LIST OF TABLES

- Table A-1Data Quality Objectives
- Table A-2Decision Criteria used for Initial Disposal Classification of Sediments under
RCRA and TSCA Disposal Rules
- Table B-1Example Sample ID and Horizontal Coordinates
- Table B-2River Section 1 Program Summary
- Table B-3River Section 2 Program Summary
- Table B-4River Section 3 Program Summary
- Table B-5
 Sample Container and Preservation Requirements
- Table B-6a B-6j
 Reference Limit and Evaluation Tables for Analytical Methods
- Table B-7a B-7nMeasurement Performance Criteria Tables for Analytical Methods
- Table B-8Data Collected During Sediment Core Collection
- Table B-9Data Collected During Sample Processing in the Field Lab
- Table B-10 Valid Values for PCBs
- Table C-1
 Summary of Analyses for Initial PE Acceptance Criteria Development
- Table C-2
 Summary of Analyses for Inter-Laboratory Comparison Study
- Table D-1Format of an Environmental Standards Quality Assurance Review

APPENDICES

- Appendix 1 SOP for Sediment Core Collection
- Appendix 2 SOP for Bathymetric Survey
- Appendix 3 SOP for Sub-Bottom Acoustic and Electromagnetic Surveying Equipment
- Appendix 4 SOP for Sediment Probing
- Appendix 5 SOP for the Analysis of PCBs by SW-846 Method 8082 (GEHR8082)
- Appendix 6 SOP for the Extraction and Cleanup of Sediment/Solid Samples for PCB Analysis Using the Pressurized Fluid Extraction by SW-846 Method 3545 (GEHR3545)
- Appendix 7 SOP for the Extraction and Cleanup of Sediment/Soil Samples for PCB Analysis Using the Soxhlet Extraction by SW-846 Method 3540C (GEHR3540C)
- Appendix 8 SOP for Analysis of PCB Homologs by EPA Method 680 (GEHR680)
- Appendix 9 SOP for Data Package Deliverable (DPSOP)
- Appendix 10 SOP for Grain Size
- Appendix 11 SOP for Atterberg Limit
- Appendix 12 SOP for Specific Gravity
- Appendix 13 SOP for Bulk Density

QEA, LLC/Environmental Standards, Inc.

w:\ge\hudson river dredging\y2041799\qapp rev4\qapp_final rev4r.doc

GENERAL ELECTRIC COMPANY

APPENDICES (Cont.)

- Appendix 14 (*This appendix is no longer necessary. It has been left for convenience for potential future use*).
- Appendix 15 SOP for Total Organic Carbon
- Appendix 16 SOP for USCS Classification
- Appendix 17 SOP for Side Scan Survey Procedures
- Appendix 18 SOP for Core Processing
- Appendix 19 (*This appendix is no longer necessary. It has been left for convenience for potential future use*).
- Appendix 20 SOP for 137 Cs
- Appendix 21 SOP for TCLP Preparation by 1311
- Appendix 22 SOP for VOAs With TCLP Preparation
- Appendix 23 SOP for SVOAs With TCLP Preparation
- Appendix 24 SOP for Pesticides With TCLP Preparation
- Appendix 25 SOP for Herbicides With TCLP Preparation
- Appendix 26 SOP for Preparation of Metals and Mercury and Analysis of Mercury in Leachate (Refer to Appendix 29 for the Analysis of Metals by ICP)
- Appendix 27 SOP for Ignitability
- Appendix 28 SOP for PCDD/PCDF
- Appendix 29 SOP for Preparation and Analyses of Metals and Mercury in Sediment
- Appendix 30 Performance and Reporting of Field Audits
- Appendix 31 Performance and Reporting of Analytical Laboratory Audits
- Appendix 32 SOP for Data Validation of VOA Data (DV8260B)
- Appendix 33 SOP for Data Validation of SVOA Data (DV8270C)
- Appendix 34 SOP for Data Validation of Pesticide Data (DV8081A)
- Appendix 35 SOP for Data Validation of Herbicide Data (DV8151A)
- Appendix 36 SOP for Data Validation of PCBs (DV8082)
- Appendix 37 SOP for Data Validation of PCB (Homolog) Data (by GEHR680)
- Appendix 38 SOP for Data Validation of PCDD and PCDF Data (DV1613B)
- Appendix 39 SOP for Data Validation of ICP Metals Data (DV6010B)
- Appendix 40 SOP for Data Validation of Mercury Data (DV74707471)
- Appendix 41 SOP for Data Validation of TOC Data (DVTOC)
- Appendix 42 EDD Specifications

w:\ge\hudson river dredging\y2041799\qapp rev4\qapp_final rev4r.doc

APPENDICES

APPENDIX 23

Controlled Copy Copy No:_____ Implementation Date: 04/01/02

Ì

SOP No: C-MS-0001 Revision No: 3.0 Revision Date: 03/25/02 Page 1 of 54

STL STANDARD OPERATING PROCEDURE

TITLE: GC/MS ANALYSIS BASED ON METHODS 8270C AND 625

(SUPERSEDES: Revision 2.1)

Prepared by: <u>Patrick Conlon</u>
Reviewed by: 4/25/02
Technical Review
Approved by: Junto A Colu 4/25/02
Director, Quality Assurance
Approved by: Futh A Carly Ko Chriskanth
Director, Envisonmental Health and Safety
Approved by: Cumerican 4/25/or
Management

Proprietary Information Statement:

This document has been prepared by and remains the sole property of STL Incorporated. It is submitted to a client or government agency solely for its use in evaluating STL's qualifications in connection with the particular project, certification, or approval for which it was prepared and is to be held proprietary to STL.

The user agrees by its acceptance or use of this document to return it upon STL's request and not to reproduce, copy, lend or otherwise dispose or disclose of the contents, directly or indirectly, and not to use it for any purpose other than that for which it was specifically furnished. The user also agrees that where consultants or others outside of the user's organization are involved in the evaluation process, access to these documents shall not be given to those parties unless those parties also specifically agree to these conditions.

TABLE OF CONTENTS

1	SCOPE AND APPLICATION4
2	SUMMARY OF METHOD5
3	DEFINITIONS
4	INTERFERENCES
5	SAFETY PRECAUTIONS
6	EQUIPMENT AND SUPPLIES7
7	REAGENTS AND STANDARDS8
8	SAMPLE PRESERVATION AND STORAGE9
9	QUALITY CONTROL
10	CALIBRATION AND STANDARDIZATION14
11	PROCEDURE18
12	DATA ANALYSIS AND CALCULATIONS20
13	METHOD PERFORMANCE27
14	POLLUTION PREVENTION
15	WASTE MANAGEMENT
16	REFERENCES
16 17	

LIST OF TABLES

- **TABLE 1** STL Primary Standard and Standard Reporting Limits
- **TABLE 2** STL Appendix IX Standard and Standard Reporting Limits
- **TABLE 3** Reportable Analytes for STL Standard Tests, Primary Standard
- **TABLE 4** Reportable analytes for STL Standard Tests, Appendix IX Standard
- TABLE 5
 Recommended Instrument Conditions
- **TABLE 6**DFTPP Ion Abundance Criteria
- **TABLE 7** Characteristic Ions, Primary Standard
- **TABLE 8** Characteristic Ions, Appendix IX Standard
- **TABLE 9**8270B LCS Compounds
- **TABLE 10**TCLP LCS Compounds
- **TABLE 11**8270B Surrogate Compounds
- **TABLE 12** Calibration Levels, Primary Standard
- **TABLE 13**Calibration Levels, Appendix IX Standard
- **TABLE 14** Initial Demonstration Accuracy and Precision Limits
- **TABLE A-1**Method 625 Reporting List and Limits
- **TABLE-A-2**Method 625 LCS and MS Compounds and Spike Concentrations

1. SCOPE AND APPLICATION

- 1.1. This method is based upon SW846 8270C, and is applicable to the determination of the concentration of semivolatile organic compounds in extracts prepared from solid and aqueous matrices. The modifications presented in Attachment A may be followed for analysis of wastewater following method 625. Direct injection of a sample may be used in limited applications. Refer to Tables 1, 2, 3 and 4 for the list of compounds applicable for this method. Note that the compounds are listed in approximate retention time order. Additional compounds may be amenable to this method. If non-standard analytes are required, they must be validated by the procedures described in section 13 before sample analysis.
- 1.2. The following compounds may require special treatment when being determined by this method:
 - Benzidine can be subject to oxidative losses during solvent concentration and exhibits poor chromatography. Neutral extraction should be performed if this compound is expected.
 - Hexachlorocyclopentadiene is subject to thermal decomposition in the inlet of the gas chromatograph, chemical reaction in acetone solution, and photochemical decomposition.
 - N-Nitrosodiphenylamine decomposes in the gas chromatographic inlet and cannot be distinguished from diphenylamine.
 - Pentachlorophenol, 2,4-dinitrophenol, 4-nitrophenol, 4,6-dinitro-2methylphenol, 4-chloro-3-methylphenol, benzoic acid, 2-nitroaniline, 3nitroaniline, 4-chloroaniline, and benzyl alcohol are subject to erratic chromatographic behavior, especially if the GC system is contaminated with high boiling material.
 - Hexachlorophene is not amenable to analysis by this method.
 - 3-Methylphenol cannot be separated from 4-methylphenol by the conditions specified in this method.

1.3. The standard reporting limit (SRL) of this method for determining an individual compound is approximately 0.33 mg/kg (wet weight) for soil/sediment samples, 1 - 200 mg/kg for wastes (dependent on matrix and method of preparation), and 10 µg/L for groundwater samples. Some compounds have higher reporting limits. Refer to Tables 1 and 2 for specific SRLs. Reporting limits will be proportionately higher for sample extracts that require dilution.

2. SUMMARY OF METHOD

2.1. Aqueous samples are extracted with methylene chloride using a separatory funnel, a continuous extractor or Accelerated One-StepTM. Solid samples are extracted with methylene chloride / acetone using sonication, soxhlet, accelerated soxhlet or pressurized fluid extraction. Waste dilution is used for samples that are miscible with the solvent. The extract is dried, concentrated to a volume of 1 mL, and analyzed by GC/MS. Extraction procedures are detailed in SOP# CORP-OP-0001. Qualitative identification of the parameters in the extract is performed using the retention time and the relative abundance of characteristic ions. Quantitative analysis is performed using the internal standard technique with a single characteristic ion.

3. **DEFINITIONS**

- 3.1. CCC (Calibration Check Compounds) A subset of target compounds used to evaluate the calibration stability of the GC/MS system. A maximum percent deviation of the CCC's is specified for calibration acceptance.
- 3.2. SPCC (System Performance Check Compounds) Target compounds designated to monitor chromatographic performance, sensitivity, and compound instability or degradation on active sites. Minimum response factors are specified for acceptable performance.
- 3.3. Batch The batch is a set of up to 20 samples of the same matrix processed using the same procedures and reagents within the same time period. The Quality Control batch must contain a matrix spike / spike duplicate (MS/MSD), a Laboratory Control Sample (LCS), and a method blank. In some cases, at client request, the MS/MSD may be replaced with a matrix spike and sample duplicate. Batches are defined at the sample preparation stage. Batches should be kept together through the whole analytical process to the extent possible, but it is not mandatory to analyze prepared extracts on the same instrument or in the same sequence. Refer to the STL QC Program document (QA-003) for further details of the batch definition.
- 3.4. Method Blank An analytical control consisting of all reagents, internal standards and surrogate standards, that is carried through the entire analytical procedure. The method blank is used to define the level of laboratory background and

reagent contamination.

- 3.5. LCS (Laboratory Control Sample) A blank spiked with the parameters of interest that is carried through the entire analytical procedure. Analysis of this sample with acceptable recoveries of the spiked materials demonstrates that the laboratory techniques for this method are acceptable.
- 3.6. MS (Matrix Spike)- aliquot of a matrix (water or soil) fortified (spiked) with known quantities of specific compounds and subjected to the entire analytical procedure in order to indicate the appropriateness of the method for the matrix by measuring recovery.
- 3.7. MSD (Matrix Spike Duplicate)- a second aliquot of the same sample as the matrix spike (above) that is spiked in order to determine the precision of the method.

