Chapter 1: The Basics of Illicit Discharges

An understanding of the nature of illicit discharges in urban watersheds is essential to find, fix and prevent them. This chapter begins by defining the terms used to describe illicit discharges, and then reviews the water quality problems they cause. Next, the chapter presents the regulatory context for controlling illicit discharges, and reviews the experience local communities have gained in detecting and eliminating them.

1.1 Important Terminology and Key Concepts

This Manual uses several important terms throughout the text that merit upfront explanation. This section defines the terminology to help program managers perform important illicit discharge detective work in their communities. Key concepts are presented to classify illicit discharges, generating sites and control techniques.

Illicit Discharge

The term “illicit discharge” has many meanings in regulation and practice, but we use a four-part definition in this manual.

1. Illicit discharges are defined as a storm drain that has measurable flow during dry weather containing pollutants and/or pathogens. A storm drain with measurable flow but containing no pollutants is simply considered a discharge.

2. Each illicit discharge has a unique frequency, composition and mode of entry in the storm drain system.

3. Illicit discharges are frequently caused when the sewage disposal system interacts with the storm drain system. A variety of monitoring techniques is used to locate and eliminate illegal sewage connections. These techniques trace sewage flows from the stream or outfall, and go back up the pipes or conveyances to reach the problem connection.

4. Illicit discharges of other pollutants are produced from specific source areas and operations known as “generating sites.” Knowledge about these generating sites can be helpful to locate and prevent non-sewage illicit discharges. Depending on the regulatory status of specific “generating sites,” education, enforcement and other pollution prevention techniques can be used to manage this class of illicit discharges.

Communities need to define illicit discharges as part of an illicit discharge ordinance. Some non-storm water discharges to the MS4 may be allowable, such as discharges resulting from fire fighting activities and air conditioning condensate. Chapter 4 provides more detail on ordinance development.

1 40 CFR 122.26(b)(2) defines an illicit discharge as any discharge to an MS4 that is not composed entirely of storm water, except allowable discharges pursuant to an NPDES permit, including those resulting from fire fighting activities.
Chapter 1: The Basics of Illicit Discharges

Storm Drain

A storm drain can be either an enclosed pipe or an open channel. From a regulatory standpoint, major storm drains are defined as enclosed storm drain pipes with a diameter of 36 inches, or greater or open channels that drain more than 50 acres. For industrial land uses, major drains are defined as enclosed storm drain pipes 12 inches or greater in diameter and open channels that drain more than two acres. Minor storm drains are smaller than these thresholds. Both major and minor storm drains can be a source of illicit discharges, and both merit investigation.

Some “pipes” found in urban areas may look like storm drains but actually serve other purposes. Examples include foundation drains, weep holes, culverts, etc. These pipes are generally not considered storm drains from a regulatory or practical standpoint. Small diameter “straight pipes,” however, are a common source of illicit discharges in many communities and should be investigated to determine if they are a pollutant source.

Not all dry weather storm drain flow contains pollutants or pathogens. Indeed, many communities find that storm drains with dry weather flow are, in fact, relatively clean. Flow in these drains may be derived from springs, groundwater seepage, or leaks from water distribution pipes. Consequently, field testing and/or water quality sampling are needed to confirm whether pollutants are actually present in dry weather flow, in order to classify them as an illicit discharge.

Discharge Frequency

The frequency of dry weather discharges in storm drains is important, and can be classified as continuous, intermittent or transitory.

Continuous discharges occur most or all of the time, are usually easier to detect, and typically produce the greatest pollutant load. Intermittent discharges occur over a shorter period of time (e.g., a few hours per day or a few days per year). Because they are infrequent, intermittent discharges are hard to detect, but can still represent a serious water quality problem, depending on their flow type. Transitory discharges occur rarely, usually in response to a singular event such as an industrial spill, ruptured tank, sewer break, transport accident or illegal dumping episode. These discharges are extremely hard to detect with routine monitoring, but under the right conditions, can exert severe water quality problems on downstream receiving waters.

