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APPENDIX A 
ERROR ANALYSIS 

 
Estimating flow in a pipe or open channel is generally accomplished by measuring two or 
more variables and relating them with an equation to calculate the flow. The continuity 
equation relates flow to area and velocity: 
 

vAQ ×=       (A.1) 
where,  

A: Area 
  v : Velocity 
 
For a rectangular channel, the cross-sectional area can be calculated as the water depth 
multiplied by the width of the channel.  
 

wHA ×=       (A.2) 
where,  

H: Depth 
W: Width 

 
Velocity can be directly measured with a mechanical current meter or Doppler 
technology. Estimating flow in the rectangular channel requires three measured variables; 
each will have an error associated with it: 
 

vwHQ ××=       (A.3) 
 
For depth and width measurements, the accuracy will usually be expressed as absolute 
error governed by the tolerance of the measuring device (i.e. measured depth + X cm). 
For velocity, the error in measurement will most likely be a relative error expressed as a 
percent of the measured value (i.e. measured velocity + X %). The total error in the 
calculated flow measurement will include all of the errors associated with the individual 
measurements as illustrated in the following example:  
 
Equipment tolerances provided by manufacturers generally are based on laboratory data 
under ideal conditions (e.g. steady state, laminar flow), which may not be representative 
of installed conditions.  A recent USGS study compared several flow monitoring devices 
designed specifically for stormwater application, and found the error in the observed 
measurements ranged from 12 to 28 percent. 
 
The actual error is most likely somewhat less than the maximum error and mathematical 
formulas have been described by Taylor (1997), which describe how error propagates 
when variables (with associated errors) are combined.   
 
If variables xi (for I=1 to n) are measurements with small but known uncertainties δxi and 
are used to calculate some quantity q, then δxi cause uncertainty in q as follows.   
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If q is a function of one variable, q(x1), then 

1
1

x
dx
dq

q δδ =      (A.4) 

 
If q is the sum and/or difference of xis then 
 

( )
2

1

1

2








= ∑

=

n

i
ixq δδ  (for independent random errors) (A.5) 

 
Estimates of δq from Equation A.2 are always less than or equal to: 
 

∑= ixq δδ   

 
where xi are measured with small uncertainties δxi.  
 
If q is the product and quotient of xis then  
 

2
1

1

2




















= ∑

=

n

i i

i

x
x

q
δ

δ  (for independent random errors) (A.6) 

 
Estimates of δq from Equation A.6 are always less than or equal to: 
 

∑=
i

i

x
x

q
δ

δ       (A.7) 

 
This approach can be directly applied to the analysis of error propagation. Examples for 
applying this method to flow measurement follow. 
  
Relative Error in Flow Versus Relative Error in Head  
 
Errors in flow measurements are most often caused by field conditions that are 
inconsistent with the conditions under which rating curves for flow devices were 
calibrated.  However, even under ideal conditions, errors in flow measurement can be 
significant. This section discusses calculations for estimating the theoretical error 
associated with flow measurement equipment under ideal circumstances.  It can be seen 
that errors, particularly in low flow measurements, can be quite large.  
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Equations relating the head (H) measured in a primary device to discharge (Q) (i.e., 
Rating Equations) fall into four general forms: 
 
1) daHQ =  
2) dcHaQ )( +=  
3) dcbHaQ )( +=  
4) n

n HbHbHbHbaQ +++++= L3
3

2
21  

 
The first rating equation is a straight forward application of error propagation for a power 
function. This equation is 
 







=

H
H

dQQ
δ

δ       (A.8) 

 
Flow and head can only be positive values and the power for Rating Equation 1 is always 
positive (i.e., flow increases proportionally to head, not decreases), thus the absolute 
value sign is omitted in the above equation.  The relative error in flow equals the relative 
error in head multiplied by the exponent d. 
 
Rating Equations 2, 3, and 4 require an equation relating the error in flow to the 
derivative of the flow equation and the error in the measured head, which is: 
 

H
dH
dQ

Q δδ =       (A.9) 

 
Before applying this equation, the derivatives of Rating Equations 2, 3, and 4 are taken 
with respect to H.   
 
For Rating Equation 2:  

1)( −+= dcHad
dH
dQ

     (A.10) 

 
 
For Rating Equation 3: 

 1)( −+= dcbHabd
dH
dQ

     (A.11) 

 
 
For Rating Equation 4: 

12
3

1
21 32 −++++= n

n HnbHbHbb
dH
dQ

L     (A.12) 
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Prior to applying the equation to the derivatives of Rating Equations 2, 3, and 4 the 
equation is modified by dividing each side of the Equation  by the flow (Q).  This yields 
an equation for the relative error in the flow on the left hand side. 
 

Q
H

dH
dQ

Q
Q δδ

=      (A.13) 

 
Substituting flow Rating Equation 2 for Q and the derivative of Rating Equation 2 for 
dQ/dH into the right hand side of the above equation, yields: 
 

( )d
d

cHa
H

cHad
Q
Q

+
+= − δδ 1)(     (A.14) 

 
which reduces to: 
 

H
H

H
c

d
Q
Q δδ







 +

=
1

     (A.15) 

 
Equation A.11 relates the relative error in the flow to the relative error in the head. 
  
A similar analysis for Rating Equation 3 yields: 
 

H
H

bH
c

d
Q
Q δδ







 +

=
1

     (A.16) 

 
Determining an equation for the relative error for Rating Equation 4 is more 
cumbersome, but is calculated the same way: 
 

n
n

n
n HbHbHbHba

H
HnbHbHbb

Q
Q

+++++
++++= −

L
L 3

3
2

21

12
3

1
21 32

δδ
 (A.17) 

 
Rearranging yields: 
 

H
H

HbHbHbHba
HnbHbHbb

Q
Q

n
n

n
n δδ

+++++
++++

=
L

L
3

3
2

21

3
3

2
21 32

   (A.18) 

 
Equation A.4, A.11, A.12, and A.14 relate the relative error in flow to the relative error in 
head for four common equations describing flow through a primary device.  While the 
equations can be unwieldy, it is a relatively simple exercise to enter them into a 
spreadsheet program to estimate the error in flow based on estimated error in head and 
other variables.  Most primary devices have a relatively simple flow equation that is 
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sufficiently accurate throughout most of the flow range for the device, which allows for 
the use of an error equation related to one of the Rating Equations.   
 
The equations relating the relative error in the estimate of flow to the relative error in the 
measurement of head can also be expressed in terms of absolute errors by multiplying 
each side of the equations by Q.  For example the flow Equation 3 becomes: 
 

( ) HcbHabdcbHa
H
H

bH
c

d
Q
Q

Q dd δ
δδ 1)(

1

−+=+×






 +

=×   (A.19) 

 
An Example of Error Analysis for a BMP 
 
The following example illustrates how estimates of error propagation can be applied to 
flow measurements.  This example assumes a stormwater BMP has two separate sources 
of inflow and one outflow.  The flow measurement devices and errors are listed in Table 
1. 
 

Table A.1: Example of inputs for estimation of errors in flow measurement devices 
Station Variable Equipment Measured Value or 

formula 
Accuracy 

Inlet 1 Width Tape Measure 3 meters + 0.025 meters 
 Depth Pressure Transducer 1.2 meters + 0.007 meters 
 Velocity Doppler 0.071 meters/sec + 4 % 
Inlet 2 Depth Bubbler 0.12 meters + 0.001 meters 
  0.457 m (1.5’) 

Palmer-Bowlus 
Flume 

Q (L/s) =  
1076.4(H + 0.005715)1.8977 

+ 3 % 

Outlet  Depth Pressure Transducer 0.70 meters + 0.007 meters 
  45o V notch weir Q (L/s) = 571.4H2.5 + 6 % 

 
For Inlet 1, the flow calculation is: 
 

smmmQinlet  )071.0( )2.1( )3(1 ××=−  

smQinlet
3

1  2556.0=−  
 
The error associated with this measurement can be calculated using the equation for error 
of products and quotients (i.e., Equation A.6): 
 
Assuming that the errors are independent and randomly distributed, the relative error in q 
equals:  
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0413.0
222
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
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( )2
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007.0
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




+






=

q
qδ

 

 
 

smsmq 33  011.00413.0/ 2556.0 =×=δ  
So that: 

smQinlet
3

1  011.02556.0 ±=−  
 
For the Palmer-Bowlus Flume installed in Inlet 2, the equation that describes flow  (L/s) 
as function of water depth is:  

8977.1
2 )005715.0(4.1076 +×=− HQinlet  

 
Therefore: 

8977.1
2 )005715.012.0(4.1076 +×=−inletQ  

smsLQinlet
3

2  0210.0/032.21 ==−  
 
The error associated with flow measurement above is proportional to the precision of the 
transducer used to measure the water depth (i.e.,  + 0.007 meters) and the error intrinsic 
to the primary device (a relative error of 3%).  Rating Equation 1 is used for this case; 
Equation A.8 can be used to determine the magnitude of relative error in the flow 
measurement as: 
 

H
H

H
c

d
Q
Q δδ







 +

=
1

 

 

11.0
 12.0
 007.0

 12.0
005715.0

1

8977.1
=







 +

=
m
m

m
Q
Qδ

 

 
smsmQ 33  00231.011.0/021.0 =×=δ  

 
Relative error for the flume itself also has to be included.  Since the error is a function of 
one variable, it can be calculated using Equation A.4: 
 

smsmx
dx
dq

q 33  00063.0 021.003.0 =×== δδ  
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The total error is therefore the sum of errors associated with the measuring device 
(Equation A.5). 
  