4. **INTERFERENCES**

- 4.1. Method interferences may be caused by contaminants in solvents, reagents, glassware, and other processing apparatus that lead to discrete artifacts. All of these materials must be routinely demonstrated to be free from interferences under conditions of the analysis by running laboratory method blanks as described in the Quality Control section. Raw GC/MS data from all blanks, samples, and spikes must be evaluated for interferences. If an interference is detected it is necessary to determine if the source of interference is in the preparation and/or cleanup of the samples; then take corrective action to eliminate the problem.
- 4.2. The use of high purity reagents, solvents, and gases helps to minimize interference problems.
- 4.3. Matrix interferences may be caused by contaminants that are coextracted from the sample. The extent of matrix interferences will vary considerably from source to source, depending upon the nature of the sample.
- 4.4. Contamination by carryover can occur whenever high-level and low-level samples are sequentially analyzed. To reduce carryover, the sample syringe must be rinsed with solvent between samples. Whenever an unusually concentrated sample is encountered, it should be followed by the analysis of solvent to check for cross contamination.
- 4.5. Phthalate contamination is commonly observed in this analysis and its occurrence should be carefully evaluated as an indicator of a contamination problem in the sample preparation step of the analysis.

5. SAFETY PRECAUTIONS

- 5.1. Procedures shall be carried out in a manner that protects the health and safety of all STL associates. The following requirements must be met:
 - 5.1.1. Eye protection that satisfies ANSI Z87.1 (as per the Chemical Hygiene Plan), laboratory coat, and appropriate gloves must be worn while samples, standards, solvents and reagents are being handled. Disposable gloves that have become contaminated will be removed and discarded; other gloves will be cleaned immediately.
 - 5.1.2. The health and safety hazards of many of the chemicals used in this procedure have not been fully defined. Additional health and safety information can be obtained from the MSDS files maintained in the laboratory. The following specific hazards are known:
 - 5.1.3. Chemicals that have been classified as carcinogens, or potential carcinogens, under OSHA include: Benzo(a)anthracene, benzidine, 3,3'-dichlorobenzidine, benzo(a)pyrene, dibenzo(a,h)anthracene, and n-nitrosodimethylamine. Primary standards should be purchased in solution. If neat materials must be obtained, they shall be handled in a hood.
 - 5.1.4. Exposure to chemicals must be maintained as low as reasonably achievable; therefore, unless they are known to be non-hazardous, all samples should be opened, transferred, and prepared in a fume hood, or under other means of mechanical ventilation. Solvent and waste containers should be kept closed unless transfers are being made.
 - 5.1.5. All work must be stopped in the event of a known or potential compromise to the health and safety of a STL associate. The situation must be reported immediately to a laboratory supervisor.

5.1.6.

6. EQUIPMENT AND SUPPLIES

- 6.1. Gas Chromatograph/Mass Spectrometer System: An analytical system complete with a temperature-programmable gas chromatograph suitable for split/splitless injection and all required accessories, including syringes, analytical columns, and gases. The capillary column should be directly coupled to the source.
- 6.2. Column: 30 m x 0.32 mm I.D. (or 0.25 mm I.D.) 0.5-μm film thickness silicon-coated fused-silica capillary column (J & W Scientific DB-5.625 or equivalent). Alternate columns are acceptable if they provide acceptable performance.
- 6.3. Mass Spectrometer: Capable of scanning from 35 to 500 AMU every one second or less, using 70 volts (nominal) electron energy in the electron impact ionization

mode. The mass spectrometer must be capable of producing a mass spectrum for decafluorotriphenylphosphine (DFTPP) which meets all of the criteria in Table 6 when 50 ng of the GC/MS tuning standard is injected through the GC.

- 6.4. GC/MS Interface: Any GC-to-MS interface that gives acceptable calibration points and achieves acceptable tuning performance criteria may be used.
- 6.5. Data System: A computer system must be interfaced to the mass spectrometer. The system must allow the continuous acquisition and storage on machinereadable media of all mass spectra obtained throughout the duration of the chromatographic program. The computer must have software that can search any GC/MS data file for ions of a specific mass and that can plot such ion abundances versus time or scan number. This type of plot is defined as the Extracted Ion Current Profile (EICP). Software must also be available that allows integrating the abundances in any EICP between specified time or scan-number limits. The most recent version of the EPA/NIH Mass Spectral Library is recommended.
- 6.6. Syringe: 10 µL Hamilton Laboratory grade syringes or equivalent.
- 6.7. Carrier gas: Ultra high purity helium.

7. REAGENTS AND STANDARDS

- 7.1. A minimum five point calibration curve is prepared. The low point should be at or below the reporting limit. Refer to Tables 12 and 13 for typical calibration levels for all analytes. Other calibration levels may be used, depending on instrument capability, but the low standard must support the reporting limit and the high standard defines the range of the calibration.
- 7.2. An Internal Standard solution is prepared. Compounds in the I.S. Mix are: acenaphthene-d10, chrysene-d12, 1,4-dichlorobenzene-d4, naphthalene-d8, perylene-d12, and phenanthrene-d10.
 - 7.2.1. Internal Standards are added to all standards and extracts to result in 40ng injected onto the column. For example, if the volume of an extract used was 200 μ L, 20 μ L of a 400 μ g/mL internal standard solution would be added for a 1 μ L injection.
- 7.3. Surrogate Standard Spiking Solution: Prepare as indicated in the preparative methods. See appropriate preparation SOP. Surrogate compounds and levels are listed in Table 11.
- 7.4. GC/MS Tuning Standard: A methylene chloride solution containing 50 μg/mL of decafluorotriphenylphosphine (DFTPP) is prepared. Pentachlorophenol, benzidine, and DDT, should also be included in the Tuning Standard at 50 μg/mL.

- 7.5. Laboratory Control Spiking Solution: Prepare as indicated in the preparative methods. See appropriate preparation SOP. LCS compounds and levels are listed in Tables 9 and 10.
- 7.6. Matrix Spike Solution: Prepare as indicated in the preparative methods. See preparation SOP. The matrix spike compounds and levels are the same as the LCS compounds.
- 7.7. The standards listed in 7.1 to 7.6 should be refrigerated at $\leq 6^{\circ}$ C when not in use. Refrigeration at -10°C to -20°C may be used if it can be demonstrated that analytes do not fall out of solution at this temperature. The standards must be replaced at least once a year. The continuing calibration standard must be replaced every week and is stored at $\leq 6^{\circ}$ C.

8. SAMPLE PRESERVATION AND STORAGE

- 8.1. Reference appropriate facility SOP for sample bottle preservation and storage.
- 8.2. Samples are stored at $4 \pm 2^{\circ}$ C. Samples and extracts should be stored in suitable glass containers with Teflon lined caps. (Extracts will normally be stored for 30 days after invoicing.)
- 8.3. Water samples are extracted within seven days of sampling and the extracts are analyzed within forty days of extraction. Solids, sludges, and organic liquids are extracted within fourteen days of sampling and the extracts are analyzed within forty days of extraction.

9. QUALITY CONTROL

- 9.1. Initial Demonstration of Capability
 - 9.1.1. For the standard analyte list, the initial demonstration and method detection limit (MDL) studies described in section 13 must be acceptable before analysis of samples may begin. Refer to the flow chart in section 17.4.1.
 - 9.1.2. For non-standard analytes an MDL study should be performed and calibration curve generated before analyzing any samples, unless lesser requirements are previously agreed to with the client. In any event, the minimum initial demonstration required is analysis of an extracted standard at the reporting limit and a single point calibration.
- 9.2. Control Limits

In-house historical control limits must be determined for surrogates, matrix spikes,

and laboratory control samples (LCS). These limits must be determined at least annually. The recovery limits are mean recovery +/-3 standard deviations for surrogates, MS and LCSPrecision limits for matrix spikes / matrix spike duplicates are mean relative percent difference +/-3 standard deviations.

- 9.2.1. These limits do not apply to dilutions (except for tests without a separate extraction), but surrogate and matrix spike recoveries will be reported unless the dilution is more than 5X.
- 9.2.2. All surrogate, LCS, and MS recoveries (except for dilutions) must be entered into QuantIMS (when available) or other database so that accurate historical control limits can be generated. For tests without a separate extraction, surrogates and matrix spikes will be reported for all dilutions.
- 9.2.3. Refer to the QC program document (QA-003) for further details of control limits.

9.3. Method Blank

A method blank is prepared and analyzed with each batch of samples. The method blank consists of reagent water for aqueous samples, and sodium sulfate for soil samples (Refer to SOP No. CORP-OP-0001 for details). Surrogates are added and the method blank is carried through the entire analytical procedure. The method blank must not contain any analyte of interest at or above the reporting limit (except common laboratory contaminants, see below) or at or above 5% of the measured concentration of that analyte in the associated samples, whichever is higher.

- If the analyte is a common laboratory contaminant (phthalate esters), the data may be reported with qualifiers if the concentration of the analyte is less than five times the RL. Such action must be taken in consultation with the client.
- Reanalysis of any samples with reportable concentrations of analytes found in the method blank is required unless other actions are agreed with the client.
- If there is no target analyte greater than the RL in the samples associated with an unacceptable method blank, the data may be reported with qualifiers. Such action should be taken in consultation with the client.
 - 9.3.1. The method blank must have acceptable surrogate recoveries. If surrogate recoveries are not acceptable, the data must be evaluated to determine if the method blank has served the purpose of demonstrating that the analysis is free of contamination. If surrogate recoveries are low and there are reportable analytes in the associated samples, re-extraction of the blank and affected samples will normally be required. Consultation with the client should take place.

- 9.3.2. If reanalysis of the batch is not possible due to limited sample volume or other constraints, the method blank is reported, all associated samples are flagged with a "B", and appropriate comments may be made in a narrative to provide further documentation.
- 9.3.3. Refer to the STL QC Program document (QA-003) for further details of the corrective actions.
- 9.3.4. Sample results are NOT blank subtracted unless specific requests and arrangements have been made with a client or agency.
- 9.4. Instrument Blank
 - 9.4.1. Instruments must be evaluated for contamination during each 12 hour analytical run. This may be accomplished by analysis of a method blank. If a method blank is not available, an instrument blank must be analyzed. An instrument blank consists of methylene chloride with the internal standards added. It is evaluated in the same way as the method blank.
- 9.5. Laboratory Control Sample (LCS)
 - 9.5.1. A laboratory control sample (LCS) is prepared and analyzed with every batch of samples. All analytes must be within established control limits. The LCS is spiked with the compounds listed in Tables 9 and 10 unless specified by a client or agency. The compounds must be spiked at a concentration equivalent to 100 or 150 ng on-column depending on the analyte.
 - 9.5.2. If any analyte in the LCS is outside the laboratory established historical control limits, corrective action must occur. Corrective action may include re-extraction and reanalysis of the batch.
 - If the batch is not re-extracted and reanalyzed, the reasons for accepting the batch must be clearly presented in the project records and the report. (An example of acceptable reasons for not reanalyzing might be that the matrix spike and matrix spike duplicate are acceptable, and sample surrogate recoveries are good, demonstrating that the problem was confined to the LCS).
 - If re-extraction and reanalysis of the batch is not possible due to limited sample volume or other constraints, the LCS is reported, all associated samples are flagged, and appropriate comments are made in a narrative to provide further documentation.

- 9.5.3. Ongoing monitoring of the LCS provides evidence that the laboratory is performing the method within accepted QC guidelines for accuracy and precision.
- 9.6. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

A matrix spike/matrix spike duplicate (MS/MSD) is prepared and analyzed with every batch of samples. The MS/MSD is spiked with the same subset of analytes as the LCS (See Tables 9 and 10). Compare the percent recovery and relative percent difference (RPD) to that in the laboratory specific historically generated limits.

