Report to Congress:

Study of Discharges Incidental to Normal Operation of Commercial Fishing Vessels and Other Non-Recreational Vessels Less than 79 Feet
ACKNOWLEDGMENTS

The EPA Office of Wastewater Management (OWM) presents this draft Vessels Study Report to Congress conducted to meet the obligations of EPA under Public Law (P.L.) 110-299 (July 31, 2008). EPA would like to thank the numerous trade associations and individual companies who contributed to this project. Those groups who provided assistance to EPA are listed in Chapter 2 of this report. The project could not have been successful without the support by EPA Region 2, 3, and 5 laboratories, EPA Gulf Ecology Division and other EPA program offices. EPA would also like to thank the United States Coast Guard for providing both logistical support and review of many of the report’s elements. Finally, EPA would also like to acknowledge the contractor support for this project provided by individuals from Great Lakes Environmental Center, Inc., Eastern Research Group, and Abt Associates.
The primary technical contacts for this document are:

Ryan Albert
U.S. Environmental Protection Agency
Office of Water (Mail Code: 4203M)
1200 Pennsylvania Avenue, NW
Washington, DC 20460
(202) 564-0763 (telephone)
(202) 564-6392 (fax)

Robin Danesi
U.S. Environmental Protection Agency
Office of Water (Mail Code: 4203M)
1200 Pennsylvania Avenue, NW
Washington, DC 20460
(202) 564-1846 (telephone)
(202) 564-6392 (fax)

The primary EPA congressional relations contact for this document is:

Greg Spraul
U.S. Environmental Protection Agency
Office of Congressional and Intergovernmental Relations (Mail Code: 1301A)
1200 Pennsylvania Avenue, NW
Washington, DC 20460
(202) 564-0255 (telephone)
(202) 564-1519 (fax)
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. xv

CHAPTER 1 Introduction to the Report ... 1
1.1. Congressional Study Charge ... 1
1.2. Organization of this report .. 2
1.3. Classes or Types of Vessels .. 2
 1.3.1. Commercial Fishing Vessels .. 3
 1.3.2. Tugs/Towing Vessels ... 8
 1.3.3. Water Taxis/Small Ferries ... 9
 1.3.4. Tour Boats ... 9
 1.3.5. Recreational Vessels Used for Non-Recreational Purposes 10
1.4. Vessel Population .. 11
 1.4.1. Vessel Characteristics Data ... 11
 1.4.2. Overview of Vessel Universe .. 12
1.5. Discharges from Vessels ... 24
 1.5.1. Bilgewater .. 25
 1.5.2. Deck Washdown and Deck Runoff ... 25
 1.5.3. Engine Effluent .. 26
 1.5.4. Firemain Systems ... 28
 1.5.5. Fish Hold and Fish Hold Cleaning Effluent (Refrigerated Seawater Discharge or
 Fish Ice Slurry Discharge) .. 29
 1.5.6. Graywater ... 31
 1.5.7. Shaft Packing Gland Effluent ... 31
 1.5.8. Antifouling Hull Coatings .. 32
1.6. Pollutants Potentially Found in Vessel Discharges ... 32
 1.6.1. Classical Pollutants .. 33
 1.6.2. Nutrients ... 35
 1.6.3. Pathogen Indicators ... 36
 1.6.4. Metals .. 36
 1.6.5. Volatile and Semivolatile Organic Compounds .. 36
 1.6.6. Nonylphenols .. 37
1.7. Chapter Conclusions ... 37

CHAPTER 2 Study Design ... 39
2.1. Data Sources .. 39
 2.1.1. Existing EPA Data Sources ... 39
 2.1.2. Industry Participation .. 40
 2.1.3. Vessel Sampling .. 42
 2.1.4. Literature Review .. 42
 2.1.5. Other Governmental Data Sources .. 42
2.2. EPA Vessel Discharge Sampling Program .. 43
 2.2.1. Vessels Sampled and Locations ... 44
 2.2.2. Sampled Discharges ... 49
 2.2.3. Target Analytes ... 51
 2.2.4. Sampling Methods ... 53
 2.2.5. QA/QC .. 58
Data Considerations and study limitations ... 61
 2.3.1 Voluntary Nature of the Sampling Program ... 61
 2.3.2 Vessels/Discharges Not Sampled ... 62
 2.3.3 Pollutants Not Sampled... 63
 2.3.4 Application to Other Vessels, Including Larger Vessels Not Sampled for this Study... 63
CHAPTER 3 Analysis of Discharges and Potential Impact to Human Health and the Environment... 67
 3.1 Approach to Analyses... 67
 3.1.1 Data Reduction and Presentation.. 68
 3.1.2 Summary Statistics and Box Plots .. 69
