPE.	mate Summary of Registered Malathion Occupa	tional Uses – Scenarios that DO NOT resu	ult in risk estimates of concern with
insci-required 1112.	Exposure Scenario	Dermal	Inhalation
	Typical field crops	No registered rates result in MOEs \geq 1000	≤ 1.00 lbs ai/A
	High acreage field crops	No registered rates result in MOEs \geq 1000	No registered rates result in MOEs > 3000
	Nursery (ornamentals, vegetables, trees, container stock)	MOEs > 1000 at labeled rate (0.25 lbs ai/A)	MOEs $>$ 3000 at labeled rate (0.25 lbs ai/A)
	Field-grown ornamental crops	MOEs > 1000 at labeled rate (0.25 lbs ai/A)	MOEs $>$ 3000 at labeled rate (0.25 lbs ai/A)
Mixing/Loading for Aerial Applications	Non-Agricultural Sites	No registered rates result in MOEs ≥ 1000	MOEs > 3000 at labeled rates
	ULV Agricultural sites with MRID 466341-05 data	\leq 0.18 lbs ai/A	MOEs > 3000 at labeled rates
	ULV Agricultural site with generic data	No registered rates result in MOEs \geq 1000	No registered rates result in MOEs > 3000
	ULV Non-agricultural sites with MRID 466341-05 data	\leq 0.23 lbs ai/A	≤ 0.93 lbs ai/A
	ULV Non-agricultural sites with generic data	No registered rates result in MOEs \geq 1000	No registered rates result in MOEs > 3000
	Typical field crops	< 0.5 lbs ai/A	≤ 1.00 lbs ai/A
Mixing/Loading for Chemigation	Nursery (ornamentals, vegetables, trees, container stock)	MOEs > 1000 at labeled rate (1 lbs ai/A)	MOEs $>$ 3000 at labeled rate (1 lbs ai/A)
Applications	Field-grown ornamental crops	MOEs > 1000 at labeled rate (1 lbs ai/A)	MOEs $>$ 3000 at labeled rate (1 lbs ai/A)
	Typical field crops	≤ 1.75 lbs ai/A	MOEs > 3000 at labeled rates
	High acreage field crops	< 1 lbs ai/A	MOEs > 3000 at labeled rates
	Nursery (ornamentals, vegetables, trees, container stock)	MOEs > 1000 at labeled rate (1 lbs ai/A)	MOEs > 3000 at labeled rates
Miying/Looding for	Field-grown ornamental crops	MOEs > 1000 at labeled rate (1 lbs ai/A)	MOEs > 3000 at labeled rates
Mixing/Loading for Groundboom Applications	Non-Agricultural Sites	MOEs > 1000 at labeled rate (1 lbs ai/A)	MOEs > 3000 at labeled rates
	ULV Agricultural sites with MRID 466341-05 data	MOEs > 1000 at labeled rates	MOEs > 3000 at labeled rates
	ULV Agricultural site with generic data	\leq 0.94 lbs ai/A	MOEs > 3000 at labeled rates
	ULV Non-agricultural sites with MRID 466341-05 data	≤ 10.6 lbs ai/A	MOEs > 3000 at labeled rates
	ULV Non-agricultural site with generic data	≤ 0.93 lbs ai/A	< 0.23 lbs ai/acre

Table 11.1.1 Risk Estir label-required PPE.	nate Summary of Registered Malathion Occupa	tional Uses – Scenarios that DO NOT resu	ılt in risk estimates of concern with
	Exposure Scenario	Dermal	Inhalation
Mixing/Loading for Truck-Mounted Fogger Application	Non-Agricultural Sites	MOEs > 1000 at labeled rate 0.51 lbs ai/A)	MOEs > 3000 at labeled rates
	Nursery (ornamentals, vegetables, trees, container stock)	No registered rates result in MOEs \geq 1000	MOEs > 3000 at labeled rates
Mixing/Loading for Airblast Applications	Field-grown ornamental crops	No registered rates result in MOEs \geq 1000	MOEs > 3000 at labeled rates
	Tree plantations and Typical field crops	\leq 3.2 lbs ai/A	MOEs > 3000 at labeled rates
Mixing/Loading for Mechanically- pressurized Handgun Applications	Non-Agricultural Sites	No registered rates result in MOEs \geq 1000	No registered rates result in MOEs > 3000
Loading to Support Power Duster Applications	Stored Grain	MOEs > 1000 at labeled rate (0.00062 and 0.0003 lbs ai/sq ft)	The rates of 0.00062 result in MOEs < 3000 and 0.0003 lbs ai/sq ft result in MOEs > 3000
	Typical field crops High acreage field crops	\leq 7.5 lbs ai/A $<$ 2.5 lbs ai/A	MOEs > 3000 at labeled rates MOEs > 3000 at labeled rates
	Nursery (ornamentals, vegetables, trees, container stock)	MOEs > 1000 at labeled rate (0.25 lbs ai/A)	MOEs > 3000 at labeled rates
Amalaina via Aorial	Field-grown ornamental crops	MOEs > 1000 at labeled rate (0.25 lbs ai/A)	MOEs > 3000 at labeled rates
Applying via Aerial Applications	Non-Agricultural Sites	MOEs > 1000 at labeled rates	MOEs > 3000 at labeled rates
ripplications	ULV Agricultural sites with MRID 466341-05 data	≤ 0.18 lbs ai/A	\leq 0.77 lbs ai/A
	ULV Agricultural site with generic data	≤ 0.18 lbs ai/A	MOEs > 3000 at labeled rates
	ULV Non-agricultural sites with MRID 466341-05 data	≤ 0.23 lbs ai/A	\leq 0.93 lbs ai/A
	ULV Non-agricultural site with generic data	≤ 0.23 lbs ai/A	≤ 10.6 lbs ai/A
	Typical field crops	\leq 2 lbs ai/A	\leq 2.0 lbs ai/A
	High acreage field crops	≤ 1.25 lbs ai/A	≤ 1.25 lbs ai/A
Applying via	Nursery (ornamentals, vegetables, trees, container stock)	MOEs > 1000 at labeled rate (1 lbs ai/A)	MOEs > 3000 at labeled rates
Groundboom	Field-grown ornamental crops	MOEs > 1000 at labeled rate (1 lbs ai/A)	MOEs > 3000 at labeled rates
Applications	Non-Agricultural Sites	MOEs > 1000 at labeled rates	MOEs > 3000 at labeled rates
	ULV Agricultural site with generic data	MOEs > 1000 at labeled rates	MOEs > 3000 at labeled rates
	ULV Non-agricultural site with generic data	≤ 0.93 lbs ai/A with exception of public health uses (MOEs = 550)	No registered rates result in MOEs > 3000

Table 11.1.1 Risk Estim label-required PPE.	nate Summary of Registered Malathion Occupa	tional Uses – Scenarios that DO NOT res	ult in risk estimates of concern with	
•	Exposure Scenario	Dermal	Inhalation	
Applying via Truck- Mounted Fogger Application	Non-Agricultural Sites	No registered rates result in MOEs \geq 1000	No registered rates result in MOEs > 3000	
Applying via Mechanically- pressurized handgun	Non-Agricultural Sites	No registered rates result in MOEs \geq 1000	No registered rates result in MOEs > 3000	
Applying via Power Duster	Stored Grain	Data Gap	Data Gap	
	Nursery (ornamentals, vegetables, trees, container stock)	No registered rates result in MOEs \geq 1000	No registered rates result in MOEs > 3000	
Applying via Airblast Applications	Field-grown ornamental crops	No registered rates result in MOEs ≥ 1000	No registered rates result in MOEs > 3000	
	Tree plantations and Typical field crops	No registered rates result in MOEs ≥ 1000	No registered rates result in MOEs > 3000	
Flagging	All use sites	≤ 1.25 lbs ai/A	\leq 0.63 lbs ai/A	
	Tree plantations		No registered rates result in MOEs > 3000 (3.2 lbs a/acre)	
Backpack	Mushroom houses	No registered rates result in MOEs \geq 1000	MOEs > 3000 at labeled rate (1.7 lbs ai/A)	
Applications	Foliar and Ground-directed ornamentals		MOEs > 3000 at labeled rate (0.025 lbs ai/gallon)	
	Non-Agricultural Sites	No registered rates result in MOEs ≥ 1000	See Appendix H ¹	
	Tree plantations, ornamentals (foliar-directed)	No registered rates result in MOEs ≥ 1000 (exceptions below)	No registered rates result in MOEs > 3000 (3.2 lbs ai/acre)	
Manually-pressurized	Mushroom houses	MOEs > 1000 at labeled rate (1.7 lbs ai/A)	MOEs > 3000 at labeled rate (1.7 lbs ai/A)	
Handgun Applications	Ornamentals	MOEs > 1000 at labeled rate (0.025 lbs ai/gallon)	MOEs > 3000 at labeled rate (0.025 lbs ai/gallon)	
	Non-Agricultural Sites	See Appendix H ¹	See Appendix H ¹	
Mechanically- pressurized handgun Applications	Mushroom houses	MOEs > 1000 at labeled rate (1.7 lbs ai/A)	MOEs $>$ 3000 at labeled rate (1.7 lbs ai/A)	
	Ornamentals	No registered rates result in MOEs > 1000	No registered rates result in MOEs > 3000 (0.025 lbs ai/gallon)	
Dip Applications	Non-Agricultural Sites Grape root	See Appendix H ¹ MOEs > 1000 at labeled rates	See Appendix H ¹ MOEs > 3000 at labeled rates	

Table 11.1.1 Risk Estimate Summary of Registered Malathion Occupational Uses – Scenarios that DO NOT result in risk estimates of concern with label-required PPE.

	Exposure Scenario	Dermal	Inhalation
Handheld Fogger Applications	Mushroom houses	Data Gap	Data Gap

Appendix I is identified for some exposure scenario combinations because the amount handled/area treated assumptions vary across the uses, making it difficult to identify an application rate where the MOEs are not of concern to HED (i.e., dermal MOEs ≥ 1000 and inhalation MOEs ≥ 3000). Please see Appendix I for the individual risk estimates.

11.2 Steady-State Post-Application Exposure/Risk Estimates

HED uses the term post-application to describe exposures that occur when individuals are present in an environment that has been previously treated with a pesticide (also referred to as reentry exposure). Such exposures may occur when workers enter previously treated areas to perform job functions, including activities related to crop production, such as scouting for pests or harvesting. Post-application exposure levels vary over time and depend on such things as the type of activity, the nature of the crop or target that was treated, the type of pesticide application, and the chemical's degradation properties. In addition, the timing of pesticide applications, relative to harvest activities, can greatly reduce the potential for post-application exposure.

For adults, when an endpoint is not sex-specific (i.e., the endpoints are based on developmental or fetal effects) a body weight of 80 kg is typically used in risk assessment; however, in this case, a female-specific body weight of 69 kg was used. While the endpoints of concern, RBC AChE inhibition and inhalation portal of entry effects, are not sex-specific, the female-specific body weight was used to protect for pregnant women due to uncertainty in the human dose-response relationship for neurodevelopmental effects (See Section 4.4).

11.2.1 Occupational Post-application Inhalation Exposure/Risk Estimates

There are multiple potential sources of post-application inhalation exposure to individuals performing post-application activities in previously treated fields. These potential sources include volatilization of pesticides and resuspension of dusts and/or particulates that contain pesticides. The Agency sought expert advice and input on issues related to volatilization of pesticides from its Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel (SAP) in December 2009, and received the SAP's final report on March 2, 2010 (http://www.epa.gov/scipoly/SAP/meetings/2009/120109meeting.html). The Agency has evaluated the SAP report and has developed a Volatilization Screening Tool and a subsequent Volatilization Screening Analysis (http://www.regulations.gov/#!docketDetail;D=EPA-HQ-OPP-2014-0219). During Registration Review, the Agency will utilize this analysis to determine if data (i.e., flux studies) or further analysis is required for malathion.

In addition, the Agency is continuing to evaluate the available post-application inhalation exposure data generated by the Agricultural Reentry Task Force. Given these two efforts, the Agency will continue to identify the need for and, subsequently, the way to incorporate occupational post-application inhalation exposure into the Agency's risk assessments.

11.2.2 Occupational Post-application Dermal Exposure/Risk Estimates

Occupational Post-application Dermal Exposure Data and Assumptions

A series of assumptions and exposure factors served as the basis for completing the occupational post-application risk assessments. Assumptions and factors, as well as the algorithms used to estimate non-cancer exposure and dose for occupational post-application workers are detailed in the most recent ORE memo (S. Shelat; D431434; 06/09/2016).

The steady-state approach is appropriate for malathion dermal exposure given the toxicological and exposure profile. The "steady-state" endpoint selection for malathion overlaps with HED's traditional short-term exposure duration endpoint selection as well as being appropriately health protective for workers that are exposed over longer periods of time (i.e., intermediate-term exposures).

Chemical-specific DFR data have been submitted for malathion. A total of six chemical-specific DFR data sets have been submitted for malathion on the following crops: grapes (MRID 450059-10), wine grapes (MRID 454919-01), Apples (MRID 451382-02), summer squash (MRID 454919-02), blackberries (MRID 451382-01), and nursery stock (MRID 454695-01). All six studies have been reviewed by HED and found to be acceptable for risk assessment.

A summary of how the DFR data were used is summarized in Table 11.2.2.1 and discussed in the most recent ORE memo (S. Shelat; D431434; 06/09/2016).

Table 11.2.2.1. Summary of DFR Data Use in Post-application Assessment for Malathion						
Crop for which DFR data available	Locations included in study	Crops for which DFR data used as surrogate				
Grapes MRID 450059-10	California (CA)	blueberry (highbush), currant, grape, hop, and passion fruit				
Wine Grapes MRID 454919-01	California (CA)	these data were not extrapolated because the grape study represent a more conservative surrogate				
Apples MRID 451382-02	Pennsylvania (PA)	apricot, avocado, cherry, chestnut, date, fig, grapefruit, guava, kumquat, lemon, lime, macadamia nut, mango, nectarine, orange, papaya, peach, pear, pecan, tangelo, tangerine, walnut, pine seed orchards and Christmas tree plantation				
Summer Squash MRID 454919-02	California (CA)	alfalfa, asparagus, barley, bean, bermuda grass, beet, broccoli, broccoli-raab, brussels sprout, cabbage, carrot, cantaloupe, cauliflower, celery, chayote root, chayote fruit, chinese broccoli, chinese green, clover, collards, corn, cotton, cucumber, cut flowers, dandelion, eggplant, endive, flax, garlic, grasses (hay, forage), horseradish, kale, kohlrabi, leeks, lespedeza, lettuce, lupine, melon, mint, mushroom, mustard greens, oats, okra, onion, parsley, parsnip, pea, pepper, potato, pumpkin, radish, rice, rutabaga, rye, salsify, shallot, sorghum grain, spinach, squash, sweet potato, Swiss chard, tomato, tomatillo, turnip, vetch, watercress, watermelon, wheat, wild rice and yam.				
Blackberries MRID 451382-01	Oregon (OR)	blackberry, blueberry (lowbush), boysenberry, dewberry, gooseberry, loganberry, pineapple, raspberry and strawberry				
Nursery Stock MRID 454695-01	Arizona (AZ)	all currently labeled ornamental crops including nursery stock and shrubs				

For use on cotton, HED has also assessed the post-application dermal exposure and risk estimates for workers involved in harvesting cotton bolls. Although most of cotton harvesting is done mechanically, there are still some activities, with the potential for exposure, that are associated with the harvesting of cotton. The anticipated post-application activities and dermal transfer coefficients for these activities are presented in Table 8.2.2.2. The recommended transfer coefficients are derived from EPA's Science Advisory Council for Exposure (ExpoSAC)

Policy 3 (http://www.epa.gov/pesticides/science/exposac-policy3-march2013.pdf). No chemical specific data are available for the amount of residue available on the cotton bolls; i.e., dislodgeable boll residue (DBR) data. Such data are available from a study with the active ingredient tribufos; i.e., MRID 42701601¹³. Note to PRD: These data may be proprietary, and subject to the data protection provisions of FIFRA, and therefore, may trigger a data compensation issue between registrants. Since the proposed malathion labels include a 7 day pre-harvest interval, the best fit residue data used from MRID 42701601 was chosen from day 0 and day 7 after application and then adjusted for the difference in application rates.

Table 11.	Table 11.2.2.2. Anticipated Post-Application Activities and Transfer Coefficients for Cotton Harvesters.						
Crop	Policy Crop Group Category	Crop Height	Foliage Density	Transfer Coefficients	Activities		
				900 g cotton boll/hr	Mechanical Harvesting (Module Builder Operator)		
Cotton	Field / row. crop, low / medium	High	Min	2,400 g cotton boll/hr	Mechanical Harvesting (Picker Operator and Raker)		
				5,050 g cotton boll/hr	Mechanical Harvesting (Tramper)		

As mentioned earlier, malaoxon is a metabolite of malathion and is 22 times more toxicologically potent than malathion. Since the POD for the dermal route of exposure was chosen from a malathion toxicity study, a TAF 22 was chosen to account for the increased potency of malaoxon in exposure calculations. A total toxic residue approach was used whereby calculated residues of malaoxon (malathion residues × 5%) were adjusted by the TAF, and total residues (malathion + adjusted malaoxon) were include in exposure calculations ¹⁴.

TTR Data: One TTR study has been submitted for malathion on turf. Four sites were provided in the study. The study that resulted in the maximum predicted residue was considered in the post-application scenarios that used the TTR data. The study has been reviewed by HED and found to be acceptable for risk assessment.

Occupational Post-application Non-Cancer Dermal Risk Estimates

The post-application exposure scenarios associated with the registered uses of malathion are provided in Appendix J and discussed in the most recent ORE memo (S. Shelat; D431434; 06/09/2016). The resulting risk-based REIs are summarized in Table 11.2.2.3.

Restricted Entry Interval (REI)

Current product-label REIs range from 12 to 48 hours depending on the crop. Based on the current post-application dermal exposure assessment (Table 11.2.2.3), REIs of 12 hours to 9 days with one scenario as high as 13 days (i.e., grapes) would be necessary to reach acceptable MOEs (i.e., MOEs \geq 1000) from exposure to the combined residues of malathion and malaoxon. Table 11.2.2.3 provides a summary of the current REIs on product labels and the REIs based on the

¹³ MRID 42701601 was reviewed in 1997 and 1999 within the following memos: B. Tarplee, D227007, 02/12/1997; T. Leighton, D252221 01/26/1999

¹⁴ Total DFR, ug/cm² = [(Malaoxon residue, ug/cm²) * TAF] + [Malathion residue, ug/cm²)

Page 73 of 258

quantitative post-application exposure assessment for malathion which would be needed to achieve risks which were not of concern.

The 12 hours REIs are in line with the 40 CFR 156.208 (c) (2) assignments for active ingredients that are classified as Toxicity Category III and IV for acute dermal, eye irritation, and primary skin irritation.

Table 11.2.2.3. Summary of Restricted Entry Intervals					
Crop ¹	REI on Current labels (hours)	HED recommended REI days			
Alfalfa (field and seed crop)	12	6-7			
Amaranth	12	5-6 (ULV) 2-8			
Apricots	12	12 hours -6 days			
Arugula	12	2-8			
Asparagus	12	1-7			
Avocado	48	2-7			
		6			
Barley	12	(ULV) 5			
Beans (snap, lima, dry, and succulent)	12	(ULV) 12 hours – 6 days			
Beets (table, garden)	12	1-7			
Blueberry (high and low bush)	12	12 hours - 3 days (ULV) $12 \text{ hours} - 2 \text{ days}$			
Brambles (Blackberry, Boysenberry, Dewberry, Loganberry, Raspberry)	12	1-4			
Broccoli (Chinese, rabb)	48	3-8			
Brussel sprouts	48	3-8			
Cabbage	48	3-8			
Cantaloupe	12	1-7			
Carrots	24	1-7			
Cauliflower	48	3-8			
Cavalo Broccolo	48	3-8			
Celery	24	2-7			
Celtuce	12	2-8			
Chayote fruit	24	2-7			
Chayote root	24	1-7			
Charries (tart sweet)	12	12 hours – 7 days			
Cherries (tart, sweet)		(ULV) 12 hours – 6 days			
Chervil	12	2-8			
Chestnut	24	12 hours – 4 days			
Chinese Cabbage, Mustard	48	3-8			
Christmas tree plantations	12	1-7			
•	12	(ULV) 12 hours - 4 days			
Chrysanthemum	12 72	2-8 12 hours-7 days			
Citrus - non-bearing (Excluding CA)	12	(ULV) 12 hours			
Citrus - non-bearing (CA Only)	72	(CA only) 3-8			
Citrus Fruits (Excluding CA)	72	12 hours-7 days (ULV) 12 hours			
Citrus Fruits (CA Only)	72	(CA only) 3-8			

T.I. 11222 C (D.424.1	F .4 I .4	
Table 11.2.2.3. Summary of Restricted	REI on Current labels	HED recommended REI
$Crop^1$	(hours)	days
Clover, Clover Seed	12	6-7
		5-6 (ULV)
Collards	12	1-7
Corn (field, sweet, pop)	72 – detasseling 12 – other activities	1-7; 9 (detasseling) (ULV) 12 hours – 6; 8 (detasseling)
Corn Salad	12	2-8
Cotton	48	2-4 (mechanical harvesting 15 days) (ULV) 1-4 (mechanical harvesting 12 days)
Cucumber	24	2-7
Currant	12	12 hours - 3 days
Dandelion	24	1-7
Dock (sorrel)	12	2-8
Eggplant	12-24	2-7
Endive (escarole)	24	1-7
Figs	12-24	12 hours – 5 days
Flax	12	4
Florence Fennel	24	2-8
Garlic	24	4-9
Gooseberry	12	1-4
	72-girdling and tying	12 hours – 13 days
Grapes (raisin, table, wine, vineyard)	24-all other activities	(ULV) 12 hours
		6-7
Grass (forage, hay, bermuda, rangeland)	12	(sod) 9
Guava	12	12 hours – 4 days
Honeydew (melons)	12	1-7
Hops	12	12 hours – 9 days
Horseradish	24	1-7
Kale	12	1-7
Kohlrabi	24	4-8
	40	2-7
Kumquat	48	(ULV) 12 hours
Leeks	24	4-9
Lemons (FL only)	12	12 hours – 4 days
Lentils	12	(ULV) 12 hours – 6 days
Lespedeza (plant, seed)	12	6-7 5-6 (ULV)
Lettuce (head, leaf)	24	2-8
Lupine (plant, seed)	12	6-7
• • •		5-6 (ULV)
Macadamia Nut	12	12 hours – 2 days
Mango	12	2-5
Melons	12	1-7
Mint	12	1-6
Mizuna	12	3-8
Mushrooms	12	5
Muskmelons (melons)	12	1-7
Mustard (greens, spinach)	12-48	1-7
Nectarines	24	1-8
Oats	12	1-6
	D 75 0050	(ULV) 12 hours – 5 days

Table 11.2.2.3. Summary of Restricted	Entry Intervals	
·	REI on Current labels	HED recommended REI
Crop ¹	(hours)	days
Okra	12	1-7
Onions (bulb and green)	12	4-9
Orach	12	2-8
Ornamentals in outdoor nurseries	12	12 hours- 9 days
Papaya	12	12 hours – 4 days
Parsley	24	2-7
Parsnip	24	1-7
Passion Fruit	12 12	12 hours – 9 days
Pasture and Rangeland Peaches	24	1-8
Pears	12	12 hours -6 days
Peas (dry, succulent, green)	12	1 - 7
Pecans	24	12 hours – 4 days
Peppers, Bell Peppers	12	2-7
		1-9
Pine Seed Orchards	12	(ULV) 12 hours – 7 days
Pineapples	24	2-7
Potatoes	12	2-7
Pumpkins	12	1-7
Purslane (garden)	12	2-8
Radish, Rutabaga	12	1-7
Rape Greens (broccoli)	48	3-8
rape Greens (Greecon)	12	
Rice, Wild Rice	12	6
idee, wha idee	12	(ULV) 5
Rye	12	1-6
-		(ULV) 12 hours- 5 days
Salsify Shallot	24 24	1-7 4-9
Shanot	24	1-7
Slash Pine (Christmas Tree Planation)	12	(ULV) 12 hours - 4 days
Sorghum	12	1-3
	12	(ULV) 12 hours – 2 days
Spinach Squash, summer	12 24	2-8 2-7
Squash, winter	12	1-7
Strawberries	12	12 hours – 3 days
Sweet Potatoes	12	2-7
Swiss Chard	12	1-7
Tangerines	72	12 hours – 8 days (ULV) 12 hours
Tomatoes	12	2-7
Trefoil (birdsfoot) (peas)	12	1 - 7
Turnip (roots, greens)	24	1-7
		6-7
Vetch	12	(ULV) 5-6
Walnuts	24	12 hours – 4 days
Watercress	12-24	1-7
Watermelon	12	2-7
Wheat (spring, winter)	12	1-6
· · · · · · · · · · · · · · · · · · ·		(ULV) 12 hours – 5 days

Table 11.2.2.3. Summary of Restricted Entry Intervals					
Cron	REI on Current labels	HED recommended REI			
Crop ¹	(hours)	days			
Vame	2.4	2_7			

1. Amaranth, Arugula, Celtuce, Chervil, Chrysanthemum, Corn Salad, Dock Sorrel, Floence Fennel, Orach, and Purslane are all registered under Leafy Vegetables (Except Brassica Vegetables) within EPA Reg No. 10163-21 at a registered maximum application rate of 2.0 lbs ai/A. The spinach post-application scenario is used as a surrogate.

12.0 References

Malathion: Occupational and Residential Exposure and Risk Assessment for Registration Review. D431434, 06/09/2016, S. Shelat.

Malathion: Tier II Incident Report. D423155, 9/30/2014, S. Recore et al.

Malathion: Addendum to Tier II Incident Report dated 09/30/14, D426077, 6/10/2016, C. Williams, et al.

Malathion: Acute and Steady State Aggregate (Food and Drinking Water) Dietary Exposure and Risk Assessments to Support Registration Review. D428996, 6/07/2016, S. Piper.

Malathion: Drinking Water Assessment for Registration Review of Malathion. D420234, 08/13/2015, A. Shelby.

Malathion: Establishment of Tolerance for Adulticide Use, Revised, D420237, 06/07/2016, M. Sahafeyan.

Malathion: Magnitude Field Crop Trials Residue of Concern. D178477, 8/08/1992, B. Dementi. Metabolism Meeting Held on 2/12/1992.

Malathion: Response to the Malathion Reregistration Standard Confined Rotational Crop Study. DP196880; 05/26/1994; R. Perfetti.

Appendix A. International Residue Limits

International Residue Limits

Note: The current US tolerances shown in the Table below do not reflect the reassessed, revised or revoked tolerances from May 2009 RED.

Malathion Residue Defini	ition:			
US		Canada	Mexico ²	Codex ³
40CFR180.111(a) General (1) malathion (O,O -dimethyl dithiophosphate of diethyl mercaptosuccinate)		diethyl mercapto- succinate S -(O,O - dimethyl phosphorodithioate)		Plants/Livestock: malathion
Commodity	Tolerar	ace (ppm)/Maximum R	esidue Limit (r	ng/kg)
	US	Canada	Mexico ²	Codex ³
Alfalfa, forage	135			
Alfalfa, hay	135			
Almond, hulls	50			
Almond, postharvest	8			_
Apple	8	2		0.5^{3}
Apricot	8	8		3.5
Asparagus	8	6		1
Avocado	8	8		-
Barley, grain, postharvest	8	8 raw cereals		
Bean, dry, seed	8	2		2 (dry)
Bean, succulent				1 beans, except broad bean and soya bean
Beet, garden, roots	8	0.5		
Beet, garden, tops	8			
Beet, sugar, roots	1			
Beet, sugar, tops	8			
Blackberry	8	8		
Blueberry	8	8		10
Boysenberry	8	8		
Carrot, roots	8	0.5		
Chayote, fruit	8			
Chayote, roots	8			
Cherry	8	6		3
Chestnut	1			
Clover, forage	135			
Clover, hay	135			
Corn, field, forage	8			
Corn, field, grain, postharvest	8	8 raw cereals		0.05 maize
Corn, pop, grain, postharvest	8	8 raw cereals		0.05 maize
Corn, sweet, forage				
Corn, sweet, kernel plus cob	2	8 raw cereals		0.02
with husks removed				
Cowpea, forage	135			
Cowpea, hay	135			
Cranberry	8	8		
Cucumber	8	3		0.2
Currant	8	8		
Date, dried fruit	8			
Dewberry	8	8		
Eggplant	8	0.5		
Fig	8			

Malathion Residue De	<i>.</i>	Canada	Mexico ²	Codex ³
Flax, seed	0.1	Canada	WICKICO	Coucx
Garlic, bulb	8	0.5		
Gooseberry	8	8		
Gooseberry	8	8		5 ³
Grape	8	8 8 raisins		
Grapefruit	8			7 ³ citrus fruits (excluding kumquats)
Guava	8			
Hazelnut	1			
Hop, dried cones	1			
Horseradish	8	0.5 horseradish roots		
Kumquat	8			
Leek	8	3		
Lemon	8			7 ³ citrus fruits (excluding kumquats)
Lentil, seed	8	3 dry lentils		<u> </u>
Lespedeza, hay	135	J		
Lime	8			7 ³ citrus fruits (excluding kumquats)
Loganberry	8	8		(
Lupin, seed	8			
Mango	8			
Melon	8	8		
Mushroom	8	8		
Nectarine	8	6		
Nut, macadamia	1	0		
	8	8 raw cereals		
Oat, grain, postharvest Okra	8	3		
Onion, bulb	8	0.5		1
Onion, green	8	3		5 spring onion
Orange	8			7 ³ citrus fruits (excluding kumquats)
Papaya	1	8	1	(energanis kuniquats)
Parsnip	8	0.5 parsnip roots		
Passionfruit Passion P	8	0.0 paromp 100to		
Pea	8	0.5		
Pea, field, hay	8	0.5		
Pea, field, vines	8			
Peach	8	6		
Peanut, hay	135			+
Peanut, nay	8			
Pear	8	2		
	8	8	-	
Pecan Pepper	8	0.5		0.1
				1 peppers chili, dried
Peppermint, tops	8	8		
Pineapple	8	8		
Plum	8	8		

Malathion Residue Defi	nition:			
US		Canada	Mexico ²	Codex ³
Plum, prune	8	8 plums		
Potato	8	0.5		
Pumpkin	8	3		
Quince	8			
Radish	8	0.5 radish roots		
Raspberry	8	8		
Rice, grain, postharvest	8	8 raw cereals		
Rice, wild	8	8 raw cereals		
Rutabagas	8	0.5 rutabaga roots		
Rye, grain, postharvest	8	8 raw cereals		
Safflower, seed	0.2			
Salsify, roots	8	3		
Salsify, tops	8			
Shallot, bulb	8	3 shallots		
Sorghum, grain, forage	8			
Sorghum, grain, grain,		8 raw cereals		3 sorghum
postharvest	8			
Soybean, forage	135			
Soybean, hay	135			
Soybean, seed	8			
Soybean, succulent	8			
Spearmint, tops	8	8		
Squash, summer	8	3 squash		
Squash, winter	8			
Strawberry	8	8		1
Sunflower, seed (Post-H)	8			
Sweet potato, roots	1			
Tangerine	8			7 ³ citrus fruits (excluding kumquats)
Tomato	8	3		0.5 0.01 tomato juice
Trefoil, forage	135			
Trefoil, hay	135			
Turnip, greens	8			5
Turnip, roots	8	0.5		0.2 turnip garden
Vegetable, brassica, leafy, group 5	8	0.5 broccoli, cauliflower, collards, kohlrabi 6 Brussels sprouts,		2 mustard greens
Vegetables, leafy, except brassica, group 4	8	1 celery 6 dandelion leaves, endives, lettuce, parsley, spinach		3 spinach
	8	endives, lettuce, parsley, spinach 0.5 Swiss chard		

Malathion Residue Defin	ition [.]			
US	ilion.	Canada	Mexico ²	Codex ³
Vetch, hay	135	Callada	MEXICO	Codex
Walnut	8			
wamut	0	8 raw cereals		10 wheat
		8 law celeais		25 wheat bran,
Wheat, grain, postharvest	8			unprocessed
				0.2 wheat flour
40CFR180.111(2)		Same as above		Same as above
40CFK160.111(2)	Toloran	ce (ppm) /Maximum Re	sidua Limit (ma/k	
1: 1 :1 64	US	Canada	Mexico ²	Codex ³
combined residues of the	US	Canada	Mexico	Codex
insecticide malathion (O,O-				
dimethyl dithiophosphate of				
diethyl mercaptosuccinate)				
and its metabolite, malaoxon				
(O,O-dimethyl thiophosphate				
of diethyl mercaptosuccinate)	50			
Barley, straw	50			
Corn, field, stover	30.0			20
Cotton, undelinted seed	20.0			20
				13 Cotton seed oil,
				crude
				13Cotton seed oil,
	•			edible
Grass, forage	200			
Grass, hay	270			
Oat, forage	4.0			
Oat, straw	50			
Rye, forage	4.0			
Rye, straw	50			
Watercress	0.2	6		
Wheat, forage	4.0			
Wheat, straw	50			
	<i>M</i>	RLs with NO US Equi	valent	
Whole meal and flour from		2		
rye		2		
Whole meal and flour from		2		
wheat		2		
Spices, fruits and Berries				1
Spices, roots, and rhizomes				0.5
Spices, seeds				2
40CFR 180.111(3)	Toleran	ace (ppm)/Maximum	Residue Limit (r.	ng/kg)
Livestock: malathion (O,O-	US	Canada	Mexico ²	Codex ³
dimethyl dithiophosphate of			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
diethyl mercaptosuccinate)				
Cattle, fat	4			
Cattle, meat ¹	4			
Cattle, meat byproducts ¹	4			
Egg	0.1			
Goat, fat	4			

Malathion Residue Defi	nition:			
US		Canada	Mexico ²	Codex ³
Goat, meat ¹	4			
Goat, meat byproducts ¹	4			
Hog, fat	4			
Hog, meat ¹	4			
Hog, meat byproducts ¹	4			
Horse, fat	4			
Horse, meat ¹	4			
Horse, meat byproducts ¹	4			
Milk, fat	0.5			
Poultry, fat	4			
Poultry, meat ¹	4			
Poultry, meat byproducts ¹	4			
Sheep, fat	4			
Sheep, meat ¹	4			
Sheep, meat byproducts ¹	4			
Completed: M. Negussie; 01	/20/14			

¹The tolerance level shall not be exceeded in any cut of meat or in any meat byproducts from cattle, goat, hog, horse, poultry, or sheep.

- (4) Malathion may be safely used in accordance with the following conditions:
- (i) It is incorporated into paper trays in amounts not exceeding 100 milligrams per square foot.
- (ii) Treated paper trays are intended for use only in the drying of grape (raisins).
- (iii) Total residues of malathion resulting from drying of grape on treated trays and from application to grape before harvest shall not exceed 12 parts per million on processed ready-to-eat raisins.
- (5) Residues of malathion in safflower, refined oil from application to the growing safflower plant shall not exceed 0.6 parts per million.
- (6) Malathion may be safely used for the control of insects during the drying of grape (raisins) in compliance with paragraph (a)(4) of this section by incorporation into paper trays in amounts not exceeding 100 milligrams per square foot.
- (7) Malathion (*O,O*-dimethyl dithiophosphate of diethyl mercaptosuccinate) may be safely used in feed in accordance with the following conditions.
- (i) A tolerance of 50 parts per million is established for residues of malathion in citrus, dried pulp for cattle feed, when present as the result of the application of the pesticide to bagged citrus pulp during storage. Whether or not tolerances for residues of malathion on the fresh fruit have been established under section 408 of the Act, the total residue of malathion in the citrus, dried pulp shall not exceed 50 parts per million.
- (ii) A tolerance of 10 parts per million is established for malathion in nonmedicated cattle feed concentrate blocks resulting from its application as a pesticide to paper used in packaging the nonmedicated cattle feed concentrate blocks.

Appendix B. Physiochemical Properties of Malathion and Malaoxon

² Mexico adopts US tolerances and/or Codex MRLs for its export purposes

³ The Committee was advised that the CXLs for apples, grapes, and citrus were based on European GAP which no longer existed. Apples- the CXLs would be considered for revocation at the next meeting; Citrus and grapes- retain the CXL until the outcome of the periodic review by JMPR (2014).

Parameter	Value	Reference
Molecular Weight	330.4	Product Chemistry Chapter (W. Smith, June 2, 1999)
Boiling point/range	156-157°C	Product Chemistry Chapter (W. Smith, June 2, 1999)
Melting point	2.8°C	SRC PhysProp Database
Density (25°C)	1.2	SRC PhysProp Database
Water solubility (25°C)	145 ppm	Product Chemistry Chapter (W. Smith, June 2, 1999)
Solvent solubility (temperature not specified)	readily soluble in most alcohols, esters, aromatic solvents, and ketones, and is only slightly soluble in aliphatic hydrocarbons	Product Chemistry Chapter (W. Smith, June 2, 1999)
Vapor pressure (30°C)	0.00004 mmHg	Product Chemistry Chapter (W. Smith, June 2, 1999)
Octanol/water partition coefficient, logK _{OW} (25°C)	2.36	SRC PhysProp Database
Half Life	Aerobic soil T½ = 3 days (used for EEC modeling)	
TABLE B.2 Physicochemical Prop	erties of Malaoxon	
Parameter	Value	Reference
Molecular Weight	314.29	
Boiling Point	114°C]
Melting point/range	<20°C	Chemical Abstracts
Water solubility (22°C)	0.5-1.0 g/100 mL	1
Vapor pressure (10-50°C)	2.45E-06 to 3.2E-04 torr	
Half Life	Aerobic soil $T\frac{1}{2} = 21$ days (used for EEC modeling)	

Appendix C: Malathion Use Summary Table

Page 84 of 258

Table C.1. Summary of Use Directions for Malathion.										
Crop	Application Type and Equipment	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season	REI (hours) ⁴	PHI (days) ⁵		
Alfalfa (field and seed crop)	Aerial, Groundboom, Chemigation, Truck Mounted ULV Sprayer	EC/LC/ Liquid	1.25 lbs ai/A	NS	14	2	12	7		
Amaranth	Aerial, Ground	EC	2 lbs ai/A	NS	NS	NS	12	7		
Apples	Ground	EC/LC	2.23 lbs ai/A	NS	7	2	NS	1		
Apricots	Aerial, Airblast, Chemigation	EC/LC	1.5 lbs ai/A	NS	7	2	12	7		
Around the Outside of Buildings	Aerial, Ground	EC	NS	NS	NS	NS	NS	NS		
Arugula	Aerial, Ground	EC	2 lbs ai/A	NS	NS	NS	12	7		
Asparagus	Aerial, Groundboom, Chemigation	EC/EL/LC	1.25 lb ai/A	NS	7	2	12	1		
Avocado	Aerial, Airblast, Chemigation	EC/EL/LC	4.75 lbs ai/A	NS	30	2	48	7		
Barley	Aerial, Chemigation, Groundboom, Truck Mounted ULV Sprayer,	EC/EL/LC/ ULV-C	0.61 lb ai/A 1.25 lb ai/A	NS	7	2	12	7		
Beans (snap, lima, dry, and succulent)	Aerial, Truck Mounted ULV Sprayer,	EC/EL/LC/ ULV-C	0.61 lb ai/A 1.5 lb ai/A	NS	7	2	12	1		
Beets (table, garden)	Aerial, Groundboom, Chemigation	EC/EL/LC	1.25 lb ai/A	NS	7	3	12	7		
Blueberry (high and low bush)	Aerial, Airblast, Chemigation, Groundboom, Truck Mounted ULV Sprayer,	EC/EL/LC/ ULV-C	0.77 lb ai/A to 1.25 lb ai/A	NS	5-10	3	12	1		
Brambles	Aerial, Ground	EC	1.88	NS	5	3	12	1		
Broccoli (Chinese, rabb)	Aerial, Chemigation, Groundboom	EC/EL/LC/ Liquid	1.25 lb ai/A	NS	2-7	2	48	3		
Brussel sprouts	Aerial, Chemigation, Groundboom	EC/EL/LC/ Liquid	1.25 lb ai/A	NS	7	2	48	2-7		
Cabbage	Aerial, Chemigation, Groundboom	EC/EC/LC/ Liquid	1.25 lb ai/A	NS	7	6	48	7		

Table C.1. Summar	y of Use Directions for Malathio	n.						
Crop	Application Type and Equipment	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season	REI (hours) ⁴	PHI (days) ⁵
Caneberries	Aerial, Ground	EC/LC	2.0 lb ai/A	NS	7	3	12	1
Cantaloupe	Aerial, Chemigation, Groundboom	EC/EL/LC	1.0 lb ai/A	NS	7	2	12	1
Carrots	Aerial, Groundboom, Chemigation	EC/EL/LC	1.25 lb ai/A	NS	7	2	24	7
Cauliflower	Aerial, Chemigation, Groundboom	EC/EL/LC	1.25 lb ai/A	NS	7	2	48	2-7
Cavalo Broccolo	Aerial, Chemigation, Groundboom	EC/LC	1.25 lb ai/A	NS	7	2	48	2
Celery	Aerial, Groundboom, Chemigation	EC/EL/LC	1.5 lb ai/A	NS	7	2	24	7
Celtuce	Aerial, Groundboom	EC	2.0 lb ai/A	NS	NS	NS	12	7
Chayote fruit	Aerial, Groundboom, Chemigation	EC	1.75 lb ai/A	NS	7	2	24	1
Chayote root	Aerial, Groundboom, Chemigation	EC	1.56 lb ai/A	NS	7	2	24	1
Cherries (tart, sweet)	Aerial, Airblast, Chemigation	EC/EL/LC/Liquid	1.22 lb ai/A 1.75 lb ai/A	NS	3-14	4 - 6	12	1-3
Chervil	Aerial, Ground	EC	2.0 lb ai/A	NS	NS	NS	12	7
Chestnut	Aerial, Airblast, Chemigation	EC	2.5 lb ai/A	NS	7	3	24	2
Chinese Cabbage	Aerial, Groundboom	EC/LC	1.25 lb ai/A	NS	7	2	24-48	7
Chinese Mustard	Aerial, Groundboom	EC/LC	1.0 lb ai/A to 1.25 lb ai/A	NS	7	3	48	7
Christmas tree plantations	Aerial, Airblast, Chemigation, Truck Mounted ULV Sprayer, Manually/Mechanically Pressurized Handwands	EC/LC	0.94 lb ai/A 3.2 lb ai/A	NS	NS	NS	12	NA
Chrysanthemum	Aerial, Ground	EC	2.0 lb ai/A	NS	NS	NS	12	7

			Maximum	Max Seasonal				
Crop	Application Type and Equipment	Formulation ¹	Application Rate	Application Rate ²	RTI (days) ³	Max No. Apps per Season	REI (hours) ⁴	PHI (days) ⁵
Citrus - non-bearing (Excluding CA)	Aerial, Airblast, Chemigation	EC/EL	4.5 lb ai/A	NS	NS	1 2	72 12	7
Citrus - non-bearing (CA Only)	Aerial, Airblast, Chemigation	EC/EL	7.5 lb ai/A	NS	NS	1	72	7
Citrus Fruits (Excluding CA)	Aerial, Airblast, Chemigation	EC/EL/LC/ULV	4.5 lb ai/A 0.16 lb ai/A	NS	NS 30	1	72	7
Citrus Fruits (CA Only)	Aerial, Airblast, Chemigation	EC/LC	7.5 lb ai/A	NS	NS	1	72	7
Clover, Clover Seed	Aerial, Groundboom, Chemigation, Truck Mounted ULV Sprayer	EC/EL/LC/ ULV-C	1.25 lb ai/A	NS	14	NS	12	0
Collards	Aerial, Groundboom, Chemigation	EC	1.0 lb ai/A	NS	7	3	12	7
Commodities (wheat, corn, oats, barley, rye)	Rake in	Dust	NS	NS	60	3	NS	NS
Corn (field, sweet, pop)	Aerial, Groundboom, Chemigation, Truck-Mounted ULV Sprayer	EC/EL/LC/ ULV-C	0.61 lb ai/A 1.0 lb ai/A	NS	5 7	2	72 – detasseling 12 – other activities	5 7
Corn Salad	Aerial, Ground	EC	2.0 lb ai/A	NS	NS	NS	12	5
Cotton	Aerial, Groundboom, Truck- Mounted ULV Sprayer	EC/EL/LC/ ULV-C/ Liquid	1.22 lb ai/A 2.5 lb ai/A	NS	7 - 8	3	48	7 - 21
Cucumber	Aerial, Groundboom, Chemigation	EC/LC	1.75 lb ai/A	NS	7	2	24	1
Cull Dumps Cull Piles	Backpack, Mechanically/Manually- pressurized Handwands	EC	299 – 326.7 lb ai/A	NS	NS	NS	NS	NS
Currant	Aerial, Groundboom	EC/LC	1.25 lb ai/A	NS	7	3	12	1

Table C.1. Summary	y of Use Directions for Malathio	n.						
Crop	Application Type and Equipment	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season	REI (hours) ⁴	PHI (days) ⁵
Dandelion	Aerial, Groundboom	EC/LC	1.25 lb ai/A	NS	7	2	24	7
Dock (sorrel)	Aerial, Groundboom	EC	2.0 lb ai/A	NS	NS	NS	12	7
Eggplant	Aerial, Groundboom	EC/EL/LC	1.56 lb ai/A	NS	5-7	2	12-24	3
Endive (escarole)	Aerial, Groundboom	EC/EL/LC	1.25 lb ai/A	NS	7	2	24	7
Fence Rows/Hedge Rows	Mechanically Pressurized Handgun	EC/ULV-C	0.24 lb ai/A to 0.93 lb ai/A	NS	NS	NS	12	NS
Figs	Aerial, Airblast	EC/EL/LC	2.0 lb ai/A	NS	5	2	12-24	5
Flax	Aerial, Groundboom	EC/LC	0.5 lb ai/A	NS	7	3	12	52
Flies	Ground	EC/EL/LC	NS	NS	NS	NS	NS	NS
Florence Fennel	Aerial, Ground	EC	2.0 lb ai/A	NS	NS	NS	12	7
Garlic	Aerial, Groundboom, Chemigation	EC/EL/LC	1.56 lb ai/A	NS	7	3	24	3
Gooseberry	Aerial, Groundboom	EC	2.0 lb ai/A	NS	NS	NS	12	3
Grain Storage Facilities (empty)	Ground	EC/EL/LC	NS	NS	NS	NS	12	NS
Grapes (raisin, table, wine, vineyard)	Aerial, Airblast, Groundboom	EC/EL/LC	1.88 lb ai/A	NS	14	2	72-girdling and tying 24-all other activities	3
Grass (forage, hay, bermuda, rangeland)	Aerial, Groundboom, Chemigation	EC/EL/LC	1.25 lb ai/A	NS	NS	NS	12	0-7
Guava	Aerial, Airblast	EC	1.25 lb ai/A	NS	3	13	12	2
Honeydew	Aerial, Ground	EC/EL	0.94 lb ai/A 0.78 lb ai/A	NS	7	2	12	1-2
Hops	Aerial, Airblast, Groundboom,	EC/EL/LC	0.63 lb ai/A	NS	7	3	12	10

Table C.1. Summary	y of Use Directions for Malathio	n.						
Crop	Application Type and Equipment	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season	REI (hours) ⁴	PHI (days) ⁵
Horseradish	Aerial, Groundboom, Chemigation	EC/EL/LC	1.25 lb ai/A	NS	7	3	24	7
Kale	Aerial, Groundboom, Chemigation	EC/EL/LC/ Liquid	1.0 lb ai/A	NS	5-7	3	12	7
Kohlrabi	Aerial, Groundboom	EC/EL/LC	1.25 lb ai/A	NS	7	2	24	7
Kumquat	Aerial, Airblast, Truck- Mounted ULV Sprayer	EC/LC	0.18 lb ai/A 4.5 lb ai/A	NS	30	1	48	7
Lawns	Groundboom, (spot)	NS	NS	NS	10	NS	NS	NS
Leeks	Aerial, Groundboom, Chemigation	EC/LC	1.56 lb ai/A	NS	7	2	24	3
Lemons (FL only)	Aerial, Airblast, Truck- Mounted ULV-Sprayer	EC	1.0 lb ai/A 1.25 lb ai/A	NS	NS	1	12	7
Lentils	Aerial, Groundboom	EC	1.5 lb ai/A	NS	NS	NS	12	3
Lespedeza (plant, seed)	Aerial, Truck-Mounted ULV Sprayer	EC/EL/LC	0.61 lb ai/A 1.25 lb ai/A	NS	14	NS	12	0
Lettuce (head, leaf)	Aerial, Airblast, Groundboom	EC/EL/LC	1.88 lb ai/A	NS	5 - leaf 6 - head	2	24	14
Lupine (plant, seed)	Aerial, Truck-Mounted ULV Sprayer	EC/LC	0.61 lb ai/A	NS	NS	1	12	1
Macadamia Nut	Aerial, Airblast, Chemigation	EC/LC	0.94 lb ai/A	NS	7	6	12	1
Mango	Aerial, Airblast, Groundboom, Chemigation	EC/LC	0.94 lb ai/A	NS	7	10	12	1
Melons	Aerial, Groundboom, Chemigation	EC/EL/LC	1.0 lb ai/A	NS	7	2	12	1
Mint	Aerial, Groundboom, Chemigation	EC/LC	0.94 lb ai/A	NS	7	3	12	7
Mizuna	Aerial, Ground	EC/LC	1.0 lb ai/A	NS	5-7	2-3	12	7
Mosquitoes	Aerial, Groundboom	EC/EL/LC	0.23 lb ai/A	NS	NS	NS	NS	NS

Table C.1. Summar	y of Use Directions for Malathio	n.						
Crop	Application Type and Equipment	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season	REI (hours) ⁴	PHI (days) ⁵
Mushrooms	Backpack, Handheld Fogger, Manually/ Mechanically Pressurized Handgun	EC/EL/LC	1.7 lb ai/A	NS	3-7	3-4	12	1
Muskmelons	Ground	EL	0.94	NS	7	2	12	1
Mustard (greens, spinach)	Aerial, Groundboom, Chemigation	EC/EL/LC/ Liquid	1.0 lb ai/A	NS	5-7	3	12-48	7
Nectarines	Aerial, Airblast, Chemigation	EC	3.0 lb ai/A	NS	7	3	24	7
Non-agricultural Uncultivated Areas/Soil	Aerial, Groundboom, Backpack, Manually/ Mechanically Pressurized Handwand	LC/ULV-C	0.93 lb ai/A	NS	NS	NS	NS	NS
Oats	Aerial, Groundboom, Chemigation, Truck Mounted ULV Sprayer	EC/EL/LC/ ULV-C	0.61 lb ai/A 1.0 lb ai/A	NS	7	2	12	7
Okra	Aerial, Groundboom, Chemigation	EC/EL/LC	1.2 lb ai/A	NS	7	5	12	1
Onions (bulb and green)	Aerial, Groundboom, Chemigation	EC/EL/LC	1.56 lb ai/A	NS	7	2	12	3
Orach	Aerial, Ground	EC	2.0 lb ai/A	NS	NS	NS	12	7
Ornamentals in outdoor nurseries	Aerial, Airblast, Chemigation, Handheld; Soil injectors	EC/EL/LC/ Liquid	2.0 lb ai/A 2.5 lb ai/A 4.4 lb ai/A	NS	10 NS	2 NS	12 NS	NS
Papaya	Aerial, Airblast	EC/EL/LC	1.25 lb ai/A	NS	3	8	12	1
Parsley	Aerial, Groundboom, Chemigation	EC/EL/LC	1.25 lb ai/A 1.5 lb ai/A	NS	7	2	24	7
Parsnip	Aerial, Groundboom, Chemigation	EC/EL/LC	1.25 lb ai/A	NS	7	3	24	7
Passion Fruit	Aerial, Airblast, Groundboom, Chemigation	EC/LC	1.0 lb ai/A	NS	7	8	12	3