- If any individual recovery or RPD falls outside the acceptable range, corrective action must occur. The initial corrective action will be to check the recovery of that analyte in the Laboratory Control Sample (LCS). Generally, if the recovery of the analyte in the LCS is within limits, then the laboratory operation is in control and analysis may proceed. The reasons for accepting the batch must be documented.
- If the recovery for any component is outside QC limits for both the Matrix spike / spike duplicate and the LCS, the laboratory is out of control and corrective action must be taken. Corrective action will normally include repreparation and reanalysis of the batch.
- If a MS/MSD is not possible due to limited sample, then a LCS duplicate should be analyzed. RPD of the LCS and LCSD are compared to the matrix spike limits.
- The matrix spike / duplicate must be analyzed at the same dilution as the unspiked sample, even if the matrix spike compounds will be diluted out.
- 9.7. Surrogates
 - 9.7.1. Every sample, blank, and QC sample is spiked with surrogate standards. Surrogate spike recoveries must be evaluated by determining whether the concentration (measured as percent recovery) falls within the required recovery limits. Surrogate compounds must be spiked at either 100 or 150 ng on-column, depending on the surrogate. The compounds routinely included in the surrogate spiking solution, along with recommended standard concentrations, are listed in Table 11.
 - 9.7.2. If any surrogates are outside limits the following corrective actions must take place (except for dilutions):
 - Check all calculations for error.

- Ensure that instrument performance is acceptable.
- Recalculate the data and/or reanalyze the extract if either of the above checks reveal a problem.
- Re-extract and reanalyze the sample or flag the data as "Estimated Concentration" if neither of the above resolves the problem.

The decision to reanalyze or flag the data should be made in consultation with the client. It is only necessary to reprepare / reanalyze a sample once to demonstrate that poor surrogate recovery is due to matrix effect, unless the analyst believes that the repeated out of control results are not due to matrix effect.

- 9.7.3. If the sample with surrogate recoveries outside the recovery limits was a sample used for an MS/MSD and the surrogate recoveries in the MS/MSD are also outside of the control limits, then the sample, the MS, and the MSD do not require reanalysis as this phenomenon would indicate a possible matrix problem.
- 9.7.4. If the sample is reanalyzed and the surrogate recoveries in the reanalysis are acceptable, then the problem was within the analyst's control and only the reanalyzed data should be reported. (Unless the reanalysis was outside holding times, in which case reporting both sets of results may be appropriate.)
- 9.7.5. If the reanalysis does confirm the original results, the original analysis is reported and the data flagged as estimated due to matrix effect.
- 9.8. Nonconformance and Corrective Action
 - 9.8.1. Any deviations from QC procedures must be documented as a nonconformance, with applicable cause and corrective action approved by the facility QA Manager.
- 9.9. Quality Assurance Summaries

Certain clients may require specific project or program QC which may supersede these method requirements. Quality Assurance Summaries should be developed to address these requirements.

9.10. STL QC Program

Further details of QC and corrective action guidelines are presented in the STL QC Program document (QA-003). Refer to this document if in doubt regarding corrective

actions.

10. CALIBRATION AND STANDARDIZATION

- 10.1. Summary
 - 10.1.1. The instrument is tuned for DFTPP, calibrated initially with a five-point calibration curve, and verified each 12-hour shift with one or more continuing calibration standard(s). Recommended instrument conditions are listed in Table 5.
- 10.2. All standards and extracts are allowed to warm to room temperature before injecting.
- 10.3. Instrument Tuning

At the beginning of every twelve hour shift when analyses are to be performed, the GC/MS system must be checked to see if acceptable performance criteria (Table 6) is achieved for DFTPP (decafluorotriphenylphosphine).

- 10.3.1. Inject 50 ng of the GC/MS tuning standard (Section 7.4) into the GC/MS system. Obtain a background-corrected mass spectra of DFTPP and confirm that all the key m/z criteria in Table 6 are achieved. If all the criteria are not achieved, the analyst must retune the mass spectrometer and repeat the test until all criteria are achieved. The performance criteria must be achieved before any samples, blanks, or standards are analyzed.
- 10.3.2. The GC/MS tuning standard should also be used to evaluate the inertness of the chromatographic system. Benzidine and pentachlorophenol should not exhibit excessive tailing. If DDT is an analyte of interest, it must be included in the tuning standard, and its breakdown must be < 20%. Refer to section 12 for the appropriate calculations.
- 10.4. Initial Calibration
 - 10.4.1. Internal Standard Calibration Procedure: Internal standards are listed in Table 7. Use the base peak m/z as the primary m/z for quantitation of the standards. If interferences are noted, use one of the next two most intense masses for quantitation.
 - 10.4.2. Compounds should be assigned to the IS with the closest retention time.
 - 10.4.3. Prepare calibration standards at a minimum of five concentration levels for each parameter of interest. Six standards must be used for a quadratic least squares calibration. It may also be useful to analyze six calibration

levels and use the lower five for most analytes and the upper five for analytes that have poor response. Add the internal standard mixture to result in 40 ng on column. (For example, if the volume of the calibration standard used is 1 mL, add 100 μ L of the 400 μ g/mL internal standard solution for a 1 μ L injection). The concentrations of all analytes are listed in tables 12 and 13.

- 10.4.4. Analyze each calibration standard and tabulate the area of the primary characteristic m/z against concentration for each compound and internal standard. Calculate response factors (RF), average response factors, and the percent RSD of the response factors for each compound using the equations in section 12 and verify that the CCC and SPCC criteria in section 10.4.5 and 10.4.6 are met. No sample analysis may be performed unless these criteria are met.
- 10.4.5. System Performance Check Compounds (SPCCs): The minimum average RF for semivolatile SPCCs is 0.050. If the minimum response factors are not met, the system must be evaluated and corrective action must be taken before sample analysis begins. Some possible problems are standard mixture degradation, injection port inlet contamination, contamination at the front end of the analytical column, and active sites in the column or chromatographic system. This check must be met before analysis begins.
- SPCC Compounds:

N-nitroso-di-n-propylamine Hexachlorocyclopentadiene 2,4-Dinitrophenol 4-Nitrophenol

- 10.4.6. Calibration Check Compounds (CCCs): The %RSD of the response factors for each CCC in the initial calibration must be less than 30% for the initial calibration to be considered valid. This criterion must be met before sample analysis begins. Problems similar to those listed under SPCCs could affect this criterion.
 - 10.4.6.1.If none of the CCCs are required analytes, project specific calibration specifications must be agreed with the client.
 - 10.4.6.2.CCC Compounds:

Phenol Acenaphthene 1,4-Dichlorobenzene N-nitrosodiphenylamine

- 2-Nitrophenol Pentachlorophenol 2,4-Dichlorophenol Fluoranthene Hexachlorobutadiene Di-n-octylphthalate 4-Chloro-3-methylphenol Benzo(a)pyrene 2,4,6-Trichlorophenol
- 10.4.7. If the average of all %RSDs in the initial calibration is \leq 15%, then all analytes may use average response factor for calibration.
 - 10.4.7.1.If the software in use is capable of routinely reporting curve coefficients for data validation purposes, and the necessary calibration reports can be generated, then the analyst should evaluate analytes with %RSD > 15% for calibration on a curve. If it appears that substantially better accuracy would be obtained using quantitation from a curve then the appropriate curve should be used for quantitation.
 - 10.4.7.2.If the average of all the %RSDs in the initial calibration is > 15%, then calibration on a curve must be used for those analytes with %RSD > 15%. Linear or quadratic curve fits may be used. Use of $1/\text{Concentration}^2$ weighting is recommended to improve the accuracy of quantitation at the low end of the curve. The analyst should consider instrument maintenance to improve the linearity of response. If Relative Standard Error (RSE) is used to evaluate the curve it must be better than 15%. Otherwise the correlation coefficient (coefficient of determination for non-linear curves) must be ≥ 0.990 .
- 10.4.8. Weighting of data points

In a linear or quadratic calibration fit, the points at the lower end of the calibration curve have less weight in determining the curve generated than points at the high concentration end of the curve. However, in environmental analysis, accuracy at the low end of the curve is very important. For this reason it is preferable to increase the weighting of the lower concentration points. 1/Concentration² weighting (often called $1/X^2$ weighting) will improve accuracy at the low end of the curve and should be used if the data system has this capability.

10.4.9. If time remains in the 12 hour period initiated by the DFTPP injection before

the initial calibration, samples may be analyzed. Otherwise, proceed to continuing calibration.

- 10.4.10. Quantitation is performed using the calibration curve or average response factor form the initial curve, not the continuing calibration.
- 10.5. Continuing Calibration
 - 10.5.1. At the start of each 12-hour period, the GC/MS tuning standard must be analyzed. A 50 ng injection of DFTPP must result in a mass spectrum for DFTPP which meets the criteria given in Table 6.
 - 10.5.2. Following a successful DFTPP analysis the continuing calibration standard(s) are analyzed. The standards must contain all semivolatile analytes, including all required surrogates. A mid level calibration standard is used for the continuing calibration.
 - 10.5.3. The following criteria must be met for the continuing calibration to be acceptable:
 - The SPCC compounds must have a response factor of ≥ 0.05 .
 - The percent difference or drift of the CCC compounds from the initial calibration must be $\leq 20\%$. (see section 12 for calculations) In addition, the percent difference or drift of all analytes must be $\leq 50\%$, with allowance being made for up to six target compounds to have percent drift greater than 50%.
 - The internal standard response must be within 50-200% of the response in the mid level of the initial calibration.
 - The internal standard retention times must be within 30 seconds of the retention times in the mid-level of the initial calibration.
 - 10.5.3.1.If none of the CCCs are required analytes, project specific calibration specifications must be agreed with the client.
 - 10.5.4. Once the above criteria have been met, sample analysis may begin. Initial calibration average RFs (or the calibration curve) will be used for sample quantitation, not the continuing calibration RFs. Analysis may proceed until 12 hours from the injection of the DFTPP have passed. (A sample *injected* less than 12 hours after the DFTPP is acceptable.)

11. **PROCEDURE**

11.1. Sample Preparation

Samples are prepared following SOP CORP-OP-0001.

- 11.2. Sample Analysis Procedure
 - 11.2.1. Calibrate the instrument as described in section 10. Depending on the target compounds required by the client, it may be necessary to use more than one calibration standard.
 - 11.2.2. All samples must be analyzed using the same instrument conditions as the preceeding continuing calibration standard.
 - 11.2.3. Add internal standard to the extract to result in 40 ng injected on column (for example, 1 μ L of a 2000 μ L/mL internal standard solution in 100 μ L of extract for a 2 μ L injection). Mix thoroughly before injection into the instrument.
 - 11.2.4. Inject the sample extract into the GC/MS system using the same injection technique as used for the standards.
 - 11.2.5. The data system will determine the concentration of each analyte in the extract using calculations equivalent to those in section 12. Quantitation is based on the initial calibration, not the continuing calibration.
 - 11.2.6. Identified compounds are reviewed for proper integration. Manual integrations are performed if necessary and are documented by the analyst or automatically by the data system.
 - 11.2.7. Target compounds identified by the data system are evaluated using the criteria listed in section 12.1.
 - 11.2.8. Library searches of peaks present in the chromatogram that are not target compounds (Tentatively Identified Compounds, TIC) may be performed if required by the client. They are evaluated using the criteria in section 12.3. At least 20 TICs will be generated.

11.3. Dilutions

If the response for any compound exceeds the working range of the GC/MS system, a dilution of the extract is prepared and analyzed. An appropriate dilution should be in the upper half of the calibration range. Samples may be screened to determine the

appropriate dilution for the initial run. If the initial diluted run has no hits or hits below 20% of the calibration range and the matrix allows for analysis at a lesser dilution, the sample must be reanalyzed at a dilution targeted to bring the largest hit above 50% of the calibration range.

11.3.1. Guidance for Dilutions Due to Matrix

If the sample is initially run at a dilution and the baseline rise is less than the height of the internal standards, or if individual non-target peaks are less than two times the height of the internal standards, the sample should be reanalyzed at a more concentrated dilution. This requirement is approximate and subject to analyst judgement. For example, samples containing organic acids may need to be analyzed at a higher dilution to avoid destroying the column.