 3.1.3 Calculation of Potential Hazard Quotients ... 70
 3.2 Characterization of Discharges ... 79
 3.2.1 Bilgewater... 79
 3.2.2 Stern Tube Packing Gland Effluent .. 115
 3.2.3 Deck Washdown ... 143
 3.2.4 Fish Hold and Fish Hold Cleaning Effluent (Refrigerated Seawater and Ice Slurry) ... 188
 3.2.5 Graywater.. 234
 3.2.6 Engine Effluent ... 261
 3.2.7 Firemain Discharges ... 338
 3.2.8 Antifouling Hull Coatings... 354
CHAPTER 4 Potential Large-Scale Impacts of Study Vessels’ Incidental Discharges to Human Health and the Environment.. 368
 4.1 Model Selection .. 370
 4.2 Fraction of Freshwater Model... 371
 4.2.1 Step 1: Calculate Vessel Discharge Analyte Loading Rates 372
 4.2.2 Step 2: Calculate the Fraction of Freshwater in the Harbor.............................. 373
 4.2.3 Step 3: Calculate the Harbor Flushing Time... 373
 4.2.4 Step 4: Calculate the Harbor Analyte Concentration.. 374
 4.3 Vessel Discharge Loading Rates .. 374
 4.3.1 Calculate the Average Analyte Concentrations .. 374
 4.3.2 Discharge Flow Rate Assumptions... 375
 4.3.3 Number of Vessels Present in the Harbor... 381
 4.3.4 Percentage of Vessels Discharging in the Harbor... 385
 4.3.5 Vessel Discharge Loading Rates .. 387
 4.3.6 Dissolved Copper Loading Rates from Antifouling Paints 387
 4.4 Hypothetical Harbor.. 389
 4.5 Model Scenarios.. 391
 4.6 Model Results ... 393
 4.6.1 Dilution Factor Analysis ... 393
 4.6.2 Supplemental Model Run in Response to Comments... 394
 4.6.3 Loading Rate Analysis.. 395
 4.7 Conclusions... 399
CHAPTER 5 Summary of Findings .. 401
 5.1 Summary of Classes of Vessels Covered By this Study ... 401
5.2 Summary of Effluent Characterization of Select Discharges from the Study Vessels .. 401
5.2.1 Estimated Volumes of Select Discharges from the Study Vessels 402
5.2.2 Analytes of Potential Risk in Select Discharges from Study Vessels 404
5.3 Summary of Predicted Impacts from Select Pollutants in Study Vessel Discharges ... 417
5.3.1 Potential Watershed-Wide Impacts from Study Vessels 417
5.3.2 Potential Localized or Near-Field Impacts of Vessel Discharges to Receiving Waters ... 418
5.4 Possible Benefits to Human Health, Welfare, and the Environment from Reducing, Eliminating, Controlling, or Mitigating One or More of the Discharges from the Study Vessels ... 420

CHAPTER 6 Analysis of the Extent to Which Incidental Discharges are Currently Subject to Regulation Under Federal Law or a Binding International Obligation of the United States ... 422
6.1 International Agreements .. 422
6.1.1 The International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) .. 422
6.1.2 The International Convention on the Control of Harmful Anti-Fouling Systems on Ships .. 432
6.1.3 International Convention for the Safety of Life at Sea (SOLAS) 435
6.1.4 Boundary Waters Treaty .. 436
6.1.5 Great Lakes Water Quality Agreement .. 436
6.1.6 St. Lawrence Seaway Regulations ... 439
6.2 Federal Laws ... 440
6.2.1 Act to Prevent Pollution from Ships (APPS) ... 440
6.2.2 Clean Water Act (CWA) §§ 311, 312/Oil Pollution Control Act 444
6.2.3 Organotin Antifouling Paint Control Act .. 446
6.2.4 National Invasive Species Act .. 447
6.2.5 Hazardous Materials Transportation Act ... 448
6.2.6 National Marine Sanctuaries Act ... 448
6.2.7 Resource Conservation and Recovery Act .. 449
6.2.8 Federal Insecticide, Fungicide, and Rodenticide Act 450
6.3 Additional International and Federal Laws ... 451
6.3.1 International Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter ... 451
6.3.2 International Convention on Oil Pollution, Preparedness, Response and Cooperation ... 452
6.3.3 International Convention Relating to Intervention on the High Seas in Cases of Oil Pollution Casualties ... 452
6.3.4 Comprehensive Environmental Response, Compensation, and Liability Act ... 452
6.3.5 CWA § 402, National Pollutant Discharge Elimination System (NPDES) 453
6.3.6 Title XIV of the Consolidated Appropriations Act, 2001—Certain Alaskan Cruise Ship Operations ... 453