Discharge Flow Types

Dry weather discharges are composed of one or more possible flow types:

- Sewage and septage flows are produced from sewer pipes and septic systems.
- Washwater flows are generated from a wide variety of activities and operations. Examples include discharges of gray water (laundry) from homes, commercial carwash wastewater, fleet washing, commercial laundry wastewater, and floor washing to shop drains.
- Liquid wastes refers to a wide variety of flows, such as oil, paint, and process water (radiator flushing water, plating bath wastewater, etc.) that enter the storm drain system.
- Tap water flows are derived from leaks and losses that occur during the distribution of drinking water in the water supply system. Tap water discharges in the storm drain system may be more prevalent in communities
with high loss rates (i.e., greater than 15%) in their potable water distribution system. (source of 15% is from National Drinking Water Clearinghouse http://www.nesc.wvu.edu/ndwc/articles/OT/FA02/Economics_Water.html)

- **Landscape irrigation** flows occur when excess potable water used for residential or commercial irrigation ends up in the storm drain system.

- **Groundwater and spring water** flows occur when the local water table rises above the bottom elevation of the storm drain (known as the invert) and enters the storm drain either through cracks and joints, or where open channels or pipes associated with the MS4 may intercept seeps and springs.

Water quality testing is used to conclusively identify flow types found in storm drains. Testing can distinguish illicit flow types (sewage/septage, washwater and liquid wastes) from cleaner discharges (tap water, landscape irrigation and ground water).

Each flow type has a distinct chemical fingerprint. Table 1 compares the pollutant fingerprint for different flow types in Alabama. The chemical fingerprint for each flow type can differ regionally, so it is a good idea to develop your own “fingerprint” library by sampling each local flow type.

In practice, many storm drain discharges represent a blend of several flow types, particularly at larger outfalls that drain larger catchments. For example, groundwater flows often dilute sewage thereby masking its presence. Chapter 12 presents several techniques to help isolate illicit discharges that are blended with cleaner discharges. Illicit discharges are also masked by high volumes of storm water runoff making it difficult and frequently impossible to detect them during wet weather periods.

Mode of Entry

Illicit discharges can be further classified based on how they enter the storm drain system. The **mode of entry** can either be direct or indirect. Direct entry means that the discharge is directly connected to the storm drain pipe through a sewage pipe, shop drain, or other kind of pipe. Direct entry usually produces discharges that are continuous or intermittent. Direct entry usually occurs when two different kinds of “plumbing” are improperly connected. The three main situations where this occurs are:

- **Sewage cross-connections**: A sewer pipe that is improperly connected to the storm drain system produces a continuous discharge of raw sewage to the pipe (Figure 1). Sewage cross-connections can occur in catchments where combined sewers or septic systems are converted to a separate sewer system, and a few pipes get “crossed.”

- **Straight pipe**: This term refers to relatively small diameter pipes that intentionally bypass the sanitary connection or septic drain fields, producing a direct discharge into open channels or streams as shown in Figure 2.

![Figure 1: Sewer Pipe Discharging to the Storm Drain System](image)
Chapter 1: The Basics of Illicit Discharges

Table 1: Comparative “Fingerprint” (Mean Values) of Flow Types

<table>
<thead>
<tr>
<th>Flow Type</th>
<th>Hardness (mg/L as CaCO3)</th>
<th>NH₃ (mg/L)</th>
<th>Potassium (mg/L)</th>
<th>Conductivity (µS/cm)</th>
<th>Fluoride (mg/L)</th>
<th>Detergents (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewage</td>
<td>50 (0.26)*</td>
<td>25 (0.53)*</td>
<td>12 (0.21)*</td>
<td>1215 (0.45)*</td>
<td>0.7 (0.1)*</td>
<td>9.7 (0.17)*</td>
</tr>
<tr>
<td>Septage**</td>
<td>57 (0.36)</td>
<td>87 (0.4)</td>
<td>19 (0.42)</td>
<td>502 (0.42)</td>
<td>0.93 (0.39)</td>
<td>3.3 (1.33)</td>
</tr>
<tr>
<td>Laundry Washwater</td>
<td>45 (0.33)</td>
<td>3.2 (0.89)</td>
<td>6.5 (0.78)</td>
<td>463.5 (0.88)</td>
<td>0.85 (0.4)</td>
<td>758 (0.27)</td>
</tr>
<tr>
<td>Car Washwater</td>
<td>71 (0.27)</td>
<td>0.9 (1.4)</td>
<td>3.6 (0.67)</td>
<td>274 (0.45)</td>
<td>1.2 (1.56)</td>
<td>140 (0.2)</td>
</tr>
<tr>
<td>Plating Bath (Liquid Industrial Waste**)</td>
<td>1430 (0.32)</td>
<td>66 (0.66)</td>
<td>1009 (1.24)</td>
<td>10352 (0.45)</td>
<td>5.1 (0.47)</td>
<td>6.8 (0.68)</td>
</tr>
<tr>
<td>Radiator Flushing (Liquid Industrial Waste**)</td>
<td>5.6 (1.88)</td>
<td>26 (0.89)</td>
<td>2801 (0.13)</td>
<td>3280 (0.21)</td>
<td>149 (0.16)</td>
<td>15 (0.11)</td>
</tr>
<tr>
<td>Tap Water</td>
<td>52 (0.27)</td>
<td><0.06 (0.55)</td>
<td>1.3 (0.37)</td>
<td>140 (0.07)</td>
<td>0.94 (0.07)</td>
<td>0 (NA)</td>
</tr>
<tr>
<td>Groundwater</td>
<td>38 (0.19)</td>
<td>0.06 (1.35)</td>
<td>3.1 (0.55)</td>
<td>149 (0.24)</td>
<td>0.13 (0.93)</td>
<td>0 (NA)</td>
</tr>
<tr>
<td>Landscape Irrigation</td>
<td>53 (0.13)</td>
<td>1.3 (1.12)</td>
<td>5.6 (0.5)</td>
<td>180 (0.1)</td>
<td>0.61 (0.35)</td>
<td>0 (NA)</td>
</tr>
</tbody>
</table>