11.3.2. Reporting Dilutions

The most concentrated dilution with no target compounds above the calibration range will be reported. Other dilutions will only be reported at client request.

- 11.4. Perform all qualitative and quantitative measurements. When the extracts are not being used for analyses, refrigerate them at $4 \pm 2^{\circ}$ C, protected from light in screw cap vials equipped with unpierced Teflon lined septa.
- 11.5. Retention time criteria for samples

If the retention time for any internal standard changes by more than 0.5 minutes from the last continuing calibration standard, the chromatographic system must be inspected for malfunctions and corrected. Reanalysis of samples analyzed while the system was malfunctioning is required.

11.5.1. If the retention time of any internal standard in any sample varies by more than 0.1 minute from the preceeding continuing calibration standard, the data must be carefully evaluated to ensure that no analytes have shifted outside their retention time windows.

11.6. Percent Moisture

Analytical results may be reported as dry or wet weight, as required by the client. Percent moisture must be determined if results will be reported as dry weight. Refer to the facility specific SOP for determination of percent moisture.

- 11.7. Procedural Variations
 - 11.7.1. One-time procedural variations are allowed only if deemed necessary in the professional judgment of supervision to accommodate variation in

sample matrix, radioactivity, chemistry, sample size, or other parameters. Any variation in procedure shall be completely documented using a Nonconformance Memo and approved by a Technical Specialist and QA Manager. If contractually required, the client shall be notified. The Nonconformance Memo shall be filed in the project file. Any unauthorized deviations from this procedure must also be documented as a non-conformance, with a cause and corrective action described.

- 11.8. Troubleshooting Guide
 - 11.8.1. Daily Instrument Maintenance

In addition to the checks listed in the instrument maintenance schedule in the STL QAMP, the following daily maintenance should be performed.

- 11.8.1.1.Clip Column as necessary.
- 11.8.1.2.Install new or cleaned injection port liner as necessary.
- 11.8.1.3.Install new septum as necessary.
- 11.8.1.4.Perform mass calibration as necessary.
- 11.8.2. Major Maintenance

11.8.2.1.A new initial calibration is necessary following major maintenance. Major maintenance includes changing the column, cleaning the ion volume or repeller, cleaning the source, and replacing the multiplier. Refer to the manufacturer's manual for specific guidance.

12. DATA ANALYSIS AND CALCULATIONS

12.1. Qualitative identification

An analyte is identified by retention time and by comparison of the sample mass spectrum with the mass spectrum of a standard of the suspected compound (standard reference spectrum). Mass spectra for standard reference may be obtained on the user's GC/MS by analysis of the calibration standards or from the NBS library. Two criteria must be satisfied to verify identification: (1) elution of sample component at the same GC retention time as the standard component; and (2) correspondence of the sample component and the standard component characteristic ions. (Note: Care must be taken to ensure that spectral distortion due to co-elution is evaluated.)

• The sample component retention time must compare to within ± 0.2 min. of the

retention time of the standard component. For reference, the standard must be run within the same twelve hours as the sample.

- All ions present in the standard mass spectra at a relative intensity greater than 10% (most abundant ion in the spectrum equals 100%) should be present in the sample spectrum.
- The characteristic ions of a compound must maximize in the same scan or within one scan of each other.
- The relative intensities of ions should agree to within $\pm 30\%$ between the standard and sample spectra. (Example: For an ion with an abundance of 50% in the standard spectra, the corresponding sample abundance must be between 20% and 80%.)
 - 12.1.1. If a compound cannot be verified by all the above criteria, but in the technical judgment of the analyst the identification is correct, the analyst shall report that identification and proceed with quantitation.
- 12.2. Mass chromatogram searches.

Certain compounds are unstable in the calibration standard and cannot be calibrated in the normal way. In particular, the compound hexachlorophene (CAS 70-30-4) falls into this category, and is required for Appendix IX analysis. For this analyte a mass chromatogram search is made.

12.2.1. Hexachlorophene

Display the mass chromatograms for mass 196 and mass 198 for the region of the chromatogram from at least 2 minutes before chrysene-d12 to at least 4 minutes after chrysene-d12. If peaks for both ions coincide then the analyst evaluates the spectrum for the presence of hexachlorophene. No quantitation is possible.

- 12.3. For samples containing components not associated with the calibration standards, a library search may be made for the purpose of tentative identification. The necessity to perform this type of identification will be determined by the type of analyses being conducted. Computer generated library search routines should not use normalization routines that would misrepresent the library or unknown spectra when compared to each other. Only after visual comparison of sample spectra with the nearest library searches shall the mass spectral interpretation specialist assign a tentative identification. Guidelines for making tentative identification are:
 - Relative intensities of major ions in the reference spectrum (ions >10% of the most abundant ion) should be present in the sample spectrum.

- The relative intensities of the major ions should agree within ±20%. (Example: For an ion with an abundance of 50% in the standard spectrum, the corresponding sample ion abundance should be between 30% and 70%.)
- Molecular ions present in the reference spectrum should be present in the sample spectrum.
- Ions present in the sample spectrum, but not in the reference spectrum, should be reviewed for possible background contamination or presence of coeluting compounds.
- Ions present in the reference spectrum, but not in the sample spectrum, should be reviewed for possible subtraction from the sample spectrum because of background contamination or coeluting peaks. Data system library reduction programs can sometimes create these discrepancies.
- Automatic background subtraction can severely distort spectra from samples with unresolved hydrocarbons.
- 12.4. Anyone evaluating data is trained to know how to handle isomers with identical mass spectra and close elution times. These include:

Dichlorobenzenes Methylphenols Trichlorophenols Phenanthrene, anthracene Fluoranthene, pyrene Benzo(b) and (k)fluoranthene Chrysene, benzo(a)anthracene

Extra precautions concerning these compounds are to more closely scrutinize retention time vs. the calibration standard and also to check that all isomers have distinct retention times.

A second category of problem compounds would be the poor responders or compounds that chromatograph poorly. Included in this category would be:

> Benzoic acid Chloroanilines Nitroanilines 2,4-Dinitrophenol 4-Nitrophenol Pentachlorophenol 3,3'-Dichlorobenzidine Benzyl alcohol

4,6-Dinitro-2-methylphenol

Manually checking the integrations would be appropriate for these compounds.

12.5. Calculations

12.5.1. Percent Relative Standard Deviation for Initial Calibration

$$\% RSD = \frac{SD}{\overline{RF}} \times 100$$

RF = Mean of RFs from initial calibration for a compound

SD = Standard deviation of RFs from initial calibration for a compound,

$$=\sqrt{\sum_{i=1}^{N} \frac{\left(RFi - \overline{RF}\right)^2}{N-1}}$$

RFi = RF for each of the calibration levels

N = Number of RF values

12.5.2. Continuing calibration percent drift

$$Drift = rac{C_{actual} - C_{found}}{C_{actual}} imes 100\%$$

 $C_{actual} =$ Known concentration in standard $C_{found} =$ Measured concentration using selected quantitation method

12.5.3. Concentration in the extract

The concentration of each identified analyte and surrogate in the extract is calculated from the linear or quadratic curve fitted to the initial calibration points, or from the average RF of the initial calibration.

12.5.3.1.Average response factor

If the average of all the %RSDs of the response factors in the initial calibration is $\leq 15\%$, the average response factor from the initial calibration may be used for quantitation.

$$C_{ex} = \frac{R_x C_{is}}{R_{is} \overline{RF}}$$

12.5.3.2.Linear fit

$$C_{ex} = A + B \frac{\left(R_x C_{is}\right)}{R_{is}}$$

 C_{ex} = Concentration in extract, µg/mL

 R_x = Response for analyte

- R_{is} = Response for internal standard
- C_{is} = Concentration of internal standard

A=Intercept

$$B = Slope$$

12.5.3.3.Quadratic fit

$$C_{ex} = A + B\left(\frac{R_x C_{is}}{R_{is}}\right) + C\left(\frac{R_x C_{is}}{R_{is}}\right)$$

C= Curvature

- 12.5.4. The concentration in the sample is then calculated.
 - 12.5.4.1.Aqueous Calculation

Concentration,
$$\mu g / L = \frac{C_{ex}V_t}{V_o}$$

Where:

 V_t = Volume of total extract, μ L, taking into account dilutions (i.e., a 1-to-10 dilution of a 1 mL extract will mean V_t = 10,000 μ L. If half of the base/neutral extract and half of the acid extract are combined, V_t = 2,000.)

 V_o = Volume of water extracted (mL)

12.5.5. Sediment/Soil, Sludge (on a dry-weight basis) and Waste (normally on a wet-weight basis:

Concentration,
$$\mu g / kg = \frac{C_{ex}V_t}{W_s D}$$

 W_s = Weight of sample extracted or diluted in grams

D = (100 - % moisture in sample)/100, for a dry weight basis or 1 for a wet weight basis

12.6. MS/MSD percent recovery calculation.

Matrix Spike Recovery = $\frac{S_{SR} - S_R}{S_A} \times 100\%$

 S_{SR} = Spike sample result

 S_R =Sample result

$$S_A$$
 = Spike added

12.7. Relative % Difference calculation for the MS/MSD

$$RPD = \frac{MS_R - MSD_R}{1/2(MS_R + MSD_R)} \times 100$$

RPD = Relative percent difference

 MS_R = Matrix spike result

 MSD_R = Matrix spike duplicate result

12.8. Relative response factor calculation.

$$RF = \frac{A_x C_{is}}{A_{is} C_x}$$

 A_x =Area of the characteristic ion for the compound being measured

 A_{is} =Area of the characteristic ion for the specific internal standard

 C_x =Concentration of the compound being measured (µg/L)

 C_{is} =Concentration of the specific internal standard (µg/L)

12.9. Calculation of TICs: The calculation of TICs (tentatively identified compounds) is identical to the above calculations with the following exceptions:

 A_x =Area of the total ion chromatogram for the compound being measured

 A_{is} =Area of the total ion chromatogram for the nearest internal standard without interference

RF=1

12.10. Percent DDT breakdown

% DDT breakdown = $\frac{\text{DDEarea} + \text{DDDarea}}{\text{DDTarea} + \text{DDEarea} + \text{DDEarea}}$

The total ion current areas are used for this calculation

13. METHOD PERFORMANCE

13.1. Method Detection Limit

Each laboratory must generate a valid method detection limit for each analyte of interest. The MDL must be below the reporting limit for each analyte. The procedure for determination of the method detection limit is given in 40 CFR Part 136, Appendix B, and further defined in QA Policy #: QA-005.

13.2. Initial Demonstration

Each laboratory must make an initial demonstration of capability for each individual method. Demonstration of capability for both soil and water matrices is required. This requires analysis of QC check samples containing all of the standard analytes for the method. For some tests it may be necessary to use more than one QC check mix to cover all analytes of interest.

- 13.2.1. Four aliquots of the QC check sample are analyzed using the same procedures used to analyze samples, including sample preparation. The concentration of the QC check sample should be equivalent to the level 4 calibration standard.
- 13.2.2. Calculate the average recovery and standard deviation of the recovery for each analyte of interest. Compare these results with the acceptance criteria given in table 14.
- 13.2.3. If any analyte does not meet the acceptance criteria the test must be repeated. Only those analytes that did not meet criteria in the first test need to be evaluated. Repeated failure for any analyte indicates the need for the laboratory to evaluate the analytical procedure and take corrective action.
- 13.3. Non-standard analytes

For non-standard analytes, an MDL study must be performed and calibration curve generated before analyzing any samples, unless lesser requirements are previously agreed to with the client. In any event, the minimum initial demonstration required is analysis of an extracted standard at the reporting limit and a single point calibration.

13.4. Training Qualification

The group/team leader has the responsibility to ensure that this procedure is performed by an analyst who has been properly trained in its use and has the required experience.