Table C.1. Summar	y of Use Directions for Malathio	n.						
Crop	Application Type and Equipment	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season	REI (hours) ⁴	PHI (days) ⁵
Pasture and Rangeland	Aerial, Ground	EC/EL/LC/ ULV-C	0.92 lb ai/A	NS	7	NS	12	0-3
Peaches	Aerial, Airblast, Chemigation	EC/LC/	3.0 lb ai/A	NS	11-30	3	24	7-21
Pears	Aerial, Airblast, Chemigation	EC/LC	1.25 lb ai/A	NS	7-11	2	12	1-3
Peas (dry, succulent, green)	Aerial, Groundboom, Chemigation	EC/LC	1.0 lb ai/A	NS	7	2	12	3
Pecans	Aerial, Airblast, Chemigation	EC/LC	2.5 lb ai/A	NS	7	2	24	7
Peppers, Bell Peppers	Aerial, Groundboom	EC/EL/LC	1.56 lb ai/A	NS	5	2	12	3
Pine Seed Orchards	Aerial, Airblast, Backpack, Chemigation, Handgun, ULV Sprayer	EC/LC	3.2 lb ai/A	NS	7-10	2	12	NS
Pineapples	Aerial, Groundboom, Chemigation	EC/LC	2.0 lb ai/A	NS	7	3	24	7
Potatoes	Aerial, Groundboom, Chemigation	EC/EL/LC/ Liquid	1.56 lb ai/A	NS	7	2	12	0
Pumpkins	Aerial, Groundboom, Chemigation	EC/EL/LC	1.0 lb ai/A	NS	7	2	12	1-3
Purslane (garden)	Aerial, Ground	EC	2.0 lb ai/A	NS	NS	NS	12	7
Radish, Rutabaga	Aerial, Groundboom, Chemigation	EC/EL/LC	1.0 lb ai/A	NS	7	3	12	7
Rape Greens	Aerial, Ground	EC/LC	1.25 lb ai/A 2.5 lb ai/A	NS	7	2	48 12	2 7
Rice, Wild Rice	Aerial, Groundboom, Chemigation, Truck Mounted ULV Sprayer	EC/EL/LC	0.61 lb ai/A 1.25 lb ai/A	NS	7	2	12	7 - 14
Rye	Aerial, Groundboom, Chemigation, Truck Mounted ULV Sprayer	EC	0.61 lb ai/A 1.0 lb ai/A	NS	7 3	NS 3	12	7

Сгор	Application Type and Equipment	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season	REI (hours) ⁴	PHI (days) ⁵
Salsify	Aerial, Groundboom, Chemigation	EC	1.25 lb ai/A	NS	7	3	24	7
Shallot	Aerial, Groundboom, Chemigation	EC	0.98 lb ai/A 1.56 lb ai/A	NS	7	2	24	3
Slash Pine	Aerial, Ground	EC/LC	NS	NS	10	2	12	NS
Sorghum	Aerial, Groundboom, Chemigation, Truck Mounted ULV Sprayer	EC/EL/LC/ ULV-C	0.61 lb ai/A 1.0 lb ai/A	NS	7	2	12	7
Spinach	Aerial, Groundboom, Chemigation	EC/EL/LC	1.0 lb ai/A	NS	7	2	12	7
Squash, summer	Aerial, Groundboom, Chemigation	EC/EL/LC/ Liquid	1.75 lb ai/A	NS	7	2-3	24	1
Squash, winter	Aerial, Groundboom, Chemigation	EC/EL/LC/ Liquid	1.0 lb ai/A	NS	7	2-3	12	1
Strawberries	Aerial, Groundboom, Chemigation	EC/EL/LC	2.0 lb ai/A	NS	7	4	12	3
Sweet Potatoes	Aerial, Groundboom, Chemigation	EC/EL/LC	1.56 lb ai/A	NS	7	2	12	0-3
Swiss Chard	Aerial, Groundboom, Chemigation	EC/EL/LC	1.0 lb ai/A	NS	7	2	12	14
Tangerines	Aerial, Airblast, Chemigation, Truck-Mounted ULV Sprayer	EC	1.25 lb ai/A 1.50 – 4.5 lb ai/A 0.18 lb ai/A	NS	NS	1	72	7
Tomatoes	Aerial, Groundboom	EC/EL/LC/ Liquid	1.56 lb ai/A	NS	5-7	4	12	1-3
Trefoil (birdsfoot)	Aerial, Groundboom, Chemigation, Truck Mounted ULV Sprayer	EC	1.25 lb ai/A	NS	NS	14	12	0
Turnip (roots, greens)	Aerial, Groundboom, Chemigation	EC/EL/LC	1.25 lb ai/A	NS	5-7	3	12 - 24	1-7

Table C.1. Summary	y of Use Directions for Malathio	n.						
Crop	Application Type and Equipment	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season	REI (hours) ⁴	PHI (days) ⁵
Vetch	Aerial, Groundboom, Chemigation	EC/SC/Liquid	1.25 lb ai/A	NS	14	NS	12	0
Walnuts	Aerial, Airblast, Chemigation	EC/LC	2.5 lb ai/A	NS	7	3	24	7
Watercress	Aerial, Groundboom	EC/LC	1.25 lb ai/A	NS	3	5	12-24	3
Watermelon	Aerial, Groundboom, Chemigation	EC/EL/LC	1.0 lb ai/A 1.5 lb ai/A	NS	7	2-4	12	1
Wheat (spring, winter)	Aerial, Groundboom, Chemigation, Truck-Mounted ULV Sprayer	EC/EL/LC/ ULV-C	0.61 lb ai/A 1.0 lb ai/A	NS	7	2	12	7
Yams	Aerial, Groundboom, Chemigation	EC	1.56 lb ai/A	NS	7	2	24	0

^{1.} EC = Emulsifiable Concentrate, EL = Emulsifiable Liquid, LC = Liquid Concentrate, ULV-C = ULV Concentrate

^{2.} NS = Not Stated

^{3.} RTI = Re-Treatment Interval

^{4.} PHI = Pre-Harvest Interval

^{5.} REI = Re-Entry Interval

Table C.2. Summary of	f Use Directions for Malathion (non-o	occupational use rates)				
Crop	Label [EPA Reg No]	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season
Apples	[4-99]	EC/LC	2.23 lbs ai/A	NS	7	2
Apricots	[239-739;4-122;46515-19]	EC/LC	2.23 lbs ai/A	NS	7	2
Asparagus	[4-99]	EC/EL/LC	2.23 lb ai/A	NS	7	2
Avocado	[829-175]	EC/EL/LC	NS	NS	30	2
Beans (snap, lima, dry, and succulent)	[4-99; 239-739; 28293-123; 4-412; 46515-19]	EC/EL/LC	1.1-1.28 lb ai/A	NS	7	2
Beans (dry and succulent)	[33955-394]	LC	1.48 lbs ai/A	NS		
Beets	[499; 239-739]	EC/LC	2.23 lb ai/A	NS	7	3
Beets (garden)	[4-412]	EL	2.2 lb ai/A	NS	7	3
Blueberry (high and low bush)	[4-99]	EC	2.23 lb ai/A	NS	5-10	3
Broccoli (Chinese, rabb)	[4-99; 239-739; 33955-394; 4-412; 46515-19; 829-282]	EC/LC	1.24- 2.2 lb ai/A	NS	7	2
Brussel sprouts	[4-99; 239-739; 4-412]	EC/EL/LC/ Liquid	1.86- 2.2 lb ai/A	NS	7	2
Cabbage	[4-99; 239-739; 28293-123; 33955-394; 4-412; 46515-19; 7401-10; 829-282]	EC/EC/LC/ Liquid	1.0- 2.6 lb ai/A	NS	7	6
Caneberries	[4-99]	EC	3.7 lb ai/A	NS	7	3
Cantaloupe	[239-739; 829-282]	EC/EL/LC	1.0 lb ai/A	NS	7	2
Carrots	[4-99; 4-412]	EC/EL/LC	2.2 lb ai/A	NS	7	2
Cauliflower	[4-99; 239-739; 4-412]	EC/EL/LC	1.8-2.2 lb ai/A	NS	7	2
Celery	[4-99; 239-739]	EC/EL/LC	1.0-2.2 lb ai/A	NS	7	2
Cherries (tart, sweet)	[4-99; 829-282; 239-739; 4-122; 46515-19]	EC/EL/LC/Liquid	1.0-3.0 lbs ai/A	NS	3	4

Table C.2. Summary of	Use Directions for Malathion (non-o	occupational use rates)				
Стор	Label [EPA Reg No]	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season
Citrus	[4-99; 239-739; 46515-19]	EC/EL	1.0-2.23 lb ai/A	NS	7	1
Collards	[4-99; 239-739; 4-412]	EC/EL/LC	1.6-1.86 lb ai/A	NS	7	3
Corn (field, sweet, pop)	[4-99]	EC	1.86 lb ai/A	NS	5	2
Cucumber	[4-99; 239-739; 28293-123; 4-412; 829-282]	EC/LC	1.0-3.4 lb ai/A	NS	7	2
Dandelion	[4-99]	EC/LC	2.23 lb ai/A	NS	7	2
Eggplant	[4-99; 239-739; 4-412; 829-282]	EC/EL/LC	0.52- 3.0 lb ai/A	NS	5-7	2
Endive (escarole)	[239-739]	EC/EL/LC	2.23 lbs ai/A	NS	7	2
Garlic	[239-739]	EC/EL/LC	NS	NS	7	3
Grapes (raisin, table, wine, vineyard)	[239-739; 4-122; 46515-19; 829- 282]	EC/EL/LC	1.1 lb ai/A	NS	14	2
Kale	[4-99; 239-739; 28293-123; 3355- 394; 4-412; 46515-19; 829-282]	EC/EL/LC/ Liquid	1.5- 2.1 lb ai/A	NS	5-7	3
Kohlrabi	[4-99]	EC/EL/LC	2.23 lb ai/A	NS	7	2
Kumquat	[4-99; 829-282]	EC/LC	2.23 lb ai/A	NS	30	1
Leeks	[239-739]	EC/LC	NS	NS	7	2
Lemons (FL only)	[829-282]	EC	1.0 lb ai/A	NS	NS	1
Lettuce (head, leaf)	[4-99; 28293-123, 4-412]	EC/EL/LC	3.3-3.8 lb ai/A	NS	6	2
Mango	[239-739]	EC/LC	NS	NS	7	10
Melons	[4-99; 239-739]	EC/EL/LC	1.86 lb ai/A	NS	7	2
Mosquitoes	[4-99; 33955-394; 829-282]	EC/EL/LC	0.43 lb ai/A	NS	NS	NS
Mustard (greens, spinach)	[4-99; 239-739; 33955-394; 829- 282]	EC/EL/LC/ Liquid	1.5-1.86 lb ai/A	NS	7	3
Okra	[239-739]	EC/EL/LC	NS	NS	7	5
Onions (bulb and green)	[4-99; 239-739; 4-412; 829-282]	EC/EL/LC	1.0- 3.0 lb ai/A	NS	7	2

Table C.2. Summary of	Use Directions for Malathion (non-o	occupational use rates)				
Сгор	Label [EPA Reg No]	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season
Ornamentals in outdoor nurseries	[4-99; 239-739; 33955-394; 4-412; 45385-43; 46515-10; 7401-10; 829-282]	EC/EL/LC/ Liquid	4.4 lb ai/A	NS	10	2
Outdoor Residential areas	[10088-56; 239-739; 28293-123; 4-122; 45385-43; 829-175]	EC/EL/LC/	5.1 lbs ai/A	NS	7-14	2-6
Parsley	[4-99]	EC/EL/LC	2.23 lb ai/A	NS	7	2
Peaches	[4-99; 239-739; 4-122; 46515-19; 7401-10; 829-282]	EC/LC	1.0- 4.5 lb ai/A	NS	11	3
Pears	[4-99; 239-739; 7401-10; 829-282]	EC/LC	1.0- 2.23 lb ai/A	NS	5	2
Peas (dry, succulent, green)	[239-739; 33955-394; 46515-19]	EC/LC	1.5 lb ai/A	NS	7	2
Pecans	[829-282]	EC/LC	1.0 lb ai/A	NS	7	2
Peppers, Bell Peppers	[4-99; 239-739; 4-412; 829-282]	EC/EL/LC	0.52- 3.0 lb ai/A	NS	5	2
Potatoes	[4-99; 239-739; 33955-394; 46515-19; 7401-10; 829-282]	EC/EL/LC/ Liquid	0.52-3.0 lb ai/A	NS	7	2
Pumpkins	[4-99; 239-739]	EC/EL/LC	1.8 lb ai/A	NS	7	2
Radish	[239-739; 46515-19; 829-282]	EC/EL/LC	0.52- 1.0 lb ai/A	NS	7	3
Rice, Wild Rice	[829-282]	EC/EL/LC	1.1 lb ai/A	NS	7	2
Rutabaga	[4-99; 239-739]	EC/LC	1.86 lbs ai/A	NS	7	3
Shallot	[239-739]	LC	NS	NS	7	2
Spinach	[4-99, 239-739, 28293-123; 4-412]	EC/EL/LC	1.6 -3.0 lb ai/A	NS	7	2
Squash, summer	[4-99; 28293-123; 4-412; 46515- 19; 829-282]	EC/EL/LC/ Liquid	3.0-3.4 lb ai/A	NS	7	3
Squash, winter	[4-99; 28293-123; 4-412; 46515- 19; 829-282]	EC/EL/LC/ Liquid	1.8-2.1 lb ai/A	NS	7	3
Standing Water	[10088-56]	LC	0.51 lbs ai/A	NS	NS	NS

Table C.2. Summary of	Use Directions for Malathion (non-o	occupational use rates)				
Сгор	Label [EPA Reg No]	Formulation ¹	Maximum Application Rate	Max Seasonal Application Rate ²	RTI (days) ³	Max No. Apps per Season
Strawberries	[239-739; 4-122; 46515-19; 829- 282]	EC/EL/LC	0.52-1.6 lb ai/A	NS	7	4
Sweet Potatoes	[4-99; 239-739]	EC/EL/LC	3.0 lb ai/A	NS	7	2
Swiss Chard	[4-99; 239-739]	EC/EL/LC	1.8 lb ai/A	NS	7	2
Tomatoes	[4-99; 239-739; 33955-394; 4-412; 46515-19; 7401-10; 829-282]	EC/EL/LC/	1.48- 3.0 lb ai/A	NS	5-7	4
Turnip (roots, greens)	[4-99; 239-739]	EC/EL/LC	1.24- 2.23 lb ai/A	NS	5-7	3
Watercress	[4-99]	EC/LC	1.86 lb ai/A	NS	3	5
Watermelon	[4-99]	EC/EL/LC	2.23 lb ai/A	NS	7	2-4

^{1.} EC = Emulsifiable Concentrate, EL = Emulsifiable Liquid, LC = Liquid Concentrate

^{2.} NS = Not Stated

^{3.} RTI = Re-Treatment Interval

Appendix D. Toxicology Data Requirements, Toxicity Profiles, and Summary of OPP's Cholinesterase Policy & Use of BMD Modeling

D.1 Toxicology Data Requirement

Test		Tecl	Technical	
		Required	Conducted	
870.1100	Acute Oral Toxicity	yes	yes	
870.1200	Acute Dermal Toxicity	yes	yes	
870.1300	Acute Inhalation Toxicity	yes	yes	
870.2400	Primary Eye Irritation	yes	yes	
870.2500	Primary Dermal Irritation	yes	yes	
870.2600	Dermal Sensitization	yes	yes	
870.3100	Oral Subchronic (rodent)	yes	yes	
870.3150	Oral Subchronic (non-rodent)	yes	yes	
870.3200	21/28-Day Dermal	yes	yes	
870.3250	90-Day Dermal	no	no	
870.3465	90-Day Inhalation	yes	yes	
870.3700a	Developmental Toxicity (rodent)	yes	yes	
	Developmental Toxicity (non-rodent)	yes	yes	
870.3800	Reproduction	yes	yes	
870.4100a	Chronic Toxicity (rodent)	yes	yes	
	Chronic Toxicity (non-rodent)	yes	yes	
	Oncogenicity (rat)	yes	yes	
	Oncogenicity (mouse)	yes	yes	
	Chronic/Oncogenicity	yes	yes	
870.5100	Mutagenicity—Gene Mutation (bacterial)	yes	yes	
870.5300	Mutagenicity—Gene Mutation (mammalian)	yes	yes	
870.5375	Mutagenicity—Structural Chromosomal Aberrations	yes	yes	
870.5395	Mutagenicity—Other Genotoxic Effects	yes	yes	
870.5500	Mutagenicity—Other Genotoxic Effects	yes	yes	
870.6100a	Acute Delayed Neurotoxicity (hen)	yes	yes	
	90-Day Neurotoxicity (hen)	no	no	
	Acute Neurotoxicity Screening Battery (rat)	yes	yes	
	90-Day Neurotoxicity Screening Battery (rat)	yes	yes	
870.6300	Developmental Neurotoxicity	yes	yes	
870.7485	General Metabolism	yes	yes	
870.7600	Dermal Penetration	no	yes	
870.7800	Immunotoxicity	yes	yes	

D.2 Toxicity Profiles

	Acute Toxicity Profile for Malathion				
Guideline Number	Study Type	MRID(s)	Results	Toxicity Category	
870.1100	Acute oral [Rat]	00159876	LD ₅₀ = 5400(M)/5700(F) mg/kg	IV	
870.1200	Acute dermal [Rat]	00159877	LD ₅₀ >2000 mg/kg (M)(F)	III	
870.1300	Acute inhalation [Rat]	00159878	LC ₅₀ > 5.2 mg/L (M)(F)	IV	
870.2400	Acute eye irritation [Rabbit]	00159880	Slight conjunctival irritation; Clear by 7 days	III	
870.2500	Acute dermal irritation [Rabbit]	00159879	Slight dermal irritation (PIS=1.1)	IV	
870.2600	Skin sensitization [Guinea pig]	00159881	Not a skin sensitizer	NA	

Subchronic, Chronic and Other Toxicity Profile for Malathion			
Guideline Number/ Study Type	MRID(s)/ Year Doses/Classification	Results	
870.3200 - 21-Day dermal toxicity (NZ rabbit) (94%, a.i.)	MRID 41054201 (1989) Doses: 0, 50, 300, 1000 mg/kg/day Acceptable/ guideline	BMDL ₂₀ of 135 mg/kg/d (males) and 143 mg/kg/d (females). This benchmark dose (BMD) is the lower 95% confidence interval for the estimated mean dose at which 20% RBC AChEI is observed.	
870.3200 – 21-Day dermal toxicity (NZ rabbit) (96%, a.i.)	MRID 46790501 (2006) Doses: 0, 75, 100, 150, 500 mg/kg/day Acceptable/guideline	BMDL ₁₀ = 80 mg/kg/d (females) and BMD ₁₀ = 124 mg/kg/d. This benchmark dose (BMD) is the lower 95% confidence interval for the estimated mean dose at which 10% RBC AChEI is observed. (No model fit for male data at BMD ₁₀ level.) BMDL ₂₀ =92.2/119.6 mg/kg/day (M/F) BMD ₂₀ =123.9/145.2 mg/kg/day (M/F)) Dermal irritation noted at all doses.	
870.3465 - 90-day Inhalation- Rat (96.4% a.i.)	MRID 43266601 (1994) Whole-body inhalation exposures of: 0, 0.1, 0.45, 2.01 mg/L Acceptable/guideline	Portal-of Entry NOAEL= not established; LOAEL= 0.1 mg/L (LDT), based on histopathological lesions of the nasal cavity and larynx in males and females. Systemic, RBC AChEI, BMDL ₁₀ = 0.082/0.049 mg/L (M/F); BMD ₁₀ = 0.167/.0126 mg/L (M/F).	
870.3465 - 2-week (range-finding) Inhalation-Rat (96.4%, a.i.)	MRID 44554301 (1993) Dose level: 0, 0.5, 1.5, 4.5 mg/L Acceptable/nonguideline	Portal-of-Entry NOAEL= not established; LOAEL= 0.5 mg/L, based on nasal and laryngeal epithelial effects Systemic, AChEI NOAEL= not established; LOAEL= 0.5 mg/L based on RBC AChEI.	
870.3700a - Developmental-Rat (94%, a.i.)	MRID 41160901 (1989) Doses: 0, 200, 400, 800 mg/kg/d (Days 6-15 of gestation) Acceptable/guideline	Maternal NOAEL= 400 mg/kg/day Maternal LOAEL= 800 mg/kg/day, based on reduced mean body weight gains and reduced mean food consumption. Developmental NOAEL= 800 mg/kg/day Developmental LOAEL > 800 mg/kg/day; no adverse developmental effects were observed at the highest dose tested.	

Subchronic, Chronic and Other Toxicity Profile for Malathion			
Guideline Number/ Study Type	MRID(s)/ Year Doses/Classification	Results	
870.3700b - Developmental-Rabbit (92.4%, a.i.)	MRID 00152569 (1985) and Supplemental Report MRID 40812001 (1985) Doses: 0, 25, 50, 100 mg/kg/d (Days 6-18 of gestation) Acceptable/guideline	Maternal NOAEL= 25 mg/kg/day Maternal LOAEL= 50 mg/kg/day, based on reduced mean body weight gains during period of malathion exposure (Days 6-18 of gestation). Developmental NOAEL= 25 mg/kg/day Developmental LOAEL= 50 mg/kg/day; increased mean number of resorption sites/dose. (NOTE: Cholinergic signs and mortality seen in range-finding study at 200 and 400 mg/kg/day).	
870.3800 - Two-generation Reproduction-Rat (94%, a.i.)	MRID 41583401 (1997) Doses: 0, 550, 1700, 5000, 7500 ppm in feed (equivalent to 0, 43, 131, 394, and 612 mg/kg/d in males and 0, 51, 153, 451, and 703 mg/kg/d in females) Acceptable/guideline	Parental NOAEL=394/451 mg/kg/day; LOAEL=612 /703 mg/kg/day (M/F) based on decreased F0 generation body weights during gestation and lactation (females) and decreased F1 pre-mating body weights (males and females). Offspring NOAEL= 131 /153 mg/kg/day (M/F) Offspring LOAEL= 394 /451 mg/kg/day (M/F), based on decreased pup body weights during the late lactation period in F1 and F2 pups.	
870.4100 - Chronic toxicity-dogs (95%, a.i.)	MRID 40188501 (1987) Dose level:0,62.5,125,250 mg/kg/day (gelatin capsule) Acceptable/non-guideline	Systemic NOAEL: >250 mg/kg/day (HDT) AChEI NOAEL= Not established. AChEI LOAEL <62.5 mg/kg/day based on plasma and RBC AChEI.	
870.4200 - Combined chronic toxicity/ carcinogenicity-F344 rats (97.1%, a.i.)	MRID 43942901 (1996) Dose levels: 0, 50/100, 500, 6000, 12000 ppm (4/5, 29/35, 359/415, 739/868 mg/kg/d (M/F) Acceptable/guideline	AChEI NOAEL= 3 mg/kg/day (see note below) AChEI LOAEL= 35 mg/kg/day, based on significant RBC AChEI in females. Increased incidence of liver tumors in female rats only at excessive doses. NOTE: The low dose level was 100 ppm in the diet for three months which was dropped to 50 ppm for the remainder of the study (21 more months). The calculated dose for the three-month exposure was 7 (M) and 8 (F). The calculated dose from the 21 month exposure was 2 (M) and 3 (F) mg/kg/d. Assuming that a LOAEL for AChEI could be 8 mg/kg/d for three months [based on effects observed in females at that time), then a reasonable NOAEL would be 3 mg/kg/day for the 24 month study (the 21-month exposure value for females).	
870.4200 - Combined chronic toxicity/ carcinogenicity-F344 rats (96.4%, a.i.)	MRID 43975201 (1996) Dose levels: 0, 20, 1000, 2000 ppm in feed (equivalent to 0, 1, 57, 114 mg/kg/d in males and 0, 1, 68, 141 mg/kg/d in females). Acceptable/guideline	AChEI NOAEL= not determined AChEI LOAEL= 1 mg/kg/day based on 19-21% RBC AChEI males at 6 months. Systemic NOAEL= 1 mg/kg/d Systemic LOAEL= 57 mg/kg/d (males - mineral deposits in stomach muscularis) and 68 mg/kg/d (females - mortality, histological changes in nasoturbinates, lung interstitium, and tympanic cavity. Increased incidence of leukemia in male rats at highest dose only.	
870.4300 -	MRID 43407201 (1994)	Systemic NOAEL= 143/167 mg/kg/day (M/F)	

Subchronic, Chronic and Other Toxicity Profile for Malathion			
Guideline Number/	MRID(s)/ Year	Results	
Study Type Carcinogenicity-B6C3F1 mice (96.4%, a.i.)	Doses/Classification Dose levels: 0, 100, 800, 8000, 16000 ppm 0, 17.4/20.8,143/167, 1476/1707, 2978/3448 mg/kg/d, M/F). Acceptable/guideline	Systemic LOAEL: 1476/1707 mg/kg/day (M/F), based on decreased body weights and food consumption, increased liver weight, and increased hepatocellular hypertrophy in males and females. AChEI NOAEL= 17.4/20.8 mg/kg/day (M/F) AChEI LOAEL= 143/167 mg/kg/day (M/F), based on plasma and RBC AChEI in males and females.	
870.5100 - Bacterial Reverse Gene Mutation	MRID 40939302 (1987)	Increased incidence of liver tumors in male and female mice only at excessive doses. Negative in <i>Salmonella typhimurium</i> and in <i>Escherichia coli</i> up to the limit dose (5,000 µg/plate +/- S9) in independent tests.	
Assay (95.2%, a.i.) 870.5300 – Mouse Lymphoma Forward Gene Mutation	Acceptable/guideline MRID 45554501 (2001) Doses: up to ≥ 1000 ug/mL Acceptable/guideline	In a cell forward gene mutation assay at the TK ^{+/-} locus, independent tests were negative up to cytotoxic doses without S9 activation (≥1000 μg/mL) and weakly positive with S9 activation over a narrow range of cytotoxic concentrations (2000 and 2200 μg/mL).	
870.5385 - Mammalian Bone Marrow Chromosome Aberration Test In vivo (rats) (94%, a.i.)	MRID 41451201 (1990) Doses: 500 to 2000 mg/kg (single oral dose) Acceptable/guideline	Negative. A dose-related reduction in mitotic indices (MI) was seen in treated females at 24 hours. Reduced MIs were also seen in high-dose males and females at 48 hours.	
870.5550 - Unscheduled DNA Synthesis in Mammalian Cells (rat) in Culture (94%, a.i)	MRID 41389301 (1990) Acceptable/guideline	Negative up to cytotoxic concentrations (≥0.12 μL/mL; 150 μg/mL)	
Alkaline Single Cell Gel Electrophoresis (Comet Assay) Human Lymphocytes Malathion, malaoxon, and isomalathion (99.8%, a.i.)	MRID 45686902 (1999) Acceptable/nonguideline	In a comet assay, malathion was negative in peripheral blood lymphocytes exposed to 25, 75, or 200 µM (the highest concentration tested). By contrast, 200 µM malaoxon or 200 µM isomalathion induced dose-related significant increases in DNA damage).	
870.6100 - Acute Oral Delayed Neurotoxicity in the Hen (93.6%, a.i.)	MRID 40939301 (1988) Doses: 0, 10007.5 mg/kg followed by 852.5 mg/kg/d 21 days later (all hens pre-treated with atropine before each dose) Acceptable/guideline	Neither gross necropsies nor histopathological examination revealed any treatment-related effects in treated hens. Negative for any evidence of acute delayed neurotoxicity.	
870.6200a Acute neurotoxicity-Rat (96.4%, a.i.)	MRID 43146701 (1994) Doses: 0, 500, 1000, 2000 mg/kg/d) Acceptable/guideline	NOAEL = 1000 mg/kg LOAEL = 2000 mg/kg (limit dose), based on decreased motor activity and clinical signs at the peak time of effect on day 1 (15 min post dosing) and plasma and RBC AChEI at day 7.	
870.6200b Subchronic neurotoxicity- Rat (96.4%, a.i.)	MRID 43269501 (1994) Doses: 0, 50, 5000, 20,000 ppm in diet (equivalent to 0, 4, 352, 1486 mg/kg/d in males and 0, 4, 395, 1575 mg/kg/d in females). Acceptable/guideline	NOAEL= 4 mg/kg/day (M/F) LOAEL= 352/395 mg/kg/day (M/F), based on plasma, RBC AChEI in males and females and brain AChEI in females.	

Subchronic, Chronic and Other Toxicity Profile for Malathion			
Guideline Number/ Study Type	MRID(s)/ Year Doses/Classification	Results	
870.6300 Developmental neurotoxicity – rat (96%, a.i.)	MRID 45646401 (2002) Doses: 0, 5, 50, 150 mg/kg/d Acceptable/guideline	Maternal NOAEL= 50 mg/kg/day Maternal LOAEL= 150 mg/kg/day, based on increased incidence of post-dosing salivation	
		Offspring NOAEL= 50 mg/kg/day) Offspring LOAEL= 150 mg/kg/day, based on clinical signs (whole body tremors, hypoactivity, prostrate posture, partially closed eyelids) and brain morphometrics (increased thickness of the corpus callosum in PND 63-67 males and females.)	
870.6300 Comparative ChE study – rat (96.0%??? a.i.)	MRID 45566201 (2001) Acute exposures (adults and pups, PND 11) - 0, 5, 50, 150, 450 mg/kg/d. Repeat exposures (11 days to both adults and pups PND 11-21): 0, 5, 50, 150 mg/kg/d.	Acute exposures BMDL ₁₀ = 13.6/14.1 mg/kg (offspring, M/F). This benchmark dose (BMD) is the lower 95% confidence interval for the estimated mean dose at which 10% RBC AChEI is observed. BMD ₁₀ = 16.9/18.3 mg/kg (offspring, M/F). No model had good fit for adult male and female data.	
	Acceptable/nonguideline	Repeated exposures (11 days) BMDL ₁₀ = 11.2/12.2 mg/kg/d (offspring, M/F) and 24.7/21.0 mg/kg (adult, males/females). This benchmark dose (BMD) is the lower 95% confidence interval for the estimated mean dose at which 10% RBC AChEI is observed. BMD ₁₀ = 14.3/14.4 mg/kg/d (offspring, M/F) and 27.9/24.0 mg/kg/d (adult, M/F)	
870.6300 Comparative ChE study	MRID 46822201 (2006) Repeat exposures (pups at PND	Repeated exposures (PND 11-21) Malathion:	
- rat (malathion, 96%; and malaoxon 97.7%)	11-21): Malathion: 0, 5, 25, 50, 150 mg/kg/d. Malaoxon: 0.1, 1, 2.5, 4	BMDL ₁₀ = 9.1/9.7 mg/kg/d (M/F). This benchmark dose (BMD) is the lower 95% confidence interval for the estimated mean dose at which 10% RBC AChEI is observed. BMD ₁₀ =13.3/13.1 mg/kg/day (M/F)	
	mg/kg/day Acceptable/nonguideline	Malaoxon: BMDL ₁₀ = $0.53/0.51$ mg/kg/d (males/females). This benchmark dose (BMD) is the lower 95% confidence interval for the estimated mean dose at which 10% RBC AChEI is observed. BMD ₁₀ = $0.84/0.61$ mg/kg/day (M/F)	
870.6300	MRID 47373704 (2008)	Acute exposure (PND 11)	
Comparative ChE study – rat	Acute dose (PND 11) Malathion: 0,10,25,50,100,150	Malathion: BMDL ₁₀ = $11.5/10.3$ mg/kg (M/F). This benchmark dose	
(malathion, 96%; and malaoxon 97.7%)	mg/kg Malaoxon: 0,1.0,3.5,7.0,10.0,12.5 mg/kg	(BMD) is the lower 95% confidence interval for the estimated mean dose at which 10% RBC AChEI is observed. BMD ₁₀ =13.8/12.9 mg/kg/day (M/F)	
	Acceptable/nonguideline	Malaoxon: BMDL ₁₀ = 0.43 mg/kg (females). This benchmark dose (BMD) is the lower 95% confidence interval for the estimated mean dose	
		at which 10% RBC AChEI is observed. BMD ₁₀ = 0.60	
870.7800	MRID 48550501 (2011)	mg/kg/day (females). No model had good fit for male data. The systemic toxicity NOAEL is 100 ppm (equivalent to	
Immunotoxicity	Doses: 0, 8.9, 17.6, 126.8,	17.6mg/kg bw/day); the LOAEL was 700 ppm (equivalent to	
(96.0%, a.i.)	1215.8 mg/kg/day Acceptable/guideline	126.8 mg/kg bw/day) based on statistically significant reductions in RBC cholinesterase activity.	
		The NOAEL for immunotoxicity is 7000 ppm (highest dose tested; equivalent to 1215.8 mg/kg/day); the LOAEL was not	
970 7495	MDID 41267701 (1090)	established (>7000 ppm). Malathion and its metabolites are excreted primarily in the urine	
870.7485 Metabolism	MRID 41367701 (1989) Acceptable/guideline	(80-90%) in the first 24 hours following exposure, with lesser	
		amounts excreted in the feces. At 72 hours, the highest concentration of radioactivity was observed in the liver, but less	
		than 0.3% of the administered radioactivity was present in that	
		organ. Radioactivity did not bioaccumulate in any of the	

	Subchronic, Chronic and Other Toxicity Profile for Malathion			
Guideline Number/ MRID(s)/ Year		Results		
Study Type	Doses/Classification	Results		
		organ/tissues analyzed. Although eight radiolabeled metabolites		
		were observed in urine, greater than 80% of the radioactivity in		
		urine was represented by the diacid (DCA) and monoacid		
		(MCA) metabolites. The remaining radiolabeled metabolites		
		were identified as components of "peak A" and "peak B." It was		
		estimated that between 4 and 6% of the administered dose was		
		converted to malaoxon, the active AChE inhibiting metabolite of		
		malathion.		

D3. Summary of OPP's Cholinesterase Policy & Use of BMD Modeling

OPP's ChE policy (USEPA, 2000¹⁵) describes the manner in which ChE data are used in human health risk assessment. The following text provides a brief summary of that document to provide context to points of departure selected.

AChE inhibition can be inhibited in the central or peripheral nervous tissue. Measurements of AChE or cholinesterase (ChE) inhibition in peripheral tissues (e.g., liver, diaphragm, heart, lung etc) are rare. As such, experimental laboratory studies generally measure brain (central) and blood (plasma and red blood cell, RBC) ChE. Blood measures do not represent the target tissue, per se, but are instead used as surrogate measures for peripheral toxicity in studies with laboratory animals or for peripheral and/or central toxicity in humans. In addition, RBC measures represent AChE, whereas plasma measures are predominately butyryl-ChE (BuChE). Thus, RBC AChE data may provide a better representation of the inhibition in target tissues. As part of the dose response assessment, evaluations of neurobehavior and clinical signs are performed to consider the dose response linkage between AChE inhibition and apical outcomes.

Refinements to OPP's use of ChE data have come in the implementation of BMD approaches in dose response assessment. Beginning with the OP CRA, OPP has increased its use of BMD modeling to derive PoDs for AChE inhibiting compounds. Most often the decreasing exponential empirical model has been used.

OPP does have not a defined benchmark response (BMR) for OPs. However, the 10% level has been used in the majority of dose response analyses conducted to date. This 10% level represents a 10% reduction in AChE activity (i.e., inhibition) compared to background (i.e., controls). Specifically, the BMD₁₀ is the estimated dose where ChE is inhibited by 10% compared to background. The BMDL₁₀ is the lower confidence bound on the BMD₁₀.

-

¹⁵ USEPA (2000) Office of Pesticide Programs, US Environmental Protection Agency, Washington DC 20460. August 18, 2000 Office of Pesticide Programs Science Policy of The Use of Data on Cholinesterase Inhibition for Risk Assessments of Organophosphorous and Carbamate Pesticides.

The use of the 10% BMR is derived from a combination of statistical and biological considerations. A power analysis was conducted by the Office of Research and Development (ORD) on over 100 brain AChE datasets across more than 25 OPs as part of the OP CRA (USEPA, 2002). This analysis demonstrated that 10% is a level that can be reliably measured in the majority of rat toxicity studies. In addition, the 10% level is generally at or near the limit of sensitivity for discerning a statistically significant decrease in ChE activity in the brain compartment and is a response level close to the background brain ChE level. With respect to biological considerations, a change in 10% brain AChE inhibition is protective for downstream clinical signs and apical neurotoxic outcomes. With respect to RBC AChE inhibition, these data tend to be more variable than brain AChE data. OPP begins its BMD analyses using the 10% BMR for RBC AChE inhibition but BMRs up to 20% could be considered on a case by case basis as long as such PoDs are protective for brain AChE inhibition, potential peripheral inhibition, and clinical signs of neurotoxicity.

Summary Tables of Benchmark Dose (BMD) Analyses in Rat Toxicity Studies

BMD analyses were performed with EPA's Benchmark Dose Software (Version 2.4) using an exponential model for continuous data. The Hill model was also performed for some data sets, when acceptable fits were not obtained with the exponential model. All malathion and malaoxon data from these studies were considered; however, some data were not amenable to BMD analysis. Results and technical details for these analyses can be found in the latest BMD memo (R. Bever, 7/1/2014, TXR 0056947).

Table D.1. Results of BMD Modeling (mg/kg) for RBC ChE					
Data on Malathion, Acute Oral Dosing Studies in Rats.					
	Age	BMD_{10}	BMDL_{10}		
Study	Sex	DIVIDIO	DIVIDLIU		
MRID 45566201	Adult	N	TE		
Acute CCA	Male	NF			
MRID 45566201	Adult	NF			
Acute CCA	Female	1.	N1		
MRID 45566201	PND 11	16.911	13.571		
Acute CCA	Male	10.711	13.371		
MRID 45566201	PND 11	18.324	14.028		
Acute CCA	Female	10.324	14.020		
MRID 47373704	PND 11	13.860	11.476		
Acute CCA	Male	13.000	11.4/0		
MRID 47373704	PND 11	12.435	10.305		
Acute CCA	Female	12.433	10.303		
CCA = Comparative Cholinesterace Assay					

CCA = Comparative Cholinesterase Assay NF indicates that no model obtained good fit.

Table D.2. Results of BMD Modeling (mg/kg/day) for RBC ChE Data on Malathion, Repeated Oral Dosing Studies in				
Rats.				
Study (dosing days)	Age Sex	BMD ₁₀	BMDL ₁₀	
MRID 45566201 Repeated Dose CCA (10)	Adult Male	27.946	24.691	
MRID 45566201 Repeated Dose CCA (10)	Adult Female	24.002	21.040	
MRID 45566201 Repeated Dose CCA (10)	PND 11 Male	14.269	11.176	
MRID 45566201 Repeated Dose CCA (10)	PND 11 Female	14.419	12.235	
MRID 45566201 Gestational CCA (15)	Dam	21.826	17.056	
MRID 45566201 Gestational CCA CCA = comparative cholinestera	Fetus M & F se assay	NI	OR	

NDR = No dose response

Table D.3. Results of BMD Modeling (mg/kg/day) for RBC ChE Data on Malathion, Dermal Toxicity in Rats.			
Study (dosing days)	Age Sex	BMD ₁₀	BMDL_{10}
MRID 46821601 21-Day Dermal Tox (Day 21)	Adult Male	N	Ā
MRID 46821601 28-Day Dermal Tox (Day 21)	Adult Female	123.985	79.776

NF indicates that no model obtained good fit.

NA indicates that while this model fit the data statistically, the team considered the results to be inaccurate.

Table D.4. Results of BMD Modeling (mg/L/day) for RBC ChE Data on Malathion, Inhalation Toxicity in Rats.			
Study (dosing days)	Age Sex	BMD ₁₀	BMDL ₁₀
MRID 43266601 90-day Inhalation Tox (Day 90)	Adult Male	0.167	0.082
MRID 43266601	Adult Female	0.126	0.050

Table D.5. Results of BMD Modeling (mg/kg/day) for RBC ChE Data on Malaoxon, Acute and Repeated Dose Oral Toxicity in Rats.

Study (dosing days)	Age Sex	BMD ₁₀	BMDL ₁₀
MRID 47373704 Acute CCA (1)	PND 11 Male		NF
MRID 47373704 Acute CCA (1)	PND 11 Female	0.604	0.433
MRID 46822201 Repeated Dose CCA (10)	PND 11 Male	0.839	0.530
MRID 46822201 Repeated Dose CCA (10)	PND 11 Female	0.608	0.511

CCA = comparative cholinesterase assay NF indicates that no model obtained good fit.

Appendix E. Summary of Malathion Specific Dislodgeable Foliar Residue and Turf Transferable Residue Data

Dislodgeable Foliar Residue Studies

(Please refer to: J. Arthur. D330675, 7/6/2006)

A total of six studies are described in this section. The studies were all conducted by the ARTF for use in defining generic transfer coefficients. Malathion is one of the compounds selected by the ARTF as a surrogate chemical for its efforts. These studies quantified residue dissipation and exposure during scouting in grapes, harvesting in grapes, apples, squash and blackberries, and pruning nursery stock. The DFR component of those studies has been extracted for chemical-specific use in this risk assessment. It should noted that no discussion of malaoxon was provided in the listed DFR studies. The studies which have been used in this assessment are identified below followed by a brief summary of each:

MRID 450059-10. ARTF Study No. ARF023. "Determination of Dermal and Inhalation Exposure to Reentry Workers During Scouting in Grapes," November 1999.

This study was conducted with Malathion 57 EC® for the purpose of establishing transfer coefficients. Only the dislodgeable foliar residue (DFR) portion of the study was used in the post-application assessment, and is summarized here. Two applications of malathion were made at seven days apart, to test plots in the San Joaquin Valley of California, by vertical boom sprayer at a rate of 1 lb ai/A in a spray volume of 210 gal/A. Samples were collected prior to the first application, and on day 0 (after spray was dry). Following the second application, DFR samples were collected on day 0 (after spray was dry), and then at 1, 2, 3, 4, 5, 6, 7, 14 and 21 days after application. On the sampling days, triplicate samples were collected across the two test subplots and single samples from a separate untreated control plot. Forty leaf punches were obtained for each sample with a Birkestrand leaf punch, resulting in 400 cm² of leaf surface (both sides) per sample. Residues on leaf discs were dislodged with 0.01% Aerosol OT solution. The limit of quantitation (LOQ) in this study was 2.0 ug/sample or 0.005 ug/cm². Field recovery values were within the acceptable range. No significant rainfall event was evident that might affect results. The study measured malathion residue only. EPA ran new DFR regressions for the post-application risk assessment in order to assess potential risk from the oxon product as well as the parent malathion. The dissipation curve was based on malathion DFRs plus estimated malaoxon residue. The oxon was estimated to be 5% of the parent residue. A toxicity factor of 22 was also applied to malaoxon residue. Results of the statistical analysis of the data are presented in the table below.

Grape DFR Dissipation Data (MRID 450059-10) Malathion Plus Estimated Malaoxon Residues								
Location	App. Rate in Study (lb ai/A)	Corr. Coeff. (adjusted R ²)	Slope of Semilog Regression	Day 0 Conc. (ug/cm ²)	% Dissipation/Day			
CA	1.0	0.91	-0.3707	0.62 predicted 2.91 actual	24%			

These residue data were extrapolated in the post-application assessment of malathion to cover the following currently labeled crops: blueberry (highbush), currant, grape, hop, and passion fruit.

MRID 454919-01. ARTF Study No. ARF048. "Determination of Dermal and Inhalation Exposure to Reentry Workers During Harvesting in Wine Grapes," March 2001.

This study was conducted with Malathion 57 EC® for the purpose of establishing transfer coefficients. Only the dislodgeable foliar residue (DFR) portion of the study was used in the post-application assessment, and is summarized here. Two applications of malathion were made at seven days apart, to test plots in Sanger, California, by vertical boom sprayer at a rate of 0.93 lb ai/A in a spray volume of 218 gal/A. Samples were collected just before the first application and on day 0 (after spray was dry). Following the second application, DFR samples were collected on day 0 (after spray was dry), and then at 1, 2, 3, 4, 5, 6, 7, 10 and 14 days after application. On the sampling days, triplicate samples were collected across the two test subplots and single samples from a separate untreated control plot. Forty leaf punches were obtained for each sample with a Birkestrand leaf punch, resulting in 400 cm² of leaf surface (both sides) per sample. Residues on leaf discs were dislodged with 0.01% Aerosol OT solution. The limit of

quantitation (LOQ) in this study was 2.0 ug/sample or 0.005 ug/cm². No significant rainfall event was evident that might affect results. Results of the statistical analysis of the data are presented in the table below.

Wine Grape DFR Dissipation Data (MRID 454919-01)								
Location	App. Rate in Study (lb ai/A)	Corr. Coeff. (adjusted R ²)	Slope of Semilog Regression	Day 0 Conc. (ug/cm ²)	% Dissipation/Day			
CA	0.93	0.92	-0.4367956	0.57	35			

These residue data would cover grapes, hops and passion fruit, however, they were not extrapolated in the post-application assessment of malathion. Data from the grape study, MRID 450059-10, were used because they represent a more conservative surrogate screen.

MRID 451382-02. ARTF Study No. ARF025. "Determination of Dermal and Inhalation Exposure to Reentry Workers During Harvesting in Apples," January 2000.

This study was conducted with Malathion 57 EC® for the purpose of establishing transfer coefficients. Only the dislodgeable foliar residue (DFR) portion of the study was used in the post-application assessment, and is summarized here. Two applications of malathion were made at ten days apart, to test plots in Orefield, Pennsylvania, by airblast sprayer at a rate of 1.25 lb ai/A in a spray volume of 125 gal/A. Samples were collected two days before the first application and on day 0 (after spray was dry). Following the second application, DFR samples were collected on day 0 (after spray was dry), and then at 1, 2, 3, 5, 6, 7, and 15 days after application. On the sampling days, triplicate samples were collected across the two test subplots and single samples from a separate untreated control plot. Forty leaf punches were obtained for each sample with a Birkestrand leaf punch, resulting in 400 cm² of leaf surface (both sides) per sample. Residues on leaf discs were dislodged with 0.01% Aerosol OT solution. The limit of quantitation (LOQ) in this study was 2.0 ug/sample or 0.005 ug/cm². A rainfall event between day 3 and 4 following application significantly lowered DFR values. The study measured malathion residue only. EPA ran new DFR regressions for the post-application risk assessment in order to assess potential risk from the oxon product as well as the malathion. The dissipation curve was based on malathion DFRs plus estimated malaoxon residue. The oxon was estimated to be 5% of the parent residue. A toxicity factor of 22 was also applied to malaoxon residue. Results of the statistical analysis of the data are presented in the table below.

Apple DFR Dissipation Data (MRID 451382-02) Malathion Plus Estimated Malaoxon Residues								
Location	App. Rate in Study (lb ai/A)	Corr. Coeff. (adjusted R ²)	Slope of Semilog Regression	Day 0 Conc. (ug/cm ²)	% Dissipation/Day			
PA	1.25	0.80	-0.5129	3.24 predicted 5.57 actual	40			

These residue data were extrapolated in the post-application assessment of malathion to cover the following currently labeled crops: apricot, avocado, cherry, chestnut, date, fig, grapefruit, guava, kumquat, lemon, lime, macadamia nut, mango, nectarine, orange, papaya, peach, pear, pecan, tangelo, tangerine, walnut, pine seed orchards and Christmas tree plantation.

MRID 454919-02. ARTF Study No. ARF049. "Determination of Dermal and Inhalation Exposure to Reentry Workers During Harvesting in Summer Squash," May 2001.

This study was conducted with Malathion 57 EC® for the purpose of establishing transfer coefficients. Only the dislodgeable foliar residue (DFR) portion of the study was used in the post-application assessment, and is summarized here. Two applications of malathion were made at seven days apart, to test plots in Porterville, California, by tractor-mounted boom sprayer at a rate of 0.95 lb ai/A in a spray volume of 20 gal/A. Samples were collected on the day before the first application and on day 0 (after spray was dry). Following the second application, DFR samples were collected on day 0 (after spray was dry), and then at 1, 2, 3, 4, 5, 6, and 7 days after application. On the sampling days, triplicate samples were collected across the two test subplots and single samples from a separate untreated control plot. Forty leaf punches were obtained for each sample with a Birkestrand leaf punch, resulting in 400 cm² of leaf surface (both sides) per sample. Residues on leaf discs were dislodged with 0.01% Aerosol OT solution. The limit of quantitation (LOQ) in this study was 2.0 ug/sample or 0.005 ug/cm². No significant rainfall events were evident to affect the results. The study measured malathion residue only. EPA ran new DFR regressions for the post-application risk assessment in order to assess potential risk from the oxon product as well as the malathion. The dissipation curve was based on malathion DFRs plus estimated malaoxon residue. The oxon was estimated to be 5% of the parent residue. A toxicity factor of 22 was also applied to malaoxon residue. Results of the statistical analysis of the data are presented in the table below.

Squash DFR Dissipation Data (MRID 454919-02) Malathion Plus Estimated Malaoxon Residues												
Location	App. Rate in Study (lb ai/A)	Corr. Coeff. (adjusted R ²)	Slope of Semilog Regression	Day 0 Conc. (ug/cm ²)	% Dissipation/Day							
CA	0.95	0.86	-0.584	11.73 predicted 8.31 actual	44%							

These residue data were extrapolated in the post-application assessment of malathion to cover the following currently labeled crops: alfalfa, asparagus, barley, bean, bermuda grass, beet, broccoli, broccoli-raab, brussels sprout, cabbage, carrot, cantaloupe, cauliflower, celery, chayote root, chayote fruit, chinese broccoli, chinese green, clover, collards, corn, cotton, cucumber, cut flowers, dandelion, eggplant, endive, flax, garlic, grasses (hay, forage), horseradish, kale, kohlrabi, leeks, lespedeza, lettuce, lupine, melon, mint, mushroom, mustard greens, oats, okra, onion, parsley, parsnip, pea, pepper, potato, pumpkin, radish, rice, rutabaga, rye, salsify, shallot, sorghum grain, spinach, squash, sweet potato, Swiss chard, tomato, tomatillo, turnip, vetch, watercress, watermelon, wheat, wild rice and yam.

MRID 451382-01. ARTF Study No. ARF020. "Determination of Dermal and Inhalation Exposure to Reentry Workers During Hand-Harvesting in Blackberries," January 2000.