6.3.7 Toxic Substances Control Act ... 453
6.4 Application of Legal Authorities to Discharges Incidental to the Normal Operation of Study Vessels ... 454

CHAPTER 7 References .. 458
Appendix A List of Acronyms .. A-1
Appendix B Additional Characteristics of the P.L. 110 – 299 Vessel Population B-1
 B.1 Vessel Subcategories ... B-1
 B.1.1 Population of Vessels undergoing Discharge Analysis B-2
 B.2 Vessel Geographical Area of Operation .. B-4
 B.3 Other Vessel Characteristics: Construction and Propulsion B-11
 B.3.1 Vessel Age .. B-12
 B.3.2 Hull Material Type ... B-13
 B.3.3 Propulsion Method and Type ... B-15
 B.3.4 Horsepower Ahead .. B-16
 B.4 Distribution of the Study Vessel Universe versus the Recreational Vessel Universe ... B-18
 B.5 Vessels Documented, Inspected, and/or State Registered B-25
 B.6 Uncertainty ... B-26

Appendix C Public Law 110-299 (S. 3298) and Public Law 110-288 (S. 2766) C-1
Appendix D List of Target Analytes ... D-1
Appendix E Analyte Concentrations and Summary Statistics from Ambient Water Samples .. E-1
Appendix F Analyte Concentrations and Summary Statistics from Source Water Samples ... F-1
Appendix G Supporting Information for EPA’s Screening-Level Water Quality Model .G-1
Appendix H Responsiveness Summary .. H-1
Appendix I List of Preparers and Contributors ... I-1
LIST OF TABLES

Table 1.1. Population of Operational, Domestic MISLE Vessels by Vessel Length 14
Table 2.1. Number of Vessels Sampled by Vessel Class and Discharge 46
Table 2.2. Analyte Groups by Discharge... 52
Table 3.1. Water Quality and Other Benchmark Values Used to Screen the Vessel Discharge Data.. 75
Table 3.2. Major Cation Concentrations in Seawater... 78
Table 3.3. Major Cation Concentrations in Freshwater.. 78
Table 3.1.1. Results of Bilgewater Sample Analyses for Dissolved Metals...................... 85
Table 3.1.2. Results of Bilgewater Sample Analyses for Total Metals.............................. 86
Table 3.1.3. Results of Bilgewater Sample Analyses for Classical Pollutants.................... 93
Table 3.1.4. Results of Bilgewater Sample Analyses for Pathogen Indicators.................. 97
Table 3.1.5. Results of Bilgewater Sample Analyses for Nutrients.................................. 99
Table 3.1.6. Results of Bilgewater Sample Analyses for SVOCs 103
Table 3.1.7. Results of Bilgewater Sample Analyses for VOCs 108
Table 3.1.8. Results of Bilgewater Sample Analyses for Nonylphenols......................... 112
Table 3.1.9. Characterization of Bilgewater Discharge and Summary of Analytes that May Have the Potential to Pose Risk ... 114
Table 3.2.1. Results of Packing Gland Effluent Sample Analyses for Metals 118
Table 3.2.2. Results of Packing Gland Effluent Sample Analyses for Classical Pollutants... 125
Table 3.2.3. Results of Packing Gland Effluent Sample Analyses for Nutrients............... 129
Table 3.2.4. Results of Packing Gland Water Sample Analyses for SVOCs and VOCs...... 133
Table 3.2.5. Results of Packing Gland Water Sample Analyses for Nonylphenols......... 139
Table 3.2.6. Characterization of Packing Gland Effluent and Summary of Analytes that May Have the Potential to Pose Risk ... 142
Table 3.3.1. Results of Deck Washdown/Runoff Sample Analyses for Metals 152
Table 3.3.2. Dissolved-to-Total Metal Ratios (d/t) in Paired Deck Washdown/Runoff Samples... 154
Table 3.3.3. Minimum and Maximum Dissolved and Total Metal Concentrations in Vessel Source and Ambient (Harbor) Water Relative to Median Sample Concentrations and Most Stringent Screening Benchmarks... 154
Table 3.3.4. Comparison of Metal Concentrations in Deck Washdown Discharge Between Fishing Vessels and Non-Fishing Vessels.. 155
Table 3.3.5. Mean Concentrations of Dissolved and Total Heavy Metals from Deck Wash Discharges from Fishing Vessels and Nonfishing Vessels.. 156
Table 3.3.6. Results of Deck Washdown Water Sample Analyses for Classical Pollutants 164
Table 3.3.7. Results of Deck Washdown Water Sample Analyses for Pathogen Indicators.... 169
Table 3.3.8. Results of Deck Washdown Water Sample Analyses for Nutrients............... 174
Table 3.3.9. Results of Deck Washdown Water Sample Analyses for Long-Chain Nonylphenols ... 178
Table 3.3.10. Results of Deck Washdown Water Sample Analyses for VOCs and SVOCs.... 182
Table 3.3.11. Characterization of Deck Washdown and Runoff Water and Summary of Analytes that May Have the Potential to Pose Risk .. 187
Table 3.4.1. Results of Fish Hold Effluent Sample Analyses for Total Metals.................. 195
Table 3.4.2. Results of Fish Hold Effluent Sample Analyses for Dissolved Metals........... 196
Table 3.4.3. Results of Fish Hold Cleaning Effluent Sample Analyses for Metals 202
Table 3.4.4. Results of Fish Hold Effluent Sample Analyses for Classical Pollutants 210
Table 3.4.5. Results of Fish Hold Cleaning Effluent Analyses for Classical Pollutants 211
Table 3.4.6. Results of Fish Hold and Fish Hold Cleaning Effluent Sample Analyses for Pathogen Indicators ... 217
Table 3.4.7. Results of Fish Hold (upper half) and Fish Hold Cleaning Effluent (lower half) Sample Analyses for Nutrients .. 221
Table 3.4.8. Raw Sewage Concentrations of Nutrients ... 221
Table 3.4.9. Results of Fish Hold Cleaning Effluent Sample Analyses for Long-chain Nonylphenols .. 226
Table 3.4.10. Means (and Standard Deviations) for Selected Analyte Concentrations, by Geographic Region. Units for All Analytes Expressed as µg/L, Except for BOD (mg/L) .. 230
Table 3.4.11. Characterization of Fish Hold Effluent and Fish Hold Cleaning Effluent and Summary of Analytes that May Have the Potential to Pose Risk .. 233
Table 3.5.1. Results of Graywater Sample Analyses for Pathogen Indicators 236
Table 3.5.2. Results of Graywater Sample Analyses for Classical Pollutants 241
Table 3.5.3. Results of Graywater Sample Analyses for Nonylphenols (only long-chain NPEOs and OPEOs were detected) ... 245
Table 3.5.4. Results of Graywater Sample Analyses for Dissolved Metals 248
Table 3.5.5. Results of Graywater Sample Analyses for Total Metals 249
Table 3.5.6. Results of Graywater Sample Analyses for Nutrients 255
Table 3.5.7. Characterization of Graywater Effluent and Summary of Analytes that May Have the Potential to Pose Risk ... 260
Table 3.6.1. Sampled Engine Characteristics .. 263
Table 3.6.2. Results of Inboard Propulsion Engine Sample Analyses for Classical Pollutants ... 267
Table 3.6.3. Results of Inboard Propulsion Engine Sample Analyses for Metals 271
Table 3.6.4. Comparison of Metals Results for EPA P.L. 110-299 and UNDS Engine Wet Exhaust Sampling .. 273
Table 3.6.5. Results of Inboard Propulsion Engine Sample Analyses for SVOCs 280
Table 3.6.6. Comparison of Phenol Results for EPA P.L. 110-299 and UNDS Engine Wet Exhaust Sampling .. 281
Table 3.6.7. Results of Inboard Propulsion Engine Sample Analyses for VOCs 286
Table 3.6.8. Results of Outboard Propulsion Engine Sample Analyses for Classical Pollutants .. 292
Table 3.6.9. Results of Outboard Propulsion Engine Sample Analyses for Metals 295
Table 3.6.10. Results of Outboard Propulsion Engine Sample Analyses for SVOCs 302
Table 3.6.11. Results of Outboard Propulsion Engine Sample Analyses for VOCs 305
Table 3.6.12. Results of Generator Engine Sample Analyses for Classical Pollutants 310
Table 3.6.13. Results of Generator Engine Sample Analyses for Metals 313
Table 3.6.14. Results of Generator Engine Sample Analyses for SVOCs 319
Table 3.6.15. Results of Generator Engine Sample Analyses for VOCs 324
Table 3.6.16. Mean Concentration Results, UNDS Engine Wet Exhaust Discharge and Background Samples for the LCPL ... 330
Table 3.6.17. Mean Concentration Results, UNDS Engine Wet Exhaust Discharge and Background Samples for the RIB ... 331
Table 3.6.18. Comparison of Dewinterizing Effluent with Propulsion Effluent 333
Table 3.6.19. Comparison of Number of Detected Analytes in Engine Effluent 334
Table 3.6.20. Comparison of Results for Selected Analytes in Engine Effluent 334
Table 3.6.21. Characterization of Engine Effluent and Summary of Analytes that May Have the Potential to Pose Risk ... 336
Table 3.7.1. Results of Firemain System Sample Analyses for Metals 341
Table 3.7.2. Results of Firemain System Water Sample Analyses for Classical Pollutants ... 347
Table 3.7.3. Results of Firemain Water Sample Analyses for SVOCs 350
Table 3.7.4. Characterization of Firemain Discharge and Summary of Analytes that May Have the Potential to Pose Risk ... 353
Table 3.8.1. Rates of Passive Copper Leaching from Vessel AFSs 361
Table 3.8.2. Dissolved Copper Release from Vessel AFSs During an Underwater Hull Cleaning “Event” ... 362
Table 3.8.3. Estimated Dissolved Copper Mass Emissions from a 9.1m (30ft) Powerboat 362
Table 4.3.1. Offload Frequency by Fishing Vessel Subtype ... 376
Table 4.3.2. Examples of Field Data and Assumptions for Flow Rate Calculations by Discharge ... 377
Table 4.3.3. Vessel Flow Rates .. 379
Table 4.3.4. Vessel Population Scenario Representative Harbors Based on the Top 20 Hailing Ports Cited in the MISLE Database ... 382
Table 4.3.5. Percentage of Study Vessels Present in Representative Fishing Harbor 383
Table 4.3.6. Percentage of Study Vessels Present in Representative Large Metropolitan Harbor .. 383
Table 4.3.7. Percent of Study Vessels Present in Representative Recreational Harbor 384
Table 4.3.8. Vessel Population Scenarios .. 385
Table 4.3.9. Percentage of Vessels Discharging in the Harbor ... 386
Table 4.3.10. Estimated Average Vessel Length by Vessel Class 388
Table 4.4.1. Harbors Selected for Model Input Parameter Development 389
Table 4.4.2. Hypothetical Harbor Input Parameters .. 390
Table 4.4.3. Hypothetical Harbor Scenarios ... 391
Table 4.5.1. Fraction of Freshwater Model Scenarios ... 392
Table 4.6.1. “Tipping Point” Dilution Factors for Harbor Instantaneous Concentration to Equal the NRQWC Based on Vessel Population Scenario Loading Rates 1 .. 394
Table 4.6.2. Revised Model Assumptions ... 394
Table 4.6.3. Supplemental Model Run “Tipping Point” Dilution Factors for Harbor Instantaneous Concentration to Equal the NRQWC Based on Vessel Population Scenario Loading Rates ... 395
Table 4.6.4. Comparison of Model Loading Rates with Other Potential Point Source Loading Rates ... 395
Table 5.1. Analytes of Potential Risk by Discharge .. 411
Table 6.1. International Treaties and Federal Laws Applicable to Discharges Incidental to the Normal Operation of Vessels ... 455
Table 6.2. International Treaties and Federal Laws Applicable to Vessels (by Length) 457
LIST OF FIGURES

- **Figure 1.1.** MISLE Population of Operational, Domestic Non-Recreational Vessels by Vessel Service .. 13
- **Figure 1.2.** Number of Study Vessels Recorded in MISLE, by Vessel Service (Type) 16
- **Figure 1.3.** Relationship Between Vessel Gross Tons and Length .. 19
- **Figure 1.4.** Distribution of MISLE Vessels by Length and Vessel Service (Type) 20
- **Figure 1.5.** Cumulative Distribution of MISLE Vessels by Length and Vessel Service (Type) .. 21
- **Figure 1.6.** Distribution of Study Vessels by Length (in Feet) and Vessel Service (Type) 22
- **Figure 1.7.** Distribution of Study Vessels by Gross Tons and Vessel Service (for which gross ton data are given in MSLE) ... 23
- **Figure 3.1.1.** Box and Dot Density Plot of Dissolved Metals Concentrations Measured in Samples of Bilgewater .. 87
- **Figure 3.1.2.** Box and Dot Density Plot of Total Metals Concentrations Measured in Samples of Bilgewater .. 88
- **Figure 3.1.3.** Box and Dot Density Plot of Potential Hazard Quotients for Dissolved Metals in Samples of Bilgewater ... 89
- **Figure 3.1.4.** Box and Dot Density Plot of Potential Hazard Quotients for Total Metals in Samples of Bilgewater .. 90
- **Figure 3.1.5.** Box and Dot Density Plot of Classical Pollutants Measured in Samples of Bilgewater .. 94
- **Figure 3.1.6.** Box and Dot Density Plot of Potential Hazard Quotients for Classical Parameters in Samples of Bilgewater ... 95
- **Figure 3.1.7.** Box and Dot Density Plot of Nutrient Concentrations Measured in Samples of Bilgewater .. 100
- **Figure 3.1.8.** Box and Dot Density Plot of Potential Hazard Quotients for Nutrients in Samples of Bilgewater ... 101
- **Figure 3.1.9.** Box and Dot Density Plot of SVOC Concentrations Measured in Samples of Bilgewater ... 104
- **Figure 3.1.10.** Box and Dot Density Plot of Potential Hazard Quotients for SVOCs in Samples of Bilgewater .. 105
- **Figure 3.1.11.** Box and Dot Density Plot of VOC Concentrations Measured in Samples of Bilgewater ... 109
- **Figure 3.1.12.** Box and Dot Density Plot of Potential Hazard Quotients for VOCs in Samples of Bilgewater .. 110
- **Figure 3.2.1.** Box and Dot Density Plot of Dissolved Metals Concentrations Measured in Samples of Packing Gland Effluent .. 120
- **Figure 3.2.2.** Box and Dot Density Plot of Total Metals Concentrations Measured in Samples of Packing Gland Effluent .. 121
- **Figure 3.2.3.** Box and Dot Density Plot of Potential Hazard Quotients for Dissolved Metals in Samples of Packing Gland Effluent .. 122
- **Figure 3.2.4.** Box and Dot Density Plot of Potential Hazard Quotients for Total Metals in Samples of Packing Gland Effluent ... 123
- **Figure 3.2.5.** Box and Dot Density Plot of Classical Pollutants Measured in Samples of Packing Gland Effluent ... 126
Figure 3.2.6. Box and Dot Density Plot of Potential Hazard Quotients for Classical Pollutants in Samples of Packing Gland Effluent ... 127
Figure 3.2.7. Box and Dot Density Plot of Nutrient Concentrations Measured in Samples of Packing Gland Effluent ... 130
Figure 3.2.8. Box and Dot Density Plot of Potential Hazard Quotients for Nutrients in Packing Gland Effluent ... 131
Figure 3.2.9. Box and Dot Density Plot of SVOC Concentrations Measured in Samples of Packing Gland Effluent Samples ... 134
Figure 3.2.10. Box and Dot Density Plot of VOC Concentrations Measured in Samples of Packing Gland Effluent Samples ... 135
Figure 3.2.11. Box and Dot Density Plot of Potential Hazard Quotients for SVOCs in Samples of Packing Gland Effluent ... 136
Figure 3.2.12. Box and Dot Density Plot of Potential Hazard Quotients for VOCs in Samples of Shaft Packing Gland Effluent ... 137
Figure 3.2.13. Box and Dot Density Plot of Nonylphenol Concentrations Measured in Samples of Packing Gland Effluent ... 140
Figure 3.3.1. Box and Dot Density Plot of Dissolved Metals Concentrations Measured in Samples of Deck Washdown Water ... 157
Figure 3.3.2. Box and Dot Density Plot of Total Metals Concentrations Measured in Samples of Deck Washdown Water ... 158
Figure 3.3.3. Box and Dot Density Plot of Potential Hazard Quotients for Dissolved Metals in Samples of Deck Washdown Water ... 159
Figure 3.3.4. Box and Dot Density Plot of Potential Hazard Quotients for Total Metals in Samples of Deck Washdown Water ... 160
Figure 3.3.5. Box and Dot Density Plot of Classical Pollutants Measured in Samples of Deck Washdown Water ... 165
Figure 3.3.6. Box and Dot Density Plot of Potential Hazard Quotients for Classical Pollutants in Samples of Deck Washdown Water ... 166
Figure 3.3.7. Box and Dot Density Plot of Pathogen Indicator Concentrations Measured in Samples of Deck Washdown Water ... 170
Figure 3.3.8. Box and Dot Density Plot of Potential Hazard Quotients for Pathogens in Samples of Deck Washdown Water ... 171
Figure 3.3.9. Box and Dot Density Plot of Nutrient Concentrations Measured in Samples of Deck Washdown Water ... 175
Figure 3.3.10. Box and Dot Density Plot of Potential Hazard Quotients for Nutrients in Samples of Deck Washdown Water ... 176
Figure 3.3.11. Box and Dot Density Plot of Nonylphenol Concentrations Measured in Samples of Deck Washdown Water ... 179
Figure 3.3.12. Box and Dot Density Plot of Volatile Organic Chemical Concentrations Measured in Samples of Deck Washdown Water ... 183