13.5. Data Quality Objectives (DQO). Refer to project-specific Quality Assurance plans for DQO information.

14. POLLUTION PREVENTION

14.1. This section is not applicable to this procedure.

15. WASTE MANAGEMENT

15.1. Waste generated during aliquotting and from used vials must be disposed of in accordance with the facility hazardous waste procedures. The Health and Safety Director should be contacted if additional information is required.

16. REFERENCES

- 16.1. SW846, Test Methods for Evaluating Solid Waste, Third Edition, Update II, October 1994, Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS): Capillary Column Technique, Method 8270B.
- 16.2. J. W. Eichelberger, L. E. Harris, and W. L. Budde, "Reference Compound to Calibrate Ion Abundance Measurement in Gas Chromatography/Mass Spectrometry," Analytical Chemistry, 47, 995 (1975)

17. MISCELLANEOUS

- 17.1. Modifications from Reference Method
 - 17.1.1. A retention time window of 0.2 minutes is used for all components, since some data systems do not have the capability of using the relative retention time units specified in the reference method.
 - 17.1.2. The quantitation and qualifier ions for some compounds have been changed from those recommended in SW-846 in order to improve the reliability of qualitative identification.
- 17.2. Modifications from Previous Revision
 - 17.2.1. This SOP has been substantially revised to meet the requirements of method 8270C.
 - 17.2.2. Directions for analysis be method 625 have been added as an attachment.
- 17.3. Facility Specific SOPs

Each facility shall attach a list of facility specific SOPs or approved attachments (if

applicable) which are required to implement this SOP or which are used in conjunction with this SOP. If no facility specific SOPs or amendments are to be attached, a statement must be attached specifying that there are none.

17.4. Tables

Table 1

STL Primary Standard¹ and Standard Reporting Limits

Standard	Standard Reporting Limits	
Aqueous	Low Soil/Sediment	
μg/L	µg/kg	
20	660	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
50	1600	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
10	330	
50	1600	
10	330	
10	330	
10	330	
50	1600	
10	330	
10	330	
	1600	
	330	
	1600	
	1600	
	330	
	330	
	50 10 50 50 10 10	

Table 1

Analytes	CAS Number	Standard Reporting Limits	
		Aqueous	Low Soil/Sediment
		μg/L	µg/kg
2,6-Dinitrotoluene	606-20-2	10	330
Diethylphthalate	84-66-2	10	330
4-Chlorophenyl phenyl ether	7005-72-3	10	330
Fluorene	86-73-7	10	330
4-Nitroaniline	100-01-6	50	1600
4,6-Dinitro-2-methylphenol	534-52-1	50	1600
N-Nitrosodiphenylamine	86-30-6	10	330
Azobenzene	103-33-3	10	330
4-Bromophenyl phenyl ether	101-55-3	10	330
Hexachlorobenzene	118-74-1	10	330
Pentachlorophenol	87-86-5	50	1600
Phenanthrene	85-01-8	10	330
Anthracene	120-12-7	10	330
Carbazole	86-74-8	10	330
Di-n-butyl phthalate	84-74-2	10	330
Fluoranthene	206-44-0	10	330
Benzidine	92-87-5	100	3300
Pyrene	129-00-0	10	330
Butyl benzyl phthalate	85-68-7	10	330
3,3'-Dichlorobenzidine	91-94-1	50	1600
Benzo(a)anthracene	56-55-3	10	330
Bis(2-ethylhexyl)phthalate	117-81-7	10	330
Chrysene	218-01-9	10	330
Di-n-octylphthalate	117-84-0	10	330
Benzo(b)fluoranthene	205-99-2	10	330
Benzo(k)fluoranthene	207-08-9	10	330
Benzo(a)pyrene	50-32-8	10	330
Indeno(1,2,3-cd)pyrene	193-39-5	10	330
Dibenz(a,h)anthracene	53-70-3	10	330
Benzo(g,h,i)perylene	191-24-2	10	330

STL Primary Standard¹ and Standard Reporting Limits

¹ The STL primary standard is the standard normally used at STL. Additional standards, such as the Appendix IX standard may be necessary to include all target analytes required for some clients.

² 2,2'oxybis(1-chloropropane) was formally known as bis(2-chloroisopropyl)ether

Table 2

STL Appendix IX¹ Standard Reporting Limits

Semivolatiles	CAS Number	Standar	d Reporting Limits	
		Aqueous	Low Soil/Sediment	
		μg/L	µg/kg	
2-Picoline	109-06-8	20	660	
N-Nitrosomethylethylamine	10595-95-6	10	330	
Methyl methanesulfonate	66-27-3	10	330	
N-Nitrosodiethylamine	55-18-5	10	330	
Ethyl methanesulfonate	62-50-0	10	330	
Pentachloroethane	76-01-7	50	1600	
Acetophenone	98-86-2	10	330	
N-Nitrosopyrrolidine	930-55-2	10	330	
N-Nitrosomorpholine	59-89-2	10	330	
o-Toluidine	95-53-4	20	660	
3-Methylphenol	108-39-4	10	330	
N-Nitrosopiperidine	100-75-4	10	330	
o,o,o-Triethyl-Phosphorothioate ²	126-68-1	50	1600	
a,a-Dimethyl-phenethylamine	122-09-8	50	1600	
2,6-Dichlorophenol	87-65-0	10	330	
Hexachloropropene	1888-71-7	100	3300	
p-Phenylenediamine	106-50-3	100	3300	
n-Nitrosodi-n-butylamine	924-16-3	10	330	
Safrole	94-59-7	20	660	
1,2,4,5-Tetrachlorobenzene	95-94-3	10	330	
Isosafrole	120-58-1	20	660	
1,4-Dinitrobenzene	100-25-4	10	330	
1,4-Naphthoquinone	130-15-4	50	1600	
1,3-Dinitrobenzene	99-65-0	10	330	
Pentachlorobenzene	608-93-5	10	330	
1-Naphthylamine	134-32-7	10	330	
2-Naphthylamine	91-59-8	10	330	
2,3,4,6-Tetrachlorophenol	58-90-2	50	1600	
5-Nitro-o-toluidine	99-55-8	20	660	
Thionazin ²	297-97-2	50	1600	
1,3,5-Trinitrobenzene	99-35-4	50	1600	
Sulfotepp ²	3689-24-5	50	1600	
$Phorate^2$	298-02-2	50	1600	
Phenacetin	62-44-2	20	660	
Diallate ³	2303-16-4	20	660	
Dimethoate ²	60-51-5	20	660	
4-Aminobiphenyl	92-67-1	50	1600	
Pentachloronitrobenzene	82-68-8	50	1600	
Pronamide	23950-58-5	20	660	
Disulfoton ²	298-04-4	50	1600	
2-secbutyl-4,6-dinitrophenol (Dinoseb)	88-85-7	20	660	
Methyl Parathion ²	298-00-0	50	1600	
4-Nitroquinoline-1-oxide	56-57-5	100	3300	

STL Appendix IX¹ Standard Reporting Limits

Semivolatiles	CAS Number	Standard Reporting Limits		
		Aqueous	Low Soil/Sediment	
		μg/L	µg/kg	
Parathion ²	56-38-2	50	1600	
Methapyrilene	91-80-5	50	1600	
Aramite	140-57-8	20	660	
Isodrin ³	465-73-6	10	330	
Kepone ²	143-50-0	100	3300	
Famphur ³	52-85-7	100	3300	
p-(Dimethylamino)azobenzene	60-11-7	20	660	
p-Chlorobenzilate ³	510-15-6	10	330	
3,3'-Dimethylbenzidine	119-93-7	50	1600	
2-Acetylaminofluorene	53-96-3	100	3300	
Dibenz(a,j)acridine	224-42-0	20	660	
7,12-Dimethylbenz(a)anthracene	57-97-6	20	660	
3-Methylcholanthrene	56-49-5	20	660	

¹ The Appendix IX standard contains additional analytes required for the Appendix IX list. The STL primary standard must also be analyzed to include all of the Appendix IX list.

² May also be analyzed by method 8140 or 8141, which can achieve lower reporting limits.

³ May also be analyzed by method 8080 or 8081, which can achieve lower reporting limits

Reportable Analytes for STL Standard Tests, Primary Standard

Analyte	CAS Number	STL Standard List	TCLP	TCL	Appendix IX
Pyridine	110-86-1		Х		Х
N-nitrosodimethylamine	62-75-9				Х
Aniline	62-53-3				Х
Phenol	108-95-2	Х		Х	Х
Bis(2-chloroethyl)ether	111-44-4	Х		Х	Х
2-Chlorophenol	95-57-8	Х		Х	Х
1,3-Dichlorobenzene	541-73-1	Х		Х	Х
1,4-Dichlorobenzene	106-46-7	Х	Х	Х	Х
Benzyl alcohol	100-51-6				Х
1,2-Dichlorobenzene	95-50-1	Х		Х	Х
2-Methylphenol	95-48-7	Х	Х	Х	Х
$2,2^{\circ}$ -oxybis $(1$ -chloropropane)^{1}	180-60-1	Х		Х	Х
4-Methylphenol	106-44-5	Х	Х	Х	Х
N-Nitroso-di-n-propylamine	621-64-7	Х		Х	Х
Hexachloroethane	67-72-1	Х	Х	Х	Х
Nitrobenzene	98-95-3	Х	Х	Х	Х
Isophorone	78-59-1	Х		Х	Х
2-Nitrophenol	88-75-5	Х		Х	Х
2,4-Dimethylphenol	105-67-9	Х		Х	Х
Benzoic acid	65-85-0				
Bis(2-chloroethoxy)methane	111-91-1	Х		Х	Х
2,4-Dichlorophenol	120-83-2	Х		Х	Х
1,2,4-Trichlorobenzene	120-82-1	Х		Х	Х
Naphthalene	91-20-3	Х		Х	Х
4-Chloroaniline	106-47-8	Х		Х	Х
Hexachlorobutadiene	87-68-3	Х	Х	Х	Х
4-Chloro-3-methylphenol	59-50-7	Х		Х	Х
2-Methylnaphthalene	91-57-6	Х		Х	Х
Hexachlorocyclopentadiene	77-47-4	Х		Х	Х
2,4,6-Trichlorophenol	88-06-2	Х	Х	Х	Х
2,4,5-Trichlorophenol	95-95-4	Х	Х	Х	Х
2-Chloronaphthalene	91-58-7	Х		Х	Х
2-Nitroaniline	88-74-4	Х		Х	Х
Dimethyl phthalate	131-11-3	Х		Х	Х
Acenaphthylene	208-96-8	Х		Х	Х
3-Nitroaniline	99-09-2	Х		Х	Х
Acenaphthene	83-32-9	X		X	X
2,4-Dinitrophenol	51-28-5	X		X	X
4-Nitrophenol	100-02-7	Х		Х	Х
Dibenzofuran	132-64-9	X		X	X
2,4-Dinitrotoluene	121-14-2	X	Х	X	X
2,6-Dinitrotoluene	606-20-2	X	_	X	X
Diethylphthalate	84-66-2	X		X	X
4-Chlorophenyl phenyl ether	7005-72-3	X		X	X

Analyte	CAS Number	STL Standard	TCLP	TCL	Appendix IX
		List			
Fluorene	86-73-7	Х		Х	Х
4-Nitroaniline	100-01-6	Х		Х	Х
4,6-Dinitro-2-methylphenol	534-52-1	Х		Х	Х
N-Nitrosodiphenylamine	86-30-6	Х		Х	Х
Azobenzene ⁴	103-33-3				
4-Bromophenyl phenyl ether	101-55-3	Х		Х	Х
Hexachlorobenzene	118-74-1	Х	Х	Х	Х
Pentachlorophenol	87-86-5	Х	Х	Х	Х
Phenanthrene	85-01-8	Х		Х	Х
Anthracene	120-12-7	Х		Х	Х
Carbazole	86-74-8	Х		Х	
Di-n-butyl phthalate	84-74-2	Х		Х	Х
Fluoranthene	206-44-0	Х		Х	Х
Benzidine	92-87-5				
Pyrene	129-00-0	Х		Х	Х
Butyl benzyl phthalate	85-68-7	Х		Х	Х
3,3'-Dichlorobenzidine	91-94-1	Х		Х	Х
Benzo(a)anthracene	56-55-3	Х		Х	Х
Bis(2-ethylhexyl)phthalate	117-81-7	Х		Х	Х
Chrysene	218-01-9	Х		Х	Х
Di-n-octylphthalate	117-84-0	Х		Х	Х
Benzo(b)fluoranthene	205-99-2	Х		Х	Х
Benzo(k)fluoranthene	207-08-9	Х		Х	Х
Benzo(a)pyrene	50-32-8	Х		Х	Х
Indeno(1,2,3-cd)pyrene	193-39-5	Х		Х	Х
Dibenz(a,h)anthracene	53-70-3	Х		Х	Х
Benzo(g,h,i)perylene	191-24-2	Х		Х	Х

Reportable Analytes for STL Standard Tests, Primary Standard

¹ 2,2'oxybis(1-chloropropane) was formally known as bis(2-chloroisopropyl)ether

² Azobenzene is formed by decomposition of 1,2-diphenlyhydrazine. If 1,2-diphenylhydrazine is requested, it will be analyzed as azobenzene.