smq totalinlet
322

)(2  0024.000063.00023.0 =+=−δ  
 

smQinlet
3

2 0024.00210.0 ±=−  
 
For the Outlet weir, the flow can be calculated using the following equation: 
 

5.24.571 HQ ×=  
 

smsLQ 35.2  234.0/25.23470.04.571 ==×=  
  
This is also a power function (Rating Equation 1) and the error can be calculated 
similarly to the equation for the flume: 
 

smsmQ / 059.0/ 234.0
70.0

007.0
5.2 33 ==δ  

 
The error associated with the weir itself is a single variable as was the flume: 

smsmq / 014.0/234.006.0 33 =×=δ  
 
The total error is the sum of the errors associated with the measuring device and is 
calculated as follows: 
  

smq totalOutlet
322

)(  061.0014.0059.0 =+=δ  
 

smQoutlet
3 061.0234.0 ±=  

 
Results of this error analysis are provided below in Table A.2. 
 
Table A.2: Summary of examples demonstrating the propagation of errors in flow 
measurement 

 Flow (m3/sec) Total Error  (m3/sec) Total Relative Error 
(m3/sec) 

Inlet-1 0.255 + 0.011 4% 
Inlet-2 0.021 + 0.0024 11% 
Outlet 0.234 + 0.061 26% 
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APPENDIX B 
NUMBER OF SAMPLES REQUIRED FOR VARIOUS POWERS, CONFIDENCE 

INTERVALS, AND PERCENT DIFFERENCES 
 
The figures in this Appendix are from: R. Pitt and K. Parmer. Quality Assurance Project 
Plan (QAPP) for EPA Sponsored Study on Control of Stormwater Toxicants. Department 
of Civil and Environmental Engineering, University of Alabama at Birmingham. 1995. 
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APPENDIX C 
DERIVATION OF THE NUMBER OF SAMPLES REQUIRED TO MEASURE A 

STATISTICAL DIFFERENCE IN POPULATION MEANS 
 

Define:  COV = σ / C  
 

% removal = ( )
in

outin

C
CC −  

Setting the lower boundary of the influent confidence interval to the upper boundary of the 
effluent confidence interval gives: 

n
C

n
C out

out
in

in

σσ
αα 22

Ζ+=Ζ−  

The COV is substituted for the σ in the above equation.  While the σ of a BMP effluent is almost 
certainly less than the σ of the BMP influent, the assumption that COVin = COVout is a more 
reasonable one.  In most instances the COV of the BMP effluent would be less than the influent.  
Ample data are available for estimating the COV for influent flows to stormwater BMPs, such as 
the ASCE database; this is not the case for effluent flows.  It is also assumed that n is the same 
for the influent and effluent (nin = nout).  These assumptions simplify the equation.   
 
Substituting σin  = COV × inC  and σout  = COV × outC , where COVin = COVout yield: 
 

n

CCOV
C

n

CCOV
C out

out
in

in

×
Ζ+=

×
Ζ−

22
αα  

rearranging: 
 








 +
Ζ×=−

n

CC
COVCC outin

outin
2

α  

 
Substituting for )(%removalCCC ininout −=  gives: 
 








 ×−×
Ζ×=×

n

CremovalC
COVremovalC inin

in

%2
%

2
α  

 
Dividing both sides by inC and solving for n yields: 
 

( ) 2

2

%

%2











 −××Ζ
=

removal

removalCOV
n

α
 

 
The above approach considers the number of samples required for a power of 50%.   For an 
arbitrary power the equation becomes: 
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( )
2

22

%

%2

















 −××





 Ζ+Ζ

=
removal

removalCOV
n

βα

 

where,  
Zβ/2:  false negative rate (1-β is the power. If used, a value of β of 0.2 is common, but it 

is frequently ignored, corresponding to a β of 0.5.) 
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APPENDIX D 
RELATIONSHIPS OF LOG-NORMAL DISTRIBUTIONS 

 
Table D.1 

 

T = EXP (U) S = M * CV 

M = EXP (U + 0.5 * W2) W = SQRT (LN (1 + CV2) 

M = T * SQRT (1 + CV2) U = LN (M/EXP (O.5 * W2)) 

CV = SQRT (EXP (W2) - 1) U = LN (M/SQRT (1 + CV2) 

 
Parameter designations are defined as: 

        Arithmetic  Logarithmic 

 MEAN       M   U 
 STD DEVIATION    S W 
 COEF OF VARIATION   CV 
 MEDIAN      T 

 LN(x) designates the base e logarithm of the value x   
 SQRT(x) designates the square root of the value x  
 EXP(x) designates e to the power x 