Figure 3.3.13. Box and Dot Density Plot of Potential Hazard Quotients for VOCs in Samples of Deck Washdown Water ... 184
Figure 3.4.1. Box and Dot Density Plot of Total Metals Concentrations Measured in Samples of Fish Hold Effluent ... 197
Figure 3.4.2. Box and Dot Density Plot of Dissolved Metals Concentrations Measured in Samples of Fish Hold Effluent ... 198
Figure 3.4.3. Box and Dot Density Plot of Potential Hazard Quotients for Total Metals in Samples of Fish Hold Effluent ... 199
Figure 3.4.4. Box and Dot Density Plot of Potential Hazard Quotients for Dissolved Metals in Samples of Fish Hold Effluent ... 200
Figure 3.4.5. Box and Dot Density Plot of Total Metals Concentrations Measured in Samples of Fish Hold Cleaning Effluent ... 203
Figure 3.4.6. Box and Dot Density Plot of Dissolved Metals Concentrations Measured in Samples of Fish Hold Cleaning Effluent ... 204
Figure 3.4.7. Box and Dot Density Plot of Potential Hazard Quotients for Total Metals in Samples of Fish Hold Cleaning Effluent ... 205
Figure 3.4.8. Box and Dot Density Plot of Potential Hazard Quotients for Dissolved Metals in Samples of Fish Hold Cleaning Effluent ... 206
Figure 3.4.9. Box and Dot Density Plot of Classical Pollutant Concentrations/Values Measured in Samples of Fish Hold Effluent ... 212
Figure 3.4.10. Box and Dot Density Plot of Classical Pollutant Concentrations/Values Measured in Samples of Fish Hold Cleaning Effluent ... 213
Figure 3.4.11. Comparison Between the BOD Secondary Treatment Limit from Sewage Treatment Facilities (30 mg/L), Average BOD Raw Sewage Concentrations, and BOD Concentrations from Fish Hold Effluent and Fish Hold Cleaning Effluent .. 214
Figure 3.4.12. Box and Dot Density Plot of Measured Pathogen Concentrations in Samples of Fish Hold Effluent ... 218
Figure 3.4.13. Box and Dot Density Plot of Nutrient Concentrations Measured in Samples of Fish Hold Effluent ... 222
Figure 3.4.14. Box and Dot Density Plot of Nutrient Concentrations Measured in Samples of Fish Hold Cleaning Effluent ... 223
Figure 3.4.15. Comparison of Concentrations of Ammonia, TKN, and Total Phosphorus in Different Fishing Vessel Platforms to those in the Lobster Tank (which has a live catch and continuously circulating water) .. 224
Figure 3.4.16. Box and Dot Density Plot of Nonylphenol Concentrations Measured in Samples of Fish Hold Cleaning Effluent ... 227
Figure 3.5.1. Box and Dot Density Plot of Pathogen Indicator Values Measured in Samples of Graywater ... 237
Figure 3.5.2. Box and Dot Density Plot of Potential Hazard Quotients for Pathogen Indicators Measured in Samples of Graywater ... 238
Figure 3.5.3. Box and Dot Density Plot of Classical Pollutant Concentrations/Values Measured in Samples of Graywater ... 242
Figure 3.5.4. Box and Dot Density Plot of Potential Hazard Quotients for Classical Pollutants in Samples of Graywater ... 243
Figure 3.5.5. Box and Dot Density Plot of Dissolved Metals Concentrations Measured in Samples of Graywater ... 250
Figure 3.5.6. Box and Dot Density Plot of Total Metals Concentrations Measured in Samples of Graywater ... 251
Figure 3.5.7. Box and Dot Density Plot of Potential Hazard Quotients for Dissolved Metals in Samples of Graywater ... 252
Figure 3.5.8. Box and Dot Density Plot of Potential Hazard Quotients for Total Metals in Samples of Graywater ... 253
Figure 3.5.9. Box and Dot Density Plot of Nutrient Concentrations Measured in Samples of Graywater .. 256
Figure 3.5.10. Box and Dot Density Plot of Potential Hazard Quotients for Nutrients in Samples of Graywater ... 257
Figure 3.6.1. Box and Dot Density Plot of Classical Pollutant Values Measured in Samples of Inboard Propulsion Engine Effluent ... 268
Figure 3.6.2. Box and Dot Density Plot of Dissolved Metals Concentrations Measured in Samples of Inboard Propulsion Engine Effluent ... 274
Figure 3.6.3. Box and Dot Density Plot of Total Metals Concentrations Measured in Samples of Inboard Propulsion Engine Effluent ... 275
Figure 3.6.4. Box and Dot Density Plot of Potential Hazard Quotients for Dissolved Metals in Samples of Inboard Propulsion Engine Effluent ... 276
Figure 3.6.5. Box and Dot Density Plot of Potential Hazard Quotients for Total Metals in Samples of Inboard Propulsion Engine Effluent ... 277
Figure 3.6.6. Box and Dot Density Plot of SVOC Concentrations Measured in P.L. 110-299 Study Samples of Inboard Propulsion Engine Effluent ... 282
Figure 3.6.7. Box and Dot Density Plot of Potential Hazard Quotients for SVOCs in P.L. 110-299 Study Samples of Inboard Propulsion Engine Effluent ... 283
Figure 3.6.8. Box and Dot Density Plot of Volatile Organic Compounds Concentrations Measured in P.L. 110-299 Study Samples of Inboard Propulsion Engine Effluent ... 288
Figure 3.6.9. Box and Dot Density Plot of Potential Hazard Quotients for Volatile Organic Compounds in P.L. 110-299 Study Samples of Inboard Propulsion Engine Effluent ... 289
Figure 3.6.10. Box and Dot Density Plot of Classical Pollutant Values Measured in Samples of Outboard Propulsion Engine Effluent ... 293
Figure 3.6.11. Box and Dot Density Plot of Dissolved Metals Concentrations Measured in Samples of Outboard Propulsion Engine Effluent ... 297
Figure 3.6.12. Box and Dot Density Plot of Total Metals Concentrations Measured in Samples of Outboard Propulsion Engine Effluent ... 298
Figure 3.6.13. Box and Dot Density Plot of Potential Hazard Quotients for Dissolved Metals in Samples of Outboard Propulsion Engine Effluent ... 299
Figure 3.6.14. Box and Dot Density Plot of Potential Hazard Quotients for Total Metals in Samples of Outboard Propulsion Engine Effluent ... 300
Figure 3.6.15. Box and Dot Density Plot of SVOC Concentrations Measured in Samples of Outboard Propulsion Engine Effluent ... 303
Figure 3.6.16. Box and Dot Density Plot of Volatile Organic Compounds Concentrations Measured in Samples of Outboard Propulsion Engine Effluent ... 306
Figure 3.6.17. Box and Dot Density Plot of Potential Hazard Quotients for Volatile Organic Compounds in Samples of Outboard Propulsion Engine Effluent ... 307
Figure 3.6.18. Box and Dot Density Plot of Classical Pollutant Values Measured in Samples of Generator Engine Effluent ... 311
Figure 3.6.19. Box and Dot Density Plot of Dissolved Metals Concentrations Measured in Samples of Generator Engine Effluent ... 314
Figure 3.6.20. Box and Dot Density Plot of Total Metals Concentrations Measured in Samples of Generator Engine Effluent ... 315
Figure 3.6.21. Box and Dot Density Plot of Potential Hazard Quotients for Dissolved Metals in Samples of Generator Engine Effluent ... 316
Figure 3.6.22. Box and Dot Density Plot of Potential Hazard Quotients for Total Metals in Samples of Generator Engine Effluent ... 317
Figure 3.6.23. Box and Dot Density Plot of SVOC Concentrations Measured in Samples of Generator Engine Effluent ... 321
Figure 3.6.24. Box and Dot Density Plot of Potential Hazard Quotients for SVOCs in Samples of Generator Engine Effluent ... 322
Figure 3.6.25. Box and Dot Density Plot of VOC Concentrations Measured in Samples of Generator Engine Effluent ... 326
Figure 3.6.26. Box and Dot Density Plot of Potential Hazard Quotients for VOCs in Samples of Generator Engine Effluent ... 327
Figure 3.7.1. Box and Dot Density Plot of Dissolved Metals Concentrations Measured in Samples of Firemain Water ... 342
Figure 3.7.2. Box and Dot Density Plot of Total Metals Concentrations Measured in Samples of Firemain Water ... 343
Figure 3.7.3. Box and Dot Density Plot of Potential Hazard Quotients for Dissolved Metals in Samples of Firemain Water ... 344
Figure 3.7.4. Box and Dot Density Plot of Potential Hazard Quotients for Total Metals in Samples of Firemain Water ... 345
Figure 3.7.5. Box and Dot Density Plot of Classical Pollutants Measured in Samples of Firemain Water ... 348
Figure 3.7.6. Box and Dot Density Plot of SVOC Concentrations Measured in Samples of Firemain Water ... 351