Reportable analytes for STL Standard Tests, Appendix IX Standard

Semivolatiles	CAS Number	STL Standard List	TCLP	TCL	Appendix IX
2-Picoline	109-06-8				Х
N-Nitrosomethylethylamine	10595-95-6				Х
Methyl methanesulfonate	66-27-3				Х
N-Nitrosodiethylamine	55-18-5				Х
Ethyl methanesulfonate	62-50-0				Х
Pentachloroethane	76-01-7				Х
Acetophenone	98-86-2				Х
N-Nitrosopyrrolidine	930-55-2				Х
N-Nitrosomorpholine	59-89-2				Х
o-Toluidine	95-53-4				Х
3-Methylphenol	108-39-4				Х
N-Nitrosopiperidine	100-75-4				Х
o,o,o-Triethyl-Phosphorothioate ²	126-68-1				Х
a,a-Dimethyl-phenethylamine	122-09-8				Х
2,6-Dichlorophenol	87-65-0				Х
Hexachloropropene	1888-71-7				Х
p-Phenylenediamine	106-50-3				Х
n-Nitrosodi-n-butylamine	924-16-3				Х
Safrole	94-59-7				Х
1,2,4,5-Tetrachlorobenzene	95-94-3				Х
Isosafrole	120-58-1				Х
1,4-Dinitrobenzene	100-25-4				
1,4-Naphthoquinone	130-15-4				Х
1,3-Dinitrobenzene	99-65-0				Х
Pentachlorobenzene	608-93-5				Х
1-Naphthylamine	134-32-7				Х
2-Naphthylamine	91-59-8				Х
2,3,4,6-Tetrachlorophenol	58-90-2				Х
5-Nitro-o-toluidine	99-55-8				Х
Thionazin ²	297-97-2				Х
1,3,5-Trinitrobenzene	99-35-4				Х
Sulfotepp ²	3689-24-5				Х
Phorate ²	298-02-2				Х
Phenacetin	62-44-2				Х
Diallate	2303-16-4				Х
Dimethoate ²	60-51-5				Х
4-Aminobiphenyl	92-67-1				Х
Pentachloronitrobenzene	82-68-8				Х
Pronamide	23950-58-5				Х
Disulfoton ²	298-04-4				Х
2-secbutyl-4,6-dinitrophenol	88-85-7				Х
$(Dinoseb)^2$					
Methyl parathion ²	298-00-0				Х
4-Nitroquinoline-1-oxide	56-57-5				Х

Reportable analytes for STL Standard Tests, Appendix IX Standard

Semivolatiles	CAS Number	STL Standard	TCLP	TCL	Appendix IX
		List			
Parathion ²	56-38-2				Х
Isodrin ³	465-73-6				Х
Kepone ²	143-50-0				Х
Famphur ²	52-85-7				Х
Methapyrilene	91-80-5				Х
Aramite	140-57-8				Х
p-(Dimethylamino)azobenzene	60-11-7				Х
p-Chlorobenzilate ³	510-15-6				Х
3,3'-Dimethylbenzidine	119-93-7				Х
2-Acetylaminofluorene	53-96-3				Х
Dibenz(a,j)acridine	224-42-0				
7,12-Dimethylbenz(a)anthracene	57-97-6				Х
3-Methylcholanthrene	56-49-5				Х
Hexachlorophene ⁴	70-30-4				Х
Diphenylamine ⁵	122-39-4				Х

² May also be analyzed by method 8140 or 8141, which can achieve lower reporting limits.

- ³ May also be analyzed by method 8080 or 8081, which can achieve lower reporting limits
- ⁴ Hexachlorophene is a required analyte for Appendix IX. This compound is not stable, and therefore not included in the calibration standard. The characteristic ions for hexachlorophene are searched for in the chromatogram. (See section 12.2.1)
- ⁵ Diphenylamine is a required compound for Appendix IX. N-nitrosodiphenylamine decomposes in the injection port to form diphenylamine. Therefore these two compounds cannot be distinguished. Diphenylamine is not included in the calibration standard.

Table 5	
---------	--

Suggested	<mark>Instrumental</mark>	Conditions
Suggesteu	insti unicitui	Conditions

Mass Range	35-500 amu
Scan Time	second/scan
Initial Column Temperature/Hold Time	40°C for 2 minutes
Column Temperature Program	40 - 320°C at 11.5°C/min
Final Column Temperature/Hold Time	320°C (until at least one minute after
	benzo(g,h,i)perylene has eluted)
Injector Temperature	250 - 300°C
Transfer Line Temperature	250 - 300°C
Source Temperature	According to manufacturer's
	specifications
Injector	Grob-type, split / splitless
Sample Volume	1 or 2 μ l
Carrier Gas	Helium at 30 cm/sec

Table 6 DFTPP Key Ions and Ion Abundance Criteria				
51	30 - 60% of mass 198			
68	<2% of mass 69			
70	<2% of mass 69			
127	40 - 60% of mass 198			
197	<1% of mass 198			
198	Base peak, 100% relative abundance			
199	5 - 9% of mass 198			
275	10 - 30% of mass 198			
365	>1% of mass 198			
441	Present, but less than mass 443			
442	>40% of mass 198			
443	17 - 23% of mass 442			

	Table 7		
Analytes in Approximate Retention Time Order and Characteristic Ions, Primary Standard			
Analyte	Primary	Secondary	Tertiary
N-nitrosodimethylamine	74	42	
Pyridine	79	52	
2-Fluorophenol (Surrogate Standard)	112	64	63
Phenol-d5 (Surrogate Standard)	99	42	71
Aniline	93	66	
Phenol	94	65	66
Bis(2-chloroethyl)ether	93	63	95
2-Chlorophenol	128	64	130
1,3-Dichlorobenzene	146	148	111
1,4-Dichlorobenzene-d4 (Internal	152	150	115
Standard)			
1,4-Dichlorobenzene	146	148	111
Benzyl Alcohol	108	79	77
1,2-Dichlorobenzene	146	148	111
2-Methylphenol	108	107	79
2,2'-oxybis(1-chloropropane) ¹	45	77	121
4-Methylphenol	108	107	79
N-Nitroso-di-n-propylamine	70	42	101,130
Hexachloroethane	117	201	199
Nitrobenzene-d5 (Surrogate	82	128	54
Standard)			
Nitrobenzene	77	123	65
Isophorone	82	95	138
2-Nitrophenol	139	65	109
2,4-Dimethylphenol	107	121	122
Benzoic Acid	122	105	77
Bis(2-chloroethoxy)methane	93	95	123
2,4-Dichlorophenol	162	164	98
1,2,4-Trichlorobenzene	180	182	145
Naphthalene-d8 (Internal Standard)	136	68	54
Naphthalene	128	129	127
4-Chloroaniline	127	129	65
Hexachlorobutadiene	225	223	227
4-Chloro-3-methylphenol	107	144	142
2-Methylnaphthalene	142	141	115
Hexachlorocyclopentadiene	237	235	272
2,4,6-Trichlorophenol	196	198	200
2,4,5-Trichlorophenol	196	198	200
2-Fluorobiphenyl (Surrogate	172	171	170
Standard)			
2-Chloronaphthalene	162	164	127
2-Nitroaniline	65	92	138
Dimethylphthalate	163	194	164
Acenaphthylene	152	151	153
2,6-Dinitrotoluene	165	89	63

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

	Table 7				
Analytes in Approximate Retention Time Order and Characteristic Ions, Primary Standard					
Analyte	Primary	Secondary	Tertiary		
Acenaphthene-d10 (Internal	164	162	160		
Standard)	104	102	100		
3-Nitroaniline	138	108	92		
Acenaphthene	158	152	154		
	133	63	154		
2,4-Dinitrophenol Dibenzofuran	168	139	84		
	139	109	84 65		
4-Nitrophenol					
2,4-Dinitrotoluene	165	63	89		
Diethylphthalate	149	177	150		
Fluorene	166	165	167		
4-Chlorophenylphenylether	204	206	141		
4-Nitroaniline	138	92	108		
4,6-Dinitro-2-methylphenol	198	51	105		
N-Nitrosodiphenylamine	169	168	167		
2,4,6-Tribromophenol (Surrogate	330	332	141		
Standard)					
Azobenzene	77	182	105		
4-Bromophenylphenylether	248	250	141		
Hexachlorobenzene	284	142	249		
Pentachlorophenol	266	264	268		
Phenanthrene-d10 (Internal	188	94	80		
Standard)					
Phenanthrene	178	179	176		
Anthracene	178	179	176		
Carbazole	167	166	168		
Di-n-butylphthalate	149	150	104		
Fluoranthene	202	101	203		
Benzidine	184	92	185		
Pyrene	202	200	203		
Terphenyl-d14 (Surrogate Standard)	244	122	212		
Butylbenzylphthalate	149	91	206		
Benzo(a)Anthracene	228	229	226		
Chrysene-d12 (Internal Standard)	240	120	236		
3,3'-Dichlorobenzidine	252	254	126		
Chrysene	228	226	229		
Bis(2-ethylhexyl)phthalate	149	167	279		
Di-n-octylphthalate	149	167	43		
Benzo(b)fluoranthene	252	253	125		
Benzo(k)fluoranthene	252	253	125		
Benzo(a)pyrene	252	253	125		
Perylene-d12 (Internal Standard)	252	255	265		
Indeped 1 2 2 adjustrana	204	200	203		

276

278

276

138

139

138

277

279

277

	Table 8				
Analytes in Approximate Retention Time Order and Characteristic Ions, Appendix IX Standard					
Analyte	Primary	Secondary	Tertiary		
2-Picoline	93	66	92		
N-Nitrosomethylethylamine	88	42	43		
Methyl methanesulfonate	80	79	65		
N-Nitrosodiethylamine	102	44	57		
Ethyl methanesulfonate	79	109	97		
Pentachloroethane	117	119	167		
Acetophenone	105	77	120		
N-Nitrosopyrrolidine	100	41	42		
N-Nitrosomorpholine	116	56	86		
o-Toluidine	106	107	00		
3-Methylphenol	108	107	77		
N-Nitrosopiperidine	114	42	55		
o,o,o-Triethyl-Phosphorothioate	198	121	93		
a,a-Dimethyl-phenethylamine	58	91	75		
	162	164	()		
2,6-Dichlorophenol			63		
Hexachloropropene	213	215	211		
p-Phenylenediamine	108	80	41		
n-Nitrosodi-n-butylamine	84	57	41		
Safrole	162	104	77		
1,2,4,5-Tetrachlorobenzene	216	214	218		
Isosafrole 1	162	104	131		
Isosafrole 2	162	104	131		
1,4-Dinitrobenzene	168	75	122		
1,4-Naphthoquinone	158	104	102		
1,3-Dinitrobenzene	168	75	76		
Pentachlorobenzene	250	248	252		
1-Naphthylamine	143	115			
2-Naphthylamine	143	115			
2,3,4,6-Tetrachlorophenol	232	230	131		
5-Nitro-o-toluidine	152	77	106		
Thionazin	97	96	143		
1,3,5-Trinitrobenzene	213	75	120		
Sulfotepp	97	322	202		
Phorate	121	75	260		
Phenacetin	108	179	109		
Diallate	86	234	109		
Dimethoate	80 87	93	125		
		95	123		
4-Aminobiphenyl Pentachloronitrobenzene	169 227	1 4 2	214		
	237	142	214		
Pronamide	173	175	255		
Disulfoton	88	97	89		
2-secbutyl-4,6-dinitrophenol (Dinoseb)	211	163	147		
Methyl parathion	109	125	263		
4-Nitroquinoline-1-oxide	190	128	160		
Parathion	109	97	291		