* The number in parentheses after each concentration is the Coefficient of Variation; NA = Not Applicable
** All values are from Tuscaloosa, AL monitoring except liquid wastes and septage, which are from Birmingham, AL.
Sources: Pitt (project support material) and Pitt et al. (1993)

Sewage has the greatest potential to produce direct illicit discharges within any urban subwatershed, regardless of the diverse land uses that it comprises. The most commonly reported sewage-related direct discharges are broken sanitary sewer lines (81% of survey respondents), cross-connections (71% of survey respondents), and straight pipe discharges (38% of survey respondents). (CWP, 2002).

Older industrial areas tend to have a higher potential for illicit cross-connections.

Indirect entry means that flows generated outside the storm drain system enter through storm drain inlets or by infiltrating through the joints of the pipe. Generally, indirect modes of entry produce intermittent or transitory discharges, with the exception of groundwater seepage. The five main modes of indirect entry for discharges include:

Groundwater seepage into the storm drain pipe: Seepage frequently occurs in storm

Industrial and commercial cross-connections: These occur when a drain pipe is improperly connected to the storm drain system producing a discharge of wash water, process water or other inappropriate flows into the storm drain pipe. A floor shop drain that is illicitly connected to the storm drain system is illustrated in Figure 3.
drains after long periods of above average rainfall. Seepage discharges can be either continuous or intermittent, depending on the depth of the water table and the season. Groundwater seepage usually consists of relatively clean water that is not an illicit discharge by itself, but can mask other illicit discharges. If storm drains are located close to sanitary sewers, groundwater seepage may intermingle with diluted sewage.

Spills that enter the storm drain system at an inlet: These transitory discharges occur when a spill travels across an impervious surface and enters a storm drain inlet. Spills can occur at many industrial, commercial and transport-related sites. A very common example is an oil or gas spill from an accident that then travels across the road and into the storm drain system (Figure 4).

Dumping a liquid into a storm drain inlet: This type of transitory discharge is created when liquid wastes such as oil, grease, paint, solvents, and various automotive fluids are dumped into the storm drain (Figure 5). Liquid dumping occurs intermittently at sites that improperly dispose of rinse water and wash water during maintenance and cleanup operations. A common example is cleaning deep fryers in the parking lot of fast food operations.

Outdoor washing activities that create flow to a storm drain inlet: Outdoor washing may or may not be an illicit discharge, depending on the nature of the generating site that produces the wash water. For example, hosing off individual sidewalks and driveways may not generate significant flows or pollutant loads. On the other hand, routine washing of fueling areas, outdoor storage areas, and parking lots (power washing), and construction equipment cleanouts may result in unacceptable pollutant loads (Figure 6).

Non-target irrigation from landscaping or lawns that reaches the storm drain system: Irrigation can produce intermittent discharges from over-watering or misdirected sprinklers that send tap water over impervious areas (Figure 7). In some instances, non-target irrigation can produce unacceptable loads of nutrients, organic matter or pesticides. The most common example is a discharge from commercial landscaping areas adjacent to parking lots connected to the storm drain system.
Land Use and Potential Generating Sites

Land use can predict the potential for indirect discharges, which are often intermittent or transitory. Many indirect discharges can be identified and prevented using the concept of “generating sites,” which are sites where common operations can generate indirect discharges in a community. Both research and program experience indicate that a small subset of generating sites within a broader land use category can produce most of the indirect discharges. Consequently, the density of potential generating sites within a subwatershed may be a good indicator of the severity of local illicit discharge problems. Some common generating sites within major land use categories are listed in Table 2, and described below.

Residential Generating Sites: Failing septic systems were the most common residential discharge reported in 33% of IDDE programs surveyed (CWP, 2002). In addition, indirect residential discharges were
also frequently detected in 20% of the IDDE programs surveyed, which consisted of oil dumping, irrigation overflows, swimming pool discharges, and car washing. Many indirect discharges are caused by common residential behaviors and may not be classified as “illicit” even though they can contribute to water quality problems. With the exception of failing septic systems and oil dumping, most communities have chosen education rather than enforcement as the primary tool to prevent illicit discharges from residential areas.

Commercial Generating Sites: Illicit discharges from commercial sites were reported as frequent in almost 20% of local IDDE programs surveyed (CWP, 2002). Typical commercial discharge generators included operations such as outdoor washing; disposal of food wastes; car fueling, repair, and washing; parking lot power washing; and poor dumpster management. Recreational areas, such as marinas and campgrounds, were also reported to be a notable source of sewage discharges. It is important to note that not all businesses within a generating category actually produce illicit discharges; generally only a relatively small fraction do. Consequently, on-site inspections of individual businesses are needed to confirm whether a property is actually a generating site.

\begin{quote}
\textbf{Sewage} can also be linked to significant \textit{indirect} illicit discharges in the form of sanitary sewer overflows (52\% of survey respondents), sewage infiltration/inflow (48\% of survey respondents), and sewage dumping from recreational vehicles (33\% of survey respondents) (CWP, 2002).
\end{quote}
<table>
<thead>
<tr>
<th>Land Use</th>
<th>Generating Site</th>
<th>Activity that Produces Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>• Apartments
• Multi-family
• Single Family Detached</td>
<td>• Car Washing
• Driveway Cleaning
• Dumping/Spills (e.g., leaf litter and RV/boat holding tank effluent)
• Equipment Washdowns
• Lawn/Landscape Watering
• Septic System Maintenance
• Swimming Pool Discharges</td>
</tr>
<tr>
<td>Commercial</td>
<td>• Campgrounds/RV parks
• Car Dealers/Rental Car Companies
• Car Washes
• Commercial Laundry/Dry Cleaning
• Gas Stations/Auto Repair Shops
• Marinas
• Nurseries and Garden Centers
• Oil Change Shops
• Restaurants
• Swimming Pools</td>
<td>• Building Maintenance (power washing)
• Dumping/Spills
• Landscaping/Grounds Care (irrigation)
• Outdoor Fluid Storage
• Parking Lot Maintenance (power washing)
• Vehicle Fueling
• Vehicle Maintenance/Repair
• Vehicle Washing
• Washdown of greasy equipment and grease traps</td>
</tr>
<tr>
<td>Industrial</td>
<td>• Auto recyclers
• Beverages and brewing
• Construction vehicle washouts
• Distribution centers
• Food processing
• Garbage truck washouts
• Marinas, boat building and repair
• Metal plating operations
• Paper and wood products
• Petroleum storage and refining
• Printing</td>
<td>• All commercial activities
• Industrial process water or rinse water
• Loading and un-loading area washdowns
• Outdoor material storage (fluids)</td>
</tr>
<tr>
<td>Institutional</td>
<td>• Cemeteries
• Churches
• Corporate Campuses
• Hospitals
• Schools and Universities</td>
<td>• Building Maintenance (e.g., power washing)
• Dumping/Spills
• Landscaping/Grounds Care (irrigation)
• Parking Lot Maintenance (power washing)
• Vehicle Washing</td>
</tr>
<tr>
<td>Municipal</td>
<td>• Airports
• Landfills
• Maintenance Depots
• Municipal Fleet Storage Areas
• Ports
• Public Works Yards
• Streets and Highways</td>
<td>• Building Maintenance (power washing)
• Dumping/Spills
• Landscaping/Grounds Care (irrigation)
• Outdoor Fluid Storage
• Parking Lot Maintenance (power washing)
• Road Maintenance
• Spill Prevention/Response
• Vehicle Fueling
• Vehicle Maintenance/Repair
• Vehicle Washing</td>
</tr>
</tbody>
</table>
Chapter 1: The Basics of Illicit Discharges

Industrial Generating Sites: Industrial sites produce a wide range of flows that can cause illicit discharges. The most common continuous discharges are operations involving the disposal of rinse water, process water, wash water and contaminated, non-contact cooling water. Spills and leaks, ruptured pipes, and leaking underground storage tanks are also a source of indirect discharges. Illicit discharges from industry were detected in nearly 25% of the local IDDE programs surveyed (CWP, 2002).

Industries are classified according to hundreds of different Standard Industrial Classification (SIC) codes. The SIC coding system also includes commercial, institutional and municipal operations. Many industries are required to have storm water pollution prevention and spill response plans under EPA’s Industrial Storm Water NPDES Permit Program. A complete list of the industries covered by the Storm Water NPDES Permit Program can be found in Appendix A. The appendix also rates each industrial category based on its potential to produce illicit discharges, based on analysis by Pitt (2001).

Institutional Generating Sites: Institutions such as hospitals, corporate campuses, colleges, churches, and cemeteries can be generating sites if routine maintenance practices/operations create discharges from parking lots and other areas. Many large institutional sites have their own areas for fleet maintenance, fueling, outdoor storage, and loading/unloading that can produce indirect discharges.

Municipal Generating Sites: Municipal generating sites include operations that handle solid waste, water, wastewater, street and storm drain maintenance, fleet washing, and yard waste disposal. Transport-related areas such as streets and highways, airports, rail yards, and ports can also generate indirect discharges from spills, accidents and dumping.

Finding, Fixing, and Preventing Illicit Discharges

The purpose of an IDDE program is to find, fix and prevent illicit discharges, and a series of techniques exist to meet these objectives. The remainder of the manual describes the major tools used to build a local IDDE program, but they are briefly introduced below:

Finding Illicit Discharges

The highest priority in most programs is to find any continuous and intermittent sewage discharges to the storm drain system. A range of monitoring techniques can be used to find sewage discharges. In general, monitoring techniques are used to find problem areas and then trace the problem back up the stream or pipe to identify the ultimate generating site or connection. Monitoring can sometimes pick up other types of illicit discharge that occur on a continuous or intermittent basis (e.g., wash water and liquid wastes). Monitoring techniques are classified into three major groups:

- Outfall Reconnaissance Inventory
- Indicator Monitoring at Storm Water Outfalls and In-stream
- Tracking Discharges to their Source

2 More recently, federal agencies including EPA, have adopted the North American Industry Classification System (NAICS, pronounced “Nakes”) as the industry classification system. For more information on the NAICS and how it correlates with SIC, visit http://www.census.gov/epcd/www/naics.html.
Fixing Illicit Discharges

Once sewage discharges or other connections are discovered, they can be fixed, repaired or eliminated through several different mechanisms. Communities should establish targeted education programs along with legal authority to promote timely corrections. A combination of carrots and sticks should be available to deal with the diversity of potential dischargers.

Preventing Illicit Discharges

The old adage “an ounce of prevention is worth a pound of cure” certainly applies to illicit discharges. Transitory discharges from generating sites can be minimized through pollution prevention practices and well-executed spill management and response plans. These plans should be frequently practiced by local emergency response agencies and/or trained workers at generating sites. Other pollution prevention practices are described in Chapter 9 and explored in greater detail in Manual 8 of the Urban Subwatershed Restoration Manual Series (Schueler et al., 2004).

National Urban Runoff Project

EPA’s National Urban Runoff Project (NURP) studies highlighted the significance of pollutants from illicit entries into urban storm sewerage (EPA, 1983). Such entries may be evidenced by flow from storm sewer outlets following substantial dry periods. Such flow, frequently referred to as “baseflow” or “dry weather flow”, could be the result of direct “illicit connections” as mentioned in the NURP final report (EPA, 1983), or could result from indirect connections (such as leaky sanitary sewer contributions through infiltration). Many of these dry weather flows are continuous and would therefore occur during rain induced runoff periods. Pollutant contributions from dry weather flows in some storm drains have been shown to be high enough to significantly degrade water quality because of their substantial contributions to the annual mass pollutant loadings to receiving waters (project research).
1.2 The Importance of Illicit Discharges in Urban Water Quality

Dry and wet weather flows have been monitored during several urban runoff studies. These studies have found that discharges observed at outfalls during dry weather were significantly different from wet weather discharges. Data collected during the 1984 Toronto Area Watershed Management Strategy Study monitored and characterized both storm water flows and baseflows (Pitt and McLean, 1986). This project involved intensive monitoring in two test areas (a mixed residential/commercial area and an industrial area) during warm, cold, wet, and dry weather. The annual mass discharges of many pollutants were found to be greater in dry weather flows than in wet weather flows.

A California urban discharge study identified commercial and residential discharges of oil and other automobile-related fluids as a common problem based on visual observations (Montoya, 1987). In another study, visual inspection of storm water pipes discharging to the Rideau River in Ontario found leakage from sanitary sewer joints or broken pipes to be a major source of storm drain contamination (Pitt, 1983).

Several urban communities conducted studies to identify and correct illicit connections to their storm drain systems during the mid-1980s. These studies were usually taken in response to receiving water quality problems or as part of individual NURP research projects. The studies indicated the magnitude and extent of cross-connection problems in many urban watersheds. For example, Washtenaw County, Michigan tested businesses to locate direct illicit connections to the county storm drain system. Of the 160 businesses tested, 38% were found to have illicit storm drain connections (Schmidt and Spencer, 1986). An investigation of the separate storm sewer system in Toronto, Ontario revealed 59% of outfalls had dry weather flows, while 14% of the total outfalls were characterized as “grossly polluted,” based on a battery of chemical tests (GLA, 1983). An inspection of the 90 urban storm water outfalls draining into Grays Harbor in Washington showed that 32% had dry weather flows (Pelletier and Determan, 1988). An additional 19 outfalls were considered suspect, based on visual observation and/or elevated pollutant levels compared to typical urban storm water runoff.

The Huron River Pollution Abatement Program ranks as one of the most thorough and systematic early investigations of illicit discharges (Washtenaw County, 1988). More than a thousand businesses, homes and other buildings located in the watershed were dye tested. Illicit connections were found at 60% of the automobile-related businesses tested, which included service stations, automobile dealerships, car washes, and auto body and repair shops. All plating shops inspected were found to have illicit storm drain connections. Additionally, 67% of the manufacturers, 20% of the private service agencies and 88% of the wholesale/retail establishments tested were found to have illicit storm sewer connections. Of the 319 homes dye tested, 19 were found to have direct sanitary connections to storm drains. The direct discharge of rug-cleaning wastes into storm drains by carpet cleaners was also noted as a common problem.

Eliminating illicit discharges is a critical component to restoring urban watersheds. When bodies of water cannot meet designated uses for drinking water, fishing, or recreation, tourism and waterfront home
values may fall; fishing and shellfish harvesting can be restricted or halted; and illicit discharges can close beaches, primarily as a result of bacteria contamination. In addition to the public health and economic impacts associated with illicit discharges, significant impacts to aquatic life and wildlife are realized. Numerous fish kills and other aquatic life losses have occurred in watersheds as a result of illicit or accidental dumping and spills that have resulted in lethal pollutant concentrations in receiving waters.

1.3 Regulatory Background For Illicit Discharges

The history of illicit discharge regulations is long and convoluted, reflecting an ongoing debate as to whether they should be classified as a point or nonpoint source of pollution. The Clean Water Act amendments of 1987 contained the first provisions to specifically regulate discharges from storm drainage systems. Section 402(p)(3)(B) provides that “permits for such discharges:

(i) May be issued on a system or jurisdiction-wide basis

(ii) Shall include a requirement to effectively prohibit non-storm water discharges into the storm sewers; and

(iii) Shall require controls to reduce the discharge of pollutants to the maximum extent practical including management practices, control techniques and system design and engineering methods, and such provisions as the Administrator or the State determines appropriate for the control of such pollutants.”

In the last 15 years, NPDES permits have gradually been applied to a greater range of communities. In 1990, EPA issued a final rule, known as Phase I to implement section 402(p) of the Clean Water Act through the NPDES permit system. The EPA effort expanded in December 1999, when the Phase II final rule was issued. A summary of how both rules pertain to MS4s and illicit discharge control is provided below.

Summary of NPDES Phase I Requirements

The NPDES Phase I permit program regulates municipal separate storm sewer systems (MS4s) meeting the following criteria:

- Storm sewer systems located in an incorporated area with a population of 100,000 or more
- Storm sewer systems located in 47 counties identified by EPA as having populations over 100,000 that were unincorporated but considered urbanized areas
- Other storm sewer systems that are specially designated based on the location of storm water discharges with respect to waters of the United States, the size of the discharge, the quantity and nature of the pollutants discharged, and the interrelationship to other regulated storm sewer systems, among other factors

An MS4 is defined as any conveyance or system of conveyances that is owned or operated by a state or local government entity designed for collecting and conveying storm water, which is not part of a Publicly Owned Treatment Works. The total number of permitted MS4s in the Phase I program is 1,059.
Phase I MS4s were required to submit a two-part application. The first part required information regarding existing programs and the capacity of the municipality to control pollutants. Part 1 also required identification of known “major” outfalls discharging to waters of the United States, and a field screening analysis of representative major outfalls to detect illicit connections. Part 2 of the application required identification of additional major outfalls, limited monitoring, and a proposed storm water management plan (EPA, 1996).

Phase I communities were required to develop programs to detect and remove illicit discharges, and to control and prevent improper disposal into the MS4 of materials such as used oil or seepage from municipal sanitary sewers. The illicit discharge programs were required to include the following elements:

- Implementation and enforcement of an ordinance, orders or similar means to prevent illicit discharges to the MS4
- Procedures to conduct ongoing field screening activities during the life of the permit
- Procedures to be followed to investigate portions of the separate storm sewer system that, based on the results of the field screening required in Part 2 of the application, indicate a reasonable potential for containing illicit discharges or other sources of non-storm water
- Procedures to prevent, contain, and respond to spills that may discharge into the MS4
- A program to promote, publicize, and facilitate public reporting of the presence of illicit discharges or water quality impacts associated with discharges from the MS4
- Educational activities, public information activities, and other appropriate activities to facilitate the proper management and disposal of used oil and toxic materials
- Controls to limit infiltration of seepage from municipal sanitary sewers to the MS4

3A “major” outfall is defined as an MS4 outfall that discharges from a single pipe with an inside diameter of at least 36 inches, or discharges from a single conveyance other than a circular pipe serving a drainage area of more than 50 acres. An MS4 outfall with a contributing industrial land use that discharges from a single pipe with an inside diameter of 12 inches or more or discharges from a single conveyance other than a circular pipe serving a drainage area of more than two acres.
Summary of NPDES Phase II Requirements

The Phase II Final Rule, published in the Federal Register regulates MS4s that meet both of the following criteria:

- Storm sewer systems that are not a medium or large MS4 covered by Phase I of the NPDES Program
- Storm sewer systems that are located in an Urbanized Area (UA) as defined by the Bureau of the Census, or storm sewer systems located outside of a UA that are designated by NPDES permitting authorities because of one of the following reasons:
 - The MS4’s discharges cause, or have the potential to cause, an adverse impact on water quality
 - The MS4 contributes substantially to the pollutant loadings of a physically interconnected MS4 regulated by the NPDES storm water program

MS4s that meet the above criteria are referred to as regulated small MS4s. Each regulated small MS4 must satisfy six minimum control measures:

1. Public education and outreach
2. Public participation/involvement
3. Illicit discharge detection and elimination
4. Construction site runoff control
5. Post-construction runoff control
6. Pollution prevention/Good housekeeping

Under the third minimum measure, an illicit discharge is defined as any discharge to an MS4 that is not composed entirely of storm water, except allowable discharges pursuant to an NPDES permit, including those resulting from fire fighting activities (40 CFR 122.26(b)(2)). To satisfy this minimum measure, the regulated small MS4 must include the following five components:

- Develop a storm sewer system map that shows the location of all outfalls and the names and locations of all waters of the United States that receive discharges from those outfalls
- Prohibit, through ordinance or other regulatory mechanism, non-storm water discharges into the storm sewer system and implement appropriate enforcement procedures and actions
- Develop and implement a plan to detect and address illicit discharges to the MS4
- Educate public employees, businesses, and the general public of hazards associated with illicit discharges and improper disposal of waste
- Identify the appropriate best management practices and measurable goals for this minimum measure
Chapter 1: The Basics of Illicit Discharges

PHASE II HIGHLIGHTS

Who must meet the requirements? Selected small MS4s
How many Phase II communities exist nationally? EPA estimates 5,000–6,000
What are the requirements related to illicit discharges? Develop programs to prevent, detect and remove illicit discharges
What is the deadline for meeting these requirements? Permits issued by March 10, 2003. Programs must be fully implemented by the end of first permit term (5 years)

In the regulation, EPA recommends that the plan to detect and address illicit discharges include procedures for:

- Locating priority areas likely to have illicit discharges (which may include visually screening outfalls during dry weather and conducting field tests of selected pollutants)
- Tracing the source of an illicit discharge
- Removing the source of the discharge
- Program evaluation and assessment

1.4 Experience Gained in Phase I

The Center for Watershed Protection conducted a series of surveys and interviews with Phase I communities to determine the current state of the practices utilized in local IDDE programs, and to identify the most practical, low-cost, and effective techniques to find, fix and prevent discharges. The detailed survey included 24 communities from various geographic and climatic regions in the United States. Some of the key findings of the survey are presented below (CWP, 2002):

- Lack of staff significantly hindered implementation of a successful IDDE program. Phase I communities rely heavily on the expertise of their field staff—practical expertise that has been acquired over many years as programs gradually developed. Methods or approaches recommended for Phase II communities should be less dependent on professional judgment.

4 Survey results are based on responses from 24 jurisdictions from 16 states. Surveys were supplemented by on-site interviews of staff of eight IDDE programs: Baltimore City, MD; Baltimore County, MD; Boston Water and Sewer Commission (BWSC), MA; Cambridge, MA; Dayton, OH; Raleigh, NC; Wayne County, MI; and Fort Worth, TX. Jurisdictions selected for the survey and interviews represent a variety of geographic and climatic regions. The EPA storm water coordinators for each region of the country were contacted for recommendations on jurisdictions to include in the survey. Also, a variety of jurisdiction sizes in terms of population, IDDE program service area, and land use was targeted.
• Clear and effective ordinance language should be adopted by Phase II communities to ensure that all potential sources of illicit discharges are prohibited, and that the community has sufficient legal authority to inspect private properties and enforce corrections.

• Many communities lacked up-to-date mapping resources, and found that mapping layers such as storm sewers, open drainage channels, waters of the U.S., outfalls, and land use were particularly useful to conduct and prioritize effective field investigations.

• Outfall screening required the greatest staff and equipment resources, and did not always find problem outfalls. Communities recommended a fast and efficient sampling approach that utilizes a limited number of indicator parameters at each outfall to find problem outfalls.

• When purchasing equipment, Phase II programs should communicate with other jurisdictions to consider sharing field equipment and laboratory costs.

• Use of some discharge tracers has proven challenging and sometimes fruitless, because of false or ambiguous results and complex or hazardous analytical methods. Accurate, cost-effective, and safe monitoring methods are needed to effectively use tracers.

• Municipal IDDE programs worked best when they integrated illicit discharge control in the wider context of urban watershed restoration. Table 3 provides some examples of how greater interagency cooperation can be achieved by linking restoration program areas.

In summary, survey communities expressed a strong need for relatively simple guidance to perform illicit discharge investigations. To address this need, the Manual has been designed to make simple program and technical recommendations for Phase II communities to develop cost-effective IDDE programs.
<table>
<thead>
<tr>
<th>Watershed-Related Program</th>
<th>How Program Relates to IDDE Program Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subwatershed Mapping and Analysis</td>
<td>• Mapping and aerial photography are critical tools needed for illicit connection detection surveys. GIS tax map layers are often useful to identify property ownership.</td>
</tr>
<tr>
<td>Rapid Assessment of Stream Corridors</td>
<td>• Observations from physical stream assessments are often useful in identifying problem areas, including dry weather flow outfalls, illegal dumping, and failing infrastructure locations.</td>
</tr>
<tr>
<td>Watershed Monitoring and Reporting</td>
<td>• Compiled water quality and other indicator data can be useful in targeting problem areas.</td>
</tr>
<tr>
<td>Stream Restoration Opportunities</td>
<td>• Stream restoration opportunities can often be coordinated with sewer infrastructure upgrades and maintenance.</td>
</tr>
<tr>
<td>Watershed Education</td>
<td>• Educating the public about unwanted discharges can save programs money by generating volunteer networks to report and locate problem areas. Better awareness by the public can also reduce the likelihood of unintentional cross-connections.</td>
</tr>
<tr>
<td>Pollution Prevention for Generating Sites</td>
<td>• Providing incentives to businesses to inspect and correct connections can save programs money.</td>
</tr>
</tbody>
</table>