This study was conducted with Malathion 57 EC® for the purpose of establishing transfer coefficients. Only the dislodgeable foliar residue (DFR) portion of the study was used in the post-application assessment, and is summarized here. Two applications of malathion were made at seven days apart, to test plots in Mount Angel, Oregon, by airblast sprayer at a rate of 1.9 lb ai/A in a spray volume of 90 gal/A. Samples were collected on the day before the first application and on day 0 (after spray was dry). Following the second application, DFR samples were collected on day 0 (after spray was dry), and then at 1, 2, 3, 4, 5, 6, 7 and 14 days after application. On the sampling days, triplicate samples were collected across the two test subplots and single samples from a separate untreated control plot. Eighty leaf punches were obtained for each sample with a Birkestrand leaf punch, resulting in 400 cm² of leaf surface (both sides) per sample. Residues on leaf discs were dislodged with 0.01% Aerosol OT solution. The limit of quantitation (LOQ) in this study was 2.0 ug/sample or 0.005 ug/cm². No rainfall events were evident to affect the results. The study measured malathion residue only. EPA ran new DFR regressions for the post-application risk assessment in order to assess potential risk from the oxon product as well as the malathion. The dissipation curve was based on malathion DFRs plus estimated malaoxon residue. The oxon was estimated to be 5% of the parent residue. A toxicity factor of 22 was also applied to malaoxon residue. Results of the statistical analysis of the data are presented in the table below.

Nursery	Nursery Stock DFR Dissipation Data (MRID 451382-01) Malathion Plus Estimated Malaoxon Residues												
Location	App. Rate in Study (lb ai/A)	Corr. Coeff. (adjusted R ²)	Slope of Semilog Regression	Day 0 Conc. (ug/cm ²)	% Dissipation/Day								
OR	1.9	0.92	-0.3972	1.44 predicted 2.60 actual	33%								

These residue data were extrapolated in the post-application assessment of malathion to cover the following currently labeled crops: blackberry, blueberry (lowbush), boysenberry, dewberry, gooseberry, loganberry, pineapple, raspberry and strawberry.

MRID 454695-01. ARTF Study No. ARF043. "Determination of Dermal and Inhalation Exposure to Reentry Workers During Pruning in Nursery Stock," January 2000.

This study was conducted with Malathion 57 EC® for the purpose of establishing transfer coefficients. Only the dislodgeable foliar residue (DFR) portion of the study was used in the post-application assessment, and is summarized here. A single application of malathion was made to test plots of assorted citrus trees in Yuma, Arizona, by commercial boom sprayer at a rate of 1.3 lb ai/A in a spray volume of 47 gal/A. Samples were collected on the day before application, on day 0 (after spray was dry), and then at 1, 2, 3, 4, 5, 6, 7 and 14 days after application. On the sampling days, triplicate samples were collected across the two test subplots

and single samples from a separate untreated control plot. Forty leaf punches were obtained for each sample with a Birkestrand leaf punch, resulting in 400 cm² of leaf surface (both sides) per sample. Residues on leaf discs were dislodged with 0.01% Aerosol OT solution. The limit of quantitation (LOQ) in this study was 2.0 ug/sample or 0.005 ug/cm². No rainfall events were evident to affect the results. The study measured malathion residue only. EPA ran new DFR regressions for the post-application risk assessment in order to assess potential risk from the oxon product as well as the malathion. The dissipation curve was based on malathion DFRs plus estimated malaoxon residue. The oxon was estimated to be 5% of the parent residue. A toxicity factor of 22 was also applied to malaoxon residue. Results of the statistical analysis of the data are presented in the table below.

Nursery	Nursery Stock DFR Dissipation Data (MRID 454695-01) Malathion Plus Estimated Malaoxon Residues												
Location	App. Rate in Study (lb ai/A)	Corr. Coeff. (adjusted R ²)	Slope of Semilog Regression	Day 0 Conc. (ug/cm ²)	% Dissipation/Day								
AZ	1.3	0.91	-0.4274	1.69 predicted 5.52 actual	35								

These residue data were extrapolated in the post-application assessment of malathion to cover all currently labeled ornamental crops including nursery stock and shrubs.

Turf Transferable Residue Studies

(Please refer to: J. Arthur, D240569, 1/10/2000)

MRID 439450-01. A Transferrable Residue Study - Malathion Residues in Turf

A transferable residue study on turf was conducted with the pesticide malathion formulated as the end use product Malathion 57EC. This study examined the residue levels of malathion that could be transferred from treated turf. Four geographic sites were included in this study to represent the different use areas in the United States. These sites represented cool season grass in the Northeast/mid Atlantic, cool season grass in the Midwest, warm season grass in the South Atlantic/Gulf region, and warm season grass in the Pacific Coastal region.

At each site, one application of Malathion 57EC with a target rate of 5 lb ai per acre (4 quarts of formulated product in 100 gallons of water) was performed with hand-gun spray equipment. These conditions were meant to provide the maximum level of malathion residues. Sprinkler irrigations were performed within one hour of each application, providing approximately 0.1 inch of water.

Field data were collected from June to September, 1995. A total of twelve transferable residue samples and three control samples were collected from each site (three samples collected from a subplot in each of the four treated plots and a control plot at each site). At most locations, samples were collected before and after application, then at 4, 8, 12, 24, 48, and 72 hours after treatment. Transferable residues of malathion were quantified by placing cloth dosimeters on the

turf. A 15-kg roller was then rolled over each dosimeter. Shaken to remove foliage, dosimeters were stored and shipped frozen to the laboratory for analysis.

Three transferable residue samples (replicates) were collected from a randomly chosen subplot in each of the 4 treated plots and the control plot at each of the following intervals: pre-application, post-application prior to irrigation, then at 4, 8 (except Pennsylvania, North Carolina, and Missouri), 12 (except North Carolina), 24, 48, and 72 hours (except North Carolina; some of them were not collected due to rain) after treatment. The 8 hour post-application samples were not collected at the Pennsylvania site since the requirement was added after the sampling was conducted. The 8, 12 hour, and some of the 72 hour samples were not collected at the North Carolina site due to rain.

EPA ran new DFR regressions for the post-application risk assessment in order to assess potential risk from the oxon product as well as the malathion. The dissipation curve was based on malathion TTRs plus estimated malaoxon residue. The oxon was estimated to be 5% of the parent residue. A toxicity factor of 22 was also applied to malaoxon residue. Results of the statistical analysis of the data are presented in the table below.

Summary of Malathion + Adjusted Malaoxon TTR Resid	lues and Regression Analysis Results for Turf
(MRID 439450-01) Pennsylva	nia
Application Rate (lb ai/A)	5.26
Average Day 0 Residue (µg/cm²)	2.56
Predicted Day 0 Residue (μg/cm²)	1.4
Slope	-1.416
Half-Life (days)	0.5
\mathbb{R}^2	0.86
North Caro	lina
Application Rate (lb ai/A)	4.99
Average Day 0 Residue (μg/cm²)	0.6225
Predicted Day 0 Residue (µg/cm²)	0.126
Slope	-1.853
Half-Life (days)	0.4
\mathbb{R}^2	0.67
Missour	i
Application Rate (lb ai/A)	5.38
Average Day 0 Residue (µg/cm²)	1.27
Predicted Day 0 Residue (µg/cm²)	0.517
Slope	-4.065
Half-Life (days)	0.2
\mathbb{R}^2	0.82
Californ	ia
Application Rate (lb ai/A)	5.15
Average Day 0 Residue (µg/cm²)	1.7
Predicted Day 0 Residue (μg/cm ²)	0.885
Slope	-1.153
Half-Life (days)	0.6
R^2	0.87

Appendix F: Inputs for Malathion Mosquitocide Applications - 2012 Residential SOP

Algorithms; Use of Well Mixed Box Model; AgDISP (V8.2.6) Inputs

Mosquitocide Application Post-application Dermal, Incidental Oral, and Inhalation Exposure Algorithms

Aerial Application

Deposition and air concentrations from aerial ULV applications was modeled using the AgDISP (v8.2.6) model which is currently recommended for assessment of mosquito adulticide applications. AgDISP predicts the motion of spray material released from aircraft, and determines the amount of application volume that remained aloft and the amount of the resulting droplets deposited on the surfaces in the treatment area, as well as downwind from the treatment area. The model also allows for the estimation of air concentrations in the breathing zones of adults and children for use in calculating the post-application inhalation risks to individuals residing in areas being treated by aerial application of malathion. The input parameters used as the basis for AgDISP (v8.2.6) calculations are presented below.

Table D.2 AGDISP Input	s (v8.26)	: Malathion Mose	quitocide ULV	Application
------------------------	-----------	------------------	---------------	-------------

Application Method Aerial

Air Tractor AT-401

Release Height 100 Feet minimum release (EPA Reg No. 67760-34)

Spray Lines 20 Reps Application Technique Liquid

Application Technique 3; Extent 76.3%; Spacing 18.7 ft

Nozzles

Application Technique *Drop* User defined

Size Distribution Parametric; $D_{V0.5}$: 60.2 µm; and relative span: 1.2.

no conversion to Malvern Drop Size Distribution

Swath Width 500 feet Swath Displacement 0 feet

Meteorology Wind type: single height

Wind speed: 1 mph Wind direction: -90 deg Temperature: 85 F° Relative humidity: 50%

Spray Material Name: oil; spray volume rate: 0.023 gal/A (EPA Reg No. 67760-34; Active

Fraction: 0.965; Nonvol nonvolatile: 1. (no carrier tank mix)

Atmospheric Stability Overcast

Surface Upslope angle: 0 deg

Sideslope angle: 0 deg

Canopy: None

Transport Distance: 0 feet

Advanced Default Swatch offset: 0 Swath

Specific Gravity carrier and active and additive= 1.0

Evaporation Rate: 84.76

A sensitivity analysis was completed for the AGDISP (v8.26) inputs corresponding to the release height and wind speed during an application. This analysis is provided below in Table D.3.

	Table D.3. Sensitivity Analysis for the Mosquitocide ULV Application Parameters (i.e., Wind Speed and Release Height) ¹													
Fraction of Application Rate for Deposition ² Air concentration at breathing hei (unitless) (mg/m ³)														
AGDISP Parameters	100 feet release height	300 feet release height	100 feet release height	300 feet release height										
1 mph	> 1 (1.65)	0.41	0.075	0.012										
3 mph	> 1 (1.1)	0.36	0.045	0.015										
5 mph	1.0	0.35	0.040	0.015										

- 1. The ULV mosquitocide labels require applications to occur when the wind speed is greater than or equal to 1 mph and not to apply by fixed wing aircraft at height less than 100 feet or by helicopter at a height than 75 feet unless specifically approved by the state or tribe based on public health needs.
- 2. Where the fraction of application rate for deposition was determined to be greater than 1, the maximum fraction of 1 will be used for the exposure calculations.

Ground-based Foggers

In the study conducted by Moore *et al.*, [Downwind Drift and Deposition of Malathion on Human Targets From Ground Ultra-Low Volume Mosquito Sprays: J.C. Moore, J.C. Dukes, J.R. Clark, J. Malone, C.F. Hallmon, and P.G. Hester; Journal of the American Mosquito Control Association; Vol. 9, No. 2 (June, 1993)] both human exposure and deposition was quantified over 5 separate application events. A 91 percent formulation of malathion was applied in April and May of 1989 in the early evening (a time of day for relative atmospheric stability). A Leco HD ULV cold aerosol generator (Lowndes Engineering Company, Valdosta Georgia) was used to make each application. The application parameters included a fluid flow rate of 4.3 fluid ounces per minute, a vehicle ground speed of 10 mph, and a nominal application rate of 0.05 lb ai/acre (i.e., equates to a deposition rate of 0.51 µg/cm²). Deposition was monitored at three locations downwind from the treatment area (i.e., 15.2 m, 30.4 m, and 91.2 m). For the events considered in the deposition calculations, "average amounts of malathion deposited on ground level at 15.2, 30.4, and 91.2 m were not significantly different." The percentage of the application rate reported to have deposited ranged from 1 to 14 percent. The mean deposition value for all measurements was 4.3 percent (n=35, CV=98).

In the study conducted by Tietze *et al.*, [Mass Recovery of Malathion in Simulated Open Field Mosquito Adulticide Tests: N.S. Tietze, P.G. Hester, and K.R. Shaffer; Archives of Environmental Contamination and Toxicology; 26: 473-477 (1994)] only deposition was quantified over 6 separate application events (i.e., one event was not included in deposition calculations "due to negative air stability"). The application parameters were similar to that used by Moore *et al.* A 95 percent formulation of malathion was applied from May to August of 1993. A Leco 1600 ULV cold aerosol generator (Lowndes Engineering Company, Valdosta Georgia) was also used to make each application. The application parameters included a fluid flow rate of 4.3 fluid ounces per minute, a vehicle ground speed of 10 mph, and a nominal

application rate of 0.057 lb ai/acre (i.e., equates to a deposition rate of 0.58 μ g/cm²). Deposition was monitored at four locations downwind from the treatment area (i.e., 5 m, 25 m, 100 m and 500 m). For the events considered in the deposition calculations, "malathion mass deposited differed significantly between the 500 m site and the three closer sites (df = 3; F-value = 3.42; P<0.05)." The percentage of the application rate reported to have deposited (not including 500 m samples which were much less) ranged up to 5.8 percent. The mean deposition value for all measurements was 3.8 percent.

Additionally, in an analysis from 2013 (C. Peck, D407817, 3/28/2013), the Environmental Fate and Effects Division (EFED) reviewed eight published studies on ground ULV application in which deposition was measured. The studies varied in collection media (i.e., grass clippings and coupons), distance from application or spray head (ranging from 8 meters to 500 meters), and chemical measured (i.e., fenthion, malathion, naled, and permethrin). The analysis included the Moore *et al.*, and Tietze *et al.*, studies discussed above. After considering the available data, HED has determined that an off-target deposition rate of 8.7 percent of the application rate may be used by HED to evaluate ground-based ULV applications (i.e., 8.7 percent of the target application rate deposits on turf). This value is the 90 percent upper confidence limit on the mean and is slightly higher than the mean values from all the data points observed in the studies (7.1%, n= 94). The adjusted application rate was then used to define TTR levels by scaling the available TTR data as appropriate.

In order to calculate airborne concentrations from ULV truck fogger applications, HED used the 2012 Residential SOPs for Outdoor Fogging/Misting Systems, with minimal modification to the WMB model. The WMB model allows for the estimation of air concentrations in the breathing zones of adults and children for use in calculating the post-application inhalation exposure to individuals residing in areas being treated by ground application of malathion. The methodology more accurately accounts for dilution using the WMB model. The WMB model input parameters and the algorithms used to estimate residential post-application exposures can be found below.

<u>Post-application Inhalation Exposure Algorithm for Truck Mounted ULV – Well Mixed Box</u> Model

The following algorithm is used to determine post-application inhalation exposure to truck mounted fogger sprays:

TWA (mg/m³) =
$$\frac{\left[\frac{AR}{Q}\left(1 - e^{-\frac{Q}{V}(ET)}\right)\right]}{AT}$$

where:

[TWA] = time weighted average air concentration (mg/m³);

AR = application rate (mg ai/day);

Q = airflow through the treated area ($m^3/hour$);

V = volume of the box (m^3)

ET = time (duration) of exposure (hours); and

AT = averaging time to match the duration of the HEC (hours).

Application rate for WMB analysis can be calculated as follows:

$$AR* = AR * CF1* CF2 * CF3$$

where:

AR* = application rate (mg ai/day) AR = application rate (lb ai/A)

CF1 = unit conversion factor (454 g/lb)

CF2 = unit conversion factor $(400 \text{ft}^2/43560 \text{ ft2 per acre})$

CF3 = unit conversion factor (1000 mg/g)

The airflow through the treated space can be calculated as follows:

$$Q = AV *CF1 * CF2 * A_{cross-section}$$

where:

Q = airflow through treated space (m^3/hr) ;

AV = air velocity (m/s);

CF1 = time unit conversion factor (60 seconds/1 minute); CF2 = time unit conversion factor (60 minutes / hour); and

 $A_{cross-section}$ = cross-section of outdoor space treated (m^2).

	Truck Mounted Mosquito Vector Control Fogger	r –Inputs for Residential Post-application
Inhalation I	*	
Algorithm Notation	Exposure Factor (units)	Point Estimate(s)
	()	()
AR	Application rate (lb ai/A)	0.11 (458 mg ai/day)
A _{cross-section}	Cross sectional area of area treated (m ²)	15
AV	Air velocity (m/s)	0.1
Q	Airflow through treated area (m ³ /hr)	5,400
A.I.	Percent ai in product (%)	96.5%
V	Volume of the treated space (m ³)	90
ET	Exposure duration (hours) [equivalent to time spend outdoors on Turf]	1.5
AT	Averaging Time (hours)	6

	Table D.8: Truck Mounted Mosquito Vector Control Fogger –Inputs for Residential Post-application Inhalation Exposure												
Algorithm	Exposure Factor												
Notation	(units)	•											
	[equivalent to duration of inhalation toxicity												
	study]												

Appendix G: Non-Occupational (Bystander) Exposure and Risk Estimates for the Spray Drift Assessment

Table E.1. Adult Risk Estimates (MOEs) Related to Indirect Exposure to Spray Drift for Malathion for the Dermal Route of Exposure														
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
Fencerows and He	edgerows	,												
	Fine to Medium			28	35	43	56	74	95	120	130	180	210	260
Aerial	Medium to Coarse			34	46	63	88	130	160	210	250	350	450	560
	Coarse to Very Coarse			40	58	88	140	200	260	330	400	560	730	910
	Very Fine to Fine			19	21	24	28	32	37	41	47	57	67	76
	AT401, M, 10 mph, 37% SD			31	40	51	69	93	120	150	170	230	280	350
	WASP, M, 10 mph, 37% SD			33	42	56	84	120	150	180	210	280	350	400
	AT401, C, 10 mph, 25% SD		2.8	37	51	73	110	150	200	250	300	430	560	660
	WASP, C, 10 mph, 25% SD			42	60	86	140	190	260	320	400	560	730	810
	AT401, VC, 10 mph, 20% SD WASP, VC, 10 mph,	10.6		41	63	100	160	230	320	400	520	730	910	1,200
	20% SD High Boom Very fine			53	82	130	200	290	380	520	600	910	1,000	1,200
	to Fine Low Boom Very fine			39	78	130	210	290	360	430	520	660	910	1,000
Groundboom	to Fine High Boom Fine to			85	230	360	560	730	910	1,000	1,200	1,500	1,800	2,400
	Medium/Coarse Low Boom Fine to			150	380	560	810	1,000	1,200	1,500	1,500	1,800	2,400	2,400
	Medium/Coarse			220	600	910	1,200	1,500	1,800	2,400	2,400	3,600	3,600	3,600
	Sparse			51	87	160	360	660	1,100	1,600	2,300	4,000	6,600	9,100
Airblast	Normal			2,400	3,600	5,600	8,100	12,000	15,000	18,000	24,000	24,000	36,000	36,000
	Dense			170	260	410	730	1,100	1,500	1,900	2,300	3,200	4,000	4,800
Citrus (CA)	Vineyard			910	1,800	3,300	6,000	9,100	12,000	15,000	18,000	24,000	36,000	36,000
` /	Fine to Medium			40	49	61	79	100	130	160	190	250	300	370
Aerial	Medium to Coarse	7.5	2.0	49	66	89	120	180	230	290	350	490	640	790

	ult Risk Estimates (M Spray Type/	Appl.	TTR		•	1 0						•		
Crop/Rate Group	Nozzle Configuration	Rate (lb ai/A)	(ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Coarse to Very Coarse			56	83	120	190	280	370	470	570	790	1,000	1,300
	Very Fine to Fine			27	30	34	39	45	52	59	66	81	95	110
	AT401, M, 10 mph, 37% SD WASP, M, 10 mph,			44	56	72	98	130	170	210	240	320	390	490
	37% SD AT401, C, 10 mph,			47	60	79	120	160	210	260	300	390	490	570
	25% SD			52	73	100	150	220	280	350	430	600	790	930
	WASP, C, 10 mph, 25% SD			60	85	120	190	270	370	450	570	790	1,000	1,100
	AT401, VC, 10 mph, 20% SD			59	89	140	230	330	450	570	730	1,000	1,300	1,700
	WASP, VC, 10 mph, 20% SD			74	120	180	280	410	540	730	850	1,300	1,500	1,700
	High Boom Very fine to Fine			55	110	180	290	410	510	600	730	930	1,300	1,500
Groundboom	Low Boom Very fine to Fine			120	320	510	790	1,000	1,300	1,500	1,700	2,000	2,600	3,400
	High Boom Fine to Medium/Coarse			210	540	790	1,100	1,500	1,700	2,000	2,000	2,600	3,400	3,400
	Low Boom Fine to Medium/Coarse			310	850	1,300	1,700	2,000	2,600	3,400	3,400	5,100	5,100	5,100
	Sparse			71	120	230	510	930	1,500	2,300	3,200	5,700	9,300	13,000
Airblast	Normal			3,400	5,100	7,900	11,000	17,000	20,000	26,000	34,000	34,000	51,000	51,000
Molast	Dense			240	370	590	1,000	1,500	2,100	2,600	3,200	4,500	5,700	6,800
	Vineyard			1,300	2,500	4,700	8,500	13,000	17,000	20,000	26,000	34,000	51,000	51,000
Kumquats, Citrus	(including FL, except lemon	n in FL)		,	,	,	-,	-,	.,	,,,,,,,	-,	,,,,,,	, ,	,,,,,
	Fine to Medium			66	82	100	130	170	220	270	320	420	500	610
	Medium to Coarse			81	110	150	210	290	390	490	590	810	1,100	1,300
Aerial	Coarse to Very Coarse	4.5	1.2	93	140	210	320	460	610	780	950	1,300	1,700	2,100
	Very Fine to Fine			46	50	56	65	76	87	98	110	130	160	180

Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	WASP, M, 10 mph, 37% SD AT401, C, 10 mph,	,		78	100	130	200	270	350	430	500	660	810	950
	25% SD			86	120	170	250	360	470	590	710	1,000	1,300	1,600
	WASP, C, 10 mph, 25% SD AT401, VC, 10 mph,			100	140	200	320	450	610	740	950	1,300	1,700	1,900
	20% SD WASP, VC, 10 mph,			98	150	240	390	550	740	950	1,200	1,700	2,100	2,800
	20% SD			120	190	300	470	680	900	1,200	1,400	2,100	2,400	2,800
	High Boom Very fine to Fine Low Boom Very fine			91	180	310	490	680	850	1,000	1,200	1,600	2,100	2,400
Groundboom	to Fine			200	530	850	1,300	1,700	2,100	2,400	2,800	3,400	4,300	5,700
Groundboom	High Boom Fine to Medium/Coarse Low Boom Fine to			350	900	1,300	1,900	2,400	2,800	3,400	3,400	4,300	5,700	5,700
	Medium/Coarse			520	1,400	2,100	2,800	3,400	4,300	5,700	5,700	8,500	8,500	8,500
	Sparse			120	200	390	850	1,600	2,500	3,800	5,300	9,500	16,000	21,000
Airblast	Normal			5,700	8,500	13,000	19,000	28,000	34,000	43,000	57,000	57,000	85,000	85,000
Anolast	Dense			400	610	980	1,700	2,500	3,500	4,400	5,300	7,400	9,500	11,000
	Vineyard			2,100	4,200	7,800	14,000	21,000	28,000	34,000	43,000	57,000	85,000	85,000
Nectarines, Peach	es Fine to Medium			100	120	150	200	260	340	410	470	620	750	920
	Medium to Coarse				120	150	200	260			470			
	Coarse to Very Coarse			120	160	220	310	440	580	730	880	1,200	1,600	2,000
	•			140	210	310	480	690	920	1,200	1,400	2,000	2,600	3,200
Aerial	Very Fine to Fine AT401, M, 10 mph,	3	0.80	69	75	84	98	110	130	150	170	200	240	270
	37% SD WASP, M, 10 mph,			110	140	180	240	330	430	520	610	800	990	1,200
	37% SD			120	150	200	300	410	520	640	750	990	1,200	1,400
	AT401, C, 10 mph, 25% SD			130	180	260	380	550	710	880	1,100	1,500	2,000	2,300
	WASP, C, 10 mph, 25% SD			150	210	310	480	670	920	1,100	1,400	2,000	2,600	2,800

Table E.1. Adult Risk Estimates (MOEs) Related to Indirect Exposure to Spray Drift for Malathion for the Dermal Route of Exposure														
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	AT401, VC, 10 mph, 20% SD WASP, VC, 10 mph,	···		150	220	360	580	830	1,100	1,400	1,800	2,600	3,200	4,300
	20% SD			190	290	450	710	1,000	1,300	1,800	2,100	3,200	3,700	4,300
Groundboom	High Boom Very fine to Fine			140	280	460	730	1,000	1,300	1,500	1,800	2,300	3,200	3,700
	Low Boom Very fine to Fine			300	800	1,300	2,000	2,600	3,200	3,700	4,300	5,100	6,400	8,500
	High Boom Fine to Medium/Coarse			520	1,300	2,000	2,800	3,700	4,300	5,100	5,100	6,400	8,500	8,500
	Low Boom Fine to Medium/Coarse			780	2,100	3,200	4,300	5,100	6,400	8,500	8,500	13,000	13,000	13,000
	Sparse			180	310	580	1,300	2,300	3,800	5,700	8,000	14,000	23,000	32,000
Airblast	Normal			8,500	13,000	20,000	28,000	43,000	51,000	64,000	85,000	85,000	130,000	130,000
Anolast	Dense			610	920	1,500	2,600	3,800	5,200	6,600	8,000	11,000	14,000	17,000
	Vineyard			3,200	6,200	12,000	21,000	32,000	43,000	51,000	64,000	85,000	130,000	130,000
Chestnut, Cotton,	Pecans, Walnut													
	Fine to Medium			120	150	180	240	310	400	490	570	750	900	1,100
	Medium to Coarse			150	200	270	370	530	700	880	1,100	1,500	1,900	2,400
	Coarse to Very Coarse			170	250	370	580	830	1,100	1,400	1,700	2,400	3,100	3,800
	Very Fine to Fine			82	90	100	120	140	160	180	200	240	280	320
Aerial	AT401, M, 10 mph, 37% SD			130	170	220	290	390	510	630	730	960	1,200	1,500
Horiai	WASP, M, 10 mph, 37% SD	2.5	0.66	140	180	240	360	490	630	770	900	1,200	1,500	1,700
	AT401, C, 10 mph, 25% SD			160	220	310	460	650	850	1,100	1,300	1,800	2,400	2,800
	WASP, C, 10 mph, 25% SD			180	250	370	580	810	1,100	1,300	1,700	2,400	3,100	3,400
	AT401, VC, 10 mph, 20% SD			180	270	430	700	990	1,300	1,700	2,200	3,100	3,800	5,100
	WASP, VC, 10 mph, 20% SD			220	350	540	850	1,200	1,600	2,200	2,600	3,800	4,400	5,100
Groundboom	High Boom Very fine to Fine			160	330	550	880	1,200	1,500	1,800	2,200	2,800	3,800	4,400

Table E.1. Ad	ult Risk Estimates (N		Related to I	ndirect E	Exposure	to Spray	Drift for	r Malath	ion for th	e Dermal	Route of	Exposure		
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Low Boom Very fine to Fine High Boom Fine to Medium/Coarse Low Boom Fine to Medium/Coarse			360 630 930	960 1,600 2,600	1,500 2,400 3,800	2,400 3,400 5,100	3,100 4,400 6,100	3,800 5,100 7,700	4,400 6,100 10,000	5,100 6,100 10,000	6,100 7,700 15,000	7,700 10,000 15,000	10,000 10,000 15,000
	Sparse			210	370	690	1,500	2,800	4,500	6,800	9,600	17,000	28,000	38,000
Airblast	Normal			10,000	15,000	24,000	34,000	51,000	61,000	77,000	100,000	100,000	150,000	150,000
Allolast	Dense			730	1,100	1,800	3,100	4,600	6,300	7,900	9,600	13,000	17,000	20,000
	Vineyard			3,800	7,500	14,000	26,000	38,000	51,000	61,000	77,000	100,000	150,000	150,000
Apples														
	Fine to Medium			130	160	200	270	350	450	550	640	840	1,000	1,200
	Medium to Coarse			160	220	300	420	590	780	980	1,200	1,600	2,200	2,700
	Coarse to Very Coarse			190	280	420	650	930	1,200	1,600	1,900	2,700	3,400	4,300
	Very Fine to Fine			92	100	110	130	150	170	200	220	270	320	360
Aerial	AT401, M, 10 mph, 37% SD			150	190	240	330	440	570	700	820	1,100	1,300	1,600
Heriui	WASP, M, 10 mph, 37% SD			160	200	270	400	550	700	860	1,000	1,300	1,600	1,900
	AT401, C, 10 mph, 25% SD	2.23	0.59	170	240	350	510	730	960	1,200	1,400	2,000	2,700	3,100
	WASP, C, 10 mph, 25% SD	2.23	0.57	200	280	410	650	910	1,200	1,500	1,900	2,700	3,400	3,800
	AT401, VC, 10 mph, 20% SD			200	300	480	780	1,100	1,500	1,900	2,500	3,400	4,300	5,700
	WASP, VC, 10 mph, 20% SD			250	390	600	960	1,400	1,800	2,500	2,900	4,300	4,900	5,700
	High Boom Very fine to Fine			180	370	620	980	1,400	1,700	2,000	2,500	3,100	4,300	4,900
0 "	Low Boom Very fine to Fine			410	1,100	1,700	2,700	3,400	4,300	4,900	5,700	6,900	8,600	11,000
Groundboom	High Boom Fine to Medium/Coarse			700	1,800	2,700	3,800	4,900	5,700	6,900	6,900	8,600	11,000	11,000
	Low Boom Fine to Medium/Coarse			1,000	2,900	4,300	5,700	6,900	8,600	11,000	11,000	17,000	17,000	17,000
	Modiani Course			1,000	2,700	1,500	5,700	0,200	0,000	11,000	11,000	17,000	17,000	17,000

Table E.1. Ad	ult Risk Estimates (N		elated to I	ndirect E	Exposure	to Spray	Drift for	r Malath	ion for th	e Dermal	Route of	Exposure		
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Sparse			240	410	780	1,700	3,100	5,100	7,700	11,000	19,000	31,000	43,000
Airblast	Normal			11,000	17,000	27,000	38,000	57,000	69,000	86,000	110,000	110,000	170,000	170,000
Allolast	Dense			820	1,200	2,000	3,400	5,100	7,000	8,800	11,000	15,000	19,000	23,000
	Vineyard			4,300	8,400	16,000	29,000	43,000	57,000	69,000	86,000	110,000	170,000	170,000
Arugula, Amarant	h, Caneberries, Chervil, Ch	rysanthenm	um, Corn sala	id, Dock(soi	rrel), Figs, (Orach, Orna	mentals, Pu	ırslane, Stra	wberries, C	eltuce, Flore	nce fennel, G	ooseberry, Pi	neapple	
	Fine to Medium			150	180	230	300	390	510	610	710	940	1,100	1,400
	Medium to Coarse			180	250	330	470	660	870	1,100	1,300	1,800	2,400	3,000
	Coarse to Very Coarse			210	310	470	730	1,000	1,400	1,700	2,100	3,000	3,800	4,800
	Very Fine to Fine			100	110	130	150	170	200	220	250	300	360	400
Aerial	AT401, M, 10 mph, 37% SD			160	210	270	370	490	640	780	920	1,200	1,500	1,800
Acriai	WASP, M, 10 mph, 37% SD			180	220	300	450	610	780	960	1,100	1,500	1,800	2,100
	AT401, C, 10 mph, 25% SD			190	270	390	570	820	1,100	1,300	1,600	2,300	3,000	3,500
	WASP, C, 10 mph, 25% SD			220	320	460	730	1,000	1,400	1,700	2,100	3,000	3,800	4,300
	AT401, VC, 10 mph, 20% SD	2	0.53	220	330	530	870	1,200	1,700	2,100	2,700	3,800	4,800	6,400
	WASP, VC, 10 mph, 20% SD			280	440	670	1,100	1,500	2,000	2,700	3,200	4,800	5,500	6,400
	High Boom Very fine to Fine			210	410	690	1,100	1,500	1,900	2,300	2,700	3,500	4,800	5,500
	Low Boom Very fine to Fine			450	1,200	1,900	3,000	3,800	4,800	,	6,400	7,700	9,600	13,000
Groundboom	High Boom Fine to				,	,	,	,	,	5,500	,	,	,	,
	Medium/Coarse Low Boom Fine to			780	2,000	3,000	4,300	5,500	6,400	7,700	7,700	9,600	13,000	13,000
	Medium/Coarse			1,200	3,200	4,800	6,400	7,700	9,600	13,000	13,000	19,000	19,000	19,000
	Sparse			270	460	870	1,900	3,500	5,700	8,500	12,000	21,000	35,000	48,000
Airblast	Normal			13,000	19,000	30,000	43,000	64,000	77,000	96,000	130,000	130,000	190,000	190,000
	Dense			910	1,400	2,200	3,800	5,700	7,800	9,900	12,000	17,000	21,000	26,000

Table E.1. Ad	lult Risk Estimates (N	MOEs) R	elated to I	ndirect E	Exposure	to Spray	Drift fo	r Malath	ion for th	e Dermal	Route of	Exposure		
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Vineyard			4,800	9,400	17,000	32,000	48,000	64,000	77,000	96,000	130,000	190,000	190,000
Chayote fruit, Che	erries, Cucumber, Summer s	squash		1,000	7,	,	,	,	.,,	.,,	,	,	,	,
	Fine to Medium			170	210	260	340	450	580	700	810	1,100	1,300	1,600
	Medium to Coarse			210	280	380	540	760	1,000	1,300	1,500	2,100	2,700	3,400
	Coarse to Very Coarse			240	350	540	830	1,200	1,600	2,000	2,400	3,400	4,400	5,500
	Very Fine to Fine			120	130	140	170	190	220	250	280	350	410	460
Aerial	AT401, M, 10 mph, 37% SD			190	240	310	420	560	730	900	1,000	1,400	1,700	2,100
	WASP, M, 10 mph, 37% SD AT401, C, 10 mph,			200	260	340	510	700	900	1,100	1,300	1,700	2,100	2,400
	25% SD WASP, C, 10 mph,			220	310	440	660	930	1,200	1,500	1,800	2,600	3,400	4,000
	25% SD AT401, VC, 10 mph,			260	360	520	830	1,200	1,600	1,900	2,400	3,400	4,400	4,900
	20% SD WASP, VC, 10 mph,	1.75	0.47	250	380	610	1,000	1,400	1,900	2,400	3,100	4,400	5,500	7,300
	20% SD High Boom Very fine			320	500	770	1,200	1,800	2,300	3,100	3,700	5,500	6,300	7,300
	to Fine Low Boom Very fine			230	470	780	1,300	1,800	2,200	2,600	3,100	4,000	5,500	6,300
Groundboom	to Fine High Boom Fine to			520	1,400	2,200	3,400	4,400	5,500	6,300	7,300	8,800	11,000	15,000
	Medium/Coarse Low Boom Fine to			900	2,300	3,400	4,900	6,300	7,300	8,800	8,800	11,000	15,000	15,000
	Medium/Coarse			1,300	3,700	5,500	7,300	8,800	11,000	15,000	15,000	22,000	22,000	22,000
	Sparse			310	530	990	2,200	4,000	6,500	9,800	14,000	24,000	40,000	55,000
Airblast	Normal			15,000	22,000	34,000	49,000	73,000	88,000	110,000	150,000	150,000	220,000	220,000
	Dense			1,000	1,600	2,500	4,400	6,600	9,000	11,000	14,000	19,000	24,000	29,000
Chavote root. Egg	Vineyard gplant, Garlic, Leeks, Onions	s. Penners	Bell Penners	5,500 Potatoes, Sh	11,000 nallots. Swe	20,000 et potatoes.	37,000 Tomatoes	55,000 Yams	73,000	88,000	110,000	150,000	220,000	220,000
Aerial	Fine to Medium	1.56	0.41	190	240	290	380	500	650	780	910	1,200	1,400	1,800

Table E.1. Ad	ult Risk Estimates (M	10Es) R	elated to I	ndirect E	Exposure	to Spray	Drift for	r Malath	ion for th	e Dermal	Route of	Exposure		
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Medium to Coarse			230	320	430	600	850	1,100	1,400	1,700	2,300	3,100	3,800
	Coarse to Very Coarse			270	400	600	930	1,300	1,800	2,200	2,700	3,800	4,900	6,200
	Very Fine to Fine			130	140	160	190	220	250	280	320	390	460	520
	AT401, M, 10 mph, 37% SD			210	270	350	470	630	820	1,000	1,200	1,500	1,900	2,300
	WASP, M, 10 mph, 37% SD			230	290	380	570	780	1,000	1,200	1,400	1,900	2,300	2,700
	AT401, C, 10 mph, 25% SD			250	350	500	740	1,000	1,400	1,700	2,100	2,900	3,800	4,500
	WASP, C, 10 mph, 25% SD			290	410	590	930	1,300	1,800	2,100	2,700	3,800	4,900	5,500
	AT401, VC, 10 mph, 20% SD			280	430	680	1,100	1,600	2,100	2,700	3,500	4,900	6,200	8,200
	WASP, VC, 10 mph, 20% SD			360	560	860	1,400	2,000	2,600	3,500	4,100	6,200	7,000	8,200
	High Boom Very fine to Fine			260	530	880	1,400	2,000	2,500	2,900	3,500	4,500	6,200	7,000
Groundboom	Low Boom Very fine to Fine			580	1,500	2,500	3,800	4,900	6,200	7,000	8,200	9,900	12,000	16,000
orounuccom	High Boom Fine to Medium/Coarse			1,000	2,600	3,800	5,500	7,000	8,200	9,900	9,900	12,000	16,000	16,000
	Low Boom Fine to Medium/Coarse			1,500	4,100	6,200	8,200	9,900	12,000	16,000	16,000	25,000	25,000	25,000
	Sparse			340	590	1,100	2,500	4,500	7,200	11,000	15,000	27,000	45,000	62,000
Airblast	Normal			16,000	25,000	38,000	55,000	82,000	99,000	120,000	160,000	160,000	250,000	250,000
	Dense			1,200	1,800	2,800	4,900	7,400	10,000	13,000	15,000	21,000	27,000	33,000
	Vineyard			6,200	12,000	22,000	41,000	62,000	82,000	99,000	120,000	160,000	250,000	250,000
Apricot, Beans, C	elery, Lentils, Parsley, Tang	erines, Wat	ermelon,											
	Fine to Medium			200	250	300	400	520	670	810	950	1,200	1,500	1,800
Aerial	Medium to Coarse	1.5	0.40	240	330	450	620	880	1,200	1,500	1,800	2,400	3,200	3,900
	Coarse to Very Coarse			280	410	620	970	1,400	1,800	2,300	2,800	3,900	5,100	6,400
	Very Fine to Fine			140	150	170	200	230	260	290	330	400	470	540

Table E.1. Ad	Cnway T-mal	Appl.	TTR											
Crop/Rate	Spray Type/ Nozzle	Rate	(ug/cm	At	10	25	50	75	100	125	150	200	250	300
Group	Configuration	(lb ai/A)	2)	Edge	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet
	AT401, M, 10 mph,	,		220	200	260	400	660	050	1.000	1.200	1.600	2.000	2.400
	37% SD WASP, M, 10 mph,			220	280	360	490	660	850	1,000	1,200	1,600	2,000	2,400
	37% SD			240	300	400	600	810	1,000	1,300	1,500	2,000	2,400	2,800
	AT401, C, 10 mph, 25% SD			260	360	520	760	1,100	1,400	1,800	2,100	3,000	3,900	4,700
	WASP, C, 10 mph,								,			,		
	25% SD AT401, VC, 10 mph,			300	420	610	970	1,300	1,800	2,200	2,800	3,900	5,100	5,700
	20% SD			290	450	710	1,200	1,700	2,200	2,800	3,700	5,100	6,400	8,500
	WASP, VC, 10 mph, 20% SD			370	580	900	1,400	2,000	2,700	3,700	4,300	6,400	7,300	8,500
	High Boom Very fine			270	550	020	1.500	2,000	2.600	2 000	2.700	4.700	6.400	7.200
	to Fine Low Boom Very fine			270	550	920	1,500	2,000	2,600	3,000	3,700	4,700	6,400	7,300
Groundboom	to Fine High Boom Fine to			600	1,600	2,600	3,900	5,100	6,400	7,300	8,500	10,000	13,000	17,000
	Medium/Coarse			1,000	2,700	3,900	5,700	7,300	8,500	10,000	10,000	13,000	17,000	17,000
	Low Boom Fine to Medium/Coarse			1,600	4,300	6,400	8,500	10,000	13,000	17,000	17,000	26,000	26,000	26,000
	Sparse			,	,	,	,	,	,		,	,	ŕ	,
	•			360	610	1,200	2,600	4,700	7,500	11,000	16,000	28,000	47,000	64,000
Airblast	Normal			17,000	26,000	39,000	57,000	85,000	100,000	130,000	170,000	170,000	260,000	260,000
rinolast	Dense			1,200	1,800	2,900	5,100	7,600	10,000	13,000	16,000	22,000	28,000	34,000
	Vineyard			6,400	12,000	23,000	43,000	64,000	85,000	100,000	130,000	170,000	260,000	260,000
	s, Barley, Beets, Broccoli, Brabi, Lemons (FL), Lespede			Carrot, Cau	ıliflower, C	hinese gree	ns, Clover,	Currant, Da	ndelion, En					
Horseradish, Konii	Fine to Medium	eza, Papaya	, Parsnip, Pear	rs, Rice, Sai	sily, Treioi	i, Turnips, v	veicn, wate	ercress, will	a Rice					
	r ine to Meatum			240	290	360	480	630	810	980	1,100	1,500	1,800	2,200
	Medium to Coarse			290	390	530	750	1,100	1,400	1,800	2,100	2,900	3,800	4,700
Aerial	Coarse to Very Coarse	1.25	0.33	340	500	750	1,200	1,700	2,200	2,800	3,400	4,700	6,100	7,700
1101141	Very Fine to Fine	1.20	0.55	160	180	200	230	270	310	350	400	480	570	650
	AT401, M, 10 mph,													
	37% SD WASP, M, 10 mph,			260	340	430	590	790	1,000	1,300	1,500	1,900	2,400	2,900
	37% SD			280	360	480	720	980	1,300	1,500	1,800	2,400	2,900	3,400

Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	AT401, C, 10 mph, 25% SD WASP, C, 10 mph,	, ,		310	440	620	920	1,300	1,700	2,100	2,600	3,600	4,700	5,600
	25% SD			360	510	730	1,200	1,600	2,200	2,700	3,400	4,700	6,100	6,800
	AT401, VC, 10 mph, 20% SD			350	530	850	1,400	2,000	2,700	3,400	4,400	6,100	7,700	10,000
	WASP, VC, 10 mph, 20% SD			450	700	1,100	1,700	2,500	3,200	4,400	5,100	7,700	8,800	10,000
	High Boom Very fine to Fine			330	660	1,100	1,800	2,500	3,100	3,600	4,400	5,600	7,700	8,800
Groundboom	Low Boom Very fine to Fine			720	1,900	3,100	4,700	6,100	7,700	8,800	10,000	12,000	15,000	20,000
Groundboom	High Boom Fine to Medium/Coarse			1,300	3,200	4,700	6,800	8,800	10,000	12,000	12,000	15,000	20,000	20,000
	Low Boom Fine to Medium/Coarse			1,900	5,100	7,700	10,000	12,000	15,000	20,000	20,000	31,000	31,000	31,000
	Sparse			430	740	1,400	3,100	5,600	9,000	14,000	19,000	34,000	56,000	77,000
Airblast	Normal			20,000	31,000	47,000	68,000	100,00	120,000	150,000	200,000	200,000	310,000	310,000
	Dense			1,500	2,200	3,500	6,100	9,200	13,000	16,000	19,000	27,000	34,000	41,000
	Vineyard			7,700	15,000	28,000	51,000	77,000	100,000	120,000	150,000	200,000	310,000	310,000
Cotton - Boll Wee	evil Eradication													
Aerial Chayote root, Egg	Very Fine to Fine plant, Garlic, Leeks, Onions	1.22 s, Peppers,	0.32 Bell Peppers,	170 Potatoes, Sł	190 nallots, Swe	210 et potatoes,	240 Tomatoes,	280 Yams	320	360	410	500	580	660
	Fine to Medium			300	370	450	600	780	1,000	1,200	1,400	1,900	2,300	2,700
	Medium to Coarse			360	490	670	940	1,300	1,700	2,200	2,700	3,700	4,800	5,900
	Coarse to Very Coarse			420	620	940	1,500	2,100	2,700	3,500	4,300	5,900	7,700	9,600
Aerial	Very Fine to Fine	1	0.27	210	230	250	290	340	390	440	500	610	710	810
	AT401, M, 10 mph, 37% SD			330	420	540	730	990	1,300	1,600	1,800	2,400	3,000	3,700
	WASP, M, 10 mph, 37% SD			350	450	600	890	1,200	1,600	1,900	2,300	3,000	3,700	4,300
	AT401, C, 10 mph,			390	550	780		,	,	2,700	ŕ	,		ĺ
	25% SD			390	550	/80	1,100	1,600	2,100	2,700	3,200	4,500	5,900	7,000

Table E.1. Ad	ult Risk Estimates (N		elated to I	ndirect E	Exposure	to Spray	Drift for	· Malath	ion for th	e Dermal	Route of	Exposure		
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	WASP, C, 10 mph, 25% SD AT401, VC, 10 mph,	,		450	640	920	1,500	2,000	2,700	3,300	4,300	5,900	7,700	8,500
	20% SD			440	670	1,100	1,700	2,500	3,300	4,300	5,500	7,700	9,600	13,000
	WASP, VC, 10 mph, 20% SD			560	870	1,300	2,100	3,100	4,000	5,500	6,400	9,600	11,000	13,000
	High Boom Very fine to Fine			410	830	1,400	2,200	3,100	3,800	4,500	5,500	7,000	9,600	11,000
Groundboom	Low Boom Very fine to Fine			900	2,400	3,800	5,900	7,700	9,600	11,000	13,000	15,000	19,000	26,000
	High Boom Fine to Medium/Coarse			1,600	4,000	5,900	8,500	11,000	13,000	15,000	15,000	19,000	26,000	26,000
	Low Boom Fine to Medium/Coarse			2,300	6,400	9,600	13,000	15,000	19,000	26,000	26,000	38,000	38,000	38,000
	Sparse			540	920	1,700	3,800	7,000	11,000	17,000	24,000	43,000	70,000	96,000
Airblast	Normal			26,000	38,000	59,000	85,000	130,00	150,000	190,000	260,000	260,000	380,000	380,000
	Dense			1,800	2,800	4,400	7,700	11,000	16,000	20,000	24,000	33,000	43,000	51,000
	Vineyard			9,600	19,000	35,000	64,000	96,000	130,000	150,000	190,000	260,000	380,000	380,000
Blueberry (high ar	, and the second second													
	Fine to Medium			390	480	590	770	1,000	1,300	1,600	1,800	2,400	2,900	3,600
	Medium to Coarse			470	640	870	1,200	1,700	2,300	2,900	3,400	4,800	6,200	7,700
	Coarse to Very Coarse			550	810	1,200	1,900	2,700	3,600	4,500	5,500	7,700	10,000	12,000
	Very Fine to Fine			270	290	330	380	440	510	570	640	790	920	1,100
Aerial	AT401, M, 10 mph, 37% SD	0.77	0.20	430	550	700	950	1,300	1,700	2,000	2,400	3,100	3,800	4,800
	WASP, M, 10 mph, 37% SD			460	580	770	1,200	1,600	2,000	2,500	2,900	3,800	4,800	5,500
	AT401, C, 10 mph, 25% SD			500	710	1,000	1,500	2,100	2,800	3,400	4,200	5,900	7,700	9,100
	WASP, C, 10 mph, 25% SD			580	830	1,200	1,900	2,600	3,600	4,300	5,500	7,700	10,000	11,000
	AT401, VC, 10 mph, 20% SD			570	870	1,400	2,300	3,200	4,300	5,500	7,100	10,000	12,000	17,000

Table E.1. Ad	ult Risk Estimates (N	MOEs) R	elated to I	ndirect E	xposure	to Spray	Drift for	r Malath	ion for th	e Dermal	Route of	Exposure		
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	WASP, VC, 10 mph, 20% SD High Boom Very fine	, , , , , , ,		720	1,100	1,800	2,800	4,000	5,300	7,100	8,300	12,000	14,000	17,000
	to Fine Low Boom Very fine			530	1,100	1,800	2,900	4,000	5,000	5,900	7,100	9,100	12,000	14,000
Groundboom	to Fine			1,200	3,100	5,000	7,700	10,000	12,000	14,000	17,000	20,000	25,000	33,000
	High Boom Fine to Medium/Coarse			2,000	5,300	7,700	11,000	14,000	17,000	20,000	20,000	25,000	33,000	33,000
	Low Boom Fine to Medium/Coarse			3,000	8,300	12,000	17,000	20,000	25,000	33,000	33,000	50,000	50,000	50,000
	Sparse			700	1,200	2,300	5,000	9,100	15,000	22,000	31,000	55,000	91,000	120,000
Airblast	Normal			33,000	50,000	77,000	110,00 0	170,00 0	200,000	250,000	330,000	330,000	500,000	500,000
Allolast	Dense			2,400	3,600	5,700	10,000	15,000	20,000	26,000	31,000	43,000	55,000	67,000
	Vineyard			12,000	24,000	45,000	83,000	120,00	170,000	200,000	250,000	330,000	500,000	500,000
Barley, Beans, C	Corn, Hops, Lespedeza, I	Lupine, Oa	ts, Rice, Ry	e, Sorghun	n, Wheat,	Citrus, US	DA-APHI	U	and Grassho	opper and M	Aormon Cri	cket Suppre	ssion Progr	am
	Fine to Medium			490	600	750	980	1,300	1,700	2,000	2,300	3,100	3,700	4,500
	Medium to Coarse			600	810	1,100	1,500	2,200	2,900	3,600	4,300	6,000	7,900	9,700
	Coarse to Very Coarse			690	1,000	1,500	2,400	3,400	4,500	5,700	7,000	9,700	13,000	16,000
	Very Fine to Fine			340	370	410	480	560	640	720	810	990	1,200	1,300
Aerial	AT401, M, 10 mph, 37% SD WASP, M, 10 mph,	0.61	0.16	540	690	890	1,200	1,600	2,100	2,600	3,000	3,900	4,800	6,000
	37% SD AT401, C, 10 mph,			580	740	980	1,500	2,000	2,600	3,200	3,700	4,800	6,000	7,000
	25% SD			640	890	1,300	1,900	2,700	3,500	4,300	5,300	7,400	9,700	11,000
	WASP, C, 10 mph, 25% SD			740	1,000	1,500	2,400	3,300	4,500	5,500	7,000	9,700	13,000	14,000
	AT401, VC, 10 mph, 20% SD			720	1,100	1,800	2,900	4,100	5,500	7,000	9,000	13,000	16,000	21,000
	WASP, VC, 10 mph, 20% SD			910	1,400	2,200	3,500	5,000	6,600	9,000	11,000	16,000	18,000	21,000

Table E.1. Ad	ult Risk Estimates (N		elated to I	ndirect E	xposure	to Spray	Drift for	· Malath	ion for th	e Dermal	Route of	Exposure		
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	High Boom Very fine to Fine Low Boom Very fine			670	1,400	2,300	3,600	5,000	6,300	7,400	9,000	11,000	16,000	18,000
Groundboom	to Fine High Boom Fine to			1,500	3,900	6,300	9,700	13,000	16,000	18,000	21,000	25,000	32,000	42,000
	Medium/Coarse Low Boom Fine to			2,600	6,600	9,700	14,000	18,000	21,000	25,000	25,000	32,000	42,000	42,000
	Medium/Coarse			3,800	11,000	16,000	21,000	25,000	32,000	42,000	42,000	63,000	63,000	63,000
	Sparse			880	1,500	2,800	6,300	11,000	19,000	28,000	39,000	70,000	110,000	160,000
Airblast	Normal			42,000	63,000	97,000	140,00	210,00	250,000	320,000	420,000	420,000	630,000	630,000
11101400	Dense			3,000	4,500	7,200	13,000	19,000	26,000	32,000	39,000	55,000	70,000	84,000
	Vineyard			16,000	31,000	57,000	110,00 0	160,00 0	210,000	250,000	320,000	420,000	630,000	630,000
Flax														
	Fine to Medium			600	740	910	1,200	1,600	2,000	2,400	2,800	3,700	4,500	5,500
	Medium to Coarse			730	990	1,300	1,900	2,700	3,500	4,400	5,300	7,300	9,600	12,000
	Coarse to Very Coarse			840	1,200	1,900	2,900	4,200	5,500	7,000	8,500	12,000	15,000	19,000
	Very Fine to Fine			410	450	500	590	680	780	880	990	1,200	1,400	1,600
Aerial	AT401, M, 10 mph, 37% SD			660	840	1,100	1,500	2,000	2,600	3,100	3,700	4,800	5,900	7,300
7101141	WASP, M, 10 mph, 37% SD	0.5	0.13	710	900	1,200	1,800	2,400	3,100	3,800	4,500	5,900	7,300	8,500
	AT401, C, 10 mph, 25% SD	0.5	0.13	780	1,100	1,600	2,300	3,300	4,300	5,300	6,400	9,000	12,000	14,000
	WASP, C, 10 mph, 25% SD			900	1,300	1,800	2,900	4,000	5,500	6,700	8,500	12,000	15,000	17,000
	AT401, VC, 10 mph, 20% SD			880	1,300	2,100	3,500	5,000	6,700	8,500	11,000	15,000	19,000	26,000
	WASP, VC, 10 mph, 20% SD			1,100	1,700	2,700	4,300	6,100	8,100	11,000	13,000	19,000	22,000	26,000
C 11	High Boom Very fine to Fine			820	1,700	2,700	4,400	6,100	7,700	9,000	11,000	14,000	19,000	22,000
Groundboom	Low Boom Very fine to Fine			1,800	4,800	7,700	12,000	15,000	19,000	22,000	26,000	31,000	38,000	51,000

Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	High Boom Fine to Medium/Coarse Low Boom Fine to	,		3,100	8,100	12,000	17,000	22,000	26,000	31,000	31,000	38,000	51,000	51,000
	Medium/Coarse			4,700	13,000	19,000	26,000	31,000	38,000	51,000	51,000	77,000	77,000	77,000
	Sparse			1,100	1,800	3,500	7,700	14,000	23,000	34,000	48,000	85,000	140,000	190,000
Airblast	Normal			51,000	77,000	120,00	170,00 0	260,00 0	310,000	380,000	510,000	510,000	770,000	770,000
111101400	Dense			3,600	5,500	8,800	15,000	23,000	31,000	39,000	48,000	67,000	85,000	100,000
	Vineyard			19,000	37,000	70,000	130,00	190,00	260,000	310,000	380,000	510,000	770,000	770,000
Kumquat, Tangerir	nes													
	Fine to Medium			1,700	2,000	2,500	3,300	4,400	5,600	6,800	7,900	10,000	13,000	15,000
	Medium to Coarse			2,000	2,700	3,700	5,200	7,400	9,700	12,000	15,000	20,000	27,000	33,000
	Coarse to Very Coarse			2,300	3,400	5,200	8,100	12,000	15,000	19,000	24,000	33,000	43,000	53,000
	Very Fine to Fine			1,100	1,300	1,400	1,600	1,900	2,200	2,400	2,800	3,400	4,000	4,500
	AT401, M, 10 mph, 37% SD			1,800	2,300	3,000	4,100	5,500	7,100	8,700	10,000	13,000	16,000	20,000
Aerial	WASP, M, 10 mph, 37% SD			2,000	2,500	3,300	5,000	6,800	8,700	11,000	13,000	16,000	20,000	24,000
	AT401, C, 10 mph, 25% SD			2,200	3,000	4,300	6,400	9,100	12,000	15,000	18,000	25,000	33,000	39,000
	WASP, C, 10 mph,	0.18	0.05	,	,	,	,	,	*	,	,	,	,	
	25% SD AT401, VC, 10 mph,			2,500	3,500	5,100	8,100	11,000	15,000	19,000	24,000	33,000	43,000	47,000
	20% SD WASP, VC, 10 mph,			2,400	3,700	5,900	9,700	14,000	19,000	24,000	31,000	43,000	53,000	71,000
	20% SD High Boom Very fine			3,100	4,900	7,500	12,000	17,000	22,000	31,000	36,000	53,000	61,000	71,000
	to Fine			2,300	4,600	7,600	12,000	17,000	21,000	25,000	31,000	39,000	53,000	61,000
Groundboom	Low Boom Very fine to Fine			5,000	13,000	21,000	33,000	43,000	53,000	61,000	71,000	85,000	110,000	140,000
Groundoooill	High Boom Fine to Medium/Coarse			8,700	22,000	33,000	47,000	61,000	71,000	85,000	85,000	110,000	140,000	140,000
	Low Boom Fine to Medium/Coarse			13,000	36,000	53,000	71,000	85,000	110,000	140,000	140,000	210,000	210,000	210,000

Table E.1. Adu	ult Risk Estimates (MOEs) R	elated to Iı	ndirect E	xposure	to Spray	Drift for	Malath	ion for th	e Dermal	Route of	Exposure		
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Sparse			3,000	5,100	9,600	21,000	39,000	63,000	95,000	130,000	240,000	390,000	530,000
A :l-14	Normal			140,00 0	210,00 0	330,00	470,00 0	710,00 0	850,000	1,100,00 0	1,400,00 0	1,400,00 0	2,100,00	2,100,00
Airblast	Dense			10,000	15,000	24,000	43,000	64,000	87,000	110,000	130,000	190,000	240,000	280,000
	Vineyard			53,000	100,00	190,00 0	360,00 0	530,00	710,000	850,000	1,100,00 0	1,400,00 0	2,100,00	2,100,00

Table E.2. Cl Oral Routes	hildren (1<2 years old of Exposure	l) Risk Es	stimates (M	AOEs) Ro	elated to	Indirect	Exposur	e to Spra	y Drift f	or Malath	ion for th	e Combino	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
Fencerows and H	ledgerows	,												
	Fine to Medium			14	17	22	28	37	48	58	68	89	110	130
	Medium to Coarse			17	23	32	44	63	83	100	130	170	230	280
	Coarse to Very Coarse			20	29	44	69	99	130	170	200	280	360	460
	Very Fine to Fine			10	11	12	14	16	19	21	24	29	34	38
Aerial	AT401, M, 10 mph, 37% SD			16	20	26	35	47	61	74	87	110	140	170
	WASP, M, 10 mph, 37% SD			17	21	28	42	58	74	91	110	140	170	200
	AT401, C, 10 mph, 25% SD			18	26	37	54	78	100	130	150	210	280	330
	WASP, C, 10 mph, 25% SD			21	30	43	69	96	130	160	200	280	360	410
	AT401, VC, 10 mph, 20% SD	10.6	2.8	21	32	51	83	120	160	200	260	360	460	610
	WASP, VC, 10 mph, 20% SD			26	41	64	100	150	190	260	300	460	520	610
	High Boom Very fine to Fine			20	39	65	100	150	180	210	260	330	460	520
Groundboom	Low Boom Very fine to Fine High Boom Fine to			43	110	180	280	360	460	520	610	730	910	1,200
	Medium/Coarse Low Boom Fine to			74	190	280	410	520	610	730	730	910	1,200	1,200
	Medium/Coarse			110	300	460	610	730	910	1,200	1,200	1,800	1,800	1,800
	Sparse			25	44	82	180	330	540	810	1,100	2,000	3,300	4,600
Airblast	Normal			1,200	1,800	2,800	4,100	6,100	7,300	9,100	12,000	12,000	18,000	18,000
	Dense			86	130	210	360	540	740	940	1,100	1,600	2,000	2,400
O': (G.1)	Vineyard			460	890	1,700	3,000	4,600	6,100	7,300	9,100	12,000	18,000	18,000
Citrus (CA)			• •											
Aerial	Fine to Medium	7.5	2.0	20	25	31	40	53	68	82	95	130	150	180

Table E.2. C Oral Routes	hildren (1<2 years old of Exposure) Risk Es	stimates (N	AOEs) Ro	elated to	Indirect	Exposur	e to Spra	ay Drift fo	or Malath	ion for th	e Combin	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Medium to Coarse			24	33	45	63	89	120	150	180	250	320	400
	Coarse to Very Coarse			28	42	63	97	140	180	230	290	400	520	640
	Very Fine to Fine			14	15	17	20	23	26	29	33	41	48	54
	AT401, M, 10 mph, 37% SD			22	28	36	49	66	86	110	120	160	200	250
	WASP, M, 10 mph, 37% SD AT401, C, 10 mph, 25%			24	30	40	60	82	110	130	150	200	250	290
	SD WASP, C, 10 mph, 25%			26	37	52	77	110	140	180	210	300	400	470
	SD AT401, VC, 10 mph,			30	43	61	97	140	180	220	290	400	520	570
	20% SD WASP, VC, 10 mph,			29	45	72	120	170	220	290	370	520	640	860
	20% SD High Boom Very fine to			37	59	90	140	210	270	370	430	640	740	860
	Fine Low Boom Very fine to			28	55	92	150	210	260	300	370	470	640	740
Groundboom	Fine High Boom Fine to			61	160	260	400	520	640	740	860	1,000	1,300	1,700
	Medium/Coarse Low Boom Fine to			110	270	400	570	740	860	1,000	1,000	1,300	1,700	1,700
	Medium/Coarse			160	430	640	860	1,000	1,300	1,700	1,700	2,600	2,600	2,600
	Sparse			36	62	120	260	470	760	1,100	1,600	2,900	4,700	6,400
Airblast	Normal			1,700	2,600	4,000	5,700	8,600	10,000	13,000	17,000	17,000	26,000	26,000
	Dense			120	180	290	520	770	1,100	1,300	1,600	2,200	2,900	3,400
	Vineyard			640	1,300	2,300	4,300	6,400	8,600	10,000	13,000	17,000	26,000	26,000
Kumquats, Citru	s (including FL, except lemon Fine to Medium	n in FL)												
				33	41	51	67	88	110	140	160	210	250	310
Aerial	Medium to Coarse	4.5	1.2	41	55	75	100	150	200	250	300	410	540	660
	Coarse to Very Coarse			47	69	100	160	230	310	390	480	660	860	1,100

Table E.2. C Oral Routes	hildren (1<2 years old of Exposure) Risk Es	stimates (N	MOEs) Ro	elated to	Indirect	Exposur	e to Spra	y Drift f	or Malath	ion for th	e Combin	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Very Fine to Fine			23	25	28	33	38	44	49	55	68	80	90
	AT401, M, 10 mph, 37% SD			37	47	61	82	110	140	180	200	270	330	410
	WASP, M, 10 mph, 37% SD			39	50	67	100	140	180	210	250	330	410	480
	AT401, C, 10 mph, 25%													
	SD WASP, C, 10 mph, 25%			43	61	87	130	180	240	300	360	510	660	780
	SD AT401, VC, 10 mph,			50	71	100	160	230	310	370	480	660	860	950
	20% SD WASP, VC, 10 mph,			49	75	120	200	280	370	480	610	860	1,100	1,400
	20% SD High Boom Very fine to			62	98	150	240	340	450	610	720	1,100	1,200	1,400
	Fine Low Boom Very fine to			46	92	150	250	340	430	510	610	780	1,100	1,200
Groundboom	Fine			100	270	430	660	860	1,100	1,200	1,400	1,700	2,100	2,900
	High Boom Fine to Medium/Coarse			180	450	660	950	1,200	1,400	1,700	1,700	2,100	2,900	2,900
	Low Boom Fine to Medium/Coarse			260	720	1,100	1,400	1,700	2,100	2,900	2,900	4,300	4,300	4,300
	Sparse			60	100	190	430	780	1,300	1,900	2,700	4,800	7,800	11,000
A**11 - 4	Normal			2,900	4,300	6,600	9,500	14,000	17,000	21,000	29,000	29,000	43,000	43,000
Airblast	Dense			200	310	490	860	1,300	1,800	2,200	2,700	3,700	4,800	5,700
	Vineyard			1,100	2,100	3,900	7,200	11,000	14,000	17,000	21,000	29,000	43,000	43,000
Nectarines, Peac	hes													
	Fine to Medium			50	62	76	100	130	170	200	240	310	380	460
	Medium to Coarse			61	83	110	160	220	290	370	440	610	810	990
Aerial	Coarse to Very Coarse	3	0.80	70	100	160	240	350	460	590	720	990	1,300	1,600
	Very Fine to Fine			35	38	42	49	57	65	74	83	100	120	140
	AT401, M, 10 mph, 37% SD			55	70	91	120	170	210	260	310	400	500	610

Table E.2. C Oral Routes	hildren (1<2 years old of Exposure) Risk Es	stimates (M	IOEs) Ro	elated to	Indirect	Exposur	e to Spra	y Drift fo	or Malath	ion for th	e Combin	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	WASP, M, 10 mph, 37% SD			59	75	100	150	200	260	320	380	500	610	720
	AT401, C, 10 mph, 25% SD WASB C, 10 mph, 25%			65	91	130	190	270	360	440	540	760	990	1,200
	WASP, C, 10 mph, 25% SD AT401, VC, 10 mph,			75	110	150	240	340	460	560	720	990	1,300	1,400
	20% SD WASP, VC, 10 mph,			74	110	180	290	420	560	720	920	1,300	1,600	2,100
	20% SD High Boom Very fine to			93	150	230	360	520	680	920	1,100	1,600	1,800	2,100
	Fine Low Boom Very fine to			69	140	230	370	520	640	760	920	1,200	1,600	1,800
Groundboom	Fine High Boom Fine to			150	400	640	990	1,300	1,600	1,800	2,100	2,600	3,200	4,300
	Medium/Coarse Low Boom Fine to			260	680	990	1,400	1,800	2,100	2,600	2,600	3,200	4,300	4,300
	Medium/Coarse			390	1,100	1,600	2,100	2,600	3,200	4,300	4,300	6,400	6,400	6,400
	Sparse			90	150	290	640	1,200	1,900	2,900	4,000	7,200	12,000	16,000
Airblast	Normal			4,300	6,400	9,900	14,000	21,000	26,000	32,000	43,000	43,000	64,000	64,000
	Dense			310	460	740	1,300	1,900	2,600	3,300	4,000	5,600	7,200	8,600
Chartest Catter	Vineyard			1,600	3,100	5,900	11,000	16,000	21,000	26,000	32,000	43,000	64,000	64,000
Chestnut, Cotton	Fine to Medium			60	74	92	120	160	200	250	290	380	450	550
	Medium to Coarse			73	99	130	190	270	350	440	530	740	970	1,200
	Coarse to Very Coarse			85	120	190	290	420	550	700	860	1,200	1,500	1,900
Aerial	Very Fine to Fine	2.5	0.66	41	45	51	59	68	79	88	100	120	140	160
	AT401, M, 10 mph, 37% SD			66	85	110	150	200	260	320	370	480	590	740
	WASP, M, 10 mph, 37% SD			71	90	120	180	250	320	390	450	590	740	860
	AT401, C, 10 mph, 25% SD			78	110	160	230	330	430	530	640	910	1,200	1,400

Table E.2. Cl Oral Routes	hildren (1<2 years old of Exposure) Risk Es	stimates (M	IOEs) Re	elated to	Indirect	Exposur	e to Spra	y Drift fo	or Malath	ion for th	e Combino	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	WASP, C, 10 mph, 25% SD AT401, VC, 10 mph,			90	130	180	290	410	550	670	860	1,200	1,500	1,700
	20% SD WASP, VC, 10 mph,			88	130	210	350	500	670	860	1,100	1,500	1,900	2,600
	20% SD High Boom Very fine to			110	180	270	430	620	810	1,100	1,300	1,900	2,200	2,600
	Fine			83	170	280	440	620	770	910	1,100	1,400	1,900	2,200
Groundboom	Low Boom Very fine to Fine			180	480	770	1,200	1,500	1,900	2,200	2,600	3,100	3,900	5,200
	High Boom Fine to Medium/Coarse			320	810	1,200	1,700	2,200	2,600	3,100	3,100	3,900	5,200	5,200
	Low Boom Fine to Medium/Coarse			470	1,300	1,900	2,600	3,100	3,900	5,200	5,200	7,700	7,700	7,700
	Sparse			110	190	350	770	1,400	2,300	3,400	4,800	8,600	14,000	19,000
Airblast	Normal			5,200	7,700	12,000	17,000	26,000	31,000	39,000	52,000	52,000	77,000	77,000
Allolast	Dense			370	550	880	1,500	2,300	3,200	4,000	4,800	6,700	8,600	10,000
	Vineyard			1,900	3,800	7,000	13,000	19,000	26,000	31,000	39,000	52,000	77,000	77,000
Apples														
	Fine to Medium			67	83	100	130	180	230	280	320	420	510	620
	Medium to Coarse			82	110	150	210	300	390	500	600	830	1,100	1,300
	Coarse to Very Coarse			95	140	210	330	470	620	790	960	1,300	1,700	2,200
	Very Fine to Fine			46	51	57	66	77	88	99	110	140	160	180
Aerial	AT401, M, 10 mph, 37% SD	2.23	0.59	74	95	120	170	220	290	350	410	540	670	830
	WASP, M, 10 mph, 37% SD			80	100	130	200	280	350	430	510	670	830	960
	AT401, C, 10 mph, 25% SD			88	120	180	260	370	480	600	720	1,000	1,300	1,600
	WASP, C, 10 mph, 25% SD			100	140	210	330	460	620	750	960	1,300	1,700	1,900
	AT401, VC, 10 mph, 20% SD			99	150	240	390	560	750	960	1,200	1,700	2,200	2,900

Table E.2. Cl Oral Routes	hildren (1<2 years old of Exposure) Risk Es	stimates (M	IOEs) Ro	elated to	Indirect	Exposur	e to Spra	y Drift f	or Malath	ion for th	e Combin	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	WASP, VC, 10 mph, 20% SD High Boom Very fine to Fine			130 93	200 190	300 310	480 500	690 690	910 870	1,200 1,000	1,400 1,200	2,200 1,600	2,500 2,200	2,900 2,500
Groundboom	Low Boom Very fine to Fine High Boom Fine to			200	540	870	1,300	1,700	2,200	2,500	2,900	3,500	4,300	5,800
	Medium/Coarse Low Boom Fine to Medium/Coarse			350 530	910 1,400	1,300 2,200	1,900 2,900	2,500 3,500	2,900 4,300	3,500 5,800	3,500 5,800	4,300 8,700	5,800 8,700	5,800 8,700
	Sparse Sparse			120	210	390	870	1,600	2,600	3,900	5,400	9,600	16,000	22,000
Airblast	Normal			5,800	8,700	13,000	19,000	29,000	35,000	43,000	58,000	58,000	87,000	87,000
	Dense			410	620	990	1,700	2,600	3,500	4,400	5,400	7,500	9,600	12,000
Arugula, Amaran	Vineyard hth, Caneberries, Chervil, Ch	rysanthenm	um, Corn sala	2,200 d, Dock(sor	4,200 rrel), Figs, 0	7,900 Orach, Orna	14,000 mentals, Pu	22,000 ırslane, Stra	29,000 wberries, Co	35,000 eltuce, Flore	43,000 nce fennel, G	58,000 ooseberry, Pi	87,000 neapple	87,000
	Fine to Medium			75	93	110	150	200	250	310	360	470	570	690
	Medium to Coarse			92	120	170	240	330	440	550	670	920	1,200	1,500
	Coarse to Very Coarse			110	160	240	360	520	690	880	1,100	1,500	1,900	2,400
	Very Fine to Fine AT401, M, 10 mph,			52	57	63	74	86	98	110	120	150	180	200
Aerial	37% SD WASP, M, 10 mph, 37%			83	110	140	180	250	320	390	460	600	740	920
	SD AT401, C, 10 mph, 25%	2	0.53	89	110	150	220	310	390	480	570	740	920	1,100
	SD WASP, C, 10 mph, 25%			98	140	200	290	410	540	670	810	1,100	1,500	1,800
	SD AT401, VC, 10 mph,			110	160	230	360	510	690	840	1,100	1,500	1,900	2,100
	20% SD WASP, VC, 10 mph,			110	170	270	440	620	840	1,100	1,400	1,900	2,400	3,200
	20% SD High Boom Very fine to			140	220	340	540	770	1,000	1,400	1,600	2,400	2,800	3,200
Groundboom	Fine			100	210	350	550	770	970	1,100	1,400	1,800	2,400	2,800

Table E.2. Cl Oral Routes	hildren (1<2 years old of Exposure) Risk E	stimates (N	AOEs) Ro	elated to	Indirect	Exposur	e to Spra	y Drift f	or Malath	ion for th	e Combino	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Low Boom Very fine to Fine High Boom Fine to Medium/Coarse			230 390	600 1,000	970 1,500	1,500 2,100	1,900 2,800	2,400 3,200	2,800 3,900	3,200 3,900	3,900 4,800	4,800 6,400	6,400 6,400
	Low Boom Fine to Medium/Coarse			590	1,600	2,400	3,200	3,900	4,800	6,400	6,400	9,700	9,700	9,700
	Sparse			130	230	440	970	1,800	2,800	4,300	6,000	11,000	18,000	24,000
Airblast	Normal			6,400	9,700	15,000	21,000	32,000	39,000	48,000	64,000	64,000	97,000	97,000
Amoust	Dense			460	690	1,100	1,900	2,900	3,900	5,000	6,000	8,400	11,000	13,000
	Vineyard			2,400	4,700	8,800	16,000	24,000	32,000	39,000	48,000	64,000	97,000	97,000
Chayote fruit, Ch	nerries, Cucumber, Summer s	quash												
	Fine to Medium			86	110	130	170	230	290	350	410	540	650	790
	Medium to Coarse			100	140	190	270	380	500	630	760	1,100	1,400	1,700
	Coarse to Very Coarse			120	180	270	420	600	790	1,000	1,200	1,700	2,200	2,800
	Very Fine to Fine			59	65	72	84	98	110	130	140	170	200	230
Aerial	AT401, M, 10 mph, 37% SD			94	120	160	210	280	370	450	530	690	850	1,100
Tieriui	WASP, M, 10 mph, 37% SD			100	130	170	260	350	450	550	650	850	1,100	1,200
	AT401, C, 10 mph, 25% SD	1.75	0.47	110	160	220	330	470	610	760	920	1,300	1,700	2,000
	WASP, C, 10 mph, 25% SD			130	180	260	420	580	790	960	1,200	1,700	2,200	2,500
	AT401, VC, 10 mph, 20% SD			130	190	310	500	710	960	1,200	1,600	2,200	2,800	3,700
	WASP, VC, 10 mph, 20% SD			160	250	390	610	880	1,200	1,600	1,800	2,800	3,200	3,700
	High Boom Very fine to Fine			120	240	390	630	880	1,100	1,300	1,600	2,000	2,800	3,200
Groundboom	Low Boom Very fine to Fine			260	690	1,100	1,700	2,200	2,800	3,200	3,700	4,400	5,500	7,400
	High Boom Fine to Medium/Coarse			450	1,200	1,700	2,500	3,200	3,700	4,400	4,400	5,500	7,400	7,400

	hildren (1<2 years old) Risk E	stimates (N	MOEs) Ro	elated to	Indirect	Exposur	e to Spra	y Drift f	or Malath	ion for th	e Combin	ed Derma	l and
Oral Routes	of Exposure	A1												
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Low Boom Fine to Medium/Coarse			670	1,800	2,800	3,700	4,400	5,500	7,400	7,400	11,000	11,000	11,000
	Sparse			150	260	500	1,100	2,000	3,200	4,900	6,900	12,000	20,000	28,000
Airblast	Normal			7,400	11,000	17,000	25,000	37,000	44,000	55,000	74,000	74,000	110,000	110,000
Tirolust	Dense			520	790	1,300	2,200	3,300	4,500	5,700	6,900	9,600	12,000	15,000
	Vineyard			2,800	5,400	10,000	18,000	28,000	37,000	44,000	55,000	74,000	110,000	110,000
Chayote root, Eg	gplant, Garlic, Leeks, Onions	s, Peppers,	Bell Peppers,						37,000	,000	22,000	, ,,,,,,	110,000	110,000
	Fine to Medium			96	120	150	190	250	330	390	460	600	730	890
	Medium to Coarse			120	160	220	300	430	560	710	850	1,200	1,500	1,900
	Coarse to Very Coarse			140	200	300	470	670	890	1,100	1,400	1,900	2,500	3,100
	Very Fine to Fine			66	73	81	95	110	130	140	160	200	230	260
Aerial	AT401, M, 10 mph, 37% SD			110	140	170	240	320	410	510	590	770	950	1,200
	WASP, M, 10 mph, 37% SD			110	140	190	290	390	510	620	730	950	1,200	1,400
	AT401, C, 10 mph, 25% SD WASB C, 10 mph, 25%			130	180	250	370	530	690	850	1,000	1,500	1,900	2,300
	WASP, C, 10 mph, 25% SD	1.56	0.41	140	200	300	470	650	890	1,100	1,400	1,900	2,500	2,800
	AT401, VC, 10 mph, 20% SD			140	220	340	560	800	1,100	1,400	1,800	2,500	3,100	4,100
	WASP, VC, 10 mph, 20% SD			180	280	430	690	990	1,300	1,800	2,100	3,100	3,500	4,100
	High Boom Very fine to			120	270	440	710	000	1.000	. 500	1 000	2 200	2.100	2.500
	Fine Low Boom Very fine to			130	270	440	710	990	1,200	1,500	1,800	2,300	3,100	3,500
Groundboom	Fine			290	770	1,200	1,900	2,500	3,100	3,500	4,100	5,000	6,200	8,300
	High Boom Fine to Medium/Coarse			510	1,300	1,900	2,800	3,500	4,100	5,000	5,000	6,200	8,300	8,300
	Low Boom Fine to Medium/Coarse			750	2,100	3,100	4,100	5,000	6,200	8,300	8,300	12,000	12,000	12,000
Airblast	Sparse			170	300	560	1,200	2,300	3,600	5,500	7,700	14,000	23,000	31,000

Table E.2. Cl Oral Routes	hildren (1<2 years old of Exposure	l) Risk Es	stimates (N	10Es) Ro	elated to	Indirect	Exposur	e to Spra	y Drift f	or Malath	nion for th	e Combin	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Normal			8,300	12,000	19,000	28,000	41,000	50,000	62,000	83,000	83,000	120,000	120,000
	Dense			590	890	1,400	2,500	3,700	5,100	6,400	7,700	11,000	14,000	17,000
	Vineyard			3,100	6,000	11,000	21,000	31,000	41,000	50,000	62,000	83,000	120,000	120,000
Apricot, Beans, C	Celery, Lentils, Parsley, Tang	gerines, Wat	ermelon,											
	Fine to Medium			100	120	150	200	260	340	410	480	630	760	920
	Medium to Coarse			120	170	220	310	440	590	740	890	1,200	1,600	2,000
	Coarse to Very Coarse			140	210	310	490	700	920	1,200	1,400	2,000	2,600	3,200
	Very Fine to Fine			69	76	85	98	110	130	150	170	200	240	270
Aerial	AT401, M, 10 mph, 37% SD			110	140	180	250	330	430	530	610	810	990	1,200
Aenai	WASP, M, 10 mph, 37% SD			120	150	200	300	410	530	640	760	990	1,200	1,400
	AT401, C, 10 mph, 25% SD			130	180	260	380	550	720	890	1,100	1,500	2,000	2,300
	WASP, C, 10 mph, 25% SD			150	210	310	490	680	920	1,100	1,400	2,000	2,600	2,900
	AT401, VC, 10 mph, 20% SD	1.5	0.40	150	220	360	590	830	1,100	1,400	1,800	2,600	3,200	4,300
	WASP, VC, 10 mph, 20% SD			190	290	450	720	1,000	1,400	1,800	2,100	3,200	3,700	4,300
	High Boom Very fine to									,	ŕ	,	,	ŕ
	Fine Low Boom Very fine to			140	280	460	740	1,000	1,300	1,500	1,800	2,300	3,200	3,700
Groundboom	Fine High Boom Fine to			300	810	1,300	2,000	2,600	3,200	3,700	4,300	5,200	6,400	8,600
	Medium/Coarse Low Boom Fine to			530	1,400	2,000	2,900	3,700	4,300	5,200	5,200	6,400	8,600	8,600
	Medium/Coarse			780	2,100	3,200	4,300	5,200	6,400	8,600	8,600	13,000	13,000	13,000
	Sparse			180	310	580	1,300	2,300	3,800	5,700	8,100	14,000	23,000	32,000
Airblast	Normal			8,600	13,000	20,000	29,000	43,000	52,000	64,000	86,000	86,000	130,000	130,000
	Dense			610	920	1,500	2,600	3,800	5,300	6,600	8,100	11,000	14,000	17,000

Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
1010	Vineyard	1.0		3,200	6,300	12,000	21,000	32,000	43,000	52,000	64,000	86,000	130,000	130,000
	is, Barley, Beets, Broccoli, B Ilrabi, Lemons (FL), Lespede									dive, Bermu	da Grass, For	age and hay g	grass, Guava,	
	Fine to Medium			120	150	180	240	320	410	490	570	750	910	1,100
	Medium to Coarse			150	200	270	380	530	700	880	1,100	1,500	1,900	2,400
	Coarse to Very Coarse			170	250	380	580	840	1,100	1,400	1,700	2,400	3,100	3,900
	Very Fine to Fine			83	91	100	120	140	160	180	200	240	290	330
Aerial	AT401, M, 10 mph, 37% SD			130	170	220	290	400	520	630	740	970	1,200	1,500
	WASP, M, 10 mph, 37% SD			140	180	240	360	490	630	770	910	1,200	1,500	1,700
	AT401, C, 10 mph, 25% SD			160	220	310	460	660	860	1,100	1,300	1,800	2,400	2,800
	WASP, C, 10 mph, 25% SD			180	260	370	580	810	1,100	1,300	1,700	2,400	3,100	3,400
	AT401, VC, 10 mph, 20% SD WASP, VC, 10 mph,	1.25	0.33	180	270	430	700	1,000	1,300	1,700	2,200	3,100	3,900	5,200
	20% SD			220	350	540	860	1,200	1,600	2,200	2,600	3,900	4,400	5,200
	High Boom Very fine to Fine Low Boom Very fine to			170	330	550	880	1,200	1,500	1,800	2,200	2,800	3,900	4,400
Groundboom	Fine High Boom Fine to			360	970	1,500	2,400	3,100	3,900	4,400	5,200	6,200	7,700	10,000
	Medium/Coarse Low Boom Fine to			630	1,600	2,400	3,400	4,400	5,200	6,200	6,200	7,700	10,000	10,000
	Medium/Coarse			940	2,600	3,900	5,200	6,200	7,700	10,000	10,000	15,000	15,000	15,000
	Sparse			220	370	700	1,500	2,800	4,500	6,900	9,700	17,000	28,000	39,000
Airblast	Normal			10,000	15,000	24,000	34,000	52,000	62,000	77,000	100,000	100,000	150,000	150,000
	Dense			730	1,100	1,800	3,100	4,600	6,300	7,900	9,700	13,000	17,000	21,000
	Vineyard			3,900	7,500	14,000	26,000	39,000	52,000	62,000	77,000	100,000	150,000	150,000

Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Fee
Aerial	Very Fine to Fine	1.22	0.32	85	93	100	120	140	160	180	200	250	290	330
hayote root, Eg	gplant, Garlic, Leeks, Onions	, Peppers, I	Bell Peppers,	Potatoes, Sh		et potatoes,	Tomatoes,	Yams						
	Fine to Medium			150	190	230	300	390	510	610	720	940	1,100	1,40
	Medium to Coarse			180	250	340	470	670	880	1,100	1,300	1,800	2,400	3,00
	Coarse to Very Coarse			210	310	470	730	1,000	1,400	1,800	2,100	3,000	3,900	4,80
	Very Fine to Fine			100	110	130	150	170	200	220	250	300	360	410
	AT401, M, 10 mph, 37% SD			170	210	270	370	500	640	790	920	1,200	1,500	1,80
Aerial	WASP, M, 10 mph, 37%											,	, i	
	SD AT401, C, 10 mph, 25%			180	230	300	450	610	790	970	1,100	1,500	1,800	2,1
	SD WASP, C, 10 mph, 25%			200	270	390	580	820	1,100	1,300	1,600	2,300	3,000	3,5
	SD AT401, VC, 10 mph,			230	320	460	730	1,000	1,400	1,700	2,100	3,000	3,900	4,3
	20% SD	1	0.27	220	340	540	880	1,200	1,700	2,100	2,800	3,900	4,800	6,4
	WASP, VC, 10 mph, 20% SD			280	440	680	1,100	1,500	2,000	2,800	3,200	4,800	5,500	6,4
	High Boom Very fine to Fine			210	420	690	1,100	1,500	1,900	2,300	2,800	3,500	4,800	5,5
	Low Boom Very fine to Fine			450	1,200	1,900	3,000	3,900	4,800	5,500	6,400	7,700	9,700	13,0
Groundboom	High Boom Fine to				Í		ŕ		ŕ	*	,	,	ŕ	ĺ
	Medium/Coarse Low Boom Fine to			790	2,000	3,000	4,300	5,500	6,400	7,700	7,700	9,700	13,000	13,0
	Medium/Coarse			1,200	3,200	4,800	6,400	7,700	9,700	13,000	13,000	19,000	19,000	19,0
	Sparse			270	460	870	1,900	3,500	5,700	8,600	12,000	21,000	35,000	48,0
Airblast	Normal			13,000	19,000	30,000	43,000	64,000	77,000	97,000	130,000	130,000	190,000	190,
	Dense			920	1,400	2,200	3,900	5,800	7,900	9,900	12,000	17,000	21,000	26,0
	Vineyard			4,800	9,400	18,000	32,000	48,000	64,000	77,000	97,000	130,000	190,000	190,

Table E.2. Cl Oral Routes	nildren (1<2 years old of Exposure) Risk Es	timates (N	AOEs) Ro	elated to	Indirect	Exposur	e to Spra	ay Drift fo	or Malath	ion for th	e Combino	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Fine to Medium			200	240	300	390	510	660	800	930	1,200	1,500	1,800
	Medium to Coarse			240	320	440	610	870	1,100	1,400	1,700	2,400	3,100	3,900
	Coarse to Very Coarse			270	410	610	950	1,400	1,800	2,300	2,800	3,900	5,000	6,300
	Very Fine to Fine			130	150	160	190	220	250	290	320	400	470	530
Aerial	AT401, M, 10 mph, 37% SD			210	270	350	480	640	840	1,000	1,200	1,600	1,900	2,400
Acriai	WASP, M, 10 mph, 37% SD			230	290	390	580	800	1,000	1,300	1,500	1,900	2,400	2,800
	AT401, C, 10 mph, 25% SD			250	360	510	750	1,100	1,400	1,700	2,100	3,000	3,900	4,600
	WASP, C, 10 mph, 25% SD			290	420	600	950	1,300	1,800	2,200	2,800	3,900	5,000	5,600
	AT401, VC, 10 mph, 20% SD	0.55	0.20	290	440	700	1,100	1,600	2,200	2,800	3,600	5,000	6,300	8,400
	WASP, VC, 10 mph, 20% SD	0.77	0.20	360	570	880	1,400	2,000	2,600	3,600	4,200	6,300	7,200	8,400
	High Boom Very fine to Fine			270	540	900	1,400	2,000	2,500	3,000	3,600	4,600	6,300	7,200
	Low Boom Very fine to Fine			590	1,600	2,500	3,900	5,000	6,300	7,200	8,400	10,000	13,000	17,000
Groundboom	High Boom Fine to Medium/Coarse			1,000	2,600	3,900	5,600	7,200	8,400	10,000	10,000	13,000	17,000	17,000
	Low Boom Fine to Medium/Coarse			1,500		6,300	8,400	10,000	13,000	17,000	*	25,000		25,000
	Sparse			350	4,200	,		,	,	,	17,000	,	25,000	
	Normal				600	1,100	2,500	4,600	7,400	11,000	16,000	28,000	46,000	63,000
Airblast	Dense			17,000	25,000	39,000	56,000	84,000	100,000	130,000	170,000	170,000	250,000	250,000
	Vineyard			1,200	1,800	2,900	5,000	7,500	10,000	13,000	16,000	22,000	28,000	33,000
Barley, Beans,	Corn, Hops, Lespedeza, L	Lupine, Oat	ts, Rice, Ry	6,300 e, Sorghun	12,000 n, Wheat,	23,000 Citrus, US	42,000 DA-APHI	63,000 S Rangela	84,000 and Grassho	100,000 opper and N	130,000 Iormon Cri	170,000 cket Suppre	250,000 ssion Progr	250,000 ram
Aerial	Fine to Medium	0.61	0.16	250	300	380	490	650	830	1,000	1,200	1,500	1,900	2,300
ACHAI	Medium to Coarse	0.01	0.10	300	410	550	770	1,100	1,400	1,800	2,200	3,000	4,000	4,900

Table E.2. C Oral Routes	hildren (1<2 years old of Exposure) Risk Es	stimates (N	MOEs) Ro	elated to	Indirect	Exposur	e to Spra	ay Drift fo	or Malath	ion for th	e Combin	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Coarse to Very Coarse			350	510	770	1,200	1,700	2,300	2,900	3,500	4,900	6,300	7,900
	Very Fine to Fine			170	190	210	240	280	320	360	410	500	590	670
	AT401, M, 10 mph,													
	37% SD WASP, M, 10 mph, 37%			270	350	450	600	810	1,100	1,300	1,500	2,000	2,400	3,000
	SD			290	370	490	740	1,000	1,300	1,600	1,900	2,400	3,000	3,500
	AT401, C, 10 mph, 25% SD			320	450	640	950	1,300	1,800	2,200	2,600	3,700	4,900	5,800
	WASP, C, 10 mph, 25% SD			370	520	750	1,200	1,700	2,300	2,800	3,500	4,900	6,300	7,000
	AT401, VC, 10 mph,						,	,		*	ŕ	,	ŕ	*
	20% SD WASP, VC, 10 mph,			360	550	880	1,400	2,000	2,800	3,500	4,500	6,300	7,900	11,000
	20% SD			460	720	1,100	1,800	2,500	3,300	4,500	5,300	7,900	9,100	11,000
	High Boom Very fine to Fine			340	680	1,100	1,800	2,500	3,200	3,700	4,500	5,800	7,900	9,100
	Low Boom Very fine to					,	,	,	,	,	,	,	,	,
Groundboom	Fine High Boom Fine to			750	2,000	3,200	4,900	6,300	7,900	9,100	11,000	13,000	16,000	21,000
	Medium/Coarse			1,300	3,300	4,900	7,000	9,100	11,000	13,000	13,000	16,000	21,000	21,000
	Low Boom Fine to Medium/Coarse			1,900	5,300	7,900	11,000	13,000	16,000	21,000	21,000	32,000	32,000	32,000
	Sparse			440	760	1,400	3,200	5,800	9,300	14,000	20,000	35,000	58,000	79,000
Airblast	Normal			21,000	32,000	49,000	70,000	110,00 0	130,000	160,000	210,000	210,000	320,000	320,000
	Dense			1,500	2,300	3,600	6,300	9,500	13,000	16,000	20,000	28,000	35,000	42,000
	Vineyard			7,900	15,000	29,000	53,000	79,000	110,000	130,000	160,000	210,000	320,000	320,000
Flax				7,700	15,000	27,000	33,000	77,000	110,000	150,000	100,000	210,000	320,000	320,000
	Fine to Medium			300	370	460	600	790	1,000	1,200	1,400	1,900	2,300	2,800
Aerial	Medium to Coarse	0.5	0.13	370	500	670	940	1,300	1,800	2,200	2,700	3,700	4,800	5,900
	Coarse to Very Coarse			420	620	940	1,500	2,100	2,800	3,500	4,300	5,900	7,700	9,700

Table E.2. C Oral Routes	hildren (1<2 years old of Exposure) Risk Es	stimates (N	AOEs) Ro	elated to	Indirect	Exposur	e to Spra	ay Drift fo	or Malath	ion for th	e Combino	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	Very Fine to Fine			210	230	250	300	340	390	440	500	610	720	810
	AT401, M, 10 mph, 37% SD			330	420	540	740	990	1,300	1,600	1,800	2,400	3,000	3,700
	WASP, M, 10 mph, 37% SD			350	450	600	900	1,200	1,600	1,900	2,300	3,000	3,700	4,300
	AT401, C, 10 mph, 25% SD			390	550	780	1,200	1,600	2,100	2,700	3,200	4,500	5,900	7,000
	WASP, C, 10 mph, 25% SD			450	640	920	1,500	2,000	2,800	3,400	4,300	5,900	7,700	8,600
	AT401, VC, 10 mph, 20% SD			440	670	1,100	1,800	2,500	3,400	4,300	5,500	7,700	9,700	13,000
	WASP, VC, 10 mph, 20% SD			560	880	1,400	2,100	3,100	4,100	5,500	6,400	9,700	11,000	13,000
	High Boom Very fine to Fine			410	830	1,400	2,200	3,100	3,900	4,500	5,500	7,000	9,700	11,000
0 11	Low Boom Very fine to Fine			910	2,400	3,900	5,900	7,700	9,700	11,000	13,000	15,000	19,000	26,000
Groundboom	High Boom Fine to Medium/Coarse			1,600	4,100	5,900	8,600	11,000	13,000	15,000	15,000	19,000	26,000	26,000
	Low Boom Fine to Medium/Coarse			2,300	6,400	9,700	13,000	15,000	19,000	26,000	26,000	39,000	39,000	39,000
	Sparse			540	930	1,700	3,900	7,000	11,000	17,000	24,000	43,000	70,000	97,000
Airblast	Normal			26,000	39,000	59,000	86,000	130,00	150,000	190,000	260,000	260,000	390,000	390,000
	Dense			1,800	2,800	4,400	7,700	12,000	16,000	20,000	24,000	34,000	43,000	52,000
	Vineyard			9,700	19,000	35,000	64,000	97,000	130,000	150,000	190,000	260,000	390,000	390,000
Kumquat, Tange														
	Fine to Medium			840	1,000	1,300	1,700	2,200	2,800	3,400	4,000	5,200	6,300	7,700
Aerial	Medium to Coarse	0.18	0.05	1,000	1,400	1,900	2,600	3,700	4,900	6,100	7,400	10,000	13,000	17,000
	Coarse to Very Coarse			1,200	1,700	2,600	4,100	5,800	7,700	9,800	12,000	17,000	21,000	27,000
	Very Fine to Fine			580	630	700	820	950	1,100	1,200	1,400	1,700	2,000	2,300

Table E.2. Cl Oral Routes	hildren (1<2 years old of Exposure) Risk Es	timates (N	IOEs) Ro	elated to	Indirect	Exposur	e to Spra	ay Drift f	or Malath	ion for th	e Combin	ed Derma	l and
Crop/Rate Group	Spray Type/ Nozzle Configuration	Appl. Rate (lb ai/A)	TTR (ug/cm 2)	At Edge	10 Feet	25 Feet	50 Feet	75 Feet	100 Feet	125 Feet	150 Feet	200 Feet	250 Feet	300 Feet
	AT401, M, 10 mph, 37% SD WASP, M, 10 mph, 37%			920	1,200	1,500	2,000	2,800	3,600	4,400	5,100	6,700	8,300	10,000
	SD AT401, C, 10 mph, 25%			990	1,300	1,700	2,500	3,400	4,400	5,400	6,300	8,300	10,000	12,000
	SD WASP, C, 10 mph, 25%			1,100	1,500	2,200	3,200	4,600	6,000	7,400	9,000	13,000	17,000	20,000
	SD AT401, VC, 10 mph,			1,300	1,800	2,600	4,100	5,700	7,700	9,300	12,000	17,000	21,000	24,000
	20% SD WASP, VC, 10 mph, 20% SD			1,200 1,600	1,900 2,400	3,000 3,800	4,900 6,000	6,900 8,600	9,300 11,000	12,000 15,000	15,000 18,000	21,000 27,000	27,000 31,000	36,000 36,000
	High Boom Very fine to Fine			1,100	2,300	3,800	6,100	8,600	11,000	13,000	15,000	20,000	27,000	31,000
Groundboom	Low Boom Very fine to Fine			2,500	6,700	11,000	17,000	21,000	27,000	31,000	36,000	43,000	54,000	72,000
	High Boom Fine to Medium/Coarse Low Boom Fine to			4,400	11,000	17,000	24,000	31,000	36,000	43,000	43,000	54,000	72,000	72,000
	Medium/Coarse			6,500	18,000	27,000	36,000	43,000	54,000	72,000	72,000	110,000	110,000	110,000
	Sparse			1,500	2,600	4,800	11,000	20,000	32,000	48,000	67,000	120,000	200,000	270,000
Airblast	Normal			72,000	110,00 0	170,00 0	240,00 0	360,00 0	430,000	540,000	720,000	720,000	1,100,00 0	1,100,00 0
Anolast	Dense			5,100	7,700	12,000	21,000	32,000	44,000	55,000	67,000	93,000	120,000	140,000
	Vineyard			27,000	52,000	98,000	180,00 0	270,00 0	360,000	430,000	540,000	720,000	1,100,00 0	1,100,00 0

Appendix H:	Details of Malat	hion and Mala	oxon Air Mon	itoring Studies

- CDPR Air Monitoring Network (AMN) program 2011-2014 (CDPR) http://www.cdpr.ca.gov/docs/emon/airinit/air network results.htm
 - CDPR has established a monitoring network to sample ambient air for multiple pesticides in three communities on a regular schedule
 - Ripon (San Joaquin County, approximately 20 miles south of Stockton)
 - Salinas (Monterey County, approximately 60 miles south of San Jose)
 - Shafter (Kern County, approximately 20 miles northwest of Bakersfield)
 - CDPR designed the study to collect one 24-hour sample each week over a multiple year sampling duration.
 - Data from years 2011 through 2014 is provided.
 - AMN analyzed data for malathion and malaoxon at the Salinas, Shafter, and Ripon locations, most 24-hour samples are found to be trace or non-detect.
- Lompoc, CA Ambient Air Monitoring (2003) (CalDPR) http://www.cdpr.ca.gov/docs/specproj/lompoc/lompoc.htm
 - Ambient air monitoring of 22 pesticides and five oxygen analog breakdown products (including malathion and malaoxon) simultaneously during the peak use period for most of the pesticides, between May 31 and August 3, 2000.
 - DPR collected 24-hour samples, four consecutive days per week at each of four monitoring locations.
 - Four sampling sites were located within the city limits of Lompoc, one each in the northwest, central-west, southwest, and near the center of Lompoc. These sites plus an additional site on the northeast side of Lompoc were used.
 - Samplers at all locations were on rooftops to ensure the security of the samples.
 - DPR maintains a database of all agricultural pesticide applications in California, including date applied, amount applied, and application location.
 - Of the 31 pesticides or breakdown products monitored, DPR detected 27 of them in one or more of the 451 samples collected and analyzed.
 - Highest one-day air concentration for malathion = 7.6 ng/m^3
 - Highest one-day air concentration for malaoxon = 2.2 ng/m^3
 - Highest 14-day air concentration for malathion = 2.47 ng/m^3
 - Highest 14-day air concentration for malaoxon = 0.85 ng/m^3
 - Highest 10-week air concentration for malathion = 1.23 ng/m³
 - Highest 10-week air concentration for malaoxon = 0.43 ng/m^3
- Imperial County, CA Application and Air Monitoring 1999
 (CARB) http://www.cdpr.ca.gov/docs/emon/pubs/tac/tacpdfs/mala99fe.pdf
 - Conducted air monitoring over a three week period to coincide with application of malathion on alfalfa.
 - Aerial application of malathion coincided with a three day monitoring period (February 25-27, 1998). Four samplers were positioned on each side of the field. A fifth samplers was collocated at the east position.
 - Of the 28 samples collected for malathion (spikes, blanks, collocated and background sampled excluded), 27 samples were found to be above the

- estimated quantitation limit (EQL) with the highest concentration observed of 2400 ng/m^3
- Of the 28 samples collected for malaoxon (spikes, blanks, collocated and background sampled excluded), 12 samples were found to be above EQL with the highest concentration observed of 440 ng/m³
- Ambient air 24 hour monitoring sampling was conducted from February 23-March 13, 1998
 - Of the 60 samples collected for malathion (spikes, blanks, collocated and background sampled excluded), 27 samples were found to be above EQL with the highest concentration observed of 90 ng/m³ and the highest average concentration is 19 ng/m³ from the Calipatria School District Bus Barn
 - Of the 60 samples collected for malaoxon (spikes, blanks, collocated and background sampled excluded), 22 samples were found to be above EQL with the highest concentration observed of 28 ng/m³ and the highest average concentration is 13 ng/m³ from the Pine Elementary School.
- Parlier, CA Ambient Air Monitoring 2009 (CDPR and CARB) http://www.cdpr.ca.gov/docs/envjust/pilot_proj/parlier_final.pdf
 - Collected ambient air samples over 12 months from January 3- December 28, 2006
 - Sampling stations were positioned at three elementary schools in Parlier
 - Of the potentially 468 samples, malathion was levels were quantifiable in 1 sample and malaoxon in 5 samples.
 - Highest one-day air concentration for malathion = 21 ng/m³
 - Highest one-day air concentration for malaoxon = 16 ng/m^3
 - Highest 14-day air concentration for malathion = 3.14 ng/m³
 - Highest 14-day air concentration for malaoxon = 3.6 ng/m^3
 - One year average air concentration for malathion = 1.17 ng/m^3
 - One year average air concentration for malaoxon = 0.81 ng/m^3
- Monterey County, CA Ambient Air Monitoring 1985
 (CDPR) http://www.cdpr.ca.gov/docs/emon/pubs/ehapreps/eh8507.pdf
 - Collected ambient air samples at residential sites from June 18-21, 1985
 - Three sites were selected for sampling, all within close proximity to agricultural lands
 - The samplers were analyzed for phosdrin, lannate, and screened for organophosphates, malathion was not specifically analyzed.
 - No malathion specific analysis was conducted and no results were reported.
- Yakima Valley and North Central, Washington- Residential air monitoring and monitoring at the edge of treated orchards http://www.doh.wa.gov/Portals/1/Documents/4300/Pesticide-UW-OP-Summary.pdf

- Three samplers were located outside different houses that were within 100 meters of an orchard. An additional sampler was located away from orchards (more than 1,000 meters from the nearest orchard)
- Researchers did not know whether the orchards near each sampler were actually treated with pesticides of interest (chlorpyrifos, azinphos-methyl, phosmet, and malathion)
- Samples were collected every other day for at least 28 days during peak chlorpyrifos application periods (March April 2008) and every third day during peak azinphos-methyl application periods (May June 2008)
 - Concentrations of malathion measures were less than 1 ng/m³

Annendiy I:	Summary of O	ccupational	Handler Rick	Assessment for	or Malathion
Appendix I:	Summary of O	ccupational	Handler Kisk	Assessment to	or Malathion

-	uid Concentrate Ford Ialathion Occupation		O				ks		
Exposure	Crop	App. Rate ^c	Amount Handled Per Day ^d	Level			Equipment for $E^a - LOC^b = 1$	r Dermal Expos 000	sures
Scenario	Crop	(lb ai/A or /Gal)	(A or Gal)	Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRH	DL/GL/CRHi	Eng. Controls ^j
				Mixer/Load	lers				
	CA ONLY: Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	7.5 lb ai/A	350 acres	9.5	56	72	No Data	No Data	240
	Avocado	4.75 lb ai/A	350 acres	15	88	110	No Data	No Data	390
	Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	4.5 lb ai/A	350 acres	16	93	120	No Data	No Data	410
	Kumquat	4.5 lb ai/A	350 acres	16	93	120	No Data	No Data	410
	Pine Seed Orchards, Christmas Tree Plantations	3.2 lb ai/A	1200 acres	6.6	38	49	No Data	No Data	170
	Nectarine, Peach	3 lb ai/A	350 acres	24	140	180	No Data	No Data	610
Mixing/Loading to Support	Cotton	2.5 lb ai/A	1200 acres	8.4	49	63	No Data	No Data	210
Aerial	Chestnut, Pecans, Walnuts	2.5 lb ai/A	350 acres	29	170	220	No Data	No Data	730
Applications	Strawberry	2 lb ai/A	350 acres	36	210	270	No Data	No Data	920
	Figs	2 lb ai/A	350 acres	36	210	270	No Data	No Data	920
	Spinach	2 lb ai/A	350 acres	36	210	270	No Data	No Data	920
	Pineapple	2 lb ai/A	350 acres	36	210	270	No Data	No Data	920
	Blackberry, Boysenberry, Dewberry, Loganberry, Raspberry	2 lb ai/A	350 acres	36	210	270	No Data	No Data	920
	Gooseberry	2 lb ai/A	350 acres	36	210	270	No Data	No Data	920
	Lettuce, head and leaf	1.88 lb ai/A	350 acres	38	220	290	No Data	No Data	980
	Grapes (raisin, table, wine)	1.88 lb ai/A	350 acres	38	220	290	No Data	No Data	980

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Dav^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) Cherry (Sweet and Tart) 1000 1.75 lb ai/A 350 acres 41 240 310 No Data No Data Chayote Fruit, Cucumber, 1.75 lb ai/A 350 acres 41 240 310 No Data No Data 1000 Summer Squash Eggplant, Oriental Eggplant, Pepper, Tomato, 46 270 350 No Data 1200 1.56 lb ai/A 350 acres No Data Tomatillo Chayote Root, Garlic, Leeks, Onion, Potatoes, 1200 1.56 lb ai/A 350 acres 46 270 350 No Data No Data Shallot, Sweet Potatoes, Yams Apricot 1.5 lb ai/A 350 acres 48 280 360 No Data No Data 1200 Grapefruit, Lemon, Lime, Orange, Tangelo, 1.5 lb ai/A 350 acres 48 280 360 No Data No Data 1200 Tangerine Mixing/Loading Watermelon 1.5 lb ai/A 350 acres 48 280 360 No Data No Data 1200 to Support Aerial Celery, Parsley 1.5 lb ai/A 350 acres 48 280 360 No Data No Data 1200 **Applications** Barley, Rice, Wild Rice 1200 acres 17 98 130 No Data No Data 430 1.25 lb ai/A Grass - Forage and Hay 98 1.25 lb ai/A 1200 acres 17 130 No Data No Data 430 Alfalfa, Birdsfoot Trefoil, 1.25 lb ai/A 1200 acres 17 98 130 No Data No Data 430 Clover Blueberry (lowbush) 350 acres 57 330 430 No Data 1500 1.25 lb ai/A No Data Lespedeza, Vetch 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 Bermuda Grass 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 Pear 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 FL ONLY: Lemon 57 430 No Data 1500 1.25 lb ai/A 350 acres 330 No Data 57 Guava, Papaya 1.25 lb ai/A 350 acres 330 430 No Data No Data 1500

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Day^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) Broccoli, Broccoli Raab, Brussels Sprouts, 1.25 lb ai/A 330 430 No Data 1500 Cabbage, Cauliflower, 350 acres 57 No Data Chinese Broccoli, Dandelion Endive. Kohlrabi, Chinese 1.25 lb ai/A No Data 350 acres 57 330 430 No Data 1500 Greens, Watercress Carrot, Garden Beets, Horseradish, Parsnip, 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 Salsify, Turnip (greens & roots) Asparagus 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 Blueberry (highbush), 57 330 430 No Data 1.25 lb ai/A 350 acres No Data 1500 Currant Okra 1.2 lb ai/A 350 acres 60 350 450 No Data No Data 1500 Mixing/Loading Oats, Rye, Spring Wheat, to Support 1 lb ai/A 1200 acres 21 120 160 No Data No Data 540 Winter Wheat Aerial 1200 acres 21 120 160 No Data No Data 540 Corn (field), Sorghum 1 lb ai/A **Applications** Peas - Succulent 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 1 lb ai/A 71 420 540 No Data No Data 1800 Corn (pop and sweet) 350 acres Cantaloupe, Melon, 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 Pumpkin, Winter Squash Collard, Kale, Mustard 71 420 540 No Data 1800 1 lb ai/A 350 acres No Data Green, Swiss Chard Peas - Succulent 350 acres 71 420 540 No Data No Data 1800 1 lb ai/A Radish, Rutabaga 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 Passion Fruit 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 Mint 0.94 lb ai/A 76 440 580 No Data No Data 2000 350 acres

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Dav^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) 0.94 lb ai/A 2000 Mango 350 acres 76 440 580 No Data No Data Macadamia Nut 0.94 lb ai/A 350 acres 76 440 580 No Data No Data 2000 0.63 lb ai/A 350 acres 110 670 860 No Data No Data 2900 Hops Flax 0.5 lb ai/A 1200 acres 42 240 310 No Data No Data 1100 Flowers and Foliage 0.25 lb ai/A 60 acres 1700 9800 13000 No Data No Data 43000 Grown for Cutting Flowers, Shrubs, Mixing/Loading Flowering Plants, Nursery to Support Stock, Woody Plants, 0.25 lb ai/A 60 acres 1700 9800 13000 No Data No Data 43000 Aerial Shade Trees **Applications** (nursery grown) Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, 2500 15000 19000 No Data 64000 0.25 lb ai/A No Data 40 acres Shade Trees (field grown) CA ONLY: Grapefruit, Lemon, Lime, Orange, 350 acres 9.5 56 72 No Data No Data 240 7.5 lb ai/A Tangelo, Tangerine Avocado 4.75 lb ai/A 350 acres 15 88 110 No Data No Data 390 Grapefruit, Lemon, Lime, 93 Orange, Tangelo, 4.5 lb ai/A 350 acres 16 120 No Data No Data 410 Tangerine Mixing/Loading Kumquat 4.5 lb ai/A 350 acres 16 93 120 No Data No Data 410 to Support Pine Seed Orchards. Chemigation 22 Christmas Tree 350 acres 130 170 No Data No Data 570 3.2 lb ai/A **Applications Plantations** Nectarine, Peach 350 acres 140 180 No Data 610 3 lb ai/A 24 No Data 29 170 220 Cotton 2.5 lb ai/A 350 acres No Data No Data 730 Chestnut, Pecans, Walnuts 2.5 lb ai/A 350 acres 29 170 220 No Data No Data 730 2 lb ai/A 210 270 920 Strawberry 350 acres 36 No Data No Data

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Dav^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) 350 acres 36 210 270 920 Figs 2 lb ai/A No Data No Data Spinach 2 lb ai/A 350 acres 36 210 270 No Data No Data 920 270 Pineapple 350 acres 36 210 No Data No Data 920 2 lb ai/A Blackberry, Boysenberry, Dewberry, Loganberry, 210 270 920 2 lb ai/A 350 acres 36 No Data No Data Raspberry 36 210 270 920 Gooseberry 2 lb ai/A 350 acres No Data No Data Lettuce, head and leaf 1.88 lb ai/A 350 acres 38 220 290 No Data No Data 980 Grapes (raisin, table, 1.88 lb ai/A 350 acres 38 290 980 220 No Data No Data wine) Cherry (Sweet and Tart) 41 240 310 1000 1.75 lb ai/A 350 acres No Data No Data Chayote Fruit, Cucumber, 1.75 lb ai/A 350 acres 41 240 310 No Data No Data 1000 Summer Squash Eggplant, Oriental Eggplant, Pepper, Tomato, 46 270 350 No Data 1200 1.56 lb ai/A 350 acres No Data Tomatillo Mixing/Loading Chayote Root, Garlic, to Support Leeks, Onion, Potatoes, 270 350 1200 1.56 lb ai/A 350 acres 46 No Data No Data Shallot, Sweet Potatoes. Chemigation Yams **Applications** Apricot 1.5 lb ai/A 350 acres 48 280 360 No Data No Data 1200 Grapefruit, Lemon, Lime, Orange, Tangelo, 1.5 lb ai/A 350 acres 48 280 360 No Data No Data 1200 Tangerine 350 acres 48 280 360 No Data 1200 Watermelon 1.5 lb ai/A No Data Celery, Parsley 1.5 lb ai/A 350 acres 48 280 360 No Data No Data 1200 Alfalfa, Birdsfoot Trefoil, 98 1.25 lb ai/A 1200 acres 17 130 No Data 430 No Data Clover Blueberry (lowbush) 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 57 Barley, Rice, Wild Rice 1.25 lb ai/A 350 acres 330 430 No Data No Data 1500 Grass - Forage and Hav 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 57 Lespedeza, Vetch 1.25 lb ai/A 350 acres 330 430 No Data No Data 1500 57 Bermuda Grass 1.25 lb ai/A 350 acres 330 430 No Data No Data 1500 57 Pear 1.25 lb ai/A 350 acres 330 430 No Data No Data 1500

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Dav^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) FL ONLY: Lemon 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 Guava, Papaya 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 Broccoli, Broccoli Raab, Brussels Sprouts, Cabbage, Cauliflower, 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 Chinese Broccoli, Dandelion Endive. Kohlrabi, Chinese 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 Greens, Watercress Carrot, Garden Beets, Horseradish, Parsnip, 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 Salsify, Turnip (greens & roots) 1.25 lb ai/A 350 acres 57 330 430 No Data No Data 1500 Asparagus Blueberry (highbush), 1.25 lb ai/A 350 acres 57 330 430 No Data 1500 No Data Currant Mixing/Loading Okra 60 450 No Data 1500 1.2 lb ai/A 350 acres 350 No Data to Support Oats, Rye, Spring Wheat, 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 Chemigation Winter Wheat **Applications** Peas - Succulent 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 420 540 Corn (field), Sorghum 1 lb ai/A 350 acres 71 No Data No Data 1800 Corn (pop and sweet) 71 1 lb ai/A 350 acres 420 540 No Data No Data 1800 Cantaloupe, Melon, 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 Pumpkin, Winter Squash Collard, Kale, Mustard 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 Green. Swiss Chard Peas - Succulent 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 Radish, Rutabaga 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 Passion Fruit 1 lb ai/A 350 acres 71 420 540 No Data No Data 1800 Flowers and Foliage 420 2400 3100 1 lb ai/A 60 acres No Data No Data 11000 Grown for Cutting Flowers, Shrubs, 11000 420 2400 3100 No Data No Data 1 lb ai/A 60 acres Flowering Plants, Nursery

Table I.1: Liq	uid Concentrate Fori	mulations:	Agricultural	Non-ULV A	pplications l	Dermal Ris	ks		
Summary of M	Ialathion Occupation	al Handler	Short- and I	ntermediate-	Term Derm	al Risks			
		Ann	Amount	Level	of Personal	Protective	Equipment fo	r Dermal Expo	sures
Evnosumo		App. Rate ^c	Handled		D	Dermal MO	$E^a - LOC^b = 1$	000	
Exposure Scenario	Crop	(lb ai/A	Per Day ^d						E
Scenario		or /Gal)	(A or	Baselinee	SL/GL ^f	DL/GL ^g	SL/GL/CRH	DL/GL/CRHi	Eng. Controls ^j
		oi /Gai)	Gal)						Controls
Mixing/Loading to Support	Stock, Woody Plants, Shade Trees (nursery grown) Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (field grown)	1 lb ai/A	40 acres	630	3700	4800	No Data	No Data	16000
Chemigation	Mint	0.94 lb ai/A	350 acres	76	440	580	No Data	No Data	2000
Applications	Mango	0.94 lb ai/A	350 acres	76	440	580	No Data	No Data	2000
	Macadamia Nut	0.94 lb ai/A	350 acres	76	440	580	No Data	No Data	2000
	Hops	0.63 lb ai/A	350 acres	110	670	860	No Data	No Data	2900
	Flax	0.5 lb ai/A	350 acres	140	840	1100	No Data	No Data	3700
	Cotton	2.5 lb ai/A	200 acres	50	290	380	No Data	No Data	1300
	Strawberry	2 lb ai/A	80 acres	160	920	1200	No Data	No Data	4000
	Spinach	2 lb ai/A	80 acres	160	920	1200	No Data	No Data	4000
	Pineapple	2 lb ai/A	80 acres	160	920	1200	No Data	No Data	4000
Mixing/Loading to Support	Blackberry, Boysenberry, Dewberry, Loganberry, Raspberry	2 lb ai/A	80 acres	160	920	1200	No Data	No Data	4000
Groundboom Applications	Gooseberry	2 lb ai/A	80 acres	160	920	1200	No Data	No Data	4000
	Lettuce, head and leaf	1.88 lb ai/A	80 acres	170	980	1300	No Data	No Data	4300
	Grapes (raisin, table, wine)	1.88 lb ai/A	80 acres	170	980	1300	No Data	No Data	4300
	Chayote Fruit, Cucumber, Summer Squash Eggplant, Oriental	1.75 lb ai/A	80 acres	180	1000	1400	No Data	No Data	4600
	Eggplant, Oriental Eggplant, Pepper, Tomato, Tomatillo	1.56 lb ai/A	80 acres	200	1200	1500	No Data	No Data	5200

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Dav^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) Chayote Root, Garlic, Leeks, Onion, Potatoes, 1.56 lb ai/A 80 acres 200 1200 1500 No Data No Data 5200 Shallot, Sweet Potatoes, Yams 1200 Watermelon 1.5 lb ai/A 80 acres 210 1600 No Data No Data 5400 Celery, Parsley 1.5 lb ai/A 80 acres 210 1200 1600 No Data No Data 5400 Barley, Rice, Wild Rice 200 acres 100 590 750 No Data No Data 1.25 lb ai/A 2600 Grass - Forage and Hay 200 acres 100 590 750 No Data No Data 1.25 lb ai/A 2600 Alfalfa, Birdsfoot Trefoil, 1.25 lb ai/A 200 acres 100 590 750 No Data No Data 2600 Clover Blueberry (lowbush) 1.25 lb ai/A 80 acres 250 1500 1900 No Data No Data 6400 250 1500 1900 6400 Lespedeza, Vetch 1.25 lb ai/A 80 acres No Data No Data 1.25 lb ai/A 80 acres 250 1500 1900 No Data No Data 6400 Bermuda Grass 1.25 lb ai/A 250 1500 1900 No Data No Data 6400 80 acres Broccoli, Broccoli Raab, Brussels Sprouts, 250 1500 1900 No Data 6400 Cabbage, Cauliflower, 1.25 lb ai/A 80 acres No Data Chinese Broccoli, Mixing/Loading Dandelion to Support Endive. Kohlrabi, Chinese Groundboom 1.25 lb ai/A 80 acres 250 1500 1900 No Data No Data 6400 Greens, Watercress **Applications** Carrot, Garden Beets. Horseradish, Parsnip, 1500 1.25 lb ai/A 80 acres 250 1900 No Data No Data 6400 Salsify, Turnip (greens & roots) 250 1500 1900 6400 Asparagus 1.25 lb ai/A 80 acres No Data No Data Blueberry (highbush), 1.25 lb ai/A 1500 1900 80 acres 250 No Data No Data 6400 Currant Okra 2000 1.2 lb ai/A 260 1500 No Data No Data 6700 80 acres Oats, Rye, Spring Wheat, 1 lb ai/A 200 acres 130 730 950 No Data No Data 3200 Winter Wheat 950 Corn (field), Sorghum 1 lb ai/A 200 acres 130 730 No Data No Data 3200

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Day^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) Peas - Succulent 80 acres 310 1800 2400 No Data No Data 8000 1 lb ai/A Corn (pop and sweet) 1 lb ai/A 80 acres 310 1800 2400 No Data No Data 8000 Cantaloupe, Melon, 1 lb ai/A 310 1800 8000 80 acres 2400 No Data No Data Pumpkin, Winter Squash Collard, Kale, Mustard Green, Swiss Chard 310 1800 2400 No Data No Data 8000 1 lb ai/A 80 acres Peas - Succulent 1 lb ai/A 80 acres 310 1800 2400 No Data No Data 8000 Radish, Rutabaga 1 lb ai/A 80 acres 310 1800 2400 No Data No Data 8000 Passion Fruit 1 lb ai/A 80 acres 310 1800 2400 No Data No Data 8000 Flowers and Foliage 1 lb ai/A 420 2400 3100 11000 60 acres No Data No Data Grown for Cutting Flowers, Shrubs, Mixing/Loading Flowering Plants, Nursery to Support Stock, Woody Plants, 1 lb ai/A 420 2400 3100 No Data 11000 60 acres No Data Groundboom Shade Trees **Applications** (nursery grown) Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, 1 lb ai/A 40 acres 630 3700 4800 No Data No Data 16000 Shade Trees (field grown) Mint 0.94 lb ai/A 80 acres 330 2000 2500 No Data No Data 8500 Hops 0.63 lb ai/A 500 2900 3800 No Data No Data 13000 80 acres Flax 0.5 lb ai/A 250 1500 1900 No Data No Data 6400 200 acres

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Dav^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) Flowers and Foliage 10 lb ai/A 20 acres 130 730 950 No Data No Data 3200 Grown for Cutting Mixing/Loading Flowers, Shrubs, to Support Flowering Plants, Nursery Airblast Stock, Woody Plants, 10 lb ai/A 20 acres 130 730 950 No Data No Data 3200 **Applications** Shade Trees (nursery grown) Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, 250 1500 1900 10 lb ai/A 10 acres No Data No Data 6400 Shade Trees (field grown) CA ONLY: Grapefruit, Lemon, Lime, Orange, 7.5 lb ai/A 40 acres 84 490 630 No Data No Data 2100 Tangelo, Tangerine 4.75 lb ai/A 130 780 1000 No Data No Data 3400 Avocado 40 acres Grapefruit, Lemon, Lime, Orange, Tangelo. 4.5 lb ai/A 140 820 1100 No Data 3600 40 acres No Data Tangerine Mixing/Loading 820 1100 Kumquat 4.5 lb ai/A 40 acres 140 No Data No Data 3600 to Support Pine Seed Orchards. Airblast Christmas Tree 200 1100 1500 No Data 5000 3.2 lb ai/A 40 acres No Data **Applications** Plantations Nectarine, Peach 3 lb ai/A 40 acres 210 1200 1600 No Data No Data 5400 Chestnut, Pecans, Walnuts 2.5 lb ai/A 250 1500 1900 No Data 40 acres No Data 6400 Figs 2 lb ai/A 40 acres 310 1800 2400 No Data No Data 8000 Grapes (raisin, table, 2000 8500 1.88 lb ai/A 40 acres 330 2500 No Data No Data wine) 2700 9200 Cherry (Sweet and Tart) 1.75 lb ai/A 40 acres 360 2100 No Data No Data Apricot 1.5 lb ai/A 40 acres 420 2400 3100 No Data No Data 11000 Grapefruit, Lemon, Lime, Orange, Tangelo, 1.5 lb ai/A 40 acres 420 2400 3100 No Data No Data 11000 Tangerine Pear 1.25 lb ai/A 500 2900 3800 No Data No Data 13000 40 acres

-	uid Concentrate Ford Ialathion Occupation		O	ntermediate-	Term Derm	al Risks						
Exposure	Crop	App. Rate ^c	Amount Handled Per Day ^d	Level of Personal Protective Equipment for Dermal Exposures Dermal $MOE^a - LOC^b = 1000$								
Scenario	•	(lb ai/A or /Gal)	(A or Gal)	Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRH	DL/GL/CRHi	Eng. Controls ^j			
	FL ONLY: Lemon Guava, Papaya Blueberry (highbush) Passion Fruit Mango Macadamia Nut	1.25 lb ai/A 1.25 lb ai/A 1.25 lb ai/A 1 lb ai/A 0.94 lb ai/A 0.94 lb ai/A	40 acres 40 acres 40 acres 40 acres 40 acres 40 acres	500 500 500 630 670 670	2900 2900 2900 3700 3900 3900	3800 3800 3800 4800 5100 5100	No Data No Data No Data No Data No Data No Data	No Data No Data No Data No Data No Data No Data	13000 13000 13000 16000 17000 17000			
Mixing/Loading to Support Airblast Applications	Hops	0.63 lb ai/A	40 acres	1000	5800	7500	No Data	No Data	25000			
Mixing/Loading to Support Dip Applications	Grape Root	0.019 lb ai /gal.	100 gallons	13000	78000	100000	No Data	No Data	340000			
				Applicato	rs							
	CA ONLY: Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine Avocado	7.5 lb ai/A 4.75 lb ai/A	350 acres	No Data	No Data No Data	No Data No Data	No Data No Data	No Data	1000 1600			
	Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	4.5 lb ai/A	350 acres	No Data	No Data	No Data	No Data	No Data	1700			
Aerial Applications	Kumquat Pine Seed Orchards,	4.5 lb ai/A	350 acres	No Data	No Data	No Data	No Data	No Data	1700			
Applications	Christmas Tree Plantations	3.2 lb ai/A	1200 acres	No Data	No Data	No Data	No Data	No Data	690			
	Nectarine, Peach Cotton Chestnut, Pecans, Walnuts Strawberry Figs Spinach	3 lb ai/A 2.5 lb ai/A 2.5 lb ai/A 2 lb ai/A 2 lb ai/A 2 lb ai/A	350 acres 1200 acres 350 acres 350 acres 350 acres 350 acres	No Data No Data No Data No Data No Data No Data	No Data No Data No Data No Data No Data No Data	No Data No Data No Data No Data No Data No Data	No Data No Data No Data No Data No Data No Data	No Data No Data No Data No Data No Data No Data	2500 880 3000 3800 3800 3800			

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Crop Per Dav^d Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) Pineapple 2 lb ai/A 350 acres No Data No Data No Data No Data No Data 3800 Blackberry, Boysenberry, Dewberry, Loganberry, 2 lb ai/A 350 acres No Data No Data No Data No Data No Data 3800 Raspberry Gooseberry 2 lb ai/A 350 acres No Data No Data No Data No Data No Data 3800 Lettuce, head and leaf 1.88 lb ai/A 350 acres No Data No Data 4000 No Data No Data No Data Grapes (raisin, table, 1.88 lb ai/A 350 acres No Data No Data No Data No Data No Data 4000 wine) Cherry (Sweet and Tart) 1.75 lb ai/A 350 acres No Data No Data 4300 No Data No Data No Data Chayote Fruit, Cucumber, 1.75 lb ai/A 350 acres No Data No Data No Data No Data No Data 4300 Summer Squash Eggplant, Oriental Eggplant, Pepper, Tomato, No Data 4800 1.56 lb ai/A 350 acres No Data No Data No Data No Data Tomatillo Chayote Root, Garlic, Leeks, Onion, Potatoes, 1.56 lb ai/A 350 acres No Data No Data No Data No Data No Data 4800 Shallot, Sweet Potatoes. Yams 350 acres Apricot 1.5 lb ai/A No Data No Data No Data No Data No Data 5100 Aerial Grapefruit, Lemon, Lime, **Applications** Orange, Tangelo, No Data 5100 1.5 lb ai/A 350 acres No Data No Data No Data No Data Tangerine Watermelon 5100 1.5 lb ai/A 350 acres No Data No Data No Data No Data No Data Celery, Parsley 350 acres No Data No Data No Data No Data No Data 5100 1.5 lb ai/A Barley, Rice, Wild Rice 1.25 lb ai/A 1200 acres No Data No Data No Data No Data No Data 1800 Grass - Forage and Hay 1.25 lb ai/A 1200 acres No Data No Data No Data No Data No Data 1800 Alfalfa, Birdsfoot Trefoil, 1.25 lb ai/A 1200 acres No Data No Data No Data No Data No Data 1800 Clover Blueberry, lowbush 1.25 lb ai/A 350 acres No Data No Data No Data No Data 6100 No Data Lespedeza, Vetch 1.25 lb ai/A 350 acres No Data No Data No Data No Data No Data 6100 Bermuda Grass 1.25 lb ai/A 350 acres No Data No Data No Data No Data No Data 6100 Pear 1.25 lb ai/A 350 acres No Data No Data No Data No Data No Data 6100

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Dav^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) FL ONLY: Lemon No Data No Data No Data No Data 6100 1.25 lb ai/A 350 acres No Data Guava, Papaya 1.25 lb ai/A 350 acres No Data No Data No Data No Data No Data 6100 Broccoli, Broccoli Raab, Brussels Sprouts, No Data 6100 Cabbage, Cauliflower, 1.25 lb ai/A 350 acres No Data No Data No Data No Data Chinese Broccoli. Dandelion Endive. Kohlrabi, Chinese 1.25 lb ai/A 350 acres No Data No Data No Data No Data No Data 6100 Greens, Watercress Carrot, Garden Beets, Horseradish, Parsnip, 6100 1.25 lb ai/A 350 acres No Data No Data No Data No Data No Data Salsify, Turnip (greens & roots) 1.25 lb ai/A 350 acres No Data No Data No Data No Data No Data 6100 Asparagus Blueberry (highbush), 1.25 lb ai/A 350 acres No Data No Data No Data No Data No Data 6100 Currant Okra 1.2 lb ai/A 350 acres No Data No Data No Data No Data No Data 6300 Oats, Rye, Spring Wheat, 1 lb ai/A 1200 acres No Data No Data No Data No Data No Data 2200 Winter Wheat Aerial Corn (field), Sorghum 1 lb ai/A 1200 acres No Data No Data No Data No Data No Data 2200 **Applications** Peas - Succulent 1 lb ai/A 350 acres No Data No Data No Data No Data No Data 7500 Corn (pop and sweet) 1 lb ai/A 350 acres No Data No Data No Data No Data No Data 7500 Cantaloupe, Melon, 7500 1 lb ai/A 350 acres No Data No Data No Data No Data No Data Pumpkin, Winter Squash Collard, Kale, Mustard 1 lb ai/A 350 acres No Data No Data No Data No Data No Data 7500 Green, Swiss Chard Peas - Succulent 1 lb ai/A 350 acres No Data No Data No Data No Data No Data 7500 Radish, Rutabaga 1 lb ai/A 350 acres No Data No Data No Data No Data No Data 7500 Passion Fruit 1 lb ai/A 350 acres No Data No Data No Data No Data No Data 7500 Mint 0.94 lb ai/A 350 acres No Data No Data No Data No Data No Data 8100

	quid Concentrate Fori Malathion Occupation						ks						
Exposure	Crop	App. Rate ^c	Amount Handled Per Day ^d	$ \frac{d}{d} \qquad \qquad \mathbf{Dermal\ MOE}^{a} - \mathbf{LOC}^{b} = 1000 $									
Scenario		(lb ai/A or /Gal)	(A or Gal)	Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRH	DL/GL/CRHi	Eng. Controls ^j				
	Mango	0.94 lb ai/A	350 acres	No Data	No Data	No Data	No Data	No Data	8100				
	Macadamia Nut	0.94 lb ai/A	350 acres	No Data	No Data	No Data	No Data	No Data	8100				
	Hops	0.63 lb ai/A	350 acres	No Data	No Data	No Data	No Data	No Data	12000				
	Flax	0.5 lb ai/A	1200 acres	No Data	No Data	No Data	No Data	No Data	4400				
	Flowers and Foliage Grown for Cutting	0.25 lb ai/A	60 acres	No Data	No Data	No Data	No Data	No Data	180000				
Aerial	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (nursery grown)	0.25 lb ai/A	60 acres	No Data	No Data	No Data	No Data	No Data	180000				
Applications	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (field grown)	0.25 lb ai/A	40 acres	No Data	No Data	No Data	No Data	No Data	270000				
	Cotton	2.5 lb ai/A	200 acres	140	680	880	No Data	No Data	2200				
	Strawberry	2 lb ai/A	80 acres	440	2100	2700	No Data	No Data	6800				
	Spinach	2 lb ai/A	80 acres	440	2100	2700	No Data	No Data	6800				
	Pineapple Blackberry, Boysenberry,	2 lb ai/A	80 acres	440	2100	2700	No Data	No Data	6800				
Groundboom	Dewberry, Loganberry, Raspberry	2 lb ai/A	80 acres	440	2100	2700	No Data	No Data	6800				
Applications	Gooseberry	2 lb ai/A	80 acres	440	2100	2700	No Data	No Data	6800				
	Lettuce, head and leaf	1.88 lb ai/A	80 acres	470	2300	2900	No Data	No Data	7200				
	Grapes (raisin, table, wine)	1.88 lb ai/A	80 acres	470	2300	2900	No Data	No Data	7200				
	Chayote Fruit, Cucumber, Summer Squash	1.75 lb ai/A	80 acres	500	2500	3100	No Data	No Data	7800				

	quid Concentrate Fori Malathion Occupation		Short- and l	ntermediate-	Term Derma	al Risks		D I E	
Exposure	Crop	App. Rate ^c	Amount Handled Per Day ^d	Levei			Equipment 10: $E^a - LOC^b = 1$	r Dermal Expo 000	
Scenario		(lb ai/A or /Gal)	(A or Gal)	Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRH	DL/GL/CRHi	Eng. Controls ^j
	Eggplant, Oriental Eggplant, Pepper, Tomato, Tomatillo	1.56 lb ai/A	80 acres	560	2700	3500	No Data	No Data	8700
	Chayote Root, Garlic, Leeks, Onion, Potatoes, Shallot, Sweet Potatoes, Yams	1.56 lb ai/A	80 acres	560	2700	3500	No Data	No Data	8700
	Watermelon	1.5 lb ai/A	80 acres	580	2900	3700	No Data	No Data	9000
	Celery, Parsley	1.5 lb ai/A	80 acres	580	2900	3700	No Data	No Data	9000
	Barley, Rice, Wild Rice	1.25 lb ai/A	200 acres	280	1400	1800	No Data	No Data	4300
	Grass - Forage and Hay	1.25 lb ai/A	200 acres	280	1400	1800	No Data	No Data	4300
	Alfalfa, Birdsfoot Trefoil, Clover	1.25 lb ai/A	200 acres	280	1400	1800	No Data	No Data	4300
	Blueberry (lowbush)	1.25 lb ai/A	80 acres	700	3400	4400	No Data	No Data	11000
	Lespedeza, Vetch	1.25 lb ai/A	80 acres	700	3400	4400	No Data	No Data	11000
	Bermuda Grass	1.25 lb ai/A	80 acres	700	3400	4400	No Data	No Data	11000
Groundboom	Broccoli, Broccoli Raab, Brussels Sprouts, Cabbage, Cauliflower, Chinese Broccoli, Dandelion	1.25 lb ai/A	80 acres	700	3400	4400	No Data	No Data	11000
Applications	Endive. Kohlrabi, Chinese Greens, Watercress	1.25 lb ai/A	80 acres	700	3400	4400	No Data	No Data	11000
	Carrot, Garden Beets, Horseradish, Parsnip, Salsify, Turnip (greens & roots)	1.25 lb ai/A	80 acres	700	3400	4400	No Data	No Data	11000
	Asparagus	1.25 lb ai/A	80 acres	700	3400	4400	No Data	No Data	11000
	Blueberry (highbush), Currant	1.25 lb ai/A	80 acres	700	3400	4400	No Data	No Data	11000
	Okra	1.2 lb ai/A	80 acres	730	3600	4600	No Data	No Data	11000

· ·	able I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks ummary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks App. Amount Level of Personal Protective Equipment for Dermal Exposures											
Exposure Scenario	Crop	App. Rate ^c (lb ai/A or /Gal)	Handled Per Day ^d (A or Gal)	Baseline ^e			$E^{a} - LOC^{b} = 1$ $SL/GL/CRH$		Eng. Controls ^j			
	Oats, Rye, Spring Wheat, Winter Wheat	1 lb ai/A	200 acres	350	1700	2200	No Data	No Data	5400			
	Corn (field), Sorghum	1 lb ai/A	200 acres	350	1700	2200	No Data	No Data	5400			
	Peas - Succulent	1 lb ai/A	80 acres	880	4300	5500	No Data	No Data	14000			
	Corn (pop and sweet)	1 lb ai/A	80 acres	880	4300	5500	No Data	No Data	14000			
	Cantaloupe, Melon, Pumpkin, Winter Squash	1 lb ai/A	80 acres	880	4300	5500	No Data	No Data	14000			
	Collard, Kale, Mustard Green, Swiss Chard	1 lb ai/A	80 acres	880	4300	5500	No Data	No Data	14000			
	Peas - Succulent	1 lb ai/A	80 acres	880	4300	5500	No Data	No Data	14000			
	Radish, Rutabaga	1 lb ai/A	80 acres	880	4300	5500	No Data	No Data	14000			
	Passion Fruit	1 lb ai/A	80 acres	880	4300	5500	No Data	No Data	14000			
	Flowers and Foliage Grown for Cutting	1 lb ai/A	60 acres	1200	5700	7300	No Data	No Data	18000			
	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (nursery grown)	1 lb ai/A	60 acres	1200	5700	7300	No Data	No Data	18000			
Groundboom Applications	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (field grown)	1 lb ai/A	40 acres	1800	8600	11000	No Data	No Data	27000			
	Mint	0.94 lb ai/A	80 acres	930	4600	5800	No Data	No Data	14000			
	Hops	0.63 lb ai/A	80 acres	1400	6800	8700	No Data	No Data	22000			
	Flax	0.5 lb ai/A	200 acres	700	3400	4400	No Data	No Data	11000			

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Day^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) Flowers and Foliage 10 lb ai/A 20 acres 16 17 19 130 200 1900 Grown for Cutting Flowers, Shrubs, Flowering Plants, Nurserv Stock, Woody Plants, 17 19 10 lb ai/A 20 acres 16 130 200 1900 Shade Trees (nursery grown) Airblast Flowers, Shrubs, Flowering Plants, Nursery **Applications** Stock, Woody Plants, 31 35 37 260 390 3800 10 lb ai/A 10 acres Shade Trees (field grown) CA ONLY: Grapefruit, Lemon, Lime, Orange, 7.5 lb ai/A 40 acres 10 12 12 86 130 1300 Tangelo, Tangerine 18 Avocado 4.75 lb ai/A 40 acres 16 20 130 210 2000 Grapefruit, Lemon, Lime, Orange, Tangelo, 17 19 21 140 220 2100 4.5 lb ai/A 40 acres Tangerine Kumquat 4.5 lb ai/A 40 acres 17 19 21 140 220 2100 Pine Seed Orchards, Christmas Tree 3.2 lb ai/A 40 acres 24 27 29 200 310 3000 Plantations Airblast 29 31 3100 Nectarine, Peach 3 lb ai/A 40 acres 26 210 330 **Applications** 31 35 37 260 3800 Chestnut, Pecans, Walnuts 2.5 lb ai/A 40 acres 390 40 acres 39 43 47 320 490 4700 Figs 2 lb ai/A Grapes (raisin, table, 1.88 lb ai/A 40 acres 41 46 50 340 520 5000 wine) Cherry (Sweet and Tart) 1.75 lb ai/A 40 acres 44 50 53 370 560 5400 Apricot 1.5 lb ai/A 52 58 62 430 650 6300 40 acres

·	quid Concentrate Fori Malathion Occupation		0				ks						
Exposure	Crop	App. Rate ^c	Amount Handled Per Day ^d	Level of Personal Protective Equipment for Dermal Exposures Dermal $MOE^a - LOC^b = 1000$									
Scenario		(lb ai/A or /Gal)	(A or Gal)	Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRH	DL/GL/CRHi	Eng. Controls ^j				
	Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	1.5 lb ai/A	40 acres	52	58	62	430	650	6300				
	Pear	1.25 lb ai/A	40 acres	63	70	75	510	780	7500				
	FL ONLY: Lemon	1.25 lb ai/A	40 acres	63	70	75	510	780	7500				
	Guava, Papaya	1.25 lb ai/A	40 acres	63	70	75	510	780	7500				
	Blueberries (highbush)	1.25 lb ai/A	40 acres	63	70	75	510	780	7500				
	Passion Fruit	1 lb ai/A	40 acres	78	87	93	640	980	9500				
	Mango	0.94 lb ai/A	40 acres	83	92	99	680	1000	10000				
	Macadamia Nut	0.94 lb ai/A	40 acres	83	92	99	680	1000	10000				
	Hops	0.63 lb ai/A	40 acres	120	140	150	1000	1600	15000				
				Flaggers	S								
	CA ONLY: Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	7.5 lb ai/A	350 acres	190	180	200	No Data	No Data	No Data				
	Avocado Grapefruit, Lemon, Lime,	4.75 lb ai/A	350 acres	300	280	310	No Data	No Data	No Data				
	Orange, Tangelo, Tangerine	4.5 lb ai/A	350 acres	320	290	330	No Data	No Data	No Data				
Flagging to Support Aerial	Kumquat Pine Seed Orchards,	4.5 lb ai/A	350 acres	320	290	330	No Data	No Data	No Data				
Applications	Christmas Tree Plantations	3.2 lb ai/A	350 acres	450	410	470	No Data	No Data	No Data				
	Nectarine, Peach	3 lb ai/A	350 acres	480	440	500	No Data	No Data	No Data				
	Cotton	2.5 lb ai/A	350 acres	570	530	600	No Data	No Data	No Data				
	Chestnut, Pecans, Walnuts	2.5 lb ai/A	350 acres	570	530	600	No Data	No Data	No Data				
	Strawberry	2 lb ai/A	350 acres	710	660	740	No Data	No Data	No Data				

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Davd Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GL^f DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) Figs 2 lb ai/A 350 acres 710 740 No Data No Data No Data 660 350 acres 2 lb ai/A 710 660 740 No Data Spinach No Data No Data Pineapple 2 lb ai/A 350 acres 710 660 740 No Data No Data No Data Blackberry, Boysenberry, Dewberry, Loganberry, 2 lb ai/A 350 acres 710 660 740 No Data No Data No Data Raspberry Gooseberry 2 lb ai/A 350 acres 710 660 740 No Data No Data No Data 760 790 Lettuce, head and leaf 1.88 lb ai/A 350 acres 700 No Data No Data No Data Grapes (raisin, table, 1.88 lb ai/A 350 acres 760 700 790 No Data No Data No Data wine) Cherry (Sweet and Tart) 1.75 lb ai/A 350 acres 820 750 850 No Data No Data No Data Chayote Fruit, Cucumber, 1.75 lb ai/A 350 acres 820 750 850 No Data No Data No Data Summer Squash Eggplant, Oriental 350 acres Eggplant, Pepper, Tomato, 1.56 lb ai/A 920 840 950 No Data No Data No Data Tomatillo Chayote Root, Garlic, Leeks, Onion, Potatoes, 1.56 lb ai/A 350 acres 920 840 950 No Data No Data No Data Shallot, Sweet Potatoes, Yams 880 990 Apricot 1.5 lb ai/A 350 acres 950 No Data No Data No Data Grapefruit, Lemon, Lime, Orange, Tangelo, 950 880 990 No Data 1.5 lb ai/A 350 acres No Data No Data Flagging to Tangerine 990 950 880 Support Aerial Watermelon 1.5 lb ai/A 350 acres No Data No Data No Data Celery, Parsley 350 acres 950 880 990 No Data No Data 1.5 lb ai/A No Data **Applications** Blueberry, lowbush 1100 1100 1200 1.25 lb ai/A 350 acres No Data No Data No Data Barley, Rice, Wild Rice 1.25 lb ai/A 350 acres 1100 1100 1200 No Data No Data No Data 350 acres Grass - Forage and Hay 1.25 lb ai/A 1100 1100 1200 No Data No Data No Data Alfalfa, Birdsfoot Trefoil, 1.25 lb ai/A 350 acres 1100 1100 1200 No Data No Data No Data Clover Lespedeza, Vetch 1.25 lb ai/A 350 acres 1100 1100 1200 No Data No Data No Data Bermuda Grass 1.25 lb ai/A 350 acres 1100 1100 1200 No Data No Data No Data

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Dav^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controls^j Gal) Pear 1.25 lb ai/A 350 acres 1100 1100 1200 No Data No Data No Data FL ONLY: Lemon 1.25 lb ai/A 350 acres 1100 1100 1200 No Data No Data No Data 1.25 lb ai/A 350 acres 1100 1100 1200 No Data No Data No Data Guava, Papaya Broccoli, Broccoli Raab, Brussels Sprouts, 1100 Cabbage, Cauliflower, 1.25 lb ai/A 350 acres 1100 1200 No Data No Data No Data Chinese Broccoli, Dandelion Endive. Kohlrabi, Chinese 1.25 lb ai/A 1100 1100 1200 No Data 350 acres No Data No Data Greens, Watercress Carrot, Garden Beets, Horseradish, Parsnip, 1.25 lb ai/A 350 acres 1100 1100 1200 No Data No Data No Data Salsify, Turnip (greens & roots) 350 acres 1100 1100 1200 No Data Asparagus 1.25 lb ai/A No Data No Data Blueberry (highbush), 1.25 lb ai/A 350 acres 1100 1100 1200 No Data No Data No Data Currant Okra 1.2 lb ai/A 350 acres 1200 1100 1200 No Data No Data No Data Oats, Rye, Spring Wheat, 1 lb ai/A 1300 350 acres 1400 1500 No Data No Data No Data Winter Wheat 1400 1300 1500 Peas - Succulent 1 lb ai/A 350 acres No Data No Data No Data Flagging to Support Aerial Corn (field), Sorghum 1 lb ai/A 350 acres 1400 1300 1500 No Data No Data No Data **Applications** Corn (pop and sweet) 1 lb ai/A 350 acres 1400 1300 1500 No Data No Data No Data Cantaloupe, Melon, 1 lb ai/A 350 acres 1400 1300 1500 No Data No Data No Data Pumpkin, Winter Squash Collard, Kale, Mustard Green, Swiss Chard 1400 1300 1500 No Data No Data No Data 1 lb ai/A 350 acres

_	uid Concentrate Fori Ialathion Occupation		O				ks			
Exposure	Сгор	App. Rate ^c (lb ai/A or /Gal)	Amount Handled Per Day ^d (A or Gal)	Level of Personal Protective Equipment for Dermal Exposures $Dermal\ MOE^a-LOC^b=1000$						
Scenario				Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRH	DL/GL/CRHi	Eng. Controls ^j	
	Peas - Succulent	1 lb ai/A	350 acres	1400	1300	1500	No Data	No Data	No Data	
	Radish, Rutabaga	1 lb ai/A	350 acres	1400	1300	1500	No Data	No Data	No Data	
	Passion Fruit	1 lb ai/A	350 acres	1400	1300	1500	No Data	No Data	No Data	
	Mint	0.94 lb ai/A	350 acres	1500	1400	1600	No Data	No Data	No Data	
	Mango	0.94 lb ai/A	350 acres	1500	1400	1600	No Data	No Data	No Data	
	Macadamia Nut	0.94 lb ai/A	350 acres	1500	1400	1600	No Data	No Data	No Data	
	Hops	0.63 lb ai/A	350 acres	2300	2100	2400	No Data	No Data	No Data	
	Flax	0.5 lb ai/A	350 acres	2900	2600	3000	No Data	No Data	No Data	
	Flowers and Foliage Grown for Cutting	0.25 lb ai/A	60 acres	33000	31000	35000	No Data	No Data	No Data	
Flagging to	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (nursery grown)	0.25 lb ai/A	60 acres	33000	31000	35000	No Data	No Data	No Data	
Support Aerial Applications	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (field grown)	0.25 lb ai/A	40 acres	50000	46000	52000	No Data	No Data	No Data	
			Mix	ker/Loader/Ap	plicators	1		,		
Mixing/Loading/ Applying with	Pine Seed Orchards, Christmas Tree Plantations	Pine Seed Orchards, Christmas	3.2 lb ai/A	5 acres	5.9	11	20	No Data	No Data	

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks App. Amount Level of Personal Protective Equipment for Dermal Exposures Handled Dermal MOE ^a – LOC ^b = 1000									
Exposure Scenario	Crop	Rate ^c (lb ai/A or /Gal)	Per Day ^d (A or Gal)	Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRH	DL/GL/CRH ⁱ	Eng. Controls ^j
Backpack Equipment		Tree Plantations							
	Mushroom	Mushroom	1.7 lb ai/A	0.37 acres	150	290	520	No Data	No Data
	Flowers and Foliage Grown for Cutting	Flowers and Foliage Grown for Cutting	0.025 lb ai /gal.	40 gallons	95	180	330	No Data	No Data
	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees – foliar directed	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees – foliar directed	0.025 lb ai /gal.	40 gallons	95	180	330	No Data	No Data
	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees – ground directed	0.025 lb ai /gal.	40 gallons	670	670	1300	No Data	No Data	No Data
Mixing/Loading/ Applying with Handheld Fogger Equipment	Mushroom	1.7 lb ai/A	0.37 acres	No Data	No Data	No Data	No Data	No Data	No Data

Summary of Malathion Occupational Handler Short- and Intermediate-Term Dermal Risks **Level of Personal Protective Equipment for Dermal Exposures** Amount App. Dermal $MOE^a - LOC^b = 1000$ Handled Ratec **Exposure** Per Dav^d Crop Scenario (lb ai/A Eng. (A or **Baseline**^e SL/GLf DL/GLg SL/GL/CRH DL/GL/CRHi or /Gal) Controlsi Gal) Pine Seed Orchards, 3.2 lb ai/A 5 acres 3.4 800 950 No Data No Data Christmas Tree No Data Mixing/Loading/ Plantations Applying with 1.7 lb ai/A 0.37 acres 88 20000 24000 Mushroom No Data No Data No Data Manually-Flowers and Foliage 0.025 40 gallons 55 13000 15000 No Data No Data No Data Pressurized Grown for Cutting lb ai /gal. Flowers, Shrubs, Handgun Flowering Plants, Nursery 0.025 Equipment 40 gallons 13000 15000 55 No Data No Data No Data Stock, Woody Plants, lb ai /gal. Shade Trees Pine Seed Orchards, Christmas Tree 5 acres 57 250 3.2 lb ai/A 170 No Data No Data No Data **Plantations** Mixing/Loading/ Mushroom 1.7 lb ai/A 0.37 acres 2500 3500 5500 No Data No Data No Data Applying with Flowers and Foliage 0.025 Mechanically-1000 gallons 37 110 160 No Data No Data No Data Grown for Cutting lb ai /gal. Pressurized Flowers, Shrubs, Handgun Flowering Plants, Nursery 0.025 Equipment Stock, Woody Plants, 1000 gallons 37 110 160 No Data No Data No Data lb ai /gal. Shade Trees

(foliar or ground directed)

Table I.1: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Dermal Risks

a MOE = margin of exposure = Dermal Point of Departure (80 acres mg/kg/day) / Dermal Dose (mg/kg/day); where dermal dose = daily unit exposure (mg/lb ai) x application rate x amount handled per day x 100% dermal absorption (route-specific PoD) / bodyweight (69 kg average female adult).

b LOC = level of concern = 1000.

c Application rates are the maximum application rates determined from EPA registered labels for malathion. Listed as pounds active ingredient per acre, unless pounds per gallon are specified.

d Amount handled per day values are HED estimates of acres treated per day or gallons applied per day based on industry sources and HED estimates.

e Baseline = long-sleeve shirt, long pants, shoes, socks, and no gloves.

f SL/GL = long-sleeve shirt, long pants, shoes, socks, and chemical-resistant gloves.

g DL/GL = coveralls worn over long-sleeve shirt and long pants, chemical-resistant footwear, socks, and chemical-resistant gloves.

h SL/GL/CRH = long-sleeve shirt and long pants, shoes, socks, chemical-resistant gloves, and chemical-resistant headgear.

- i DL/GL/CRH = coveralls worn over long-sleeve shirt, long pants, chemical-resistant footwear, socks, chemical-resistant gloves, and chemical-resistant headgear.
- j Eng. Control = Engineering control including closed mixing/loading system, enclosed cab, or enclosed cockpit.

Exposure Scenario	alathion Occupational H Crop	App. Rate ^c (lb ai/A or lb ai/Gal)	Amount Handled Per	Level of Personal Protective Equipment for Inhalation Exposure Inhalation $MOE^a - LOC^b = 3000$				
			Day ^d (A or Gal)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h	
			Mixer/Load	lers				
	CA ONLY: Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	7.5 lb ai/acre	350 acres	450	2200	4500	1200	
	Avocado	4.75 lb ai/acre	350 acres	710	3500	7100	1900	
	Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	4.5 lb ai/acre	350 acres	750	3700	7500	2000	
	Kumquat	4.5 lb ai/acre	350 acres	750	3700	7500	2000	
	Pine Seed Orchards, Christmas Tree Plantations	3.2 lb ai/acre	1200 acres	310	1500	3100	810	
	Nectarine, Peach	3 lb ai/acre	350 acres	1100	5600	11000	3000	
	Cotton	2.5 lb ai/acre	1200 acres	390	2000	3900	1000	
	Chestnut, Pecans, Walnuts	2.5 lb ai/acre	350 acres	1300	6700	13000	3600	
	Strawberry	2 lb ai/acre	350 acres	1700	8400	17000	4400	
Mixing/Loading	Figs	2 lb ai/acre	350 acres	1700	8400	17000	4400	
o Support Aerial	Spinach	2 lb ai/acre	350 acres	1700	8400	17000	4400	
Applications	Pineapple	2 lb ai/acre	350 acres	1700	8400	17000	4400	
	Blackberry, Boysenberry, Dewberry, Loganberry, Raspberry	2 lb ai/acre	350 acres	1700	8400	17000	4400	
	Gooseberry	2 lb ai/acre	350 acres	1700	8400	17000	4400	
	Lettuce, head and leaf	1.88 lb ai/acre	350 acres	1800	9000	18000	4700	
	Grapes (raisin, table, wine)	1.88 lb ai/acre	350 acres	1800	9000	18000	4700	
	Cherry (Sweet and Tart)	1.75 lb ai/acre	350 acres	1900	9600	19000	5100	
	Chayote Fruit, Cucumber, Summer Squash	1.75 lb ai/acre	350 acres	1900	9600	19000	5100	
	Eggplant, Oriental Eggplant, Pepper, Tomato, Tomatillo	1.56 lb ai/acre	350 acres	2100	11000	21000	5700	
	Chayote Root, Garlic, Leeks, Onion, Potatoes, Shallot, Sweet Potatoes, Yams	1.56 lb ai/acre	350 acres	2100	11000	21000	5700	

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop Scenario **Day**^d Eng. lb ai/Gal) Baseline No-Re PF5-Rf PF10-Rg Controlsh (A or Gal) 11000 Apricot 1.5 lb ai/acre 350 acres 2200 22000 5900 Grapefruit, Lemon, Lime, 1.5 lb ai/acre 350 acres 2200 11000 5900 22000 Orange, Tangelo, Tangerine Watermelon 350 acres 2200 11000 22000 1.5 lb ai/acre 5900 Celery, Parsley 1.5 lb ai/acre 350 acres 2200 11000 22000 5900 Barley, Rice, Wild Rice 1.25 lb ai/acre 1200 acres 780 3900 7800 2100 Grass - Forage and Hay 1.25 lb ai/acre 1200 acres 780 3900 7800 2100 Alfalfa, Birdsfoot Trefoil. 1.25 lb ai/acre 1200 acres 780 3900 7800 2100 Clover Blueberry (lowbush) 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Lespedeza, Vetch 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Bermuda Grass 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Pear 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 FL ONLY: Lemon 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Guava, Papaya 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Mixing/Loading Broccoli, Broccoli Raab, to Support Aerial Brussels Sprouts, Cabbage, **Applications** 2700 13000 7100 1.25 lb ai/acre 350 acres 27000 Cauliflower, Chinese Broccoli, Dandelion Endive. Kohlrabi, Chinese 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Greens, Watercress Carrot, Garden Beets, Horseradish, Parsnip, Salsify, 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Turnip (greens & roots) Asparagus 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Blueberry (highbush), Currant 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Okra 1.2 lb ai/acre 350 acres 2800 14000 28000 7400 Oats, Rye, Spring Wheat, 1 lb ai/acre 1200 acres 980 4900 9800 2600 Winter Wheat Corn (field), Sorghum 1 lb ai/acre 1200 acres 980 4900 9800 2600 Peas - Succulent 1 lb ai/acre 350 acres 3400 17000 34000 8900

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop Scenario **Day**^d Eng. lb ai/Gal) Baseline No-Re PF5-Rf PF10-Rg Controlsh (A or Gal) 1 lb ai/acre 350 acres 17000 8900 Corn (pop and sweet) 3400 34000 Cantaloupe, Melon, Pumpkin, 1 lb ai/acre 350 acres 3400 17000 34000 8900 Winter Squash Collard, Kale, Mustard Green, 1 lb ai/acre 350 acres 3400 17000 34000 8900 Swiss Chard Peas - Succulent 3400 17000 34000 8900 1 lb ai/acre 350 acres Radish, Rutabaga 1 lb ai/acre 350 acres 3400 17000 34000 8900 Passion Fruit 1 lb ai/acre 350 acres 3400 17000 34000 8900 36000 Mint 0.94 lb ai/acre 350 acres 3600 18000 9400 Mango 0.94 lb ai/acre 350 acres 3600 18000 36000 9400 Macadamia Nut 0.94 lb ai/acre 350 acres 3600 18000 36000 9400 Mixing/Loading 0.63 lb ai/acre 350 acres 5300 27000 53000 14000 Hops to Support Aerial Flax 0.5 lb ai/acre 1200 acres 2000 9800 20000 5200 **Applications** Flowers and Foliage Grown 0.25 lb ai/acre 60 acres 78000 390000 780000 210000 for Cutting Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody 0.25 lb ai/acre 60 acres 78000 390000 780000 210000 Plants, Shade Trees (nursery grown) Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody 0.25 lb ai/acre 40 acres 120000 590000 1200000 310000 Plants. Shade Trees (field grown) CA ONLY: Grapefruit, 450 2200 4500 1200 Lemon, Lime, Orange, 7.5 lb ai/acre 350 acres Tangelo, Tangerine Mixing/Loading Avocado 4.75 lb ai/acre 350 acres 710 3500 7100 1900 to Support Grapefruit, Lemon, Lime, 4.5 lb ai/acre 750 3700 7500 2000 350 acres Orange, Tangelo, Tangerine Chemigation Kumquat 4.5 lb ai/acre 350 acres 750 3700 7500 2000 **Applications** Pine Seed Orchards. 3.2 lb ai/acre 350 acres 1100 5300 11000 2800 Christmas Tree Plantations 3 lb ai/acre 5600 3000 Nectarine, Peach 350 acres 1100 11000

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop **Day**^d **Scenario** Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controls^h (A or Gal) Cotton 2.5 lb ai/acre 350 acres 1300 6700 3600 13000 Chestnut, Pecans, Walnuts 2.5 lb ai/acre 350 acres 1300 6700 13000 3600 2 lb ai/acre 350 acres 1700 8400 17000 4400 Strawberry 2 lb ai/acre 350 acres 1700 8400 17000 4400 Figs Spinach 2 lb ai/acre 350 acres 1700 8400 17000 4400 Pineapple 2 lb ai/acre 350 acres 1700 8400 17000 4400 Blackberry, Boysenberry, Dewberry, Loganberry, 2 lb ai/acre 350 acres 1700 8400 17000 4400 Raspberry Gooseberry 2 lb ai/acre 350 acres 1700 8400 17000 4400 Lettuce, head and leaf 1.88 lb ai/acre 350 acres 1800 9000 18000 4700 Grapes (raisin, table, wine) 1.88 lb ai/acre 1800 18000 350 acres 9000 4700 Cherry (Sweet and Tart) 1.75 lb ai/acre 350 acres 1900 9600 19000 5100 Chayote Fruit, Cucumber, 1.75 lb ai/acre 350 acres 1900 9600 19000 5100 Summer Squash Eggplant, Oriental Eggplant, Mixing/Loading 11000 1.56 lb ai/acre 350 acres 2100 21000 5700 Pepper, Tomato, Tomatillo to Support Chayote Root, Garlic, Leeks, Chemigation 11000 Onion, Potatoes, Shallot, 1.56 lb ai/acre 350 acres 2100 21000 5700 **Applications** Sweet Potatoes, Yams Apricot 1.5 lb ai/acre 350 acres 2200 11000 22000 5900 Grapefruit, Lemon, Lime, 1.5 lb ai/acre 350 acres 2200 11000 22000 5900 Orange, Tangelo, Tangerine 2200 11000 22000 5900 Watermelon 1.5 lb ai/acre 350 acres Celery, Parsley 1.5 lb ai/acre 350 acres 2200 11000 22000 5900 Alfalfa, Birdsfoot Trefoil, 1.25 lb ai/acre 1200 acres 780 3900 7800 2100 Clover Blueberry (lowbush) 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Barley, Rice, Wild Rice 1.25 lb ai/acre 2700 13000 27000 7100 350 acres Grass - Forage and Hay 1.25 lb ai/acre 2700 13000 27000 7100 350 acres Lespedeza, Vetch 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Bermuda Grass 1.25 lb ai/acre 350 acres 2700 13000 27000 7100

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop **Day**^d Scenario Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controls^h (A or Gal) Pear 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 FL ONLY: Lemon 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 1.25 lb ai/acre 13000 Guava, Papaya 350 acres 2700 27000 7100 Broccoli, Broccoli Raab. Brussels Sprouts, Cabbage, 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Cauliflower, Chinese Broccoli, Dandelion Endive. Kohlrabi, Chinese 2700 13000 7100 1.25 lb ai/acre 350 acres 27000 Greens, Watercress Carrot, Garden Beets. Horseradish, Parsnip, Salsify, 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Turnip (greens & roots) Asparagus 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Blueberry (highbush), Currant 1.25 lb ai/acre 350 acres 2700 13000 27000 7100 Okra 1.2 lb ai/acre 350 acres 2800 14000 28000 7400 Oats, Rye, Spring Wheat, Mixing/Loading 1 lb ai/acre 350 acres 3400 17000 34000 8900 Winter Wheat to Support 3400 17000 34000 8900 Peas - Succulent 1 lb ai/acre 350 acres Chemigation 1 lb ai/acre 350 acres 3400 17000 34000 Corn (field), Sorghum 8900 **Applications** Corn (pop and sweet) 1 lb ai/acre 350 acres 3400 17000 34000 8900 Cantaloupe, Melon, Pumpkin, 1 lb ai/acre 17000 350 acres 3400 34000 8900 Winter Squash Collard, Kale, Mustard Green, 1 lb ai/acre 350 acres 3400 17000 34000 8900 Swiss Chard Peas - Succulent 1 lb ai/acre 350 acres 3400 17000 34000 8900 1 lb ai/acre 350 acres Radish, Rutabaga 3400 17000 34000 8900 Passion Fruit 1 lb ai/acre 350 acres 3400 17000 34000 8900 Flowers and Foliage Grown 1 lb ai/acre 60 acres 20000 98000 200000 52000 for Cutting Flowers, Shrubs, Flowering 98000 1 lb ai/acre 60 acres 20000 200000 52000 Plants, Nursery Stock, Woody

Exposure	Crop	App. Rate ^c (lb ai/A or	Amount Handled Per Day ^d (A or Gal)		Level of Personal Protective Equipment for Inha Inhalation $MOE^a - LOC^b = 30$		
Scenario	-	lb ai/Gal)		Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h
	Plants, Shade Trees (nursery grown) Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (field grown)	1 lb ai/acre	40 acres	29000	150000	290000	78000
F: . /F 1:	Mint	0.94 lb ai/acre	350 acres	3600	18000	36000	9400
Mixing/Loading	Mango	0.94 lb ai/acre	350 acres	3600	18000	36000	9400
to Support Chemigation	Macadamia Nut	0.94 lb ai/acre	350 acres	3600	18000	36000	9400
Applications	Hops	0.63 lb ai/acre	350 acres	5300	27000	53000	14000
Applications	Flax	0.5 lb ai/acre	350 acres	6700	34000	67000	18000
	Cotton	2.5 lb ai/acre	200 acres	2400	12000	24000	6200
	Strawberry	2 lb ai/acre	80 acres	7400	37000	74000	19000
	Spinach	2 lb ai/acre	80 acres	7400	37000	74000	19000
	Pineapple	2 lb ai/acre	80 acres	7400	37000	74000	19000
	Blackberry, Boysenberry, Dewberry, Loganberry, Raspberry	2 lb ai/acre	80 acres	7400	37000	74000	19000
	Gooseberry	2 lb ai/acre	80 acres	7400	37000	74000	19000
/lixing/Loading	Lettuce, head and leaf	1.88 lb ai/acre	80 acres	7800	39000	78000	21000
to Support	Grapes (raisin, table, wine)	1.88 lb ai/acre	80 acres	7800	39000	78000	21000
Groundboom Applications	Chayote Fruit, Cucumber, Summer Squash	1.75 lb ai/acre	80 acres	8400	42000	84000	22000
1 Ippii wii ono	Eggplant, Oriental Eggplant, Pepper, Tomato, Tomatillo	1.56 lb ai/acre	80 acres	9400	47000	94000	25000
	Chayote Root, Garlic, Leeks, Onion, Potatoes, Shallot, Sweet Potatoes, Yams	1.56 lb ai/acre	80 acres	9400	47000	94000	25000
	Watermelon	1.5 lb ai/acre	80 acres	9800	49000	98000	26000
	Celery, Parsley	1.5 lb ai/acre	80 acres	9800	49000	98000	26000
	Barley, Rice, Wild Rice	1.25 lb ai/acre	200 acres	4700	24000	47000	12000
	Grass - Forage and Hay	1.25 lb ai/acre	200 acres	4700	24000	47000	12000

_	Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks Amount Level of Personal Protective Equipment for Inhalation Exposures									
Exposure	Crop	App. Rate ^c (lb ai/A or	Amount Handled Per		nal Protective Equation MO	-	3000			
Scenario	·	lb ai/Gal)	Day ^d (A or Gal)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h			
	Alfalfa, Birdsfoot Trefoil, Clover	1.25 lb ai/acre	200 acres	4700	24000	47000	12000			
	Blueberry (lowbush)	1.25 lb ai/acre	80 acres	12000	59000	120000	31000			
	Lespedeza, Vetch	1.25 lb ai/acre	80 acres	12000	59000	120000	31000			
	Bermuda Grass	1.25 lb ai/acre	80 acres	12000	59000	120000	31000			
	Broccoli, Broccoli Raab, Brussels Sprouts, Cabbage, Cauliflower, Chinese Broccoli, Dandelion	1.25 lb ai/acre	80 acres	12000	59000	120000	31000			
	Endive. Kohlrabi, Chinese Greens, Watercress	1.25 lb ai/acre	80 acres	12000	59000	120000	31000			
	Carrot, Garden Beets, Horseradish, Parsnip, Salsify, Turnip (greens & roots)	1.25 lb ai/acre	80 acres	12000	59000	120000	31000			
	Asparagus	1.25 lb ai/acre	80 acres	12000	59000	120000	31000			
	Blueberry (highbush), Currant	1.25 lb ai/acre	80 acres	12000	59000	120000	31000			
Mixing/Loading	Okra	1.2 lb ai/acre	80 acres	12000	61000	120000	32000			
to Support Groundboom	Oats, Rye, Spring Wheat, Winter Wheat	1 lb ai/acre	200 acres	5900	29000	59000	16000			
Applications	Corn (field), Sorghum	1 lb ai/acre	200 acres	5900	29000	59000	16000			
пррпошнин	Peas - Succulent	1 lb ai/acre	80 acres	15000	74000	150000	39000			
	Corn (pop and sweet)	1 lb ai/acre	80 acres	15000	74000	150000	39000			
	Cantaloupe, Melon, Pumpkin, Winter Squash	1 lb ai/acre	80 acres	15000	74000	150000	39000			
	Collard, Kale, Mustard Green, Swiss Chard	1 lb ai/acre	80 acres	15000	74000	150000	39000			
	Peas - Succulent	1 lb ai/acre	80 acres	15000	74000	150000	39000			
	Radish, Rutabaga	1 lb ai/acre	80 acres	15000	74000	150000	39000			
	Passion Fruit	1 lb ai/acre	80 acres	15000	74000	150000	39000			
	Flowers and Foliage Grown for Cutting	1 lb ai/acre	60 acres	20000	98000	200000	52000			

_	uid Concentrate Formula alathion Occupational H			Term Inhalatio	n Risks		
Exposure	Crop	App. Rate ^c (lb ai/A or	Amount Handled Per		nal Protective Eq nhalation MO		alation Exposures 3000
Scenario		lb ai/Gal)	Day ^d (A or Gal)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h
	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (nursery grown)	1 lb ai/acre	60 acres	20000	98000	200000	52000
	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (field grown)	1 lb ai/acre	40 acres	29000	150000	290000	78000
	Mint	0.94 lb ai/acre	80 acres	16000	78000	160000	41000
Mixing/Loading to Support Groundboom	Hops	0.63 lb ai/acre	80 acres	24000	120000	240000	62000
Applications	Flax	0.5 lb ai/acre	200 acres	12000	59000	120000	31000
	Flowers and Foliage Grown for Cutting Flowers, Shrubs, Flowering	10 lb ai/acre	20 acres	5900	29000	59000	16000
	Plants, Nursery Stock, Woody Plants, Shade Trees (nursery grown)	10 lb ai/acre	20 acres	5900	29000	59000	16000
Mixing/Loading to Support Airblast	Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (field grown)	10 lb ai/acre	10 acres	12000	59000	120000	31000
Applications	CA ONLY: Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	7.5 lb ai/acre	40 acres	3900	20000	39000	10000
	Avocado	4.75 lb ai/acre	40 acres	6200	31000	62000	16000
	Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	4.5 lb ai/acre	40 acres	6500	33000	65000	17000
	Kumquat	4.5 lb ai/acre	40 acres	6500	33000	65000	17000
	Pine Seed Orchards, Christmas Tree Plantations	3.2 lb ai/acre	40 acres	9200	46000	92000	24000

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop Scenario **Day**^d Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controls^h (A or Gal) Nectarine, Peach 3 lb ai/acre 40 acres 9800 49000 98000 26000 Chestnut, Pecans, Walnuts 2.5 lb ai/acre 40 acres 12000 59000 120000 31000 Figs 2 lb ai/acre 40 acres 15000 74000 150000 39000 Grapes (raisin, table, wine) 1.88 lb ai/acre 16000 78000 160000 41000 40 acres Cherry (Sweet and Tart) 17000 1.75 lb ai/acre 40 acres 84000 170000 44000 Apricot 1.5 lb ai/acre 40 acres 20000 98000 200000 52000 Grapefruit, Lemon, Lime, 1.5 lb ai/acre 40 acres 20000 98000 200000 52000 Orange, Tangelo, Tangerine 24000 120000 62000 Pear 1.25 lb ai/acre 40 acres 240000 FL ONLY: Lemon 1.25 lb ai/acre 40 acres 24000 120000 240000 62000 24000 120000 240000 62000 Guava, Papaya 1.25 lb ai/acre 40 acres Mixing/Loading 1.25 lb ai/acre 24000 Blueberry (highbush) 40 acres 120000 240000 62000 to Support Airblast Passion Fruit 1 lb ai/acre 40 acres 29000 150000 290000 78000 **Applications** 0.94 lb ai/acre 31000 83000 Mango 40 acres 160000 310000 31000 160000 83000 Macadamia Nut 0.94 lb ai/acre 40 acres 310000 Hops 0.63 lb ai/acre 40 acres 47000 240000 470000 120000 Mixing/Loading to Support Dip Grape Root 0.019 lb ai/gal 100 gallons 620000 3100000 6200000 1600000 **Applications Applicators** CA ONLY: Grapefruit, Lemon, Lime, Orange, 7.5 lb ai/acre No Data No Data No Data 20000 350 acres Tangelo, Tangerine Avocado 4.75 lb ai/acre 350 acres No Data No Data No Data 32000 Grapefruit, Lemon, Lime, 4.5 lb ai/acre 350 acres No Data No Data No Data 33000 Aerial Applicators Orange, Tangelo, Tangerine Kumquat 4.5 lb ai/acre 350 acres No Data No Data No Data 33000 Pine Seed Orchards, 3.2 lb ai/acre 1200 acres No Data No Data No Data 14000 Christmas Tree Plantations Nectarine, Peach 3 lb ai/acre 350 acres No Data No Data No Data 50000

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop **Day**^d **Scenario** Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controls^h (A or Gal) Cotton 2.5 lb ai/acre 1200 acres No Data No Data No Data 18000 Chestnut, Pecans, Walnuts No Data No Data No Data 60000 2.5 lb ai/acre 350 acres 2 lb ai/acre 350 acres No Data No Data No Data 75000 Strawberry Figs 2 lb ai/acre 350 acres No Data No Data No Data 75000 Spinach 2 lb ai/acre 350 acres No Data No Data No Data 75000 Pineapple 2 lb ai/acre 350 acres No Data No Data No Data 75000 Blackberry, Boysenberry, Dewberry, Loganberry, 2 lb ai/acre 350 acres No Data No Data No Data 75000 Raspberry Gooseberry 2 lb ai/acre 350 acres No Data No Data No Data 75000 Lettuce, head and leaf 1.88 lb ai/acre 350 acres No Data No Data No Data 80000 Grapes (raisin, table, wine) 1.88 lb ai/acre 350 acres No Data No Data No Data 80000 1.75 lb ai/acre 350 acres No Data No Data No Data 86000 Cherry (Sweet and Tart) Chayote Fruit, Cucumber, 1.75 lb ai/acre 350 acres No Data No Data No Data 86000 Summer Squash Eggplant, Oriental Eggplant, 1.56 lb ai/acre 350 acres No Data No Data No Data 96000 Pepper, Tomato, Tomatillo Chayote Root, Garlic, Leeks, Onion, Potatoes, Shallot, 1.56 lb ai/acre 350 acres No Data No Data No Data 96000 Sweet Potatoes, Yams **Aerial Applicators** No Data 100000 Apricot 1.5 lb ai/acre 350 acres No Data No Data Grapefruit, Lemon, Lime, 350 acres No Data No Data No Data 100000 1.5 lb ai/acre Orange, Tangelo, Tangerine Watermelon 350 acres No Data No Data No Data 100000 1.5 lb ai/acre Celery, Parsley 1.5 lb ai/acre 350 acres No Data No Data No Data 100000 Barley, Rice, Wild Rice 1.25 lb ai/acre 1200 acres No Data No Data No Data 35000 Grass - Forage and Hay 1.25 lb ai/acre 1200 acres No Data No Data No Data 35000 Alfalfa, Birdsfoot Trefoil. 1.25 lb ai/acre 1200 acres No Data No Data No Data 35000 Clover 120000 Blueberry, lowbush 1.25 lb ai/acre 350 acres No Data No Data No Data

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop **Day**^d Scenario Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controls^h (A or Gal) Lespedeza, Vetch 1.25 lb ai/acre 350 acres No Data No Data No Data 120000 Bermuda Grass No Data No Data 120000 1.25 lb ai/acre 350 acres No Data Pear 1.25 lb ai/acre 350 acres No Data No Data No Data 120000 FL ONLY: Lemon 1.25 lb ai/acre 350 acres No Data No Data No Data 120000 Guava, Papaya 1.25 lb ai/acre 350 acres No Data No Data No Data 120000 Broccoli, Broccoli Raab, Brussels Sprouts, Cabbage, 1.25 lb ai/acre 350 acres No Data No Data No Data 120000 Cauliflower, Chinese Broccoli, Dandelion Endive. Kohlrabi, Chinese 1.25 lb ai/acre 350 acres No Data No Data No Data 120000 Greens, Watercress Carrot, Garden Beets, Horseradish, Parsnip, Salsify, 1.25 lb ai/acre 350 acres No Data No Data No Data 120000 Turnip (greens & roots) Asparagus 1.25 lb ai/acre 350 acres No Data No Data No Data 120000 Blueberry (highbush), Currant No Data 1.25 lb ai/acre 350 acres No Data No Data 120000 Okra 1.2 lb ai/acre 350 acres No Data No Data No Data 130000 Oats, Rye, Spring Wheat, 1 lb ai/acre 1200 acres No Data No Data No Data 44000 Winter Wheat Aerial Applicators Corn (field), Sorghum 1 lb ai/acre 1200 acres No Data No Data No Data 44000 Peas - Succulent 1 lb ai/acre 350 acres No Data No Data No Data 150000 Corn (pop and sweet) 1 lb ai/acre 350 acres No Data No Data No Data 150000 Cantaloupe, Melon, Pumpkin, No Data 150000 1 lb ai/acre 350 acres No Data No Data Winter Squash Collard, Kale, Mustard Green, 1 lb ai/acre 350 acres No Data No Data No Data 150000 Swiss Chard 150000 Peas - Succulent 1 lb ai/acre 350 acres No Data No Data No Data Radish, Rutabaga 1 lb ai/acre 350 acres No Data No Data No Data 150000 Passion Fruit 1 lb ai/acre 350 acres No Data No Data No Data 150000

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop **Day**^d Scenario Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controls^h (A or Gal) Mint 0.94 lb ai/acre 350 acres No Data No Data No Data 160000 0.94 lb ai/acre 350 acres No Data No Data No Data 160000 Mango Macadamia Nut 0.94 lb ai/acre 350 acres No Data No Data No Data 160000 Hops 0.63 lb ai/acre 350 acres No Data No Data No Data 240000 Flax 0.5 lb ai/acre 1200 acres No Data No Data No Data 88000 Flowers and Foliage Grown 0.25 lb ai/acre 60 acres No Data No Data No Data 3500000 for Cutting Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody 0.25 lb ai/acre 60 acres No Data No Data No Data 3500000 Plants. Shade Trees (nursery grown) Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody No Data Aerial Applicators 0.25 lb ai/acre No Data No Data 5300000 40 acres Plants, Shade Trees (field grown) Cotton 2.5 lb ai/acre 200 acres 1500 7600 15000 12000 2 lb ai/acre 80 acres 4700 24000 47000 38000 Strawberry Spinach 2 lb ai/acre 4700 24000 47000 38000 80 acres Pineapple 2 lb ai/acre 38000 80 acres 4700 24000 47000 Blackberry, Boysenberry, Dewberry, Loganberry, 2 lb ai/acre 80 acres 4700 24000 47000 38000 Raspberry Groundboom Gooseberry 2 lb ai/acre 80 acres 4700 24000 47000 38000 **Applicators** 1.88 lb ai/acre 25000 40000 Lettuce, head and leaf 80 acres 5000 50000 Grapes (raisin, table, wine) 1.88 lb ai/acre 80 acres 5000 25000 50000 40000 Chayote Fruit, Cucumber, 27000 1.75 lb ai/acre 80 acres 5400 54000 43000 Summer Squash Eggplant, Oriental Eggplant, 30000 1.56 lb ai/acre 80 acres 6100 61000 48000 Pepper, Tomato, Tomatillo Chayote Root, Garlic, Leeks, Onion, Potatoes, Shallot, 1.56 lb ai/acre 80 acres 6100 30000 61000 48000 Sweet Potatoes, Yams

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ **Exposure** Handled Per (lb ai/A or Crop **Day**^d **Scenario** Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controls^h (A or Gal) Watermelon 1.5 lb ai/acre 80 acres 6300 32000 63000 50000 1.5 lb ai/acre 80 acres 6300 32000 63000 50000 Celery, Parsley Barley, Rice, Wild Rice 1.25 lb ai/acre 200 acres 3000 15000 30000 24000 Grass - Forage and Hay 1.25 lb ai/acre 200 acres 3000 15000 30000 24000 Alfalfa, Birdsfoot Trefoil, 1.25 lb ai/acre 200 acres 3000 15000 30000 24000 Clover Blueberry (lowbush) 1.25 lb ai/acre 80 acres 7600 38000 76000 60000 Lespedeza, Vetch 1.25 lb ai/acre 80 acres 7600 38000 76000 60000 Bermuda Grass 1.25 lb ai/acre 80 acres 7600 38000 76000 60000 Broccoli, Broccoli Raab, Brussels Sprouts, Cabbage, 1.25 lb ai/acre 80 acres 7600 38000 76000 60000 Cauliflower, Chinese Broccoli, Dandelion Endive. Kohlrabi, Chinese 1.25 lb ai/acre 80 acres 7600 38000 76000 60000 Greens. Watercress Carrot, Garden Beets, Horseradish, Parsnip, Salsify, 1.25 lb ai/acre 80 acres 7600 38000 76000 60000 Turnip (greens & roots) Asparagus 1.25 lb ai/acre 80 acres 7600 38000 76000 60000 Groundboom Blueberry (highbush), Currant 1.25 lb ai/acre 80 acres 7600 38000 76000 60000 **Applicators** Okra 1.2 lb ai/acre 80 acres 7900 40000 79000 62000 Oats, Rye, Spring Wheat, 1 lb ai/acre 3800 19000 38000 30000 200 acres Winter Wheat Corn (field), Sorghum 1 lb ai/acre 200 acres 3800 19000 38000 30000 Peas - Succulent 1 lb ai/acre 80 acres 9500 47000 95000 75000 Corn (pop and sweet) 1 lb ai/acre 80 acres 9500 47000 95000 75000 Cantaloupe, Melon, Pumpkin, 1 lb ai/acre 80 acres 9500 47000 95000 75000 Winter Squash

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ **Exposure** Handled Per (lb ai/A or Crop Scenario **Day**^d Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controls^h (A or Gal) Collard, Kale, Mustard Green, 1 lb ai/acre 80 acres 9500 47000 95000 75000 Swiss Chard Peas - Succulent 1 lb ai/acre 80 acres 9500 47000 95000 75000 Radish, Rutabaga 1 lb ai/acre 80 acres 9500 47000 95000 75000 Passion Fruit 1 lb ai/acre 80 acres 9500 47000 95000 75000 Flowers and Foliage Grown 1 lb ai/acre 60 acres 13000 63000 130000 100000 for Cutting Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody 1 lb ai/acre 13000 63000 130000 100000 60 acres Plants. Shade Trees (nursery grown) Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody 19000 95000 190000 150000 1 lb ai/acre 40 acres Plants, Shade Trees Groundboom (field grown) Applicators Mint 0.94 lb ai/acre 80 acres 10000 50000 100000 80000 Hops 0.63 lb ai/acre 80 acres 15000 75000 150000 120000 Flax 0.5 lb ai/acre 200 acres 7600 38000 76000 60000 Flowers and Foliage Grown 10 lb ai/acre 20 acres 270 1400 2700 19000 for Cutting Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody 10 lb ai/acre 20 acres 270 1400 2700 19000 Plants, Shade Trees (nursery grown) Airblast Applicators Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody 10 lb ai/acre 10 acres 550 2700 5500 38000 Plants, Shade Trees (field grown) CA ONLY: Grapefruit, Lemon, Lime, Orange, 7.5 lb ai/acre 180 910 1800 13000 40 acres Tangelo, Tangerine

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ **Exposure** Handled Per (lb ai/A or Crop **Day**^d Scenario Eng. Baseline No-Re PF5-Rf PF10-Rg lb ai/Gal) Controls^h (A or Gal) 4.75 lb ai/acre 290 1400 20000 Avocado 40 acres 2900 Grapefruit, Lemon, Lime, 4.5 lb ai/acre 40 acres 300 1500 3000 21000 Orange, Tangelo, Tangerine Kumquat 4.5 lb ai/acre 40 acres 300 1500 3000 21000 Pine Seed Orchards, 3.2 lb ai/acre 40 acres 430 2100 4300 30000 Christmas Tree Plantations Nectarine, Peach 3 lb ai/acre 460 2300 4600 32000 40 acres Chestnut, Pecans, Walnuts 2.5 lb ai/acre 40 acres 550 2700 5500 38000 680 3400 6800 47000 Figs 2 lb ai/acre 40 acres Grapes (raisin, table, wine) 1.88 lb ai/acre 40 acres 730 3600 7300 50000 1.75 lb ai/acre Cherry (Sweet and Tart) 40 acres 780 3900 7800 54000 Apricot 1.5 lb ai/acre 40 acres 910 4600 9100 63000 Grapefruit, Lemon, Lime, 910 9100 63000 1.5 lb ai/acre 40 acres 4600 Orange, Tangelo, Tangerine Pear 1.25 lb ai/acre 40 acres 1100 5500 11000 76000 1.25 lb ai/acre FL ONLY: Lemon 40 acres 1100 5500 11000 76000 Guava, Papaya 1.25 lb ai/acre 40 acres 1100 5500 11000 76000 Airblast Applicators Blueberries (highbush) 1.25 lb ai/acre 1100 5500 11000 76000 40 acres 95000 Passion Fruit 1 lb ai/acre 40 acres 1400 6800 14000 7300 100000 Mango 0.94 lb ai/acre 40 acres 1500 15000 Macadamia Nut 0.94 lb ai/acre 40 acres 1500 7300 15000 100000 0.63 lb ai/acre 2200 11000 22000 150000 Hops 40 acres **Dip Applicators** Grape Root 0.019 lb ai/gal 100 gallons No Data No Data No Data No Data **Flaggers**

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop **Day**^d Scenario Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controlsh . (A or Gal) CA ONLY: Grapefruit, Lemon, Lime, Orange, 7.5 lb ai/acre 350 acres 280 1400 2800 No Data Tangelo, Tangerine Avocado 4.75 lb ai/acre 350 acres 440 2200 4400 No Data Grapefruit, Lemon, Lime, 4.5 lb ai/acre 350 acres 470 2400 4700 No Data Orange, Tangelo, Tangerine Kumquat 4700 4.5 lb ai/acre 350 acres 470 2400 No Data Flagging to Support Pine Seed Orchards, 3.2 lb ai/acre 350 acres 660 3300 6600 No Data **Aerial Applications** Christmas Tree Plantations Nectarine, Peach 3 lb ai/acre 350 acres 700 3500 7000 No Data Cotton 2.5 lb ai/acre 350 acres 840 4200 8400 No Data Chestnut, Pecans, Walnuts 2.5 lb ai/acre 350 acres 840 4200 8400 No Data Strawberry 2 lb ai/acre 11000 No Data 350 acres 1100 5300 Figs 2 lb ai/acre 350 acres 1100 5300 11000 No Data Spinach 2 lb ai/acre 350 acres 1100 5300 11000 No Data Pineapple 2 lb ai/acre 350 acres 1100 5300 11000 No Data Blackberry, Boysenberry, Dewberry, Loganberry, 2 lb ai/acre 350 acres 1100 5300 11000 No Data Raspberry 2 lb ai/acre No Data Gooseberry 350 acres 1100 5300 11000 Lettuce, head and leaf 1.88 lb ai/acre 350 acres 1100 5600 11000 No Data Grapes (raisin, table, wine) 1.88 lb ai/acre 350 acres 1100 11000 No Data 5600 Cherry (Sweet and Tart) 1.75 lb ai/acre 1200 12000 No Data 350 acres 6000 Flagging to Support Chayote Fruit, Cucumber, Aerial Applications 1.75 lb ai/acre 350 acres 1200 6000 12000 No Data Summer Squash Eggplant, Oriental Eggplant, 1.56 lb ai/acre 1400 6800 No Data 350 acres 14000 Pepper, Tomato, Tomatillo Chayote Root, Garlic, Leeks, Onion, Potatoes, Shallot, 1.56 lb ai/acre 350 acres 1400 6800 14000 No Data Sweet Potatoes, Yams Apricot 1.5 lb ai/acre 350 acres 1400 7000 14000 No Data

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop **Day**^d **Scenario** Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controls^h (A or Gal) Grapefruit, Lemon, Lime, 1.5 lb ai/acre 350 acres 1400 7000 14000 No Data Orange, Tangelo, Tangerine Watermelon 1.5 lb ai/acre 350 acres 1400 7000 14000 No Data Celery, Parsley 1.5 lb ai/acre 350 acres 1400 7000 14000 No Data Blueberry, lowbush 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data Barley, Rice, Wild Rice 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data Grass - Forage and Hay 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data Alfalfa, Birdsfoot Trefoil, 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data Clover Lespedeza, Vetch 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data Bermuda Grass 1.25 lb ai/acre 350 acres 1700 17000 No Data 8400 Pear 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data FL ONLY: Lemon 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data 1.25 lb ai/acre 17000 Guava, Papaya 350 acres 1700 8400 No Data Broccoli, Broccoli Raab, Brussels Sprouts, Cabbage, 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data Cauliflower, Chinese Broccoli, Dandelion Endive. Kohlrabi, Chinese 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data Greens. Watercress Carrot, Garden Beets, Horseradish, Parsnip, Salsify, 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data Flagging to Support Turnip (greens & roots) Aerial Applications 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data Asparagus Blueberry (highbush), Currant 1.25 lb ai/acre 350 acres 1700 8400 17000 No Data Okra 1.2 lb ai/acre 350 acres 1800 8800 18000 No Data Oats, Rye, Spring Wheat, 1 lb ai/acre 350 acres 2100 11000 21000 No Data Winter Wheat Peas - Succulent 1 lb ai/acre 350 acres 2100 11000 21000 No Data Corn (field), Sorghum 1 lb ai/acre 350 acres 2100 11000 21000 No Data Corn (pop and sweet) 1 lb ai/acre 350 acres 2100 11000 21000 No Data

Table I.2: Liquid Concentrate Formulations: Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Exposures** Amount App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Exposure Handled Per (lb ai/A or Crop **Day**^d Scenario Eng. Baseline No-Re PF5-Rf lb ai/Gal) PF10-Rg Controls^h (A or Gal) Cantaloupe, Melon, Pumpkin, 1 lb ai/acre 350 acres 2100 11000 21000 No Data Winter Squash Collard, Kale, Mustard Green, 1 lb ai/acre 350 acres 2100 11000 21000 No Data Swiss Chard 11000 Peas - Succulent 1 lb ai/acre 350 acres 2100 21000 No Data Radish, Rutabaga 1 lb ai/acre 350 acres 2100 11000 21000 No Data Passion Fruit 1 lb ai/acre 11000 350 acres 2100 21000 No Data Mint 0.94 lb ai/acre 350 acres 2200 11000 22000 No Data Mango 0.94 lb ai/acre 350 acres 2200 11000 22000 No Data Macadamia Nut 0.94 lb ai/acre 350 acres 2200 11000 22000 No Data 0.63 lb ai/acre 350 acres 3300 17000 33000 No Data Hops Flax 0.5 lb ai/acre 350 acres 4200 21000 42000 No Data Flowers and Foliage Grown 0.25 lb ai/acre 49000 250000 490000 No Data 60 acres for Cutting Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody 0.25 lb ai/acre 49000 250000 490000 No Data 60 acres Plants, Shade Trees Flagging to Support (nursery grown) Aerial Applications Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody 0.25 lb ai/acre 40 acres 74000 370000 740000 No Data Plants, Shade Trees (field grown) Mixer/Loader/Applicators Pine Seed Orchards, 3.2 lb ai/acre 230 1200 2400 No Data 5 acres Christmas Tree Plantations Mixing/Loading/ Mushroom 1.7 lb ai/acre 0.37 acres 5900 30000 59000 No Data Applying with Flowers and Foliage Grown 0.025 lb Backpack 19000 40 gallons 3700 37000 No Data for Cutting ai/gallon Equipment Flowers, Shrubs, Flowering 0.025 lb 40 gallons 3700 19000 37000 No Data Plants, Nursery Stock, Woody ai/gallon

	uid Concentrate Formul					ks	
Exposure	alathion Occupational I Crop	App. Rate ^c (lb ai/A or	Amount Handled Per	Level of Person	al Protective Ed	quipment for Inha $E^{a} - LOC^{b} = 3$	
Scenario	•	lb ai/Gal)	Day ^d (A or Gal)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h
	Plants, Shade Trees (foliar-directed) Flowers, Shrubs, Flowering Plants, Nursery Stock, Woody Plants, Shade Trees (ground-directed)	0.025 lb ai/gallon	40 gallons	100000	500000	1000000	No Data
Mixing/Loading/ Applying with Dip Equipment Mixing/Loading/	Grape Root	0.019 lb ai/gallon	100 gallons	No Data	No Data	No Data	No Data
Applying with Handheld Fogger Equipment	Mushroom	1.7 lb ai/acre	0.37 acres	No Data	No Data	No Data	No Data
Mixing/Loading/ Applying with Manually-	Pine Seed Orchards, Christmas Tree Plantations	3.2 lb ai/acre	5 acres	540	2700	5400	No Data
Pressurized Handwand Equipment	Mushroom	1.7 lb ai/acre	0.37 acres	14000	68000	140000	No Data
Mixing/Loading/ Applying with Manually-	Flowers and Foliage Grown for Cutting Flowers, Shrubs, Flowering	0.025 lb ai/gallon	40 gallons	8600	43000	86000	No Data
Pressurized Handwand Equipment	Plants, Nursery Stock, Woody Plants, Shade Trees (foliar or ground-directed)	0.025 lb ai/gallon	40 gallons	8600	43000	86000	No Data
	Pine Seed Orchards, Christmas Tree Plantations	3.2 lb ai/acre	5 acres	1900	9300	19000	No Data
Mixing/Loading/ Applying with	Mushroom	1.7 lb ai/acre	0.37 acres	3400	17000	34000	No Data
Mechanically- Pressurized Handgun	Flowers and Foliage Grown for Cutting Flowers, Shrubs, Flowering	0.025 lb ai/acre	1000 gallons	1200	5900	12000	No Data
Equipment	Plants, Nursery Stock, Woody Plants, Shade Trees (foliar or ground-directed)	0.025 lb ai/gallon	1000 gallons	1200	5900	12000	No Data

- a MOE = margin of exposure = Inhalation Point of Departure (mg/kg/day)/ Inhalation Dose (mg/kg/day); where inhalation dose = daily unit exposure (mg/lb ai) x application rate x amount handled per day x 100% inhalation absorption (route-specific PoD) / bodyweight (69 kg average female adult). The inhalation Point of Departure is 3.74 mg/kg/day.
- b LOC = level of concern = 3000.
- c Application rates are the maximum application rates determined from EPA registered labels for malathion.
- d Amount handled per day values are HED estimates of acres treated per day or gallons applied per day based on industry sources and HED estimates.
- e Baseline = no respirator.
- f PF5-R = particulate filtering respirator. These respirators provide respiratory protection of 80% or higher.
- g PF10-R = half-or full-face respirator with a particulate filter (N, P, or R) or powered air purifying respirator (PAPR) equipped with an HE filter. These respirators provide respiratory protection of 90% or higher.
- h Eng. Controls = Closed mixing/loading systems, enclosed cabs, and enclosed cockpits..

-	uid Concentrate Form Ialathion Occupation						sks		
Exposure	_	App. Rate ^c	Amount Handled		of Personal	Protective	Equipment for $E^a - LOC^b = 10$	Dermal Expos	ures
Scenario	Use Site	(lb ai/A or /Gal)	Per Day ^d (A, Sq Ft or Gal)	Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRHh	DL/GL/CRHi	Eng. Controls ^j
			,	Mixer/Loade	rs				
	Agricultural Uncultivated Areas	1 lb ai/acre	350 A	71	420	540	No Data	No Data	1800
Mixing/Loading to Support Aerial	Non-Agricultural Uncultivated Areas/Soils	0.6 lb ai/acre	350 A	120	700	900	No Data	No Data	3100
Applications	Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant Water	0.51 lb ai/acre	350 A	140	820	1100	No Data	No Data	3600
Mixing/Loading to Support	Agricultural Uncultivated Areas	1 lb ai/acre	80 A	310	1800	2400	No Data	No Data	8000
Groundboom Application	Non-Agricultural Uncultivated Areas/Soils	0.6 lb ai/acre	80 A	520	3100	3900	No Data	No Data	13000
Mixing/Loading to Support Truck-Mounted Fogger Applications	Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant Water	0.51 lb ai/acre	200 A	250	1400	1900	No Data	No Data	6300
Mixing/Loading to Support Mechanically Pressurized Handgun Applications	Fence Rows/Hedge Rows	10.45 lb ai/acre	60 A	40	230	300	No Data	No Data	1000

Table I.3: Liq	Fable I.3: Liquid Concentrate Formulations: Non-Agricultural Non-ULV Applications Dermal Risks Summary of Malathion Occupational Handler Short- / Intermediate-Term Dermal Risks											
Summary of N	Ialathion Occupation	al Handler Sl	ort- / Interm									
			Amount	Leve				· Dermal Expos	ures			
Exposure		App. Rate ^c	Handled		Γ	Dermal MO	$E^a - LOC^b = 10$	000				
Scenario	Use Site	(lb ai/A or	Per Day ^d						F			
Scenario		/Gal)	(A, Sq Ft	Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRHh	DL/GL/CRHi	Eng. Controls ^j			
			or Gal)						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
				Loaders								
Loading to Support Power Duster	Stored Grain (barley, corn, oats, rye, wheat) being loaded into storage	0.00062 lb ai/sq ft	6000 sq ft	400	8700	11000	No Data	No Data	150000			
Applications (using WP data)	Stored Grain (barley, corn, oats, rye, wheat)	0.00031 lb ai/sq ft	6000 sq ft	800	17000	23000	No Data	No Data	300000			
,	· • · · · · · · · · · · · · · · · · · ·	•		Applicator	S							
	Agricultural Uncultivated Areas	1 lb ai/acre	350 A	No Data	No Data	No Data	No Data	No Data	7500			
Aerial Applications	Non-Agricultural Uncultivated Areas/Soils Intermittently Flooded	0.6 lb ai/acre	350 A	No Data	No Data	No Data	No Data	No Data	13000			
	Areas, Swamps/ Marshes/ Stagnant Water	0.51 lb ai/acre	350 A	No Data	No Data	No Data	No Data	No Data	15000			
Groundboom	Agricultural Uncultivated Areas	1 lb ai/acre	200 A	350	1700	2200	No Data	No Data	5400			
Applications	Non-Agricultural Uncultivated Areas/Soils	0.6 lb ai/acre	80 A	1500	7100	9100	No Data	No Data	23000			
Truck-Mounted Fogger Applications (airblast data)	Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant Water	0.51 lb ai/acre	200 A	31	34	37	250	380	3700			
Mechanically Pressurized Handgun Applications	Fence Rows/Hedge Rows	10.45 lb ai/acre	60 A	6.8	23	30	No Data	No Data	No Data			
Power Duster	Stored Grain (barley, corn, oats, rye, wheat) being loaded into storage	0.00062 lb ai/sq ft	6000 sq ft	No Data	No Data	No Data	No Data	No Data	No Data			
Applications	Stored Grain (barley, corn, oats, rye, wheat)	0.00031 lb ai/sq ft	6000 sq ft	No Data	No Data	No Data	No Data	No Data	No Data			

	uid Concentrate Form Ialathion Occupation						sks		
Exposure	Use Site	App. Rate ^c (lb ai/A or	Amount Handled Per Day ^d	Level			Equipment for $E^a - LOC^b = 10$	Dermal Expos	sures
Scenario	Use Site	/Gal)	(A, Sq Ft or Gal)	Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRHh	DL/GL/CRHi	Eng. Controls ^j
				Flaggers					
	Agricultural Uncultivated Areas	1 lb ai/acre	350 A	1400	1300	1500	No Data	No Data	No Data
Flagging to Support Aerial	Non-Agricultural Uncultivated Areas/Soils	0.6 lb ai/acre	350 A	2400	2200	2500	No Data	No Data	No Data
Applications	Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant Water	0.51 lb ai/acre	350 A	2800	2600	2900	No Data	No Data	No Data
			Mixer	/Loader/App	licators				
	Cull Piles	299 lb ai/acre	0.5 A	0.63	1.2	2.2	No Data	No Data	No Data
	Household/Domestic Dwellings (perimeter outdoors only)	10.45 lb ai/acre	0.5 A	130	130	260	No Data	No Data	No Data
	Refuse/Solid Waste Containers (outdoors)	10.45 lb ai/acre	0.5 A	18	35	63	No Data	No Data	No Data
Mixing/Loading/	Refuse/Solid Waste Sites (outdoors)	10.45 lb ai/acre	5 A	1.8	3.5	6.3	No Data	No Data	No Data
Applying with Backpack Equipment	Agricultural Uncultivated Areas (broadcast)	1 lb ai/acre	5 A	19	36	66	No Data	No Data	No Data
	Agricultural Uncultivated Areas (ground-directed)	1 lb ai/acre	5 A	130	130	270	No Data	No Data	No Data
	Non-Agricultural Uncultivated Areas/Soils (broadcast)	0.6 lb ai/acre	5 A	31	60	110	No Data	No Data	No Data
	Non-Agricultural Uncultivated Areas/Soils (ground-directed)	0.6 lb ai/acre	5 A	220	220	440	No Data	No Data	No Data

Table I.3: Liquid Concentrate Formulations: Non-Agricultural Non-ULV Applications Dermal Risks **Summary of Malathion Occupational Handler Short-/Intermediate-Term Dermal Risks** Level of Personal Protective Equipment for Dermal Exposures Amount Dermal $MOE^a - LOC^b = 1000$ App. Rate^c Handled **Exposure Use Site** (lb ai/A or Per Dayd Scenario Eng. /Gal) (A, Sq Ft **Baseline**^e SL/GL^f DL/GLg SL/GL/CRHh DL/GL/CRHi Controls^j or Gal) Intermittently Flooded Areas, Swamps/ Marshes/ 0.51 lb ai/acre 5 A 37 71 130 No Data No Data No Data Stagnant Water (broadcast) Mixing/Loading/ Intermittently Flooded Applying with Areas, Swamps/ Marshes/ Backpack 0.51 lb ai/acre 5 A 260 530 No Data No Data 260 No Data Stagnant Water Equipment (ground-directed)\ Grain/Cereal/Flour Bins 0.2 lb ai/gallon 40 G 12 23 41 No Data No Data No Data and Elevators (empty) Cull Piles 299 lb ai/acre 0.5 A 0.37 86 100 No Data No Data No Data Household/Domestic Dwellings (perimeter 10.45 lb ai/acre 0.5 A 11 2500 2900 No Data No Data No Data outdoors only) Refuse/Solid Waste 10.45 lb ai/acre 0.5 A 11 2500 2900 No Data No Data No Data Mixing/Loading/ Containers (outdoors) Applying with Refuse/Solid Waste Sites Manually-10.45 lb ai/acre 5 A 1.1 250 290 No Data No Data No Data (outdoors) Pressurized Handwand Agricultural Uncultivated 1 lb ai/acre 5 A 11 2600 3000 No Data No Data No Data Equipment Areas Non-Agricultural 0.6 lb ai/acre 5 A 18 4300 5000 No Data No Data No Data Uncultivated Areas/Soils Intermittently Flooded Areas, Swamps/ Marshes/ 0.51 lb ai/acre 5 A 22 5000 5900 No Data No Data No Data Stagnant Water

Summary of Malathion Occupational Handler Short-/Intermediate-Term Dermal Risks Level of Personal Protective Equipment for Dermal Exposures Amount Dermal $MOE^a - LOC^b = 1000$ App. Rate^c Handled **Exposure Use Site** (lb ai/A or Per Davd Scenario Eng. /Gal) (A, Sq Ft **Baseline**^e SL/GL^f DL/GLg SL/GL/CRHh DL/GL/CRHi Controls^j or Gal) Grain/Cereal/Flour Bins 0.2 lb ai/gallon 40 G 6.9 1600 1900 No Data No Data No Data and Elevators (empty) Cull Piles 299 lb ai/acre 0.5 A 6.1 18 27 No Data No Data No Data Mixing/Loading/ Applying with Household/Domestic Mechanically-Dwellings (perimeter 10.45 lb ai/acre 0.5 A 170 520 780 No Data No Data No Data Pressurized outdoors only) Handgun Refuse/Solid Waste 10.45 lb ai/acre 0.5 A170 520 780 No Data No Data No Data Equipment Containers (outdoors) (broadcast or Refuse/Solid Waste Sites ground-directed) 10.45 lb ai/acre 5 A 17 52 78 No Data No Data No Data (outdoors) Agricultural Uncultivated 1 lb ai/acre 40 A 23 67 100 No Data No Data No Data Mixing/Loading/ Areas Applying with Non-Agricultural Mechanically-0.6 lb ai/acre 40 A 38 110 170 No Data No Data No Data Uncultivated Areas/Soils Pressurized Intermittently Flooded Handgun 45 Areas, Swamps/ Marshes/ 0.51 lb ai/acre 40 A 130 200 No Data No Data No Data Equipment Stagnant Water (broadcast or ground-directed) Grain/Cereal/Flour Bins 13 20 No Data 0.2 lb ai/gallon 1000 G 4.6 No Data No Data and Elevators (empty)

Table I.3: Liquid Concentrate Formulations: Non-Agricultural Non-ULV Applications Dermal Risks

a MOE = margin of exposure = Dermal Point of Departure (80 mg/kg/day) / Dermal Dose (mg/kg/day); where dermal dose = daily unit exposure (mg/lb ai) x application rate x amount handled per day x 100% dermal absorption (route-specific PoD) / bodyweight (69 kg average female adult).

b LOC = level of concern = 1000.

c Application rates are the maximum application rates determined from EPA registered labels for malathion.

d Amount handled per day values are HED estimates of acres treated per day or gallons applied per day based on industry sources and HED estimates.

e Baseline = long-sleeve shirt, long pants, shoes, socks, and no gloves.

f SL/GL = long-sleeve shirt, long pants, shoes, socks, and chemical-resistant gloves.

g DL/GL = coveralls worn over long-sleeve shirt, long pants, chemical-resistant footwear, socks, and chemical-resistant gloves.

- h
- SL/GL/CRH = long-sleeve shirt, long pants, shoes, socks, chemical-resistant gloves, and chemical-resistant headgear.

 DL/GL/CRH = coveralls worn over long-sleeve shirt, long pants, chemical-resistant footwear, socks, chemical-resistant gloves, and chemical-resistant headgear.
- Eng. Control = Engineering control including closed mixing/loading system, enclosed cab, or enclosed cockpit.

Table I.4: Liquid Concentrate Formulations: Non-Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks										
Exposure Scenario	Use Site	App. Rate ^c (lb ai/A or	Amount Handled Per Day ^d	Level of Personal Protective Equipment for Inha Exposures Inhalation MOE ^a – LOC ^b = 3000						
Sechario		lb ai/Gal)	(A or Gal)	Baseline No-Re	PF5-R ^f	PF10-Rg	Eng. Controls ^h			
			Mixer/Load	ers						
	Agricultural Uncultivated Areas	1 lb ai/acre	350 acres	3400	17000	34000	8900			
Mixing/Loading to Support Aerial	Non-Agricultural Uncultivated Areas/Soils	0.6 lb ai/acre	350 acres	5600	28000	56000	15000			
Applications	Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant Water	0.51 lb ai/acre	350 acres	6600	33000	66000	17000			
Mixing/Loading to Support	Agricultural Uncultivated Areas	1 lb ai/acre	80 acres	15000	74000	150000	39000			
Groundboom Applications	Non-Agricultural Uncultivated Areas/Soils	0.6 lb ai/acre	80 acres	25000	120000	250000	65000			
Mixing/Loading to Support Truck- Mounted Fogger Applications	Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant Water	0.51 lb ai/acre	200 acres	25000	120000	250000	65000			
Mixing/Loading to Support Mechanically Pressurized Handgun Applications	Fence Rows/Hedge Rows	10.45 lb ai/acre	60 acres	1900	9400	19000	5000			
			Loaders							
Loading to Support Power Duster	Stored Grain (barley, corn, oats, rye, wheat) being loaded into storage	0.00062 lb ai/sq ft	6000 sq ft	1600	8100	16000	290000			
Applications (using WP data)	Stored Grain (barley, corn, oats, rye, wheat)	0.00031 lb ai/sq ft	6000 sq ft	3200	16000	32000	580000			

Table I.4: Liquid Concentrate Formulations: Non-Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks									
Exposure Scenario	Use Site	App. Rate ^c (lb ai/A or	Amount Handled Per Day ^d	Level of Personal Protective Equipment for Inhalatic Exposures Inhalation $MOE^a - LOC^b = 3000$					
Scenario		lb ai/Gal)	(A or Gal)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h		
			Applicator	rs		I			
	Agricultural Uncultivated Areas	1 lb ai/acre	350 acres	No Data	No Data	No Data	150000		
Aerial Applicators	Non-Agricultural Uncultivated Areas/Soils	0.6 lb ai/acre	350 acres	No Data	No Data	No Data	250000		
	Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant Water	0.51 lb ai/acre	350 acres	No Data	No Data	No Data	290000		
Groundboom	Agricultural Uncultivated Areas	1 lb ai/acre	200 acres	3800	19000	38000	30000		
Applicators	Non-Agricultural Uncultivated Areas/Soils	0.6 lb ai/acre	80 acres	16000	79000	160000	130000		
Truck-Mounted Fogger Applications (using airblast data)	Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant Water	0.51 lb ai/acre	200 acres	540	2700	5400	37000		
Mechanically Pressurized Handgun Applications	Fence Rows/Hedge Rows	10.45 lb ai/acre	60 acres	47	240	470	No Data		
Power Duster	Stored Grain (barley, corn, oats, rye, wheat) being loaded into storage	0.00062 lb ai/sq ft	6000 sq ft	No Data	No Data	No Data	No Data		
Applications	Stored Grain (barley, corn, oats, rye, wheat)	0.00031 lb ai/sq ft	6000 sq ft	No Data	No Data	No Data	No Data		

-	nid Concentrate Formula alathion Occupational H Use Site	App. Rate ^c (lb ai/A or	0	Term Inhalation Level of Pers	ULV Applications Inhalation Risks Ferm Inhalation Risks Level of Personal Protective Equipment for Inhalation Exposures Inhalation MOE ^a – LOC ^b = 3000				
Scenario		lb ai/Gal)	(A or Gal)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h		
		Flaggers_							
	Agricultural Uncultivated Areas/Soils	1 lb ai/acre	350 acres	2100	11000	21000	No Data		
Flagging to Support Aerial	Non-Agricultural Uncultivated Areas/Soils	0.6 lb ai/acre	350 acres	3500	18000	35000	No Data		
Applications	Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant Water	0.51 lb ai/acre	350 acres	4100	21000	41000	No Data		
		M	ixer/Loader/Ap	plicators					
	Cull Piles	299 lb ai/acre	0.5 acres	25	130	250	No Data		
	Household/Domestic Dwellings (perimeter outdoors only)	10.45 lb ai/acre	0.5 acres	19000	96000	190000	No Data		
	Refuse/Solid Waste Containers (outdoors)	10.45 lb ai/acre	0.5 acres	720	3600	7200	No Data		
Mixing/Loading/	Refuse/Solid Waste Sites (outdoors)	10.45 lb ai/acre	5 acres	72	360	720	No Data		
Applying with Backpack	Agricultural Uncultivated Areas (broadcast app)	1 lb ai/acre	5 acres	750	3700	7500	No Data		
Equipment	Agricultural Uncultivated Areas (ground-directed app)	1 lb ai/acre	5 acres	20000	100000	200000	No Data		
	Non-Agricultural Uncultivated Areas/Soils (broadcast app)	0.6 lb ai/acre	5 acres	1200	6200	12000	No Data		
	Non-Agricultural Uncultivated Areas/Soils (ground-directed app)	0.6 lb ai/acre	5 acres	33000	170000	330000	No Data		

Table I.4: Liquid Concentrate Formulations: Non-Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation** Amount App. Rate^c **Exposures Exposure Handled Per** Use Site (lb ai/A or Inhalation $MOE^a - LOC^b = 3000$ **Day**^d **Scenario** lb ai/Gal) Eng. (A or Gal) PF10-Rg Baseline No-Re PF5-Rf Controls^h Intermittently Flooded Areas. Swamps/ Marshes/ Stagnant 0.51 lb ai/acre 5 acres 1500 7300 15000 No Data Water (broadcast app) Intermittently Flooded Areas. Mixing/Loading/ Swamps/ Marshes/ Stagnant 0.51 lb ai/acre 39000 200000 390000 No Data 5 acres Applying with Water Backpack (ground-directed app) Grain/Cereal/Flour Bins and Equipment 0.2 lb ai/gallon 40 gallons 470 2400 4700 No Data Elevators (empty) Cull Piles 299 lb ai/acre 0.5 acres 57 290 570 No Data Household/Domestic 10.45 lb ai/acre 0.5 acres 1600 8200 16000 No Data Dwellings (perimeter outdoors only) Refuse/Solid Waste 10.45 lb ai/acre 0.5 acres 1600 8200 16000 No Data Containers (outdoors) Mixing/Loading/ Refuse/Solid Waste Sites Applying with 10.45 lb ai/acre 160 1600 5 acres 820 No Data (outdoors) Manually-Agricultural Uncultivated Pressurized 1 lb ai/acre 5 acres 1700 8600 17000 No Data Areas Handwand Non-Agricultural 0.6 lb ai/acre Equipment 5 acres 2900 14000 29000 No Data Uncultivated Areas/Soils Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant 0.51 lb ai/acre 5 acres 3400 17000 34000 No Data Water Grain/Cereal/Flour Bins and 0.2 lb ai/gallon 40 gallons 1100 5400 11000 No Data Elevators (empty) Cull Piles 299 lb ai/acre 0.5 acres 200 990 2000 No Data Mixing/Loading/ Household/Domestic Applying with **Dwellings** 10.45 lb ai/acre 0.5 acres 5700 28000 57000 No Data Mechanically-(perimeter outdoors only) Pressurized Refuse/Solid Waste 10.45 lb ai/acre 0.5 acres 5700 28000 57000 No Data Containers (outdoors)

_	Table I.4: Liquid Concentrate Formulations: Non-Agricultural Non-ULV Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks										
Exposure Scenario App. Ratec (lb ai/A or Dayd Level of Personal Protective Equipment for Inhals Exposures Inhalation MOEa – LOCb = 3000											
Scenario	_	lb ai/Gal)	(A or Gal)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h				
Handgun Equipment	Agricultural Uncultivated Areas (broadcast or ground-directed)	1 lb ai/acre	40 acres	740	3700	7400	No Data				

	alathion Occupational F	Iandler Short App. Rate ^c (lb ai/A or	0	-Term Inhalation Risks Level of Personal Protective Equipment for Inhalation				
Scenario		lb ai/Gal)	(A or Gal)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h	
Mixing/Loading/	Non-Agricultural Uncultivated Areas/Soils (broadcast or ground-directed)	0.6 lb ai/acre	40 acres	1200	6200	12000	No Data	
Applying with Mechanically- Pressurized Handgun	Intermittently Flooded Areas, Swamps/ Marshes/ Stagnant Water (broadcast or ground-directed)	0.51 lb ai/acre	40 acres	1500	7300	15000	No Data	
Equipment	Grain/Cereal/Flour Bins and	0.2 lb ai/gallon	1000 gallons	150	740	1500	No Data	

Table I.4: Liquid Concentrate Formulations: Non-Agricultural Non-ULV Applications Inhalation Risks

Elevators (empty)

a MOE = margin of exposure = Inhalation Point of Departure (mg/kg/day)/ Inhalation Dose (mg/kg/day); where inhalation dose = daily unit exposure (mg/lb ai) x application rate x amount handled per day x 100% inhalation absorption (route-specific PoD) / bodyweight (69 kg average female adult). The inhalation Point of Departure is 3.74 mg/kg/day.

b LOC = level of concern = 3000.

c Application rates are the maximum application rates determined from EPA registered labels for malathion.

d Amount handled per day values are HED estimates of acres treated per day or gallons applied per day based on industry sources and HED estimates.

e Baseline = no respirator.

f PF5-R = particulate filtering respirator. These respirators provide respiratory protection of 80% or higher.

g PF10-R = half-or full-face respirator with a particulate filter (N, P, or R) or powered air purifying respirator (PAPR) equipped with an HE filter. These respirators provide respiratory protection of 90% or higher

h Eng. Controls = closed mixing loading systems, enclosed cab, enclosed cockpit.

Table I.5: Liquid Concentrate Formulations: ULV Non-Agricultural Applications Dermal Risks Summary of Malathion Occupational Handler Short/Intermediate-Term Dermal Risks Level of Personal Protective Equipment for Dermal Exposures Unit App. Acres Dermal $MOE^a - LOC^b = 1000$ **Use Site Exposure** Ratec **Treated** Eng. Per Dav^d Baseline^e SL/GLf DL/GLh SL/GL/CRHg DL/GL/CRHi Source (lb ai/A) Controls **Mixer/Loaders to Support Aerial ULV Applications** 10.6 7500 Not applicable Not applicable Not applicable No Data 8.1 Default No Data Agricultural Fence Rows, Hedge Rows MRID# 466341-05 10.6 7500 Not applicable Not applicable Not applicable No Data No Data 30 Non-Agricultural Default 0.93 7500 Not applicable Not applicable Not applicable No Data No Data 92 Uncultivated Areas/Soils. Non-Agricultural Rightsof-Way/Fence Rows, MRID# 466341-05 0.93 7500 Not applicable Not applicable Not applicable No Data 340 No Data Pasture, Rangeland Wide Area Public Health 15 85 Default 0.23 7500 110 No Data No Data 370 (Mosquitoes, Biting and MRID# 466341-05 7500 Not applicable No Data 0.23 Not applicable No Data No Data 1400 Filth Flies) Default 0.23 7500 15 85 110 No Data No Data 370 Intermittently Flooded Areas MRID# 466341-05 7500 Not applicable Not applicable Not applicable No Data 1400 0.23 No Data Not applicable Default 0.19 7500 Not applicable Not applicable No Data No Data 450 Agricultural Uncultivated Areas 0.19 7500 MRID# 466341-05 Not applicable Not applicable Not applicable No Data No Data 1700 Mixer/Loaders to Support Ground ULV Applications 10.6 Default 200 Not applicable Not applicable Not applicable No Data No Data 300 Agricultural Fence Rows, Hedge Rows MRID# 466341-05 10.6 200 Not applicable Not applicable Not applicable No Data No Data 1100 Non-Agricultural Default 0.93 200 Not applicable Not applicable Not applicable No Data 3400 No Data Uncultivated Areas/Soils, Non-Agricultural Rightsof-Way/Fence Rows. MRID# 466341-05 0.93 200 Not applicable Not applicable Not applicable No Data No Data 13000 Pasture, Rangeland Wide Area Public Health 270 3000 36 210 No Data 930 Default 0.23 No Data (Mosquitoes, Biting and MRID# 466341-05 0.23 3000 Not applicable Not applicable Not applicable No Data No Data 3400 Filth Flies) Default 0.23 3000 36 210 270 No Data 930 Intermittently Flooded Areas MRID# 466341-05 Not applicable Not applicable No Data 3400 0.23 3000 Not applicable No Data Default 0.19 200 Not applicable Not applicable Not applicable No Data No Data 17000 Agricultural Uncultivated Areas 63000 MRID# 466341-05 0.19 200 Not applicable Not applicable Not applicable No Data No Data

Table I.5: Liquid Concentrate Formulations: ULV Non-Agricultural Applications Dermal Risks Summary of Malathion Occupational Handler Short/Intermediate-Term Dermal Risks

Use Site	Unit Exposure	App. Rate ^c	Acres Treated	Level of Personal Protective Equipment for Dermal Exposures Dermal $MOE^a - LOC^b = 1000$							
	Source	(lb ai/A)	Per Day ^d	Baseline ^e	SL/GL ^f	DL/GL ^h	SL/GL/CRHg	DL/GL/CRHi	Eng. Controls ^j		
ULV Aerial Applicators											
Agricultural Fence Rows, Hedge Rows	Default	10.6	7500	No Data	No Data	No Data	No Data	No Data	33		
	MRID# 466341-05	10.6	7500	No Data	No Data	No Data	No Data	No Data	55		
Non-Agricultural Uncultivated Areas/Soils, Non-Agricultural Rights-	Default	0.93	7500	No Data	No Data	No Data	No Data	No Data	380		
of-Way/Fence Rows, Pasture, Rangeland	MRID# 466341-05	0.93	7500	No Data	No Data	No Data	No Data	No Data	630		
Wide Area Public Health	Default	0.23	7500	No Data	No Data	No Data	No Data	No Data	1500		
(Mosquitoes, Biting and Filth Flies)	MRID# 466341-05	0.23	7500	No Data	No Data	No Data	No Data	No Data	2500		
Intermittently Flooded	Default	0.23	7500	No Data	No Data	No Data	No Data	No Data	1500		
Areas	MRID# 466341-05	0.23	7500	No Data	No Data	No Data	No Data	No Data	2500		
Agricultural Uncultivated	Default	0.19	200	No Data	No Data	No Data	No Data	No Data	70000		
Areas	MRID# 466341-05	0.19	200	No Data	No Data	No Data	No Data	No Data	110000		
			UL	V Ground App	plicators						
Agricultural Fence Rows, Hedge Rows Non-Agricultural Uncultivated Areas/Soils,	Airblast Default	10.6	200	1.5	1.6	1.8	12	18	180		
Non-Agricultural Rights- of-Way/Fence Rows, Pasture, Rangeland	Airblast Default	0.93	200	17	19	20	140	210	2000		
Wide Area Public Health (Mosquitoes, Biting and Filth Flies)	Airblast Default	0.23	3000	4.5	5	5.4	37	57	550		
Intermittently Flooded Areas	Airblast Default	0.23	3000	4.5	5	5.4	37	57	550		
Agricultural Uncultivated Areas	Airblast Default	0.19	200	82	91	98	680	1000	10000		

a MOE = margin of exposure = Dermal Point of Departure (80 mg/kg/day) / Dermal Dose (mg/kg/day); where dermal dose = daily unit exposure (mg/lb ai) x application rate (lb ai/A) x acres treated per day (A) x 100% dermal absorption (route-specific PoD) / bodyweight (69 kg average female adult).

- b LOC = level of concern = 1000.
- Application rates are the maximum application rates determined from EPA registered labels for malathion.
- d Acres treated per day values are HED estimates of acres treated per day based on industry sources and HED estimates.
- e Baseline = long-sleeve shirt, long pants, shoes, socks, and no gloves.
- f SL/GL = long-sleeve shirt, long pants, shoes, socks, and chemical-resistant gloves.
- g DL/GL = coveralls worn over long-sleeve shirt, long pants, chemical-resistant footwear, socks, and chemical-resistant gloves.
- h SL/GL/CRH = = long-sleeve shirt, long pants, shoes, socks, chemical-resistant gloves, and chemical-resistant headgear.
- i DL/GL/CRH = coveralls worn over long-sleeve shirt, long pants, chemical-resistant footwear, socks, chemical-resistant gloves, and chemical-resistant headgear.
- j Eng. Control = Engineering control including closed mixing/loading system, enclosed cab, or enclosed cockpit.

Table I.6: Liquid Concentrate Formulations: ULV Non-Agricultural Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks												
Use Site	Unit Exposure	App. Rate ^c (lb ai/A)	Area Treated Per Dav ^d	Level of Personal Protective Equipment for Inhalation Inhalation MOE ^a – LOC ^b = 3000								
	Source		(acres)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h					
Mixer/Loaders to Support Aerial ULV Applications												
Agricultural Fence Rows,	Default	10.6	7500	Not applicable	Not applicable	Not applicable	39					
Hedge Rows	MRID# 466341-05	10.6	7500	No Data	No Data	No Data	390					
Non-Agricultural Uncultivated Areas/Soils, Non-Agricultural Rights-of-	Default	0.93	7500	Not applicable	Not applicable	Not applicable	450					
Way/Fence Rows, Pasture, Rangeland	MRID# 466341-05	0.93	7500	No Data	No Data	No Data	4500					
Wide Area Public Health	Default	0.23	7500	680	3400	6800	1800					
(Mosquitoes, Biting and Filth Flies)	MRID# 466341-05	0.23	7500	No Data	No Data	No Data	18000					
Intonnittouth. Flooded Amore	Default	0.23	7500	680	3400	6800	1800					
Intermittently Flooded Areas	MRID# 466341-05	0.23	7500	No Data	No Data	No Data	18000					
Agricultural Uncultivated	Default	0.19	7500	Not applicable	Not applicable	Not applicable	2200					
Areas	MRID# 466341-05	0.19	7500	No Data	No Data	No Data	22000					
Mixer/Loaders to Support Ground ULV Applications												
Agricultural Fence Rows,	Default	10.6	200	Not applicable	Not applicable	Not applicable	1500					
Hedge Rows	MRID# 466341-05	10.6	200	No Data	No Data	No Data	15000					
Non-Agricultural Uncultivated Areas/Soils, Non-Agricultural Rights-of-	Default	0.93	200	Not applicable	Not applicable	Not applicable	17000					
Way/Fence Rows, Pasture, Rangeland	MRID# 466341-05	0.93	200	No Data	No Data	No Data	170000					
Wide Area Public Health	Default	0.23	3000	1700	8500	17000	4500					
(Mosquitoes, Biting and Filth Flies)	MRID# 466341-05	0.23	3000	No Data	No Data	No Data	45000					
,	Default	0.23	3000	1700	8500	17000	4500					
Intermittently Flooded Areas	MRID# 466341-05	0.23	3000	No Data	No Data	No Data	45000					
	Default	0.19	200	Not applicable	Not applicable	Not applicable	82000					

Table I.6: Liquid Concentrate Formulations: ULV Non-Agricultural Applications Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation Area Treated Unit Exposure** App. Rate^c Inhalation $MOE^a - LOC^b = 3000$ Per Day^d **Use Site** (lb ai/A) Source Eng. (acres) PF5-Rf PF10-Rg Baseline No-Re Controlsh Agricultural Uncultivated MRID# 466341-05 0.19 200 No Data No Data No Data 820000 Areas **ULV Aerial Applicators** Default No Data No Data Agricultural Fence Rows, 10.6 7500 No Data 660 Hedge Rows MRID# 466341-05 10.6 7500 No Data No Data No Data 240 Non-Agricultural 0.93 Default 7500 No Data No Data No Data 7500 Uncultivated Areas/Soils, Non-Agricultural Rights-of-Way/Fence Rows, Pasture, MRID# 466341-05 0.93 7500 No Data No Data No Data 2700 Rangeland 7500 No Data Wide Area Public Health Default 0.23 No Data No Data 31000 (Mosquitoes, Biting and Filth MRID# 466341-05 0.23 7500 No Data No Data No Data 11000 Flies) Default 0.23 7500 No Data No Data No Data 31000 Intermittently Flooded Areas MRID# 466341-05 0.23 7500 No Data No Data No Data 11000 0.19 200 No Data No Data Default No Data 1400000 Agricultural Uncultivated Areas MRID# 466341-05 0.19 200 No Data No Data No Data 500000 **ULV Ground Applicators** Agricultural Fence Rows, Airblast as default 200 26 130 260 1800 10.6 Hedge Rows Non-Agricultural Uncultivated Areas/Soils, Non-Agricultural Rights-of-Airblast as default 0.93 200 290 1500 2900 20000 Way/Fence Rows, Pasture, Rangeland Wide Area Public Health (Mosquitoes, Biting and Filth Airblast as default 0.23 3000 79 400 790 5500 Flies)

79

790

5500

400

3000

0.23

Intermittently Flooded Areas

Airblast as default

Table I.6: Liquid Concentrate Formulations: ULV Non-Agricultural Applications Inhalation Risks								
Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks								
Use Site	Unit Exposure	App. Rate ^c (lb ai/A)	Area Treated Per Dav ^d	Level of Personal Protective Equipment for Inhalation Inhalation $MOE^a - LOC^b = 3000$				
	Source		(acres)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h	

1400

7200

14000

100000

a MOE = margin of exposure = Inhalation Point of Departure (mg/kg/day)/ Inhalation Dose (mg/kg/day); where inhalation dose = daily unit exposure (mg/lb ai) x application rate x amount handled per day x 100% inhalation absorption (route-specific PoD) / bodyweight (69 kg average female adult). The inhalation Point of Departure is 3.74 mg/kg/day.

200

- b LOC = level of concern = 3000.
- c Application rates are the maximum application rates determined from EPA registered labels for malathion.

0.19

- d Area treated per day values are HED estimates of acres treated per day based on industry sources and HED estimates.
- e Baseline = no respirator.

Agricultural Uncultivated

Areas

- f PF5-R = particulate filtering respirator. These respirators provide respiratory protection of 80% or higher.
- g PF10-R = half-or full-face respirator with a particulate filter (N, P, or R) or powered air purifying respirator (PAPR) equipped with an HE filter. These respirators provide respiratory protection of 90% or higher.
- h Eng. Controls = closed loading systems or enclosed cab or enclosed cockpit.

Airblast as default

Table I.7: Liquid Concentrate Formulations: ULV Agricultural Applications Dermal Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Dermal Risks											
C	Unit Exposure Source	App. Acres Dermal MOE ^a – LOC ^b = 1000							sures		
Crop		Rate ^c (lb ai/A)	Treated Per Day ^d	Baselinee	SL/GL ^f	DL/GL ^g		DL/GL/CRHi	Eng. Controls ^j		
Mixer/Loaders to Support Aerial ULV Applications											
Cherry (Sweet and Tart)	Default MRID# 466341-05	1.22 1.22	7500 7500	Not applicable No Data	Not applicable No Data	Not applicable No Data	No Data No Data	No Data No Data	70 260		
Cotton	Default MRID# 466341-05	1.22 1.22	7500 7500	Not applicable No Data	Not applicable No Data	Not applicable No Data	No Data No Data	No Data No Data	70 260		
Pine Seed Orchards, Christmas Tree	Default	0.94	7500	**	Not applicable	Not applicable	No Data	No Data	91		
Plantations Blueberry	MRID# 466341-05 Default	0.94 0.77	7500 7500	No Data Not applicable	No Data Not applicable	No Data Not applicable	No Data No Data	No Data No Data	340 130		
(highbush)	MRID# 466341-05	0.77	7500	No Data	No Data	No Data	No Data	No Data	410		
Blueberry (lowbush)	Default MRID# 466341-05	0.77 0.77	7500 7500	Not applicable No Data	Not applicable No Data	Not applicable No Data	No Data No Data	No Data No Data	110 410		
Alfalfa, Birdsfoot Trefoil, Clover	Default MRID# 466341-05	0.61 0.61	7500 7500	Not applicable No Data	Not applicable No Data	Not applicable No Data	No Data No Data	No Data No Data	140 520		
Barley, Oats, Rice, Rye, Spring Wheat,	Default	0.61	7500	Not applicable	Not applicable	Not applicable	No Data	No Data	140		
Winter Wheat, Wild Rice	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	520		
Beans (dry)	Default	0.61	7500	* *	Not applicable	Not applicable	No Data	No Data	140		
Dana (***********************************	MRID# 466341-05 Default	0.61 0.61	7500 7500	No Data	No Data Not applicable	No Data Not applicable	No Data No Data	No Data No Data	520 140		
Beans (succulent, snap, lima)	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	520		
Corn (field),	Default	0.61	7500		Not applicable	Not applicable	No Data	No Data	140		
Sorghum	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	520		
Corn (pop and	Default	0.61	7500	Not applicable	Not applicable	Not applicable	No Data	No Data	140		
sweet)	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	520		
Lespedeza, Lupine	Default	0.61	7500	Not applicable	Not applicable	Not applicable	No Data	No Data	140		
(seed), Vetch	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	520		
Grapefruit, Lemon,	Default	0.18	7500	Not applicable	Not applicable	Not applicable	No Data	No Data	480		
Lime, Orange, Tangelo, Tangerine	MRID# 466341-05	0.18	7500	No Data	No Data	No Data	No Data	No Data	1800		
Kumquat	Default	0.18	7500	Not applicable	Not applicable	Not applicable	No Data	No Data	480		

Table I.7: Liquid Concentrate Formulations: ULV Agricultural Applications Dermal Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Dermal Risks											
Crop	Unit Exposure	App. Rate ^c	Acres Treated	Level		-	uipment for $-LOC^b = 10$	Dermal Expo 00	sures		
Стор	Source	(lb ai/A)	Per Day ^d	Baselinee	SL/GL ^f	DL/GL ^g	SL/GL/CRHh	DL/GL/CRHi	Eng. Controls ^j		
	MRID# 466341-05	0.18	7500	No Data	No Data	No Data	No Data	No Data	1800		
		Mixer	/Loaders to	Support G	round ULV	Applications					
Cotton	Default	1.22	200	Not applicable	Not applicable	Not applicable	No Data	No Data	2600		
	MRID# 466341-05	1.22	200	No Data	No Data	No Data	No Data	No Data	9700		
Pine Seed Orchards, Christmas Tree	Default	0.94	200	Not applicable	Not applicable	Not applicable	No Data	No Data	3400		
Plantations	MRID# 466341-05	0.94	200	No Data	No Data	No Data	No Data	No Data	13000		
Blueberry	Default	0.77	80	Not applicable	Not applicable	Not applicable	No Data	No Data	10000		
(highbush)	MRID# 466341-05	0.77	80	No Data	No Data	No Data	No Data	No Data	38000		
Dlugharmy (lawbugh)	Default	0.77	80	Not applicable	Not applicable	Not applicable	No Data	No Data	10000		
Blueberry (lowbush)	MRID# 466341-05	0.77	80	No Data	No Data	No Data	No Data	No Data	38000		
Alfalfa, Birdsfoot	Default	0.61	200	Not applicable	Not applicable	Not applicable	No Data	No Data	5300		
Trefoil, Clover	MRID# 466341-05	0.61	200	No Data	No Data	No Data	No Data	No Data	19000		
Barley, Oats, Rice, Rye, Spring Wheat,	Default	0.61	200	Not applicable	Not applicable	Not applicable	No Data	No Data	5300		
Winter Wheat, Wild Rice	MRID# 466341-05	0.61	200	No Data	No Data	No Data	No Data	No Data	19000		
Beans (dry)	Default	0.61	1200		Not applicable	Not applicable	No Data	No Data	5300		
Douils (ally)	MRID# 466341-05	0.61	1200	No Data	No Data	No Data	No Data	No Data	19000		
Beans (succulent,	Default	0.61	80	1.1	Not applicable	Not applicable	No Data	No Data	13000		
snap, lima)	MRID# 466341-05	0.61e	80	No Data	No Data	No Data	No Data	No Data	48000		
Corn (field),	Default	0.61	200		Not applicable	Not applicable	No Data	No Data	5300		
Sorghum	MRID# 466341-05	0.61	200	No Data	No Data	No Data	No Data	No Data	19000		
Corn (pop and	Default	0.61	80	Not applicable	Not applicable	Not applicable	No Data	No Data	13000		
sweet)	MRID# 466341-05	0.61	80	No Data	No Data	No Data	No Data	No Data	48000		
Lespedeza, Lupine	Default	0.61	200	* *	Not applicable	Not applicable	No Data	No Data	5300		
(seed), Vetch	MRID# 466341-05	0.61	200	No Data	No Data	No Data	No Data	No Data	19000		
	Default	0.18	80	Not applicable	Not applicable	Not applicable	No Data	No Data	44000		

Table I.7: Liquid Concentrate Formulations: ULV Agricultural Applications Dermal Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Dermal Risks											
Crop	Unit Exposure	App. Rate ^c	Acres Treated		of Personal I	Protective Eq	uipment for $-LOC^b = 10$	Dermal Expo 00	sures		
Стор	Source	(lb ai/A)	Per Day ^d	Baseline ^e	SL/GL ^f	DL/GL ^g	SL/GL/CRHh	DL/GL/CRHi	Eng. Controls ^j		
Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	MRID# 466341-05	0.18	80	No Data	No Data	No Data	No Data	No Data	160000		
Kumquat	Default	0.18	80	Not applicable	Not applicable	Not applicable	No Data	No Data	44000		
Kumquat	MRID# 466341-05	0.18	80	No Data	No Data	No Data	No Data	No Data	160000		
			UI	LV Aerial A	pplicators						
Cherry (Sweet and	Default	1.22	7500	No Data	No Data	No Data	No Data	No Data	290		
Tart)	MRID# 466341-05	1.22	7500	No Data	No Data	No Data	No Data	No Data	480		
Cotton	Default	1.22	7500	No Data	No Data	No Data	No Data	No Data	290		
Cotton	MRID# 466341-05	1.22	7500	No Data	No Data	No Data	No Data	No Data	480		
Pine Seed Orchards,	Default	0.94	7500	No Data	No Data	No Data	No Data	No Data	380		
Christmas Tree Plantations	MRID# 466341-05	0.94	7500	No Data	No Data	No Data	No Data	No Data	620		
Blueberry	Default	0.77	7500	No Data	No Data	No Data	No Data	No Data	460		
(highbush)	MRID# 466341-05	0.77	7500	No Data	No Data	No Data	No Data	No Data	750		
Blueberry (lowbush)	Default	0.77	7500	No Data	No Data	No Data	No Data	No Data	460		
Didebelly (lowbush)	MRID# 466341-05	0.77	7500	No Data	No Data	No Data	No Data	No Data	750		
Alfalfa, Birdsfoot	Default	0.61	7500	No Data	No Data	No Data	No Data	No Data	580		
Trefoil, Clover	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	950		
Barley, Oats, Rice, Rye, Spring Wheat,	Default	0.61	7500	No Data	No Data	No Data	No Data	No Data	580		
Winter Wheat, Wild Rice	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	950		
Dooma (dury)	Default	0.61	7500	No Data	No Data	No Data	No Data	No Data	580		
Beans (dry)	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	950		
Beans (succulent,	Default	0.61	7500	No Data	No Data	No Data	No Data	No Data	580		
snap, lima)	MRID# 466341-05	0.61e	7500	No Data	No Data	No Data	No Data	No Data	950		
Corn (field),	Default	0.61	7500	No Data	No Data	No Data	No Data	No Data	580		
Sorghum	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	950		
Corn (pop and	Default	0.61	7500	No Data	No Data	No Data	No Data	No Data	580		
sweet)	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	950		

_	Table I.7: Liquid Concentrate Formulations: ULV Agricultural Applications Dermal Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Dermal Risks										
Crop	Crop Unit Exposure Source App. Acres Rate ^c Treated										
•	Source	(lb ai/A)	Per Day ^d	Baselinee	SL/GL ^f	DL/GL ^g	SL/GL/CRHh	DL/GL/CRHi	Eng. Controls ^j		
Lespedeza, Lupine	Default	0.61	7500	No Data	No Data	No Data	No Data	No Data	580		
(seed), Vetch	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	No Data	No Data	950		

Table I.7: Liquid Concentrate Formulations: ULV Agricultural Applications Dermal Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Dermal Risks

Crop	Unit Exposure	App. Rate ^c	Acres Treated	Level of Personal Protective Equipment for Dermal Exposures $Dermal MOE^a - LOC^b = 1000$						
	Source	(lb ai/A)		Baselinee	SL/GL ^f	DL/GL ^g	SL/GL/CRHh	DL/GL/CRHi	Eng. Controls ^j	
Grapefruit, Lemon,	Default	0.18	7500	No Data	No Data	No Data	No Data	No Data	2000	
Lime, Orange, Tangelo, Tangerine	MRID# 466341-05	0.18	7500	No Data	No Data	No Data	No Data	No Data	3200	
Kumquat	Default MRID# 466341-05	0.18 0.18	7500 7500	No Data No Data	No Data No Data	No Data No Data	No Data No Data	No Data No Data	2000 3200	
				V Ground A						
Cotton	Airblast Default	1.22	200	13	14	15	110	160	1600	
Pine Seed Orchards, Christmas Tree Plantations	Airblast Default	0.94	200	17	18	20	140	210	2000	
Blueberry (highbush)	Airblast Default	0.77	80	51	56	61	420	630	6200	
Blueberry (lowbush)	Airblast Default	0.77	80	51	56	61	420	630	6200	
Alfalfa, Birdsfoot Trefoil, Clover	Airblast Default	0.61	200	26	28	31	210	320	3100	
Barley, Oats, Rice, Rye, Spring Wheat, Winter Wheat, Wild Rice	Airblast Default	0.61	200	26	28	31	210	320	3100	
Beans (dry)	Airblast Default	0.61	200	26	28	31	210	320	3100	
Beans (succulent, snap, lima)	Airblast Default	0.61	80	64	71	76	530	800	7800	
Corn (field), Sorghum	Airblast Default	0.61	200	26	28	31	210	320	3100	
Corn (pop and sweet)	Airblast Default	0.61	80	64	71	76	530	800	7800	
Lespedeza, Lupine (seed), Vetch	Airblast Default	0.61	200	26	28	31	210	320	3100	
Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	Airblast Default	0.18	80	220	240	260	1800	2700	26000	
Kumquat	Airblast Default	0.18	80	220	240	260	1800	2700	26000	

a MOE = margin of exposure = Dermal Point of Departure (80 mg/kg/day) / Dermal Dose (mg/kg/day); where dermal dose = daily unit exposure (mg/lb ai) x application rate (lb ai/A) x acres treated per day (A) x 100% dermal absorption (route-specific PoD) / bodyweight (69 kg average female adult).

- b LOC = level of concern = 1000.
- c Application rates are the maximum application rates determined from EPA registered labels for malathion.
- d Acres treated per day values are HED estimates of acres treated per day based on industry sources and HED estimates.
- e Baseline = long-sleeve shirt, long pants, shoes, socks, and no gloves.
- f SL/GL = long-sleeve shirt, long pants, shoes, socks, and chemical-resistant gloves.
- g DL/GL = coveralls worn over long-sleeve shirt and long pants, chemical-resistant footwear, socks, and chemical-resistant gloves.
- h SL/GL/CRH = long-sleeve shirt, long pants, shoes, socks, chemical-resistant gloves, and chemical-resistant headgear.
- i DL/GL/CRH = coveralls worn over long-sleeve shirt and long pants, chemical-resistant footwear, socks, chemical-resistant gloves, and chemical-resistant headgear.
- i Eng. Control = Engineering control including closed mixing/loading system, enclosed cab, or enclosed cockpit.

Table I.8: Liquid Con Summary of Malathio			0		n Risks								
Сгор	Unit Exposure Source	App. Rate ^c (lb ai/A)	Acres Treated Per Day ^d	Level of Personal Protective Equipment for Inhalation Exposures Inhalation $MOE^a - LOC^b = 3000$									
	Source	(10 4111)	(acres)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h						
Mixer/Loaders to Support Aerial ULV Applications													
Cherry (Sweet and Tart)	Default	1.22	7500	Not applicable	Not applicable	Not applicable	340						
Cherry (Sweet and Tart)	MRID# 466341-05	1.22	7500	No Data	No Data	No Data	3400						
Cotton	Default	1.22	7500	Not applicable	Not applicable	Not applicable	340						
Cotton	MRID# 466341-05	1.22	7500	No Data	No Data	No Data	3400						
Pine Seed Orchards,	Default	0.94	7500	Not applicable	Not applicable	Not applicable	440						
Christmas Tree Plantations	MRID# 466341-05	0.94	7500	No Data	No Data	No Data	4400						
Bermuda Grass	Default	0.92	7500	Not applicable	Not applicable	Not applicable	450						
Berniuda Grass	MRID# 466341-05	0.92	7500	No Data	No Data	No Data	4500						
Blueberry (highbush)	Default	0.77	7500	Not applicable	Not applicable	Not applicable	4300						
Blueberry (nighbush)	MRID# 466341-05	0.77	7500	No Data	No Data	No Data	5400						
DI 1 (1 1 1)	Default	0.77	7500	Not applicable	Not applicable	Not applicable	540						
Blueberry (lowbush)	MRID# 466341-05	0.77	7500	No Data	No Data	No Data	5400						
Alfalfa, Birdsfoot Trefoil,	Default	0.61	7500	Not applicable	Not applicable	Not applicable	680						
Clover	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	6800						
Barley, Oats, Rice, Rye,	Default	0.61	7500	Not applicable	Not applicable	Not applicable	680						
Spring Wheat, Winter Wheat, Wild Rice	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	6800						
Dana (dm)	Default	0.61	7500	Not applicable	Not applicable	Not applicable	680						
Beans (dry)	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	6800						
Danie (manulant man lima)	Default	0.61	7500	Not applicable	Not applicable	Not applicable	680						
Beans (succulent, snap, lima)	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	6800						
G (C.1) C. 1	Default	0.61	7500	Not applicable	Not applicable	Not applicable	680						
Corn (field), Sorghum	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	6800						
C (Default	0.61	7500	Not applicable	Not applicable	Not applicable	680						
Corn (pop and sweet)	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	6800						
Lespedeza, Lupine (seed),	Default	0.61	7500	Not applicable	Not applicable	Not applicable	680						
Vetch	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	6800						
	Default	0.18	7500	Not applicable	Not applicable	Not applicable	2300						

Table I.8: Liquid Concentrate Formulations: ULV Agricultural Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks											
Crop	Unit Exposure Source	App. Rate ^c (lb ai/A)	Acres Treated Per Day ^d	Inhalation $MOE^a - LOC^b = 3000$							
			(acres)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h				
Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	MRID# 466341-05	0.18	7500	No Data	No Data	No Data	23000				
Kumquat	Default	0.18	7500	Not applicable	Not applicable	Not applicable	2300				
	MRID# 466341-05	0.18	7500	No Data	No Data	No Data	23000				
	M	ixer/Loaders	to Support Gro	und ULV Appli	cations						
Cotton	Default	1.22	200	Not applicable	Not applicable	Not applicable	13000				
Cotton	MRID# 466341-05	1.22	200	No Data	No Data	No Data	130000				
Pine Seed Orchards,	Default	0.94	200	Not applicable	Not applicable	Not applicable	17000				
Christmas Tree Plantations	MRID# 466341-05	0.94	200	No Data	No Data	No Data	170000				
Bermuda Grass Blueberry (highbush)	Default	0.92	80	Not applicable	Not applicable	Not applicable	42000				
	MRID# 466341-05	0.92	80	No Data	No Data	No Data	420000				
	Default	0.77	80	Not applicable	Not applicable	Not applicable	50000				
	MRID# 466341-05	0.77	80	No Data	No Data	No Data	500000				
Dhahama (laabaah)	Default	0.77	80	Not applicable	Not applicable	Not applicable	50000				
Blueberry (lowbush)	MRID# 466341-05	0.77	80	No Data	No Data	No Data	500000				
Alfalfa, Birdsfoot Trefoil,	Default	0.61	200	Not applicable	Not applicable	Not applicable	26000				
Clover	MRID# 466341-05	0.61	200	No Data	No Data	No Data	260000				
Barley, Oats, Rice, Rye,	Default	0.61	200	Not applicable	Not applicable	Not applicable	26000				
Spring Wheat, Winter Wheat, Wild Rice	MRID# 466341-05	0.61	200	No Data	No Data	No Data	260000				
Beans (dry)	Default	0.61	200	Not applicable	Not applicable	Not applicable	26000				
Bealis (dry)	MRID# 466341-05	0.61	200	No Data	No Data	No Data	260000				
Doong (quantiant ann lime)	Default	0.61	80	Not applicable	Not applicable	Not applicable	64000				
Beans (succulent, snap, lima)	MRID# 466341-05	0.61	80	No Data	No Data	No Data	640000				
Com (Cold) Comb.	Default	0.61	200	Not applicable	Not applicable	Not applicable	26000				
Corn (field), Sorghum	MRID# 466341-05	0.61	200	No Data	No Data	No Data	260000				
Corn (pop and sweet)	Default	0.61	80	Not applicable	Not applicable	Not applicable	64000				

Table I.8: Liquid Concentrate Formulations: ULV Agricultural Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks **Level of Personal Protective Equipment for Inhalation** Acres **Exposures Unit Exposure** App. Rate^c **Treated Per Crop** Inhalation $MOE^a - LOC^b = 3000$ **Day**^d (lb ai/A) Source Eng. (acres) Baseline No-Re PF5-Rf PF10-Rg Controls^h 80 MRID# 466341-05 0.61 640000 No Data No Data No Data Default 0.61 200 Not applicable Not applicable Not applicable 26000 Lespedeza, Lupine (seed), Vetch MRID# 466341-05 0.61 200 No Data No Data No Data 260000 80 210000 Default 0.18 Not applicable Not applicable Not applicable Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine MRID# 466341-05 0.18 80 No Data No Data No Data 2100000 80 Default 0.18 Not applicable Not applicable Not applicable 210000 Kumquat MRID# 466341-05 80 No Data No Data 2100000 0.18 No Data **ULV Aerial Applicators** Default 1.22 7500 No Data No Data No Data 5800 Cherry (Sweet and Tart) MRID# 466341-05 1.22 7500 No Data No Data No Data 2100 Default 1.22 7500 No Data No Data No Data 5800 Cotton MRID# 466341-05 1.22 7500 No Data No Data No Data 2100 Default 0.94 7500 No Data No Data No Data 7500 Pine Seed Orchards. Christmas Tree Plantations MRID# 466341-05 0.94 7500 No Data No Data No Data 2700 0.92 7500 No Data No Data No Data 7600 Default Bermuda Grass MRID# 466341-05 0.92 7500 No Data No Data No Data 2800 Default 0.77 7500 No Data No Data No Data 9100 Blueberry (highbush) MRID# 466341-05 0.77 7500 No Data No Data No Data 3300 0.77 7500 No Data 9100 Default No Data No Data Blueberry (lowbush) MRID# 466341-05 0.77 7500 No Data No Data No Data 3300 Default 0.61 7500 No Data No Data No Data 12000 Alfalfa, Birdsfoot Trefoil, Clover MRID# 466341-05 0.61 7500 No Data No Data No Data 4200 Default 0.61 7500 No Data No Data No Data 12000 Barley, Oats, Rice, Rye, Spring Wheat, Winter Wheat. MRID# 466341-05 0.61 7500 No Data No Data No Data 4200 Wild Rice Default 0.61 7500 No Data No Data No Data 12000 Beans (dry) 7500 MRID# 466341-05 0.61 No Data No Data No Data 4200

Table I.8: Liquid Concentrate Formulations: ULV Agricultural Inhalation Risks Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Risks

Crop	Unit Exposure Source	App. Rate ^c (lb ai/A)	Acres Treated Per Day ^d	Level of Personal Protective Equipment for Inha Exposures $Inhalation\ MOE^a-LOC^b=3000$				
	Source	(10 41/11)	(acres)	Baseline No-Re	PF5-R ^f	PF10-Rg	Eng. Controls ^h	
Beans (succulent, snap, lima)	Default	0.61	7500	No Data	No Data	No Data	12000	
Beans (succurent, snap, mna)	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	4200	
Corn (field), Sorghum	Default	0.61	7500	No Data	No Data	No Data	12000	
Com (new), Borgham	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	4200	
Corn (pop and sweet)	Default	0.61	7500	No Data	No Data	No Data	12000	
Com (pop and sweet)	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	4200	
Lespedeza, Lupine (seed),	Default	0.61	7500	No Data	No Data	No Data	12000	
Vetch	MRID# 466341-05	0.61	7500	No Data	No Data	No Data	4200	
Grapefruit, Lemon, Lime,	Default	0.18	7500	No Data	No Data	No Data	39000	
Orange, Tangelo, Tangerine	MRID# 466341-05	0.18	7500	No Data	No Data	No Data	14000	
Kumquat	Default	0.18	7500	No Data	No Data	No Data	39000	
Kumquat	MRID# 466341-05	0.18	7500	No Data	No Data	No Data	14000	
		U	LV Ground Ap	plicators				
Cotton	Airblast as default	1.22	200	220	1100	2200	16000	
Pine Seed Orchards, Christmas Tree Plantations	Airblast as default	0.94	200	290	1500	2900	20000	
Bermuda Grass	Airblast as default	0.92	80	740	3700	7400	52000	
Blueberry (highbush)	Airblast as default	0.77	80	890	4400	8900	62000	
Blueberry (lowbush)	Airblast as default	0.77	80	890	4400	8900	62000	
Alfalfa, Birdsfoot Trefoil, Clover	Airblast as default	0.61	200	450	2200	4500	31000	
Barley, Oats, Rice, Rye, Spring Wheat, Winter Wheat, Wild Rice	Airblast as default	0.61	200	450	2200	4500	31000	
Beans (dry)	Airblast as default	0.61	200	450	2200	4500	31000	
Beans (succulent, snap, lima)	Airblast as default	0.61	80	1100	5600	11000	78000	
Corn (field), Sorghum	Airblast as default	0.61	200	450	2200	4500	31000	
Corn (pop and sweet)	Airblast as default	0.61	80	1100	5600	11000	78000	
Lespedeza, Lupine (seed), Vetch	Airblast as default	0.61	200	450	2200	4500	31000	

Table 1.8: Liquid Concentrate Formulations: ULV Agricultural Inhalation Risks	
Summary of Malathion Occupational Handler Short / Intermediate-Term Inhalation Ris	ks

Crop	Unit Exposure Source	App. Rate ^c (lb ai/A)	Acres Treated Per Dav ^d	Inhalation $MOE^a - LOC^b = 3000$				
	~ 00100	(== ====)	(acres)	Baseline No-Re	PF5-R ^f	PF10-R ^g	Eng. Controls ^h	
Grapefruit, Lemon, Lime, Orange, Tangelo, Tangerine	Airblast as default	0.18	80	3800	19000	38000	260000	
Kumquat	Airblast as default	0.18	80	3800	19000	38000	260000	

- a MOE = margin of exposure = Inhalation Point of Departure (mg/kg/day)/ Inhalation Dose (mg/kg/day); where inhalation dose = daily unit exposure (mg/lb ai) x application rate x amount handled per day x 100% inhalation absorption (route-specific PoD) / bodyweight (69 kg average female adult). The inhalation Point of Departure is 3.74 mg/kg/day.
- b LOC = level of concern = 3000.
- c Application rates are the maximum application rates determined from EPA registered labels for malathion.
- d Acres treated per day values are HED estimates of acres treated per day based on industry sources and HED estimates.
- e Baseline = no respirator.
- PF5-R = particulate filtering respirator. These respirators provide respiratory protection of 80% or higher.
- g PF10-R = half-or full-face respirator with a particulate filter (N, P, or R) or powered air purifying respirator (PAPR) equipped with an HE filter. These respirators provide respiratory protection of 90% or higher.
- h Eng. Controls = Closed mixing/loading systems, enclosed cabs, and enclosed cockpits.

Appendix J: S Malaoxon	Summary of Occupational Post-	application Risk Assessme	ent for Malathion-

Table J.1. Su DFR Data + C			n Risk As	sessment for	Malathion-Malaoxon Using	MRID 451	382-01 Blackb	erry
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd
				70	Hand Weeding; Canopy Management	6500	0	6500
		MDID		210	Scouting	2200	0	2200
BERRY: LOW	Strawberry	MRID 451382-01	2	230	Transplanting	2000	0	2000
		431362-01		1100	Hand Harvesting	420	3	1400
				NA	Irrigation (non-hand set); Mechanical Weeding	NA	NA	NA
				70	Hand Weeding	10000	0	10000
				230	Transplanting	3200	0	3200
	Blueberry	MRID		1100	Hand Harvesting; Scouting	660	2	1500
BERRY: LOW (lowbush)			1.25	1900	Irrigation (hand set)	380	3	1300
	(10 110 4011)			NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Harvesting	NA	NA	NA
				70	Hand Weeding	1700	0	1700
				230	Transplanting	5200	0	5200
				1100	Hand Harvesting; Scouting	1100	0	1100
				1900	Irrigation (hand set)	620	2	1400
				NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Harvesting	NA	NA	NA
BERRY: LOW	Blueberry	MRID	0.77	1400	Hand Harvesting	160	4	1200
BLIGHT, LOW	(lowbush)	451382-01	ULV	3600	Thinning Fruit	61	6	1300
				Use Alternate TC Method	Hand Pruning (minimal foliage)	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding; Fertilizing; Spreading Bins	NA	NA	NA

Table J.1. Summary of Post-application Risk Assessment for Malathion-Malaoxon Using MRID 451382-01 Blackberry DFR Data + Oxon Estimates											
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd			
MECETADIE				70	Hand Weeding	6500	0	6500			
VEGETABLE: STALK &	Dingonnla	MRID	2	210	Scouting	2200	0	2200			
STALK & STEM	Pineapple	451382-01	2	1100	Hand Harvesting	420	4	1400			
JI LIVI				NA	Irrigation (non-hand set)	NA	NA	NA			
				230	Transplanting	2000	0	2000			
	Blackberry,			640	Scouting; Hand Pruning; Hand Weeding; Tying/Training (minimal foliage)	710	1	1100			
VINE/ TRELLIS	Raspberry, Boysenberry,	MRID	2	1400	Hand Harvesting; Tying/Training (full foliage)	330	3	1100			
INELLIS	Dewberry, Gooseberry,	451382-01		1900	Irrigation (hand set)	240	4	1200			
	Loganberry			NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding; Burndown; Crop Control	NA	NA	NA			

- a. <u>DFR Source</u>: ARETF Malathion DFR studies were used to calculate DFR residues for malathion. Malaoxon residues were not measured in the studies, but were estimated to be 5% of the parent. Regressions were run to provide predicted malathion-malaoxon residues after treatment. Additionally, a 22x toxicity adjustment factor was applied to the estimated malaoxon residue to account for the additional toxicity of the oxon. Regression was run based on: Estimated DFR of Malathion-Malaoxon = malathion DFR + 22 X (0.05 malathion DFR)
 - MRID 451382-01 Blackberry Study application rate = 1.9 lb ai/acre
- b. Application rates are the maximum application rates determined from EPA registered labels for malathion.
- c. Transfer Coefficient and Post Application Activities from EPA's Occupational Pesticide Re-entry Exposure Calculator Revised March 2013.
- d. MOE calculated using dermal dose and POD for malathion (80 mg/kg/day). Dermal Dose (mg/kg/day) = DFR (μg/cm²) x 8 hr x transfer coefficient (cm²/hr) / 1000 x body weight (69 kg). MOE = POD (mg/kg/day) / dermal dose (mg/kg/day). Level of Concern (LOC) = 1,000.

Table J.2. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 454919-02 Summer Squash **DFR Data + Oxon Estimates** Transfer App **MOE**^d DAT when Rateb Coeficient^c **Activity**^c MOE^d DFR Sourcea **Crop Group Use Site** MOE>1000 at Day 0 (cm²/hr) lbai/A Container Moving; Pinching; 230 Hand Pruning; Hand Weeding: 970 1 1700 Scouting; Transplanting **CUT** Flowers, MRID Irrigation (hand set) 0.25 1900 120 4 1200 **FLOWERS** Foliage 454919-02 4800 Hand Harvesting 47 6 1500 Irrigation (non-hand set); NA NA NA NA Mechanical Weeding Container Moving; Pinching; Hand Pruning; Hand Weeding: 240 3 230 1400 Scouting; Transplanting **CUT** Flowers, MRID 1900 Irrigation (hand set) 29 7 1800 1 **FLOWERS** 454919-02 Foliage 8 4800 Hand Harvesting 12 1200 Irrigation (non-hand set); NA NA NA NA Mechanical Weeding Container Moving; Pinching; 7 230 Hand Pruning; Hand Weeding: 24 1400 Scouting: Transplanting **CUT** MRID Flowers, Irrigation (hand set) 1900 2.9 10 1000 10 **FLOWERS** 454919-02 Foliage Hand Harvesting 1.2 12 1300 4800 Irrigation (non-hand set); NA NA NA NA Mechanical Weeding **EDIBLE** MRID Mushroom 1.7 400 All Tasks 82 5 1500 **FUNGI** 454919-02 41 6 1300 FIELD & ROW 1100 Scouting Alfalfa, CROPS: LOW Clover, 24 7 1900 Irrigation (hand set) 1400 MRID to MEDIUM Lespedeza, 1.25 Irrigation (non-hand set); 454919-02 (Nongrass Lupine, Mechanical Harvesting; NA NA NA NA Animal Feeds) Vetch Fertilizing

Scouting

1100

5

1500

83

Table J.2. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 454919-02 Summer Squash **DFR Data + Oxon Estimates** Transfer App MOE^{d} DAT when **Activity**^c **MOE**^d **Crop Group Use Site** DFR Sourcea Rateb Coeficient^c MOE>1000 at Day 0 (cm²/hr) lbai/A FIELD & ROW Alfalfa, 1900 Irrigation (hand set) 48 6 1600 CROPS: LOW Clover. MRID 0.61 Irrigation (non-hand set); to MEDIUM Lespedeza, 454919-02 ULV Mechanical Harvesting; NA NA NA NA (Nongrass Lupine, Fertilizing Animal Feeds) Vetch FIELD & ROW 1100 Scouting 41 6 1300 Barley, **CROPS: LOW** MRID Mechanical Harvesting; Rice, Wild 1.25 to MEDIUM 454919-02 Mechanical Swathing; Irrigation NA NA NA NA Rice (Cereal Grains) (non-hand set); Baling 5 1100 83 1500 Scouting FIELD & ROW Barley, MRID 0.61 CROPS: LOW Rice, Wild Mechanical Harvesting: to MEDIUM 454919-02 ULV Rice Mechanical Swathing; Irrigation NA NA NA NA (Cereal Grains) (non-hand set); Baling 70 Hand Weeding 800 1400 1 Oats, Rye, FIELD & ROW 1100 1700 Spring Scouting 51 6 CROPS: LOW MRID Wheat, 1 Mechanical Harvesting; to MEDIUM 454919-02 Winter Mechanical Swathing; Irrigation NA NA NA NA (Cereal Grains) Wheat (non-hand set); Baling 70 Hand Weeding 1300 0 1300 Oats, Rye, FIELD & ROW 1100 83 5 1500 Scouting Spring CROPS: LOW MRID 0.61 Wheat. Mechanical Harvesting; ULV to MEDIUM 454919-02 Winter NA Mechanical Swathing; Irrigation NA NA NA (Cereal Grains) Wheat (non-hand set); Baling 70 320 2 1000 Hand Weeding 210 110 1100 Scouting FIELD & ROW Use Mechanical Harvesting (module **CROPS: LOW** MRID Cotton (non-2.5 Alternate builder operator; picker NA NA NA to MEDIUM boll weevil) 454919-02 operator; raker; tramper) TC Method (Fiber) Irrigation (non-hand set); NA NA NA NA Mechanical Weeding

Table J.2. Su DFR Data + 0			Risk Ass	sessment for	Malathion-Malaoxon Using	MRID 4549	019-02 Summe	er Squasl
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd
				70	Hand Weeding	650	1	1200
FIELD & ROW				210	Scouting	220	3	1300
CROPS: LOW to MEDIUM (Fiber)	Cotton (non-boll weevil)	MRID 454919-02	1.22 ULV	Use Alternate TC Method	Mechanical Harvesting (module builder operator; picker operator; raker; tramper)	NA	NA	NA
(1 1001)				NA	Irrigation (non-hand set); Mechanical Weeding	NA	NA	NA
FIELD & ROW				1100	Scouting	100	4	1000
CROPS: LOW to MEDIUM (Fiber)	Flax	MRID 454919-02	0.5	NA	Mechanical Harvesting	NA	NA	NA
FIELD 6 DOW				1100	Scouting	41	6	1300
FIELD & ROW CROPS: LOW	Grass:	MRID 454919-02 1.25		1900	Irrigation (hand set)	24	7	1400
to MEDIUM (Forage Grass)	Forage and		1.25	NA	Irrigation (non-hand set); Mechanical Harvesting; Fertilizing	NA	NA	NA
FIELD & ROW				70	Hand Weeding	850	1	1500
CROPS: LOW				1100	Scouting	54	5	1000
to MEDIUM	Mint	MRID	0.94	1900	Irrigation (hand set)	31	6	1000
(Herbs & Spices)		454919-02		NA	Irrigation (non-hand set); Mechanical Harvesting; Transplanting	NA	NA	NA
				70	Hand Weeding	800	1	1400
FIELD & ROW				210	Scouting	270	3	1500
CROPS: LOW	Peas	MRID		1100	Hand Harvesting	51	6	1700
to MEDIUM (Legume Vegetable)	(succulent)	454919-02	1	1900	Irrigation (hand set)	29	7	1800
	(succurent)	.51515 02		NA	Irrigation (non-hand set); Mechanical Harvesting; Fertilizing; Mechanical Weeding	NA	NA	NA
				70	Hand Weeding	1300	0	1300

Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOE ^d
FIELD 6 DOW				210	Scouting	440	2	1400
FIELD & ROW CROPS: LOW	Beans (lima,			1100	Hand Harvesting	83	5	1500
to MEDIUM	snap, and	MRID	0.61	1900	Irrigation (hand set)	48	6	1600
(Legume Vegetable)	succulent)	454919-02	ULV	NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding; Fertilizing	NA	NA	NA
FIELD & ROW				1100	Scouting	83	5	1500
CROPS: LOW				1900	Irrigation (hand set)	48	6	1600
to MEDIUM (Pea and Bean - dry shelled, except soybean)	Beans (dry)	MRID 454919-02	0.61 ULV	NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Swathing; Mechanical Weeding; Fertilizing; Mechanical Knifing	NA	NA	NA
				70	Hand Weeding	800	1	1400
EVEL D. A. DOW	Corn (field,			210	Scouting to low height corn	270	3	1500
FIELD & ROW CROPS:	pop, and	MRID	1	1100 Scouting to tall, full foliage 51	6	1700		
TALL	sweet grown for	454919-02	1	1900	Irrigation (hand set)	29	7	800
TALL	processing)			NA	Irrigation (non-hand set); Mechanical Harvesting and Weeding; Topping	NA	NA	NA
				70	Hand Weeding	1300	0	1300
	Corn (field,			210	Scouting to low height corn	440	2	1400
FIELD & ROW	pop, and	MRID	0.61	1100	Scouting to tall, full foliage corn	83	5	1500
CROPS: TALL	sweet grown	454919-02	ULV	1900	Irrigation (hand set)	48	6	1600
CROPS: TALL	for processing)		ULV	NA	Irrigation (non-hand set); Mechanical Harvesting and Weeding; Topping	NA	NA	NA
	Corn (grain,	MRID	1	70	Hand Weeding	800	1	1400
	sweet grown	454919-02	1	210	Scouting to low height corn	270	3	1500

Table J.2. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 454919-02 Summer Squash **DFR Data + Oxon Estimates** Transfer App MOE^{d} DAT when **Crop Group Activity**^c **MOE**^d **Use Site** DFR Source^a Rateb Coeficient^c at Day 0 MOE>1000 (cm²/hr) lbai/A for fresh Scouting to tall, full foliage corn 1100 51 6 1700 market, and 1900 Irrigation (hand set) 29 7 800 corn grown FIELD & ROW Hand Detasselling; Hand 8800 6.4 9 1200 for seed CROPS: Harvesting production) TALL Irrigation (non-hand set); Mechanical Harvesting and NA NA NA NA Weeding; Topping Hand Weeding 70 1300 0 1300 Corn (grain, 210 Scouting to low height corn 440 2 1400 sweet grown Scouting to tall, full foliage corn 83 1100 5 1500 for fresh Irrigation (hand set) 1900 48 6 1600 FIELD & ROW MRID 0.61 market, and Hand Detasselling; Hand CROPS: TALL 454919-02 ULV 8 8800 10 corn grown 1100 Harvesting for seed Irrigation (non-hand set); production) Mechanical Harvesting and NA NA NA NA Weeding; Topping Hand Weeding 70 800 1 1400 3 210 Scouting 270 1500 FIELD & ROW MRID 1 Sorghum Irrigation (non-hand set); CROPS: TALL 454919-02 Mechanical Harvesting; NA NA NA NA Mechanical Weeding 70 Hand Weeding 1300 0 1300 210 Scouting 440 2 1400 FIELD & ROW MRID 0.61 Sorghum Irrigation (non-hand set); CROPS: TALL 454919-02 ULV Mechanical Harvesting; NA NA NA NA Mechanical Weeding Scouting; Thinning 330 110 4 1100 VEGETABLE: Garlic, MRID ROOT & Onion 1.56 1400 Scouting; Hand Weeding 26 7 1500 454919-02 TUBER (bulb)

Irrigation (hand set)

1900

7

1100

19

Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd
				4200	Hand Weeding	8.5	9	1600
				Use Alternate TC Method	Hand Harvesting	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding	NA	NA	NA
				330	Scouting; Thinning	110	4	1100
VEGETABLE:	Leek, Onion	MAID		1400	Scouting; Hand Weeding; Hand Harvesting	26	7	1500
ROOT &	(green),	MRID 454919-02	1.56	1900	Irrigation (hand set)	19	7	1100
TUBER S	Shallot			4200	Hand Weeding	8.5	9	NA NA 1100 1500
				NA	Mechanical Harvesting; Mechanical Weeding	NA	NA	NA
				70	Hand Weeding	510	2	1600
				210	Scouting	170	4	1800
VEGETABLE:		MDID		1900	Irrigation (hand set)	19	7	1100
ROOT & TUBER	Potato	MRID 454919-02	1.56	Use Alternate TC Method	Hand Harvesting	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding	NA	NA	NA
VEGETABLE: ROOT &	Sweet	MRID	2 1.56	70	Hand Weeding	510	2	1600
TUBER	Potato, Yam	454919-02		210	Scouting	170	4	1800

Table J.2. Su DFR Data + 0			Risk Ass	sessment for	Malathion-Malaoxon Using	MRID 4549	019-02 Summe	er Squash
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd
				230	Transplanting	160	4	1600
				1900	Irrigation (hand set)	19	7	1100
				Use Alternate TC Method	Hand Harvesting	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding	NA	NA	NA
				70	Hand Weeding	640	1	1100
				210	Scouting	210	3	1200
				230	Transplanting	190	3	1100
VEGETABLE:	l N	MRID		1900	Irrigation (hand set)	24	7	1400
ROOT & TUBER	Horseradish	454919-02	1.25	Use Alternate TC Method	Hand Harvesting	NA	NA	NA
				NA	Irrigation (non-hand set); Hand Harvesting; Hand Weeding	NA	NA	NA
	Carrot, Chayote			70	Hand Weeding; Thinning Plants (Beet, Turnip)	640	1	1100
A TE CETTA DI E	Root,			210	Scouting	210	3	1200
VEGETABLE: ROOT &	Garden Beet,	MRID	1.25	1100	Hand Harvesting	41	6	1300
TUBER	Parsnip,	454919-02	1.43	1900	Irrigation (hand set)	24	7	1400
Sa Tu	Salsify, Turnip (root)			NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding	NA	NA	NA
	Radish,	MRID	1	70	Hand Weeding; Thinning Plants	800	1	1400
	Rutabaga	454919-02	1	210	Scouting	270	3	1500

Table J.2. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 454919-02 Summer Squash **DFR Data + Oxon Estimates** Transfer App MOE^{d} DAT when Rateb **MOE**^d **Crop Group Activity**^c **Use Site** DFR Source^a Coeficient^c at Day 0 MOE>1000 (cm²/hr) lbai/A Hand Harvesting 1100 51 6 1700 1900 Irrigation (hand set) 29 1800 VEGETABLE: ROOT & Irrigation (non-hand set); **TUBER** Mechanical Weeding: NA NA NA NA Mechanical Harvesting Scouting; Hand Weeding; Hand 90 350 2 1100 Pruning; Thinning Transplanting 140 4 230 1400 Chavote Training; Hand Harvesting; Fruit. **VEGETABLE:** MRID Mechanically-assisted 5 550 58 1100 Cucumber, 1.75 **CUCURBIT** 454919-02 Harvesting Summer 7 Irrigation (hand set) Squash 1900 17 1000 Irrigation (non-hand set); NA NA NA NA Mechanical Weeding Scouting; Hand Weeding: Hand 90 410 2 1300 Pruning; Thinning Fruit Transplanting 1700 230 160 4 Training; Turning; Hand **VEGETABLE:** MRID Watermelon 1.5 Harvesting; Mechanically-**CUCURBIT** 454919-02 550 68 5 1300 assisted Harvesting 1900 Irrigation (hand set) 20 1200 Irrigation (non-hand set); NA NA NA NA Mechanical Weeding Scouting; Hand Weeding: Hand 90 620 1100 1 Cantaloupe, Pruning; Thinning Fruit Melon, VEGETABLE: MRID 240 3 230 Transplanting 1400 Pumpkin, 1 CUCURBIT 454919-02 Training; Turning; Hand and Winter Mechanically-assisted 550 100 4 1000 Squash

Harvesting

Table J.2. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 454919-02 Summer Squash **DFR Data + Oxon Estimates** Transfer App MOE^{d} DAT when MOE^d Rateb Coeficient^c **Crop Group Activity**^c **Use Site** DFR Source^a MOE>1000 at Day 0 (cm²/hr) lbai/A 1900 29 7 1800 Irrigation (hand set) Irrigation (non-hand set); NA NA NA NA Mechanical Weeding Scouting; Hand Weeding: Hand 90 400 2 1300 Pruning; Thinning Fruit Transplanting 230 160 4 1600 Eggplant, VEGETABLE: MRID Tying/Training; Hand Oriental 1.56 550 65 5 1200 454919-02 FRUITING Harvesting Eggplant Irrigation (hand set) 19 1900 1100 Irrigation (non-hand set) NA NA NA NA 70 Hand Weeding; Hand Pruning 510 2 1600 210 4 Scouting 170 1800 230 Transplanting 160 4 1600 Tying/Training; Hand Pepper, VEGETABLE: MRID 1100 33 6 1100 Tomatillo, 1.56 Harvesting **FRUITING** 454919-02 Tomato 1900 Irrigation (hand set) 19 1100 NA Irrigation (non-hand set) NA NA NA Hand Weeding 70 670 1 1200 3 220 210 Scouting 1300 Transplanting 3 200 1200 230 VEGETABLE: MRID Tying/Training; Hand Okra 1.2 1100 42 6 1400 **FRUITING** 454919-02 Harvesting Irrigation (hand set) 7 1900 25 1500 Irrigation (non-hand set); NA NA NA NA Mechanical Weeding 1.25 230 Transplanting 190 3 1100

Table J.2. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 454919-02 Summer Squash **DFR Data + Oxon Estimates** Transfer App MOE^{d} DAT when MOE^{d} Rateb Coeficient^c **Crop Group Activity**^c **Use Site** DFR Source^a at Day 0 MOE>1000 (cm²/hr) lbai/A Scouting (minimal foliage); 330 140 4 1400 Thinning Plants Hand Weeding (minimal 1400 32 6 1100 foliage) VEGETABLE: Broccoli, HEAD & MRID Irrigation (hand set) 1900 7 24 1400 Broccoli STEM 454919-02 Raab Hand Weeding (full foliage); BRASSICA Scouting (full foliage); Hand 8 4200 11 1100 Harvesting Mechanical Weeding; Irrigation (non-hand set); Injection NA NA NA NA Fertilizing 230 Transplanting 190 3 1100 Scouting (minimal foliage); 330 140 4 1400 Thinning Plants Hand Weeding (minimal foliage); Hand and VEGETABLE: Mechanically-assisted 1400 32 6 1100 HEAD & Cabbage, MRID Harvesting; Scouting (full 1.25 STEM Kohlrabi 454919-02 foliage) BRASSICA Irrigation (hand set) 24 7 1400 1900 4200 Hand Weeding (full foliage) 11 8 1100 Irrigation (non-hand set); NA NA NA NA Mechanical Weeding 230 Transplanting 190 3 1100 VEGETABLE: Scouting (minimal foliage); HEAD & MRID 4 330 140 1400 1.25 Cauliflower Thinning Plants STEM 454919-02 Hand Weeding (minimal BRASSICA 1400 32 6 1100

foliage)

Table J.2. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 454919-02 Summer Squash **DFR Data + Oxon Estimates** Transfer App MOE^{d} DAT when Rateb Coeficient^c **Crop Group Activity**^c **MOE**^d **Use Site** DFR Source^a at Day 0 MOE>1000 (cm²/hr) lbai/A 1900 Irrigation (hand set) 24 7 1400 Hand Weeding (full foliage); Scouting (full foliage); Hand 8 1100 4200 11 Harvesting; Tying/Training Irrigation (non-hand set); Injection Fertilizing; Mechanical NA NA NA NA Weeding 230 Transplanting 190 3 1100 330 Scouting (minimal foliage) 140 4 1400 VEGETABLE: Brussels 1900 Irrigation (hand set) 24 7 1400 HEAD & Sprouts, MRID Hand Weeding (full foliage); 1.25 **STEM** Chinese 454919-02 Scouting (full foliage); Hand 4200 11 8 1100 BRASSICA Broccoli Harvesting; Topping Irrigation (non-hand set); NA NA NA NA Mechanical Weeding 70 Hand Weeding; Thinning Plants 400 2 1300 210 4 Scouting 130 1400 230 Transplanting 120 1300 4 VEGETABLE: MRID 2 Spinach Hand Harvesting 1100 25 1500 LEAFY 454919-02 15 8 1900 Irrigation (hand set) 1600 Irrigation (non-hand set); NA NA NA NA Mechanical Weeding Hand Weeding: Thinning Plants 2 70 420 1400 210 4 Scouting 140 1500 Lettuce. 230 Transplanting 130 4 1300 VEGETABLE: MRID head and 1.88 **LEAFY** 454919-02 1100 27 7 1600 Hand Harvesting leaf 1900 8 Irrigation (hand set) 16 1700 Irrigation (non-hand set); NA NA NA NA

Mechanical Weeding

Table J.2. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 454919-02 Summer Squash **DFR Data + Oxon Estimates** Transfer App MOE^{d} DAT when MOE^{d} Rateb Coeficient^c **Crop Group Activity**^c **Use Site** DFR Source^a MOE>1000 at Day 0 (cm²/hr) lbai/A Hand Weeding; Thinning Plants 70 530 2 1700 (parsley) 210 180 3 1000 Scouting 4 VEGETABLE: Celery, MRID 230 Transplanting 160 1700 1.5 **LEAFY** Parsley 454919-02 6 1100 Hand Harvesting 34 1100 1900 Irrigation (hand set) 20 1200 Irrigation (non-hand set); NA NA NA NA Mechanical Weeding 70 Hand Weeding: Thinning Plants 640 1 1100 210 210 3 1200 Scouting Dandelion. 230 Transplanting 190 3 1100 Endive, VEGETABLE: MRID 1.25 6 1300 Turnip 1100 Hand Harvesting 41 **LEAFY** 454919-02 Green. Irrigation (hand set) 7 1900 24 1400 Watercress Irrigation (non-hand set); NA NA NA NA Mechanical Weeding Transplanting 230 190 3 1100 Scouting (minimal foliage); 140 4 1400 330 Thinning Plants VEGETABLE: MRID Chinese Hand Weeding (minimal 1.25 **LEAFY** Greens 454919-02 foliage): Hand Harvesting; 1400 32 6 1100 Scouting (full foliage) 7 1900 Irrigation (hand set) 24 1400

4200

Hand Weeding (full foliage)

8

1100

11

Table J.2. Su DFR Data + 0	•		Risk Ass	essment for	Malathion-Malaoxon Using	MRID 4549	19-02 Summe	er Squash
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm²/hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd
				NA	Irrigation (non-hand set); Mechanical Weeding	NA	NA	NA
				70	Hand Weeding: Thinning Plants	800	1	1400
	Collard,			210	Scouting	270	3	1500
VEGETABLE: LEAFY	Kale, Mustard	MRID	1	230	Transplanting	240	3	1400
LEAF Y	Green,	454919-02		1100	Hand Harvesting	51	6	1700
	Swiss Chard			1900	Irrigation (hand set)	29	7	1800
				NA	Irrigation (non-hand set); Mechanical Weeding	NA	NA	NA
				70	Hand Weeding	640	1	1100
				210	Scouting	210	3	1200
VECETADI E				230	Transplanting	190	3	1100
VEGETABLE: STALK &	Asparagus	MRID 454919-02	1.25	1100	Hand Harvesting	41	6	1300
STEM		.51515 02		1900	Irrigation (hand set)	24	7	1400
				NA	Irrigation (non-hand set); Mechanical Weeding; Fertilizing	NA	NA	NA

- a. <u>DFR Source</u>: ARETF Malathion DFR studies were used to calculate DFR residues for malathion. Malaoxon residues were not measured in the studies, but were estimated to be 5% of the parent. Regressions were run to provide predicted malathion-malaoxon residues after treatment. Additionally, a 22x toxicity adjustment factor was applied to the estimated malaoxon residue to account for the additional toxicity of the oxon. Regression was run based on: Estimated DFR of Malathion-Malaoxon = malathion DFR + 22 X (0.05 malathion DFR)
 - MRID 454919-02 Squash Study application rate 0.95 lb ai/acre
- b. Application rates are the maximum application rates determined from EPA registered labels for malathion.
- c. Transfer Coefficient and Post Application Activities from EPA's Occupational Pesticide Re-entry Exposure Calculator Revised March 2013.
- d. MOE calculated using dermal dose and POD for malathion (80 mg/kg/day). Dermal Dose (mg/kg/day) = DFR (μg/cm²) x 8 hr x transfer coefficient (cm²/hr) / 1000 x body weight (69 kg). MOE = POD (mg/kg/day) / dermal dose (mg/kg/day). Level of Concern (LOC) = 1,000.

Table J.3. Su Data + Oxon	•	stapplication	n Risk A	ssessment fo	or Malathion-Malaoxon Using M	RID 45138	32-02 Apples I	OFR
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd
				100	Orchard Maintenance; Hand Weeding: Propping	2100	0	2100
				230	Transplanting	930	1	1500
				580	Scouting; Hand Pruning (full foliage); Training	370	2	1000
TREE FRUIT: DECIDUOUS	Pear	MRID	1.25	1400	Hand Harvesting	150	4	1200
(Pome Fruits)	Pear	451382-02	1.23	3600	Thinning Fruit	59	6	1300
				Use Alternate TC Method	Hand Pruning (minimal foliage)	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Weeding; Fertilizing	NA	NA	NA
				100	Orchard Maintenance; Hand Weeding	1300	0	1300
				230	Transplanting	270	3	1300
TREE FRUIT:				580	Scouting; Hand Pruning (full foliage);	230	3	1100
DECIDUOUS	Fig	MRID	2	1400	Hand Harvesting; Pollination	95	5	1200
(No Group Name)	_	451382-02		Use Alternate TC Method	Hand Pruning (minimal foliage)	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding	NA	NA	NA
TREE FRUIT: DECIDUOUS (Stone Fruit)	Nectarine,	MRID		100	Orchard Maintenance; Hand Weeding; Propping;	890	1	1500
	Peach	451382-02	3	230	Transplanting	390	2	1100
	1 00011	131302 02		580	Scouting; Hand Pruning (full foliage); Training	150	4	1200

Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd
				1400	Hand Harvesting	63	6	1400
				3600	Thinning Fruit	25	8	1500
				Use Alternate TC Method	Hand Pruning (minimal foliage)	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding; Fertilizing; Spreading Bins	NA	NA	NA
				100	Orchard Maintenance; Hand Weeding; Propping; Bird Control	1500	0	1500
				230	Transplanting	660	1	1100
				580	Scouting; Hand Pruning (full foliage); Training	260	3	1200
				1400	Hand Harvesting	110	5	1400
TREE FRUIT: DECIDUOUS	Cherry (sweet and	MRID	1.75	3600	Thinning Fruit	42	7	1500
(Stone Fruit)	tart)	451382-02	11,0	Use Alternate TC Method	Hand Pruning (minimal foliage)	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding; Fertilizing; Spreading Bins	NA	NA	NA
				100	Orchard Maintenance; Hand Weeding: Propping; Bird Control	2200	0	2200
TREE FRUIT:	Cherry	MRID	1.22	230	Transplanting	950	1	1600
DECIDUOUS (Stone Fruit)	(sweet and tart)	451382-02	ULV	580	Scouting; Hand Pruning (full foliage); Training	380	2	1000
				1400	Hand Harvesting	160	4	1200
				3600	Thinning Fruit	61	6	1300

Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOE
				Use Alternate TC Method	Hand Pruning (minimal foliage)	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding; Fertilizing; Spreading Bins	NA	NA	NA
				100	Orchard Maintenance; Hand Weeding; Propping; Bird Control	1800	0	1800
				230	Transplanting	770	1	1300
TREE FRUIT:				580	Scouting; Hand Pruning (full foliage); Training	310	3	1400
		MRID		1400	Hand Harvesting	130	5	1600
DECIDUOUS	Apricot	451382-02	1.5	3600	Thinning Fruit	49	6	1100
(Stone Fruit)				Use Alternate TC	Hand Pruning (minimal foliage)	NA	NA	NA
				NA	Mechanical Harvesting; Mechanical Weeding; Irrigation (non-hand set); Spreading Bins	NA	NA	NA
	CA ONLY:			100	Orchard Maintenance; Hand Weeding: Baiting; Trapping	350	3	1700
	Grapefruit,			230	Transplanting	150	4	1200
TREE FRUIT: EVERGREEN	Lemon, Lime,	MRID	7.5	580	Scouting; Hand Pruning (full foliage)	61	6	1300
(Citrus Fruit)	Orange,	451382-02	1 1 2	1400	Hand Harvesting	25	8	1500
(Citrus Fruit)	Tangelo, Tangerine			Use Alternate TC Method	Hand Pruning (minimal foliage)	NA	NA	NA

Table J.3. Su Data + Oxon		stapplication	n Risk A	ssessment fo	or Malathion-Malaoxon Using M	IRID 45138	32-02 Apples I	DFR
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd
				NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Pruning	NA	NA	NA
				100	Orchard Maintenance; Hand Weeding: Baiting; Trapping	590	2	1600
	Grapefruit,			230	Transplanting	260	3	1200
	Kumquat,			580	Scouting; Hand Pruning (full foliage)	100	5	1300
TREE FRUIT:	Lemon,	MRID		4.5 Use Alternate TC Method Hand Harvesting 42 Hand Pruning (minimal foliage) NA	42	7	1500	
EVERGREEN (Citrus Fruit)	Lime, Orange, Tangelo, Tangerine	451382-02	4.5		NA	NA	NA	
				NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Pruning	NA	NA	NA
				Orchard Maintenance; Hand Weeding: Baiting; Trapping		1800	0	1800
				230	Transplanting	770	1	1300
	Grapefruit, Lemon,			580	Scouting; Hand Pruning (full foliage)	310	3	1400
TREE FRUIT: EVERGREEN	Lime,	MRID	1.5	1400	Hand Harvesting	130	5	1600
(Citrus Fruit)	Orange, Tangelo, Tangerine	nge, 451382-02 gelo,		Use Alternate TC Method	Hand Pruning (minimal foliage)	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Pruning	NA	NA	NA
TREE FRUIT: EVERGREEN	Grapefruit, Kumquat,		0.18 ULV	100	Orchard Maintenance; Hand Weeding: Baiting; Trapping	15000	0	15000
(Citrus Fruit)	Lemon, Lime,		ULV	230	Transplanting	6400	0	6400

Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOE
	Orange, Tangelo,			580	Scouting; Hand Pruning (full foliage);	2500	0	2500
	Tangerine			1400	Hand Harvesting	1100	0	1100
				Use Alternate TC Method	Hand Pruning (minimal foliage)	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Pruning	NA	NA	NA
				100	Orchard Maintenance; Hand Weeding: Baiting; Trapping	2100	0	2100
				230	Transplanting	930	1	1500
				580	Scouting; Hand Pruning (full foliage)	370	2	1000
ΓREE FRUIT:	Guava; FL	MRID		1400	Hand Harvesting	150	4	1200
EVERGREEN (Citrus Fruit)	ONLY for Lemon	451382-02	1.25	Use Alternate TC Method	Hand Pruning (minimal foliage)	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Pruning	NA	NA	NA
				100	Orchard Maintenance; Hand Weeding	560	2	1600
				230	Transplanting	240	3	1100
TREE FRUIT: EVERGREEN (Tropical Fruit)	Avocado	MRID 451382-02	4.75	580	Scouting; Hand Pruning (full foliage)	97	5	1300
		431362-02		1400	Hand Harvesting	40	7	1400
				Use Alternate	Hand Pruning (minimal foliage)	NA	NA	NA

Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOE
				TC Method				
				NA	Irrigation (non-hand set); Mechanical Weeding	NA	NA	NA
				100	Hand Weeding	630	1	1000
				230	Transplanting	270	3	1300
				580	Scouting	110	5	1400
TREE FRUIT: EVERGREEN (Tropical Fruit)	MRID 451382-02	4.25	1400	Bagging Fruit; Hand Harvesting; Pollination; Dethorning Trees; Hand Pruning	45	7	1600	
				3600	Thinning Fruit	17	8	1100
				NA	Mechanical Harvesting; Mechanical Weeding	NA	NA	NA
				100	Orchard Maintenance; Hand Weeding	2100	0	2100
TREE FRUIT:	D	MRID	1.05	230	100 Weeding 2100		1	1500
EVERGREEN (Tropical Fruit)	Papaya	451382-02	1.25		C. C		2	
(Tropical Fluit)				1400	Hand Harvesting	150	4	1200
				NA	Irrigation (non-hand set)	NA	NA	NA
TREE FRUIT:		MRID		580	Scouting; Hand Pruning	490	2	1400
EVERGREEN	Mango	451382-02	0.94	1400	Hand Harvesting	200	4	1600
(Tropical Fruit)		131302 02		3600	Thinning Fruit	79	5	1000
				100	Hand Weeding: Grading/Tagging	830	1	1400
TREE FRUIT:		MRID		230	Transplanting	360	2	1000
EVERGREEN (Pine trees)	Tree	451382-02	3.2	580	Scouting; Shaping	140	4	NA 1000 1300 1400 1600 1100 NA 2100 1500 1000 1200 NA 1400 1600 1000 1400
	Plantation			1400	Hand Harvesting	59	6	1300
				1900	Irrigation (hand set)	44	7	1600

Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd
				NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Pruning; Fertilizing	NA	NA	NA
				100	Hand Weeding: Grading/Tagging	2800	0	2800
				230	Transplanting	1200	0	1200
TREE FRUIT:	Christmas			580	Scouting; Shaping	490	2	1400
EVERGREEN	Tree	MRID	0.94	1400	Hand Harvesting	200	4	1600
(Pine trees)	Plantation	451382-02	ULV	1900	Irrigation (hand set)	150	4	1200
				NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Pruning; Fertilizing	NA	NA	NA
				100	Orchard Maintenance; Poling; Hand Weeding	1100	0	1100
				190	Mechanical Harvesting (shaking)	560	2	1600
	Chestnut,			230	Transplanting	460	2	1300
TREE NUTS	Pecan,	MRID	2.5	580	Scouting; Hand Pruning (full foliage)	180	4	1400
TREE NOTS	Walnut	451382-02	2.3	Use Alternate TC Method	Hand Pruning (minimum foliage); Mechanical Sweeping; Mechanical Windrowing	NA	NA	NA
				NA	Irrigation (non-hand set); Mechanical Weeding	NA	NA	NA
				100	Orchard Maintenance	2800	0	2800
				190	Mechanical Harvesting (shaking)	1500	0	1500
				230	Transplanting	1200	0	1200
TREE NUTS	Macadamia	MRID	0.94	580	Scouting; Hand Pruning (full foliage)	490	2	1400
TREE NUTS	Nut	451382-02		Use Alternate TC Method	Hand Pruning (minimum foliage); Mechanical Sweeping; Mechanical Windrowing	NA	NA	NA
				NA	Irrigation (non-hand set)	NA	NA	NA
			3.2	100	Hand Weeding	830	1	1400

Table J.3. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 451382-02 Apples DFR Data + Oxon Estimates									
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd	
				230	Transplanting	360	2	100	
				580	Hand Pruning (full foliage); Scouting	140	4	1100	
				1400	Seed Cone Harvesting	59	6	1300	
	n: a 1			1900	Irrigation (hand set)	44	7	1600	
UNASSIGNED : FORESTRY	Pine Seed Orchard	MRID 451382-02		6700	Seedling Harvesting	12	9	1300	
				Use Alternate TC Method	Hand Pruning (minimal foliage	NA	NA	NA	
				NA	Mechanical Harvesting; Mechanical Weeding; Burndown; Fertilizing	NA	NA	NA	
				100	Hand Weeding	2800	0	2800	
				230	Transplanting	1200	0	1200	
				580	Hand Pruning (full foliage); Scouting	490	2	1400	
				1400	Seed Cone Harvesting	200	4	1600	
UNASSIGNED	Pine Seed	MRID	0.94	1900	Irrigation (hand set)	150	4	1200	
: FORESTRY	Orchard	451382-02	ULV	6700	Seedling Harvesting	42	7	1500	
				Use Alternate TC Method	Hand Pruning (minimal foliage	NA	NA	NA	
				NA	Mechanical Harvesting; Mechanical Weeding; Burndown; Fertilizing	NA	NA	NA	

a. <u>DFR Source</u>: ARETF Malathion DFR studies were used to calculate DFR residues for malathion. Malaoxon residues were not measured in the studies, but were estimated to be 5% of the parent. Regressions were run to provide predicted malathion-malaoxon residues after treatment. Additionally, a 22x toxicity adjustment factor was applied to the estimated malaoxon residue to account for the additional toxicity of the oxon. Regression was run based on: Estimated DFR of Malathion-Malaoxon = malathion DFR + 22 X (0.05 malathion DFR)

- MRID 451382-02 Apple Study application rate = 1.25 lb ai/acre
- b. Application rates are the maximum application rates determined from EPA registered labels for malathion.
- c. Transfer Coefficient and Post Application Activities from EPA's Occupational Pesticide Re-entry Exposure Calculator Revised March 2013.
- d. MOE calculated using dermal dose and POD for malathion (80 mg/kg/day). Dermal Dose (mg/kg/day) = DFR (μg/cm²) x 8 hr x transfer coefficient (cm²/hr) / 1000 x body weight (69 kg). MOE = POD (mg/kg/day) / dermal dose (mg/kg/day). Level of Concern (LOC) = 1,000.

Table J.4. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 450059-10 Grapes DFR Data + Oxon Estimates								
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd
				230	Transplanting	7600	0	7600
				640	Scouting; Hand Weeding; Tying/Training; Stripping	2700	0	2700
BUNCH/	II	MRID	0.62	1900	Irrigation (hand set)	920	1	1200
BUNDLE	Нор	450059-10	0.63	19300	Mechanically-assisted Harvesting	91	9	1000
				NA	Irrigation (non-hand set); Mechanical Weeding; Discing; Ditching	NA	NA	NA
		e MRID 450059-10	1.88	230	Transplanting	2600	0	2600
				640	Bird Control; Trellis Repair; Propagating; Scouting; Hand Pruning; Hand Weeding	920	1	1200
VINE/	Grape (wine			1900	Irrigation (hand set)	310	5	1200
TRELLIS	and juice)			10100	Tying/Training; Hand Harvesting; Leaf Pulling	58	11	1100
				NA	Irrigation (non-hand set); Mechanical Harvesting and Weeding; Burndown; Ditching; Mechanical Pruning	NA	NA	NA
				230	Transplanting	2600	0	2600
VINE/	Grape	MRID 450059-10	1.88	640	Hand Weeding: Hand Pruning; Scouting	920	1	1200
TRELLIS	(raisin, table)			1900	Irrigation (hand set)	310	5	1200
				5500	Tying/Training; Hand Harvesting; Leaf Pulling	110	9	1200

Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOE
				19300	Table only: Turning; Girdling	3	13	1000
				NA	Irrigation (non-hand set)	NA	NA	NA
				230	Transplanting	3800	0	3800
	Blueberry		1.25	640	Scouting; Hand Pruning; Hand Weeding; Bird Control; Frost Control	1400	0	1400
VINE/	(highbush),	450059-10		1400	Hand Harvesting	630	2	1100
TRELLIS	Currants			1900	Irrigation (hand set)	470	3	1000
				NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding	NA	NA	NA
			230	Transplanting	6200	0	6200	
		Blueberry (highbush) 450059-10	0.77 ULV	640	Scouting; Hand Pruning; Hand Weeding; Bird Control; Frost Control	2200	0	2200
VINE/ TRELLIS				1400	Hand Harvesting	1000	0	1000
TREELIS	(mgnousn)			1900	Irrigation (hand set)	760	2	1300
				NA	Irrigation (non-hand set); Mechanical Harvesting; Mechanical Weeding	NA	NA	NA
				230	Transplanting	4800	0	4800
VINE/	Passion Fruit	mRID	1	640	Scouting; Hand Pruning; Hand Weeding; Tying/Training	1700	0	1700
TRELLIS	rassion riuit	450059-10		10100	Hand Harvesting	110	9	1200
				NA	Irrigation (non-hand set); Mechanical Weeding	NA	NA	NA

a. DFR Source: ARETF Malathion DFR studies were used to calculate DFR residues for malathion. Malaoxon residues were not measured in the studies, but

were estimated to be 5% of the parent. Regressions were run to provide predicted malathion-malaoxon residues after treatment. Additionally, a 22x toxicity adjustment factor was applied to the estimated malaoxon residue to account for the additional toxicity of the oxon. Regression was run based on: Estimated DFR of Malathion-Malaoxon = malathion DFR + $22 \times (0.05 \text{ malathion DFR})$

- MRID 450059-10 Grape Study application rate = 1 lb ai/acre
- b. Application rates are the maximum application rates determined from EPA registered labels for malathion.
- c. Transfer Coefficient and Post Application Activities from EPA's Occupational Pesticide Re-entry Exposure Calculator Revised March 2013.
- d. MOE calculated using dermal dose and POD for malathion (80 mg/kg/day). Dermal Dose (mg/kg/day) = DFR (μg/cm²) x 8 hr x transfer coefficient (cm²/hr) / 1000 x body weight (69 kg). MOE = POD (mg/kg/day) / dermal dose (mg/kg/day). Level of Concern (LOC) = 1,000.

	Table J.5. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 454695-01 Nursery Stock DFR Data + Oxon Estimates									
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOEd		
Nursery (ornamentals, trees, container	(ornamentals,	MRID 454695-01	0.25	230	Hand Harvesting; Hand Pruning; Scouting; Container Moving; Hand Weeding: Transplanting; Grafting; Propagating; Pinching; Tying/Training	9200	0	9200		
	stock) -			1900	Irrigation (hand set);	1100	0	1100		
broadcast and ground directed	and ground			NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Harvesting; Fertilizing; Spreading Bins	NA	NA	NA		
trees,	(ornamentals,	amentals, trees,		230	Hand Harvesting; Hand Pruning; Scouting; Container Moving; Hand Weeding: Transplanting; Grafting; Propagating; Pinching; Tying/Training	2300	0	2300		
UNASSIGNED	stock) -	454695-01	1	1900	Irrigation (hand set);	280	3	1000		
ar	broadcast and ground directed			NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Harvesting; Fertilizing; Spreading Bins	NA	NA	NA		

Table J.5. Summary of Postapplication Risk Assessment for Malathion-Malaoxon Using MRID 454695-01 Nursery Stock DFR Data + Oxon Estimates									
Crop Group	Use Site	DFR Source ^a	App Rate ^b lbai/A	Transfer Coeficient ^c (cm ² /hr)	Activity ^c	MOE ^d at Day 0	DAT when MOE>1000	MOE ^d	
(ornament trees,		ornamentals, trees, container MRID stock) - 454695-01 broadcast	10	230	Hand Harvesting; Hand Pruning; Scouting; Container Moving; Hand Weeding: Transplanting; Grafting; Propagating; Pinching; Tying/Training	230	4	1300	
UNASSIGNED				1900	Irrigation (hand set);	28	9	1300	
	broadcast and ground			NA	Irrigation (non-hand set); Mechanical Weeding; Mechanical Harvesting; Fertilizing; Spreading Bins	NA	NA	NA	

- a. <u>DFR Source</u>: ARETF Malathion DFR studies were used to calculate DFR residues for malathion. Malaoxon residues were not measured in the studies, but were estimated to be 5% of the parent. Regressions were run to provide predicted malathion-malaoxon residues after treatment. Additionally, a 22x toxicity adjustment factor was applied to the estimated malaoxon residue to account for the additional toxicity of the oxon. Regression was run based on: Estimated DFR of Malathion-Malaoxon = malathion DFR + 22 X (0.05 malathion DFR)
 - MRID 454695-01 Nursery Stock application rate = 1.3 lb ai/acre
- b. Application rates are the maximum application rates determined from EPA registered labels for malathion.
- c. Transfer Coefficient and Post Application Activities from EPA's Occupational Pesticide Re-entry Exposure Calculator Revised March 2013.
- d. MOE calculated using dermal dose and POD for malathion (80 mg/kg/day). Dermal Dose (mg/kg/day) = DFR (μg/cm²) x 8 hr x transfer coefficient (cm²/hr) / 1000 x body weight (69 kg). MOE = POD (mg/kg/day) / dermal dose (mg/kg/day). Level of Concern (LOC) = 1,000.

	Table J.6. Summary of Post-application Risk Assessment for Malathion-Malaoxon Using MRID 439450-01 Turf TTR Data									
+ Oxon Estimates Crop Group Use Site TTR Source ^a App Rate ^b Coeficient ^c (cm ² /hr) Activity ^c Activity ^c MOE ^d at Day 0 MOE>1000 MOE ^d										
TURF/SOD	Bermuda Grass	MRID 439450-01	1.25	6700	Maintenance; Slab Harvesting; Transplanting; Planting	310	1	1300		

		NA	Roll Harvesting	NA	NA	NA
--	--	----	-----------------	----	----	----

- a. <u>TTR Source</u>: Malathion TTR study was used to calculate TTR residues for malathion. Malaoxon residues were not measured in the studies, but were estimated to be 5% of the parent. Regressions were run to provide predicted malathion-malaoxon residues after treatment. Additionally, a 22x toxicity adjustment factor was applied to the estimated malaoxon residue to account for the additional toxicity of the oxon. Regression was run based on: Estimated TTR of Malathion-Malaoxon = malathion TTR + 22 X (0.05 malathion TTR)
 - MRID 439450-01 Turf Application Rate = 5.26 lbs ai/acre
- b. Application rates are the maximum application rates determined from EPA registered labels for malathion.
- c. Transfer Coefficient and Post Application Activities from EPA's Occupational Pesticide Re-entry Exposure Calculator Revised March 2013.
- d. MOE calculated using dermal dose and POD for malathion (80 mg/kg/day). Dermal Dose (mg/kg/day) = DFR (μg/cm²) x 8 hr x transfer coefficient (cm²/hr) / 1000 x body weight (69 kg). MOE = POD (mg/kg/day) / dermal dose (mg/kg/day). Level of Concern (LOC) = 1,000.

Appendix K. Registered Label Summary for Malathion

Product Name/Formulation	Registration No
MALATHION 50% EC	4-99
BONIDE A COMPLETE FRUIT TREE SPRAY	4-122
BONIDE A COMPLETE FRUIT TREE SPRAY	4-122
BONIDE A COMPLETE FRUIT TREE SPRAY	4-122
BONIDE MALATHION INSECT SPRAY	4-412
ORTHO MALATHION 50 INSECT SPRAY	239-739
SA-50 BRAND MALATHION-OIL CITRUS & ORNAMENTAL SPRAY	829-175
SA-50 BRAND MALATHION-OIL CITRUS & ORNAMENTAL SPRAY	829-175
SA-50 MALATHION 50% E.C.	829-282
MAX KILL DUSTA-CIDE 6	1015-69
MALATHION FOGGING SPRAY	3862-28
FYFANON TECHNICAL	4787-5
FYFANON ULV CONCENTRATE INSECTICIDE	5905-112
FYAFANON MALATHION INSECTICIDE	5905-196
FYFANON 8 LB. EMULSION	5905-250
HI-YIELD 55% MALATHION	7401-10
MALATHION 5	9779-5
MALATHION 57%	10088-56
MALATHION 8	10163-21
DREXEL MALATHION 5EC	19713-217
DREXEL MALATHION ULV INSECTICIDE	19713-288
GREEN DEVIL SPRAY	19713-304
DREXEL MALATHION 50% EMULSIFIABLE	19713-330
DREXEL MALATHION TECHNICAL	19713-402
DREXEL MALATHION ULV 96.5%	19713-540
UNICORN MALATHION SPRAY 1	28293-123
ACME MALATHION 50% SPRAY	33955-394
MALATHION 57 EC	34704-108
MALATHION 8E INSECTICIDE	34704-452
MALATHION 8 AQUAMUL	34704-474
CLEAN CROP MALATHION ULV CONCENTRATE INSECTICIDE	34704-565
MALATHION TECHNICAL	34704-787
CHEM-TOX MAL 50%-E.C.	45385-43
CHEM-TOX MALATHION 3%	45385-65
CHEM-TOX MAL 50-OS	45385-66
SUPER K-GRO MALATHION 50 INSECT SPRAY	46515-19
PROZAP MALATHION 57% EMULSIFIABLE LIQUID INSECTICIDE-B	47000-107
MALATHION 5 EC	66330-220
FYFANON ULV MOSQUITO	67760-34
FYFANON ULV AG FYFANON 57% EC	67760-35 67760-40

FYFANON PLUS ULV	67760-108
FYFANON PLUS ULV	67760-108
CHEMINOVA MALATHION 57% LOW VOC	67760-119
Malathion 851 g/L + Gamma-Cyhalothrin 12.8 g/L EC	67760-131
Malathion 851 g/L + Gamma-Cyhalothrin 12.8 g/L EC	67760-131
MALATHION-5 EMULSIFIABLE CONCENTRATE	84009-6
PRENTOX 5 LB. MALATHION SPRAY	89459-36
ORTHO MALATHION 25 WETTABLE	CA760166
MALATHION ULV CONCENTRATE INSECTICIDE	CA830012
MALATHION 8	DE130002
FYFANON ULV AG ULTRA LOW VOLUME CONCENTRATE INSECTICIDE	FL100004
MALATHION 8	FL130001
FYFANON 57% EC	FL130002
FYFANON ULV AG	FL130003
FYFANON ULV AG	GA130002
MALATHION 8	GA130003
MALATHION 8	GA130004
MALATHION 8	IN130001
MALATHION 8	IN130002
MALATHION 8	KY140001
FYFANON ULV AG	MA130001
FYFANON 57% EC	MA130002
MALATHION 8	MA130003
MALATHION 8	MA130004
MALATHION 8	MD130003
MALATHION 8	MD130004
MALATHION 8	ME130001
MALATHION 8	MI130003
MALATHION 8	MI130005
FYFANON ULV AG	MI140004
MALATHION 5 EC	MN080002
MALATHION 8	MS130005
FYFANON ULV AG	NC130006
MALATHION 8	NC130007
MALATHION 8	NC130008
FYFANON 57% EC	NH130001
FYFANON 57% EC	NH130002
MALATHION 8	NH130003
MALATHION 8	NH130004
MALATHION 8	NJ130003
MALATHION 8 AQUAMUL	NJ130004
FYFANON ULV AG	NJ130005
FYFANON ULV AG	NJ130006
FYFANON 57% EC	NJ130007
FYFANON 57% EC	NJ130008
FYFANON 57% EC	NJ130009
MALATHION 8	NJ130010
MALATHION 8 AQUAMUL	NM140002
FYFANON ULV AG	OR080024
MALATHION 8	OR130010
MALATHION 8	OR130011
MALATHION 8 AQUAMUL	OR130013

MALATHION 8	PA130005
MALATHION 8	PA130006
FYFANON ULV AG	TX060018
CLEAN CROP MALATHION ULV CONCENTRATE INSECTICIDE	TX950006
MALATHION 8	VA130006
MALATHION 8	VA130007
MALATHION 8	WA130004
MALATHION 8 AQUAMUL	WA130010
FYFANON ULV AG	WA960004
	11312-EUP-33
	11312-EUP-33
	11312-EUP-34
	11312-EUP-34
	34704-EUP-3