Analytes in Approximate Retention Time Order and Characteristic Ions, Appendix IX Standard

Analyte	Primary	Secondary	Tertiary
Isodrin	193	66	195
Kepone	272	274	237
Famphur	218	125	93
Methapyrilene	97	58	
Aramite 1	185	319	
Aramite 2	185	319	
p-(Dimethylamino)azobenzene	120	225	77
p-Chlorobenzilate	251	139	253
3,3'-Dimethylbenzidine	212	106	
2-Acetylaminofluorene	181	180	223
Dibenz(a,j)acridine	279	280	
7,12-Dimethylbenz(a)anthracene	256	241	120
3-Methylcholanthrene	268	252	253

Table 9					
8270C LCS Compounds					
LCS Compounds	Spiking Level, ng/µL in extract ¹				
1,2,4-Trichlorobenzene	100				
Acenaphthene	100				
2,4-Dinitrotoluene	100				
Pyrene	100				
N-Nitroso-di-n-propylamine	100				
1,4-Dichlorobenzene	100				
Pentachlorophenol	150				
Phenol	150				
2-Chlorophenol	150				
4-Chloro-3-methylphenol	150				
4-Nitrophenol	150				

 $^1\,$ Levels are 50 and 75 ng/µL if 2 µL injection is used

Table 10				
TCLP LCS Compounds				
LCS Compounds	Spiking Level, ng/ μ L in extract ¹			
1,4-Dichlorobenzene	100			
2,4-Dinitrotoluene	100			
Hexachlorobenzene	100			
Hexachlorobutadiene	100			
Hexachloroethane	100			
2-Methylphenol	100			
3-Methylphenol	100			
4-Methylphenol	100			
Nitrobenzene	100			
Pentachlorophenol	100			
Pyridine	100			
2,4,5-Trichlorophenol	100			
2,4,6-Trichlorophenol	100			

¹ Levels are 50 ng/ μ L if 2 μ L injection is used

Recovery limits for the LCS and for matrix spikes are generated from historical data and are maintained by the QA department.

Table 11				
8270C Surrogate Compounds				
Surrogate Compounds	Spiking Level, ng/µL in extract ²			
Nitrobenzene-d5	100			
2-Fluorobiphenyl	100			
Terphenyl-d14	100			
1,2-Dichlorobenzene-d4 ¹	100			
Phenol-d5	150			
2-Fluorophenol	150			
2,4,6-Tribromophenol	150			
2-Chlorophenol-d4 ¹	150			

¹ Included in standard mix, but not routinely evaluated for method 8270B

 $^2\,$ Levels are 50 and 75 ng/µL if 2 µL injection is used

Recovery limits for surrogates are generated from historical data and are maintained by the QA department.

Table 12						
Calibration Levels, Primary Standard, ug/ml (for 2ul injection)						
Analyte	Level 1	Level 2	Level 3	Level 4	Level 5	
Pyridine	10	25	40	60	80	
N-nitrosodimethylamine	10	25	40	600	800	
Aniline	10	25	400	600	800	
Phenol	10	25	40	60	80	
Bis(2-chloroethyl)ether	10	25	40	60	80	
2-Chlorophenol	10	25	40	60	80	
1,3-Dichlorobenzene	10	25	40	60	80	
1,4-Dichlorobenzene	10	25	40	60	80	
Benzyl alcohol	10	25	40	60	80	
1,2-Dichlorobenzene	10	25	40	60	80	
2-Methylphenol	10	25	40	60 60	80	
2,2'-oxybis $(1$ -chloropropane) ¹	10	25	40	60	80	
4-Methylphenol	10	25	40	60 60	80 80	
N-Nitroso-di-n-propylamine	10	25	40	60 60	80 80	
Hexachloroethane	10	25	40	60 60	80 80	
Nitrobenzene	10	25	40	60 60	80 80	
		25				
Isophorone	10		40	60 (0	80	
2-Nitrophenol	10	25	40	60 (0	80	
2,4-Dimethylphenol	10	25	40	60	80	
Benzoic acid	20	50	80	120	160	
Bis(2-chloroethoxy)methane	10	25	40	60	80	
2,4-Dichlorophenol	10	25	40	60	80	
1,2,4-Trichlorobenzene	10	25	40	60	80	
Naphthalene	10	25	40	60	80	
4-Chloroaniline	10	25	40	60	80	
Hexachlorobutadiene	10	25	40	60	80	
4-Chloro-3-methylphenol	10	25	40	60	80	
2-Methylnaphthalene	10	25	40	60	80	
Hexachlorocyclopentadiene	10	25	40	60	80	
2,4,6-Trichlorophenol	10	25	40	60	80	
2,4,5-Trichlorophenol	10	25	40	60	80	
2-Chloronaphthalene	10	25	40	60	80	
2-Nitroaniline	20	50	80	120	160	
Dimethyl phthalate	10	25	40	60	80	
Acenaphthylene	10	25	40	60	80	
3-Nitroaniline	20	50	80	120	160	
Acenaphthene	10	25	40	60	80	
2,4-Dinitrophenol	20	50	80	120	160	
4-Nitrophenol	20	50	80	120	160	
Dibenzofuran	10	25	40	60	80	
2,4-Dinitrotoluene	10	25	40	60	80	
2,6-Dinitrotoluene	10	25	40	60	80	
Diethylphthalate	10	25	40	60	80	
4-Chlorophenyl phenyl ether	10	25	40	60	80	
Fluorene	10	25	40	60	80	

Table 12						
Calibration Levels, Primary Standard, ug/ml (for 2ul injection)						
Analyte	Level 1	Level 2	Level 3	Level 4	Level 5	
4-Nitroaniline	10	25	40	60	80	
4,6-Dinitro-2-methylphenol	20	50	80	120	160	
N-Nitrosodiphenylamine	10	25	40	60	80	
Azobenzene ²	10	25	40	60	80	
4-Bromophenyl phenyl ether	10	25	40	60	80	
Hexachlorobenzene	10	25	40	60	80	
Pentachlorophenol	20	50	80	120	160	
Phenanthrene	10	25	40	60	80	
Anthracene	10	25	40	60	80	
Carbazole	10	25	40	60	80	
Di-n-butyl phthalate	10	25	40	60	80	
Fluoranthene	10	25	40	60	80	
Benzidine	20	50	80	120	160	
Pyrene	10	25	40	60	80	
Butyl benzyl phthalate	10	25	40	60	80	
3,3'-Dichlorobenzidine	20	50	80	120	160	
Benzo(a)anthracene	10	25	40	60	80	
Bis(2-ethylhexyl)phthalate	10	25	40	60	80	
Chrysene	10	25	40	60	80	
Di-n-octylphthalate	10	25	40	60	80	
Benzo(b)fluoranthene	10	25	40	60	80	
Benzo(k)fluoranthene	10	25	40	60	80	
Benzo(a)pyrene	10	25	40	60	80	
Indeno(1,2,3-cd)pyrene	10	25	40	60	80	
Dibenz(a,h)anthracene	10	25	40	60	80	
Benzo(g,h,i)perylene	10	25	40	60	80	

¹ 2,2'oxybis(1-chloropropane) was formally known as bis(2-chloroisopropyl)ether

²Azobenzene is formed by decomposition of 1,2-diphenlyhydrazine. If 1,2-diphenylhydrazine is requested, it will be analyzed as azobenzene.

Table 13					
Calibration Levels, Appendix IX Standard, µg/mL (for 2ul injection)					
Semivolatiles	Level 1	Level 2	Level 3	Level 4	Level 5
2-Picoline	10	25	40	60	80
N-Nitrosomethylethylamine	10	25	40	60	80
Methyl methanesulfonate	10	25	40	60	80
N-Nitrosodiethylamine	10	25	40	60	80
Ethyl methanesulfonate	10	25	40	60	80
Pentachloroethane	10	25	40	60	80
Acetophenone	10	25	40	60	80
N-Nitrosopyrrolidine	10	25	40	60	80
N-Nitrosomorpholine	10	25	40	60	80
o-Toluidine	10	25	40	60	80
3-Methylphenol	10	25	40	60	80
N-Nitrosopiperidine	10	25	40	60	80
o,o,o-Triethyl-Phosphorothioate	20	50	80	120	160
a,a-Dimethyl-phenethylamine	10	25	40	60	80
2,6-Dichlorophenol	10	25	40	60	80
Hexachloropropene	20	50	80	120	160
p-Phenylenediamine	10	25	40	60	80
n-Nitrosodi-n-butylamine	10	25	40	60	80
Safrole	10	25	40	60	80
1,2,4,5-Tetrachlorobenzene	10	25	40	60	80
Isosafrole $1 + 2$	20	50	80	120	160
1,4-Dinitrobenzene	10	25	40	60	80
1,4-Naphthoquinone	10	25	40	60	80
1,3-Dinitrobenzene	10	25	40	60	80
Pentachlorobenzene	10	25	40	60	80
1-Naphthylamine	10	25	40	60	80
2-Naphthylamine	10	25	40	60	80
2,3,4,6-Tetrachlorophenol	10	25	40	60	80
5-Nitro-o-toluidine	10	25	40	60	80
Thionazin	10	25	40	60 60	80 80
1,3,5-Trinitrobenzene	20	50	40 80	120	160
Sulfotepp	10	25	40	60	80
Phorate	10	25	40	60 60	80 80
Phenacetin	10	25	40 40	60	80 80
Diallate 1 + 2	20	23 50	40 80	120	
Dimethoate	20 10	25	80 40	60	160 80
	10	25 25	40 40	60 60	80 80
4-Aminobiphenyl Pentachloronitrobenzene	10 20	25 50	40 80	120	
Pronamide	20 10		80 40		160 80
Disulfoton		25 25	40 40	60 60	80 80
	10 20	25 50	40 80		
2-secbutyl-4,6-dinitrophenol (Dinoseb)				120	160
Methyl parathion	10	25	40	60 120	80
4-Nitroquinoline-1-oxide	20	50 25	80	120	160
Parathion	10	25	40	60	80
Isodrin	10	25	40	60	80
Kepone	20	50	80	120	160

Table 13 Calibration Levels, Appendix IX Standard, μg/mL (for 2ul injection)					
Semivolatiles	Level 1	Level 2	Level 3	Level 4	Level 5
Famphur	20	50	80	120	160
Methapyrilene	10	25	40	60	80
Aramite 1 and 2	20	50	80	120	160
p-(Dimethylamino)azobenzene	10	25	40	60	80
p-Chlorobenzilate	10	25	40	60	80
3,3'-Dimethylbenzidine	10	25	40	60	80
2-Acetylaminofluorene	10	25	40	60	80
Dibenz (a,j)acridine	10	25	40	60	80
7,12-Dimethylbenz(a)anthracene	10	25	40	60	80
3-Methylcholanthrene	10	25	40	60	80

Table 14 Initial demonstration recovery and precision limits				
Compound	Spiking concentration µg/L	Limit for Relative Standard Deviation	Limit for average recovery, %	
Acenaphthene	50	27.6	60.1-132.3	
Acenaphthylene	50	40.0	53.5-126.0	
Aldrin ¹	50	39.0	7.2-152.2	
Anthracene	50	32.0	43.4-118.0	
Benz(a)anthracene	50	27.6	41.8-133.0	
Benzo(b)fluoranthene	50	38.8	42.0-140.4	
Benzo(k)fluoranthene	50	32.3	25.2-145.7	
Benzo(a)pyrene	50	39.0	31.7-148.0	
Benzo(ghi)perylene	50	58.9	D-195.0	
Benzylbutyl phthalate	50	23.4	D-139.9	
B-BHC ¹	50	31.5	41.5-130.6	
d-BHC ¹	50	21.6	D-100.0	
Bis(2-chloroethyl) ether	50	55.0	42.9-126.0	
Bis(2-chloroethoxy)methane	50	34.5	49.2-164.7	
Bis(2-chloroisopropyl) ether	50	46.3	62.8-138.6	
Bis(2-ethylhexyl) phthalate	50	41.1	28.9-136.8	
4-Bromophenyl phenyl ether	50	23.0	64.9-114.4	
2-Chloronaphthalene	50	13.0	64.5-113.5	
4-Chlorophenyl phenyl ether	50	33.4	38.4-144.7	
Chrysene	50	48.3	44.1-139.9	
4,4'-DDD ¹	50	31.0	D-134.5	
4,4'-DDE ¹	50	32.0	19.2-119.7	
4,4'-DDT ¹	50	61.6	D-170.6	
Dibenzo(a,h)anthracene	50	70.0	D-199.7	
Di-n-butyl phthalate	50	16.7	8.4-111.0	
1,2-Dichlorobenzene	50	30.9	48.6-112.0	
1,3-Dichlorobenzene	50	41.7	16.7-153.9	

Revision No: 2.1 Revision Date: 12/15/97 Page 48 of 54

	Table 14				
Initial demonstration recovery and precision limits					
Compound	Spiking	Limit for Relative	Limit for average		
	concentration	Standard Deviation	recovery, %		
1.4.5.11.1	μg/L	20.1	05 0 105 5		
1,4-Dichlorobenzene	50	32.1	37.3-105.7		
3,3'-Dichlorobenzidine	50	71.4	8.2-212.5		
Dieldrin ¹	50	30.7	44.3-119.3		
Diethyl phthalate	50	26.5	D-100.0		
Dimethyl phthalate	50	23.2	D-100.0		
2,4-Dinitrotoluene	50	21.8	47.5-126.9		
2,6-Dinitrotoluene	50	29.6	68.1-136.7		
Di-n-octylphthalate	50	31.4	18.6-131.8		
Endosulfan sulfate ¹	50	16.7	D-103.5		
Endrin aldehyde	50	32.5	D-188.8		
Fluoranthene	50	32.8	42.9-121.3		
Fluorene	50	20.7	71.6-108.4		
Heptachlor ¹	50	37.2	D-172.2		
Heptachlor epoxide ¹	50	54.7	70.9-109.4		
Hexachlorobenzene	50	24.9	7.8-141.5		
Hexachlorobutadiene	50	26.3	37.8-102.2		
Hexachloroethane	50	24.5	55.2-100.0		
Indeno(1,2,3-cd)pyrene	50	44.6	D-150.9		
Isophorone	50	63.3	46.6-180.2		
Naphthalene	50	30.1	35.6-119.6		
Nitrobenzene	50	39.3	54.3-157.6		
N-Nitrosodi-n-propylamine	50	55.4	13.6-197.9		
PCB-1260 ¹	50	54.2	19.3-121.0		
Phenanthrene	50	20.6	65.2-108.7		
Pyrene	50	25.2	69.6-100.0		
1,2,4-Trichlorobenzene	50	28.1	57.3-129.2		
4-Chloro-3-methylphenol	50	37.2	40.8-127.9		
2-Chlorophenol	50	28.7	36.2-120.4		
2,4-Chlorophenol	50	26.4	52.5-121.7		
2,4-Dimethylphenol	50	26.1	41.8-109.0		
2,4-Dinitrophenol	50	49.8	D-172.9		
2-Methyl-4,6-dinitrophenol	50	93.2	53.0-100.0		
2-Nitrophenol	50	35.2	45.0-166.7		
4-Nitrophenol	50	47.2	13.0-106.5		
Pentachlorophenol	50	48.9	38.1-151.8		
Phenol	50	22.6	16.6-100.0		
2,4,6-Trichlorophenol	50	31.7	52.4-129.2		

¹Since the organochlorine pesticides and PCBs are normally determined by method 8080 at STL, they will not be included in the initial demonstration of capability for method 8270B.

SOP No: CORP-MS-0001PT Revision No: 2.1 Revision Date: 12/15/97 Page 49 of 54

ATTACHMENT A

MODIFICATIONS REQUIRED FOR ANALYSIS OF WASTEWATER FOLLOWING METHOD 625

18. REQUIREMENTS FOR METHOD 625

- 18.1. Method 625 is required for demonstration of compliance with NPDES wastewater discharge permits. The standard analyte list and reporting limits are listed in Table A-1.
- 18.2. This method can be applied only to aqueous matrices.
- 18.3. The <u>tune period</u> for this method is defined as 24 hours.
- 18.4. Initial calibration curve requirements:
 - 18.4.1. The initial calibration curve for this method requires at least three points.
 - 18.4.2. Target compounds must have $RSD \le 35\%$.
 - 18.4.3. If this requirement can not be met, a regression curve must be constructed for the non-compliant compounds.
- 18.5. <u>Continuing calibration verification</u> requirements: All target compounds must have $\%D \le 20\%$.
- 18.6. Matrix Spike and LCS requirements:
 - 18.6.1. A full analyte spike is required for method 625. The spiking levels are given in Table A-2.

Analytes	CAS Number	Aqueous
		μg/L
Phenol	108-95-2	10
Bis(2-chloroethyl)ether	111-44-4	10
2-Chlorophenol	95-57-8	10
1,3-Dichlorobenzene	541-73-1	10
1,4-Dichlorobenzene	106-46-7	10
1,2-Dichlorobenzene	95-50-1	10
2,2'-oxybis(1-chloropropane)	108-60-1	10
N-Nitroso-di-n-propylamine	621-64-7	10
Hexachloroethane	67-72-1	10
Nitrobenzene	98-95-3	10
Isophorone	78-59-1	10
2-Nitrophenol	88-75-5	10
2,4-Dimethylphenol	105-67-9	10
Bis(2-chloroethoxy)methane	111-91-1	10
2,4-Dichlorophenol	120-83-2	10
		10
1,2,4-Trichlorobenzene	120-82-1 91-20-3	10
Naphthalene		-
Hexachlorobutadiene	87-68-3	10
4-Chloro-3-methylphenol	59-50-7	10
Hexachlorocyclopentadiene	77-47-4	50
2,4,6-Trichlorophenol	88-06-2	10
2-Chloronaphthalene	91-58-7	10
Dimethyl phthalate	131-11-3	10
Acenaphthylene	208-96-8	10
Acenaphthene	83-32-9	10
2,4-Dinitrophenol	51-28-5	50
4-Nitrophenol	100-02-7	50
2,4-Dinitrotoluene	121-14-2	10
2,6-Dinitrotoluene	606-20-2	10
Diethylphthalate	84-66-2	10
4-Chlorophenyl phenyl ether	7005-72-3	10
Fluorene	86-73-7	10
4,6-Dinitro-2-methylphenol	534-52-1	50
N-Nitrosodiphenylamine	86-30-6	10
4-Bromophenyl phenyl ether	101-55-3	10
Hexachlorobenzene	118-74-1	10
Pentachlorophenol	87-86-5	50
Phenanthrene	85-01-8	10
Anthracene	120-12-7	10
Di-n-butyl phthalate	84-74-2	10
Fluoranthene	206-44-0	10
Benzidine	92-87-5	100
Pyrene	129-00-0	10
Butyl benzyl phthalate	85-68-7	10

Table A-1. STL Method 625 standard reporting list and reporting limits.

Attachment A GC/MS ANALYSIS BASED ON METHOD 625

SOP No: CORP-MS-0001PT Revision No: 2.1 Revision Date: 12/15/97 Page 52 of 54

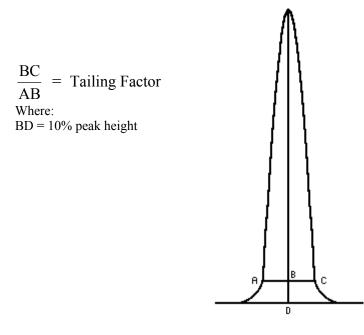
Analytes	CAS Number	Aqueous
		μg/L
3,3'-Dichlorobenzidine	91-94-1	50
Benzo(a)anthracene	56-55-3	10
Bis(2-ethylhexyl)phthalate	117-81-7	10
Chrysene	218-01-9	10
Di-n-octylphthalate	117-84-0	10
Benzo(b)fluoranthene	205-99-2	10
Benzo(k)fluoranthene	207-08-9	10
Benzo(a)pyrene	50-32-8	10
Indeno(1,2,3-cd)pyrene	193-39-5	10
Dibenz(a,h)anthracene	53-70-3	10
Benzo(g,h,i)perylene	191-24-2	10

LCS Compounds	Spiking Level, ng/ μ L in extract ¹
Phenol	100
Bis(2-chloroethyl)ether	100
2-Chlorophenol	100
1,3-Dichlorobenzene	100
1,4-Dichlorobenzene	100
1,2-Dichlorobenzene	100
2,2'-oxybis(1-chloropropane)	100
N-Nitroso-di-n-propylamine	100
Hexachloroethane Nitrobenzene	100
	100
Isophorone	100
2-Nitrophenol	100
2,4-Dimethylphenol Bis(2-chloroethoxy)methane	100
2,4-Dichlorophenol	100
1,2,4-Trichlorobenzene	
Naphthalene	100
Hexachlorobutadiene	100
4-Chloro-3-methylphenol Hexachlorocyclopentadiene	100
2,4,6-Trichlorophenol	100
2-Chloronaphthalene	100
Dimethyl phthalate	100
Acenaphthylene	100
Acenaphthene	100
2,4-Dinitrophenol	100
4-Nitrophenol	100
2,4-Dinitrotoluene	100
2,6-Dinitrotoluene	100
Diethylphthalate	100
4-Chlorophenyl phenyl ether	100
Fluorene	100
4,6-Dinitro-2-methylphenol	100
N-Nitrosodiphenylamine	100
4-Bromophenyl phenyl ether	100
Hexachlorobenzene	100
Pentachlorophenol	100
Phenanthrene	100
Anthracene	100
Di-n-butyl phthalate	100
Fluoranthene	100
Benzidine	100
Pyrene	100
Butyl benzyl phthalate	100
3,3'-Dichlorobenzidine	100

Table A-2. Method 625 LCS and MS compounds and spike concentrations.

Attachment A GC/MS ANALYSIS BASED ON METHOD 625

SOP No: CORP-MS-0001PT Revision No: 2.1 Revision Date: 12/15/97 Page 54 of 54


LCC Common da	Spiling Lough ng/uL in outroat
LCS Compounds	Spiking Level, ng/µL in extract ¹
Benzo(a)anthracene	100
Bis(2-ethylhexyl)phthalate	100
Chrysene	100
Di-n-octylphthalate	100
Benzo(b)fluoranthene	100
Benzo(k)fluoranthene	100
Benzo(a)pyrene	100
Indeno(1,2,3-cd)pyrene	100
Dibenz(a,h)anthracene	100
Benzo(g,h,i)perylene	100

 1 Levels are 50 and 75 ng/µL if 2 µL injection is used

Appendix to: CORP-MS-0001-PT Rv 2.1 Implementation Date: 3/01/2000

TUNING CRITERIA FOR BENZIDINE & PENTACHLOROPHENOL

At the beginning of each day that analyses are to be performed, the GC/MS system must be checked to see if acceptable performance criteria are achieved for DFTPP. Each day that benzidine is to be determined, the tailing factor must be less than 3.0. Each day that acids are to be determined, the tailing factor for pentachlorophenol must be less than 5.0. Calculation of the Tailing Factor is illustrated below:

