LIST OF TABLES:

2-1 Hudson River Fishes
2-2 Typical Fish Aggregations in the Upper Hudson River
2-3 Amphibians Potentially Found Along the Hudson River
2-4 Reptiles Potentially Found Along the Hudson River
2-5 Breeding Birds of the Hudson River
2-6 Mammals Potentially Found Along the Hudson River
2-7 Assessment and Measurement Endpoints
2-8 Hudson River Receptor Species
2-9 Receptor Trophic Levels, Exposure Pathways, and Food Sources
2-10 NYS Rare and Listed Species and Habitats Occurring in the Vicinity of the Hudson River
2-11 Hudson River Significant Habitats

3-1 Average Proportion of Fish-Based TEQ Congeners Using USEPA 1993 Dataset and USFWS 1995 Dataset
3-2 Fraction of Tri+ Chlorinated Congeners Expressed as Toxic Equivalencies (TEQ)
3-3 Whole Water Concentrations Based on 1993 USEPA Phase 2 Dataset
3-4 Dry Weight Sediment Concentrations Based on USEPA Phase 2 Dataset
3-5 Benthic Invertebrate Concentrations Based on USEPA Phase 2 Dataset
3-6 Forage Fish Concentrations Based on USEPA Phase 2 Dataset
3-7 Observed Concentrations in ppm for Fish Species for River Miles 113, 152, 168 and 189 from NYSDEC Dataset
3-8 Observed Striped Bass Concentrations from NYSDEC for the Hudson River
3-9 Observed Mammalian and Avian PCB Concentrations
3-10 Summary of Tri+ Whole Water Concentrations from the HUDTOX Model and TEQ-Based Predictions for 1993 - 2018
3-11 Summary of Tri+ Sediment Concentrations from the HUDTOX Model and TEQ-Based Predictions for 1993 - 2018
3-12 Summary of Tri+ Benthic Invertebrate Concentrations from the FISHRAND Model and TEQ-Based Predictions for 1993 - 2018
3-13 Largemouth Bass Predicted Tri+ Concentrations for 1993 - 2018
3-14 Brown Bullhead Predicted Tri+ Concentrations for 1993 - 2018
Volume 2E (Book 2 of 3)

3-15 White Perch Predicted Tri+ Concentrations for 1993 - 2018
3-16 Yellow Perch Predicted Tri+ Concentrations for 1993 - 2018
3-17 Exposure Parameters for the Tree Swallow (Tachycineta bicolor)
3-18 Exposure Parameters for the Mallard (Anas platyrhynchos)
3-19 Exposure Parameters for the Belted Kingfisher (Ceryle alcyon)
3-20 Exposure Parameters for Great Blue Heron (Ardea herodias)
3-21 Exposure Parameters for the Bald Eagle (Haliaeetus leucocephalus)
3-22 Exposure Parameters for the Little Brown Bat (Myotis lucifugus)
3-23 Exposure Parameters for the Raccoon (Procyon lotor)
3-24 Exposure Parameters for Mink (Mustela vison)
3-25 Exposure Parameters for River Otter (Lutra canadensis)
3-26 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Tree Swallow Based on 1993 Data Using Sum of Tri+ Congeners
3-27 Summary of ADD_{95%UCL} and Egg Concentrations for Female Tree Swallow Based on 1993 Data Using Sum of Tri+ Congeners
3-28 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Tree Swallow Based on Tri+ Congeners for Period 1993 - 2018
3-29 Summary of ADD_{95%UCL} and Egg Concentrations for Female Tree Swallow Based on Tri+ Congeners for Period 1993 - 2018
3-30 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Mallard Based on 1993 Data Using Sum of Tri+ Congeners
3-31 Summary of ADD_{95%UCL} and Egg Concentrations for Female Mallard Based on 1993 Data Using Sum of Tri+ Congeners
3-32 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Mallard Based on Tri+ Congeners for Period 1993 - 2018
3-33 Summary of ADD_{95%UCL} and Egg Concentrations for Female Mallard Based on Tri+ Congeners for Period 1993 - 2018
3-34 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Belted Kingfisher Based on 1993 Data Using Sum of Tri+ Congeners
3-35 Summary of ADD_{95%UCL} and Egg Concentrations for Female Belted Kingfisher Based on 1993 Data Using Sum of Tri+ Congeners
3-36 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Kingfisher Based on Tri+ Congeners for Period 1993 - 2018
3-37 Summary of ADD_{95%UCL} and Egg Concentrations for Female Belted Kingfisher Based on Tri+ Congeners for Period 1993 - 2018
Volume 2E (Book 2 of 3)

3-38 Summary of ADD_{\text{EXPECTED}} and Egg Concentrations for Female Great Blue Heron Based on 1993 Data Using Sum of Tri+ Congeners

3-39 Summary of ADD_{95\%\text{UCL}} and Egg Concentrations for Female Great Blue Heron Based on 1993 Data Using Sum of Tri+ Congeners

3-40 Summary of ADD_{\text{EXPECTED}} and Egg Concentrations for Female Great Blue Heron Based on Tri+ Congeners for Period 1993 - 2018

3-41 Summary of ADD_{95\%\text{UCL}} and Egg Concentrations for Female Great Blue Heron Based on Tri+ Congeners for Period 1993 - 2018

3-42 Summary of ADD_{\text{EXPECTED}} and Egg Concentrations for Female Eagle Based on 1993 Data Using Sum of Tri+ Congeners

3-43 Summary of ADD_{95\%\text{UCL}} and Egg Concentrations for Female Eagle Based on 1993 Data Using Sum of Tri+ Congeners

3-44 Summary of ADD_{\text{EXPECTED}} and Egg Concentrations for Female Eagle Based on Tri+ Congeners for Period 1993 - 2018

3-45 Summary of ADD_{95\%\text{UCL}} and Egg Concentrations for Female Eagle Based on Tri+ Congeners for Period 1993 - 2018

3-46 Summary of ADD_{\text{EXPECTED}} and Egg Concentrations for Female Tree Swallow Based on 1993 Data on TEQ Basis

3-47 Summary of ADD_{95\%\text{UCL}} and Egg Concentrations for Female Tree Swallow Based on 1993 Data on TEQ Basis

3-48 Summary of ADD_{\text{EXPECTED}} and Egg Concentrations for Female Tree Swallow for the Period 1993 - 2018 on TEQ Basis

3-49 Summary of ADD_{95\%\text{UCL}} and Egg Concentrations for Female Tree Swallow for the Period 1993 - 2018 on TEQ Basis

3-50 Summary of ADD_{\text{EXPECTED}} and Egg Concentrations for Female Mallard Based on 1993 Data on a TEQ Basis

3-51 Summary of ADD_{95\%\text{UCL}} and Egg Concentrations for Female Mallard Based on 1993 Data on TEQ Basis

3-52 Summary of ADD_{\text{EXPECTED}} and Egg Concentrations for Female Mallard on a TEQ Basis for Period 1993 - 2018

3-53 Summary of ADD_{95\%\text{UCL}} and Egg Concentrations for Female Mallard on a TEQ Basis for Period 1993 - 2018

3-54 Summary of ADD_{\text{EXPECTED}} and Egg Concentrations for Female Belted Kingfisher Based on 1993 Data on TEQ Basis
CONTENTS

Volume 2E (Book 2 of 3)

3-55 Summary of $ADD_{95\% UCL}$ and Egg Concentrations for Female Belted Kingfisher Based on 1993 Data on TEQ Basis
3-56 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Belted Kingfisher for the Period 1993 - 2018 on TEQ Basis
3-57 Summary of $ADD_{95\% UCL}$ and Egg Concentrations for Female Belted Kingfisher for the Period 1993 - 2018 on TEQ Basis
3-58 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Great Blue Heron Based on 1993 Data on TEQ Basis
3-59 Summary of $ADD_{95\% UCL}$ and Egg Concentrations for Female Great Blue Heron Based on 1993 Data on TEQ Basis
3-60 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Great Blue Heron for the Period 1993 - 2018 on TEQ Basis
3-61 Summary of $ADD_{95\% UCL}$ and Egg Concentrations for Female Great Blue Heron for the Period 1993 - 2018 on TEQ Basis
3-62 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Eagle Based on 1993 Data on TEQ Basis
3-63 Summary of $ADD_{95\% UCL}$ and Egg Concentrations for Female Eagle Based on 1993 Data on TEQ Basis
3-64 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Eagle for the Period 1993 - 2018 on TEQ Basis
3-65 Summary of $ADD_{95\% UCL}$ and Egg Concentrations for Female Eagle for the Period 1993 - 2018 on TEQ Basis
3-66 Summary of ADD_{EXPECTED} for Female Bat Using 1993 Data Based on Tri+ Congeners
3-67 Summary of $ADD_{95\% UCL}$ for Female Bat Using 1993 Data Based on Tri+ Congeners
3-68 Summary of ADD_{EXPECTED} for Female Bat Based on Tri+ Predictions for the Period 1993 - 2018
3-69 Summary of $ADD_{95\% UCL}$ for Female Bat Based on Tri+ Predictions for the Period 1993 - 2018
3-70 Summary of ADD_{EXPECTED} for Female Raccoon Using 1993 Data Based on Tri+ Congeners
3-71 Summary of $ADD_{95\% UCL}$ for Female Raccoon Using 1993 Data Based on Tri+ Congeners
3-72 Summary of ADD_{EXPECTED} for Female Raccoon Based on Tri+ Predictions for the Period 1993 - 2018
3-73 Summary of $ADD_{95\% UCL}$ for Female Raccoon Based on Tri+ Predictions for the Period 1993 - 2018
3-74 Summary of ADD_{EXPECTED} for Female Mink Using 1993 Data Based on Tri+ Congeners
3-75 Summary of $ADD_{95\% UCL}$ for Female Mink Using 1993 Data Based on Tri+ Congeners
CONTENTS

Volume 2E (Book 2 of 3)

3-76 Summary of ADD\textsubscript{EXPECTED} for Female Mink Based on Tri+ Predictions for the Period 1993 - 2018
3-77 Summary of ADD\textsubscript{95\%UCL} for Female Mink Based on Tri+ Predictions for the Period 1993 - 2018
3-78 Summary of ADD\textsubscript{EXPECTED} for Female Otter Using 1993 Data Based on Tri+ Congeners
3-79 Summary of ADD\textsubscript{95\%UCL} for Female Otter Using 1993 Data Based on Tri+ Congeners
3-80 Summary of ADD\textsubscript{EXPECTED} for Female Otter Based on Tri+ Predictions for the Period 1993 - 2018
3-81 Summary of ADD\textsubscript{95\%UCL} for Female Otter Based on Tri+ Predictions for the Period 1993 - 2018
3-82 Summary of ADD\textsubscript{EXPECTED} for Female Bat Using 1993 Data on a TEQ Basis
3-83 Summary of ADD\textsubscript{95\%UCL} for Female Bat Using 1993 Data on a TEQ Basis
3-84 Summary of ADD\textsubscript{EXPECTED} for Female Bat on a TEQ Basis for the Period 1993 - 2018
3-85 Summary of ADD\textsubscript{95\%UCL} for Female Bat on a TEQ Basis for the Period 1993 - 2018
3-86 Summary of ADD\textsubscript{EXPECTED} for Female Raccoon Using 1993 Data on a TEQ Basis
3-87 Summary of ADD\textsubscript{95\%UCL} for Female Raccoon Using 1993 Data on a TEQ Basis
3-88 Summary of ADD\textsubscript{EXPECTED} for Female Raccoon on a TEQ Basis for the Period 1993 - 2018
3-89 Summary of ADD\textsubscript{95\%UCL} for Female Raccoon on a TEQ Basis for the Period 1993 - 2018
3-90 Summary of ADD\textsubscript{EXPECTED} for Female Mink Using 1993 Data on a TEQ Basis
3-91 Summary of ADD\textsubscript{95\%UCL} for Female Mink Using 1993 Data on a TEQ Basis
3-92 Summary of ADD\textsubscript{EXPECTED} for Female Mink on a TEQ Basis for the Period 1993 - 2018
3-93 Summary of ADD\textsubscript{95\%UCL} for Female Mink on a TEQ Basis for the Period 1993 - 2018
3-94 Summary of ADD\textsubscript{EXPECTED} for Female Otter Using 1993 Data on a TEQ Basis
3-95 Summary of ADD\textsubscript{95\%UCL} for Female Otter Using 1993 Data on a TEQ Basis
3-96 Summary of ADD\textsubscript{EXPECTED} for Female Otter on a TEQ Basis for the Period 1993 - 2018
3-97 Summary of ADD\textsubscript{95\%UCL} for Female Otter on a TEQ Basis for the Period 1993 - 2018

4-1 Common Effects of PCB Exposure in Animals
4-2 World-Health Organization for Toxic Equivalency Factors (TEFs) for Humans, Mammals, Fish, and Birds
4-3 Selected Sediment Screening Guidelines: PCBs
4-4 Toxicity Endpoints for Benthic Invertebrates - Effective Concentrations of Total PCBs, Aroclors and Dioxin Toxic Equivalents (TEQs)
4-5 Toxicity Endpoints for Fish - Laboratory Studies - Effective Concentrations of Total PCBs and Aroclors
4-6 Toxicity Endpoints for Fish - Field Studies - Effective Concentrations of Total PCBs and Aroclors
CONTENTS

Volume 2E (Book 2 of 3)

4-7 Toxicity Endpoints for Fish - Laboratory Studies - Effective Concentrations of Dioxin Toxic Equivalents (TEQs)
4-8 Toxicity Endpoints for Fish - Field Studies - Effective Concentrations of Dioxin Toxic Equivalents (TEQs)
4-9 Toxicity Endpoints for Avians - Laboratory Studies - Effective Dietary Doses of Total PCBs and Aroclors
4-10 Toxicity Endpoints for Avians - Field Studies - Effective Dietary Doses of Total PCBs and Aroclors
4-11 Toxicity Endpoints for Avians - Laboratory Studies - Effective Dietary Doses of Dioxin Toxic Equivalents (TEQs)
4-12 Toxicity Endpoints for Avians - Field Studies - Effective Dietary Doses of Dioxin Toxic Equivalents (TEQs)
4-13 Toxicity Endpoints for Avian Eggs - Laboratory Studies - Effective Concentrations of Total PCBs and Aroclors
4-14 Toxicity Endpoints for Avian Eggs - Field Studies - Effective Concentrations of Total PCBs and Aroclors
4-15 Toxicity Endpoints for Avian Eggs - Laboratory Studies - Effective Concentrations of Dioxin Toxic Equivalents (TEQs)
4-16 Toxicity Endpoints for Avian Eggs - Field Studies - Effective Concentrations of Dioxin Toxic Equivalents (TEQs)
4-17 Toxicity Endpoints for Other Mammals - Laboratory Studies - Effective Dietary Doses of Total PCBs and Aroclors
4-18 Toxicity Endpoints for Other Mammals - Laboratory Studies - Effective Dietary Doses of Dioxin Toxic Equivalents (TEQs)
4-19 Toxicity Endpoints for Mink - Laboratory Studies - Effective Dietary Doses of Total PCBs and Aroclors
4-20 Toxicity Endpoints for Mink - Field Studies - Effective Dietary Doses of Total PCBs and Aroclors
4-21 Toxicity Endpoints for Mink - Laboratory Studies - Effective Dietary Doses of Dioxin Toxic Equivalents (TEQs)
4-22 Toxicity Endpoints for Mink - Field Studies - Effective Dietary Doses of Dioxin Toxic Equivalents (TEQs)
4-23 Taxonomy of Studied Organisms
4-24 Standard Animal Body Weights and Food Intake Rates
4-25 Toxicity Reference Values for Fish - Dietary Doses and Egg Concentrations of Total PCBs and Dioxin Toxic Equivalents (TEQs)
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2E- BASELINE ECOLOGICAL RISK ASSESSMENT
HUDSON RIVER PCBs REASSESSMENT RI/FS

CONTENTS

Volume 2E (Book 2 of 3)

4-26 Toxicity Reference Values for Birds - Dietary Doses and Egg Concentrations of Total PCBs and Dioxin Toxic Equivalents (TEQs)
4-27 Toxicity Reference Values for Mammals - Dietary Doses of Total PCBs and Dioxin Toxic Equivalents (TEQs)
4-28 Wildlife Survey Results Amphibians - Hudson River

5-1 Benthic Invertebrates Collected at TI Pool Stations
5-2 Relative Abundance of Five Dominant Taxanomic Groups at TI Stations
5-3 Summary of Infauna and Total Benthos Indices - TI Pool
5-4 Relative Percent Abundance of Macroinvertebrates - Lower Hudson River
5-5 Summary of Diversity Indices and Abundance Data - Lower Hudson River
5-6 Selected Sediment Screening Guidelines: PCBs
5-7 Federal and State PCB Water Quality Criteria
5-8 Ratio of Observed Sediment Concentrations to Guidelines
5-9 Ratio of HUDTOX Predicted Sediment Concentrations to Sediment Guidelines
5-10 Ratio of Measured Whole Water Concentrations to Benchmarks
5-11 Ratio of HUDTOX Predicted Whole Water Concentrations to Criteria and Benchmarks
5-12 Ratio of Measured Forage Fish Concentrations to Toxicity Benchmarks
5-13 Ratio of Predicted Pumpkinseed Concentrations to Field-Based NOAEL for Tri+ PCBs
5-14 Ratio of Predicted Spottail Shiner Concentrations to Laboratory-Derived NOAEL for Tri+ PCBs
5-15 Ratio of Predicted Spottail Shiner Concentrations to Laboratory-Derived LOAEL for Tri+ PCBs
5-16 Ratio of Predicted Pumpkinseed Concentrations to Laboratory-Derived NOAEL on a TEQ Basis
5-17 Ratio of Predicted Pumpkinseed Concentrations to Laboratory-Derived LOAEL on a TEQ Basis
5-18 Ratio of Predicted Spottail Shiner Concentrations to Laboratory-Derived NOAEL on a TEQ Basis
5-19 Ratio of Predicted Spottail Shiner Concentrations to Laboratory-Derived LOAEL on a TEQ Basis
5-20 Ratio of Predicted Brown Bullhead Concentrations to Laboratory-Derived NOAEL For Tri+ PCBs
5-21 Ratio of Predicted Brown Bullhead Concentrations to Laboratory-Derived LOAEL For Tri+ PCBs
5-22 Ratio of Predicted Brown Bullhead Concentrations to Laboratory-Derived NOAEL on a TEQ Basis
5-23 Ratio of Predicted Brown Bullhead Concentrations to Laboratory-Derived LOAEL on a TEQ Basis
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2E- BASELINE ECOLOGICAL RISK ASSESSMENT
HUDSON RIVER PCBs REASSESSMENT RI/FS

CONTENTS

Volume 2E (Book 2 of 3)

5-24 Ratio of Observed Largemouth Bass and Brown Bullhead Concentrations to Toxicity Benchmarks Using NYSDEC Dataset
5-25 Ratio of Observed White Perch and Yellow Perch Concentrations to Toxicity Benchmarks Using NYSDEC Dataset
5-26 Ratio of Predicted White Perch Concentrations to Field-Based NOAEL for Tri+ PCBs
5-27 Ratio of Predicted Yellow Perch Concentrations to Laboratory-Derived NOAEL for Tri+ PCBs
5-28 Ratio of Predicted Yellow Perch Concentrations to Laboratory-Derived LOAEL for Tri+ PCBs
5-29 Ratio of Predicted White Perch Concentrations to Laboratory-Derived NOAEL on a TEQ Basis
5-30 Ratio of Predicted White Perch Concentrations to Laboratory-Derived LOAEL on a TEQ Basis
5-31 Ratio of Predicted Yellow Perch Concentrations to Laboratory-Derived NOAEL on a TEQ Basis
5-32 Ratio of Predicted Yellow Perch Concentrations to Laboratory-Derived LOAEL on a TEQ Basis
5-33 Ratio of Predicted Largemouth Bass Concentrations to Field-Based NOAEL for Tri+ PCBs
5-34 Ratio of Predicted Largemouth Bass Concentrations to Laboratory-Derived NOAEL on a TEQ Basis
5-35 Ratio of Predicted Largemouth Bass Concentrations to Laboratory-Derived LOAEL on a TEQ Basis
5-36 Comparison of Measured Striped Bass Concentrations to Toxicity Reference Values
5-37 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Tree Swallow for Tri+ Congeners
5-38 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Tree Swallow Based on the Sum of Tri+ Congeners for the Period 1993 -2018
5-39 Ratio of Modeled Egg Concentrations to Benchmarks for Female Tree Swallow Based on the Sum of Tri+ Congeners for the Period 1993 -2018
5-40 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Tree Swallow on TEQ Basis
5-41 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Tree Swallow Using TEQ for the Period 1993 - 2018
5-42 Ratio of Modeled Egg Concentrations to Benchmarks Based on FISHRAND for Female Tree Swallow Using TEQ for the Period 1993 - 2018
5-43 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Mallard for Tri+ Congeners
5-44 Ratio of Modeled Dietary Dose to Benchmarks for Female Mallard Based on FISHRAND Results for the Tri+ Congeners
5-45 Ratio of Egg Concentrations to Benchmarks for Female Mallard Based on FISHRAND Results for the Tri+ Congeners

viii
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2E- BASELINE ECOLOGICAL RISK ASSESSMENT
HUDSON RIVER PCBs REASSESSMENT RI/FS

CONTENTS

Volume 2E (Book 2 of 3)

5-46 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks for Female Mallard Based on 1993 Data on a TEQ Basis
5-47 Ratio of Modeled Dietary Dose to Benchmarks for Female Mallard for Period 1993 - 2018 on a TEQ Basis
5-48 Ratio of Modeled Egg Concentrations to Benchmarks for Female Mallard for Period 1993 - 2018 on a TEQ Basis
5-49 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Belted Kingfisher for Tri+ Congeners
5-50 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Great Blue Heron for Tri+ Congeners
5-51 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on the 1993 Data for Female Bald Eagle for Tri+ Congeners
5-52 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Belted Kingfisher Based on the Sum of Tri+ Congeners for the Period 1993 - 2018
5-53 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Great Blue Heron Based on the Sum of Tri+ Congeners for the Period 1993 - 2018
5-54 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Bald Eagle Based on the Sum of Tri+ Congeners for the Period 1993 - 2018
5-55 Ratio of Modeled Egg Concentrations to Benchmarks for Female Belted Kingfisher Based on the Sum of Tri+ Congeners for the Period 1993 - 2018
5-56 Ratio of Modeled Egg Concentrations to Benchmarks for Female Great Blue Heron Based on the Sum of Tri+ Congeners for the Period 1993 - 2018
5-57 Ratio of Modeled Egg Concentrations to Benchmarks for Female Bald Eagle Based on the Sum of Tri+ Congeners for the Period 1993 - 2018
5-58 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Belted Kingfisher on TEQ Basis
5-59 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Great Blue Heron on TEQ Basis
5-60 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Bald Eagle on TEQ Basis
5-61 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Belted Kingfisher Using TEQ for the Period 1993 - 2018
5-62 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Great Blue Heron Using TEQ for the Period 1993 - 2018
Volume 2E (Book 2 of 3)

5-63 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Bald Eagle Using TEQ for the Period 1993 - 2018
5-64 Ratio of Modeled Egg Concentrations to Benchmarks Based on FISHRAND for Female Belted Kingfisher Using TEQ for the Period 1993 - 2018
5-65 Ratio of Modeled Egg Concentrations to Benchmarks Based on FISHRAND for Female Great Blue Heron Using TEQ for the Period 1993 - 2018
5-66 Ratio of Modeled Egg Concentrations to Benchmarks Based on FISHRAND for Female Bald Eagle Using TEQ for the Period 1993 - 2018
5-67 Wildlife Survey Results - Birds - Upper Hudson River
5-68 Ratio of Modeled Dietary Doses to Benchmarks for Female Bats Based on 1993 Data for the Tri+ Congeners
5-69 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Bat for Tri+ Congeners for the Period 1993 - 2018
5-70 Ratio of Modeled Dietary Doses to Benchmarks for Female Bat Based on 1993 Data on a TEQ Basis
5-71 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Bat on a TEQ Basis for the Period 1993 - 2018
5-72 Ratio of Modeled Dietary Doses to Benchmarks for Female Raccoon Based on 1993 Data for the Tri+ Congeners
5-73 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Raccoon for Tri+ Congeners for the Period 1993 - 2018
5-74 Ratio of Modeled Dietary Doses to Benchmarks for Female Raccoon Based on 1993 Data on a TEQ Basis
5-75 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Raccoon on a TEQ Basis for the Period 1993 - 2018
5-76 Ratio of Observed Mink and Otter PCB Concentrations to Benchmarks
5-77 Ratio of Modeled Dietary Doses to Benchmarks for Female Mink Based on 1993 Data for the Tri+ Congeners
5-78 Ratio of Modeled Dietary Doses to Benchmarks for Female Otter Based on 1993 Data for the Tri+ Congeners
5-79 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Mink for Tri+ Congeners for the Period 1993 - 2018
5-80 Ratio of Modeled Dietary Dose to Toxicity Benchmarks for Female Otter for Tri+ Congeners for the Period 1993 - 2018
CONTENTS

Volume 2E (Book 2 of 3)

5-81 Ratio of Modeled Dietary Doses to Benchmarks for Female Mink Based on 1993 Data on a TEQ Basis
5-82 Ratio of Modeled Dietary Doses to Benchmarks for Female Otter Based on 1993 Data on a TEQ Basis
5-83 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Mink on a TEQ Basis for the Period 1993 - 2018
5-84 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Otter on a TEQ Basis for the Period 1993 - 2018
5-85 Wildlife Survey Results Mammalian - Hudson River

LIST OF FIGURES

1-1 Hudson River Drainage Basin and Site Location Map
1-2 Eight-Step Ecological Risk Assessment Process for Superfund Hudson River PCB Reassessment Ecological Risk Assessment
1-3 Hudson River ERA Data Sources

2-1 Baseline Ecological Risk Assessment Upper Hudson River Sampling Stations
2-2 Baseline Ecological Risk Assessment Lower Hudson River Sampling Stations
2-3A Phase 2 Ecological Sampling Locations - Upper Hudson River
2-3B Phase 2 Ecological Sampling Locations - Upper Hudson River
2-3C Phase 2 Ecological Sampling Locations - Upper Hudson River
2-3D Phase 2 Ecological Sampling Locations - Upper Hudson River
2-3E Phase 2 Ecological Sampling Locations - Upper Hudson River
2-3F Phase 2 Ecological Sampling Locations - Upper Hudson River
2-3G Phase 2 Ecological Sampling Locations - Upper Hudson River
2-3H Phase 2 Ecological Sampling Locations - Upper Hudson River
2-4 Hudson River PCB Reassessment Conceptual Model Diagram Including Floodplain Soils

3-1 Average Wet Weight PCB Concentrations in Selected Species Based on NYSDEC Data
3-2 Average Lipid-Normalized PCB Concentrations in Selected Fish Based on NYSDEC Data

4-1 Shape of Biphenyl and Substitution Sites
4-2 Selected Fish Aroclor and Total PCB Toxicity Endpoints
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2E - BASELINE ECOLOGICAL RISK ASSESSMENT
HUDSON RIVER PCBs REASSESSMENT RI/FS

CONTENTS

Volume 2E (Book 2 of 3)

4-3 Selected Fish Egg Dioxin Equivalent Toxicity Endpoints
4-4 Selected Bird Diet Aroclor and Total PCB Toxicity Endpoints
4-5 Selected Bird Diet Dioxin Equivalent Toxicity Endpoints
4-6 Selected Bird Egg Aroclor and Total PCB Toxicity Endpoints
4-7 Selected Bird Egg Dioxin Equivalent Toxicity Endpoints
4-8 Selected Mink Aroclor and Total PCB Toxicity Endpoints
4-9 Selected Mammal Aroclor and Total PCB Toxicity Endpoints
4-10 Selected Mammal Dioxin Equivalent Toxicity Endpoints

5-1 Complete Linkage Clustering - TI Pool
5-2 Relative Percent Grain Size Classes - TI Pool
5-3 Mean Sediment TOC - TI Pool
5-4 Mean Total PCB Concentrations in Sediment - TI Pool
5-5 Biomass of Benthic Invertebrates - TI Pool
5-6 Relative Percent Grain Size Classes - Lower Hudson River
5-7 Mean Sediment TOC - Lower Hudson River
5-8 Mean Total PCB Concentration in Sediment - Lower Hudson River
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Predominant Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchovies - Family Engraulidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bay anchovy</td>
<td>Anchoa mitchilli</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Striped anchovy</td>
<td>Anchoa hepsetus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Basses (Sea) - Family Serranidae</td>
<td>Centropristis striata</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Black sea bass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Striped bass</td>
<td>Morone saxatilis</td>
<td>Anadromous</td>
</tr>
<tr>
<td>White bass</td>
<td>Morone chrysops</td>
<td>Freshwater</td>
</tr>
<tr>
<td>White perch</td>
<td>Morone americana</td>
<td>Freshwater/brackish</td>
</tr>
<tr>
<td>Basses (Temperate) - Family Percichthyidae or Moronidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bluefish</td>
<td>Pomatomus saltatrix</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Bowfins - Family Amiidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowfin</td>
<td>Amia calva</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Butterfishes - Family Stromateidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butterfish</td>
<td>Peprilus triacanthus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Catfishes - Family Ictaluridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown bullhead</td>
<td>Ictalurus nebulosus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Channel catfish</td>
<td>Ictalurus punctatus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Margined madtom</td>
<td>Noturus insignis</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Stonecat</td>
<td>Noturus flavus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Tadpole madtom</td>
<td>Noturus gyrinus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>White catfish</td>
<td>Ictalurus catus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Yellow bullhead</td>
<td>Ictalurus natalis</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Codfishes - Family Gadidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic tomcod</td>
<td>Micropogadus tomcod</td>
<td>Anadromous</td>
</tr>
<tr>
<td>Fourbeard rockling</td>
<td>Enchelyopus cimbrius</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Red hake</td>
<td>Urophycis chuss</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Silver hake</td>
<td>Merluccius bilinearis</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Drums - Family Sciaenidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic croaker</td>
<td>Micropogonias undulatus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Spot</td>
<td>Leiostomus xanthurus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Weakfish</td>
<td>Cynoscion regalis</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Eels (Freshwater) - Family Anguillidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American eel</td>
<td>Anguilla rostrata</td>
<td>Catadromous</td>
</tr>
<tr>
<td>Flounders (Lefteye) - Family Bothidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smallmouth flounder</td>
<td>Eiprius microstomus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Summer flounder</td>
<td>Paralichthys dentatus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Weakfish</td>
<td>Cynoscion regalis</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Flounders (Righteye) - Family Pleuronectidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter flounder</td>
<td>Pleuronectes americanus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Gars - Family Lepisosteidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longnose gar</td>
<td>Lepisosteus osseus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Gobies - Family Gobiidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naked Goby</td>
<td>Gobiosoma bosc</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Herrings - Family Clupeidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alewife</td>
<td>Alosa pseudoharengus</td>
<td>Anadromous</td>
</tr>
<tr>
<td>American shad</td>
<td>Alosa sapidissima</td>
<td>Anadromous</td>
</tr>
<tr>
<td>Atlantic menhaden</td>
<td>Brevoortia tyrannus</td>
<td>Anadromous</td>
</tr>
<tr>
<td>Blueback herring</td>
<td>Alosa aestivalis</td>
<td>Anadromous</td>
</tr>
<tr>
<td>Gizzard shad</td>
<td>Dorosoma cepedianum</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Hickory shad</td>
<td>Alosa mediocris</td>
<td>Anadromous</td>
</tr>
<tr>
<td>Jacks - Family Carangidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crevalle jack</td>
<td>Caranx hippos</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Killifishes - Family Cyprinodontidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Predominant Habitat</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Banded killifish</td>
<td>Fundulus diaphanus</td>
<td>Freshwater/brackish</td>
</tr>
<tr>
<td>Mummichog</td>
<td>Fundulus heteroclitus</td>
<td>Freshwater/brackish</td>
</tr>
<tr>
<td>Sheepshad minnow</td>
<td>Cyprinodon variegatus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Striped killifish</td>
<td>Fundulus majalis</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Lampreys - Family Petromyzontidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American brook lamprey</td>
<td>Lampetra appendix</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Sea lamprey</td>
<td>Petromyzon marinus</td>
<td>Anadromous</td>
</tr>
<tr>
<td>Lizardfishes - Family Synodontidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inshore lizardfish</td>
<td>Synodus foetens</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Mackerels - Family Scombridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic mackerel</td>
<td>Scomber scombrus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Minnows - Family Cyprinidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blacknose dace</td>
<td>Rhinichthys atratulus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Bluntnose minnow</td>
<td>Pimephales notatus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Bridle shiner</td>
<td>Notropis bifrenatus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Central stoneroller</td>
<td>Campostoma anomalum</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Comely shiner</td>
<td>Notropis amoenus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Common carp</td>
<td>Cyprinus carpio</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Common shiner</td>
<td>Notropis cornutus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Creek chub</td>
<td>Semotilus atromaculatus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Cutlips minnow</td>
<td>Esoxomus maxillula</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Emerald shiner</td>
<td>Notropis atherinoides</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Fallfish</td>
<td>Semotilus corporalis</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Fathead minnow</td>
<td>Pimephales promelas</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Golden shiner</td>
<td>Notemigonus crysoleucus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Goldfish</td>
<td>Carassius auratus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Hornyhead chub</td>
<td>Nocomis biguttatus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Longnose dace</td>
<td>Rhinichthys cataractae</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Northern redbelly dace</td>
<td>Rhinichthys atratulus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Pearl dace</td>
<td>Margariscus margarita</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Roseyface shiner</td>
<td>Notropis rubellus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Satinfin shiner</td>
<td>Notropis analostanus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Silvery minnow</td>
<td>Hybognathus regius</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Spotfin shiner</td>
<td>Notropis spilopterus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Spottail shiner</td>
<td>Notropis hudsonius</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Mudminnows - Family Umbridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central mudminnow</td>
<td>Umbra limi</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Eastern mudminnow</td>
<td>Umbra pygmaea</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Mullets - Family Mugilidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Striped mullet</td>
<td>Mugil cephalus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Needlefishes - Family Belonidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic needlefish</td>
<td>Strongylura marina</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Perches - Family Percidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fantail darter</td>
<td>Etheostoma flabellare</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Greenside darter</td>
<td>Etheostoma blennioides</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Logperch</td>
<td>Percina caprodes</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Tessellated darter</td>
<td>Etheostoma olmstedii</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Walleye</td>
<td>Stizostedion v. vitreum</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Yellow perch</td>
<td>Perca flavescens</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Pikes - Family Esocidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain pickerel</td>
<td>Esox niger</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Northern pike</td>
<td>Esox lucius</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Redfin pickerel</td>
<td>Esox a. americanus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Tiger muskellunge</td>
<td>Northern pike X muskellunge</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Pipefishes - Family Sygnathidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Predominant Habitat</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Lined seahorse</td>
<td>Hippocampus erectus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Northern pipefish</td>
<td>Syngnathus fuscus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Porgies - Family Sparidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scup</td>
<td>Stenotomus chrysops</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Puffers - Family Tetraodontidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern puffer</td>
<td>Sphoeroides maculatus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Sculpins - Family Cottidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubby</td>
<td>Myoxocephalus aenaeus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Longhorn sculpin</td>
<td>Myoxocephalus octodecemspinosus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Slimy sculpin</td>
<td>Cottus cognatus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Searobins - Family Triglidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern searobin</td>
<td>Prionotus carolinus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Striped searobin</td>
<td>Prionotus evolans</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Silversides - Family Atherinidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic silverside</td>
<td>Menidia menidia</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Brook silverside</td>
<td>Labidesthes sicculus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Smelts - Family Osmeridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainbow smelt</td>
<td>Osmerus mordax</td>
<td>Anadromous</td>
</tr>
<tr>
<td>Soles - Family Soleidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hogchoker</td>
<td>Trinectes maculatus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Stickelbacks - Family Gasteroideidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brook stickleback</td>
<td>Culaea inconstans</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Fourspine stickleback</td>
<td>Apeltes quadracus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Three-spine stickleback</td>
<td>Gasterosteus aculeatus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Sturgeons - Family Acipenseridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic sturgeon</td>
<td>Acipenser oxyrhynchus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Shortnose sturgeon</td>
<td>Acipenser breviostrum</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Suckers - Family Castostomidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creek chubsucker</td>
<td>Erimyzon oblongus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Longnose sucker</td>
<td>Catostomus catostomus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Northern hogsucker</td>
<td>Hypentelium nigricans</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Shorthead redhorse</td>
<td>Moxostoma macrolepidotum</td>
<td>Freshwater</td>
</tr>
<tr>
<td>White sucker</td>
<td>Catostomus commersoni</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Sunfishes - Family Centrarchidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black crappie</td>
<td>Pomoxis nigromaculatus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Bluegill</td>
<td>Lepomis macrochirus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Bluespotted sunfish</td>
<td>Enneacanthes gloriosus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Green sunfish</td>
<td>Lepomis cyanellus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Largemouth bass</td>
<td>Micropterus salmoides</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Pumpkinseed</td>
<td>Lepomis gibbosus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Redbreast sunfish</td>
<td>Lepomis auritus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Rock bass</td>
<td>Ambloplites rupestris</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Smallmouth bass</td>
<td>Micropterus dolomieui</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Warmouth</td>
<td>Lepomis gulosis</td>
<td>Freshwater</td>
</tr>
<tr>
<td>White crappie</td>
<td>Pomoxis annularis</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Trouts - Family Salmonidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic salmon</td>
<td>Salmo salar</td>
<td>Anadromous</td>
</tr>
<tr>
<td>Brook trout</td>
<td>Salvelinus fontinalis</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Brown trout</td>
<td>Salmo trutta</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Lake whitefish</td>
<td>Coregonus clupeaformis</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Rainbow trout</td>
<td>Oncorhynchus mykiss (formerly Salmo gairdneri)</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Round whitefish</td>
<td>Prosopium cylindraceum</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Trout-perches - Family Percopsidae</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-1
HUDSON RIVER FISHES

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Predominant Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trout-perch</td>
<td>Percopsis omiscomaycus</td>
<td>Freshwater</td>
</tr>
<tr>
<td>Wrasses - Family Labridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cunner</td>
<td>Tautogolabrus adspersus</td>
<td>Saltwater</td>
</tr>
<tr>
<td>Tautog</td>
<td>Tautoga onitis</td>
<td>Saltwater</td>
</tr>
</tbody>
</table>

Notes: Fish are not found exclusively in predominant habitats.
TABLE 2-2
TYPICAL FISH AGGREGATIONS IN THE UPPER HUDSON RIVER

<table>
<thead>
<tr>
<th>Widespread species</th>
<th>Shore area</th>
</tr>
</thead>
<tbody>
<tr>
<td>American eel</td>
<td>Banded killifish</td>
</tr>
<tr>
<td>Blueback herring</td>
<td>Golden shiner</td>
</tr>
<tr>
<td>Alewife</td>
<td>Emerald shiner</td>
</tr>
<tr>
<td>American shad</td>
<td>Gizzard shad</td>
</tr>
<tr>
<td>Common carp</td>
<td>Bay anchovy</td>
</tr>
<tr>
<td>Spottail shiner</td>
<td>Bluegill</td>
</tr>
<tr>
<td>White perch</td>
<td>Smallmouth bass</td>
</tr>
<tr>
<td>Striped bass</td>
<td>Yellow perch</td>
</tr>
<tr>
<td>Pumpkinseed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rock pile</th>
<th>Tailwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>White catfish</td>
<td>White sucker</td>
</tr>
<tr>
<td>Smallmouth bass</td>
<td>Golden shiner</td>
</tr>
<tr>
<td>Largemouth bass</td>
<td>White catfish</td>
</tr>
<tr>
<td>Rock bass</td>
<td>Largemouth bass</td>
</tr>
<tr>
<td>Redbreast sunfish</td>
<td>Walleye</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vegetated backwater</th>
<th>Major tributaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown bullhead</td>
<td>White sucker</td>
</tr>
<tr>
<td>Yellow perch</td>
<td>Smallmouth bass</td>
</tr>
<tr>
<td>Goldfish</td>
<td>Redbreast sunfish</td>
</tr>
<tr>
<td>Golden shiner</td>
<td>Yellow perch</td>
</tr>
<tr>
<td>Banded killifish</td>
<td>Largemouth bass</td>
</tr>
<tr>
<td>Largemouth bass</td>
<td>Goldfish</td>
</tr>
<tr>
<td>White catfish</td>
<td>Golden shiner</td>
</tr>
<tr>
<td>White sucker</td>
<td>Rock bass</td>
</tr>
<tr>
<td>Gizzard shad</td>
<td>Bluegill</td>
</tr>
<tr>
<td>Northern pike</td>
<td>Black crappie</td>
</tr>
<tr>
<td>Emerald shiner</td>
<td></td>
</tr>
<tr>
<td>Rock bass</td>
<td></td>
</tr>
<tr>
<td>Redbreast sunfish</td>
<td></td>
</tr>
<tr>
<td>Bluegill</td>
<td></td>
</tr>
<tr>
<td>Smallmouth bass</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offshore shoals and channel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tessellated darter</td>
<td>Hogchoker</td>
</tr>
<tr>
<td>White catfish</td>
<td>Shortnose sturgeon</td>
</tr>
<tr>
<td>Brown bullhead</td>
<td>White sucker</td>
</tr>
</tbody>
</table>

Notes: Species are listed in order of abundance, excluding widespread species.
AMPHIBIANS POTENTIALLY FOUND ALONG THE HUDSON RIVER

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Caudata - Salamanders</td>
<td></td>
</tr>
<tr>
<td>Allegheny Dusky Salamander</td>
<td>Desmognathus ochrophaeus</td>
</tr>
<tr>
<td>Blue-spotted Salamander</td>
<td>Ambystoma laterale</td>
</tr>
<tr>
<td>Common Mudpuppy</td>
<td>Necturus maculosus</td>
</tr>
<tr>
<td>Four-toed Salamander</td>
<td>Hemidactylium scutatum</td>
</tr>
<tr>
<td>Jefferson Salamander</td>
<td>Ambystoma jeffersonianum</td>
</tr>
<tr>
<td>Marbled Salamander</td>
<td>Ambystoma opacum</td>
</tr>
<tr>
<td>Northern Dusky Salamander</td>
<td>Desmognathus fuscus</td>
</tr>
<tr>
<td>Northern Spring Salamander</td>
<td>Gyrinophilus p. porphyriticus</td>
</tr>
<tr>
<td>Northern Redback Salamander</td>
<td>Plethodon c. cinereus</td>
</tr>
<tr>
<td>Northern Slimy Salamander</td>
<td>Plethodon glutinosus</td>
</tr>
<tr>
<td>Northern Two-lined Salamander</td>
<td>Eurycea bislineata</td>
</tr>
<tr>
<td>Northern Red Salamander</td>
<td>Pseudotriton r. ruber</td>
</tr>
<tr>
<td>Red-spotted or Eastern Newt</td>
<td>Notophthalmus v. viridescens</td>
</tr>
<tr>
<td>Spotted Salamander</td>
<td>Ambystoma maculatum</td>
</tr>
<tr>
<td>Order Anura - Toads and Frogs</td>
<td></td>
</tr>
<tr>
<td>Toads</td>
<td></td>
</tr>
<tr>
<td>Eastern American Toad</td>
<td>Bufo a. americanus</td>
</tr>
<tr>
<td>Eastern Spadefoot</td>
<td>Scaphiopus holbrookii</td>
</tr>
<tr>
<td>Fowler's Toad</td>
<td>Bufo fowleri</td>
</tr>
<tr>
<td>Family Ranida- True Frogs</td>
<td></td>
</tr>
<tr>
<td>Bullfrog</td>
<td>Rana catesbeiana</td>
</tr>
<tr>
<td>Gray Treefrog</td>
<td>Hyla versicolor</td>
</tr>
<tr>
<td>Green Frog</td>
<td>Rana clamitans melanota</td>
</tr>
<tr>
<td>Northern Spring Peeper</td>
<td>Pseudacris c. crucifer</td>
</tr>
<tr>
<td>Northern Cricket Frog</td>
<td>Acris c. crepitans</td>
</tr>
<tr>
<td>Northern Leopard Frog</td>
<td>Rana pipiens</td>
</tr>
<tr>
<td>Pickerel Frog</td>
<td>Rana palustris</td>
</tr>
</tbody>
</table>

Table 2-4

Reptiles Potentially Found Along the Hudson River

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtles - Order Testudines</td>
<td></td>
</tr>
<tr>
<td>Blanding's Turtle</td>
<td>Emydoidea blandingii</td>
</tr>
<tr>
<td>Bog turtle</td>
<td>Clemmys muhlenbergi</td>
</tr>
<tr>
<td>Common snapping turtle</td>
<td>Chelydra serpentina</td>
</tr>
<tr>
<td>Diamondback terrapin</td>
<td>Malaclemys terrapin</td>
</tr>
<tr>
<td>Eastern box turtle</td>
<td>Terrapene carolina</td>
</tr>
<tr>
<td>Map turtle</td>
<td>Graptemys geographica</td>
</tr>
<tr>
<td>Northern water snake</td>
<td>Nerodia sipedon</td>
</tr>
<tr>
<td>Painted turtle</td>
<td>Chrysemys picta</td>
</tr>
<tr>
<td>Red-eared Slider</td>
<td>Trachemys scripta elegans</td>
</tr>
<tr>
<td>Spotted turtle</td>
<td>Clemmys guttata</td>
</tr>
<tr>
<td>Stinkpot/ common musk turtle</td>
<td>Sternotherus odoratus</td>
</tr>
<tr>
<td>Wood turtle</td>
<td>Clemmys insculpta</td>
</tr>
<tr>
<td>Order Squamata - Lizards and Snakes</td>
<td></td>
</tr>
<tr>
<td>Suborder Lacertilia - Lizards</td>
<td></td>
</tr>
<tr>
<td>Five-lined Skink</td>
<td>Eumeces fasciatus</td>
</tr>
<tr>
<td>Northern Coal Skink</td>
<td>Eumeces a. anthracinus</td>
</tr>
<tr>
<td>Northern Fence Lizard</td>
<td>Sceloporus undulatus hyacinthinus</td>
</tr>
<tr>
<td>Suborder Serpente- Snakes</td>
<td></td>
</tr>
<tr>
<td>Northern Water Snake</td>
<td>Nerodia s. sipedon</td>
</tr>
<tr>
<td>Northern Redbelly Snake</td>
<td>Storeria o. occipitomaculata</td>
</tr>
<tr>
<td>Common Garter Snake</td>
<td>Thamnophis sirtalis</td>
</tr>
<tr>
<td>Eastern Ribbon Snake</td>
<td>Thamnophis sauritus</td>
</tr>
<tr>
<td>Eastern Hognose Snake</td>
<td>Heterodon platirhinos</td>
</tr>
<tr>
<td>Northern Ringneck Snake</td>
<td>Diadophis punctatus edwardsii</td>
</tr>
<tr>
<td>Eastern Worm Snake</td>
<td>Carphophis a. amoenus</td>
</tr>
<tr>
<td>Northern Black Racer</td>
<td>Coluber c. constrictor</td>
</tr>
<tr>
<td>Smooth Green Snake</td>
<td>Liochlorophis vernalis</td>
</tr>
<tr>
<td>Black Rat Snake</td>
<td>Elaphe o. obsoleta</td>
</tr>
<tr>
<td>Eastern Milk Snake</td>
<td>Lampropeltis t. triangulum</td>
</tr>
<tr>
<td>Northern Copperhead</td>
<td>Agkistrodon contortrix mokasen</td>
</tr>
<tr>
<td>Timber Rattlesnake</td>
<td>Crotalus horridus</td>
</tr>
<tr>
<td>Northern Brown Snake</td>
<td>Storeria d. dekayi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acadian Flycatcher</td>
<td>Empidonax virescens</td>
</tr>
<tr>
<td>Alder Flycatcher</td>
<td>Empidonax alnorum</td>
</tr>
<tr>
<td>American Bittern</td>
<td>Botaurus lentiginosus</td>
</tr>
<tr>
<td>American Robin</td>
<td>Turdus migratorius</td>
</tr>
<tr>
<td>American Kestrel</td>
<td>Falco sparverius</td>
</tr>
<tr>
<td>American Goldfinch</td>
<td>Carduelis tristis</td>
</tr>
<tr>
<td>American Coot</td>
<td>Fulica americana*</td>
</tr>
<tr>
<td>American Black Duck</td>
<td>Anas rubripes</td>
</tr>
<tr>
<td>American Crow</td>
<td>Corvus brachyrhynchos</td>
</tr>
<tr>
<td>American Redstart</td>
<td>Setophaga ruticilla</td>
</tr>
<tr>
<td>American Woodcock</td>
<td>Scolopax minor</td>
</tr>
<tr>
<td>Bank Swallow</td>
<td>Riparia riparia</td>
</tr>
<tr>
<td>Barn Swallow</td>
<td>Hirundo rustica</td>
</tr>
<tr>
<td>Barred Owl</td>
<td>Strix varia</td>
</tr>
<tr>
<td>Belted Kingfisher</td>
<td>Ceryle alcyon</td>
</tr>
<tr>
<td>Black-and-white Warbler</td>
<td>Mniotilta varia</td>
</tr>
<tr>
<td>Black-billed Cuckoo</td>
<td>Coccyzus erythropthalmus</td>
</tr>
<tr>
<td>Black-capped Chickadee</td>
<td>Parus atricapillus</td>
</tr>
<tr>
<td>Black-crowned Night-Heron</td>
<td>Nycticorax nycticorax</td>
</tr>
<tr>
<td>Black-throated Blue Warbler</td>
<td>Dendroica caerulescens</td>
</tr>
<tr>
<td>Black-throated Green Warbler</td>
<td>Dendroica virens</td>
</tr>
<tr>
<td>Blackburnian Warbler</td>
<td>Dendroica fusca</td>
</tr>
<tr>
<td>Blue Jay</td>
<td>Cyanocitta cristata</td>
</tr>
<tr>
<td>Blue-gray Gnatcatcher</td>
<td>Polioptila caerulea</td>
</tr>
<tr>
<td>Blue-winged Teal</td>
<td>Anas discors</td>
</tr>
<tr>
<td>Blue-winged Warbler</td>
<td>Vermivora pinus</td>
</tr>
<tr>
<td>Blue-winged & Golden-winged Warbler Hybrids</td>
<td>Vermivora pinus & Vermivora chrysoptera</td>
</tr>
<tr>
<td>Bobolink</td>
<td>Dolichonyx oryzivorus</td>
</tr>
<tr>
<td>Broad-winged Hawk</td>
<td>Buteo platypterus</td>
</tr>
<tr>
<td>Brown Thrasher</td>
<td>Toxostoma rufum</td>
</tr>
<tr>
<td>Brown Creeper</td>
<td>Certhia americana</td>
</tr>
<tr>
<td>Brown-headed Cowbird</td>
<td>Molothrus ater</td>
</tr>
<tr>
<td>Canada Warbler</td>
<td>Wilsonia canadensis</td>
</tr>
<tr>
<td>Canada Goose</td>
<td>Branta canadensis</td>
</tr>
<tr>
<td>Carolina Wren</td>
<td>Thryothorus ludovicianus</td>
</tr>
<tr>
<td>Cattle Egret</td>
<td>Bubulcus ibis*</td>
</tr>
<tr>
<td>Cedar Waxwing</td>
<td>Bombycilla cedrorum</td>
</tr>
<tr>
<td>Cerulean Warbler</td>
<td>Dendroica cerulea</td>
</tr>
<tr>
<td>Chestnut-sided Warbler</td>
<td>Dendroica pensylvanica</td>
</tr>
<tr>
<td>Chimney Swift</td>
<td>Chaetura pelagica</td>
</tr>
<tr>
<td>Chipping Sparrow</td>
<td>Spizella passerina</td>
</tr>
<tr>
<td>Clapper Rail</td>
<td>Rallus longirostris*</td>
</tr>
<tr>
<td>Cliff Swallow</td>
<td>Hirundo pyrrhonota</td>
</tr>
<tr>
<td>Common Grackle</td>
<td>Quiscalus quiscula</td>
</tr>
<tr>
<td>Common Moorhen</td>
<td>Gallinule chlorous</td>
</tr>
<tr>
<td>Common Nighthawk</td>
<td>Chordeiles minor</td>
</tr>
<tr>
<td>Common Barn-Owl</td>
<td>Tyto alba</td>
</tr>
<tr>
<td>Common Yellowthroat</td>
<td>Geothlypis trichas</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Common Merganser</td>
<td>Mergus merganser</td>
</tr>
<tr>
<td>Common Snipe</td>
<td>Gallinago gallinago</td>
</tr>
<tr>
<td>Cooper’s Hawk</td>
<td>Accipiter cooperii</td>
</tr>
<tr>
<td>Dark-eyed Junco</td>
<td>Junco hyemalis</td>
</tr>
<tr>
<td>Double-crested Cormorant</td>
<td>Phalacrocorax auritus</td>
</tr>
<tr>
<td>Downy Woodpecker</td>
<td>Picoides pubescens</td>
</tr>
<tr>
<td>Eastern Meadowlark</td>
<td>Sturnella magna</td>
</tr>
<tr>
<td>Eastern Phoebe</td>
<td>Sayornis phoebe</td>
</tr>
<tr>
<td>Eastern Wood-Pewee</td>
<td>Contopus virens</td>
</tr>
<tr>
<td>Eastern Kingbird</td>
<td>Tyrannus tyrannus</td>
</tr>
<tr>
<td>Eastern Bluebird</td>
<td>Sialia sialis</td>
</tr>
<tr>
<td>Eastern Screech-Owl</td>
<td>Otus asio</td>
</tr>
<tr>
<td>European Starling</td>
<td>Sturnus vulgaris</td>
</tr>
<tr>
<td>Field Sparrow</td>
<td>Spizella pusilla</td>
</tr>
<tr>
<td>Fish Crow</td>
<td>Corvis ossifragus</td>
</tr>
<tr>
<td>Gadwall</td>
<td>Anas strepera</td>
</tr>
<tr>
<td>Glossy Ibis</td>
<td>Plegadis falcinellus*</td>
</tr>
<tr>
<td>Golden-crowned Kinglet</td>
<td>Regulus satrapa</td>
</tr>
<tr>
<td>Golden-winged Warbler</td>
<td>Vermivora chrysoptera</td>
</tr>
<tr>
<td>Grasshopper Sparrow</td>
<td>Ammodramus savannarum</td>
</tr>
<tr>
<td>Gray Catbird</td>
<td>Dumetella carolinensis</td>
</tr>
<tr>
<td>Great Horned Owl</td>
<td>Bubo virginianus</td>
</tr>
<tr>
<td>Great Egret</td>
<td>Casmerodius albus*</td>
</tr>
<tr>
<td>Great Blue Heron</td>
<td>Ardea herodias</td>
</tr>
<tr>
<td>Great Crested Flycatcher</td>
<td>Myiarchus crinitus</td>
</tr>
<tr>
<td>Great Black-backed Gull</td>
<td>Larus marinus</td>
</tr>
<tr>
<td>Green-backed Heron</td>
<td>Butorides striatus</td>
</tr>
<tr>
<td>Green-winged Teal</td>
<td>Arias crecca</td>
</tr>
<tr>
<td>Hairy Woodpecker</td>
<td>Picoides villosus</td>
</tr>
<tr>
<td>Henslow’s Sparrow</td>
<td>Ammodramus henslowii</td>
</tr>
<tr>
<td>Hermit Thrush</td>
<td>Catharus guttatus</td>
</tr>
<tr>
<td>Herring Gull</td>
<td>Larus argentatus*</td>
</tr>
<tr>
<td>Hooded Merganser</td>
<td>Lophodytes cucullatus</td>
</tr>
<tr>
<td>Hooded Warbler</td>
<td>Wilsonia citrina</td>
</tr>
<tr>
<td>Horned Lark</td>
<td>Eremophila alpestris</td>
</tr>
<tr>
<td>House Sparrow</td>
<td>Passer domesticus</td>
</tr>
<tr>
<td>House Finch</td>
<td>Carpodacus mexicanus</td>
</tr>
<tr>
<td>House Wren</td>
<td>Troglydtes aedon</td>
</tr>
<tr>
<td>Indigo Bunting</td>
<td>Passerina cyanea</td>
</tr>
<tr>
<td>Kentucky Warbler</td>
<td>Oporornis formosus</td>
</tr>
<tr>
<td>Killdeer</td>
<td>Charadrius vociferus</td>
</tr>
<tr>
<td>King Rail</td>
<td>Ralllus elegans</td>
</tr>
<tr>
<td>Laughing Gull</td>
<td>Larus atricilla*</td>
</tr>
<tr>
<td>Least Bittern</td>
<td>Ixobrychus exilis</td>
</tr>
<tr>
<td>Least Flycatcher</td>
<td>Empidonax minimus</td>
</tr>
<tr>
<td>Loggerhead Shrike</td>
<td>Lanius ludovicianus</td>
</tr>
<tr>
<td>Long-earned Owl</td>
<td>Asio otus</td>
</tr>
<tr>
<td>Louisiana Waterthrush</td>
<td>Seiurus motacilla</td>
</tr>
<tr>
<td>Magnolia Warbler</td>
<td>Dendroica magnolia</td>
</tr>
<tr>
<td>Mallard x American Black Duck</td>
<td>Anas platyrhynchos x rubripes</td>
</tr>
<tr>
<td>Mallard</td>
<td>Anas platyrhynchos</td>
</tr>
</tbody>
</table>
TABLE 2-5

BREEDING BIRDS OF THE HUDSON RIVER

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marsh Wren</td>
<td>Cistothorus palustris</td>
</tr>
<tr>
<td>Mourning Dove</td>
<td>Zenaidea macroura</td>
</tr>
<tr>
<td>Mute Swan</td>
<td>Cygnus olor</td>
</tr>
<tr>
<td>Nashville Warbler</td>
<td>Vermivora ruficapilla</td>
</tr>
<tr>
<td>Northern Bobwhite</td>
<td>Colinus virginianus</td>
</tr>
<tr>
<td>Northern Rough-winged Swallow</td>
<td>Stelgidopteryx serripennis</td>
</tr>
<tr>
<td>Northern Saw-whet Owl</td>
<td>Aegolius acadicus</td>
</tr>
<tr>
<td>Northern Oriole</td>
<td>Icterus galbula</td>
</tr>
<tr>
<td>Northern Pintail</td>
<td>Anas acuta</td>
</tr>
<tr>
<td>Northern Waterthrush</td>
<td>Seiurus noveboracensis</td>
</tr>
<tr>
<td>Northern Goshawk</td>
<td>Accipiter gentilis</td>
</tr>
<tr>
<td>Northern Flicker</td>
<td>Colaptes auratus</td>
</tr>
<tr>
<td>Northern Mockingbird</td>
<td>Mimus polyglottos</td>
</tr>
<tr>
<td>Northern Harrier</td>
<td>Circus cyaneus</td>
</tr>
<tr>
<td>Northern Cardinal</td>
<td>Cardinalis cardinalis</td>
</tr>
<tr>
<td>Orchard Oriole</td>
<td>Icterus spurius</td>
</tr>
<tr>
<td>Osprey</td>
<td>Pandion haliaetus</td>
</tr>
<tr>
<td>Ovenbird</td>
<td>Seiurus aurocapillus</td>
</tr>
<tr>
<td>Pied-billed Grebe</td>
<td>Podilymbus podiceps</td>
</tr>
<tr>
<td>Pileated Woodpecker</td>
<td>Dryocopus pileatus</td>
</tr>
<tr>
<td>Pine Warbler</td>
<td>Dendroica pinus</td>
</tr>
<tr>
<td>Prairie Warbler</td>
<td>Dendroica discolor</td>
</tr>
<tr>
<td>Purple Martin</td>
<td>Progne subis</td>
</tr>
<tr>
<td>Purple Finch</td>
<td>Carpodacus purpureus</td>
</tr>
<tr>
<td>Red-bellied Woodpecker</td>
<td>Melanerpes carolinus</td>
</tr>
<tr>
<td>Red-breasted Merganser</td>
<td>Mergus serrator</td>
</tr>
<tr>
<td>Red-breasted Nuthatch</td>
<td>Sitta canadensis</td>
</tr>
<tr>
<td>Red-eyed Vireo</td>
<td>Vireo olivaceus</td>
</tr>
<tr>
<td>Red-headed Woodpecker</td>
<td>Melanerpes erythrocephalus</td>
</tr>
<tr>
<td>Red-shouldered Hawk</td>
<td>Buteo lineatus</td>
</tr>
<tr>
<td>Red-tailed Hawk</td>
<td>Buteo jamaicensis</td>
</tr>
<tr>
<td>Red-winged Blackbird</td>
<td>Agelaius phoeniceus</td>
</tr>
<tr>
<td>Ring-necked Pheasant</td>
<td>Phasianus colchicus</td>
</tr>
<tr>
<td>Rock Dove</td>
<td>Columbia livia</td>
</tr>
<tr>
<td>Rose-breasted Grosbeak</td>
<td>Pheucticus ludovicianus</td>
</tr>
<tr>
<td>Ruby-throated Hummingbird</td>
<td>Archilochus colubris</td>
</tr>
<tr>
<td>Ruddy Duck</td>
<td>Oxyura jamaicensis</td>
</tr>
<tr>
<td>Ruffed Grouse</td>
<td>Bonasa umbellus</td>
</tr>
<tr>
<td>Rufous-sided Towhee</td>
<td>Pipilo erythrophthalmus</td>
</tr>
<tr>
<td>Savannah Sparrow</td>
<td>Passerculus sandwichensis</td>
</tr>
<tr>
<td>Scarlet Tanager</td>
<td>Piranga olivacea</td>
</tr>
<tr>
<td>Sharp-shinned Hawk</td>
<td>Accipiter striatus</td>
</tr>
<tr>
<td>Snowy Egret</td>
<td>Egretta thula*</td>
</tr>
<tr>
<td>Solitary Vireo</td>
<td>Vireo solitarius</td>
</tr>
<tr>
<td>Song Sparrow</td>
<td>Melospiza melodia</td>
</tr>
<tr>
<td>Sora</td>
<td>Porzana carolina</td>
</tr>
<tr>
<td>Spotted Sandpiper</td>
<td>Actitis macularia</td>
</tr>
<tr>
<td>Swamp Sparrow</td>
<td>Melospiza georgiana</td>
</tr>
<tr>
<td>Tree Swallow</td>
<td>Tachycineta bicolor</td>
</tr>
<tr>
<td>Tufted Titmouse</td>
<td>Parus bicolor</td>
</tr>
<tr>
<td>Turkey Vulture</td>
<td>Cathartes aura</td>
</tr>
</tbody>
</table>
TABLE 2-5

BREEDING BIRDS OF THE HUDSON RIVER

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland Sandpiper</td>
<td>Bartramia longicauda</td>
</tr>
<tr>
<td>Veery</td>
<td>Catharus fuscescens</td>
</tr>
<tr>
<td>Vesper Sparrow</td>
<td>Poecetes gramineus</td>
</tr>
<tr>
<td>Virginia Rail</td>
<td>Rallus limicola</td>
</tr>
<tr>
<td>Warbling Vireo</td>
<td>Vireo gilvus</td>
</tr>
<tr>
<td>Western Meadowlark</td>
<td>Sturnella neglecta</td>
</tr>
<tr>
<td>Whip-poor-will</td>
<td>Caprimulgus vociferus</td>
</tr>
<tr>
<td>White-breasted Nuthatch</td>
<td>Sitta carolinensis</td>
</tr>
<tr>
<td>White-eyed Vireo</td>
<td>Vireo griseus</td>
</tr>
<tr>
<td>White-throated Sparrow</td>
<td>Zonotrichia albicollis</td>
</tr>
<tr>
<td>Wild Turkey</td>
<td>Meleagris gallopavo</td>
</tr>
<tr>
<td>Willow Flycatcher</td>
<td>Empidonax traillii</td>
</tr>
<tr>
<td>Winter Wren</td>
<td>Troglydes troglodytes</td>
</tr>
<tr>
<td>Wood Duck</td>
<td>Aix sponsa</td>
</tr>
<tr>
<td>Wood Thrush</td>
<td>Hylocichla mustelina</td>
</tr>
<tr>
<td>Worm-eating Warbler</td>
<td>Helmitheros vermivorus</td>
</tr>
<tr>
<td>Yellow Warbler</td>
<td>Dendroica petechia</td>
</tr>
<tr>
<td>Yellow-bellied Sapsucker</td>
<td>Sphyrapicus varius</td>
</tr>
<tr>
<td>Yellow-billed Cuckoo</td>
<td>Coccyzus americanus</td>
</tr>
<tr>
<td>Yellow-breasted Chat</td>
<td>Icteria virens</td>
</tr>
<tr>
<td>Yellow-crowned Night-Heron</td>
<td>Nycticorax violaceus</td>
</tr>
<tr>
<td>Yellow-rumped Warbler</td>
<td>Dendroica coronata</td>
</tr>
<tr>
<td>Yellow-throated Vireo</td>
<td>Vireo flavifrons</td>
</tr>
</tbody>
</table>

Notes: * coastal breeding birds

Mammals Potentially Found Along the Hudson River

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Artiodactyla - Even-toed Ungulates</td>
<td></td>
</tr>
<tr>
<td>Family Cervidae - Cervids</td>
<td></td>
</tr>
<tr>
<td>Whitetail deer</td>
<td>Odocoileus virginianus</td>
</tr>
<tr>
<td>Order Carnivora</td>
<td></td>
</tr>
<tr>
<td>Family Canidae - Canids</td>
<td></td>
</tr>
<tr>
<td>Coyote</td>
<td>Canis latrans</td>
</tr>
<tr>
<td>Gray fox</td>
<td>Urocyon cinereoargenteus</td>
</tr>
<tr>
<td>Red fox</td>
<td>Vulpes vulpes</td>
</tr>
<tr>
<td>Family Felidae - Cats</td>
<td></td>
</tr>
<tr>
<td>Bobcat</td>
<td>Lynx rufus</td>
</tr>
<tr>
<td>Family Mustelidae - Weasels</td>
<td></td>
</tr>
<tr>
<td>Common striped skunk</td>
<td>Mephitis mephitis</td>
</tr>
<tr>
<td>Ermine</td>
<td>Martes erminea</td>
</tr>
<tr>
<td>Fisher</td>
<td>Martes pennanti</td>
</tr>
<tr>
<td>Least weasel</td>
<td>Martes nivalis</td>
</tr>
<tr>
<td>Longtail weasel</td>
<td>Mustela frenata</td>
</tr>
<tr>
<td>Marten</td>
<td>Martes americana</td>
</tr>
<tr>
<td>Mink</td>
<td>Mustela vison</td>
</tr>
<tr>
<td>River otter</td>
<td>Lutra canadensis</td>
</tr>
<tr>
<td>Family Procyonidae - Raccoons</td>
<td></td>
</tr>
<tr>
<td>Raccoon</td>
<td>Procyon lotor</td>
</tr>
<tr>
<td>Family Ursidae - Bears</td>
<td></td>
</tr>
<tr>
<td>Black bear</td>
<td>Ursus americanus</td>
</tr>
<tr>
<td>Order Chiroptera - Bats</td>
<td></td>
</tr>
<tr>
<td>Family Vespertilionidae - Vespertilionid Bats</td>
<td></td>
</tr>
<tr>
<td>Big brown bat</td>
<td>Eptesicus fuscus</td>
</tr>
<tr>
<td>Eastern pipistrelle</td>
<td>Pipistrellus subflavus</td>
</tr>
<tr>
<td>Eastern small-footed myotis</td>
<td>Myotis leibii</td>
</tr>
<tr>
<td>Evening bat</td>
<td>Nycticeius humeralis</td>
</tr>
<tr>
<td>Hoary bat</td>
<td>Lasiurus cinereus</td>
</tr>
<tr>
<td>Indiana myotis</td>
<td>Myotis sodalis</td>
</tr>
<tr>
<td>Little brown bat</td>
<td>Myotis lucifugus</td>
</tr>
<tr>
<td>Keen’s myotis</td>
<td>Myotis keenii or M. septentrionalis</td>
</tr>
<tr>
<td>Red bat</td>
<td>Lasiurus borealis</td>
</tr>
<tr>
<td>Silver-haired bat</td>
<td>Lasionycteris noctivagans</td>
</tr>
<tr>
<td>Order Insectivora - Insectivores</td>
<td></td>
</tr>
<tr>
<td>Family Soricidae - Shrews</td>
<td></td>
</tr>
<tr>
<td>Least shrew</td>
<td>Cryptotis parva</td>
</tr>
<tr>
<td>Masked shrew</td>
<td>Sorex cinereus</td>
</tr>
<tr>
<td>Northern short-tailed shrew</td>
<td>Blarina brevicauda</td>
</tr>
<tr>
<td>Pygmy shrew</td>
<td>Sorex hoyi</td>
</tr>
<tr>
<td>Rock shrew</td>
<td>Sorex dispar</td>
</tr>
<tr>
<td>Smokey shrew</td>
<td>Sorex fumeus</td>
</tr>
<tr>
<td>Water shrew</td>
<td>Sorex palustris</td>
</tr>
<tr>
<td>Family Talpidae - Moles</td>
<td></td>
</tr>
<tr>
<td>Eastern mole</td>
<td>Scalopus aquaticus</td>
</tr>
<tr>
<td>Hairy-tailed mole</td>
<td>Parascalops breweri</td>
</tr>
<tr>
<td>Star-nosed mole</td>
<td>Condylura cristata</td>
</tr>
</tbody>
</table>
TABLE 2-6

MAMMALS POTENTIALLY FOUND ALONG THE HUDSON RIVER

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Lagomorpha</td>
<td></td>
</tr>
<tr>
<td>Family Leporidae - Hares and Rabbits</td>
<td></td>
</tr>
<tr>
<td>Black-tailed jackrabbit</td>
<td>Lepus californicus</td>
</tr>
<tr>
<td>Cottontail</td>
<td>Sylvilagus floridanus</td>
</tr>
<tr>
<td>European rabbit</td>
<td>Oryctolagus cuniculus</td>
</tr>
<tr>
<td>New England cottontail</td>
<td>Sylvilagus transitionalis</td>
</tr>
<tr>
<td>Snowshoe hare</td>
<td>Lepus americanus</td>
</tr>
<tr>
<td>Order Marsupialia - Marsupials</td>
<td></td>
</tr>
<tr>
<td>Family Didelphidae - Oppossums</td>
<td></td>
</tr>
<tr>
<td>Virginia opposum</td>
<td>Didelphis virginiana</td>
</tr>
<tr>
<td>Order Rodentia - Rodents</td>
<td></td>
</tr>
<tr>
<td>Family Castoridae - Beavers</td>
<td></td>
</tr>
<tr>
<td>Beaver</td>
<td>Castor canadensis</td>
</tr>
<tr>
<td>Family Cricetidae - Cricetids</td>
<td></td>
</tr>
<tr>
<td>Deer mouse</td>
<td>Peromyscus maniculatus</td>
</tr>
<tr>
<td>Meadow vole</td>
<td>Microtus pennsylvanicus</td>
</tr>
<tr>
<td>Muskrat</td>
<td>Ondatra zibethicus</td>
</tr>
<tr>
<td>Pine vole</td>
<td>Microtus pientorum</td>
</tr>
<tr>
<td>Rock or yellow nose vole</td>
<td>Microtus chrotorrhinus</td>
</tr>
<tr>
<td>Southern bog lemming</td>
<td>Synaptomys cooperi</td>
</tr>
<tr>
<td>Southern red-backed vole</td>
<td>Clethrionomys gappeeri</td>
</tr>
<tr>
<td>White-footed mouse</td>
<td>Peromyscus leucopus</td>
</tr>
<tr>
<td>Family Erethizontidae - New World Porcupine</td>
<td></td>
</tr>
<tr>
<td>Porcupine</td>
<td>Erethizon dorsatum</td>
</tr>
<tr>
<td>Family Muridae - Murids</td>
<td></td>
</tr>
<tr>
<td>Norway rat</td>
<td>Rattus norvegicus</td>
</tr>
<tr>
<td>Black rat</td>
<td>Rattus rattus</td>
</tr>
<tr>
<td>House mouse</td>
<td>Mus musculus</td>
</tr>
<tr>
<td>Eastern woodrat</td>
<td>Neotoma magister</td>
</tr>
<tr>
<td>Family Myocastoridae - Myocastorids</td>
<td></td>
</tr>
<tr>
<td>Nutria</td>
<td>Myocastor coypus</td>
</tr>
<tr>
<td>Family Sciuridae - Squirrels</td>
<td></td>
</tr>
<tr>
<td>Chipmunk</td>
<td>Tamias striatus</td>
</tr>
<tr>
<td>Eastern gray squirrel</td>
<td>Sciurus carolinensis</td>
</tr>
<tr>
<td>Fox squirrel</td>
<td>Sciurus niger</td>
</tr>
<tr>
<td>Northern flying squirrel</td>
<td>Glaucomys sabrinus</td>
</tr>
<tr>
<td>Red squirrel</td>
<td>Tamiasciurus hudsonicus</td>
</tr>
<tr>
<td>Southern flying squirrel</td>
<td>Glaucomys volans</td>
</tr>
<tr>
<td>Woodchuck</td>
<td>Marmota monax</td>
</tr>
<tr>
<td>Family Zapodidae - Jumping Mice</td>
<td></td>
</tr>
<tr>
<td>Meadow jumping mouse</td>
<td>Zapus hudsonius</td>
</tr>
<tr>
<td>Woodland jumping mouse</td>
<td>Napaeozapus insignis</td>
</tr>
</tbody>
</table>

Sources: NYSM, 1999; NYSDOS, 1990.
<table>
<thead>
<tr>
<th>Assessment Endpoint</th>
<th>Specific Ecological Receptor (“Endpoint Species”)</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benthic community structure as food source for local fish and wildlife.</td>
<td>· Benthic macroinvertebrate community</td>
<td>· Ecological community indices (diversity, evenness, dominance) · PCB levels in sediments and water column</td>
</tr>
<tr>
<td>Survival, growth, and reproduction of local forage fish populations.</td>
<td>· Spottail shiner · Pumpkinseed</td>
<td>· Measured PCB body burdens · Modeled PCB body burdens · PCB concentrations in sediments and water column</td>
</tr>
<tr>
<td>Survival, growth, and reproduction of local piscivorous/semi-piscivorous fish populations.</td>
<td>· Yellow perch · White perch · Largemouth bass · Striped bass</td>
<td>· Measured PCB body burdens · Modeled PCB body burdens · PCB concentrations in sediments and water column</td>
</tr>
<tr>
<td>Survival, growth, and reproduction of local omnivorous fish populations.</td>
<td>· Shortnose sturgeon · Brown bullhead</td>
<td>· Measured PCB body burdens · Modeled PCB body burdens · PCB concentrations in sediments and water column</td>
</tr>
<tr>
<td>Protection (i.e., survival and reproduction) of insectivorous birds and mammals.</td>
<td>· Tree swallow · Little brown bat</td>
<td>· Measured PCB concentrations in prey items (aquatic insects/benthic invertebrates) · Modeled PCB concentrations in prey items (aquatic insects) · PCB concentrations in the water column</td>
</tr>
<tr>
<td>Protection (i.e., survival and reproduction) of waterfowl.</td>
<td>· Mallard</td>
<td>· Measured PCB concentrations in prey (invertebrates, macrophytes) · Modeled PCB concentrations in prey (invertebrates, macrophytes) · PCB concentrations in the water column</td>
</tr>
<tr>
<td>Protection of piscivorous/semi-piscivorous birds and mammals.</td>
<td>· Belted kingfisher · Great blue heron · Mink · River Otter</td>
<td>· Measured PCB concentrations in prey (forage fish, invertebrates) · Modeled PCB concentrations in prey (forage fish, invertebrates) · PCB concentrations in sediments and water column</td>
</tr>
</tbody>
</table>
TABLE 2-7
ASSESSMENT AND MEASUREMENT ENDPOINTS

<table>
<thead>
<tr>
<th>Assessment Endpoint</th>
<th>Specific Ecological Receptor (“Endpoint Species”)</th>
<th>Measures</th>
<th>Exposure</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection of omnivorous mammals.</td>
<td>· Raccoon</td>
<td>· Measured PCB concentrations in prey items (fish, invertebrates) · PCB concentrations in the water column</td>
<td>· Estimated exceedance of TRVs · Exceedance of AWQC for the protection of wildlife · Field observations</td>
<td></td>
</tr>
<tr>
<td>Protection of endangered and threatened species.</td>
<td>· Bald eagle · Shortnose sturgeon</td>
<td>· Modeled PCB body burdens (sturgeon) · Measured PCB concentrations in prey (fish) · Modeled PCB concentrations in prey (fish) · PCB concentrations in sediments and water column</td>
<td>· Estimated exceedance of TRVs · Exceedance of AWQC sediment guidelines for the protection of wildlife · Field observations</td>
<td></td>
</tr>
<tr>
<td>Protection of significant habitats.</td>
<td>· Hudson River NERR · Selected NYSDOS significant habitats</td>
<td>· PCB concentrations in sediments and water column</td>
<td>· Exceedance of federal and state AWQC and sediment guidelines</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1: Individual-level effects are considered to occur when the TQ is greater to or equal to one. Receptor species are surrogates, representative of a wide range of species likely to use the Hudson River as habitat or foraging source.
<table>
<thead>
<tr>
<th>Receptor Species</th>
<th>Habitat/Feeding Characteristics</th>
<th>Similar Feeding Groups (general comparison)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benthic Invertebrate Community</td>
<td>Benthic Macroinvertebrates-Planktivorous, Deposit-feeders, Omnivorous</td>
<td></td>
</tr>
<tr>
<td>Spottail Shiner Pumpkinseed</td>
<td>Nektonic Forage Fish - Planktivorous, Insectivorous, Omnivorous</td>
<td>Fish
 Sunfishes
 Minnows
 Killfish
 River Herring</td>
</tr>
<tr>
<td>Yellow Perch White Perch Largemouth Bass Striped Bass</td>
<td>Nektonic Fishes- Piscivorous</td>
<td>Basses
 Bluefish
 Weakfish</td>
</tr>
<tr>
<td>Brown Bullhead Shortnose Sturgeon</td>
<td>Aquatic Feeders - Omnivorous, Scavengers, Detritivores</td>
<td>Fish
 Catfish
 Sturgeon
 Flatfishes
 Eels</td>
</tr>
<tr>
<td>Tree Swallow</td>
<td>Perching Birds of Wetlands-Insectivorous</td>
<td>Thrushes
 Wrens
 Sparrows</td>
</tr>
<tr>
<td>Mallard</td>
<td>Swimming Birds - Aquatic Herbivorous/Insectivorous</td>
<td>Birds
 Ducks
 Geese
 Swans
 Coots</td>
</tr>
<tr>
<td>Great Blue Heron</td>
<td>Wading Birds - Piscivorous</td>
<td>Shorebirds
 Herons, egrets, and bitterns
 Cormorants
 Mergansers
 Rails</td>
</tr>
<tr>
<td>Belted Kingfisher</td>
<td>Wide-ranging River Birds - Piscivorous</td>
<td>Gulls
 Kingfishers</td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Raptors (Birds of Prey) - Piscivorous/Carnivorous/Scavengers</td>
<td>Eagles
 Hawks
 Falcons
 Osprey</td>
</tr>
<tr>
<td>Little Brown Bat</td>
<td>Flying Mammals -Insectivorous</td>
<td>Bats</td>
</tr>
<tr>
<td>Mink</td>
<td>Semi-piscivorous/Carnivorous Mammals</td>
<td>Other mustelids</td>
</tr>
<tr>
<td>River Otter</td>
<td>Piscivorous mammals</td>
<td>Harbor Seal</td>
</tr>
<tr>
<td>Raccoon</td>
<td>Facultative Wetland Mammals - Omnivorous</td>
<td>Foxes
 Dogs
 Cats</td>
</tr>
</tbody>
</table>

Notes: Habitat/feeding characteristics are generalized and may not apply to all individuals of a group or species.
TABLE 2-9

RECEPTOR TROPHIC LEVELS, EXPOSURE PATHWAYS, AND FOOD SOURCES

<table>
<thead>
<tr>
<th>Endpoint Species</th>
<th>Level</th>
<th>Exposure Pathways</th>
<th>General Food Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benthic Invertebrates</td>
<td>1</td>
<td>A Direct contact with sediments</td>
<td>Species dependent; food sources include detritus, plants, other invertebrates, zooplankton and phytoplankton in interstitial water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with interstitial water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with water (epibenthic and filter feeders)</td>
<td></td>
</tr>
<tr>
<td>Pumpkinseed</td>
<td>2</td>
<td>A Direct contact with water (respiration, Dermal)</td>
<td>80% pelagic invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure (both water and Sediment-based)</td>
<td>20% benthic invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td></td>
</tr>
<tr>
<td>Spottail Shiner</td>
<td>2</td>
<td>A Direct contact with water (respiration, Dermal)</td>
<td>50% benthic invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure (both water and Sediment-based)</td>
<td>50% pelagic invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td></td>
</tr>
<tr>
<td>Brown Bullhead</td>
<td>2</td>
<td>A Direct contact with water (respiration, Dermal)</td>
<td>90% benthic invertebrates, <10% pelagic invertebrates or forage fish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure (primarily Sediment-based)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediment</td>
<td></td>
</tr>
<tr>
<td>Yellow Perch</td>
<td>2-3</td>
<td>A Direct contact with water (respiration, Dermal)</td>
<td><10% forage fish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure (both water and Sediment-based)</td>
<td>20-30% benthic invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td>60-80% pelagic invertebrates</td>
</tr>
<tr>
<td>White Perch</td>
<td>2-3</td>
<td>A Direct contact with water (respiration, Dermal)</td>
<td>10-20% forage fish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure (both water and Sediment-based)</td>
<td>30-40% benthic invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td>50-60% pelagic invertebrates</td>
</tr>
<tr>
<td>Largemouth Bass</td>
<td>3</td>
<td>A Direct contact with water (respiration, Dermal)</td>
<td>90% forage fish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure (both water and Sediment-based)</td>
<td>10% benthic invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td></td>
</tr>
<tr>
<td>Striped Bass</td>
<td>3</td>
<td>A Direct contact with water (respiration, Dermal)</td>
<td>Predominantly forage fish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure (both water and Sediment-based)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td></td>
</tr>
<tr>
<td>Endpoint Species</td>
<td>Level</td>
<td>Exposure Pathways</td>
<td>General Food Sources</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Shortnose Sturgeon</td>
<td>3</td>
<td>A Direct contact with water (respiration, Dermal)</td>
<td>Predominantly forage fish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure (both water and Sediment-based)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Swallow</td>
<td>2</td>
<td>A Water ingestion</td>
<td>Emergent aquatic and terrestrial insects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure</td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>2</td>
<td>A Water ingestion</td>
<td>Vegetation, benthic invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure</td>
<td></td>
</tr>
<tr>
<td>Belted Kingfisher</td>
<td>3</td>
<td>A Water ingestion</td>
<td>Forage fish, aquatic invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure</td>
<td></td>
</tr>
<tr>
<td>Great Blue Heron</td>
<td>3</td>
<td>A Water ingestion</td>
<td>Forage fish, aquatic invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td></td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>4</td>
<td>A Ingestion of water</td>
<td>Forage fish, small mammals, carrion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposures</td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Brown Bat</td>
<td>2</td>
<td>A Ingestion of water</td>
<td>Emergent aquatic and terrestrial insects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure</td>
<td></td>
</tr>
<tr>
<td>Raccoon</td>
<td>3</td>
<td>A Ingestion of water</td>
<td>Forage fish, insects, invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td></td>
</tr>
<tr>
<td>Mink</td>
<td>4-5</td>
<td>A Ingestion of water</td>
<td>Forage fish, invertebrates, small mammals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td></td>
</tr>
<tr>
<td>River Otter</td>
<td>4-5</td>
<td>A Ingestion of water</td>
<td>Forage and piscivorous fish, waterfowl, frogs, invertebrates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Food chain exposures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Direct contact with sediments</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-10

NYS RARE AND LISTED SPECIES AND HABITATS OCCURRING IN THE VICINITY OF THE HUDSON RIVER

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>NYS Status</th>
<th>State Rank</th>
<th>Precision Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants - known occurrences (i.e., precision value S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American waterwort</td>
<td>Elantine americana</td>
<td>Endangered</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Bicknell’s sedge</td>
<td>Carex bicknelli</td>
<td>Rare</td>
<td>S2/S3</td>
<td>S</td>
</tr>
<tr>
<td>Carey’s smartweed</td>
<td>Polygonum careyi</td>
<td>Unprotected</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Clustered sedge</td>
<td>Carex cumulata</td>
<td>Rare</td>
<td>S2S3</td>
<td>S</td>
</tr>
<tr>
<td>Corn-salad</td>
<td>Valerianella umbilicata</td>
<td>Unprotected</td>
<td>SH</td>
<td>S</td>
</tr>
<tr>
<td>Davis’ sedge</td>
<td>Carex davisii</td>
<td>Rare</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Estuary beggar-ticks</td>
<td>Bidens bidentoides</td>
<td>Threatened</td>
<td>S3</td>
<td>S</td>
</tr>
<tr>
<td>False hop sedge</td>
<td>Carex lupiformes</td>
<td>Rare</td>
<td>S3</td>
<td>S</td>
</tr>
<tr>
<td>Fissidens (non-vascular)</td>
<td>Fissidens Fontanus</td>
<td>Unprotected</td>
<td>S3?</td>
<td>S</td>
</tr>
<tr>
<td>Frank sedge</td>
<td>Carex frankii</td>
<td>Unprotected</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Glaucous sedge</td>
<td>Carex Flaccosperma var. glaucodea</td>
<td>Rare</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Golden club</td>
<td>Orontium aquaticum</td>
<td>Unprotected</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Golden seal</td>
<td>Hydrastis canadensis</td>
<td>Threatened</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Gypsy-wort</td>
<td>Lycopus rubellus</td>
<td>Unprotected</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Heartleaf plantain</td>
<td>Plantago cordata</td>
<td>Threatened</td>
<td>S3</td>
<td>S</td>
</tr>
<tr>
<td>Illinois pinweed</td>
<td>Lechea racemulosa</td>
<td>Rare</td>
<td>S3</td>
<td>S</td>
</tr>
<tr>
<td>Liliaeopsis</td>
<td>Lilaeopsis chinensis</td>
<td>Unprotected</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Lined sedge</td>
<td>Carex striatula</td>
<td>Unprotected</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Long’s bittercress</td>
<td>Cardamine longii</td>
<td>Unprotected</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Marsh straw sedge</td>
<td>Carex hormathodes</td>
<td>Rare</td>
<td>S2/S3</td>
<td>S</td>
</tr>
<tr>
<td>Midland sedge</td>
<td>Carex mesocorea</td>
<td>Unprotected</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Mock-pennyroyal</td>
<td>Hedeoma hispidum</td>
<td>Rare</td>
<td>S2/S3</td>
<td>S</td>
</tr>
</tbody>
</table>
TABLE 2-10

NYS RARE AND LISTED SPECIES AND HABITATS OCCURRING IN THE VICINITY OF THE HUDSON RIVER

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>NYS Status</th>
<th>State Rank</th>
<th>Precision Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow-leaved sedge</td>
<td>Carex amphibola var. amphibola</td>
<td>Unprotected</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Saltmarsh bulrush</td>
<td>Scirpus novae-anglia</td>
<td>Endangered</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Schweinitz’s flatsedge</td>
<td>Cyperus schweinitzii</td>
<td>Rare</td>
<td>S3</td>
<td>S</td>
</tr>
<tr>
<td>Slender crabgrass</td>
<td>Digitaria filiformis</td>
<td>Rare</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Small-flowered crowfoot</td>
<td>Ranunculus micranthus</td>
<td>Unprotected</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Smooth bur-marigold</td>
<td>Bidens laevis</td>
<td>Rare</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Southern yellow flax</td>
<td>Linum medium var. texanum</td>
<td>Threatened</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Southern dodder</td>
<td>Cuscuta obtusiflora car. glandulosa</td>
<td>Unprotected</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Spongy arrowhead</td>
<td>Sagittaria calycina var. spongiosa</td>
<td>Rare</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Starwort</td>
<td>Callitriche terrestris</td>
<td>Unprotected</td>
<td>S2S3</td>
<td>S</td>
</tr>
<tr>
<td>Swamp lousewort</td>
<td>Pedicularis lanceolata</td>
<td>Rare</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Swamp cottonwood</td>
<td>Populus heterophylla</td>
<td>Threatened</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Taxiphyllum (non-vascular)</td>
<td>Taxiphyllum taxiflora</td>
<td>Unprotected</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Violet wood-sorrel</td>
<td>Oxalis violacea</td>
<td>Unprotected</td>
<td>S1S2</td>
<td>S</td>
</tr>
<tr>
<td>Violet lespedeza</td>
<td>Lespedeza violacea</td>
<td>Rare</td>
<td>S3</td>
<td>S</td>
</tr>
<tr>
<td>Water pigmyweed</td>
<td>Crassula aquatica</td>
<td>Endangered</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Weak stellate sedge</td>
<td>Carex seorsa</td>
<td>Rare</td>
<td>S2</td>
<td>S</td>
</tr>
</tbody>
</table>

Invertebrates

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>NYS Status</th>
<th>State Rank</th>
<th>Precision Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>American rubyspot dragonfly</td>
<td>Hetaerina americana</td>
<td>Unprotected</td>
<td>S2/S3</td>
<td>S</td>
</tr>
<tr>
<td>Arrowhead spiketail dragonfly</td>
<td>Cordulegaster obliqua</td>
<td>Unprotected</td>
<td>S2S3</td>
<td>S</td>
</tr>
<tr>
<td>Gray petaltail dragonfly</td>
<td>Tachopteryx thoreyi</td>
<td>Unprotected</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>NYS Status</td>
<td>State Rank</td>
<td>Precision Value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Tawny emperor butterfly</td>
<td>Asterocampa clyton</td>
<td>Unprotected</td>
<td>S3</td>
<td>S</td>
</tr>
<tr>
<td>Riverine clubtail</td>
<td>Stylurus amnicola</td>
<td>Unprotected</td>
<td>SH</td>
<td>M</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shortnose sturgeon</td>
<td>Acipenser brevirostrum</td>
<td>Endangered</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Bluespotted sunfish</td>
<td>Enneacanthus gloriosus</td>
<td>Unprotected</td>
<td>S2</td>
<td>M</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bog turtle</td>
<td>Clemmys muhlenbergii</td>
<td>Endangered</td>
<td>S2</td>
<td>M</td>
</tr>
<tr>
<td>Blanding’s turtle</td>
<td>Emydoidea blandingii</td>
<td>Threatened</td>
<td>S2</td>
<td>M</td>
</tr>
<tr>
<td>Fence lizard</td>
<td>Sceloporus undulatus</td>
<td>Unprotected</td>
<td>S1</td>
<td>S</td>
</tr>
<tr>
<td>Timber rattlesnake</td>
<td>Crotalus horridus</td>
<td>Threatened</td>
<td>S3</td>
<td>M</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peregrine falcon</td>
<td>Falco peregrinus</td>
<td>Endangered</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Bald eagle</td>
<td>Haliaeetus Leucocephalus</td>
<td>Endangered</td>
<td>S1B, S1N</td>
<td>S</td>
</tr>
<tr>
<td>King rail</td>
<td>Rallus elegans</td>
<td>Protected</td>
<td>S1</td>
<td>M</td>
</tr>
<tr>
<td>Barn Owl</td>
<td>Tyto alba</td>
<td>Protected- Special Concern</td>
<td>S3</td>
<td>M</td>
</tr>
<tr>
<td>Short-eared owl</td>
<td>Asio flammeus</td>
<td>Protected- Special Concern</td>
<td>S2</td>
<td>S</td>
</tr>
<tr>
<td>Osprey</td>
<td>Pandion halietus</td>
<td>Threatened</td>
<td>S4</td>
<td>M</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern woodrat</td>
<td>Neotoma magister</td>
<td>Endangered</td>
<td>SH</td>
<td>M</td>
</tr>
<tr>
<td>Communities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Freshwater Intertidal Mudflats Communities</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>25 Freshwater Tidal Marsh Communities</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
</tbody>
</table>
TABLE 2-10

NYS RARE AND LISTED SPECIES AND HABITATS OCCURRING IN THE VICINITY OF THE HUDSON RIVER

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>NYS Status</th>
<th>State Rank</th>
<th>Precision Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Freshwater Tidal Swamp Communities</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Freshwater Intertidal Shore Communities</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Brackish Intertidal Mudflats Communities</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Brackish Tidal Marsh Communities</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Brackish Subtidal Aquatic Bed Community</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Calcareous Cliff Community</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Areas of Concern

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>NYS Status</th>
<th>State Rank</th>
<th>Precision Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Anadromous Fish Concentration Areas</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Waterfowl Concentration Areas</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Raptor Concentration Areas</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Warm Water Fish Concentration Area</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
State Rank:
S1 = Typically 5 or fewer occurrences, very few remaining individuals, acres or miles of stream in NYS
S2 = Typically 6 to 20 occurrences, very few remaining individuals, acres or miles of stream in NYS
S3 = Typically 21 to 100 occurrences, limited acreage or miles of stream in NYS
S4 = Apparently secure in NYS
S5 = Demostrably secure in NYS

Precision Rank:
A precision value of “S” indicates that a species is known to be found along the Hudson River.
A precision value of “M” indicates that a species may occur along the Hudson River in an appropriate habitat.
TABLE 2-11

HUDSON RIVER SIGNIFICANT HABITATS

<table>
<thead>
<tr>
<th>Freshwater Habitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normans Kill</td>
</tr>
<tr>
<td>Papascanee Marsh and Creek</td>
</tr>
<tr>
<td>Shad and Schermerhorn Island</td>
</tr>
<tr>
<td>Schodack and Houghtaling Islands and Schodack Creek</td>
</tr>
<tr>
<td>Coeymans Creek</td>
</tr>
<tr>
<td>Hannacroix Creek</td>
</tr>
<tr>
<td>Mill Creek Wetlands</td>
</tr>
<tr>
<td>Stuyvesant Marshes*</td>
</tr>
<tr>
<td>Coxsackie Creek</td>
</tr>
<tr>
<td>Coxsackie Island Backwater</td>
</tr>
<tr>
<td>Stockport Creek and Flats</td>
</tr>
<tr>
<td>Vosburgh Swamp and Middle Ground Flats</td>
</tr>
<tr>
<td>Roger’s Island</td>
</tr>
<tr>
<td>Catskill Creek</td>
</tr>
<tr>
<td>Ramshorn Marsh</td>
</tr>
<tr>
<td>Inbocht Bay and Duck Cove</td>
</tr>
<tr>
<td>Roeliff-Jansen Kill</td>
</tr>
<tr>
<td>Smith’s Landing Cementon*</td>
</tr>
<tr>
<td>Germantown/Clermont Flats</td>
</tr>
<tr>
<td>Esopus Estuary</td>
</tr>
<tr>
<td>North and South Tivoli Bays</td>
</tr>
<tr>
<td>Mudder Kill*</td>
</tr>
<tr>
<td>The Flats</td>
</tr>
<tr>
<td>Roundout Creek</td>
</tr>
<tr>
<td>Kingston Deepwater Habitat</td>
</tr>
<tr>
<td>Vanderburgh Cove and Shallows</td>
</tr>
<tr>
<td>Esopus Meadows</td>
</tr>
<tr>
<td>Foughkeepsie Deepwater Habitat</td>
</tr>
<tr>
<td>Cruin Elbow Marsh*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brackish Water Habitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wappinger Creek</td>
</tr>
<tr>
<td>Fishkill Creek</td>
</tr>
<tr>
<td>Moodna Creek</td>
</tr>
<tr>
<td>Hudson River Miles 44-56</td>
</tr>
<tr>
<td>Constitution Marsh</td>
</tr>
<tr>
<td>Iona Island Marsh</td>
</tr>
<tr>
<td>Camp Smith Marsh and Annsville Creek*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salt Water Habitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haverstraw Bay</td>
</tr>
<tr>
<td>Croton River and Bay</td>
</tr>
<tr>
<td>Piermont Marsh</td>
</tr>
</tbody>
</table>

Notes: * Indicates an area that is recognized by the NYS Natural Heritage Program as containing rare/important species or communities, but is not a designated Significant Habitat.

<table>
<thead>
<tr>
<th></th>
<th>BZ#77</th>
<th>BZ#81</th>
<th>BZ#105</th>
<th>BZ#114</th>
<th>BZ#118</th>
<th>BZ#123</th>
<th>BZ#126</th>
<th>BZ#156</th>
<th>BZ#157</th>
<th>BZ#167</th>
<th>BZ#169</th>
<th>BZ#189</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River Mean</td>
<td>0.28</td>
<td>0.06</td>
<td>0.01</td>
<td>0.11</td>
<td>0.00</td>
<td>0.52</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Lower River Mean</td>
<td>0.05</td>
<td>0.02</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.85</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Whole River Mean</td>
<td>0.15</td>
<td>0.03</td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.71</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Egg Mean</td>
<td>0.32</td>
<td>0.11</td>
<td>0.04</td>
<td>0.01</td>
<td>0.07</td>
<td>0.03</td>
<td>0.40</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Chick Mean</td>
<td>0.38</td>
<td>0.13</td>
<td>0.04</td>
<td>0.01</td>
<td>0.08</td>
<td>0.03</td>
<td>0.33</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Odonate Mean</td>
<td>0.34</td>
<td>0.05</td>
<td>0.03</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.49</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Insect Mean</td>
<td>0.34</td>
<td>0.11</td>
<td>0.04</td>
<td>0.01</td>
<td>0.05</td>
<td>0.02</td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Source: TAMS/Gradient Database Release 4.1b
Note: Dominant congeners are bold.
TABLE 3-2: FRACTION OF TRI+ CHLORINATED CONGENERS EXPRESSED AS TOXIC EQUIVALENCIES (TEQ)

<table>
<thead>
<tr>
<th></th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper River</td>
<td>2.82E-04</td>
<td>4.43E-06</td>
<td>6.33E-03</td>
<td>4.73E-04</td>
<td>8.17E-03</td>
<td>8.92E-04</td>
</tr>
<tr>
<td>Lower River</td>
<td>2.92E-05</td>
<td>4.72E-07</td>
<td>6.53E-04</td>
<td>5.49E-05</td>
<td>8.50E-04</td>
<td>8.83E-05</td>
</tr>
<tr>
<td>Whole River</td>
<td>2.57E-04</td>
<td>4.03E-06</td>
<td>5.75E-03</td>
<td>4.31E-04</td>
<td>7.43E-03</td>
<td>8.10E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper River</td>
<td>2.27E-06</td>
<td>1.22E-06</td>
<td>4.29E-05</td>
<td>1.78E-05</td>
<td>2.57E-04</td>
<td>2.36E-04</td>
</tr>
<tr>
<td>Lower River</td>
<td>5.46E-06</td>
<td>1.20E-06</td>
<td>1.17E-04</td>
<td>2.19E-05</td>
<td>1.90E-04</td>
<td>1.02E-04</td>
</tr>
<tr>
<td>Whole River</td>
<td>4.13E-06</td>
<td>1.21E-06</td>
<td>8.59E-05</td>
<td>2.02E-05</td>
<td>2.18E-04</td>
<td>1.58E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper River</td>
<td>3.94E-05</td>
<td>5.75E-06</td>
<td>7.78E-04</td>
<td>3.86E-05</td>
<td>2.78E-03</td>
<td>2.10E-03</td>
</tr>
<tr>
<td>Lower River</td>
<td>1.46E-05</td>
<td>7.86E-06</td>
<td>2.46E-04</td>
<td>8.33E-05</td>
<td>2.19E-03</td>
<td>2.05E-03</td>
</tr>
<tr>
<td>Whole River</td>
<td>2.68E-05</td>
<td>6.83E-06</td>
<td>5.06E-04</td>
<td>6.15E-04</td>
<td>2.48E-03</td>
<td>2.08E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper River</td>
<td>4.10E-06</td>
<td>1.49E-06</td>
<td>7.62E-03</td>
<td>2.80E-04</td>
<td>9.38E-03</td>
<td>4.27E-05</td>
</tr>
<tr>
<td>Lower River</td>
<td>5.36E-07</td>
<td>5.10E-07</td>
<td>5.12E-04</td>
<td>8.45E-05</td>
<td>6.15E-04</td>
<td>4.50E-05</td>
</tr>
<tr>
<td>Whole River</td>
<td>3.74E-06</td>
<td>1.39E-06</td>
<td>6.90E-03</td>
<td>2.60E-04</td>
<td>8.50E-03</td>
<td>4.30E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benthic Invertebrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper River</td>
<td>1.38E-06</td>
<td>1.06E-07</td>
<td>2.97E-05</td>
<td>1.55E-06</td>
<td>5.33E-05</td>
<td>1.88E-05</td>
</tr>
<tr>
<td>Lower River</td>
<td>4.82E-06</td>
<td>1.05E-07</td>
<td>1.08E-04</td>
<td>2.07E-06</td>
<td>1.39E-04</td>
<td>3.96E-06</td>
</tr>
<tr>
<td>Whole River</td>
<td>2.21E-06</td>
<td>1.06E-07</td>
<td>4.85E-05</td>
<td>1.67E-06</td>
<td>7.38E-05</td>
<td>1.52E-05</td>
</tr>
</tbody>
</table>

Factors obtained by multiplying media-specific TEF in Table 4-2 by individual congener concentrations for each sample, averaging across location and summing.

Source: TAMS/Gradient Database Release 4.1b
<table>
<thead>
<tr>
<th>Location</th>
<th>Tri+ PCB Average Conc. in Water mg/L</th>
<th>95% UCL Conc. In Water mg/L</th>
<th>Avian Based TEF Average Conc. in Water mg/L</th>
<th>95% UCL Conc. In Water mg/L</th>
<th>Mammalian Based TEF Average Conc. in Water mg/L</th>
<th>95% UCL Conc. In Water mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>7.36E-05</td>
<td>2.33E-04</td>
<td>6.01E-07</td>
<td>1.90E-06</td>
<td>4.66E-07</td>
<td>1.47E-06</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.31E-04</td>
<td>4.15E-04</td>
<td>1.07E-06</td>
<td>3.39E-06</td>
<td>8.27E-07</td>
<td>2.62E-06</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>9.14E-05</td>
<td>1.96E-04</td>
<td>7.47E-07</td>
<td>1.60E-06</td>
<td>5.78E-07</td>
<td>1.24E-06</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>7.07E-05</td>
<td>7.70E-04</td>
<td>6.01E-08</td>
<td>6.55E-07</td>
<td>4.62E-08</td>
<td>5.03E-07</td>
</tr>
<tr>
<td>137.2</td>
<td>7.07E-05</td>
<td>7.70E-04</td>
<td>6.01E-08</td>
<td>6.55E-07</td>
<td>4.62E-08</td>
<td>5.03E-07</td>
</tr>
<tr>
<td>122.4</td>
<td>3.24E-05</td>
<td>4.15E-04</td>
<td>2.76E-08</td>
<td>3.53E-07</td>
<td>2.11E-08</td>
<td>2.71E-07</td>
</tr>
<tr>
<td>113.8</td>
<td>3.24E-05</td>
<td>4.15E-04</td>
<td>2.76E-08</td>
<td>3.53E-07</td>
<td>2.11E-08</td>
<td>2.71E-07</td>
</tr>
<tr>
<td>100</td>
<td>3.24E-05</td>
<td>4.15E-04</td>
<td>2.76E-08</td>
<td>3.53E-07</td>
<td>2.11E-08</td>
<td>2.71E-07</td>
</tr>
<tr>
<td>88.9</td>
<td>2.13E-05</td>
<td>9.48E-05</td>
<td>1.82E-08</td>
<td>8.06E-08</td>
<td>1.39E-08</td>
<td>6.19E-08</td>
</tr>
<tr>
<td>58.7</td>
<td>2.13E-05</td>
<td>9.48E-05</td>
<td>1.82E-08</td>
<td>8.06E-08</td>
<td>1.39E-08</td>
<td>6.19E-08</td>
</tr>
<tr>
<td>47.3</td>
<td>2.13E-05</td>
<td>9.48E-05</td>
<td>1.82E-08</td>
<td>8.06E-08</td>
<td>1.39E-08</td>
<td>6.19E-08</td>
</tr>
<tr>
<td>25.8</td>
<td>2.13E-05</td>
<td>9.48E-05</td>
<td>1.82E-08</td>
<td>8.06E-08</td>
<td>1.39E-08</td>
<td>6.19E-08</td>
</tr>
</tbody>
</table>

Notes:
Source: TAMS/Gradient Database Release 4.1b
Water concentrations estimated from Phase 2 dataset -- data averaged across appropriate lower river water column sampling locations
TABLE 3-4: DRY WEIGHT SEDIMENT CONCENTRATIONS BASED ON USEPA PHASE 2 DATASET

<table>
<thead>
<tr>
<th>Location</th>
<th>Tri+ PCB</th>
<th>Avian Based TEF</th>
<th>Mammalian Based TEF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>95% UCL</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>Sediment Conc.</td>
<td>mg/Kg</td>
<td>Sediment Conc.</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>11.879</td>
<td>17.381</td>
<td>3.30E-02</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>31.030</td>
<td>54.170</td>
<td>8.62E-02</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>2.793</td>
<td>4.684</td>
<td>7.76E-03</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>0.860</td>
<td>0.942</td>
<td>1.88E-03</td>
</tr>
<tr>
<td>137.2</td>
<td>1.519</td>
<td>3.069</td>
<td>3.32E-03</td>
</tr>
<tr>
<td>122.4</td>
<td>0.963</td>
<td>1.069</td>
<td>2.10E-03</td>
</tr>
<tr>
<td>113.8</td>
<td>1.009</td>
<td>1.667</td>
<td>2.21E-03</td>
</tr>
<tr>
<td>100</td>
<td>0.399</td>
<td>8.613</td>
<td>8.72E-04</td>
</tr>
<tr>
<td>88.9</td>
<td>0.781</td>
<td>2.284</td>
<td>1.71E-03</td>
</tr>
<tr>
<td>58.7</td>
<td>0.252</td>
<td>2.794</td>
<td>5.51E-04</td>
</tr>
<tr>
<td>47.3</td>
<td>1.537</td>
<td>6.000</td>
<td>3.36E-03</td>
</tr>
<tr>
<td>25.8</td>
<td>0.578</td>
<td>1.563</td>
<td>1.26E-03</td>
</tr>
</tbody>
</table>

Source: TAMS/Gradient Database Release 4.1b
<table>
<thead>
<tr>
<th>Location</th>
<th>Tri+ PCB</th>
<th></th>
<th>Avian Based TEF</th>
<th></th>
<th>Mammalian Based TEF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Benthic Invert Conc</td>
<td>95% UCL Benthic Conc</td>
<td>Average Benthic Invert Conc</td>
<td>95% UCL Benthic Conc</td>
<td>Average Benthic Invert Conc</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>26.377</td>
<td>45.912</td>
<td>1.41E-03</td>
<td>2.45E-03</td>
<td>7.83E-04</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>6.286</td>
<td>10.942</td>
<td>3.35E-04</td>
<td>5.83E-04</td>
<td>1.87E-04</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>0.876</td>
<td>1.524</td>
<td>1.21E-04</td>
<td>2.11E-04</td>
<td>9.45E-05</td>
</tr>
<tr>
<td>137.2</td>
<td>1.725</td>
<td>3.002</td>
<td>2.39E-04</td>
<td>4.16E-04</td>
<td>1.86E-04</td>
</tr>
<tr>
<td>122.4</td>
<td>0.804</td>
<td>2.021</td>
<td>1.11E-04</td>
<td>2.80E-04</td>
<td>8.68E-05</td>
</tr>
<tr>
<td>113.8</td>
<td>0.691</td>
<td>1.203</td>
<td>9.57E-05</td>
<td>1.67E-04</td>
<td>7.45E-05</td>
</tr>
<tr>
<td>100</td>
<td>0.380</td>
<td>2.598</td>
<td>5.27E-05</td>
<td>3.60E-04</td>
<td>4.10E-05</td>
</tr>
<tr>
<td>88.9</td>
<td>0.191</td>
<td>0.339</td>
<td>2.64E-05</td>
<td>4.69E-05</td>
<td>2.06E-05</td>
</tr>
<tr>
<td>58.7</td>
<td>0.491</td>
<td>0.854</td>
<td>6.80E-05</td>
<td>1.18E-04</td>
<td>5.29E-05</td>
</tr>
<tr>
<td>47.3</td>
<td>0.666</td>
<td>4.891</td>
<td>9.23E-05</td>
<td>6.78E-04</td>
<td>7.19E-05</td>
</tr>
<tr>
<td>25.8</td>
<td>0.197</td>
<td>0.335</td>
<td>2.73E-05</td>
<td>4.64E-05</td>
<td>2.13E-05</td>
</tr>
</tbody>
</table>

Source: TAMS/Gradient Database Release 4.1b
TABLE 3-6: FORAGE FISH CONCENTRATIONS BASED ON USEPA PHASE 2 DATASET

<table>
<thead>
<tr>
<th>Location</th>
<th>Tri+ PCB Average Conc mg/Kg</th>
<th>Tri+ PCB 95% UCL Conc mg/Kg</th>
<th>Avian Based TEF Average Conc mg/Kg</th>
<th>Avian Based TEF 95% UCL Conc mg/Kg</th>
<th>Mammalian Based TEF Average Conc mg/Kg</th>
<th>Mammalian Based TEF 95% UCL Conc mg/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>20.919</td>
<td>42.716</td>
<td>5.37E-03</td>
<td>1.10E-02</td>
<td>8.97E-04</td>
<td>1.83E-03</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>7.062</td>
<td>10.099</td>
<td>1.81E-03</td>
<td>2.59E-03</td>
<td>3.03E-04</td>
<td>4.33E-04</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.657</td>
<td>2.405</td>
<td>4.25E-04</td>
<td>6.17E-04</td>
<td>7.11E-05</td>
<td>1.03E-04</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>1.927</td>
<td>2.314</td>
<td>3.66E-04</td>
<td>4.39E-04</td>
<td>2.25E-04</td>
<td>2.70E-04</td>
</tr>
<tr>
<td>137.2</td>
<td>3.898</td>
<td>8.453</td>
<td>7.40E-04</td>
<td>1.60E-03</td>
<td>4.55E-04</td>
<td>9.86E-04</td>
</tr>
<tr>
<td>122.4</td>
<td>1.488</td>
<td>2.407</td>
<td>2.82E-04</td>
<td>4.57E-04</td>
<td>1.74E-04</td>
<td>2.81E-04</td>
</tr>
<tr>
<td>113.8</td>
<td>1.560</td>
<td>1.618</td>
<td>2.96E-04</td>
<td>3.07E-04</td>
<td>1.82E-04</td>
<td>1.89E-04</td>
</tr>
<tr>
<td>100</td>
<td>0.676</td>
<td>1.167</td>
<td>1.28E-04</td>
<td>2.21E-04</td>
<td>7.89E-05</td>
<td>1.36E-04</td>
</tr>
<tr>
<td>88.9</td>
<td>1.345</td>
<td>1.845</td>
<td>2.55E-04</td>
<td>3.50E-04</td>
<td>1.57E-04</td>
<td>2.15E-04</td>
</tr>
<tr>
<td>58.7</td>
<td>1.465</td>
<td>1.661</td>
<td>2.78E-04</td>
<td>3.15E-04</td>
<td>1.71E-04</td>
<td>1.94E-04</td>
</tr>
<tr>
<td>47.3</td>
<td>1.304</td>
<td>1.728</td>
<td>2.47E-04</td>
<td>3.28E-04</td>
<td>1.52E-04</td>
<td>2.02E-04</td>
</tr>
<tr>
<td>25.8</td>
<td>0.981</td>
<td>1.179</td>
<td>1.86E-04</td>
<td>2.24E-04</td>
<td>1.14E-04</td>
<td>1.38E-04</td>
</tr>
</tbody>
</table>

Source: TAMS/Gradient Database Release 4.1b
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>11.12</td>
<td>15.66</td>
<td>8.17</td>
<td>9.32</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>34.36</td>
<td>52.09</td>
<td>13.11</td>
<td>16.09</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>21.63</td>
<td>27.41</td>
<td>18.07</td>
<td>26.70</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>38.12</td>
<td>31.79</td>
<td>28.67</td>
<td>56.13</td>
<td></td>
</tr>
<tr>
<td>95% UCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>16.79</td>
<td>13.68</td>
<td>10.72</td>
<td>13.11</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>26.00</td>
<td>8.59</td>
<td>13.11</td>
<td>11.53</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>20.03</td>
<td>14.58</td>
<td>18.07</td>
<td>19.17</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>12.75</td>
<td>8.59</td>
<td>11.53</td>
<td>11.53</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>38.12</td>
<td>31.79</td>
<td>28.67</td>
<td>56.13</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>26.00</td>
<td>8.59</td>
<td>13.11</td>
<td>11.53</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>20.03</td>
<td>14.58</td>
<td>18.07</td>
<td>19.17</td>
<td></td>
</tr>
</tbody>
</table>

* Indicates that the calculated UCL exceeded the maximum due to small sample size.

Source: TAMS/Gradient Database Release 4.1b
<table>
<thead>
<tr>
<th>River Mile</th>
<th>Year</th>
<th>Average Wet Weight (mg/Kg)</th>
<th>Average Lipid Normalized (mg PCB /Kg Lipid)</th>
<th>95% UCL Average Wet Weight (mg/Kg)</th>
<th>95% UCL Average Lipid Normalized (mg PCB /Kg Lipid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1993</td>
<td>1.33</td>
<td>25.09</td>
<td>2.13</td>
<td>38.48</td>
</tr>
<tr>
<td>27</td>
<td>1993</td>
<td>2.55</td>
<td>46.12</td>
<td>4.09</td>
<td>69.02</td>
</tr>
<tr>
<td>33</td>
<td>1993</td>
<td>4.25</td>
<td>54.81</td>
<td>8.46</td>
<td>96.75</td>
</tr>
<tr>
<td>40</td>
<td>1993</td>
<td>1.61</td>
<td>32.28</td>
<td>2.03</td>
<td>43.61</td>
</tr>
<tr>
<td>74</td>
<td>1993</td>
<td>3.15</td>
<td>75.92</td>
<td>4.90</td>
<td>135.09</td>
</tr>
<tr>
<td>112</td>
<td>1993</td>
<td>3.74</td>
<td>121.90</td>
<td>5.63</td>
<td>204.94</td>
</tr>
<tr>
<td>152</td>
<td>1993</td>
<td>12.38</td>
<td>306.41</td>
<td>17.67</td>
<td>533.77</td>
</tr>
<tr>
<td>26</td>
<td>1994</td>
<td>1.65</td>
<td>36.28</td>
<td>2.56</td>
<td>53.31</td>
</tr>
<tr>
<td>37</td>
<td>1994</td>
<td>1.95</td>
<td>46.46</td>
<td>3.03</td>
<td>84.32</td>
</tr>
<tr>
<td>40</td>
<td>1994</td>
<td>1.78</td>
<td>40.01</td>
<td>2.91</td>
<td>58.23</td>
</tr>
<tr>
<td>74</td>
<td>1994</td>
<td>2.54</td>
<td>49.58</td>
<td>4.22</td>
<td>75.02</td>
</tr>
<tr>
<td>112</td>
<td>1994</td>
<td>3.05</td>
<td>132.69</td>
<td>8.35</td>
<td>476.15</td>
</tr>
<tr>
<td>152</td>
<td>1994</td>
<td>6.40</td>
<td>254.45</td>
<td>9.79</td>
<td>338.72</td>
</tr>
<tr>
<td>27</td>
<td>1995</td>
<td>1.99</td>
<td>53.47</td>
<td>2.86</td>
<td>90.59</td>
</tr>
<tr>
<td>36</td>
<td>1995</td>
<td>1.30</td>
<td>26.03</td>
<td>1.70</td>
<td>35.97</td>
</tr>
<tr>
<td>59</td>
<td>1995</td>
<td>2.26</td>
<td>165.82</td>
<td>2.83</td>
<td>250.65</td>
</tr>
<tr>
<td>76</td>
<td>1995</td>
<td>1.72</td>
<td>29.85</td>
<td>2.05</td>
<td>35.79</td>
</tr>
<tr>
<td>113</td>
<td>1995</td>
<td>1.69</td>
<td>35.14</td>
<td>2.68</td>
<td>58.11</td>
</tr>
<tr>
<td>152</td>
<td>1995</td>
<td>6.51</td>
<td>174.47</td>
<td>8.42</td>
<td>235.65</td>
</tr>
<tr>
<td>12</td>
<td>1996</td>
<td>1.26</td>
<td>35.97</td>
<td>1.87</td>
<td>52.95</td>
</tr>
<tr>
<td>29</td>
<td>1996</td>
<td>1.92</td>
<td>44.94</td>
<td>2.74</td>
<td>58.94</td>
</tr>
<tr>
<td>40</td>
<td>1996</td>
<td>1.69</td>
<td>47.40</td>
<td>2.31</td>
<td>71.61</td>
</tr>
<tr>
<td>74</td>
<td>1996</td>
<td>1.81</td>
<td>46.47</td>
<td>2.49</td>
<td>68.76</td>
</tr>
<tr>
<td>112</td>
<td>1996</td>
<td>1.90</td>
<td>86.86</td>
<td>3.11</td>
<td>186.24</td>
</tr>
<tr>
<td>152</td>
<td>1996</td>
<td>4.89</td>
<td>216.03</td>
<td>11.26</td>
<td>531.63</td>
</tr>
</tbody>
</table>
TABLE 3-9: OBSERVED MAMMALIAN AND AVIAN PCB CONCENTRATIONS

<table>
<thead>
<tr>
<th>Species and Statistic</th>
<th>1983 - 1986 Mink and Otter Concentrations in mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>North Hudson Valley</td>
</tr>
<tr>
<td>Mink liver - average</td>
<td>0.6</td>
</tr>
<tr>
<td>Mink liver - minimum</td>
<td>0.1</td>
</tr>
<tr>
<td>Mink liver - maximum</td>
<td>1.7</td>
</tr>
<tr>
<td>Otter liver - average</td>
<td></td>
</tr>
<tr>
<td>Otter liver - minimum</td>
<td></td>
</tr>
<tr>
<td>Otter liver - maximum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tree Swallow Concentrations in mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock 9</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Eggs</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>EGG AVERAGE</td>
</tr>
<tr>
<td>Nestlings</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NESTLING AVERAGE</td>
</tr>
<tr>
<td>Year</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1993</td>
</tr>
<tr>
<td>1994</td>
</tr>
<tr>
<td>1995</td>
</tr>
<tr>
<td>1996</td>
</tr>
<tr>
<td>1997</td>
</tr>
<tr>
<td>1998</td>
</tr>
<tr>
<td>1999</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2002</td>
</tr>
<tr>
<td>2003</td>
</tr>
<tr>
<td>2004</td>
</tr>
<tr>
<td>2005</td>
</tr>
<tr>
<td>2006</td>
</tr>
<tr>
<td>2007</td>
</tr>
<tr>
<td>2008</td>
</tr>
<tr>
<td>2009</td>
</tr>
<tr>
<td>2010</td>
</tr>
<tr>
<td>2011</td>
</tr>
<tr>
<td>2012</td>
</tr>
<tr>
<td>2013</td>
</tr>
<tr>
<td>2014</td>
</tr>
<tr>
<td>2015</td>
</tr>
<tr>
<td>2016</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>2018</td>
</tr>
<tr>
<td>Year</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>2018</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>2016</td>
</tr>
<tr>
<td>2015</td>
</tr>
<tr>
<td>2014</td>
</tr>
<tr>
<td>2013</td>
</tr>
<tr>
<td>2012</td>
</tr>
<tr>
<td>2011</td>
</tr>
<tr>
<td>2010</td>
</tr>
<tr>
<td>2009</td>
</tr>
<tr>
<td>2008</td>
</tr>
<tr>
<td>2007</td>
</tr>
<tr>
<td>2006</td>
</tr>
<tr>
<td>2005</td>
</tr>
<tr>
<td>2004</td>
</tr>
<tr>
<td>2003</td>
</tr>
<tr>
<td>2002</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>1999</td>
</tr>
<tr>
<td>1998</td>
</tr>
<tr>
<td>1997</td>
</tr>
<tr>
<td>1996</td>
</tr>
<tr>
<td>1995</td>
</tr>
<tr>
<td>1994</td>
</tr>
<tr>
<td>1993</td>
</tr>
</tbody>
</table>

TABLE 3-11: SUMMARY OF TRI+ SEDIMENT CONCENTRATIONS FROM THE HUDTOX MODEL AND TEQ-BASED PREDICTIONS FOR 1993 - 2018

TAMS/MCA
<table>
<thead>
<tr>
<th>Year</th>
<th>Conc Tri+ Average PCB Results</th>
<th>Conc Tri+ 95% UCL Results</th>
<th>Conc Benthic Average Avian TEF</th>
<th>95% Avian TEF</th>
<th>Conc Mammalian Average TEF</th>
<th>95% UCL Mammalian TEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>2.525</td>
<td>1.735</td>
<td>0.449</td>
<td>3.746</td>
<td>2.753</td>
<td>0.487</td>
</tr>
<tr>
<td>2016</td>
<td>2.730</td>
<td>1.853</td>
<td>0.503</td>
<td>3.942</td>
<td>2.944</td>
<td>0.544</td>
</tr>
<tr>
<td>2015</td>
<td>2.876</td>
<td>1.951</td>
<td>0.547</td>
<td>4.287</td>
<td>3.103</td>
<td>0.590</td>
</tr>
<tr>
<td>2012</td>
<td>3.564</td>
<td>2.266</td>
<td>0.666</td>
<td>5.181</td>
<td>3.942</td>
<td>0.544</td>
</tr>
<tr>
<td>2010</td>
<td>4.224</td>
<td>2.575</td>
<td>0.766</td>
<td>6.562</td>
<td>4.521</td>
<td>1.482</td>
</tr>
<tr>
<td>2009</td>
<td>4.665</td>
<td>2.761</td>
<td>0.817</td>
<td>7.306</td>
<td>5.003</td>
<td>1.428</td>
</tr>
<tr>
<td>2008</td>
<td>4.947</td>
<td>2.818</td>
<td>0.865</td>
<td>7.708</td>
<td>5.305</td>
<td>1.512</td>
</tr>
</tbody>
</table>

TABLE 3-12: SUMMARY OF TRI+ BENTHIC INVERTEBRATE CONCENTRATIONS FROM THE FISHRAND MODEL AND TEQ-BASED PREDICTIONS FOR 1993 - 2018

TAMS/MCA
<table>
<thead>
<tr>
<th>Year</th>
<th>Thompson Island Pool</th>
<th>River Mile 168</th>
<th>River Mile 154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
</tr>
<tr>
<td>1993</td>
<td>21.01</td>
<td>43.93</td>
<td>81.72</td>
</tr>
<tr>
<td>1994</td>
<td>11.76</td>
<td>25.15</td>
<td>58.63</td>
</tr>
<tr>
<td>1995</td>
<td>13.16</td>
<td>27.86</td>
<td>64.51</td>
</tr>
<tr>
<td>1996</td>
<td>10.86</td>
<td>23.82</td>
<td>66.18</td>
</tr>
<tr>
<td>1997</td>
<td>8.05</td>
<td>18.55</td>
<td>48.77</td>
</tr>
<tr>
<td>1998</td>
<td>7.17</td>
<td>15.67</td>
<td>42.07</td>
</tr>
<tr>
<td>1999</td>
<td>5.70</td>
<td>13.14</td>
<td>37.31</td>
</tr>
<tr>
<td>2000</td>
<td>5.35</td>
<td>12.26</td>
<td>35.22</td>
</tr>
<tr>
<td>2001</td>
<td>4.97</td>
<td>11.51</td>
<td>32.22</td>
</tr>
<tr>
<td>2002</td>
<td>4.99</td>
<td>11.39</td>
<td>32.09</td>
</tr>
<tr>
<td>2003</td>
<td>4.30</td>
<td>9.84</td>
<td>28.50</td>
</tr>
<tr>
<td>2005</td>
<td>3.49</td>
<td>8.10</td>
<td>23.80</td>
</tr>
<tr>
<td>2006</td>
<td>3.64</td>
<td>8.10</td>
<td>23.84</td>
</tr>
<tr>
<td>2007</td>
<td>3.21</td>
<td>7.34</td>
<td>22.00</td>
</tr>
<tr>
<td>2008</td>
<td>2.90</td>
<td>6.87</td>
<td>20.32</td>
</tr>
<tr>
<td>2009</td>
<td>3.09</td>
<td>7.20</td>
<td>19.44</td>
</tr>
<tr>
<td>2010</td>
<td>2.84</td>
<td>6.33</td>
<td>17.95</td>
</tr>
<tr>
<td>2011</td>
<td>2.27</td>
<td>5.36</td>
<td>15.79</td>
</tr>
<tr>
<td>2012</td>
<td>2.29</td>
<td>5.45</td>
<td>14.83</td>
</tr>
<tr>
<td>2013</td>
<td>2.24</td>
<td>5.23</td>
<td>14.56</td>
</tr>
<tr>
<td>2014</td>
<td>2.11</td>
<td>4.84</td>
<td>13.04</td>
</tr>
<tr>
<td>2015</td>
<td>1.90</td>
<td>4.39</td>
<td>12.12</td>
</tr>
<tr>
<td>2016</td>
<td>2.00</td>
<td>4.54</td>
<td>12.27</td>
</tr>
<tr>
<td>2017</td>
<td>1.61</td>
<td>3.75</td>
<td>11.17</td>
</tr>
<tr>
<td>2018</td>
<td>1.63</td>
<td>3.68</td>
<td>10.94</td>
</tr>
<tr>
<td>Year</td>
<td>Thompson Island Pool</td>
<td>River Mile 168</td>
<td>River Mile 154</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
</tr>
<tr>
<td>1993</td>
<td>9.80</td>
<td>25.30</td>
<td>82.32</td>
</tr>
<tr>
<td>1994</td>
<td>7.81</td>
<td>22.41</td>
<td>76.09</td>
</tr>
<tr>
<td>1996</td>
<td>7.03</td>
<td>20.65</td>
<td>72.72</td>
</tr>
<tr>
<td>1997</td>
<td>6.06</td>
<td>18.30</td>
<td>61.04</td>
</tr>
<tr>
<td>1998</td>
<td>5.38</td>
<td>16.19</td>
<td>56.16</td>
</tr>
<tr>
<td>1999</td>
<td>4.66</td>
<td>14.62</td>
<td>51.42</td>
</tr>
<tr>
<td>2000</td>
<td>4.47</td>
<td>13.51</td>
<td>46.82</td>
</tr>
<tr>
<td>2001</td>
<td>4.29</td>
<td>12.74</td>
<td>44.27</td>
</tr>
<tr>
<td>2002</td>
<td>4.06</td>
<td>11.87</td>
<td>42.79</td>
</tr>
<tr>
<td>2003</td>
<td>3.68</td>
<td>11.18</td>
<td>38.83</td>
</tr>
<tr>
<td>2004</td>
<td>3.44</td>
<td>10.46</td>
<td>35.04</td>
</tr>
<tr>
<td>2005</td>
<td>3.08</td>
<td>9.56</td>
<td>31.95</td>
</tr>
<tr>
<td>2006</td>
<td>3.03</td>
<td>9.19</td>
<td>32.51</td>
</tr>
<tr>
<td>2007</td>
<td>2.78</td>
<td>8.57</td>
<td>29.40</td>
</tr>
<tr>
<td>2008</td>
<td>2.70</td>
<td>7.95</td>
<td>27.31</td>
</tr>
<tr>
<td>2009</td>
<td>2.62</td>
<td>7.69</td>
<td>25.27</td>
</tr>
<tr>
<td>2010</td>
<td>2.19</td>
<td>6.95</td>
<td>23.97</td>
</tr>
<tr>
<td>2011</td>
<td>2.03</td>
<td>6.37</td>
<td>21.30</td>
</tr>
<tr>
<td>2012</td>
<td>1.95</td>
<td>5.96</td>
<td>19.94</td>
</tr>
<tr>
<td>2013</td>
<td>1.82</td>
<td>5.55</td>
<td>19.62</td>
</tr>
<tr>
<td>2014</td>
<td>1.66</td>
<td>5.14</td>
<td>17.33</td>
</tr>
<tr>
<td>2015</td>
<td>1.58</td>
<td>4.83</td>
<td>16.28</td>
</tr>
<tr>
<td>2016</td>
<td>1.60</td>
<td>4.64</td>
<td>15.69</td>
</tr>
<tr>
<td>2017</td>
<td>1.39</td>
<td>4.17</td>
<td>14.76</td>
</tr>
<tr>
<td>2018</td>
<td>1.33</td>
<td>4.15</td>
<td>14.36</td>
</tr>
</tbody>
</table>

TABLE 3-14: BROWN BULLHEAD PREDICTED TRI+ CONCENTRATIONS FOR 1993 - 2018
<table>
<thead>
<tr>
<th>Year</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>6.78</td>
<td>20.61</td>
<td>60.01</td>
<td>20.43</td>
<td>58.28</td>
<td>1.05</td>
<td>3.07</td>
<td>8.85</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>6.08</td>
<td>18.92</td>
<td>55.70</td>
<td>3.11</td>
<td>18.84</td>
<td>0.93</td>
<td>2.82</td>
<td>8.32</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>6.04</td>
<td>18.14</td>
<td>53.62</td>
<td>3.17</td>
<td>18.05</td>
<td>0.96</td>
<td>2.76</td>
<td>7.91</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>5.03</td>
<td>15.63</td>
<td>45.59</td>
<td>2.38</td>
<td>15.50</td>
<td>0.72</td>
<td>2.17</td>
<td>6.35</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>4.57</td>
<td>14.62</td>
<td>43.14</td>
<td>2.18</td>
<td>14.49</td>
<td>0.69</td>
<td>2.03</td>
<td>5.76</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>4.10</td>
<td>13.25</td>
<td>39.03</td>
<td>2.05</td>
<td>13.47</td>
<td>0.57</td>
<td>1.68</td>
<td>4.88</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>3.69</td>
<td>12.02</td>
<td>35.66</td>
<td>1.65</td>
<td>11.88</td>
<td>0.51</td>
<td>1.52</td>
<td>4.36</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>3.42</td>
<td>11.08</td>
<td>32.99</td>
<td>1.63</td>
<td>10.98</td>
<td>0.48</td>
<td>1.37</td>
<td>3.94</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>3.23</td>
<td>10.48</td>
<td>31.22</td>
<td>1.57</td>
<td>10.32</td>
<td>0.45</td>
<td>1.27</td>
<td>3.64</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>3.03</td>
<td>9.82</td>
<td>29.31</td>
<td>1.57</td>
<td>9.72</td>
<td>0.42</td>
<td>1.21</td>
<td>3.47</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>2.82</td>
<td>9.13</td>
<td>27.09</td>
<td>1.39</td>
<td>9.02</td>
<td>0.40</td>
<td>1.14</td>
<td>3.28</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>2.59</td>
<td>8.38</td>
<td>24.87</td>
<td>1.34</td>
<td>8.27</td>
<td>0.37</td>
<td>1.03</td>
<td>2.94</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>2.40</td>
<td>7.83</td>
<td>23.33</td>
<td>1.17</td>
<td>7.69</td>
<td>0.33</td>
<td>0.94</td>
<td>2.70</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>2.30</td>
<td>7.47</td>
<td>22.23</td>
<td>1.13</td>
<td>7.37</td>
<td>0.32</td>
<td>0.87</td>
<td>2.48</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>2.14</td>
<td>7.00</td>
<td>20.75</td>
<td>1.03</td>
<td>6.86</td>
<td>0.30</td>
<td>0.82</td>
<td>2.31</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>2.02</td>
<td>6.55</td>
<td>19.51</td>
<td>0.96</td>
<td>6.45</td>
<td>0.27</td>
<td>0.74</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1.93</td>
<td>6.21</td>
<td>18.45</td>
<td>0.94</td>
<td>6.14</td>
<td>0.26</td>
<td>0.71</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1.75</td>
<td>5.73</td>
<td>16.85</td>
<td>0.90</td>
<td>5.58</td>
<td>0.28</td>
<td>0.71</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>1.57</td>
<td>5.13</td>
<td>15.18</td>
<td>0.81</td>
<td>5.02</td>
<td>0.25</td>
<td>0.66</td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>1.48</td>
<td>4.76</td>
<td>14.16</td>
<td>0.77</td>
<td>4.69</td>
<td>0.26</td>
<td>0.62</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>1.38</td>
<td>4.47</td>
<td>13.24</td>
<td>0.78</td>
<td>4.39</td>
<td>0.25</td>
<td>0.59</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>1.29</td>
<td>4.17</td>
<td>12.32</td>
<td>0.72</td>
<td>4.08</td>
<td>0.22</td>
<td>0.53</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>1.21</td>
<td>3.91</td>
<td>11.61</td>
<td>0.69</td>
<td>3.82</td>
<td>0.21</td>
<td>0.51</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>1.17</td>
<td>3.69</td>
<td>10.98</td>
<td>0.67</td>
<td>3.64</td>
<td>0.21</td>
<td>0.49</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>1.07</td>
<td>3.44</td>
<td>10.23</td>
<td>0.59</td>
<td>3.37</td>
<td>0.18</td>
<td>0.43</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>1.03</td>
<td>3.33</td>
<td>10.07</td>
<td>0.56</td>
<td>3.29</td>
<td>0.15</td>
<td>0.40</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1993</td>
<td>4.08</td>
<td>12.79</td>
<td>38.05</td>
<td>2.21</td>
<td>5.34</td>
<td>13.00</td>
<td>0.62</td>
<td>1.86</td>
<td>5.29</td>
</tr>
<tr>
<td>1994</td>
<td>3.47</td>
<td>11.25</td>
<td>34.55</td>
<td>1.88</td>
<td>4.57</td>
<td>11.83</td>
<td>0.58</td>
<td>1.73</td>
<td>4.90</td>
</tr>
<tr>
<td>1995</td>
<td>3.58</td>
<td>11.75</td>
<td>35.10</td>
<td>2.00</td>
<td>4.67</td>
<td>12.42</td>
<td>0.59</td>
<td>1.79</td>
<td>5.06</td>
</tr>
<tr>
<td>1996</td>
<td>2.94</td>
<td>9.50</td>
<td>28.63</td>
<td>1.44</td>
<td>3.62</td>
<td>9.74</td>
<td>0.44</td>
<td>1.33</td>
<td>3.85</td>
</tr>
<tr>
<td>1997</td>
<td>2.60</td>
<td>8.69</td>
<td>26.89</td>
<td>1.46</td>
<td>3.38</td>
<td>9.04</td>
<td>0.43</td>
<td>1.23</td>
<td>3.45</td>
</tr>
<tr>
<td>1998</td>
<td>2.28</td>
<td>7.78</td>
<td>24.10</td>
<td>1.13</td>
<td>3.03</td>
<td>8.14</td>
<td>0.35</td>
<td>1.04</td>
<td>2.99</td>
</tr>
<tr>
<td>1999</td>
<td>2.08</td>
<td>7.08</td>
<td>22.16</td>
<td>1.04</td>
<td>2.63</td>
<td>7.26</td>
<td>0.32</td>
<td>0.91</td>
<td>2.61</td>
</tr>
<tr>
<td>2000</td>
<td>1.90</td>
<td>6.56</td>
<td>20.29</td>
<td>0.95</td>
<td>2.47</td>
<td>6.78</td>
<td>0.32</td>
<td>0.85</td>
<td>2.33</td>
</tr>
<tr>
<td>2001</td>
<td>1.82</td>
<td>6.21</td>
<td>19.17</td>
<td>1.02</td>
<td>2.51</td>
<td>6.66</td>
<td>0.28</td>
<td>0.79</td>
<td>2.17</td>
</tr>
<tr>
<td>2002</td>
<td>1.68</td>
<td>5.82</td>
<td>18.05</td>
<td>0.90</td>
<td>2.35</td>
<td>6.41</td>
<td>0.25</td>
<td>0.74</td>
<td>2.05</td>
</tr>
<tr>
<td>2003</td>
<td>1.56</td>
<td>5.39</td>
<td>16.80</td>
<td>0.85</td>
<td>2.17</td>
<td>6.00</td>
<td>0.27</td>
<td>0.71</td>
<td>1.95</td>
</tr>
<tr>
<td>2004</td>
<td>1.43</td>
<td>4.97</td>
<td>15.45</td>
<td>0.77</td>
<td>2.04</td>
<td>5.60</td>
<td>0.23</td>
<td>0.64</td>
<td>1.78</td>
</tr>
<tr>
<td>2005</td>
<td>1.35</td>
<td>4.61</td>
<td>14.37</td>
<td>0.68</td>
<td>1.81</td>
<td>5.05</td>
<td>0.22</td>
<td>0.58</td>
<td>1.60</td>
</tr>
<tr>
<td>2006</td>
<td>1.28</td>
<td>4.42</td>
<td>13.67</td>
<td>0.69</td>
<td>1.79</td>
<td>4.88</td>
<td>0.20</td>
<td>0.54</td>
<td>1.49</td>
</tr>
<tr>
<td>2007</td>
<td>1.19</td>
<td>4.12</td>
<td>12.75</td>
<td>0.60</td>
<td>1.62</td>
<td>4.46</td>
<td>0.21</td>
<td>0.52</td>
<td>1.39</td>
</tr>
<tr>
<td>2008</td>
<td>1.12</td>
<td>3.88</td>
<td>12.01</td>
<td>0.55</td>
<td>1.50</td>
<td>4.23</td>
<td>0.17</td>
<td>0.46</td>
<td>1.26</td>
</tr>
<tr>
<td>2009</td>
<td>1.12</td>
<td>3.69</td>
<td>11.38</td>
<td>0.60</td>
<td>1.52</td>
<td>4.07</td>
<td>0.17</td>
<td>0.45</td>
<td>1.22</td>
</tr>
<tr>
<td>2010</td>
<td>0.99</td>
<td>3.37</td>
<td>10.61</td>
<td>0.52</td>
<td>1.39</td>
<td>3.86</td>
<td>0.17</td>
<td>0.45</td>
<td>1.18</td>
</tr>
<tr>
<td>2011</td>
<td>0.88</td>
<td>3.02</td>
<td>9.49</td>
<td>0.46</td>
<td>1.25</td>
<td>3.49</td>
<td>0.16</td>
<td>0.41</td>
<td>1.09</td>
</tr>
<tr>
<td>2012</td>
<td>0.84</td>
<td>2.83</td>
<td>8.70</td>
<td>0.52</td>
<td>1.25</td>
<td>3.39</td>
<td>0.18</td>
<td>0.41</td>
<td>1.04</td>
</tr>
<tr>
<td>2013</td>
<td>0.78</td>
<td>2.64</td>
<td>8.21</td>
<td>0.46</td>
<td>1.18</td>
<td>3.20</td>
<td>0.16</td>
<td>0.38</td>
<td>0.96</td>
</tr>
<tr>
<td>2014</td>
<td>0.73</td>
<td>2.45</td>
<td>7.57</td>
<td>0.44</td>
<td>1.10</td>
<td>2.98</td>
<td>0.14</td>
<td>0.34</td>
<td>0.89</td>
</tr>
<tr>
<td>2015</td>
<td>0.68</td>
<td>2.30</td>
<td>7.16</td>
<td>0.41</td>
<td>1.04</td>
<td>2.86</td>
<td>0.13</td>
<td>0.33</td>
<td>0.84</td>
</tr>
<tr>
<td>2016</td>
<td>0.65</td>
<td>2.19</td>
<td>6.74</td>
<td>0.43</td>
<td>1.05</td>
<td>2.78</td>
<td>0.15</td>
<td>0.34</td>
<td>0.82</td>
</tr>
<tr>
<td>2017</td>
<td>0.59</td>
<td>2.02</td>
<td>6.28</td>
<td>0.34</td>
<td>0.92</td>
<td>2.55</td>
<td>0.11</td>
<td>0.28</td>
<td>0.71</td>
</tr>
<tr>
<td>2018</td>
<td>0.58</td>
<td>1.98</td>
<td>6.08</td>
<td>0.33</td>
<td>0.88</td>
<td>2.45</td>
<td>0.10</td>
<td>0.25</td>
<td>0.66</td>
</tr>
<tr>
<td>Exposure Parameters</td>
<td>Common Name</td>
<td>Genus</td>
<td>Species</td>
<td>Sex (M/F)</td>
<td>Age (Adult/Juv.)</td>
<td>Male/Female Body Weight (kg)</td>
<td>Total Daily Dietary Ingestion (kg/day wet wt.)</td>
<td>Total Daily Dietary Ingestion (kg/day dry wt.)</td>
<td>General Dietary Characterization</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Tree Swallow</td>
<td>Tachycineta</td>
<td>bicolor</td>
<td>Female</td>
<td>Adult, Breeding</td>
<td>0.0210</td>
<td>0.018</td>
<td>0.005</td>
<td>Insectivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td></td>
<td>0.0206</td>
<td>0.018</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0170 - 0.0255 (M and F)</td>
<td>0.016 - 0.020</td>
<td>No Contact with Sediments</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Secord and McCarty (1997), Robertson et al. (1992);
2. Estimated from Nagy (1987) and USEPA (December, 1993);
3. No contact with sediments;
4. Secord and McCarty (1997), McCarty and Winkler (In Press);
5. Emergent forms of insects with partial aquatic life histories;
6. Calder and Braun (1983 In USE December 1993), Davis (1982);
7. Robertson et al. (1992);
8. McCarty and Winkler (In Press);
9. Robertson et al. (1992), see text for rationale;
Table 3-18
EXPOSURE PARAMETERS FOR THE MALLARD (*Anas platyrhynchos*)

<table>
<thead>
<tr>
<th>Exposure Parameters</th>
<th>Range Reported for Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Male</td>
</tr>
<tr>
<td>Genus</td>
<td>Mallard</td>
</tr>
<tr>
<td>Species</td>
<td>1.06 - 1.11 F/M 1.21 - 1.27</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>Female</td>
</tr>
<tr>
<td>Male/Female Body Weight (kg)</td>
<td>1.06 - 1.24 F/ 1.21 - M</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day wet wt.)</td>
<td>0.292 - 0.322 F/ 0.317 - M</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day dry wt.)</td>
<td>0.061 - 0.067 F/ 0.066 - M</td>
</tr>
<tr>
<td>General Dietary Characterization</td>
<td>Opportunistic Omnivore</td>
</tr>
<tr>
<td>Percent Diet Composition (% wet wt.)</td>
<td>0%</td>
</tr>
<tr>
<td>Fish (Total Component)</td>
<td>0%</td>
</tr>
<tr>
<td>Aquatic Invertebrates (Total Component)</td>
<td>50% - 100%</td>
</tr>
<tr>
<td>Aquatic Vegetation/Seeds</td>
<td>50% - 90%</td>
</tr>
<tr>
<td>Water Consumption Rate (L/day)</td>
<td>0.061 - 0.068 F/ 0.059 - M</td>
</tr>
<tr>
<td>Percent Incidental Sediment Ingestion in Diet</td>
<td>2.00%</td>
</tr>
<tr>
<td>Foraging Territory (km)</td>
<td>540.0 - 620.0</td>
</tr>
<tr>
<td>Behavioral Modification Factors in the Exposure Assessment</td>
<td>Resident</td>
</tr>
<tr>
<td>Temporal Migration Correction Factor (1-%Annual Temporal Displacement)</td>
<td>1</td>
</tr>
<tr>
<td>Temporal Hibernation/Asetivation Correction Factor (1-%Temporal Hib/Aset.)</td>
<td>1</td>
</tr>
<tr>
<td>Habitat Use Factor (Temporal use factor %)</td>
<td>1 Riparian habitats preferred</td>
</tr>
<tr>
<td>Temporal Reproductive Period (Mating/Gestation/Birth)</td>
<td>February - May</td>
</tr>
</tbody>
</table>

Notes:
<table>
<thead>
<tr>
<th>Exposure Parameters</th>
<th>Belts Kingfisher</th>
<th>Range Reported for Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Belted Kingfisher</td>
<td>-</td>
</tr>
<tr>
<td>Genus</td>
<td>Ceryle</td>
<td>-</td>
</tr>
<tr>
<td>Species</td>
<td>alcyon</td>
<td>-</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>Female Male</td>
<td>-</td>
</tr>
<tr>
<td>Age (Adult/Juv.)</td>
<td>Adult, Breeding</td>
<td>-</td>
</tr>
<tr>
<td>Male/Female Body Weight (kg)</td>
<td>0.147 0.147</td>
<td>0.136-0.158 M and F</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day wet wt.)</td>
<td>0.058 0.058</td>
<td>0.055-0.060 M and F</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day dry wt.)</td>
<td>0.017 0.017</td>
<td>-</td>
</tr>
<tr>
<td>General Dietary Characterization</td>
<td>Opportunistic Piscivore</td>
<td>-</td>
</tr>
<tr>
<td>Percent Diet Composition (% wet wt.)</td>
<td>78% 46% 100%</td>
<td>5% - 41%</td>
</tr>
<tr>
<td>Fish (Total Component)</td>
<td>78%</td>
<td>46% - 100%</td>
</tr>
<tr>
<td>Aquatic Invertebrates (Total Component)</td>
<td>22%</td>
<td>5% - 41%</td>
</tr>
<tr>
<td>Non-river Related Diet Sources</td>
<td>0%</td>
<td>4-3%</td>
</tr>
<tr>
<td>Water Consumption Rate (L/day)</td>
<td>0.016</td>
<td>0.015-0.017</td>
</tr>
<tr>
<td>Percent Incidental Sediment Ingestion in Diet</td>
<td>1.00%</td>
<td>nests in banks, grooming</td>
</tr>
<tr>
<td>Foraging Territory (km)</td>
<td>0.70</td>
<td>0.389-1.03</td>
</tr>
<tr>
<td>Behavioral Modification Factors in the Exposure Assessment</td>
<td>1</td>
<td>Resident</td>
</tr>
<tr>
<td>Temporal Migration Correction Factor (1-%Annual Temporal Displacement)</td>
<td>1</td>
<td>Active Year Round</td>
</tr>
<tr>
<td>Temporal Hibernation/Asetivation Correction Factor (1-%Temporal Hib/Aset.)</td>
<td>1</td>
<td>Riparian habitats preferred</td>
</tr>
<tr>
<td>Habitat Use Factor (Temporal use factor %)</td>
<td>1</td>
<td>April - June</td>
</tr>
<tr>
<td>Temporal Reproductive Period (Mating/Gestation/Hatching)</td>
<td>9,10</td>
<td>April - June</td>
</tr>
</tbody>
</table>

Notes: 1 Brooks and Davis (1987), Poole (1932); 2 Estimated from Nagy (1987) and USEPA (December 1993); 3 Estimated from USEPA (1993b); 4 Gould unpublished data (in USEPA, December 1993), Davis (1982); 5 Calder and Braun (1983 in USEPA December 1993); 6 Best Professional Judgment based on Davis (1982), Andrle and Carroll (1988).
<table>
<thead>
<tr>
<th>Exposure Parameters</th>
<th>Range Reported for Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Great Blue Heron</td>
</tr>
<tr>
<td>Genus</td>
<td>Ardea</td>
</tr>
<tr>
<td>Species</td>
<td>herodias</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>Female, Male</td>
</tr>
<tr>
<td>Age (Adult/Juvenile)</td>
<td>Adult, Breeding</td>
</tr>
<tr>
<td>Male/Female Body Weight (kg)</td>
<td>2.20, 2.58</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day wet wt.)</td>
<td>0.352, 0.390</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day dry wt.)</td>
<td>0.097, 0.108</td>
</tr>
<tr>
<td>General Dietary Characterization</td>
<td>Opportunistic Piscivore</td>
</tr>
<tr>
<td>Percent Diet Composition (% wet wt.)</td>
<td>98%, 72-98%</td>
</tr>
<tr>
<td>Fish (Total Component)</td>
<td>1%</td>
</tr>
<tr>
<td>Aquatic Invertebrates (Total Component)</td>
<td>1%</td>
</tr>
<tr>
<td>Non-river Related Diet Sources</td>
<td>1%</td>
</tr>
<tr>
<td>Water Consumption Rate (L/day)</td>
<td>0.100, 0.111</td>
</tr>
<tr>
<td>Percent Incidental Sediment Ingestion in Diet</td>
<td>2.00%, -</td>
</tr>
<tr>
<td>Foraging Territory (km)</td>
<td>0.98</td>
</tr>
<tr>
<td>Behavioral Modification Factors in the Exposure Assessment</td>
<td>-</td>
</tr>
<tr>
<td>Temporal Migration Correction Factor (1-%Annual Temporal Displacement)</td>
<td>1</td>
</tr>
<tr>
<td>Temporal Hibernation/Asetration Correction Factor (1-%Temporal Hib/Aset.)</td>
<td>1</td>
</tr>
<tr>
<td>Habitat Use Factor (Temporal use factor %)</td>
<td>1</td>
</tr>
<tr>
<td>Temporal Reproductive Period (Mating/Gestation/Birth)</td>
<td>March - June</td>
</tr>
</tbody>
</table>

Notes: 1 Dunning (1993); 2 Estimated from Nagy (1987) and USEPA (December 1993); 3 Estimated from USEPA (1993b); 4 Alexander (1977 In USEPA, December 1993), Cotaam and Uhler (1945); 5 Calder and Braun (1983 In USEPA, December 1993); 6 Best Professional Judgement based on Eckert and Karalus (1988); 7 Peifer (1979 In USEPA, December, 1993); 8 USEPA (December, 1993); 9, 10 Bull (1998) and Andrle and Carroll (1988).
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Bald Eagle</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus</td>
<td>Haliaeetus</td>
<td>-</td>
</tr>
<tr>
<td>Species</td>
<td>leucocephalus</td>
<td>-</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Age (Adult/Juvenile)</td>
<td>Adult, Breeding</td>
<td>-</td>
</tr>
<tr>
<td>Male/Female Body Weight (kg)</td>
<td>5.10 3.20</td>
<td>4.5-5.6 F/M 3.0-3.4</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day wet wt.)</td>
<td>0.65 0.46</td>
<td>0.60-0.69 F/0.46-0.49 M</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day dry wt.)</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>General Dietary Characterization</td>
<td>Opportunistic Piscivore</td>
<td>-</td>
</tr>
<tr>
<td>Percent Diet Composition (% wet wt.)</td>
<td>100%</td>
<td>70-100%</td>
</tr>
<tr>
<td>Fish (Total Component)</td>
<td>0%</td>
<td>0-18%</td>
</tr>
<tr>
<td>Aquatic Invertebrates (Total Component)</td>
<td>0%</td>
<td>0-4.3%</td>
</tr>
<tr>
<td>Water Consumption Rate (L/day)</td>
<td>0.175 0.129</td>
<td>0.162-0.187 F/0.123-0.134 M</td>
</tr>
<tr>
<td>Percent Incidental Sediment Ingestion in Diet</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Foraging Territory (km)</td>
<td>5.0</td>
<td>3.0-7.0 Km</td>
</tr>
<tr>
<td>Behavioral Modification Factors in the Exposure Assessment</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Temporal Migration Correction Factor (1-%Annual Temporal Displacement)</td>
<td>1</td>
<td>Resident</td>
</tr>
<tr>
<td>Temporal Hibernation/Asetivation Correction Factor (1-%Temporal Hib/Aset.)</td>
<td>1</td>
<td>Active Year Round</td>
</tr>
<tr>
<td>Habitat Use Factor (Temporal use factor %)</td>
<td>1</td>
<td>Riparian habitats preferred</td>
</tr>
<tr>
<td>Temporal Reproductive Period (Mating/Gestation/Birth)</td>
<td>February - May</td>
<td>February - May</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exposure Parameters</th>
<th>Proximal Range Reported for Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Little Brown Bat</td>
</tr>
<tr>
<td>Genus</td>
<td>Myotis</td>
</tr>
<tr>
<td>Species</td>
<td>lucifugus</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>Female, Male</td>
</tr>
<tr>
<td>Age (Adult/Juv.)</td>
<td>Adult, Breeding</td>
</tr>
<tr>
<td>Male/Female Body Weight (kg)</td>
<td>0.0071, 0.0069</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day wet wt.)</td>
<td>0.0025, 0.0025</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day dry wt.)</td>
<td>- , -</td>
</tr>
<tr>
<td>General Dietary Characterization</td>
<td>Insectivore</td>
</tr>
<tr>
<td>Percent Diet Composition (% wet wt.)</td>
<td>0.0%</td>
</tr>
<tr>
<td>Fish (Total Component)</td>
<td>0.0%</td>
</tr>
<tr>
<td>Aquatic Invertebrates (Total Component)</td>
<td>100.0%</td>
</tr>
<tr>
<td>Non-river Related Diet Sources</td>
<td>0.0%</td>
</tr>
<tr>
<td>Water Consumption Rate (L/day)</td>
<td>0.0011, 0.0011</td>
</tr>
<tr>
<td>Percent Incidental Sediment Ingestion in Diet</td>
<td>0.00% , 0.00%</td>
</tr>
<tr>
<td>Home Range (km)</td>
<td>0.1, >0.1</td>
</tr>
<tr>
<td>Behavioral Modification Factors in the Exposure Assessment</td>
<td>Notes</td>
</tr>
<tr>
<td>Temporal Migration Correction Factor (1-%Annual Temporal Displacement)</td>
<td>1</td>
</tr>
<tr>
<td>Temporal Hibernation/Asetivation Correction Factor (1-%Temporal Hib/Aset.)</td>
<td>1</td>
</tr>
<tr>
<td>Habitat Use Factor (Temporal use factor %)</td>
<td>1</td>
</tr>
<tr>
<td>Temporal Reproductive Period (Mating/Gestation/Birth)</td>
<td>April to July</td>
</tr>
</tbody>
</table>

1 [Bopp (1999)]
2 [Fenton and Barclay (1980)]
3 Dry weight basis of ingestion not required;
4 [Anthony and Kunz (1977), Belwood and Fenton (1976), Buchler (1976);
5 Farrell and Wood (1968c In USEPA, December 1993); 6 No contact
with sediments; 7 Bulcher (1976); 8 Davis and Hitchcock (1965); 9, 10 Belwood and Fenton (1976), Wimbatt (1945).
TABLE 3-23

EXPOSURE PARAMETERS FOR RACCOON (Procyon lotor)

<table>
<thead>
<tr>
<th>Exposure Parameters</th>
<th>Proximal Range Reported for Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Racoon</td>
</tr>
<tr>
<td>Genus</td>
<td>Procyon</td>
</tr>
<tr>
<td>Species</td>
<td>lotor</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>Female</td>
</tr>
<tr>
<td>Age (Adult/Juv.)</td>
<td>Adult, Breeding</td>
</tr>
<tr>
<td>Male/Female Body Weight (kg)</td>
<td>6.400</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day wet wt.)</td>
<td>0.99</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day dry wt.)</td>
<td>0.316</td>
</tr>
<tr>
<td>General Dietary Characterization</td>
<td>Opportunistic Omnivore</td>
</tr>
<tr>
<td>Percent Diet Composition (% wet wt.)</td>
<td>3.0%</td>
</tr>
<tr>
<td>Fish (Total Component)</td>
<td>37.0%</td>
</tr>
<tr>
<td>Aquatic Invertebrates (Total Component)</td>
<td>60.0%</td>
</tr>
<tr>
<td>Non-river Related Diet Sources</td>
<td>0.526</td>
</tr>
<tr>
<td>Water Consumption Rate (L/day)</td>
<td>9.4%</td>
</tr>
<tr>
<td>Percent Incidental Sediment Ingestion in Diet</td>
<td>48.0</td>
</tr>
<tr>
<td>Home Range (km)</td>
<td>18.2-814 M</td>
</tr>
<tr>
<td>Behavioral Modification Factors in the Exposure Assessment</td>
<td>1</td>
</tr>
<tr>
<td>Temporal Migration Correction Factor (1-%Annual Temporal Displacement)</td>
<td>1</td>
</tr>
<tr>
<td>Temporal Hibernation/Asertivation Correction Factor (1-%Temporal Hib/Aset.)</td>
<td>1</td>
</tr>
<tr>
<td>Habitat Use Factor (Temporal use factor %)</td>
<td>1</td>
</tr>
<tr>
<td>Temporal Reproductive Period (Mating/Gestation/Birth)</td>
<td>January to May</td>
</tr>
</tbody>
</table>

1 Bopp (1999), Sanderson (1984), USEPA (December 1993); 2, 3 Estimated from NFMR and ME in USEPA (December 1993) and Nagy (1987); 4 Tabatabai and Kennedy (1988), Newell et al. (1987), Llewellyn and Uhler (1952), Hamilton (1951); 5 Farrell and Wood (1968c In USEPA, 1993a); 6 Beyer et al. (1994); 7 Urban (1970), Stuewer (1943); 8 USEPA (December, 1993), Hamilton (1951); 9, 10 USEPA (December, 1993), Stuewer (1943).
TABLE 3-24
EXPOSURE PARAMETERS FOR MINK (*Mustela vison*)

<table>
<thead>
<tr>
<th>Exposure Parameters</th>
<th>Proximal Range Reported for Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Mink</td>
</tr>
<tr>
<td>Genus</td>
<td>Mustela</td>
</tr>
<tr>
<td>Species</td>
<td>vision</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>Female, Male</td>
</tr>
<tr>
<td>Age (Adult/Juv.)</td>
<td>Adult, Breeding</td>
</tr>
<tr>
<td>Male/Female Body Weight (kg)</td>
<td>0.83, 1.02</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day wet wt.)</td>
<td>0.132, 0.132</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day dry wt.)</td>
<td>0.059, 0.069</td>
</tr>
<tr>
<td>General Dietary Characterization</td>
<td>Opportunistic Piscivore/Carnivore</td>
</tr>
<tr>
<td>Percent Diet Composition (% wet wt.)</td>
<td>34.0%</td>
</tr>
<tr>
<td>Fish (Total Component)</td>
<td>16.5%</td>
</tr>
<tr>
<td>Aquatic Invertebrates (Total Component)</td>
<td>49.5%</td>
</tr>
<tr>
<td>Non-river Related Diet Sources</td>
<td>0.084, 0.101</td>
</tr>
<tr>
<td>Water Consumption Rate (L/day)</td>
<td>1.0%</td>
</tr>
<tr>
<td>Home Range (km)</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Behavioral Modification Factors in the Exposure Assessment
- **Temporal Migration Correction Factor (1-%Annual Temporal Displacement)**: 1, Resident
- **Temporal Hibernation/Asetivation Correction Factor (1-%Temporal Hib/Aset.)**: 1, Active Year Round
- **Habitat Use Factor (Temporal use factor %)**: 1, Riparian habitats preferred
- **Temporal Reproductive Period (Mating/Gestation/Birth)**: March to June

1 Mitchell (1961); J. Bopp (1999); 2 Bleavins and Aulerich (1981); 3 Estimated from Nagy (1987) and USEPA (December, 1993); 4 Hamilton (1951), Hamilton (1940), Hamilton (1936); 5 Farrell and Wood (1968c In USEPA, December 1993); 6 Best Professional Judgement - based upon observations in Hamilton (1940); 7 Gerell (1970), Mitchell (1961); 8 Allen (1986).
TABLE 3-25
EXPOSURE PARAMETERS FOR RIVER OTTER (*Lutra canadensis*)

<table>
<thead>
<tr>
<th>Exposure Parameters</th>
<th>Proximal Range Reported for Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>River Otter</td>
</tr>
<tr>
<td>Genus</td>
<td>Lutra</td>
</tr>
<tr>
<td>Species</td>
<td>canadensis</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>-</td>
</tr>
<tr>
<td>Age (Adult/Juv.)</td>
<td>-</td>
</tr>
<tr>
<td>Male/Female Body Weight (kg)</td>
<td>7.32 10.9</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day wet wt.)</td>
<td>0.900 0.900</td>
</tr>
<tr>
<td>Total Daily Dietary Ingestion (kg/day dry wt.)</td>
<td>0.353 0.491</td>
</tr>
<tr>
<td>General Dietary Characterization</td>
<td>Opportunistic Piscivore</td>
</tr>
<tr>
<td>Percent Diet Composition (% wet wt.)</td>
<td>100%</td>
</tr>
<tr>
<td>Fish (Total Component)</td>
<td>100%</td>
</tr>
<tr>
<td>Aquatic Invertebrates (Total Component)</td>
<td>0.0%</td>
</tr>
<tr>
<td>Non-river Related Diet Sources</td>
<td>0.0%</td>
</tr>
<tr>
<td>Water Consumption Rate (L/day)</td>
<td>0.594 0.853</td>
</tr>
<tr>
<td>Percent Incidental Sediment Ingestion in Diet</td>
<td>1.0%</td>
</tr>
<tr>
<td>Home Range (km)</td>
<td>10.0</td>
</tr>
<tr>
<td>Behavioral Modification Factors in the Exposure Assessment</td>
<td>-</td>
</tr>
<tr>
<td>Temporal Migration Correction Factor (1-%Annual Temporal Displacement)</td>
<td>1</td>
</tr>
<tr>
<td>Temporal Hibernation/Awakening Correction Factor (1-%Temporal Hib/Asw.)</td>
<td>1</td>
</tr>
<tr>
<td>Habitat Use Factor (Temporal use factor %)</td>
<td>1</td>
</tr>
<tr>
<td>Temporal Reproductive Period (Mating/Gestation/Birth)</td>
<td>March to March 10</td>
</tr>
</tbody>
</table>

1 Spinola et al., (undated), Bopp (1999), USEPA (December 1993); 2, 3 Harris (1968 In USEPA, December 1993), Penrod (1999); 4 Spinola (1999), Newell et al. (1987), Hamilton (1961); 5 Farrell and Wood (1968c In USEPA, December 1993); 6 Best Professional Judgement - based upon Liers (1951) In USEPA, 1993; 7 Spinola et al. (undated); 8 USEPA (December 1993a); 9 Hamilton and Eadie (1964); 10 Period between mating and birth extends for one full year due to delayed implantation of zygote.
<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water Expected</th>
<th>Benthic Invertebrate Expected</th>
<th>Total Average Daily Dose Expected (mg/Kg/day)</th>
<th>Total Average Predicted Egg Conc (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>1.54E-05</td>
<td>1.09E+01</td>
<td>1.09E+01</td>
<td>2.54E+01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>2.74E-05</td>
<td>1.91E+01</td>
<td>1.91E+01</td>
<td>4.45E+01</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.92E-05</td>
<td>4.54E+00</td>
<td>4.54E+00</td>
<td>1.06E+01</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>1.48E-05</td>
<td>6.33E-01</td>
<td>6.33E-01</td>
<td>1.48E+00</td>
</tr>
<tr>
<td>137.2</td>
<td>1.48E-05</td>
<td>1.25E+00</td>
<td>1.25E+00</td>
<td>2.91E+00</td>
</tr>
<tr>
<td>122.4</td>
<td>6.79E-06</td>
<td>6.89E-01</td>
<td>6.89E-01</td>
<td>1.61E+00</td>
</tr>
<tr>
<td>113.8</td>
<td>6.79E-06</td>
<td>7.09E-01</td>
<td>7.09E-01</td>
<td>1.65E+00</td>
</tr>
<tr>
<td>100</td>
<td>6.79E-06</td>
<td>3.26E-01</td>
<td>3.26E-01</td>
<td>7.60E-01</td>
</tr>
<tr>
<td>88.9</td>
<td>4.47E-06</td>
<td>1.63E-01</td>
<td>1.63E-01</td>
<td>3.81E-01</td>
</tr>
<tr>
<td>58.7</td>
<td>4.47E-06</td>
<td>5.03E-01</td>
<td>5.03E-01</td>
<td>1.17E+00</td>
</tr>
<tr>
<td>47.3</td>
<td>4.47E-06</td>
<td>5.71E-01</td>
<td>5.71E-01</td>
<td>1.33E+00</td>
</tr>
<tr>
<td>25.8</td>
<td>4.47E-06</td>
<td>1.69E-01</td>
<td>1.69E-01</td>
<td>3.95E-01</td>
</tr>
</tbody>
</table>
TABLE 3-27: SUMMARY OF ADD_{95\%UCL} AND EGG CONCENTRATIONS FOR FEMALE TREE SWALLOW BASED ON 1993 DATA USING SUM OF TRI+ CONGENERS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water 95% UCL</th>
<th>Benthic Invertebrate 95% UCL</th>
<th>Total Average Daily Dose_{95%UCL} (mg/Kg/day)</th>
<th>Predicted 95% UCL Egg Conc (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>4.88E-05</td>
<td>1.90E+01</td>
<td>1.90E+01</td>
<td>4.44E+01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>8.69E-05</td>
<td>8.93E+01</td>
<td>8.93E+01</td>
<td>2.08E+02</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>4.11E-05</td>
<td>7.72E+00</td>
<td>7.72E+00</td>
<td>1.80E+01</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>1.61E-04</td>
<td>1.55E+00</td>
<td>1.55E+00</td>
<td>3.62E+00</td>
</tr>
<tr>
<td>137.2</td>
<td>1.61E-04</td>
<td>5.06E+00</td>
<td>5.06E+00</td>
<td>1.18E+01</td>
</tr>
<tr>
<td>122.4</td>
<td>8.70E-05</td>
<td>1.73E+00</td>
<td>1.73E+00</td>
<td>4.04E+00</td>
</tr>
<tr>
<td>113.8</td>
<td>8.70E-05</td>
<td>2.75E+00</td>
<td>2.75E+00</td>
<td>6.41E+00</td>
</tr>
<tr>
<td>100</td>
<td>8.70E-05</td>
<td>2.23E+00</td>
<td>2.23E+00</td>
<td>5.20E+00</td>
</tr>
<tr>
<td>88.9</td>
<td>1.99E-05</td>
<td>2.90E-01</td>
<td>2.90E-01</td>
<td>6.77E-01</td>
</tr>
<tr>
<td>58.7</td>
<td>1.99E-05</td>
<td>4.60E+00</td>
<td>4.60E+00</td>
<td>1.07E+01</td>
</tr>
<tr>
<td>47.3</td>
<td>1.99E-05</td>
<td>4.19E+00</td>
<td>4.19E+00</td>
<td>9.78E+00</td>
</tr>
<tr>
<td>25.8</td>
<td>1.99E-05</td>
<td>2.87E-01</td>
<td>2.87E-01</td>
<td>6.69E-01</td>
</tr>
<tr>
<td>Year</td>
<td>Total Average Dietary Dose (mg/Kg/day)</td>
<td>Average Egg Concentration (mg/Kg)</td>
<td>TRI+ MCA</td>
<td>Other MCA</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>----------------------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1993</td>
<td>1.27E+01 7.04E+00 3.09E+00 2.96E+01 1.64E+01 7.22E+00</td>
<td>1994 1.19E+01 6.70E+00 2.92E+00 2.78E+01 1.56E+01 6.81E+00</td>
<td>1995 1.11E+01 6.30E+00 2.68E+00 2.60E+01 1.47E+01 6.25E+00</td>
<td>1996 1.00E+01 5.62E+00 2.27E+00 2.34E+01 1.31E+01 5.29E+00</td>
</tr>
</tbody>
</table>
TABLE 3-29: SUMMARY OF ADD_{95% UCL} AND EGG CONCENTRATIONS FOR FEMALE TREE SWALLOW BASED ON TRI+ CONGENERS FOR PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Total 95% UCL Dietary Dose (mg/Kg/day)</th>
<th>95% UCL Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>1.86E+01</td>
<td>1.11E+01</td>
</tr>
<tr>
<td>1994</td>
<td>1.76E+01</td>
<td>1.06E+01</td>
</tr>
<tr>
<td>1995</td>
<td>1.61E+01</td>
<td>9.97E+00</td>
</tr>
<tr>
<td>1996</td>
<td>1.47E+01</td>
<td>8.88E+00</td>
</tr>
<tr>
<td>1997</td>
<td>1.35E+01</td>
<td>8.15E+00</td>
</tr>
<tr>
<td>1998</td>
<td>1.21E+01</td>
<td>7.33E+00</td>
</tr>
<tr>
<td>1999</td>
<td>1.13E+01</td>
<td>6.70E+00</td>
</tr>
<tr>
<td>2000</td>
<td>1.01E+01</td>
<td>6.28E+00</td>
</tr>
<tr>
<td>2001</td>
<td>9.68E+00</td>
<td>6.15E+00</td>
</tr>
<tr>
<td>2002</td>
<td>9.22E+00</td>
<td>5.88E+00</td>
</tr>
<tr>
<td>2003</td>
<td>8.48E+00</td>
<td>5.55E+00</td>
</tr>
<tr>
<td>2004</td>
<td>7.78E+00</td>
<td>5.07E+00</td>
</tr>
<tr>
<td>2005</td>
<td>7.29E+00</td>
<td>4.71E+00</td>
</tr>
<tr>
<td>2006</td>
<td>6.96E+00</td>
<td>4.47E+00</td>
</tr>
<tr>
<td>2007</td>
<td>6.44E+00</td>
<td>4.18E+00</td>
</tr>
<tr>
<td>2008</td>
<td>6.07E+00</td>
<td>3.91E+00</td>
</tr>
<tr>
<td>2009</td>
<td>5.73E+00</td>
<td>3.75E+00</td>
</tr>
<tr>
<td>2010</td>
<td>5.32E+00</td>
<td>3.52E+00</td>
</tr>
<tr>
<td>2011</td>
<td>4.76E+00</td>
<td>3.25E+00</td>
</tr>
<tr>
<td>2012</td>
<td>4.44E+00</td>
<td>3.08E+00</td>
</tr>
<tr>
<td>2013</td>
<td>4.22E+00</td>
<td>2.93E+00</td>
</tr>
<tr>
<td>2014</td>
<td>3.89E+00</td>
<td>2.76E+00</td>
</tr>
<tr>
<td>2015</td>
<td>3.67E+00</td>
<td>2.66E+00</td>
</tr>
<tr>
<td>2016</td>
<td>3.38E+00</td>
<td>2.52E+00</td>
</tr>
<tr>
<td>2017</td>
<td>3.21E+00</td>
<td>2.36E+00</td>
</tr>
<tr>
<td>2018</td>
<td>3.20E+00</td>
<td>2.30E+00</td>
</tr>
</tbody>
</table>
TABLE 3-30: SUMMARY OF ADD\textsubscript{Expected} AND EGG CONCENTRATIONS FOR FEMALE MALLARD BASED ON 1993 DATA USING SUM OF TRI+ CONGENERS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water Expected</th>
<th>Macrophyte Expected</th>
<th>Benthic Invertebrate Expected</th>
<th>Sediment Expected</th>
<th>Total Average Daily Dose\textsubscript{Expected} (mg/Kg/day)</th>
<th>Total Average Concentration in Eggs (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>4.24E-06</td>
<td>1.43E-01</td>
<td>1.95E+00</td>
<td>1.37E-02</td>
<td>2.10E+00</td>
<td>4.24E+01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>7.53E-06</td>
<td>2.31E-01</td>
<td>3.63E+00</td>
<td>3.57E-02</td>
<td>3.90E+00</td>
<td>7.91E+01</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>5.26E-06</td>
<td>2.25E-01</td>
<td>8.66E-01</td>
<td>3.21E-03</td>
<td>1.09E+00</td>
<td>1.89E+01</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>4.07E-06</td>
<td>1.28E-01</td>
<td>1.21E-01</td>
<td>9.90E-04</td>
<td>2.50E-01</td>
<td>2.63E+00</td>
</tr>
<tr>
<td>137.2</td>
<td>4.07E-06</td>
<td>1.28E-01</td>
<td>2.38E-01</td>
<td>1.75E-03</td>
<td>3.67E-01</td>
<td>5.17E+00</td>
</tr>
<tr>
<td>122.4</td>
<td>1.86E-06</td>
<td>7.60E-02</td>
<td>1.11E-01</td>
<td>1.11E-03</td>
<td>1.88E-01</td>
<td>2.41E+00</td>
</tr>
<tr>
<td>113.8</td>
<td>1.86E-06</td>
<td>7.60E-02</td>
<td>9.52E-02</td>
<td>1.16E-03</td>
<td>1.72E-01</td>
<td>2.07E+00</td>
</tr>
<tr>
<td>100</td>
<td>1.86E-06</td>
<td>7.60E-02</td>
<td>5.23E-02</td>
<td>4.59E-04</td>
<td>1.29E-01</td>
<td>1.14E+00</td>
</tr>
<tr>
<td>88.9</td>
<td>1.23E-06</td>
<td>5.56E-02</td>
<td>2.63E-02</td>
<td>8.98E-04</td>
<td>8.28E-02</td>
<td>5.72E-01</td>
</tr>
<tr>
<td>58.7</td>
<td>1.23E-06</td>
<td>5.56E-02</td>
<td>6.76E-02</td>
<td>2.90E-04</td>
<td>1.23E-01</td>
<td>1.47E+00</td>
</tr>
<tr>
<td>47.3</td>
<td>1.23E-06</td>
<td>5.56E-02</td>
<td>9.18E-02</td>
<td>1.77E-03</td>
<td>1.49E-01</td>
<td>2.00E+00</td>
</tr>
<tr>
<td>25.8</td>
<td>1.23E-06</td>
<td>5.56E-02</td>
<td>2.72E-02</td>
<td>6.66E-04</td>
<td>8.35E-02</td>
<td>5.92E-01</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water 95% UCL</td>
<td>Macrophyte 95% UCL</td>
<td>Benthic Invertebrate 95% UCL</td>
<td>Sediment 95% UCL</td>
<td>Total Upper Bound Daily Dose 95%UCL (mg/Kg/day)</td>
<td>Total Concentration in Eggs (95% UCL) (mg/Kg)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>1.34E-05</td>
<td>5.65E-01</td>
<td>3.06E+00</td>
<td>2.00E-02</td>
<td>3.64E+00</td>
<td>6.66E+01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>2.39E-05</td>
<td>6.19E-01</td>
<td>6.32E+00</td>
<td>6.23E-02</td>
<td>7.01E+00</td>
<td>1.38E+02</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.13E-05</td>
<td>4.68E-01</td>
<td>1.51E+00</td>
<td>5.39E-03</td>
<td>1.98E+00</td>
<td>3.28E+01</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>4.43E-05</td>
<td>3.83E-01</td>
<td>2.10E-01</td>
<td>1.08E-03</td>
<td>5.94E-01</td>
<td>4.57E+00</td>
</tr>
<tr>
<td>137.2</td>
<td>4.43E-05</td>
<td>3.83E-01</td>
<td>4.14E-01</td>
<td>3.53E-03</td>
<td>8.00E-01</td>
<td>9.01E+00</td>
</tr>
<tr>
<td>122.4</td>
<td>2.39E-05</td>
<td>1.17E+00</td>
<td>2.78E-01</td>
<td>1.23E-03</td>
<td>1.45E+00</td>
<td>6.06E+00</td>
</tr>
<tr>
<td>113.8</td>
<td>2.39E-05</td>
<td>1.17E+00</td>
<td>1.66E-01</td>
<td>1.92E-03</td>
<td>1.34E+00</td>
<td>3.61E+00</td>
</tr>
<tr>
<td>100</td>
<td>2.39E-05</td>
<td>1.17E+00</td>
<td>3.58E-01</td>
<td>9.91E-03</td>
<td>1.54E+00</td>
<td>7.79E+00</td>
</tr>
<tr>
<td>88.9</td>
<td>5.46E-06</td>
<td>1.08E+00</td>
<td>4.67E-02</td>
<td>2.63E-03</td>
<td>1.13E+00</td>
<td>1.02E+00</td>
</tr>
<tr>
<td>58.7</td>
<td>5.46E-06</td>
<td>1.08E+00</td>
<td>1.18E-01</td>
<td>3.22E-03</td>
<td>1.20E+00</td>
<td>2.56E+00</td>
</tr>
<tr>
<td>47.3</td>
<td>5.46E-06</td>
<td>1.08E+00</td>
<td>6.74E-01</td>
<td>6.91E-03</td>
<td>1.76E+00</td>
<td>1.47E+01</td>
</tr>
<tr>
<td>25.8</td>
<td>5.46E-06</td>
<td>1.08E+00</td>
<td>4.61E-02</td>
<td>1.80E-03</td>
<td>1.13E+00</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>Year</td>
<td>Average Dietary Dose (mg/Kg/day)</td>
<td>Average Egg Concentration (mg/Kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
<td>154</td>
<td>189</td>
<td>168</td>
<td>154</td>
</tr>
<tr>
<td>1993</td>
<td>2.36E+00</td>
<td>1.47E+00</td>
<td>5.59E-01</td>
<td>4.45E+01</td>
<td>2.46E+01</td>
<td>1.08E+01</td>
</tr>
<tr>
<td>1994</td>
<td>2.27E+00</td>
<td>1.46E+00</td>
<td>5.33E-01</td>
<td>4.17E+01</td>
<td>2.34E+01</td>
<td>1.02E+01</td>
</tr>
<tr>
<td>1995</td>
<td>2.17E+00</td>
<td>1.38E+00</td>
<td>5.30E-01</td>
<td>3.90E+01</td>
<td>2.21E+01</td>
<td>9.37E+00</td>
</tr>
<tr>
<td>1996</td>
<td>1.78E+00</td>
<td>1.08E+00</td>
<td>4.00E-01</td>
<td>3.52E+01</td>
<td>1.97E+01</td>
<td>7.93E+00</td>
</tr>
<tr>
<td>1997</td>
<td>1.66E+00</td>
<td>1.10E+00</td>
<td>3.74E-01</td>
<td>3.23E+01</td>
<td>1.80E+01</td>
<td>6.91E+00</td>
</tr>
<tr>
<td>1998</td>
<td>1.42E+00</td>
<td>8.43E-01</td>
<td>3.16E-01</td>
<td>2.96E+01</td>
<td>1.62E+01</td>
<td>6.02E+00</td>
</tr>
<tr>
<td>1999</td>
<td>1.31E+00</td>
<td>8.03E-01</td>
<td>2.81E-01</td>
<td>2.68E+01</td>
<td>1.47E+01</td>
<td>5.25E+00</td>
</tr>
<tr>
<td>2000</td>
<td>1.19E+00</td>
<td>7.30E-01</td>
<td>2.55E-01</td>
<td>2.46E+01</td>
<td>1.39E+01</td>
<td>4.72E+00</td>
</tr>
<tr>
<td>2001</td>
<td>1.15E+00</td>
<td>7.80E-01</td>
<td>2.33E-01</td>
<td>2.33E+01</td>
<td>1.36E+01</td>
<td>4.45E+00</td>
</tr>
<tr>
<td>2002</td>
<td>1.07E+00</td>
<td>7.10E-01</td>
<td>2.15E-01</td>
<td>2.17E+01</td>
<td>1.29E+01</td>
<td>4.22E+00</td>
</tr>
<tr>
<td>2003</td>
<td>9.90E-01</td>
<td>6.69E-01</td>
<td>2.17E-01</td>
<td>2.03E+01</td>
<td>1.22E+01</td>
<td>3.94E+00</td>
</tr>
<tr>
<td>2004</td>
<td>9.18E-01</td>
<td>6.39E-01</td>
<td>1.93E-01</td>
<td>1.89E+01</td>
<td>1.12E+01</td>
<td>3.57E+00</td>
</tr>
<tr>
<td>2005</td>
<td>8.49E-01</td>
<td>5.47E-01</td>
<td>1.81E-01</td>
<td>1.74E+01</td>
<td>1.04E+01</td>
<td>3.25E+00</td>
</tr>
<tr>
<td>2006</td>
<td>8.27E-01</td>
<td>5.51E-01</td>
<td>1.61E-01</td>
<td>1.67E+01</td>
<td>9.84E+00</td>
<td>3.00E+00</td>
</tr>
<tr>
<td>2007</td>
<td>7.61E-01</td>
<td>4.94E-01</td>
<td>1.58E-01</td>
<td>1.56E+01</td>
<td>9.23E+00</td>
<td>2.74E+00</td>
</tr>
<tr>
<td>2008</td>
<td>7.19E-01</td>
<td>4.47E-01</td>
<td>1.33E-01</td>
<td>1.48E+01</td>
<td>8.64E+00</td>
<td>2.53E+00</td>
</tr>
<tr>
<td>2009</td>
<td>7.00E-01</td>
<td>4.65E-01</td>
<td>1.33E-01</td>
<td>1.40E+01</td>
<td>8.28E+00</td>
<td>2.45E+00</td>
</tr>
<tr>
<td>2010</td>
<td>6.25E-01</td>
<td>4.21E-01</td>
<td>1.34E-01</td>
<td>1.27E+01</td>
<td>7.73E+00</td>
<td>2.30E+00</td>
</tr>
<tr>
<td>2011</td>
<td>5.56E-01</td>
<td>3.67E-01</td>
<td>1.17E-01</td>
<td>1.15E+01</td>
<td>7.13E+00</td>
<td>2.11E+00</td>
</tr>
<tr>
<td>2012</td>
<td>5.35E-01</td>
<td>3.81E-01</td>
<td>1.27E-01</td>
<td>1.07E+01</td>
<td>6.80E+00</td>
<td>2.00E+00</td>
</tr>
<tr>
<td>2013</td>
<td>4.85E-01</td>
<td>3.51E-01</td>
<td>1.15E-01</td>
<td>9.90E+00</td>
<td>6.47E+00</td>
<td>1.87E+00</td>
</tr>
<tr>
<td>2014</td>
<td>4.56E-01</td>
<td>3.28E-01</td>
<td>1.10E-01</td>
<td>9.23E+00</td>
<td>6.06E+00</td>
<td>1.71E+00</td>
</tr>
<tr>
<td>2015</td>
<td>4.23E-01</td>
<td>3.12E-01</td>
<td>9.79E-02</td>
<td>8.63E+00</td>
<td>5.85E+00</td>
<td>1.64E+00</td>
</tr>
<tr>
<td>2016</td>
<td>4.11E-01</td>
<td>3.10E-01</td>
<td>1.01E-01</td>
<td>8.19E+00</td>
<td>5.56E+00</td>
<td>1.51E+00</td>
</tr>
<tr>
<td>2017</td>
<td>3.68E-01</td>
<td>2.65E-01</td>
<td>7.78E-02</td>
<td>7.58E+00</td>
<td>5.21E+00</td>
<td>1.35E+00</td>
</tr>
<tr>
<td>2018</td>
<td>3.78E-01</td>
<td>2.97E-01</td>
<td>9.80E-02</td>
<td>7.50E+00</td>
<td>5.08E+00</td>
<td>1.31E+00</td>
</tr>
</tbody>
</table>

TAMS/MCA
<table>
<thead>
<tr>
<th>Year</th>
<th>95% UCL Dietary Dose (mg/Kg/day)</th>
<th>95% UCL Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>3.32E+00</td>
<td>2.13E+00</td>
</tr>
<tr>
<td>1994</td>
<td>3.20E+00</td>
<td>2.10E+00</td>
</tr>
<tr>
<td>1995</td>
<td>2.98E+00</td>
<td>1.97E+00</td>
</tr>
<tr>
<td>1996</td>
<td>2.53E+00</td>
<td>1.60E+00</td>
</tr>
<tr>
<td>1997</td>
<td>2.34E+00</td>
<td>1.59E+00</td>
</tr>
<tr>
<td>1998</td>
<td>2.01E+00</td>
<td>1.28E+00</td>
</tr>
<tr>
<td>1999</td>
<td>1.90E+00</td>
<td>1.21E+00</td>
</tr>
<tr>
<td>2000</td>
<td>1.69E+00</td>
<td>1.10E+00</td>
</tr>
<tr>
<td>2001</td>
<td>1.64E+00</td>
<td>1.15E+00</td>
</tr>
<tr>
<td>2002</td>
<td>1.55E+00</td>
<td>1.06E+00</td>
</tr>
<tr>
<td>2003</td>
<td>1.42E+00</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>2004</td>
<td>1.30E+00</td>
<td>9.40E-01</td>
</tr>
<tr>
<td>2005</td>
<td>1.22E+00</td>
<td>8.28E-01</td>
</tr>
<tr>
<td>2006</td>
<td>1.18E+00</td>
<td>8.19E-01</td>
</tr>
<tr>
<td>2007</td>
<td>1.08E+00</td>
<td>7.44E-01</td>
</tr>
<tr>
<td>2008</td>
<td>1.01E+00</td>
<td>6.80E-01</td>
</tr>
<tr>
<td>2009</td>
<td>9.79E-01</td>
<td>6.89E-01</td>
</tr>
<tr>
<td>2010</td>
<td>8.98E-01</td>
<td>6.32E-01</td>
</tr>
<tr>
<td>2011</td>
<td>7.94E-01</td>
<td>5.62E-01</td>
</tr>
<tr>
<td>2012</td>
<td>7.59E-01</td>
<td>5.65E-01</td>
</tr>
<tr>
<td>2013</td>
<td>7.10E-01</td>
<td>5.25E-01</td>
</tr>
<tr>
<td>2014</td>
<td>6.57E-01</td>
<td>4.94E-01</td>
</tr>
<tr>
<td>2015</td>
<td>6.18E-01</td>
<td>4.72E-01</td>
</tr>
<tr>
<td>2016</td>
<td>5.78E-01</td>
<td>4.61E-01</td>
</tr>
<tr>
<td>2017</td>
<td>5.36E-01</td>
<td>4.06E-01</td>
</tr>
<tr>
<td>2018</td>
<td>5.48E-01</td>
<td>4.35E-01</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water Expected</td>
<td>Forage Fish Expected</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>8.01E-06</td>
<td>6.37E+00</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.42E-05</td>
<td>2.15E+00</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>9.95E-06</td>
<td>5.05E-01</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>7.70E-06</td>
<td>5.87E-01</td>
</tr>
<tr>
<td>137.2</td>
<td>7.70E-06</td>
<td>1.19E+00</td>
</tr>
<tr>
<td>122.4</td>
<td>3.53E-06</td>
<td>4.53E-01</td>
</tr>
<tr>
<td>113.8</td>
<td>3.53E-06</td>
<td>4.75E-01</td>
</tr>
<tr>
<td>100</td>
<td>3.53E-06</td>
<td>2.06E-01</td>
</tr>
<tr>
<td>88.9</td>
<td>2.32E-06</td>
<td>4.10E-01</td>
</tr>
<tr>
<td>58.7</td>
<td>2.32E-06</td>
<td>4.47E-01</td>
</tr>
<tr>
<td>47.3</td>
<td>2.32E-06</td>
<td>3.97E-01</td>
</tr>
<tr>
<td>25.8</td>
<td>2.32E-06</td>
<td>2.99E-01</td>
</tr>
</tbody>
</table>

TABLE 3-34: SUMMARY OF ADD$_{Expected}$ AND EGG CONCENTRATIONS FOR FEMALE BELTED KINGFISHER BASED ON 1993 DATA USING SUM OF TRI+ CONGENERS
<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water 95% UCL</th>
<th>Fish 95% UCL</th>
<th>Benthic Invertebrate 95% UCL</th>
<th>Sediment 95% UCL</th>
<th>Total Upper Bound Daily Dose of Eggs (95 % UCL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>2.54E-05</td>
<td>1.30E+01</td>
<td>1.91E+00</td>
<td>1.98E-02</td>
<td>1.49E+01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>4.52E-05</td>
<td>3.08E+00</td>
<td>8.95E+00</td>
<td>6.16E-02</td>
<td>1.21E+01</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>2.13E-05</td>
<td>7.33E-01</td>
<td>7.74E-01</td>
<td>5.32E-03</td>
<td>1.51E+00</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>8.39E-05</td>
<td>7.05E-01</td>
<td>1.56E-01</td>
<td>1.07E-03</td>
<td>8.62E-01</td>
</tr>
<tr>
<td>137.2</td>
<td>8.39E-05</td>
<td>2.58E+00</td>
<td>5.07E-01</td>
<td>3.49E-03</td>
<td>3.09E+00</td>
</tr>
<tr>
<td>122.4</td>
<td>4.52E-05</td>
<td>7.33E-01</td>
<td>1.74E-01</td>
<td>1.22E-03</td>
<td>9.08E-01</td>
</tr>
<tr>
<td>113.8</td>
<td>4.52E-05</td>
<td>4.93E-01</td>
<td>2.75E-01</td>
<td>1.89E-03</td>
<td>7.70E-01</td>
</tr>
<tr>
<td>100</td>
<td>4.52E-05</td>
<td>3.56E-01</td>
<td>2.23E-01</td>
<td>9.79E-03</td>
<td>5.89E-01</td>
</tr>
<tr>
<td>88.9</td>
<td>1.03E-05</td>
<td>5.62E-01</td>
<td>2.91E-02</td>
<td>2.60E-03</td>
<td>5.94E-01</td>
</tr>
<tr>
<td>58.7</td>
<td>1.03E-05</td>
<td>5.06E-01</td>
<td>4.62E-01</td>
<td>3.17E-03</td>
<td>9.71E-01</td>
</tr>
<tr>
<td>47.3</td>
<td>1.03E-05</td>
<td>5.27E-01</td>
<td>4.20E-01</td>
<td>6.82E-03</td>
<td>9.54E-01</td>
</tr>
<tr>
<td>25.8</td>
<td>1.03E-05</td>
<td>3.59E-01</td>
<td>2.88E-02</td>
<td>1.78E-03</td>
<td>3.90E-01</td>
</tr>
</tbody>
</table>

TABLE 3-35: SUMMARY OF ADD_{95\%UCL} AND EGG CONCENTRATIONS FOR FEMALE BELTED KINGFISHER BASED ON 1993 DATA USING SUM OF TRI+ CONGENERS

TAMS/MCA
<table>
<thead>
<tr>
<th>Year</th>
<th>Average Dietary Dose (mg/Kg/day)</th>
<th>Average Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>7.92E+00</td>
<td>3.92E+00</td>
</tr>
<tr>
<td>1994</td>
<td>4.33E+00</td>
<td>3.26E+00</td>
</tr>
<tr>
<td>1995</td>
<td>4.01E+00</td>
<td>3.52E+00</td>
</tr>
<tr>
<td>1996</td>
<td>4.02E+00</td>
<td>2.45E+00</td>
</tr>
<tr>
<td>1997</td>
<td>3.12E+00</td>
<td>2.17E+00</td>
</tr>
<tr>
<td>1998</td>
<td>2.72E+00</td>
<td>1.94E+00</td>
</tr>
<tr>
<td>1999</td>
<td>2.36E+00</td>
<td>1.58E+00</td>
</tr>
<tr>
<td>2000</td>
<td>1.98E+00</td>
<td>1.47E+00</td>
</tr>
<tr>
<td>2001</td>
<td>1.92E+00</td>
<td>1.54E+00</td>
</tr>
<tr>
<td>2002</td>
<td>1.79E+00</td>
<td>1.48E+00</td>
</tr>
<tr>
<td>2003</td>
<td>1.71E+00</td>
<td>1.27E+00</td>
</tr>
<tr>
<td>2004</td>
<td>1.52E+00</td>
<td>1.21E+00</td>
</tr>
<tr>
<td>2005</td>
<td>1.45E+00</td>
<td>1.02E+00</td>
</tr>
<tr>
<td>2006</td>
<td>1.29E+00</td>
<td>1.05E+00</td>
</tr>
<tr>
<td>2007</td>
<td>1.27E+00</td>
<td>9.57E-01</td>
</tr>
<tr>
<td>2008</td>
<td>1.16E+00</td>
<td>8.52E-01</td>
</tr>
<tr>
<td>2009</td>
<td>1.11E+00</td>
<td>9.03E-01</td>
</tr>
<tr>
<td>2010</td>
<td>1.07E+00</td>
<td>8.93E-01</td>
</tr>
<tr>
<td>2011</td>
<td>1.00E+00</td>
<td>7.02E-01</td>
</tr>
<tr>
<td>2012</td>
<td>8.84E-01</td>
<td>8.05E-01</td>
</tr>
<tr>
<td>2013</td>
<td>8.43E-01</td>
<td>7.51E-01</td>
</tr>
<tr>
<td>2014</td>
<td>7.98E-01</td>
<td>6.79E-01</td>
</tr>
<tr>
<td>2015</td>
<td>7.28E-01</td>
<td>6.58E-01</td>
</tr>
<tr>
<td>2016</td>
<td>6.93E-01</td>
<td>6.47E-01</td>
</tr>
<tr>
<td>2017</td>
<td>6.52E-01</td>
<td>5.29E-01</td>
</tr>
<tr>
<td>2018</td>
<td>6.14E-01</td>
<td>5.24E-01</td>
</tr>
</tbody>
</table>
TABLE 3-37: SUMMARY OF ADD\textsubscript{95%UCL} AND EGG CONCENTRATIONS FOR FEMALE BELTED KINGFISHER BASED ON TRI+ CONGENERS FOR PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>95% UCL Dietary Dose (mg/Kg/day)</th>
<th>95% UCL Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>1.35E+01</td>
<td>5.24E+00</td>
</tr>
<tr>
<td>1994</td>
<td>6.99E+00</td>
<td>4.16E+00</td>
</tr>
<tr>
<td>1995</td>
<td>6.31E+00</td>
<td>4.71E+00</td>
</tr>
<tr>
<td>1996</td>
<td>6.55E+00</td>
<td>3.15E+00</td>
</tr>
<tr>
<td>1997</td>
<td>5.55E+00</td>
<td>2.77E+00</td>
</tr>
<tr>
<td>1998</td>
<td>4.50E+00</td>
<td>2.54E+00</td>
</tr>
<tr>
<td>1999</td>
<td>4.14E+00</td>
<td>2.04E+00</td>
</tr>
<tr>
<td>2000</td>
<td>3.67E+00</td>
<td>1.90E+00</td>
</tr>
<tr>
<td>2001</td>
<td>3.42E+00</td>
<td>1.99E+00</td>
</tr>
<tr>
<td>2002</td>
<td>3.26E+00</td>
<td>1.90E+00</td>
</tr>
<tr>
<td>2003</td>
<td>3.07E+00</td>
<td>1.64E+00</td>
</tr>
<tr>
<td>2004</td>
<td>2.83E+00</td>
<td>1.54E+00</td>
</tr>
<tr>
<td>2005</td>
<td>2.65E+00</td>
<td>1.32E+00</td>
</tr>
<tr>
<td>2006</td>
<td>2.37E+00</td>
<td>1.35E+00</td>
</tr>
<tr>
<td>2007</td>
<td>2.32E+00</td>
<td>1.24E+00</td>
</tr>
<tr>
<td>2008</td>
<td>2.08E+00</td>
<td>1.10E+00</td>
</tr>
<tr>
<td>2009</td>
<td>2.05E+00</td>
<td>1.17E+00</td>
</tr>
<tr>
<td>2010</td>
<td>1.97E+00</td>
<td>1.14E+00</td>
</tr>
<tr>
<td>2011</td>
<td>1.74E+00</td>
<td>9.17E-01</td>
</tr>
<tr>
<td>2012</td>
<td>1.59E+00</td>
<td>1.05E+00</td>
</tr>
<tr>
<td>2013</td>
<td>1.51E+00</td>
<td>9.57E-01</td>
</tr>
<tr>
<td>2014</td>
<td>1.43E+00</td>
<td>8.81E-01</td>
</tr>
<tr>
<td>2015</td>
<td>1.29E+00</td>
<td>8.38E-01</td>
</tr>
<tr>
<td>2016</td>
<td>1.21E+00</td>
<td>8.62E-01</td>
</tr>
<tr>
<td>2017</td>
<td>1.22E+00</td>
<td>6.91E-01</td>
</tr>
<tr>
<td>2018</td>
<td>1.13E+00</td>
<td>6.78E-01</td>
</tr>
</tbody>
</table>
TABLE 3-38: SUMMARY OF ADD$_{\text{Expected}}$ AND EGG CONCENTRATIONS FOR FEMALE GREAT BLUE HERON BASED ON 1993 DATA USING SUM OF TRI+ CONGENERS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water Expected</th>
<th>Forage Fish Expected</th>
<th>Benthic Invertebrate Expected</th>
<th>Sediment Expected</th>
<th>Total Average Daily Dose$_{\text{Expected}}$ (mg/Kg/day)</th>
<th>Total Concentration in Eggs (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>3.34E-06</td>
<td>3.24E+00</td>
<td>2.01E-02</td>
<td>1.05E-02</td>
<td>3.27E+00</td>
<td>6.28E+02</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>5.93E-06</td>
<td>1.09E+00</td>
<td>3.52E-02</td>
<td>2.74E-02</td>
<td>1.16E+00</td>
<td>2.12E+02</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>4.15E-06</td>
<td>2.57E-01</td>
<td>8.38E-03</td>
<td>2.47E-03</td>
<td>2.68E-01</td>
<td>4.97E+01</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>3.21E-06</td>
<td>2.99E-01</td>
<td>1.17E-03</td>
<td>7.60E-04</td>
<td>3.01E-01</td>
<td>5.78E+01</td>
</tr>
<tr>
<td>137.2</td>
<td>3.21E-06</td>
<td>6.04E-01</td>
<td>2.30E-03</td>
<td>1.34E-03</td>
<td>6.08E-01</td>
<td>1.17E+02</td>
</tr>
<tr>
<td>122.4</td>
<td>1.47E-06</td>
<td>2.31E-01</td>
<td>1.27E-03</td>
<td>8.50E-04</td>
<td>2.33E-01</td>
<td>4.46E+01</td>
</tr>
<tr>
<td>113.8</td>
<td>1.47E-06</td>
<td>2.42E-01</td>
<td>1.31E-03</td>
<td>8.91E-04</td>
<td>2.44E-01</td>
<td>4.68E+01</td>
</tr>
<tr>
<td>100</td>
<td>1.47E-06</td>
<td>1.05E-01</td>
<td>6.01E-04</td>
<td>3.52E-04</td>
<td>1.06E-01</td>
<td>2.03E+01</td>
</tr>
<tr>
<td>88.9</td>
<td>9.68E-07</td>
<td>2.08E-01</td>
<td>3.01E-04</td>
<td>6.90E-04</td>
<td>2.09E-01</td>
<td>4.04E+01</td>
</tr>
<tr>
<td>58.7</td>
<td>9.68E-07</td>
<td>2.27E-01</td>
<td>9.28E-04</td>
<td>2.23E-04</td>
<td>2.28E-01</td>
<td>4.40E+01</td>
</tr>
<tr>
<td>47.3</td>
<td>9.68E-07</td>
<td>2.02E-01</td>
<td>1.05E-03</td>
<td>1.36E-03</td>
<td>2.05E-01</td>
<td>3.91E+01</td>
</tr>
<tr>
<td>25.8</td>
<td>9.68E-07</td>
<td>1.52E-01</td>
<td>3.12E-04</td>
<td>5.11E-04</td>
<td>1.53E-01</td>
<td>2.94E+01</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water 95% UCL</td>
<td>Benthic Fish 95% UCL</td>
<td>Total Average Invertebrate Daily Dose 95% UCL</td>
<td>Total Concentration in Eggs (mg/Kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>1.06E-05</td>
<td>6.62E+00</td>
<td>3.51E-02</td>
<td>1.28E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.88E-05</td>
<td>1.56E+00</td>
<td>1.65E-01</td>
<td>3.03E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>8.90E-06</td>
<td>3.73E-01</td>
<td>1.42E-02</td>
<td>7.22E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>3.50E-05</td>
<td>3.59E-01</td>
<td>2.86E-03</td>
<td>6.94E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.2</td>
<td>3.50E-05</td>
<td>1.31E+00</td>
<td>9.33E-03</td>
<td>2.54E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122.4</td>
<td>1.88E-05</td>
<td>3.73E-01</td>
<td>3.20E-03</td>
<td>7.22E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113.8</td>
<td>1.88E-05</td>
<td>2.51E-01</td>
<td>5.07E-03</td>
<td>4.85E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.88E-05</td>
<td>1.81E-01</td>
<td>4.11E-03</td>
<td>3.50E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.9</td>
<td>4.30E-06</td>
<td>2.86E-01</td>
<td>5.36E-04</td>
<td>5.53E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>4.30E-06</td>
<td>2.57E-01</td>
<td>8.49E-03</td>
<td>4.98E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.3</td>
<td>4.30E-06</td>
<td>2.68E-01</td>
<td>7.73E-03</td>
<td>5.18E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.8</td>
<td>4.30E-06</td>
<td>1.83E-01</td>
<td>5.29E-04</td>
<td>3.54E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-40: SUMMARY OF ADD_{Expected} AND EGG CONCENTRATIONS FOR FEMALE GREAT BLUE HERON BASED ON TRI+ CONGENERS FOR PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Dietary Dose (mg/Kg/day)</th>
<th>Average Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>3.37E+00</td>
<td>1.64E+00</td>
</tr>
<tr>
<td>1994</td>
<td>1.58E+00</td>
<td>1.32E+00</td>
</tr>
<tr>
<td>1995</td>
<td>1.46E+00</td>
<td>1.47E+00</td>
</tr>
<tr>
<td>1996</td>
<td>1.52E+00</td>
<td>9.59E-01</td>
</tr>
<tr>
<td>1997</td>
<td>1.11E+00</td>
<td>8.44E-01</td>
</tr>
<tr>
<td>1998</td>
<td>9.43E-01</td>
<td>7.50E-01</td>
</tr>
<tr>
<td>1999</td>
<td>8.03E-01</td>
<td>5.90E-01</td>
</tr>
<tr>
<td>2000</td>
<td>6.44E-01</td>
<td>5.44E-01</td>
</tr>
<tr>
<td>2001</td>
<td>6.34E-01</td>
<td>5.88E-01</td>
</tr>
<tr>
<td>2002</td>
<td>5.88E-01</td>
<td>5.67E-01</td>
</tr>
<tr>
<td>2003</td>
<td>5.69E-01</td>
<td>4.69E-01</td>
</tr>
<tr>
<td>2004</td>
<td>4.93E-01</td>
<td>4.53E-01</td>
</tr>
<tr>
<td>2005</td>
<td>4.83E-01</td>
<td>3.67E-01</td>
</tr>
<tr>
<td>2006</td>
<td>4.09E-01</td>
<td>3.90E-01</td>
</tr>
<tr>
<td>2007</td>
<td>4.14E-01</td>
<td>3.53E-01</td>
</tr>
<tr>
<td>2008</td>
<td>3.72E-01</td>
<td>3.08E-01</td>
</tr>
<tr>
<td>2009</td>
<td>3.59E-01</td>
<td>3.40E-01</td>
</tr>
<tr>
<td>2010</td>
<td>3.55E-01</td>
<td>3.42E-01</td>
</tr>
<tr>
<td>2011</td>
<td>3.40E-01</td>
<td>2.54E-01</td>
</tr>
<tr>
<td>2012</td>
<td>2.92E-01</td>
<td>3.11E-01</td>
</tr>
<tr>
<td>2013</td>
<td>2.83E-01</td>
<td>2.88E-01</td>
</tr>
<tr>
<td>2014</td>
<td>2.70E-01</td>
<td>2.58E-01</td>
</tr>
<tr>
<td>2015</td>
<td>2.43E-01</td>
<td>2.50E-01</td>
</tr>
<tr>
<td>2016</td>
<td>2.31E-01</td>
<td>2.49E-01</td>
</tr>
<tr>
<td>2017</td>
<td>2.20E-01</td>
<td>1.94E-01</td>
</tr>
<tr>
<td>2018</td>
<td>2.02E-01</td>
<td>1.93E-01</td>
</tr>
</tbody>
</table>

TAMS/MCA
TABLE 3-41: SUMMARY OF ADD95%UCL AND EGG CONCENTRATIONS FOR FEMALE GREAT BLUE HERON BASED ON TRI+ CONGENERS FOR PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>95% UCL Dietary Dose (mg/Kg/day)</th>
<th>95% UCL Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>5.89E+00</td>
<td>2.11E+00</td>
</tr>
<tr>
<td>1994</td>
<td>2.66E+00</td>
<td>1.58E+00</td>
</tr>
<tr>
<td>1995</td>
<td>2.39E+00</td>
<td>1.90E+00</td>
</tr>
<tr>
<td>1996</td>
<td>2.58E+00</td>
<td>1.16E+00</td>
</tr>
<tr>
<td>1997</td>
<td>2.14E+00</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>1998</td>
<td>1.67E+00</td>
<td>9.22E-01</td>
</tr>
<tr>
<td>1999</td>
<td>1.53E+00</td>
<td>7.01E-01</td>
</tr>
<tr>
<td>2000</td>
<td>1.35E+00</td>
<td>6.53E-01</td>
</tr>
<tr>
<td>2001</td>
<td>1.25E+00</td>
<td>7.02E-01</td>
</tr>
<tr>
<td>2002</td>
<td>1.19E+00</td>
<td>6.71E-01</td>
</tr>
<tr>
<td>2003</td>
<td>1.13E+00</td>
<td>5.55E-01</td>
</tr>
<tr>
<td>2004</td>
<td>1.04E+00</td>
<td>5.30E-01</td>
</tr>
<tr>
<td>2005</td>
<td>9.78E-01</td>
<td>4.34E-01</td>
</tr>
<tr>
<td>2006</td>
<td>8.51E-01</td>
<td>4.62E-01</td>
</tr>
<tr>
<td>2007</td>
<td>8.54E-01</td>
<td>4.19E-01</td>
</tr>
<tr>
<td>2008</td>
<td>7.49E-01</td>
<td>3.63E-01</td>
</tr>
<tr>
<td>2009</td>
<td>7.52E-01</td>
<td>4.08E-01</td>
</tr>
<tr>
<td>2010</td>
<td>7.32E-01</td>
<td>4.06E-01</td>
</tr>
<tr>
<td>2011</td>
<td>6.41E-01</td>
<td>3.03E-01</td>
</tr>
<tr>
<td>2012</td>
<td>5.82E-01</td>
<td>3.79E-01</td>
</tr>
<tr>
<td>2013</td>
<td>5.55E-01</td>
<td>3.40E-01</td>
</tr>
<tr>
<td>2014</td>
<td>5.27E-01</td>
<td>3.10E-01</td>
</tr>
<tr>
<td>2015</td>
<td>4.69E-01</td>
<td>2.93E-01</td>
</tr>
<tr>
<td>2016</td>
<td>4.42E-01</td>
<td>3.12E-01</td>
</tr>
<tr>
<td>2017</td>
<td>4.57E-01</td>
<td>2.33E-01</td>
</tr>
<tr>
<td>2018</td>
<td>4.12E-01</td>
<td>2.30E-01</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water Expected</td>
<td>Piscivorous Fish Expected</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>2.53E-06</td>
<td>1.20E+01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>4.49E-06</td>
<td>2.14E+00</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>3.14E-06</td>
<td>1.55E+00</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>2.43E-06</td>
<td>1.55E+00</td>
</tr>
<tr>
<td>137.2</td>
<td>2.43E-06</td>
<td>5.86E+00</td>
</tr>
<tr>
<td>122.4</td>
<td>1.11E-06</td>
<td>1.36E+00</td>
</tr>
<tr>
<td>113.8</td>
<td>1.11E-06</td>
<td>1.23E+00</td>
</tr>
<tr>
<td>100</td>
<td>1.11E-06</td>
<td>1.42E+00</td>
</tr>
<tr>
<td>88.9</td>
<td>7.32E-07</td>
<td>9.13E-01</td>
</tr>
<tr>
<td>58.7</td>
<td>7.32E-07</td>
<td>1.06E+00</td>
</tr>
<tr>
<td>47.3</td>
<td>7.32E-07</td>
<td>1.21E+00</td>
</tr>
<tr>
<td>25.8</td>
<td>7.32E-07</td>
<td>8.58E-01</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water 95% UCL</td>
<td>Piscivorous Fish 95% UCL</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>8.00E-06</td>
<td>2.33E+01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.42E-05</td>
<td>2.76E+00</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>6.73E-06</td>
<td>2.79E+00</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>2.64E-05</td>
<td>2.79E+00</td>
</tr>
<tr>
<td>137.2</td>
<td>2.64E-05</td>
<td>1.39E+01</td>
</tr>
<tr>
<td>122.4</td>
<td>1.42E-05</td>
<td>1.88E+00</td>
</tr>
<tr>
<td>113.8</td>
<td>1.42E-05</td>
<td>1.73E+00</td>
</tr>
<tr>
<td>100</td>
<td>1.42E-05</td>
<td>4.38E+00</td>
</tr>
<tr>
<td>88.9</td>
<td>3.25E-06</td>
<td>1.74E+00</td>
</tr>
<tr>
<td>58.7</td>
<td>3.25E-06</td>
<td>1.57E+00</td>
</tr>
<tr>
<td>47.3</td>
<td>3.25E-06</td>
<td>3.27E+00</td>
</tr>
<tr>
<td>25.8</td>
<td>3.25E-06</td>
<td>1.70E+00</td>
</tr>
</tbody>
</table>
TABLE 3-44: SUMMARY OF ADD Expected AND EGG CONCENTRATIONS FOR FEMALE EAGLE BASED ON TRI+ CONGENERS FOR PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Dietary Dose (mg/Kg/day)</th>
<th>Average Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>6.68E+00</td>
<td>5.04E+00</td>
</tr>
<tr>
<td>1994</td>
<td>4.06E+00</td>
<td>3.47E+00</td>
</tr>
<tr>
<td>1995</td>
<td>4.48E+00</td>
<td>3.85E+00</td>
</tr>
<tr>
<td>1996</td>
<td>4.08E+00</td>
<td>3.09E+00</td>
</tr>
<tr>
<td>1997</td>
<td>3.18E+00</td>
<td>2.71E+00</td>
</tr>
<tr>
<td>1998</td>
<td>2.65E+00</td>
<td>2.44E+00</td>
</tr>
<tr>
<td>1999</td>
<td>2.31E+00</td>
<td>1.99E+00</td>
</tr>
<tr>
<td>2000</td>
<td>2.16E+00</td>
<td>1.88E+00</td>
</tr>
<tr>
<td>2001</td>
<td>2.01E+00</td>
<td>1.81E+00</td>
</tr>
<tr>
<td>2002</td>
<td>1.99E+00</td>
<td>1.93E+00</td>
</tr>
<tr>
<td>2003</td>
<td>1.74E+00</td>
<td>1.62E+00</td>
</tr>
<tr>
<td>2004</td>
<td>1.63E+00</td>
<td>1.58E+00</td>
</tr>
<tr>
<td>2005</td>
<td>1.44E+00</td>
<td>1.20E+00</td>
</tr>
<tr>
<td>2006</td>
<td>1.42E+00</td>
<td>1.31E+00</td>
</tr>
<tr>
<td>2007</td>
<td>1.31E+00</td>
<td>1.10E+00</td>
</tr>
<tr>
<td>2008</td>
<td>1.24E+00</td>
<td>9.90E-01</td>
</tr>
<tr>
<td>2009</td>
<td>1.25E+00</td>
<td>1.07E+00</td>
</tr>
<tr>
<td>2010</td>
<td>1.10E+00</td>
<td>9.75E-01</td>
</tr>
<tr>
<td>2011</td>
<td>9.62E-01</td>
<td>8.31E-01</td>
</tr>
<tr>
<td>2012</td>
<td>9.55E-01</td>
<td>8.42E-01</td>
</tr>
<tr>
<td>2013</td>
<td>9.18E-01</td>
<td>8.75E-01</td>
</tr>
<tr>
<td>2014</td>
<td>8.35E-01</td>
<td>8.34E-01</td>
</tr>
<tr>
<td>2015</td>
<td>7.65E-01</td>
<td>7.32E-01</td>
</tr>
<tr>
<td>2016</td>
<td>7.80E-01</td>
<td>8.21E-01</td>
</tr>
<tr>
<td>2017</td>
<td>6.72E-01</td>
<td>6.22E-01</td>
</tr>
<tr>
<td>2018</td>
<td>6.51E-01</td>
<td>5.97E-01</td>
</tr>
<tr>
<td>Year</td>
<td>95% UCL Dietary Dose (mg/Kg/day)</td>
<td>95% UCL Egg Concentration (mg/Kg)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>8.38E+00</td>
<td>6.15E+00</td>
</tr>
<tr>
<td>1994</td>
<td>5.47E+00</td>
<td>4.17E+00</td>
</tr>
<tr>
<td>1995</td>
<td>5.99E+00</td>
<td>4.62E+00</td>
</tr>
<tr>
<td>1996</td>
<td>5.89E+00</td>
<td>3.77E+00</td>
</tr>
<tr>
<td>1997</td>
<td>4.58E+00</td>
<td>3.26E+00</td>
</tr>
<tr>
<td>1998</td>
<td>3.78E+00</td>
<td>2.96E+00</td>
</tr>
<tr>
<td>1999</td>
<td>3.42E+00</td>
<td>2.46E+00</td>
</tr>
<tr>
<td>2000</td>
<td>3.21E+00</td>
<td>2.29E+00</td>
</tr>
<tr>
<td>2001</td>
<td>2.98E+00</td>
<td>2.22E+00</td>
</tr>
<tr>
<td>2002</td>
<td>2.93E+00</td>
<td>2.36E+00</td>
</tr>
<tr>
<td>2003</td>
<td>2.59E+00</td>
<td>2.00E+00</td>
</tr>
<tr>
<td>2004</td>
<td>2.39E+00</td>
<td>1.93E+00</td>
</tr>
<tr>
<td>2005</td>
<td>2.17E+00</td>
<td>1.47E+00</td>
</tr>
<tr>
<td>2006</td>
<td>2.10E+00</td>
<td>1.61E+00</td>
</tr>
<tr>
<td>2007</td>
<td>1.97E+00</td>
<td>1.33E+00</td>
</tr>
<tr>
<td>2008</td>
<td>1.88E+00</td>
<td>1.22E+00</td>
</tr>
<tr>
<td>2009</td>
<td>1.83E+00</td>
<td>1.31E+00</td>
</tr>
<tr>
<td>2010</td>
<td>1.60E+00</td>
<td>1.20E+00</td>
</tr>
<tr>
<td>2011</td>
<td>1.46E+00</td>
<td>1.02E+00</td>
</tr>
<tr>
<td>2012</td>
<td>1.41E+00</td>
<td>1.04E+00</td>
</tr>
<tr>
<td>2013</td>
<td>1.36E+00</td>
<td>1.08E+00</td>
</tr>
<tr>
<td>2014</td>
<td>1.21E+00</td>
<td>1.02E+00</td>
</tr>
<tr>
<td>2015</td>
<td>1.12E+00</td>
<td>8.92E-01</td>
</tr>
<tr>
<td>2016</td>
<td>1.13E+00</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>2017</td>
<td>1.02E+00</td>
<td>7.65E-01</td>
</tr>
<tr>
<td>2018</td>
<td>9.73E-01</td>
<td>7.36E-01</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water Expected</td>
<td>Benthic Invertebrate Expected</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>1.26E-07</td>
<td>5.80E-04</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>2.24E-07</td>
<td>1.02E-03</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.56E-07</td>
<td>2.42E-04</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>1.21E-07</td>
<td>3.37E-05</td>
</tr>
<tr>
<td>137.2</td>
<td>1.21E-07</td>
<td>6.64E-05</td>
</tr>
<tr>
<td>122.4</td>
<td>5.54E-08</td>
<td>3.67E-05</td>
</tr>
<tr>
<td>113.8</td>
<td>5.54E-08</td>
<td>3.78E-05</td>
</tr>
<tr>
<td>100</td>
<td>5.54E-08</td>
<td>1.74E-05</td>
</tr>
<tr>
<td>88.9</td>
<td>3.65E-08</td>
<td>8.70E-06</td>
</tr>
<tr>
<td>58.7</td>
<td>3.65E-08</td>
<td>2.68E-05</td>
</tr>
<tr>
<td>47.3</td>
<td>3.65E-08</td>
<td>3.04E-05</td>
</tr>
<tr>
<td>25.8</td>
<td>3.65E-08</td>
<td>9.01E-06</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water 95% UCL</td>
<td>Benthic Invertebrate 95% UCL</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>3.99E-07</td>
<td>1.01E-03</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>7.10E-07</td>
<td>4.76E-03</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>3.36E-07</td>
<td>4.11E-04</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>1.32E-06</td>
<td>8.27E-05</td>
</tr>
<tr>
<td>137.2</td>
<td>1.32E-06</td>
<td>2.69E-04</td>
</tr>
<tr>
<td>122.4</td>
<td>7.10E-07</td>
<td>9.23E-05</td>
</tr>
<tr>
<td>113.8</td>
<td>7.10E-07</td>
<td>1.46E-04</td>
</tr>
<tr>
<td>100</td>
<td>7.10E-07</td>
<td>1.19E-04</td>
</tr>
<tr>
<td>88.9</td>
<td>1.62E-07</td>
<td>1.55E-05</td>
</tr>
<tr>
<td>58.7</td>
<td>1.62E-07</td>
<td>2.45E-04</td>
</tr>
<tr>
<td>47.3</td>
<td>1.62E-07</td>
<td>2.23E-04</td>
</tr>
<tr>
<td>25.8</td>
<td>1.62E-07</td>
<td>1.53E-05</td>
</tr>
<tr>
<td>Year</td>
<td>Total Average Dietary Dose (mg/Kg/day)</td>
<td>Average Egg Concentration (mg/Kg)</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>6.77E-04</td>
<td>3.75E-04</td>
</tr>
<tr>
<td>1994</td>
<td>6.35E-04</td>
<td>3.57E-04</td>
</tr>
<tr>
<td>1995</td>
<td>5.94E-04</td>
<td>3.36E-04</td>
</tr>
<tr>
<td>1996</td>
<td>5.35E-04</td>
<td>3.00E-04</td>
</tr>
<tr>
<td>1997</td>
<td>4.92E-04</td>
<td>2.73E-04</td>
</tr>
<tr>
<td>1998</td>
<td>4.51E-04</td>
<td>2.47E-04</td>
</tr>
<tr>
<td>1999</td>
<td>4.08E-04</td>
<td>2.24E-04</td>
</tr>
<tr>
<td>2000</td>
<td>3.75E-04</td>
<td>2.12E-04</td>
</tr>
<tr>
<td>2001</td>
<td>3.54E-04</td>
<td>2.07E-04</td>
</tr>
<tr>
<td>2002</td>
<td>3.31E-04</td>
<td>1.97E-04</td>
</tr>
<tr>
<td>2003</td>
<td>3.09E-04</td>
<td>1.86E-04</td>
</tr>
<tr>
<td>2004</td>
<td>2.87E-04</td>
<td>1.71E-04</td>
</tr>
<tr>
<td>2005</td>
<td>2.65E-04</td>
<td>1.58E-04</td>
</tr>
<tr>
<td>2006</td>
<td>2.55E-04</td>
<td>1.50E-04</td>
</tr>
<tr>
<td>2007</td>
<td>2.37E-04</td>
<td>1.41E-04</td>
</tr>
<tr>
<td>2008</td>
<td>2.26E-04</td>
<td>1.32E-04</td>
</tr>
<tr>
<td>2009</td>
<td>2.13E-04</td>
<td>1.26E-04</td>
</tr>
<tr>
<td>2010</td>
<td>1.93E-04</td>
<td>1.18E-04</td>
</tr>
<tr>
<td>2011</td>
<td>1.75E-04</td>
<td>1.08E-04</td>
</tr>
<tr>
<td>2012</td>
<td>1.63E-04</td>
<td>1.04E-04</td>
</tr>
<tr>
<td>2013</td>
<td>1.51E-04</td>
<td>9.85E-05</td>
</tr>
<tr>
<td>2014</td>
<td>1.41E-04</td>
<td>9.23E-05</td>
</tr>
<tr>
<td>2015</td>
<td>1.31E-04</td>
<td>8.91E-05</td>
</tr>
<tr>
<td>2016</td>
<td>1.25E-04</td>
<td>8.46E-05</td>
</tr>
<tr>
<td>2017</td>
<td>1.15E-04</td>
<td>7.93E-05</td>
</tr>
<tr>
<td>Year</td>
<td>Total 95% UCL Dietary Dose (mg/Kg/day)</td>
<td>95% UCL Egg Concentration (mg/Kg)</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>9.91E-04</td>
<td>5.92E-04</td>
</tr>
<tr>
<td>1994</td>
<td>9.40E-04</td>
<td>5.67E-04</td>
</tr>
<tr>
<td>1995</td>
<td>8.59E-04</td>
<td>5.32E-04</td>
</tr>
<tr>
<td>1996</td>
<td>7.84E-04</td>
<td>4.73E-04</td>
</tr>
<tr>
<td>1997</td>
<td>7.17E-04</td>
<td>4.34E-04</td>
</tr>
<tr>
<td>1999</td>
<td>6.05E-04</td>
<td>3.57E-04</td>
</tr>
<tr>
<td>2000</td>
<td>5.40E-04</td>
<td>3.35E-04</td>
</tr>
<tr>
<td>2001</td>
<td>5.16E-04</td>
<td>3.28E-04</td>
</tr>
<tr>
<td>2002</td>
<td>4.91E-04</td>
<td>3.13E-04</td>
</tr>
<tr>
<td>2003</td>
<td>4.52E-04</td>
<td>2.95E-04</td>
</tr>
<tr>
<td>2004</td>
<td>4.14E-04</td>
<td>2.70E-04</td>
</tr>
<tr>
<td>2005</td>
<td>3.89E-04</td>
<td>2.51E-04</td>
</tr>
<tr>
<td>2006</td>
<td>3.71E-04</td>
<td>2.38E-04</td>
</tr>
<tr>
<td>2007</td>
<td>3.43E-04</td>
<td>2.23E-04</td>
</tr>
<tr>
<td>2008</td>
<td>3.24E-04</td>
<td>2.09E-04</td>
</tr>
<tr>
<td>2009</td>
<td>3.05E-04</td>
<td>2.00E-04</td>
</tr>
<tr>
<td>2010</td>
<td>2.83E-04</td>
<td>1.87E-04</td>
</tr>
<tr>
<td>2011</td>
<td>2.53E-04</td>
<td>1.73E-04</td>
</tr>
<tr>
<td>2012</td>
<td>2.37E-04</td>
<td>1.64E-04</td>
</tr>
<tr>
<td>2013</td>
<td>2.25E-04</td>
<td>1.56E-04</td>
</tr>
<tr>
<td>2014</td>
<td>2.07E-04</td>
<td>1.47E-04</td>
</tr>
<tr>
<td>2015</td>
<td>1.96E-04</td>
<td>1.42E-04</td>
</tr>
<tr>
<td>2016</td>
<td>1.80E-04</td>
<td>1.34E-04</td>
</tr>
<tr>
<td>2017</td>
<td>1.71E-04</td>
<td>1.26E-04</td>
</tr>
<tr>
<td>2018</td>
<td>1.70E-04</td>
<td>1.23E-04</td>
</tr>
</tbody>
</table>
TABLE 3-50: SUMMARY OF ADD\textsubscript{expected} AND EGG CONCENTRATIONS FOR FEMALE MALLARD BASED ON 1993 DATA ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water Expected</th>
<th>Macrophyte Expected</th>
<th>Benthic Invertebrate Expected</th>
<th>Sediment Expected</th>
<th>Total Average Daily Dose\textsubscript{expected} (mg/Kg/day)</th>
<th>Total Average Concentration in Eggs (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>3.46E-08</td>
<td>1.16E-03</td>
<td>1.04E-04</td>
<td>3.80E-05</td>
<td>1.31E-03</td>
<td>2.11E-02</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>6.15E-08</td>
<td>1.89E-03</td>
<td>1.94E-04</td>
<td>9.92E-05</td>
<td>2.18E-03</td>
<td>3.93E-02</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>4.30E-08</td>
<td>1.84E-03</td>
<td>4.61E-05</td>
<td>8.93E-06</td>
<td>1.89E-03</td>
<td>9.38E-03</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>3.32E-08</td>
<td>1.05E-03</td>
<td>6.43E-06</td>
<td>2.75E-06</td>
<td>1.05E-03</td>
<td>1.31E-03</td>
</tr>
<tr>
<td>137.2</td>
<td>3.32E-08</td>
<td>1.05E-03</td>
<td>1.27E-05</td>
<td>4.86E-06</td>
<td>1.06E-03</td>
<td>2.57E-03</td>
</tr>
<tr>
<td>122.4</td>
<td>1.52E-08</td>
<td>6.21E-04</td>
<td>5.90E-06</td>
<td>3.08E-06</td>
<td>6.30E-04</td>
<td>1.20E-03</td>
</tr>
<tr>
<td>113.8</td>
<td>1.52E-08</td>
<td>6.21E-04</td>
<td>5.07E-06</td>
<td>3.23E-06</td>
<td>6.29E-04</td>
<td>1.03E-03</td>
</tr>
<tr>
<td>100</td>
<td>1.52E-08</td>
<td>6.21E-04</td>
<td>2.79E-06</td>
<td>1.27E-06</td>
<td>6.25E-04</td>
<td>5.67E-04</td>
</tr>
<tr>
<td>88.9</td>
<td>1.00E-08</td>
<td>4.54E-04</td>
<td>1.40E-06</td>
<td>2.50E-06</td>
<td>4.58E-04</td>
<td>2.84E-04</td>
</tr>
<tr>
<td>58.7</td>
<td>1.00E-08</td>
<td>4.54E-04</td>
<td>3.60E-06</td>
<td>8.05E-07</td>
<td>4.59E-04</td>
<td>7.32E-04</td>
</tr>
<tr>
<td>47.3</td>
<td>1.00E-08</td>
<td>4.54E-04</td>
<td>4.89E-06</td>
<td>4.91E-06</td>
<td>4.64E-04</td>
<td>9.94E-04</td>
</tr>
<tr>
<td>25.8</td>
<td>1.00E-08</td>
<td>4.54E-04</td>
<td>1.45E-06</td>
<td>1.85E-06</td>
<td>4.58E-04</td>
<td>2.94E-04</td>
</tr>
</tbody>
</table>

TAMS/MCA
<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water 95% UCL</th>
<th>Macrophyte 95% UCL</th>
<th>Benthic Invertebrate 95% UCL</th>
<th>Sediment 95% UCL</th>
<th>Total Upper Bound Daily Dose_{95%UCL} (mg/Kg/day)</th>
<th>Total Concentration in Eggs (95% UCL) (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>1.10E-07</td>
<td>4.61E-03</td>
<td>1.63E-04</td>
<td>5.56E-05</td>
<td>4.83E-03</td>
<td>3.31E-02</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.95E-07</td>
<td>5.05E-03</td>
<td>3.37E-04</td>
<td>1.73E-04</td>
<td>5.56E-03</td>
<td>6.85E-02</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>9.22E-08</td>
<td>3.82E-03</td>
<td>8.03E-05</td>
<td>1.50E-05</td>
<td>3.91E-03</td>
<td>1.63E-02</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>3.62E-07</td>
<td>3.13E-03</td>
<td>1.12E-05</td>
<td>3.01E-06</td>
<td>3.14E-03</td>
<td>2.27E-03</td>
</tr>
<tr>
<td>137.2</td>
<td>3.62E-07</td>
<td>3.13E-03</td>
<td>2.20E-05</td>
<td>9.81E-06</td>
<td>3.16E-03</td>
<td>4.48E-03</td>
</tr>
<tr>
<td>122.4</td>
<td>1.95E-07</td>
<td>9.56E-03</td>
<td>1.48E-05</td>
<td>3.42E-06</td>
<td>9.58E-03</td>
<td>3.02E-03</td>
</tr>
<tr>
<td>113.8</td>
<td>1.95E-07</td>
<td>9.56E-03</td>
<td>8.82E-06</td>
<td>5.33E-06</td>
<td>9.57E-03</td>
<td>1.79E-03</td>
</tr>
<tr>
<td>100</td>
<td>1.95E-07</td>
<td>9.56E-03</td>
<td>1.91E-05</td>
<td>2.75E-05</td>
<td>9.61E-03</td>
<td>3.88E-03</td>
</tr>
<tr>
<td>88.9</td>
<td>4.45E-08</td>
<td>8.82E-03</td>
<td>2.49E-06</td>
<td>7.30E-06</td>
<td>8.83E-03</td>
<td>5.05E-04</td>
</tr>
<tr>
<td>58.7</td>
<td>4.45E-08</td>
<td>8.82E-03</td>
<td>6.27E-06</td>
<td>8.93E-06</td>
<td>8.84E-03</td>
<td>1.27E-03</td>
</tr>
<tr>
<td>47.3</td>
<td>4.45E-08</td>
<td>8.82E-03</td>
<td>3.59E-05</td>
<td>1.92E-05</td>
<td>8.88E-03</td>
<td>7.30E-03</td>
</tr>
<tr>
<td>25.8</td>
<td>4.45E-08</td>
<td>8.82E-03</td>
<td>2.46E-06</td>
<td>5.00E-06</td>
<td>8.83E-03</td>
<td>4.99E-04</td>
</tr>
</tbody>
</table>

TABLE 3-51: SUMMARY OF ADD_{95%UCL} AND EGG CONCENTRATIONS FOR FEMALE MALLARD BASED ON 1993 DATA ON A TEQ BASIS
<table>
<thead>
<tr>
<th>Year</th>
<th>Average Dietary Dose (mg/Kg/day)</th>
<th>Average Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>2.55E-03</td>
<td>2.75E-03</td>
</tr>
<tr>
<td>1994</td>
<td>2.85E-03</td>
<td>3.12E-03</td>
</tr>
<tr>
<td>1995</td>
<td>3.04E-03</td>
<td>2.94E-03</td>
</tr>
<tr>
<td>1996</td>
<td>1.29E-03</td>
<td>1.39E-03</td>
</tr>
<tr>
<td>1997</td>
<td>1.37E-03</td>
<td>2.22E-03</td>
</tr>
<tr>
<td>1998</td>
<td>4.50E-04</td>
<td>7.94E-04</td>
</tr>
<tr>
<td>1999</td>
<td>5.87E-04</td>
<td>1.02E-03</td>
</tr>
<tr>
<td>2000</td>
<td>4.51E-04</td>
<td>7.36E-04</td>
</tr>
<tr>
<td>2001</td>
<td>6.11E-04</td>
<td>1.27E-03</td>
</tr>
<tr>
<td>2002</td>
<td>5.19E-04</td>
<td>9.30E-04</td>
</tr>
<tr>
<td>2003</td>
<td>4.38E-04</td>
<td>8.64E-04</td>
</tr>
<tr>
<td>2004</td>
<td>3.95E-04</td>
<td>9.94E-04</td>
</tr>
<tr>
<td>2005</td>
<td>3.74E-04</td>
<td>5.57E-04</td>
</tr>
<tr>
<td>2006</td>
<td>4.53E-04</td>
<td>7.98E-04</td>
</tr>
<tr>
<td>2007</td>
<td>3.39E-04</td>
<td>5.65E-04</td>
</tr>
<tr>
<td>2008</td>
<td>2.86E-04</td>
<td>4.01E-04</td>
</tr>
<tr>
<td>2009</td>
<td>4.46E-04</td>
<td>6.82E-04</td>
</tr>
<tr>
<td>2010</td>
<td>3.28E-04</td>
<td>5.33E-04</td>
</tr>
<tr>
<td>2011</td>
<td>2.20E-04</td>
<td>3.15E-04</td>
</tr>
<tr>
<td>2012</td>
<td>3.45E-04</td>
<td>5.56E-04</td>
</tr>
<tr>
<td>2013</td>
<td>2.31E-04</td>
<td>4.33E-04</td>
</tr>
<tr>
<td>2014</td>
<td>2.47E-04</td>
<td>4.01E-04</td>
</tr>
<tr>
<td>2015</td>
<td>2.04E-04</td>
<td>3.48E-04</td>
</tr>
<tr>
<td>2016</td>
<td>2.70E-04</td>
<td>4.39E-04</td>
</tr>
<tr>
<td>2017</td>
<td>1.50E-04</td>
<td>2.06E-04</td>
</tr>
<tr>
<td>2018</td>
<td>2.62E-04</td>
<td>5.12E-04</td>
</tr>
<tr>
<td>Year</td>
<td>95% UCL Dietary Dose (mg/Kg/day)</td>
<td>95% UCL Egg Concentration (mg/Kg)</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>2.65E-03</td>
<td>2.84E-03</td>
</tr>
<tr>
<td>1994</td>
<td>2.96E-03</td>
<td>3.22E-03</td>
</tr>
<tr>
<td>1995</td>
<td>3.15E-03</td>
<td>3.03E-03</td>
</tr>
<tr>
<td>1996</td>
<td>1.36E-03</td>
<td>1.45E-03</td>
</tr>
<tr>
<td>1997</td>
<td>1.43E-03</td>
<td>2.29E-03</td>
</tr>
<tr>
<td>1998</td>
<td>4.91E-04</td>
<td>8.32E-04</td>
</tr>
<tr>
<td>1999</td>
<td>6.31E-04</td>
<td>1.06E-03</td>
</tr>
<tr>
<td>2000</td>
<td>4.88E-04</td>
<td>7.69E-04</td>
</tr>
<tr>
<td>2001</td>
<td>6.50E-04</td>
<td>1.32E-03</td>
</tr>
<tr>
<td>2002</td>
<td>5.56E-04</td>
<td>9.66E-04</td>
</tr>
<tr>
<td>2003</td>
<td>4.70E-04</td>
<td>8.98E-04</td>
</tr>
<tr>
<td>2004</td>
<td>4.24E-04</td>
<td>1.03E-03</td>
</tr>
<tr>
<td>2005</td>
<td>4.01E-04</td>
<td>5.83E-04</td>
</tr>
<tr>
<td>2006</td>
<td>4.82E-04</td>
<td>8.28E-04</td>
</tr>
<tr>
<td>2007</td>
<td>3.63E-04</td>
<td>5.89E-04</td>
</tr>
<tr>
<td>2008</td>
<td>3.08E-04</td>
<td>4.21E-04</td>
</tr>
<tr>
<td>2009</td>
<td>4.70E-04</td>
<td>7.07E-04</td>
</tr>
<tr>
<td>2010</td>
<td>3.50E-04</td>
<td>5.54E-04</td>
</tr>
<tr>
<td>2011</td>
<td>2.38E-04</td>
<td>3.31E-04</td>
</tr>
<tr>
<td>2012</td>
<td>3.64E-04</td>
<td>5.77E-04</td>
</tr>
<tr>
<td>2013</td>
<td>2.48E-04</td>
<td>4.51E-04</td>
</tr>
<tr>
<td>2015</td>
<td>2.18E-04</td>
<td>3.63E-04</td>
</tr>
<tr>
<td>2016</td>
<td>2.85E-04</td>
<td>4.56E-04</td>
</tr>
<tr>
<td>2017</td>
<td>1.62E-04</td>
<td>2.17E-04</td>
</tr>
<tr>
<td>2018</td>
<td>2.76E-04</td>
<td>5.30E-04</td>
</tr>
</tbody>
</table>
TABLE 3-54: SUMMARY OF ADD$_{\text{Expected}}$ AND EGG CONCENTRATIONS FOR FEMALE BELTED KINGFISHER BASED ON 1993 DATA ON TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water Expected</th>
<th>Forage Fish Expected</th>
<th>Benthic Invertebrate Expected</th>
<th>Sediment Expected</th>
<th>Total Average Daily Dose$_{\text{Expected}}$ (mg/Kg/day)</th>
<th>Total Concentration in Eggs (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>6.54E-08</td>
<td>1.64E-03</td>
<td>5.82E-05</td>
<td>3.75E-05</td>
<td>1.73E-03</td>
<td>8.16E-02</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.16E-07</td>
<td>5.52E-04</td>
<td>1.02E-04</td>
<td>9.79E-05</td>
<td>7.52E-04</td>
<td>3.15E-02</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>8.13E-08</td>
<td>1.30E-04</td>
<td>2.43E-05</td>
<td>8.82E-06</td>
<td>1.63E-04</td>
<td>7.41E-03</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>6.29E-08</td>
<td>1.51E-04</td>
<td>3.38E-06</td>
<td>2.72E-06</td>
<td>1.57E-04</td>
<td>7.42E-03</td>
</tr>
<tr>
<td>137.2</td>
<td>6.29E-08</td>
<td>3.05E-04</td>
<td>6.66E-06</td>
<td>4.79E-06</td>
<td>3.16E-04</td>
<td>1.50E-02</td>
</tr>
<tr>
<td>122.4</td>
<td>2.88E-08</td>
<td>1.16E-04</td>
<td>3.68E-06</td>
<td>3.04E-06</td>
<td>1.23E-04</td>
<td>5.78E-03</td>
</tr>
<tr>
<td>113.8</td>
<td>2.88E-08</td>
<td>1.22E-04</td>
<td>3.79E-06</td>
<td>3.18E-06</td>
<td>1.29E-04</td>
<td>6.06E-03</td>
</tr>
<tr>
<td>100</td>
<td>2.88E-08</td>
<td>5.29E-05</td>
<td>1.74E-06</td>
<td>1.26E-06</td>
<td>5.59E-05</td>
<td>2.63E-03</td>
</tr>
<tr>
<td>88.9</td>
<td>1.90E-08</td>
<td>1.05E-04</td>
<td>8.73E-07</td>
<td>2.46E-06</td>
<td>1.09E-04</td>
<td>5.11E-03</td>
</tr>
<tr>
<td>58.7</td>
<td>1.90E-08</td>
<td>1.15E-04</td>
<td>2.69E-06</td>
<td>7.95E-07</td>
<td>1.18E-04</td>
<td>5.65E-03</td>
</tr>
<tr>
<td>47.3</td>
<td>1.90E-08</td>
<td>1.02E-04</td>
<td>3.05E-06</td>
<td>4.85E-06</td>
<td>1.10E-04</td>
<td>5.06E-03</td>
</tr>
<tr>
<td>25.8</td>
<td>1.90E-08</td>
<td>7.67E-05</td>
<td>9.03E-07</td>
<td>1.83E-06</td>
<td>7.94E-05</td>
<td>3.74E-03</td>
</tr>
</tbody>
</table>
TABLE 3-55: SUMMARY OF ADD$_{95\%UCL}$ AND EGG CONCENTRATIONS FOR FEMALE BELTED KINGFISHER BASED ON 1993 DATA ON TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water 95% UCL</th>
<th>Drinking Water 95% UCL</th>
<th>Benthic Invertebrate 95% UCL</th>
<th>Benthic Invertebrate 95% UCL</th>
<th>Sediment 95% UCL</th>
<th>Sediment 95% UCL</th>
<th>Total Upper Bound Daily Dose$_{95%UCL}$</th>
<th>Eggs (95% UCL)</th>
<th>Total Concentration in (mg/Kg/day)</th>
<th>Total Concentration in (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>2.07E-07</td>
<td>3.34E-03</td>
<td>1.02E-04</td>
<td>5.49E-05</td>
<td>3.50E-03</td>
<td>1.66E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>3.69E-07</td>
<td>7.90E-04</td>
<td>4.77E-04</td>
<td>1.71E-04</td>
<td>1.44E-03</td>
<td>6.10E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.74E-07</td>
<td>1.88E-04</td>
<td>4.12E-05</td>
<td>1.48E-05</td>
<td>2.44E-04</td>
<td>1.10E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>6.85E-07</td>
<td>1.81E-04</td>
<td>8.29E-06</td>
<td>2.97E-06</td>
<td>1.93E-04</td>
<td>9.11E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.2</td>
<td>6.85E-07</td>
<td>6.61E-04</td>
<td>2.70E-05</td>
<td>9.69E-06</td>
<td>6.98E-04</td>
<td>3.31E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122.4</td>
<td>3.69E-07</td>
<td>1.88E-04</td>
<td>9.26E-06</td>
<td>3.38E-06</td>
<td>2.01E-04</td>
<td>9.51E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113.8</td>
<td>3.69E-07</td>
<td>1.27E-04</td>
<td>1.47E-05</td>
<td>5.26E-06</td>
<td>1.47E-04</td>
<td>6.80E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3.69E-07</td>
<td>9.12E-05</td>
<td>1.19E-05</td>
<td>2.72E-05</td>
<td>1.31E-04</td>
<td>4.97E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.9</td>
<td>8.43E-08</td>
<td>1.44E-04</td>
<td>1.55E-06</td>
<td>7.21E-06</td>
<td>1.53E-04</td>
<td>7.02E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>8.43E-08</td>
<td>1.30E-04</td>
<td>2.46E-05</td>
<td>8.82E-06</td>
<td>1.63E-04</td>
<td>7.44E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.3</td>
<td>8.43E-08</td>
<td>1.35E-04</td>
<td>2.24E-05</td>
<td>1.89E-05</td>
<td>1.77E-04</td>
<td>7.59E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.8</td>
<td>8.43E-08</td>
<td>9.22E-05</td>
<td>1.53E-06</td>
<td>4.93E-06</td>
<td>9.87E-05</td>
<td>4.51E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-56: SUMMARY OF ADD_{Expected} AND EGG CONCENTRATIONS FOR FEMALE BELTED KINGFISHER FOR THE PERIOD 1993 - 2018 ON TEQ BASIS

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Dietary Dose (mg/Kg/day)</th>
<th>Average Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>2.06E-03</td>
<td>9.55E-04</td>
</tr>
<tr>
<td>1994</td>
<td>1.13E-03</td>
<td>7.86E-04</td>
</tr>
<tr>
<td>1995</td>
<td>1.05E-03</td>
<td>8.58E-04</td>
</tr>
<tr>
<td>1996</td>
<td>1.05E-03</td>
<td>5.89E-04</td>
</tr>
<tr>
<td>1997</td>
<td>8.22E-04</td>
<td>5.21E-04</td>
</tr>
<tr>
<td>1998</td>
<td>7.13E-04</td>
<td>4.64E-04</td>
</tr>
<tr>
<td>1999</td>
<td>6.21E-04</td>
<td>3.76E-04</td>
</tr>
<tr>
<td>2000</td>
<td>5.22E-04</td>
<td>3.47E-04</td>
</tr>
<tr>
<td>2001</td>
<td>5.06E-04</td>
<td>3.67E-04</td>
</tr>
<tr>
<td>2002</td>
<td>4.73E-04</td>
<td>3.54E-04</td>
</tr>
<tr>
<td>2003</td>
<td>4.51E-04</td>
<td>3.01E-04</td>
</tr>
<tr>
<td>2004</td>
<td>3.99E-04</td>
<td>2.88E-04</td>
</tr>
<tr>
<td>2005</td>
<td>3.82E-04</td>
<td>2.39E-04</td>
</tr>
<tr>
<td>2006</td>
<td>3.40E-04</td>
<td>2.48E-04</td>
</tr>
<tr>
<td>2007</td>
<td>3.34E-04</td>
<td>2.26E-04</td>
</tr>
<tr>
<td>2008</td>
<td>3.05E-04</td>
<td>2.01E-04</td>
</tr>
<tr>
<td>2010</td>
<td>2.83E-04</td>
<td>2.14E-04</td>
</tr>
<tr>
<td>2011</td>
<td>2.63E-04</td>
<td>1.65E-04</td>
</tr>
<tr>
<td>2012</td>
<td>2.32E-04</td>
<td>1.92E-04</td>
</tr>
<tr>
<td>2013</td>
<td>2.23E-04</td>
<td>1.80E-04</td>
</tr>
<tr>
<td>2014</td>
<td>2.10E-04</td>
<td>1.62E-04</td>
</tr>
<tr>
<td>2015</td>
<td>1.92E-04</td>
<td>1.56E-04</td>
</tr>
<tr>
<td>2016</td>
<td>1.83E-04</td>
<td>1.55E-04</td>
</tr>
<tr>
<td>2017</td>
<td>1.72E-04</td>
<td>1.25E-04</td>
</tr>
<tr>
<td>2018</td>
<td>1.60E-04</td>
<td>1.23E-04</td>
</tr>
</tbody>
</table>
TABLE 3-57: SUMMARY OF ADD$_{95\%}$UCL AND EGG CONCENTRATIONS FOR FEMALE BELTED KINGFISHER FOR THE PERIOD 1993 - 2018 ON TEQ BASIS

<table>
<thead>
<tr>
<th>Year</th>
<th>95% UCL Dietary Dose (mg/Kg/day)</th>
<th>95% UCL Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>3.38E-03</td>
<td>1.21E-03</td>
</tr>
<tr>
<td>1994</td>
<td>1.71E-03</td>
<td>9.37E-04</td>
</tr>
<tr>
<td>1995</td>
<td>1.55E-03</td>
<td>1.09E-03</td>
</tr>
<tr>
<td>1996</td>
<td>1.62E-03</td>
<td>7.04E-04</td>
</tr>
<tr>
<td>1997</td>
<td>1.37E-03</td>
<td>6.14E-04</td>
</tr>
<tr>
<td>1998</td>
<td>1.11E-03</td>
<td>5.63E-04</td>
</tr>
<tr>
<td>1999</td>
<td>1.01E-03</td>
<td>4.43E-04</td>
</tr>
<tr>
<td>2000</td>
<td>9.00E-04</td>
<td>4.12E-04</td>
</tr>
<tr>
<td>2001</td>
<td>8.38E-04</td>
<td>4.35E-04</td>
</tr>
<tr>
<td>2002</td>
<td>7.96E-04</td>
<td>4.16E-04</td>
</tr>
<tr>
<td>2003</td>
<td>7.54E-04</td>
<td>3.53E-04</td>
</tr>
<tr>
<td>2004</td>
<td>6.95E-04</td>
<td>3.35E-04</td>
</tr>
<tr>
<td>2005</td>
<td>6.49E-04</td>
<td>2.81E-04</td>
</tr>
<tr>
<td>2006</td>
<td>5.79E-04</td>
<td>2.92E-04</td>
</tr>
<tr>
<td>2007</td>
<td>5.71E-04</td>
<td>2.67E-04</td>
</tr>
<tr>
<td>2008</td>
<td>5.09E-04</td>
<td>2.35E-04</td>
</tr>
<tr>
<td>2009</td>
<td>5.04E-04</td>
<td>2.55E-04</td>
</tr>
<tr>
<td>2010</td>
<td>4.85E-04</td>
<td>2.52E-04</td>
</tr>
<tr>
<td>2011</td>
<td>4.26E-04</td>
<td>1.96E-04</td>
</tr>
<tr>
<td>2012</td>
<td>3.89E-04</td>
<td>2.31E-04</td>
</tr>
<tr>
<td>2013</td>
<td>3.70E-04</td>
<td>2.10E-04</td>
</tr>
<tr>
<td>2014</td>
<td>3.49E-04</td>
<td>1.92E-04</td>
</tr>
<tr>
<td>2015</td>
<td>3.15E-04</td>
<td>1.82E-04</td>
</tr>
<tr>
<td>2016</td>
<td>2.97E-04</td>
<td>1.91E-04</td>
</tr>
<tr>
<td>2017</td>
<td>2.99E-04</td>
<td>1.49E-04</td>
</tr>
<tr>
<td>2018</td>
<td>2.73E-04</td>
<td>1.45E-04</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water Expected</td>
<td>Forage Fish Expected</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>2.73E-08</td>
<td>8.32E-04</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>4.85E-08</td>
<td>2.81E-04</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>3.39E-08</td>
<td>6.59E-05</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>2.62E-08</td>
<td>7.66E-05</td>
</tr>
<tr>
<td>137.2</td>
<td>2.62E-08</td>
<td>1.55E-04</td>
</tr>
<tr>
<td>122.4</td>
<td>1.20E-08</td>
<td>5.92E-05</td>
</tr>
<tr>
<td>113.8</td>
<td>1.20E-08</td>
<td>6.20E-05</td>
</tr>
<tr>
<td>100</td>
<td>1.20E-08</td>
<td>2.69E-05</td>
</tr>
<tr>
<td>88.9</td>
<td>7.91E-09</td>
<td>5.35E-05</td>
</tr>
<tr>
<td>58.7</td>
<td>7.91E-09</td>
<td>5.83E-05</td>
</tr>
<tr>
<td>47.3</td>
<td>7.91E-09</td>
<td>5.19E-05</td>
</tr>
<tr>
<td>25.8</td>
<td>7.91E-09</td>
<td>3.90E-05</td>
</tr>
</tbody>
</table>

TABLE 3-58: SUMMARY OF ADD\textsubscript{Expected} AND EGG CONCENTRATIONS FOR FEMALE GREAT BLUE HERON BASED ON 1993 DATA ON TEQ BASIS

TAMS/MCA
TABLE 3-59: SUMMARY OF ADD$_{95\%\text{UCL}}$ AND EGG CONCENTRATIONS FOR FEMALE GREAT BLUE HERON BASED ON 1993 DATA ON TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water $95% \text{UCL}$</th>
<th>Forage Fish $95% \text{UCL}$</th>
<th>Benthic Invertebrate $95% \text{UCL}$</th>
<th>Sediment $95% \text{UCL}$</th>
<th>Total Average Daily Dose $95% \text{UCL}$ (mg/Kg/day)</th>
<th>Total Concentration in Eggs (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>8.64E-08</td>
<td>1.70E-03</td>
<td>1.87E-06</td>
<td>4.26E-05</td>
<td>1.74E-03</td>
<td>2.08E-01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.54E-07</td>
<td>4.02E-04</td>
<td>8.77E-06</td>
<td>1.33E-04</td>
<td>5.43E-04</td>
<td>4.92E-02</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>7.27E-08</td>
<td>9.57E-05</td>
<td>7.59E-07</td>
<td>1.15E-05</td>
<td>1.08E-04</td>
<td>1.17E-02</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>2.85E-07</td>
<td>9.20E-05</td>
<td>1.53E-07</td>
<td>2.31E-06</td>
<td>9.48E-05</td>
<td>1.13E-02</td>
</tr>
<tr>
<td>137.2</td>
<td>2.85E-07</td>
<td>3.36E-04</td>
<td>4.97E-07</td>
<td>7.53E-06</td>
<td>3.45E-04</td>
<td>4.12E-02</td>
</tr>
<tr>
<td>122.4</td>
<td>1.54E-07</td>
<td>9.57E-05</td>
<td>1.70E-07</td>
<td>2.62E-06</td>
<td>9.87E-05</td>
<td>1.17E-02</td>
</tr>
<tr>
<td>113.8</td>
<td>1.54E-07</td>
<td>6.44E-05</td>
<td>2.70E-07</td>
<td>4.09E-06</td>
<td>6.89E-05</td>
<td>7.89E-03</td>
</tr>
<tr>
<td>100</td>
<td>1.54E-07</td>
<td>4.64E-05</td>
<td>2.19E-07</td>
<td>2.11E-05</td>
<td>6.79E-05</td>
<td>5.69E-03</td>
</tr>
<tr>
<td>88.9</td>
<td>3.51E-08</td>
<td>7.34E-05</td>
<td>2.85E-08</td>
<td>5.60E-06</td>
<td>7.90E-05</td>
<td>8.99E-03</td>
</tr>
<tr>
<td>58.7</td>
<td>3.51E-08</td>
<td>6.61E-05</td>
<td>4.53E-07</td>
<td>6.86E-06</td>
<td>7.34E-05</td>
<td>8.10E-03</td>
</tr>
<tr>
<td>47.3</td>
<td>3.51E-08</td>
<td>6.87E-05</td>
<td>4.12E-07</td>
<td>1.47E-05</td>
<td>8.39E-05</td>
<td>8.43E-03</td>
</tr>
<tr>
<td>25.8</td>
<td>3.51E-08</td>
<td>4.69E-05</td>
<td>2.82E-08</td>
<td>3.84E-06</td>
<td>5.08E-05</td>
<td>5.75E-03</td>
</tr>
</tbody>
</table>
TABLE 3-60: SUMMARY OF ADD_{Expected} AND EGG CONCENTRATIONS FOR FEMALE GREAT BLUE HERON FOR THE PERIOD 1993 - 2018 ON TEQ BASIS

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Dietary Dose (mg/Kg/day)</th>
<th>Average Egg Concentration (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>9.25E-04</td>
<td>4.38E-04</td>
</tr>
<tr>
<td>1994</td>
<td>4.62E-04</td>
<td>3.55E-04</td>
</tr>
<tr>
<td>1995</td>
<td>4.27E-04</td>
<td>3.93E-04</td>
</tr>
<tr>
<td>1996</td>
<td>4.38E-04</td>
<td>2.61E-04</td>
</tr>
<tr>
<td>1997</td>
<td>3.28E-04</td>
<td>2.30E-04</td>
</tr>
<tr>
<td>1998</td>
<td>2.81E-04</td>
<td>2.05E-04</td>
</tr>
<tr>
<td>1999</td>
<td>2.42E-04</td>
<td>1.62E-04</td>
</tr>
<tr>
<td>2000</td>
<td>1.98E-04</td>
<td>1.50E-04</td>
</tr>
<tr>
<td>2001</td>
<td>1.93E-04</td>
<td>1.61E-04</td>
</tr>
<tr>
<td>2002</td>
<td>1.80E-04</td>
<td>1.55E-04</td>
</tr>
<tr>
<td>2003</td>
<td>1.73E-04</td>
<td>1.30E-04</td>
</tr>
<tr>
<td>2004</td>
<td>1.51E-04</td>
<td>1.25E-04</td>
</tr>
<tr>
<td>2005</td>
<td>1.47E-04</td>
<td>1.02E-04</td>
</tr>
<tr>
<td>2006</td>
<td>1.27E-04</td>
<td>1.07E-04</td>
</tr>
<tr>
<td>2007</td>
<td>1.27E-04</td>
<td>9.73E-05</td>
</tr>
<tr>
<td>2008</td>
<td>1.15E-04</td>
<td>8.55E-05</td>
</tr>
<tr>
<td>2009</td>
<td>1.11E-04</td>
<td>9.32E-05</td>
</tr>
<tr>
<td>2010</td>
<td>1.08E-04</td>
<td>9.36E-05</td>
</tr>
<tr>
<td>2011</td>
<td>1.02E-04</td>
<td>7.04E-05</td>
</tr>
<tr>
<td>2012</td>
<td>8.88E-05</td>
<td>8.47E-05</td>
</tr>
<tr>
<td>2013</td>
<td>8.58E-05</td>
<td>7.88E-05</td>
</tr>
<tr>
<td>2014</td>
<td>8.14E-05</td>
<td>7.06E-05</td>
</tr>
<tr>
<td>2015</td>
<td>7.38E-05</td>
<td>6.84E-05</td>
</tr>
<tr>
<td>2016</td>
<td>7.03E-05</td>
<td>6.80E-05</td>
</tr>
<tr>
<td>2017</td>
<td>6.64E-05</td>
<td>5.35E-05</td>
</tr>
<tr>
<td>2018</td>
<td>6.12E-05</td>
<td>5.31E-05</td>
</tr>
<tr>
<td>Year</td>
<td>95% UCL Dietary Dose (mg/Kg/day)</td>
<td>95% UCL Egg Concentration (mg/Kg)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>1.57E-03</td>
<td>5.58E-04</td>
</tr>
<tr>
<td>1994</td>
<td>7.38E-04</td>
<td>4.21E-04</td>
</tr>
<tr>
<td>1995</td>
<td>6.66E-04</td>
<td>5.02E-04</td>
</tr>
<tr>
<td>1996</td>
<td>7.11E-04</td>
<td>3.11E-04</td>
</tr>
<tr>
<td>1997</td>
<td>5.93E-04</td>
<td>2.69E-04</td>
</tr>
<tr>
<td>1998</td>
<td>4.69E-04</td>
<td>2.48E-04</td>
</tr>
<tr>
<td>1999</td>
<td>4.29E-04</td>
<td>1.90E-04</td>
</tr>
<tr>
<td>2000</td>
<td>3.79E-04</td>
<td>1.77E-04</td>
</tr>
<tr>
<td>2001</td>
<td>3.52E-04</td>
<td>1.89E-04</td>
</tr>
<tr>
<td>2002</td>
<td>3.34E-04</td>
<td>1.81E-04</td>
</tr>
<tr>
<td>2003</td>
<td>3.18E-04</td>
<td>1.51E-04</td>
</tr>
<tr>
<td>2004</td>
<td>2.93E-04</td>
<td>1.44E-04</td>
</tr>
<tr>
<td>2005</td>
<td>2.74E-04</td>
<td>1.18E-04</td>
</tr>
<tr>
<td>2006</td>
<td>2.41E-04</td>
<td>1.25E-04</td>
</tr>
<tr>
<td>2007</td>
<td>2.40E-04</td>
<td>1.14E-04</td>
</tr>
<tr>
<td>2008</td>
<td>2.12E-04</td>
<td>9.90E-05</td>
</tr>
<tr>
<td>2009</td>
<td>2.12E-04</td>
<td>1.10E-04</td>
</tr>
<tr>
<td>2010</td>
<td>2.05E-04</td>
<td>1.09E-04</td>
</tr>
<tr>
<td>2011</td>
<td>1.80E-04</td>
<td>8.27E-05</td>
</tr>
<tr>
<td>2012</td>
<td>1.64E-04</td>
<td>1.02E-04</td>
</tr>
<tr>
<td>2013</td>
<td>1.56E-04</td>
<td>9.17E-05</td>
</tr>
<tr>
<td>2014</td>
<td>1.48E-04</td>
<td>8.36E-05</td>
</tr>
<tr>
<td>2015</td>
<td>1.32E-04</td>
<td>7.91E-05</td>
</tr>
<tr>
<td>2016</td>
<td>1.25E-04</td>
<td>8.39E-05</td>
</tr>
<tr>
<td>2017</td>
<td>1.28E-04</td>
<td>6.33E-05</td>
</tr>
<tr>
<td>2018</td>
<td>1.15E-04</td>
<td>6.22E-05</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water Expected</td>
<td>Piscivorous Fish Expected</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>2.06E-08</td>
<td>3.09E-03</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>3.67E-08</td>
<td>5.49E-04</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>2.56E-08</td>
<td>3.98E-04</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>1.98E-08</td>
<td>3.98E-04</td>
</tr>
<tr>
<td>137.2</td>
<td>1.98E-08</td>
<td>1.50E-03</td>
</tr>
<tr>
<td>122.4</td>
<td>9.08E-09</td>
<td>3.50E-04</td>
</tr>
<tr>
<td>113.8</td>
<td>9.08E-09</td>
<td>3.17E-04</td>
</tr>
<tr>
<td>100</td>
<td>9.08E-09</td>
<td>3.64E-04</td>
</tr>
<tr>
<td>88.9</td>
<td>5.98E-09</td>
<td>2.34E-04</td>
</tr>
<tr>
<td>58.7</td>
<td>5.98E-09</td>
<td>2.72E-04</td>
</tr>
<tr>
<td>47.3</td>
<td>5.98E-09</td>
<td>3.12E-04</td>
</tr>
<tr>
<td>25.8</td>
<td>5.98E-09</td>
<td>2.20E-04</td>
</tr>
</tbody>
</table>

TABLE 3-62: SUMMARY OF ADD$_{\text{Expected}}$ AND EGG CONCENTRATIONS FOR FEMALE EAGLE BASED ON 1993 DATA ON TEQ BASIS
<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water 95% UCL</th>
<th>Piscivorous Fish 95% UCL</th>
<th>Total Upper Bound Daily Dose 95% UCL (mg/Kg/day)</th>
<th>Upper Bound Concentration in Eggs (95% UCL) (mg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>6.53E-08</td>
<td>5.98E-03</td>
<td>5.98E-03</td>
<td>8.92E-01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.16E-07</td>
<td>7.07E-04</td>
<td>7.08E-04</td>
<td>1.05E-01</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>5.49E-08</td>
<td>7.16E-04</td>
<td>7.16E-04</td>
<td>1.07E-01</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>2.16E-07</td>
<td>7.16E-04</td>
<td>7.16E-04</td>
<td>1.07E-01</td>
</tr>
<tr>
<td>137.2</td>
<td>2.16E-07</td>
<td>3.58E-03</td>
<td>3.58E-03</td>
<td>5.33E-01</td>
</tr>
<tr>
<td>122.4</td>
<td>1.16E-07</td>
<td>4.81E-04</td>
<td>4.82E-04</td>
<td>7.18E-02</td>
</tr>
<tr>
<td>113.8</td>
<td>1.16E-07</td>
<td>4.43E-04</td>
<td>4.43E-04</td>
<td>6.60E-02</td>
</tr>
<tr>
<td>100</td>
<td>1.16E-07</td>
<td>1.12E-03</td>
<td>1.12E-03</td>
<td>1.68E-01</td>
</tr>
<tr>
<td>88.9</td>
<td>2.66E-08</td>
<td>4.46E-04</td>
<td>4.46E-04</td>
<td>6.64E-02</td>
</tr>
<tr>
<td>58.7</td>
<td>2.66E-08</td>
<td>4.03E-04</td>
<td>4.03E-04</td>
<td>6.01E-02</td>
</tr>
<tr>
<td>47.3</td>
<td>2.66E-08</td>
<td>8.39E-04</td>
<td>8.39E-04</td>
<td>1.25E-01</td>
</tr>
<tr>
<td>25.8</td>
<td>2.66E-08</td>
<td>4.37E-04</td>
<td>4.37E-04</td>
<td>6.52E-02</td>
</tr>
<tr>
<td>Year</td>
<td>Year 189</td>
<td>168</td>
<td>154</td>
<td>Year 189</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>1993</td>
<td>1.71E-03</td>
<td>1.29E-03</td>
<td>6.36E-04</td>
<td>2.56E-01</td>
</tr>
<tr>
<td>1994</td>
<td>1.04E-03</td>
<td>8.90E-04</td>
<td>4.51E-04</td>
<td>1.55E-01</td>
</tr>
<tr>
<td>1995</td>
<td>1.15E-03</td>
<td>9.88E-04</td>
<td>4.87E-04</td>
<td>1.71E-01</td>
</tr>
<tr>
<td>1996</td>
<td>1.05E-03</td>
<td>7.94E-04</td>
<td>4.28E-04</td>
<td>1.56E-01</td>
</tr>
<tr>
<td>1997</td>
<td>8.16E-04</td>
<td>6.95E-04</td>
<td>3.69E-04</td>
<td>1.22E-01</td>
</tr>
<tr>
<td>1999</td>
<td>5.92E-04</td>
<td>5.10E-04</td>
<td>2.36E-04</td>
<td>8.83E-02</td>
</tr>
<tr>
<td>2000</td>
<td>5.54E-04</td>
<td>4.82E-04</td>
<td>2.25E-04</td>
<td>8.25E-02</td>
</tr>
<tr>
<td>2001</td>
<td>5.17E-04</td>
<td>4.64E-04</td>
<td>2.16E-04</td>
<td>7.71E-02</td>
</tr>
<tr>
<td>2002</td>
<td>5.10E-04</td>
<td>4.94E-04</td>
<td>2.30E-04</td>
<td>7.60E-02</td>
</tr>
<tr>
<td>2003</td>
<td>4.45E-04</td>
<td>4.15E-04</td>
<td>1.96E-04</td>
<td>6.64E-02</td>
</tr>
<tr>
<td>2004</td>
<td>4.17E-04</td>
<td>4.04E-04</td>
<td>2.02E-04</td>
<td>6.22E-02</td>
</tr>
<tr>
<td>2005</td>
<td>3.70E-04</td>
<td>3.09E-04</td>
<td>1.53E-04</td>
<td>5.52E-02</td>
</tr>
<tr>
<td>2006</td>
<td>3.64E-04</td>
<td>3.37E-04</td>
<td>1.61E-04</td>
<td>5.43E-02</td>
</tr>
<tr>
<td>2007</td>
<td>3.36E-04</td>
<td>2.81E-04</td>
<td>1.25E-04</td>
<td>5.01E-02</td>
</tr>
<tr>
<td>2008</td>
<td>3.17E-04</td>
<td>2.54E-04</td>
<td>1.21E-04</td>
<td>4.73E-02</td>
</tr>
<tr>
<td>2009</td>
<td>3.21E-04</td>
<td>2.74E-04</td>
<td>1.30E-04</td>
<td>4.78E-02</td>
</tr>
<tr>
<td>2010</td>
<td>2.82E-04</td>
<td>2.50E-04</td>
<td>1.09E-04</td>
<td>4.20E-02</td>
</tr>
<tr>
<td>2011</td>
<td>2.47E-04</td>
<td>2.13E-04</td>
<td>1.05E-04</td>
<td>3.68E-02</td>
</tr>
<tr>
<td>2012</td>
<td>2.45E-04</td>
<td>2.16E-04</td>
<td>1.03E-04</td>
<td>3.65E-02</td>
</tr>
<tr>
<td>2013</td>
<td>2.36E-04</td>
<td>2.25E-04</td>
<td>9.89E-05</td>
<td>3.51E-02</td>
</tr>
<tr>
<td>2015</td>
<td>1.96E-04</td>
<td>1.88E-04</td>
<td>8.34E-05</td>
<td>2.93E-02</td>
</tr>
<tr>
<td>2016</td>
<td>2.00E-04</td>
<td>2.11E-04</td>
<td>8.98E-05</td>
<td>2.99E-02</td>
</tr>
<tr>
<td>2017</td>
<td>1.72E-04</td>
<td>1.60E-04</td>
<td>7.37E-05</td>
<td>2.57E-02</td>
</tr>
<tr>
<td>2018</td>
<td>1.67E-04</td>
<td>1.53E-04</td>
<td>6.69E-05</td>
<td>2.49E-02</td>
</tr>
<tr>
<td>Year</td>
<td>95% UCL Dietary Dose (mg/Kg/day)</td>
<td>95% UCL Egg Concentration (mg/Kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
<td>154</td>
<td>189</td>
</tr>
<tr>
<td>1993</td>
<td>2.15E-03</td>
<td>1.58E-03</td>
<td>7.93E-04</td>
<td>3.21E-01</td>
</tr>
<tr>
<td>1994</td>
<td>1.40E-03</td>
<td>1.07E-03</td>
<td>5.56E-04</td>
<td>2.09E-01</td>
</tr>
<tr>
<td>1995</td>
<td>1.54E-03</td>
<td>1.19E-03</td>
<td>5.93E-04</td>
<td>2.29E-01</td>
</tr>
<tr>
<td>1996</td>
<td>1.51E-03</td>
<td>9.68E-04</td>
<td>5.40E-04</td>
<td>2.25E-01</td>
</tr>
<tr>
<td>1997</td>
<td>1.18E-03</td>
<td>8.37E-04</td>
<td>4.62E-04</td>
<td>1.75E-01</td>
</tr>
<tr>
<td>1998</td>
<td>9.69E-04</td>
<td>7.60E-04</td>
<td>3.81E-04</td>
<td>1.44E-01</td>
</tr>
<tr>
<td>1999</td>
<td>8.79E-04</td>
<td>6.31E-04</td>
<td>2.98E-04</td>
<td>1.31E-01</td>
</tr>
<tr>
<td>2000</td>
<td>8.23E-04</td>
<td>5.89E-04</td>
<td>2.78E-04</td>
<td>1.23E-01</td>
</tr>
<tr>
<td>2001</td>
<td>7.64E-04</td>
<td>5.69E-04</td>
<td>2.69E-04</td>
<td>1.14E-01</td>
</tr>
<tr>
<td>2002</td>
<td>7.51E-04</td>
<td>6.05E-04</td>
<td>2.88E-04</td>
<td>1.12E-01</td>
</tr>
<tr>
<td>2003</td>
<td>6.64E-04</td>
<td>5.13E-04</td>
<td>2.47E-04</td>
<td>9.89E-02</td>
</tr>
<tr>
<td>2004</td>
<td>6.14E-04</td>
<td>4.96E-04</td>
<td>2.54E-04</td>
<td>9.15E-02</td>
</tr>
<tr>
<td>2005</td>
<td>5.58E-04</td>
<td>3.78E-04</td>
<td>1.91E-04</td>
<td>8.32E-02</td>
</tr>
<tr>
<td>2006</td>
<td>5.39E-04</td>
<td>4.13E-04</td>
<td>1.98E-04</td>
<td>8.04E-02</td>
</tr>
<tr>
<td>2007</td>
<td>5.07E-04</td>
<td>3.42E-04</td>
<td>1.53E-04</td>
<td>7.55E-02</td>
</tr>
<tr>
<td>2008</td>
<td>4.83E-04</td>
<td>3.13E-04</td>
<td>1.53E-04</td>
<td>7.20E-02</td>
</tr>
<tr>
<td>2009</td>
<td>4.69E-04</td>
<td>3.35E-04</td>
<td>1.64E-04</td>
<td>6.99E-02</td>
</tr>
<tr>
<td>2010</td>
<td>4.12E-04</td>
<td>3.07E-04</td>
<td>1.35E-04</td>
<td>6.14E-02</td>
</tr>
<tr>
<td>2011</td>
<td>3.75E-04</td>
<td>2.62E-04</td>
<td>1.34E-04</td>
<td>5.59E-02</td>
</tr>
<tr>
<td>2012</td>
<td>3.62E-04</td>
<td>2.66E-04</td>
<td>1.29E-04</td>
<td>5.40E-02</td>
</tr>
<tr>
<td>2013</td>
<td>3.49E-04</td>
<td>2.77E-04</td>
<td>1.25E-04</td>
<td>5.20E-02</td>
</tr>
<tr>
<td>2014</td>
<td>3.11E-04</td>
<td>2.62E-04</td>
<td>1.12E-04</td>
<td>4.64E-02</td>
</tr>
<tr>
<td>2015</td>
<td>2.88E-04</td>
<td>2.29E-04</td>
<td>1.05E-04</td>
<td>4.29E-02</td>
</tr>
<tr>
<td>2016</td>
<td>2.90E-04</td>
<td>2.58E-04</td>
<td>1.11E-04</td>
<td>4.32E-02</td>
</tr>
<tr>
<td>2017</td>
<td>2.61E-04</td>
<td>1.96E-04</td>
<td>9.71E-05</td>
<td>3.89E-02</td>
</tr>
<tr>
<td>2018</td>
<td>2.50E-04</td>
<td>1.89E-04</td>
<td>8.59E-05</td>
<td>3.72E-02</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water Expected</td>
<td>Benthic Invertebrate Expected</td>
<td>Total Average Daily Dose Expected (mg/Kg/day)</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>1.14E-05</td>
<td>4.47E+00</td>
<td>4.47E+00</td>
<td></td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>2.03E-05</td>
<td>7.83E+00</td>
<td>7.83E+00</td>
<td></td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.42E-05</td>
<td>1.87E+00</td>
<td>1.87E+00</td>
<td></td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>1.10E-05</td>
<td>2.60E-01</td>
<td>2.60E-01</td>
<td></td>
</tr>
<tr>
<td>137.2</td>
<td>1.10E-05</td>
<td>5.12E-01</td>
<td>5.12E-01</td>
<td></td>
</tr>
<tr>
<td>122.4</td>
<td>5.02E-06</td>
<td>2.83E-01</td>
<td>2.83E-01</td>
<td></td>
</tr>
<tr>
<td>113.8</td>
<td>5.02E-06</td>
<td>2.91E-01</td>
<td>2.91E-01</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5.02E-06</td>
<td>1.34E-01</td>
<td>1.34E-01</td>
<td></td>
</tr>
<tr>
<td>88.9</td>
<td>3.31E-06</td>
<td>6.71E-02</td>
<td>6.71E-02</td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>3.31E-06</td>
<td>2.07E-01</td>
<td>2.07E-01</td>
<td></td>
</tr>
<tr>
<td>47.3</td>
<td>3.31E-06</td>
<td>2.35E-01</td>
<td>2.35E-01</td>
<td></td>
</tr>
<tr>
<td>25.8</td>
<td>3.31E-06</td>
<td>6.95E-02</td>
<td>6.95E-02</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3-66: SUMMARY OF ADD$_{Expected}$ FOR FEMALE BAT USING 1993 DATA BASED ON TRI+ CONGENERS
Table 3-67: Summary of ADD_{95\%UCL} For Female Bat Using 1993 Data Based on TRI+ Congeners

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water 95% UCL</th>
<th>Benthic Invertebrate 95% UCL</th>
<th>Total Upper Bound Daily Dose_{95%UCL} (mg/Kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>3.61E-05</td>
<td>7.82E+00</td>
<td>7.82E+00</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>6.43E-05</td>
<td>3.67E+01</td>
<td>3.67E+01</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>3.04E-05</td>
<td>3.17E+00</td>
<td>3.17E+00</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>1.19E-04</td>
<td>6.38E-01</td>
<td>6.38E-01</td>
</tr>
<tr>
<td>137.2</td>
<td>1.19E-04</td>
<td>2.08E+00</td>
<td>2.08E+00</td>
</tr>
<tr>
<td>122.4</td>
<td>6.43E-05</td>
<td>7.12E-01</td>
<td>7.12E-01</td>
</tr>
<tr>
<td>113.8</td>
<td>6.43E-05</td>
<td>1.13E+00</td>
<td>1.13E+00</td>
</tr>
<tr>
<td>100</td>
<td>6.43E-05</td>
<td>9.15E-01</td>
<td>9.15E-01</td>
</tr>
<tr>
<td>88.9</td>
<td>1.47E-05</td>
<td>1.19E-01</td>
<td>1.19E-01</td>
</tr>
<tr>
<td>58.7</td>
<td>1.47E-05</td>
<td>1.89E+00</td>
<td>1.89E+00</td>
</tr>
<tr>
<td>47.3</td>
<td>1.47E-05</td>
<td>1.72E+00</td>
<td>1.72E+00</td>
</tr>
<tr>
<td>25.8</td>
<td>1.47E-05</td>
<td>1.18E-01</td>
<td>1.18E-01</td>
</tr>
</tbody>
</table>

TAMS/MCA
<table>
<thead>
<tr>
<th>Year</th>
<th>189</th>
<th>168</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>4.47E+00</td>
<td>1.76E+00</td>
<td>7.75E-01</td>
</tr>
<tr>
<td>1994</td>
<td>5.01E+00</td>
<td>1.68E+00</td>
<td>7.32E-01</td>
</tr>
<tr>
<td>1995</td>
<td>4.64E+00</td>
<td>1.57E+00</td>
<td>6.69E-01</td>
</tr>
<tr>
<td>1996</td>
<td>4.25E+00</td>
<td>1.42E+00</td>
<td>5.71E-01</td>
</tr>
<tr>
<td>1997</td>
<td>3.88E+00</td>
<td>1.28E+00</td>
<td>4.95E-01</td>
</tr>
<tr>
<td>1998</td>
<td>3.52E+00</td>
<td>1.16E+00</td>
<td>4.30E-01</td>
</tr>
<tr>
<td>1999</td>
<td>3.21E+00</td>
<td>1.06E+00</td>
<td>3.77E-01</td>
</tr>
<tr>
<td>2000</td>
<td>2.98E+00</td>
<td>9.96E-01</td>
<td>3.37E-01</td>
</tr>
<tr>
<td>2001</td>
<td>2.82E+00</td>
<td>9.68E-01</td>
<td>3.18E-01</td>
</tr>
<tr>
<td>2002</td>
<td>2.65E+00</td>
<td>9.28E-01</td>
<td>3.03E-01</td>
</tr>
<tr>
<td>2003</td>
<td>2.45E+00</td>
<td>8.75E-01</td>
<td>2.83E-01</td>
</tr>
<tr>
<td>2004</td>
<td>2.25E+00</td>
<td>8.01E-01</td>
<td>2.55E-01</td>
</tr>
<tr>
<td>2005</td>
<td>2.11E+00</td>
<td>7.42E-01</td>
<td>2.32E-01</td>
</tr>
<tr>
<td>2006</td>
<td>2.01E+00</td>
<td>7.04E-01</td>
<td>2.15E-01</td>
</tr>
<tr>
<td>2007</td>
<td>1.88E+00</td>
<td>6.56E-01</td>
<td>1.95E-01</td>
</tr>
<tr>
<td>2008</td>
<td>1.77E+00</td>
<td>6.19E-01</td>
<td>1.82E-01</td>
</tr>
<tr>
<td>2009</td>
<td>1.67E+00</td>
<td>5.92E-01</td>
<td>1.76E-01</td>
</tr>
<tr>
<td>2010</td>
<td>1.53E+00</td>
<td>5.52E-01</td>
<td>1.65E-01</td>
</tr>
<tr>
<td>2011</td>
<td>1.37E+00</td>
<td>5.08E-01</td>
<td>1.51E-01</td>
</tr>
<tr>
<td>2012</td>
<td>1.28E+00</td>
<td>4.86E-01</td>
<td>1.43E-01</td>
</tr>
<tr>
<td>2013</td>
<td>1.20E+00</td>
<td>4.62E-01</td>
<td>1.34E-01</td>
</tr>
<tr>
<td>2014</td>
<td>1.11E+00</td>
<td>4.32E-01</td>
<td>1.22E-01</td>
</tr>
<tr>
<td>2015</td>
<td>1.05E+00</td>
<td>4.18E-01</td>
<td>1.18E-01</td>
</tr>
<tr>
<td>2016</td>
<td>9.86E-01</td>
<td>3.97E-01</td>
<td>1.09E-01</td>
</tr>
<tr>
<td>2017</td>
<td>9.27E-01</td>
<td>3.73E-01</td>
<td>9.71E-02</td>
</tr>
<tr>
<td>2018</td>
<td>9.02E-01</td>
<td>3.62E-01</td>
<td>9.35E-02</td>
</tr>
</tbody>
</table>
TABLE 3-69: SUMMARY OF ADD$_{95\%\text{UCL}}$ FOR FEMALE BAT
BASED ON TRI+ PREDICTIONS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Total 95% UCL Dietary Dose (mg/Kg/day)</th>
<th>189</th>
<th>168</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>6.74E+00</td>
<td>2.02E+00</td>
<td>9.86E-01</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>6.29E+00</td>
<td>1.92E+00</td>
<td>9.31E-01</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>5.83E+00</td>
<td>1.80E+00</td>
<td>8.51E-01</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>5.33E+00</td>
<td>1.63E+00</td>
<td>7.26E-01</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>4.87E+00</td>
<td>1.47E+00</td>
<td>6.29E-01</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>4.42E+00</td>
<td>1.33E+00</td>
<td>5.47E-01</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>4.03E+00</td>
<td>1.21E+00</td>
<td>4.79E-01</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>3.74E+00</td>
<td>1.14E+00</td>
<td>4.29E-01</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>3.54E+00</td>
<td>1.11E+00</td>
<td>4.05E-01</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>3.32E+00</td>
<td>1.07E+00</td>
<td>3.86E-01</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>3.07E+00</td>
<td>1.00E+00</td>
<td>3.60E-01</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>2.82E+00</td>
<td>9.20E-01</td>
<td>3.25E-01</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>2.65E+00</td>
<td>8.52E-01</td>
<td>2.95E-01</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>2.52E+00</td>
<td>8.08E-01</td>
<td>2.74E-01</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>2.36E+00</td>
<td>7.53E-01</td>
<td>2.48E-01</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>2.22E+00</td>
<td>7.10E-01</td>
<td>2.32E-01</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>2.10E+00</td>
<td>6.79E-01</td>
<td>2.23E-01</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1.91E+00</td>
<td>6.34E-01</td>
<td>2.09E-01</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>1.72E+00</td>
<td>5.83E-01</td>
<td>1.91E-01</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>1.61E+00</td>
<td>5.58E-01</td>
<td>1.82E-01</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>1.50E+00</td>
<td>5.30E-01</td>
<td>1.71E-01</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>1.40E+00</td>
<td>4.96E-01</td>
<td>1.55E-01</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>1.32E+00</td>
<td>4.80E-01</td>
<td>1.50E-01</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>1.24E+00</td>
<td>4.55E-01</td>
<td>1.38E-01</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>1.16E+00</td>
<td>4.28E-01</td>
<td>1.24E-01</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>1.13E+00</td>
<td>4.16E-01</td>
<td>1.19E-01</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water Expected</td>
<td>Forage Fish Expected</td>
<td>Benthic Invertebrate Expected</td>
<td>Sediment Expected</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>6.05E-06</td>
<td>9.38E-02</td>
<td>7.27E-01</td>
<td>5.51E-02</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.08E-05</td>
<td>1.26E-02</td>
<td>1.27E+00</td>
<td>1.44E-01</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>7.51E-06</td>
<td>7.69E-03</td>
<td>3.03E-01</td>
<td>1.30E-02</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>5.81E-06</td>
<td>8.92E-03</td>
<td>4.22E-02</td>
<td>3.99E-03</td>
</tr>
<tr>
<td>137.2</td>
<td>5.81E-06</td>
<td>1.79E-02</td>
<td>8.32E-02</td>
<td>7.05E-03</td>
</tr>
<tr>
<td>122.4</td>
<td>2.66E-06</td>
<td>6.82E-03</td>
<td>4.60E-02</td>
<td>4.47E-03</td>
</tr>
<tr>
<td>113.8</td>
<td>2.66E-06</td>
<td>7.24E-03</td>
<td>4.73E-02</td>
<td>4.68E-03</td>
</tr>
<tr>
<td>100</td>
<td>2.66E-06</td>
<td>3.11E-03</td>
<td>2.18E-02</td>
<td>1.85E-03</td>
</tr>
<tr>
<td>88.9</td>
<td>1.75E-06</td>
<td>6.18E-03</td>
<td>1.09E-02</td>
<td>3.62E-03</td>
</tr>
<tr>
<td>58.7</td>
<td>1.75E-06</td>
<td>6.79E-03</td>
<td>3.36E-02</td>
<td>1.17E-03</td>
</tr>
<tr>
<td>47.3</td>
<td>1.75E-06</td>
<td>6.03E-03</td>
<td>3.81E-02</td>
<td>7.14E-03</td>
</tr>
<tr>
<td>25.8</td>
<td>1.75E-06</td>
<td>4.55E-03</td>
<td>1.13E-02</td>
<td>2.68E-03</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water 95% UCL</td>
<td>Fish 95% UCL</td>
<td>Benthic Invertebrate 95% UCL</td>
<td>Sediment 95% UCL</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>1.92E-05</td>
<td>1.43E-01</td>
<td>1.27E+00</td>
<td>8.07E-02</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>3.41E-05</td>
<td>2.32E-02</td>
<td>5.96E+00</td>
<td>2.51E-01</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.61E-05</td>
<td>1.10E-02</td>
<td>5.15E-01</td>
<td>2.17E-02</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>6.33E-05</td>
<td>1.06E-02</td>
<td>1.04E-01</td>
<td>4.37E-03</td>
</tr>
<tr>
<td>137.2</td>
<td>6.33E-05</td>
<td>3.80E-02</td>
<td>3.38E-01</td>
<td>1.42E-02</td>
</tr>
<tr>
<td>122.4</td>
<td>3.41E-05</td>
<td>1.07E-02</td>
<td>1.16E-01</td>
<td>4.96E-03</td>
</tr>
<tr>
<td>113.8</td>
<td>3.41E-05</td>
<td>7.51E-03</td>
<td>1.83E-01</td>
<td>7.74E-03</td>
</tr>
<tr>
<td>100</td>
<td>3.41E-05</td>
<td>5.28E-03</td>
<td>1.49E-01</td>
<td>4.00E-02</td>
</tr>
<tr>
<td>88.9</td>
<td>7.79E-06</td>
<td>8.11E-03</td>
<td>1.94E-02</td>
<td>1.06E-02</td>
</tr>
<tr>
<td>58.7</td>
<td>7.79E-06</td>
<td>7.65E-03</td>
<td>3.07E-01</td>
<td>1.30E-02</td>
</tr>
<tr>
<td>47.3</td>
<td>7.79E-06</td>
<td>7.94E-03</td>
<td>2.80E-01</td>
<td>2.78E-02</td>
</tr>
<tr>
<td>25.8</td>
<td>7.79E-06</td>
<td>5.45E-03</td>
<td>1.92E-02</td>
<td>7.25E-03</td>
</tr>
</tbody>
</table>

TABLE 3-71: SUMMARY OF ADD$_{95\% UCL}$ FOR FEMALE RACCOON USING 1993 DATA BASED ON TRI+ CONGENERS
TABLE 3-72: SUMMARY OF ADD$_{\text{Expected}}$ FOR FEMALE RACCOON BASED ON TRI+ PREDICTIONS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>189</th>
<th>168</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>8.93E-01</td>
<td>3.44E-01</td>
<td>1.84E-01</td>
</tr>
<tr>
<td>1994</td>
<td>9.68E-01</td>
<td>3.27E-01</td>
<td>1.74E-01</td>
</tr>
<tr>
<td>1995</td>
<td>9.03E-01</td>
<td>3.09E-01</td>
<td>1.60E-01</td>
</tr>
<tr>
<td>1996</td>
<td>8.21E-01</td>
<td>2.76E-01</td>
<td>1.36E-01</td>
</tr>
<tr>
<td>1997</td>
<td>7.51E-01</td>
<td>2.51E-01</td>
<td>1.18E-01</td>
</tr>
<tr>
<td>1998</td>
<td>6.79E-01</td>
<td>2.24E-01</td>
<td>1.02E-01</td>
</tr>
<tr>
<td>1999</td>
<td>6.20E-01</td>
<td>2.05E-01</td>
<td>8.99E-02</td>
</tr>
<tr>
<td>2000</td>
<td>5.73E-01</td>
<td>1.92E-01</td>
<td>8.04E-02</td>
</tr>
<tr>
<td>2001</td>
<td>5.43E-01</td>
<td>1.88E-01</td>
<td>7.57E-02</td>
</tr>
<tr>
<td>2002</td>
<td>5.10E-01</td>
<td>1.80E-01</td>
<td>7.20E-02</td>
</tr>
<tr>
<td>2003</td>
<td>4.72E-01</td>
<td>1.70E-01</td>
<td>6.76E-02</td>
</tr>
<tr>
<td>2004</td>
<td>4.33E-01</td>
<td>1.56E-01</td>
<td>6.10E-02</td>
</tr>
<tr>
<td>2005</td>
<td>4.06E-01</td>
<td>1.43E-01</td>
<td>5.53E-02</td>
</tr>
<tr>
<td>2006</td>
<td>3.87E-01</td>
<td>1.37E-01</td>
<td>5.14E-02</td>
</tr>
<tr>
<td>2007</td>
<td>3.62E-01</td>
<td>1.27E-01</td>
<td>4.67E-02</td>
</tr>
<tr>
<td>2008</td>
<td>3.40E-01</td>
<td>1.19E-01</td>
<td>4.33E-02</td>
</tr>
<tr>
<td>2009</td>
<td>3.22E-01</td>
<td>1.15E-01</td>
<td>4.19E-02</td>
</tr>
<tr>
<td>2010</td>
<td>2.95E-01</td>
<td>1.07E-01</td>
<td>3.95E-02</td>
</tr>
<tr>
<td>2011</td>
<td>2.65E-01</td>
<td>9.81E-02</td>
<td>3.60E-02</td>
</tr>
<tr>
<td>2012</td>
<td>2.46E-01</td>
<td>9.44E-02</td>
<td>3.44E-02</td>
</tr>
<tr>
<td>2013</td>
<td>2.31E-01</td>
<td>8.98E-02</td>
<td>3.23E-02</td>
</tr>
<tr>
<td>2014</td>
<td>2.14E-01</td>
<td>8.39E-02</td>
<td>2.93E-02</td>
</tr>
<tr>
<td>2015</td>
<td>2.03E-01</td>
<td>8.09E-02</td>
<td>2.82E-02</td>
</tr>
<tr>
<td>2016</td>
<td>1.90E-01</td>
<td>7.73E-02</td>
<td>2.63E-02</td>
</tr>
<tr>
<td>2017</td>
<td>1.78E-01</td>
<td>7.20E-02</td>
<td>2.32E-02</td>
</tr>
<tr>
<td>2018</td>
<td>1.73E-01</td>
<td>6.99E-02</td>
<td>2.24E-02</td>
</tr>
<tr>
<td>Year</td>
<td>Total 95% UCL Dietary Dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
<td>154</td>
</tr>
<tr>
<td>1993</td>
<td>1.27E+00</td>
<td>3.87E-01</td>
<td>1.85E-01</td>
</tr>
<tr>
<td>1994</td>
<td>1.18E+00</td>
<td>3.68E-01</td>
<td>1.74E-01</td>
</tr>
<tr>
<td>1995</td>
<td>1.10E+00</td>
<td>3.47E-01</td>
<td>1.61E-01</td>
</tr>
<tr>
<td>1996</td>
<td>1.00E+00</td>
<td>3.10E-01</td>
<td>1.36E-01</td>
</tr>
<tr>
<td>1997</td>
<td>9.19E-01</td>
<td>2.82E-01</td>
<td>1.18E-01</td>
</tr>
<tr>
<td>1998</td>
<td>8.32E-01</td>
<td>2.53E-01</td>
<td>1.03E-01</td>
</tr>
<tr>
<td>1999</td>
<td>7.59E-01</td>
<td>2.31E-01</td>
<td>9.01E-02</td>
</tr>
<tr>
<td>2000</td>
<td>7.02E-01</td>
<td>2.17E-01</td>
<td>8.06E-02</td>
</tr>
<tr>
<td>2001</td>
<td>6.65E-01</td>
<td>2.12E-01</td>
<td>7.58E-02</td>
</tr>
<tr>
<td>2002</td>
<td>6.25E-01</td>
<td>2.02E-01</td>
<td>7.22E-02</td>
</tr>
<tr>
<td>2003</td>
<td>5.78E-01</td>
<td>1.91E-01</td>
<td>6.77E-02</td>
</tr>
<tr>
<td>2004</td>
<td>5.31E-01</td>
<td>1.76E-01</td>
<td>6.11E-02</td>
</tr>
<tr>
<td>2005</td>
<td>4.98E-01</td>
<td>1.62E-01</td>
<td>5.54E-02</td>
</tr>
<tr>
<td>2006</td>
<td>4.74E-01</td>
<td>1.54E-01</td>
<td>5.15E-02</td>
</tr>
<tr>
<td>2007</td>
<td>4.44E-01</td>
<td>1.43E-01</td>
<td>4.68E-02</td>
</tr>
<tr>
<td>2008</td>
<td>4.17E-01</td>
<td>1.35E-01</td>
<td>4.34E-02</td>
</tr>
<tr>
<td>2009</td>
<td>3.94E-01</td>
<td>1.29E-01</td>
<td>4.23E-02</td>
</tr>
<tr>
<td>2010</td>
<td>3.61E-01</td>
<td>1.21E-01</td>
<td>3.96E-02</td>
</tr>
<tr>
<td>2011</td>
<td>3.24E-01</td>
<td>1.11E-01</td>
<td>3.61E-02</td>
</tr>
<tr>
<td>2012</td>
<td>3.02E-01</td>
<td>1.06E-01</td>
<td>3.45E-02</td>
</tr>
<tr>
<td>2013</td>
<td>2.83E-01</td>
<td>1.01E-01</td>
<td>3.23E-02</td>
</tr>
<tr>
<td>2014</td>
<td>2.63E-01</td>
<td>9.45E-02</td>
<td>2.94E-02</td>
</tr>
<tr>
<td>2015</td>
<td>2.48E-01</td>
<td>9.12E-02</td>
<td>2.82E-02</td>
</tr>
<tr>
<td>2016</td>
<td>2.33E-01</td>
<td>8.70E-02</td>
<td>2.63E-02</td>
</tr>
<tr>
<td>2017</td>
<td>2.18E-01</td>
<td>8.11E-02</td>
<td>2.33E-02</td>
</tr>
<tr>
<td>2018</td>
<td>2.12E-01</td>
<td>7.88E-02</td>
<td>2.24E-02</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water Expected</td>
<td>Forage Fish Expected</td>
<td>Benthic Invertebrate Expected</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>7.45E-06</td>
<td>1.09E+00</td>
<td>3.33E-01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.32E-05</td>
<td>1.46E-01</td>
<td>5.83E-01</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>9.25E-06</td>
<td>8.96E-02</td>
<td>1.39E-01</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>7.16E-06</td>
<td>1.04E-01</td>
<td>1.94E-02</td>
</tr>
<tr>
<td>137.2</td>
<td>7.16E-06</td>
<td>2.09E-01</td>
<td>3.81E-02</td>
</tr>
<tr>
<td>122.4</td>
<td>3.28E-06</td>
<td>7.94E-02</td>
<td>2.11E-02</td>
</tr>
<tr>
<td>113.8</td>
<td>3.28E-06</td>
<td>8.43E-02</td>
<td>2.17E-02</td>
</tr>
<tr>
<td>100</td>
<td>3.28E-06</td>
<td>3.63E-02</td>
<td>9.97E-03</td>
</tr>
<tr>
<td>88.9</td>
<td>2.16E-06</td>
<td>7.20E-02</td>
<td>5.00E-03</td>
</tr>
<tr>
<td>58.7</td>
<td>2.16E-06</td>
<td>7.91E-02</td>
<td>1.54E-02</td>
</tr>
<tr>
<td>47.3</td>
<td>2.16E-06</td>
<td>7.03E-02</td>
<td>1.75E-02</td>
</tr>
<tr>
<td>25.8</td>
<td>2.16E-06</td>
<td>5.30E-02</td>
<td>5.18E-03</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water 95% UCL</td>
<td>Forage Fish 95% UCL</td>
<td>Benthic Invertebrate 95% UCL</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>2.36E-05</td>
<td>1.67E+00</td>
<td>5.83E-01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>4.20E-05</td>
<td>2.70E-01</td>
<td>2.73E+00</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.98E-05</td>
<td>1.29E-01</td>
<td>2.36E-01</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>7.80E-05</td>
<td>1.23E-01</td>
<td>4.75E-02</td>
</tr>
<tr>
<td>137.2</td>
<td>7.80E-05</td>
<td>4.42E-01</td>
<td>1.55E-01</td>
</tr>
<tr>
<td>122.4</td>
<td>4.20E-05</td>
<td>1.25E-01</td>
<td>5.30E-02</td>
</tr>
<tr>
<td>113.8</td>
<td>4.20E-05</td>
<td>8.75E-02</td>
<td>8.41E-02</td>
</tr>
<tr>
<td>100</td>
<td>4.20E-05</td>
<td>6.15E-02</td>
<td>6.82E-02</td>
</tr>
<tr>
<td>88.9</td>
<td>9.59E-06</td>
<td>9.46E-02</td>
<td>8.89E-03</td>
</tr>
<tr>
<td>58.7</td>
<td>9.59E-06</td>
<td>8.91E-02</td>
<td>1.41E-01</td>
</tr>
<tr>
<td>47.3</td>
<td>9.59E-06</td>
<td>9.25E-02</td>
<td>1.28E-01</td>
</tr>
<tr>
<td>25.8</td>
<td>9.59E-06</td>
<td>6.35E-02</td>
<td>8.78E-03</td>
</tr>
</tbody>
</table>

TABLE 3-75: SUMMARY OF ADD\textsubscript{95%UCL} FOR FEMALE MINK USING 1993 DATA BASED ON TRI+ CONGENERS
TABLE 3-76: SUMMARY OF ADD_{Expected} FOR FEMALE MINK
BASED ON TRI+ PREDICTIONS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>189</th>
<th>168</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>7.25E-01</td>
<td>3.16E-01</td>
<td>1.16E-01</td>
</tr>
<tr>
<td>1994</td>
<td>7.40E-01</td>
<td>2.99E-01</td>
<td>1.11E-01</td>
</tr>
<tr>
<td>1995</td>
<td>7.29E-01</td>
<td>2.89E-01</td>
<td>1.09E-01</td>
</tr>
<tr>
<td>1996</td>
<td>6.23E-01</td>
<td>2.30E-01</td>
<td>8.59E-02</td>
</tr>
<tr>
<td>1997</td>
<td>5.56E-01</td>
<td>2.28E-01</td>
<td>7.67E-02</td>
</tr>
<tr>
<td>1998</td>
<td>4.93E-01</td>
<td>1.78E-01</td>
<td>6.50E-02</td>
</tr>
<tr>
<td>1999</td>
<td>4.53E-01</td>
<td>1.69E-01</td>
<td>5.82E-02</td>
</tr>
<tr>
<td>2000</td>
<td>4.17E-01</td>
<td>1.51E-01</td>
<td>5.42E-02</td>
</tr>
<tr>
<td>2001</td>
<td>3.98E-01</td>
<td>1.58E-01</td>
<td>4.98E-02</td>
</tr>
<tr>
<td>2002</td>
<td>3.70E-01</td>
<td>1.45E-01</td>
<td>4.67E-02</td>
</tr>
<tr>
<td>2003</td>
<td>3.43E-01</td>
<td>1.37E-01</td>
<td>4.56E-02</td>
</tr>
<tr>
<td>2004</td>
<td>3.15E-01</td>
<td>1.28E-01</td>
<td>4.03E-02</td>
</tr>
<tr>
<td>2005</td>
<td>2.97E-01</td>
<td>1.14E-01</td>
<td>3.72E-02</td>
</tr>
<tr>
<td>2006</td>
<td>2.83E-01</td>
<td>1.13E-01</td>
<td>3.46E-02</td>
</tr>
<tr>
<td>2007</td>
<td>2.63E-01</td>
<td>1.01E-01</td>
<td>3.29E-02</td>
</tr>
<tr>
<td>2008</td>
<td>2.48E-01</td>
<td>9.30E-02</td>
<td>2.86E-02</td>
</tr>
<tr>
<td>2009</td>
<td>2.36E-01</td>
<td>9.47E-02</td>
<td>3.01E-02</td>
</tr>
<tr>
<td>2010</td>
<td>2.15E-01</td>
<td>8.72E-02</td>
<td>2.86E-02</td>
</tr>
<tr>
<td>2011</td>
<td>1.92E-01</td>
<td>7.65E-02</td>
<td>2.58E-02</td>
</tr>
<tr>
<td>2012</td>
<td>1.81E-01</td>
<td>8.11E-02</td>
<td>2.70E-02</td>
</tr>
<tr>
<td>2013</td>
<td>1.70E-01</td>
<td>7.38E-02</td>
<td>2.36E-02</td>
</tr>
<tr>
<td>2014</td>
<td>1.58E-01</td>
<td>7.07E-02</td>
<td>2.22E-02</td>
</tr>
<tr>
<td>2015</td>
<td>1.49E-01</td>
<td>6.65E-02</td>
<td>2.16E-02</td>
</tr>
<tr>
<td>2016</td>
<td>1.40E-01</td>
<td>6.55E-02</td>
<td>2.11E-02</td>
</tr>
<tr>
<td>2017</td>
<td>1.31E-01</td>
<td>5.67E-02</td>
<td>1.72E-02</td>
</tr>
<tr>
<td>2018</td>
<td>1.27E-01</td>
<td>5.74E-02</td>
<td>1.75E-02</td>
</tr>
</tbody>
</table>

Average Dietary Dose (mg/Kg/day)
<table>
<thead>
<tr>
<th>Year</th>
<th>95% UCL Dietary Dose (mg/Kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
</tr>
<tr>
<td>1993</td>
<td>9.25E-01</td>
</tr>
<tr>
<td>1994</td>
<td>8.63E-01</td>
</tr>
<tr>
<td>1995</td>
<td>8.47E-01</td>
</tr>
<tr>
<td>1996</td>
<td>7.29E-01</td>
</tr>
<tr>
<td>1997</td>
<td>6.52E-01</td>
</tr>
<tr>
<td>1998</td>
<td>5.81E-01</td>
</tr>
<tr>
<td>1999</td>
<td>5.33E-01</td>
</tr>
<tr>
<td>2000</td>
<td>4.92E-01</td>
</tr>
<tr>
<td>2001</td>
<td>4.69E-01</td>
</tr>
<tr>
<td>2002</td>
<td>4.36E-01</td>
</tr>
<tr>
<td>2003</td>
<td>4.05E-01</td>
</tr>
<tr>
<td>2004</td>
<td>3.72E-01</td>
</tr>
<tr>
<td>2005</td>
<td>3.49E-01</td>
</tr>
<tr>
<td>2006</td>
<td>3.33E-01</td>
</tr>
<tr>
<td>2007</td>
<td>3.10E-01</td>
</tr>
<tr>
<td>2008</td>
<td>2.92E-01</td>
</tr>
<tr>
<td>2009</td>
<td>2.78E-01</td>
</tr>
<tr>
<td>2010</td>
<td>2.53E-01</td>
</tr>
<tr>
<td>2011</td>
<td>2.27E-01</td>
</tr>
<tr>
<td>2012</td>
<td>2.13E-01</td>
</tr>
<tr>
<td>2013</td>
<td>1.99E-01</td>
</tr>
<tr>
<td>2014</td>
<td>1.85E-01</td>
</tr>
<tr>
<td>2015</td>
<td>1.75E-01</td>
</tr>
<tr>
<td>2016</td>
<td>1.65E-01</td>
</tr>
<tr>
<td>2017</td>
<td>1.54E-01</td>
</tr>
<tr>
<td>2018</td>
<td>1.50E-01</td>
</tr>
</tbody>
</table>
TABLE 3-78: SUMMARY OF ADD$_{\text{Expected}}$ FOR FEMALE OTTER USING 1993 DATA BASED ON TRI+ CONGENERS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water Expected</th>
<th>Piscivorous Fish Expected</th>
<th>Sediment Expected</th>
<th>Total Average Daily Dose$_{\text{Expected}}$ (mg/Kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>5.97E-06</td>
<td>1.16E+01</td>
<td>5.73E-03</td>
<td>1.16E+01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.06E-05</td>
<td>2.06E+00</td>
<td>1.50E-02</td>
<td>2.08E+00</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>7.42E-06</td>
<td>1.50E+00</td>
<td>1.35E-03</td>
<td>1.50E+00</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>5.74E-06</td>
<td>1.50E+00</td>
<td>4.15E-04</td>
<td>1.50E+00</td>
</tr>
<tr>
<td>137.2</td>
<td>5.74E-06</td>
<td>5.65E+00</td>
<td>7.32E-04</td>
<td>5.65E+00</td>
</tr>
<tr>
<td>122.4</td>
<td>2.63E-06</td>
<td>1.32E+00</td>
<td>4.64E-04</td>
<td>1.32E+00</td>
</tr>
<tr>
<td>113.8</td>
<td>2.63E-06</td>
<td>1.19E+00</td>
<td>4.87E-04</td>
<td>1.19E+00</td>
</tr>
<tr>
<td>100</td>
<td>2.63E-06</td>
<td>1.37E+00</td>
<td>1.92E-04</td>
<td>1.37E+00</td>
</tr>
<tr>
<td>88.9</td>
<td>1.73E-06</td>
<td>8.81E-01</td>
<td>3.76E-04</td>
<td>8.81E-01</td>
</tr>
<tr>
<td>58.7</td>
<td>1.73E-06</td>
<td>1.02E+00</td>
<td>1.21E-04</td>
<td>1.02E+00</td>
</tr>
<tr>
<td>47.3</td>
<td>1.73E-06</td>
<td>1.17E+00</td>
<td>7.41E-04</td>
<td>1.17E+00</td>
</tr>
<tr>
<td>25.8</td>
<td>1.73E-06</td>
<td>8.27E-01</td>
<td>2.79E-04</td>
<td>8.28E-01</td>
</tr>
</tbody>
</table>

TAMS/MCA
<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water 95% UCL</th>
<th>Piscivorous Fish 95% UCL</th>
<th>Sediment 95% UCL</th>
<th>Total Average Daily Dose 95% UCL (mg/Kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson's Island Pool (189)</td>
<td>1.89E-05</td>
<td>2.25E+01</td>
<td>8.38E-03</td>
<td>2.25E+01</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>3.37E-05</td>
<td>2.66E+00</td>
<td>2.61E-02</td>
<td>2.69E+00</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.59E-05</td>
<td>2.69E+00</td>
<td>2.26E-03</td>
<td>2.69E+00</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>6.25E-05</td>
<td>2.69E+00</td>
<td>4.54E-04</td>
<td>2.69E+00</td>
</tr>
<tr>
<td>137.2</td>
<td>6.25E-05</td>
<td>1.34E+01</td>
<td>1.48E-03</td>
<td>1.34E+01</td>
</tr>
<tr>
<td>122.4</td>
<td>3.37E-05</td>
<td>1.81E+00</td>
<td>5.16E-04</td>
<td>1.81E+00</td>
</tr>
<tr>
<td>113.8</td>
<td>3.37E-05</td>
<td>1.67E+00</td>
<td>8.04E-04</td>
<td>1.67E+00</td>
</tr>
<tr>
<td>100</td>
<td>3.37E-05</td>
<td>4.22E+00</td>
<td>4.15E-03</td>
<td>4.23E+00</td>
</tr>
<tr>
<td>88.9</td>
<td>7.69E-06</td>
<td>1.68E+00</td>
<td>1.10E-03</td>
<td>1.68E+00</td>
</tr>
<tr>
<td>58.7</td>
<td>7.69E-06</td>
<td>1.52E+00</td>
<td>1.35E-03</td>
<td>1.52E+00</td>
</tr>
<tr>
<td>47.3</td>
<td>7.69E-06</td>
<td>3.15E+00</td>
<td>2.89E-03</td>
<td>3.16E+00</td>
</tr>
<tr>
<td>25.8</td>
<td>7.69E-06</td>
<td>1.64E+00</td>
<td>7.54E-04</td>
<td>1.64E+00</td>
</tr>
</tbody>
</table>

TABLE 3-79: SUMMARY OF ADD_{95\% UCL} FOR FEMALE OTTER USING 1993 DATA BASED ON TRI+ CONGENERS
TABLE 3-80: SUMMARY OF ADD\text{Expected} FOR FEMALE OTTER
BASED ON TRI+ PREDICTIONS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>189</th>
<th>168</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>6.46E+00</td>
<td>4.87E+00</td>
<td>2.39E+00</td>
</tr>
<tr>
<td>1994</td>
<td>3.93E+00</td>
<td>3.35E+00</td>
<td>1.70E+00</td>
</tr>
<tr>
<td>1995</td>
<td>4.33E+00</td>
<td>3.72E+00</td>
<td>1.83E+00</td>
</tr>
<tr>
<td>1996</td>
<td>3.95E+00</td>
<td>2.99E+00</td>
<td>1.61E+00</td>
</tr>
<tr>
<td>1997</td>
<td>3.08E+00</td>
<td>2.62E+00</td>
<td>1.39E+00</td>
</tr>
<tr>
<td>1998</td>
<td>2.57E+00</td>
<td>2.35E+00</td>
<td>1.17E+00</td>
</tr>
<tr>
<td>1999</td>
<td>2.24E+00</td>
<td>1.92E+00</td>
<td>8.89E-01</td>
</tr>
<tr>
<td>2000</td>
<td>2.09E+00</td>
<td>1.81E+00</td>
<td>8.47E-01</td>
</tr>
<tr>
<td>2001</td>
<td>1.95E+00</td>
<td>1.75E+00</td>
<td>8.14E-01</td>
</tr>
<tr>
<td>2002</td>
<td>1.92E+00</td>
<td>1.86E+00</td>
<td>8.65E-01</td>
</tr>
<tr>
<td>2003</td>
<td>1.68E+00</td>
<td>1.56E+00</td>
<td>7.38E-01</td>
</tr>
<tr>
<td>2004</td>
<td>1.57E+00</td>
<td>1.52E+00</td>
<td>7.61E-01</td>
</tr>
<tr>
<td>2005</td>
<td>1.40E+00</td>
<td>1.16E+00</td>
<td>5.74E-01</td>
</tr>
<tr>
<td>2006</td>
<td>1.37E+00</td>
<td>1.27E+00</td>
<td>6.05E-01</td>
</tr>
<tr>
<td>2007</td>
<td>1.27E+00</td>
<td>1.06E+00</td>
<td>4.69E-01</td>
</tr>
<tr>
<td>2008</td>
<td>1.20E+00</td>
<td>9.56E-01</td>
<td>4.54E-01</td>
</tr>
<tr>
<td>2009</td>
<td>1.21E+00</td>
<td>1.03E+00</td>
<td>4.89E-01</td>
</tr>
<tr>
<td>2010</td>
<td>1.06E+00</td>
<td>9.42E-01</td>
<td>4.09E-01</td>
</tr>
<tr>
<td>2011</td>
<td>9.32E-01</td>
<td>8.03E-01</td>
<td>3.97E-01</td>
</tr>
<tr>
<td>2012</td>
<td>9.25E-01</td>
<td>8.13E-01</td>
<td>3.86E-01</td>
</tr>
<tr>
<td>2013</td>
<td>8.88E-01</td>
<td>8.46E-01</td>
<td>3.72E-01</td>
</tr>
<tr>
<td>2014</td>
<td>8.08E-01</td>
<td>8.06E-01</td>
<td>3.40E-01</td>
</tr>
<tr>
<td>2015</td>
<td>7.40E-01</td>
<td>7.07E-01</td>
<td>3.14E-01</td>
</tr>
<tr>
<td>2016</td>
<td>7.55E-01</td>
<td>7.93E-01</td>
<td>3.38E-01</td>
</tr>
<tr>
<td>2017</td>
<td>6.50E-01</td>
<td>6.01E-01</td>
<td>2.77E-01</td>
</tr>
<tr>
<td>2018</td>
<td>6.30E-01</td>
<td>5.77E-01</td>
<td>2.52E-01</td>
</tr>
<tr>
<td>Year</td>
<td>Total 95% UCL Dietary Dose (mg/Kg/day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
<td>154</td>
</tr>
<tr>
<td>1993</td>
<td>8.10E+00</td>
<td>5.94E+00</td>
<td>2.98E+00</td>
</tr>
<tr>
<td>1994</td>
<td>5.29E+00</td>
<td>4.03E+00</td>
<td>2.09E+00</td>
</tr>
<tr>
<td>1995</td>
<td>5.79E+00</td>
<td>4.46E+00</td>
<td>2.23E+00</td>
</tr>
<tr>
<td>1996</td>
<td>5.69E+00</td>
<td>3.64E+00</td>
<td>2.03E+00</td>
</tr>
<tr>
<td>1997</td>
<td>4.43E+00</td>
<td>3.15E+00</td>
<td>1.74E+00</td>
</tr>
<tr>
<td>1998</td>
<td>3.65E+00</td>
<td>2.86E+00</td>
<td>1.43E+00</td>
</tr>
<tr>
<td>1999</td>
<td>3.31E+00</td>
<td>2.37E+00</td>
<td>1.12E+00</td>
</tr>
<tr>
<td>2000</td>
<td>3.10E+00</td>
<td>2.22E+00</td>
<td>1.05E+00</td>
</tr>
<tr>
<td>2001</td>
<td>2.88E+00</td>
<td>2.14E+00</td>
<td>1.01E+00</td>
</tr>
<tr>
<td>2002</td>
<td>2.83E+00</td>
<td>2.28E+00</td>
<td>1.08E+00</td>
</tr>
<tr>
<td>2003</td>
<td>2.50E+00</td>
<td>1.93E+00</td>
<td>9.27E-01</td>
</tr>
<tr>
<td>2004</td>
<td>2.31E+00</td>
<td>1.87E+00</td>
<td>9.54E-01</td>
</tr>
<tr>
<td>2005</td>
<td>2.10E+00</td>
<td>1.42E+00</td>
<td>7.18E-01</td>
</tr>
<tr>
<td>2006</td>
<td>2.03E+00</td>
<td>1.55E+00</td>
<td>7.43E-01</td>
</tr>
<tr>
<td>2007</td>
<td>1.91E+00</td>
<td>1.29E+00</td>
<td>5.76E-01</td>
</tr>
<tr>
<td>2008</td>
<td>1.82E+00</td>
<td>1.18E+00</td>
<td>5.71E-01</td>
</tr>
<tr>
<td>2009</td>
<td>1.77E+00</td>
<td>1.26E+00</td>
<td>6.16E-01</td>
</tr>
<tr>
<td>2010</td>
<td>1.55E+00</td>
<td>1.16E+00</td>
<td>5.07E-01</td>
</tr>
<tr>
<td>2011</td>
<td>1.41E+00</td>
<td>9.86E-01</td>
<td>5.03E-01</td>
</tr>
<tr>
<td>2012</td>
<td>1.37E+00</td>
<td>1.00E+00</td>
<td>4.86E-01</td>
</tr>
<tr>
<td>2013</td>
<td>1.31E+00</td>
<td>1.04E+00</td>
<td>4.72E-01</td>
</tr>
<tr>
<td>2014</td>
<td>1.17E+00</td>
<td>9.88E-01</td>
<td>4.22E-01</td>
</tr>
<tr>
<td>2015</td>
<td>1.09E+00</td>
<td>8.61E-01</td>
<td>3.96E-01</td>
</tr>
<tr>
<td>2016</td>
<td>1.09E+00</td>
<td>9.69E-01</td>
<td>4.19E-01</td>
</tr>
<tr>
<td>2017</td>
<td>9.84E-01</td>
<td>7.39E-01</td>
<td>3.65E-01</td>
</tr>
<tr>
<td>2018</td>
<td>9.41E-01</td>
<td>7.11E-01</td>
<td>3.23E-01</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water Expected</td>
<td>Benthic Invertebrate Expected</td>
<td>Total Average Daily Dose Expected (mg/Kg/day)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>7.21E-08</td>
<td>1.33E-04</td>
<td>1.33E-04</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>1.28E-07</td>
<td>2.32E-04</td>
<td>2.32E-04</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>8.96E-08</td>
<td>5.54E-05</td>
<td>5.54E-05</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>6.93E-08</td>
<td>7.71E-06</td>
<td>7.78E-06</td>
</tr>
<tr>
<td>137.2</td>
<td>6.93E-08</td>
<td>1.52E-05</td>
<td>1.53E-05</td>
</tr>
<tr>
<td>122.4</td>
<td>3.18E-08</td>
<td>8.40E-06</td>
<td>8.43E-06</td>
</tr>
<tr>
<td>113.8</td>
<td>3.18E-08</td>
<td>8.64E-06</td>
<td>8.67E-06</td>
</tr>
<tr>
<td>100</td>
<td>3.18E-08</td>
<td>3.97E-06</td>
<td>4.00E-06</td>
</tr>
<tr>
<td>88.9</td>
<td>2.09E-08</td>
<td>1.99E-06</td>
<td>2.01E-06</td>
</tr>
<tr>
<td>58.7</td>
<td>2.09E-08</td>
<td>6.13E-06</td>
<td>6.15E-06</td>
</tr>
<tr>
<td>47.3</td>
<td>2.09E-08</td>
<td>6.96E-06</td>
<td>6.98E-06</td>
</tr>
<tr>
<td>25.8</td>
<td>2.09E-08</td>
<td>2.06E-06</td>
<td>2.08E-06</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water 95% UCL</td>
<td>Benthic Invertebrate 95% UCL</td>
<td>Total Upper Bound Daily Dose$_{95%UCL}$ (mg/Kg/day)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>2.28E-07</td>
<td>2.32E-04</td>
<td>2.32E-04</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>4.07E-07</td>
<td>1.09E-03</td>
<td>1.09E-03</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.92E-07</td>
<td>9.41E-05</td>
<td>9.43E-05</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>7.55E-07</td>
<td>1.89E-05</td>
<td>1.97E-05</td>
</tr>
<tr>
<td>137.2</td>
<td>7.55E-07</td>
<td>6.17E-05</td>
<td>6.24E-05</td>
</tr>
<tr>
<td>122.4</td>
<td>4.07E-07</td>
<td>2.11E-05</td>
<td>2.15E-05</td>
</tr>
<tr>
<td>113.8</td>
<td>4.07E-07</td>
<td>3.35E-05</td>
<td>3.39E-05</td>
</tr>
<tr>
<td>100</td>
<td>4.07E-07</td>
<td>2.71E-05</td>
<td>2.76E-05</td>
</tr>
<tr>
<td>88.9</td>
<td>9.29E-08</td>
<td>3.54E-06</td>
<td>3.63E-06</td>
</tr>
<tr>
<td>58.7</td>
<td>9.29E-08</td>
<td>5.61E-05</td>
<td>5.62E-05</td>
</tr>
<tr>
<td>47.3</td>
<td>9.29E-08</td>
<td>5.11E-05</td>
<td>5.12E-05</td>
</tr>
<tr>
<td>25.8</td>
<td>9.29E-08</td>
<td>3.50E-06</td>
<td>3.59E-06</td>
</tr>
<tr>
<td>Year</td>
<td>189 (mg/Kg/day)</td>
<td>168 (mg/Kg/day)</td>
<td>154 (mg/Kg/day)</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1993</td>
<td>1.33E-04</td>
<td>5.22E-05</td>
<td>2.31E-05</td>
</tr>
<tr>
<td>1994</td>
<td>1.49E-04</td>
<td>4.98E-05</td>
<td>2.18E-05</td>
</tr>
<tr>
<td>1995</td>
<td>1.38E-04</td>
<td>4.67E-05</td>
<td>1.99E-05</td>
</tr>
<tr>
<td>1996</td>
<td>1.26E-04</td>
<td>4.20E-05</td>
<td>1.70E-05</td>
</tr>
<tr>
<td>1997</td>
<td>1.15E-04</td>
<td>3.80E-05</td>
<td>1.47E-05</td>
</tr>
<tr>
<td>1998</td>
<td>1.04E-04</td>
<td>3.44E-05</td>
<td>1.28E-05</td>
</tr>
<tr>
<td>1999</td>
<td>9.53E-05</td>
<td>3.14E-05</td>
<td>1.12E-05</td>
</tr>
<tr>
<td>2000</td>
<td>8.84E-05</td>
<td>2.96E-05</td>
<td>1.00E-05</td>
</tr>
<tr>
<td>2001</td>
<td>8.36E-05</td>
<td>2.88E-05</td>
<td>9.47E-06</td>
</tr>
<tr>
<td>2002</td>
<td>7.86E-05</td>
<td>2.76E-05</td>
<td>9.02E-06</td>
</tr>
<tr>
<td>2003</td>
<td>7.26E-05</td>
<td>2.60E-05</td>
<td>8.43E-06</td>
</tr>
<tr>
<td>2004</td>
<td>6.67E-05</td>
<td>2.38E-05</td>
<td>7.60E-06</td>
</tr>
<tr>
<td>2005</td>
<td>6.27E-05</td>
<td>2.20E-05</td>
<td>6.91E-06</td>
</tr>
<tr>
<td>2006</td>
<td>5.96E-05</td>
<td>2.09E-05</td>
<td>6.41E-06</td>
</tr>
<tr>
<td>2007</td>
<td>5.58E-05</td>
<td>1.95E-05</td>
<td>5.80E-06</td>
</tr>
<tr>
<td>2008</td>
<td>5.25E-05</td>
<td>1.84E-05</td>
<td>5.42E-06</td>
</tr>
<tr>
<td>2009</td>
<td>4.96E-05</td>
<td>1.76E-05</td>
<td>5.23E-06</td>
</tr>
<tr>
<td>2010</td>
<td>4.53E-05</td>
<td>1.64E-05</td>
<td>4.90E-06</td>
</tr>
<tr>
<td>2011</td>
<td>4.07E-05</td>
<td>1.51E-05</td>
<td>4.48E-06</td>
</tr>
<tr>
<td>2012</td>
<td>3.80E-05</td>
<td>1.44E-05</td>
<td>4.27E-06</td>
</tr>
<tr>
<td>2013</td>
<td>3.55E-05</td>
<td>1.37E-05</td>
<td>3.99E-06</td>
</tr>
<tr>
<td>2014</td>
<td>3.30E-05</td>
<td>1.28E-05</td>
<td>3.64E-06</td>
</tr>
<tr>
<td>2015</td>
<td>3.12E-05</td>
<td>1.24E-05</td>
<td>3.50E-06</td>
</tr>
<tr>
<td>2016</td>
<td>2.93E-05</td>
<td>1.18E-05</td>
<td>3.23E-06</td>
</tr>
<tr>
<td>2017</td>
<td>2.75E-05</td>
<td>1.11E-05</td>
<td>2.89E-06</td>
</tr>
<tr>
<td>2018</td>
<td>2.68E-05</td>
<td>1.08E-05</td>
<td>2.78E-06</td>
</tr>
</tbody>
</table>
TABLE 3-85: SUMMARY OF ADD$_{95\%\text{UCL}}$ FOR FEMALE BAT
ON A TEQ BASIS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Total 95% UCL Dietary Dose (mg/Kg/day)</th>
<th>189</th>
<th>168</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td></td>
<td>2.00E-04</td>
<td>5.99E-05</td>
<td>2.93E-05</td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td>1.87E-04</td>
<td>5.71E-05</td>
<td>2.76E-05</td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td>1.73E-04</td>
<td>5.36E-05</td>
<td>2.53E-05</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td>1.58E-04</td>
<td>4.83E-05</td>
<td>2.15E-05</td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td>1.45E-04</td>
<td>4.36E-05</td>
<td>1.87E-05</td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td>1.31E-04</td>
<td>3.94E-05</td>
<td>1.63E-05</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td>1.20E-04</td>
<td>3.60E-05</td>
<td>1.42E-05</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>1.11E-04</td>
<td>3.40E-05</td>
<td>1.28E-05</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td>1.05E-04</td>
<td>3.30E-05</td>
<td>1.20E-05</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td>9.86E-05</td>
<td>3.17E-05</td>
<td>1.15E-05</td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td>9.11E-05</td>
<td>2.98E-05</td>
<td>1.07E-05</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td>8.37E-05</td>
<td>2.73E-05</td>
<td>9.66E-06</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td>7.86E-05</td>
<td>2.53E-05</td>
<td>8.78E-06</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>7.49E-05</td>
<td>2.40E-05</td>
<td>8.15E-06</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td>7.00E-05</td>
<td>2.24E-05</td>
<td>7.38E-06</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td>6.59E-05</td>
<td>2.11E-05</td>
<td>6.89E-06</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td>6.23E-05</td>
<td>2.02E-05</td>
<td>6.64E-06</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>5.68E-05</td>
<td>1.88E-05</td>
<td>6.23E-06</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>5.11E-05</td>
<td>1.73E-05</td>
<td>5.69E-06</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td>4.76E-05</td>
<td>1.66E-05</td>
<td>5.43E-06</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td>4.46E-05</td>
<td>1.57E-05</td>
<td>5.08E-06</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td>4.14E-05</td>
<td>1.47E-05</td>
<td>4.62E-06</td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td>3.92E-05</td>
<td>1.43E-05</td>
<td>4.45E-06</td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td>3.67E-05</td>
<td>1.35E-05</td>
<td>4.11E-06</td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td>3.45E-05</td>
<td>1.27E-05</td>
<td>3.67E-06</td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td>3.36E-05</td>
<td>1.24E-05</td>
<td>3.54E-06</td>
</tr>
</tbody>
</table>

TAMS/MCA
<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water Expected</th>
<th>Forage Fish Expected</th>
<th>Benthic Invertebrate Expected</th>
<th>Sediment Expected</th>
<th>Total Average Daily Dose Expected (mg/Kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>3.83E-08</td>
<td>4.02E-06</td>
<td>2.16E-05</td>
<td>4.29E-05</td>
<td>6.85E-05</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>6.80E-08</td>
<td>5.39E-07</td>
<td>3.78E-05</td>
<td>1.12E-04</td>
<td>1.50E-04</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>4.75E-08</td>
<td>3.30E-07</td>
<td>9.00E-06</td>
<td>1.01E-05</td>
<td>1.95E-05</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>3.68E-08</td>
<td>3.83E-07</td>
<td>1.25E-06</td>
<td>3.11E-06</td>
<td>4.78E-06</td>
</tr>
<tr>
<td>137.2</td>
<td>3.68E-08</td>
<td>7.68E-07</td>
<td>2.47E-06</td>
<td>5.48E-06</td>
<td>8.76E-06</td>
</tr>
<tr>
<td>122.4</td>
<td>1.68E-08</td>
<td>2.93E-07</td>
<td>1.37E-06</td>
<td>3.47E-06</td>
<td>5.15E-06</td>
</tr>
<tr>
<td>113.8</td>
<td>1.68E-08</td>
<td>3.11E-07</td>
<td>1.40E-06</td>
<td>3.64E-06</td>
<td>5.37E-06</td>
</tr>
<tr>
<td>100</td>
<td>1.68E-08</td>
<td>1.34E-07</td>
<td>6.45E-07</td>
<td>1.44E-06</td>
<td>2.24E-06</td>
</tr>
<tr>
<td>88.9</td>
<td>1.11E-08</td>
<td>2.65E-07</td>
<td>3.24E-07</td>
<td>2.82E-06</td>
<td>3.42E-06</td>
</tr>
<tr>
<td>58.7</td>
<td>1.11E-08</td>
<td>2.91E-07</td>
<td>9.97E-07</td>
<td>9.09E-07</td>
<td>2.21E-06</td>
</tr>
<tr>
<td>47.3</td>
<td>1.11E-08</td>
<td>2.59E-07</td>
<td>1.13E-06</td>
<td>5.55E-06</td>
<td>6.95E-06</td>
</tr>
<tr>
<td>25.8</td>
<td>1.11E-08</td>
<td>1.95E-07</td>
<td>3.35E-07</td>
<td>2.09E-06</td>
<td>2.63E-06</td>
</tr>
</tbody>
</table>
TABLE 3-87: SUMMARY OF ADD_{95%UCL} FOR FEMALE RACCOON USING 1993 DATA ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water 95% UCL</th>
<th>Fish 95% UCL</th>
<th>Benthic Invertebrate 95% UCL</th>
<th>Sediment 95% UCL</th>
<th>Total Average Daily Dose_{95%UCL} (mg/Kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>1.21E-07</td>
<td>6.14E-06</td>
<td>3.77E-05</td>
<td>6.27E-05</td>
<td>1.07E-04</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>2.16E-07</td>
<td>9.94E-07</td>
<td>1.77E-04</td>
<td>1.96E-04</td>
<td>3.74E-04</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.02E-07</td>
<td>4.73E-07</td>
<td>1.53E-05</td>
<td>1.69E-05</td>
<td>3.28E-05</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>4.01E-07</td>
<td>4.53E-07</td>
<td>3.08E-06</td>
<td>3.40E-06</td>
<td>7.33E-06</td>
</tr>
<tr>
<td>137.2</td>
<td>4.01E-07</td>
<td>1.63E-06</td>
<td>1.00E-05</td>
<td>1.11E-05</td>
<td>2.31E-05</td>
</tr>
<tr>
<td>122.4</td>
<td>2.16E-07</td>
<td>4.60E-07</td>
<td>3.43E-06</td>
<td>3.86E-06</td>
<td>7.97E-06</td>
</tr>
<tr>
<td>113.8</td>
<td>2.16E-07</td>
<td>3.22E-07</td>
<td>5.44E-06</td>
<td>6.02E-06</td>
<td>1.20E-05</td>
</tr>
<tr>
<td>100</td>
<td>2.16E-07</td>
<td>2.27E-07</td>
<td>4.41E-06</td>
<td>3.11E-05</td>
<td>3.59E-05</td>
</tr>
<tr>
<td>88.9</td>
<td>4.93E-08</td>
<td>3.48E-07</td>
<td>5.75E-07</td>
<td>8.24E-06</td>
<td>9.22E-06</td>
</tr>
<tr>
<td>58.7</td>
<td>4.93E-08</td>
<td>3.28E-07</td>
<td>9.12E-06</td>
<td>1.01E-05</td>
<td>1.96E-05</td>
</tr>
<tr>
<td>47.3</td>
<td>4.93E-08</td>
<td>3.41E-07</td>
<td>8.31E-06</td>
<td>2.17E-05</td>
<td>3.04E-05</td>
</tr>
<tr>
<td>25.8</td>
<td>4.93E-08</td>
<td>2.34E-07</td>
<td>5.68E-07</td>
<td>5.64E-06</td>
<td>6.49E-06</td>
</tr>
<tr>
<td>Year</td>
<td>189</td>
<td>168</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>1.27E-04</td>
<td>4.27E-05</td>
<td>1.89E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>1.22E-04</td>
<td>4.03E-05</td>
<td>1.74E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>1.14E-04</td>
<td>3.88E-05</td>
<td>1.68E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>1.04E-04</td>
<td>3.47E-05</td>
<td>1.41E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>9.57E-05</td>
<td>3.16E-05</td>
<td>1.23E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>8.64E-05</td>
<td>2.83E-05</td>
<td>1.06E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>7.88E-05</td>
<td>2.59E-05</td>
<td>9.36E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>7.22E-05</td>
<td>2.38E-05</td>
<td>8.18E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>6.83E-05</td>
<td>2.33E-05</td>
<td>7.65E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>6.45E-05</td>
<td>2.24E-05</td>
<td>7.31E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>6.00E-05</td>
<td>2.13E-05</td>
<td>6.90E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>5.50E-05</td>
<td>1.97E-05</td>
<td>6.32E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>5.09E-05</td>
<td>1.78E-05</td>
<td>5.59E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>4.88E-05</td>
<td>1.71E-05</td>
<td>5.29E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>4.58E-05</td>
<td>1.59E-05</td>
<td>4.77E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>4.28E-05</td>
<td>1.49E-05</td>
<td>4.38E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>4.07E-05</td>
<td>1.42E-05</td>
<td>4.21E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>3.79E-05</td>
<td>1.36E-05</td>
<td>4.05E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>3.36E-05</td>
<td>1.23E-05</td>
<td>3.66E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>3.10E-05</td>
<td>1.16E-05</td>
<td>3.44E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>2.93E-05</td>
<td>1.13E-05</td>
<td>3.32E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>2.70E-05</td>
<td>1.04E-05</td>
<td>2.96E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2.54E-05</td>
<td>9.99E-06</td>
<td>2.81E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2.42E-05</td>
<td>9.71E-06</td>
<td>2.73E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2.23E-05</td>
<td>8.93E-06</td>
<td>2.34E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>2.11E-05</td>
<td>8.46E-06</td>
<td>2.18E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Total 95% UCL Dietary Dose (mg/Kg/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>1.44E-04</td>
<td>4.41E-05</td>
<td>2.00E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>1.33E-04</td>
<td>4.16E-05</td>
<td>1.84E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>1.25E-04</td>
<td>4.00E-05</td>
<td>1.77E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>1.14E-04</td>
<td>3.59E-05</td>
<td>1.50E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>1.05E-04</td>
<td>3.26E-05</td>
<td>1.30E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>9.45E-05</td>
<td>2.93E-05</td>
<td>1.13E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>8.62E-05</td>
<td>2.67E-05</td>
<td>9.88E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>7.90E-05</td>
<td>2.46E-05</td>
<td>8.68E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>7.48E-05</td>
<td>2.40E-05</td>
<td>8.09E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>7.06E-05</td>
<td>2.31E-05</td>
<td>7.73E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>6.56E-05</td>
<td>2.20E-05</td>
<td>7.30E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>6.01E-05</td>
<td>2.04E-05</td>
<td>6.69E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>5.57E-05</td>
<td>1.84E-05</td>
<td>5.93E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>5.35E-05</td>
<td>1.77E-05</td>
<td>5.58E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>5.01E-05</td>
<td>1.64E-05</td>
<td>5.05E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>4.68E-05</td>
<td>1.54E-05</td>
<td>4.63E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>4.45E-05</td>
<td>1.47E-05</td>
<td>4.70E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>4.14E-05</td>
<td>1.40E-05</td>
<td>4.28E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>3.67E-05</td>
<td>1.27E-05</td>
<td>3.88E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>3.39E-05</td>
<td>1.20E-05</td>
<td>3.63E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>3.21E-05</td>
<td>1.16E-05</td>
<td>3.50E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>2.96E-05</td>
<td>1.08E-05</td>
<td>3.14E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2.79E-05</td>
<td>1.03E-05</td>
<td>2.97E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2.65E-05</td>
<td>1.00E-05</td>
<td>2.88E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2.44E-05</td>
<td>9.22E-06</td>
<td>2.48E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>2.32E-05</td>
<td>8.73E-06</td>
<td>2.30E-06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-90: SUMMARY OF ADD$^{\text{Expected}}$ FOR FEMALES MINK USING 1993 DATA ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water Expected</th>
<th>Forage Fish Expected</th>
<th>Benthic Invertebrate Expected</th>
<th>Sediment Expected</th>
<th>Total Average Daily Dose$^{\text{Expected}}$ (mg/Kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>4.71E-08</td>
<td>4.69E-05</td>
<td>9.89E-06</td>
<td>6.57E-06</td>
<td>6.34E-05</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>8.37E-08</td>
<td>6.28E-06</td>
<td>1.73E-05</td>
<td>1.72E-05</td>
<td>4.08E-05</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>5.85E-08</td>
<td>3.84E-06</td>
<td>4.13E-06</td>
<td>1.54E-06</td>
<td>9.57E-06</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>4.53E-08</td>
<td>4.46E-06</td>
<td>5.75E-07</td>
<td>4.76E-07</td>
<td>5.55E-06</td>
</tr>
<tr>
<td>137.2</td>
<td>4.53E-08</td>
<td>8.95E-06</td>
<td>1.13E-06</td>
<td>8.40E-07</td>
<td>1.10E-05</td>
</tr>
<tr>
<td>122.4</td>
<td>2.07E-08</td>
<td>3.41E-06</td>
<td>6.26E-07</td>
<td>5.32E-07</td>
<td>4.59E-06</td>
</tr>
<tr>
<td>113.8</td>
<td>2.07E-08</td>
<td>3.62E-06</td>
<td>6.44E-07</td>
<td>5.58E-07</td>
<td>4.84E-06</td>
</tr>
<tr>
<td>100</td>
<td>2.07E-08</td>
<td>1.56E-06</td>
<td>2.96E-07</td>
<td>2.20E-07</td>
<td>2.09E-06</td>
</tr>
<tr>
<td>88.9</td>
<td>1.37E-08</td>
<td>3.09E-06</td>
<td>1.48E-07</td>
<td>4.32E-07</td>
<td>3.68E-06</td>
</tr>
<tr>
<td>58.7</td>
<td>1.37E-08</td>
<td>3.40E-06</td>
<td>4.57E-07</td>
<td>1.39E-07</td>
<td>4.01E-06</td>
</tr>
<tr>
<td>47.3</td>
<td>1.37E-08</td>
<td>3.02E-06</td>
<td>5.19E-07</td>
<td>8.50E-07</td>
<td>4.40E-06</td>
</tr>
<tr>
<td>25.8</td>
<td>1.37E-08</td>
<td>2.27E-06</td>
<td>1.54E-07</td>
<td>3.20E-07</td>
<td>2.76E-06</td>
</tr>
</tbody>
</table>
TABLE 3-91: SUMMARY OF ADD$_{95\% UCL}$ FOR FEMALE MINK USING 1993 DATA ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water 95% UCL</th>
<th>Forage Fish 95% UCL</th>
<th>Benthic Invertebrate 95% UCL</th>
<th>Sediment 95% UCL</th>
<th>Total Upper Bound Daily Dose$_{95% UCL}$ (mg/Kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>1.49E-07</td>
<td>7.15E-05</td>
<td>1.73E-05</td>
<td>9.61E-06</td>
<td>9.86E-05</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>2.66E-07</td>
<td>1.16E-05</td>
<td>8.11E-05</td>
<td>2.99E-05</td>
<td>1.23E-04</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.26E-07</td>
<td>5.52E-06</td>
<td>7.01E-06</td>
<td>2.59E-06</td>
<td>1.52E-05</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>4.93E-07</td>
<td>5.28E-06</td>
<td>1.41E-06</td>
<td>5.21E-07</td>
<td>7.70E-06</td>
</tr>
<tr>
<td>137.2</td>
<td>4.93E-07</td>
<td>1.90E-05</td>
<td>4.59E-06</td>
<td>1.70E-06</td>
<td>2.58E-05</td>
</tr>
<tr>
<td>122.4</td>
<td>2.66E-07</td>
<td>5.36E-06</td>
<td>1.57E-06</td>
<td>5.91E-07</td>
<td>7.79E-06</td>
</tr>
<tr>
<td>113.8</td>
<td>2.66E-07</td>
<td>3.75E-06</td>
<td>2.50E-06</td>
<td>9.22E-07</td>
<td>7.44E-06</td>
</tr>
<tr>
<td>100</td>
<td>2.66E-07</td>
<td>2.64E-06</td>
<td>2.02E-06</td>
<td>4.76E-06</td>
<td>9.69E-06</td>
</tr>
<tr>
<td>88.9</td>
<td>6.07E-08</td>
<td>4.06E-06</td>
<td>2.64E-07</td>
<td>1.26E-06</td>
<td>5.64E-06</td>
</tr>
<tr>
<td>58.7</td>
<td>6.07E-08</td>
<td>3.82E-06</td>
<td>4.18E-06</td>
<td>1.54E-06</td>
<td>9.61E-06</td>
</tr>
<tr>
<td>47.3</td>
<td>6.07E-08</td>
<td>3.97E-06</td>
<td>3.81E-06</td>
<td>3.32E-06</td>
<td>1.12E-05</td>
</tr>
<tr>
<td>25.8</td>
<td>6.07E-08</td>
<td>2.72E-06</td>
<td>2.61E-07</td>
<td>8.64E-07</td>
<td>3.91E-06</td>
</tr>
</tbody>
</table>
TABLE 3-92: SUMMARY OF ADD_{Expected} FOR FEMALE MINK ON A TEQ BASIS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>189</th>
<th>168</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>4.18E-05</td>
<td>1.67E-05</td>
<td>6.40E-06</td>
</tr>
<tr>
<td>1994</td>
<td>4.08E-05</td>
<td>1.58E-05</td>
<td>6.05E-06</td>
</tr>
<tr>
<td>1995</td>
<td>3.99E-05</td>
<td>1.54E-05</td>
<td>5.99E-06</td>
</tr>
<tr>
<td>1996</td>
<td>3.45E-05</td>
<td>1.25E-05</td>
<td>4.76E-06</td>
</tr>
<tr>
<td>1997</td>
<td>3.10E-05</td>
<td>1.22E-05</td>
<td>4.24E-06</td>
</tr>
<tr>
<td>1998</td>
<td>2.76E-05</td>
<td>9.76E-06</td>
<td>3.60E-06</td>
</tr>
<tr>
<td>1999</td>
<td>2.54E-05</td>
<td>9.21E-06</td>
<td>3.22E-06</td>
</tr>
<tr>
<td>2000</td>
<td>2.32E-05</td>
<td>8.21E-06</td>
<td>2.94E-06</td>
</tr>
<tr>
<td>2001</td>
<td>2.21E-05</td>
<td>8.51E-06</td>
<td>2.71E-06</td>
</tr>
<tr>
<td>2002</td>
<td>2.07E-05</td>
<td>7.89E-06</td>
<td>2.55E-06</td>
</tr>
<tr>
<td>2003</td>
<td>1.92E-05</td>
<td>7.48E-06</td>
<td>2.47E-06</td>
</tr>
<tr>
<td>2004</td>
<td>1.76E-05</td>
<td>6.96E-06</td>
<td>2.21E-06</td>
</tr>
<tr>
<td>2005</td>
<td>1.65E-05</td>
<td>6.22E-06</td>
<td>2.02E-06</td>
</tr>
<tr>
<td>2006</td>
<td>1.58E-05</td>
<td>6.12E-06</td>
<td>1.89E-06</td>
</tr>
<tr>
<td>2007</td>
<td>1.47E-05</td>
<td>5.53E-06</td>
<td>1.77E-06</td>
</tr>
<tr>
<td>2008</td>
<td>1.38E-05</td>
<td>5.09E-06</td>
<td>1.56E-06</td>
</tr>
<tr>
<td>2009</td>
<td>1.32E-05</td>
<td>5.12E-06</td>
<td>1.60E-06</td>
</tr>
<tr>
<td>2010</td>
<td>1.21E-05</td>
<td>4.76E-06</td>
<td>1.53E-06</td>
</tr>
<tr>
<td>2011</td>
<td>1.08E-05</td>
<td>4.19E-06</td>
<td>1.38E-06</td>
</tr>
<tr>
<td>2012</td>
<td>1.01E-05</td>
<td>4.33E-06</td>
<td>1.41E-06</td>
</tr>
<tr>
<td>2013</td>
<td>9.46E-06</td>
<td>4.01E-06</td>
<td>1.27E-06</td>
</tr>
<tr>
<td>2014</td>
<td>8.76E-06</td>
<td>3.80E-06</td>
<td>1.17E-06</td>
</tr>
<tr>
<td>2015</td>
<td>8.25E-06</td>
<td>3.58E-06</td>
<td>1.13E-06</td>
</tr>
<tr>
<td>2016</td>
<td>7.82E-06</td>
<td>3.54E-06</td>
<td>1.12E-06</td>
</tr>
<tr>
<td>2017</td>
<td>7.25E-06</td>
<td>3.09E-06</td>
<td>9.09E-07</td>
</tr>
<tr>
<td>2018</td>
<td>6.97E-06</td>
<td>3.07E-06</td>
<td>9.06E-07</td>
</tr>
<tr>
<td>Year</td>
<td>95% UCL Dietary Dose (mg/Kg/day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>168</td>
<td>154</td>
</tr>
<tr>
<td>1993</td>
<td>4.89E-05</td>
<td>1.77E-05</td>
<td>7.04E-06</td>
</tr>
<tr>
<td>1994</td>
<td>4.56E-05</td>
<td>1.67E-05</td>
<td>6.65E-06</td>
</tr>
<tr>
<td>1995</td>
<td>4.45E-05</td>
<td>1.62E-05</td>
<td>6.54E-06</td>
</tr>
<tr>
<td>1996</td>
<td>3.86E-05</td>
<td>1.33E-05</td>
<td>5.24E-06</td>
</tr>
<tr>
<td>1997</td>
<td>3.48E-05</td>
<td>1.28E-05</td>
<td>4.63E-06</td>
</tr>
<tr>
<td>1998</td>
<td>3.11E-05</td>
<td>1.04E-05</td>
<td>3.97E-06</td>
</tr>
<tr>
<td>1999</td>
<td>2.85E-05</td>
<td>9.77E-06</td>
<td>3.53E-06</td>
</tr>
<tr>
<td>2000</td>
<td>2.61E-05</td>
<td>8.75E-06</td>
<td>3.22E-06</td>
</tr>
<tr>
<td>2001</td>
<td>2.49E-05</td>
<td>9.02E-06</td>
<td>2.98E-06</td>
</tr>
<tr>
<td>2002</td>
<td>2.33E-05</td>
<td>8.39E-06</td>
<td>2.81E-06</td>
</tr>
<tr>
<td>2003</td>
<td>2.16E-05</td>
<td>7.95E-06</td>
<td>2.71E-06</td>
</tr>
<tr>
<td>2004</td>
<td>1.98E-05</td>
<td>7.39E-06</td>
<td>2.43E-06</td>
</tr>
<tr>
<td>2005</td>
<td>1.85E-05</td>
<td>6.62E-06</td>
<td>2.21E-06</td>
</tr>
<tr>
<td>2006</td>
<td>1.77E-05</td>
<td>6.50E-06</td>
<td>2.07E-06</td>
</tr>
<tr>
<td>2007</td>
<td>1.65E-05</td>
<td>5.89E-06</td>
<td>1.93E-06</td>
</tr>
<tr>
<td>2008</td>
<td>1.55E-05</td>
<td>5.43E-06</td>
<td>1.71E-06</td>
</tr>
<tr>
<td>2009</td>
<td>1.48E-05</td>
<td>5.43E-06</td>
<td>1.79E-06</td>
</tr>
<tr>
<td>2010</td>
<td>1.36E-05</td>
<td>5.07E-06</td>
<td>1.67E-06</td>
</tr>
<tr>
<td>2011</td>
<td>1.21E-05</td>
<td>4.48E-06</td>
<td>1.51E-06</td>
</tr>
<tr>
<td>2012</td>
<td>1.13E-05</td>
<td>4.59E-06</td>
<td>1.53E-06</td>
</tr>
<tr>
<td>2013</td>
<td>1.06E-05</td>
<td>4.26E-06</td>
<td>1.38E-06</td>
</tr>
<tr>
<td>2014</td>
<td>9.85E-06</td>
<td>4.04E-06</td>
<td>1.28E-06</td>
</tr>
<tr>
<td>2015</td>
<td>9.29E-06</td>
<td>3.81E-06</td>
<td>1.23E-06</td>
</tr>
<tr>
<td>2016</td>
<td>8.79E-06</td>
<td>3.75E-06</td>
<td>1.21E-06</td>
</tr>
<tr>
<td>2017</td>
<td>8.15E-06</td>
<td>3.29E-06</td>
<td>9.92E-07</td>
</tr>
<tr>
<td>2018</td>
<td>7.85E-06</td>
<td>3.26E-06</td>
<td>9.85E-07</td>
</tr>
</tbody>
</table>
TABLE 3-94: SUMMARY OF ADD$_{\text{Expected}}$ FOR FEMALE OTTER USING 1993 DATA ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Drinking Water Expected</th>
<th>Piscivorous Fish Expected</th>
<th>Sediment Expected</th>
<th>Total Average Daily Dose$_{\text{Expected}}$ (mg/Kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson's Island Pool (189)</td>
<td>3.78E-08</td>
<td>4.98E-04</td>
<td>4.46E-06</td>
<td>5.03E-04</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>6.71E-08</td>
<td>8.86E-05</td>
<td>1.16E-05</td>
<td>1.00E-04</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>4.69E-08</td>
<td>6.43E-05</td>
<td>1.05E-06</td>
<td>6.54E-05</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>3.63E-08</td>
<td>6.43E-05</td>
<td>3.23E-07</td>
<td>6.46E-05</td>
</tr>
<tr>
<td>137.2</td>
<td>3.63E-08</td>
<td>2.42E-04</td>
<td>5.70E-07</td>
<td>2.43E-04</td>
</tr>
<tr>
<td>122.4</td>
<td>1.66E-08</td>
<td>5.65E-05</td>
<td>3.61E-07</td>
<td>5.69E-05</td>
</tr>
<tr>
<td>113.8</td>
<td>1.66E-08</td>
<td>5.11E-05</td>
<td>3.78E-07</td>
<td>5.15E-05</td>
</tr>
<tr>
<td>100</td>
<td>1.66E-08</td>
<td>5.87E-05</td>
<td>1.50E-07</td>
<td>5.88E-05</td>
</tr>
<tr>
<td>88.9</td>
<td>1.10E-08</td>
<td>3.78E-05</td>
<td>2.93E-07</td>
<td>3.81E-05</td>
</tr>
<tr>
<td>58.7</td>
<td>1.10E-08</td>
<td>4.39E-05</td>
<td>9.45E-08</td>
<td>4.40E-05</td>
</tr>
<tr>
<td>47.3</td>
<td>1.10E-08</td>
<td>5.03E-05</td>
<td>5.77E-07</td>
<td>5.08E-05</td>
</tr>
<tr>
<td>25.8</td>
<td>1.10E-08</td>
<td>3.55E-05</td>
<td>2.17E-07</td>
<td>3.57E-05</td>
</tr>
<tr>
<td>Location</td>
<td>Drinking Water 95% UCL</td>
<td>Piscivorous Fish 95% UCL</td>
<td>Sediment 95% UCL</td>
<td>Total Average Daily Dosage 95% UCL</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson's Island Pool (189)</td>
<td>1.20E-07</td>
<td>9.65E-04</td>
<td>6.52E-06</td>
<td>9.71E-04</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>2.13E-07</td>
<td>1.14E-04</td>
<td>2.03E-05</td>
<td>1.35E-04</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.01E-07</td>
<td>1.15E-04</td>
<td>1.76E-06</td>
<td>1.17E-04</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>3.95E-07</td>
<td>1.15E-04</td>
<td>3.53E-07</td>
<td>1.16E-04</td>
</tr>
<tr>
<td>137.2</td>
<td>3.95E-07</td>
<td>5.77E-04</td>
<td>1.15E-06</td>
<td>5.78E-04</td>
</tr>
<tr>
<td>122.4</td>
<td>2.13E-07</td>
<td>7.76E-05</td>
<td>4.01E-07</td>
<td>7.83E-05</td>
</tr>
<tr>
<td>113.8</td>
<td>2.13E-07</td>
<td>7.14E-05</td>
<td>6.25E-07</td>
<td>7.23E-05</td>
</tr>
<tr>
<td>100</td>
<td>2.13E-07</td>
<td>1.81E-04</td>
<td>3.23E-06</td>
<td>1.85E-04</td>
</tr>
<tr>
<td>88.9</td>
<td>4.87E-08</td>
<td>7.19E-05</td>
<td>8.57E-07</td>
<td>7.28E-05</td>
</tr>
<tr>
<td>58.7</td>
<td>4.87E-08</td>
<td>6.51E-05</td>
<td>1.05E-06</td>
<td>6.61E-05</td>
</tr>
<tr>
<td>47.3</td>
<td>4.87E-08</td>
<td>1.35E-04</td>
<td>2.25E-06</td>
<td>1.38E-04</td>
</tr>
<tr>
<td>25.8</td>
<td>4.87E-08</td>
<td>7.05E-05</td>
<td>5.86E-07</td>
<td>7.12E-05</td>
</tr>
</tbody>
</table>

TABLE 3-95: SUMMARY OF ADD$_{95\%UCL}$ FOR FEMALE OTTER USING 1993 DATA ON A TEQ BASIS
<table>
<thead>
<tr>
<th>Year</th>
<th>189</th>
<th>168</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>2.87E-04</td>
<td>2.12E-04</td>
<td>1.04E-04</td>
</tr>
<tr>
<td>1994</td>
<td>1.78E-04</td>
<td>1.47E-04</td>
<td>7.42E-05</td>
</tr>
<tr>
<td>1995</td>
<td>1.95E-04</td>
<td>1.62E-04</td>
<td>8.00E-05</td>
</tr>
<tr>
<td>1996</td>
<td>1.78E-04</td>
<td>1.31E-04</td>
<td>7.02E-05</td>
</tr>
<tr>
<td>1997</td>
<td>1.40E-04</td>
<td>1.15E-04</td>
<td>6.05E-05</td>
</tr>
<tr>
<td>1998</td>
<td>1.17E-04</td>
<td>1.03E-04</td>
<td>5.09E-05</td>
</tr>
<tr>
<td>1999</td>
<td>1.02E-04</td>
<td>8.44E-05</td>
<td>3.89E-05</td>
</tr>
<tr>
<td>2000</td>
<td>9.52E-05</td>
<td>7.96E-05</td>
<td>3.70E-05</td>
</tr>
<tr>
<td>2001</td>
<td>8.90E-05</td>
<td>7.67E-05</td>
<td>3.55E-05</td>
</tr>
<tr>
<td>2002</td>
<td>8.76E-05</td>
<td>8.15E-05</td>
<td>3.77E-05</td>
</tr>
<tr>
<td>2003</td>
<td>7.68E-05</td>
<td>6.87E-05</td>
<td>3.22E-05</td>
</tr>
<tr>
<td>2004</td>
<td>7.18E-05</td>
<td>6.69E-05</td>
<td>3.32E-05</td>
</tr>
<tr>
<td>2005</td>
<td>6.39E-05</td>
<td>5.13E-05</td>
<td>2.51E-05</td>
</tr>
<tr>
<td>2006</td>
<td>6.28E-05</td>
<td>5.58E-05</td>
<td>2.64E-05</td>
</tr>
<tr>
<td>2007</td>
<td>5.79E-05</td>
<td>4.67E-05</td>
<td>2.05E-05</td>
</tr>
<tr>
<td>2008</td>
<td>5.47E-05</td>
<td>4.22E-05</td>
<td>1.98E-05</td>
</tr>
<tr>
<td>2009</td>
<td>5.51E-05</td>
<td>4.54E-05</td>
<td>2.13E-05</td>
</tr>
<tr>
<td>2010</td>
<td>4.86E-05</td>
<td>4.15E-05</td>
<td>1.78E-05</td>
</tr>
<tr>
<td>2011</td>
<td>4.26E-05</td>
<td>3.54E-05</td>
<td>1.73E-05</td>
</tr>
<tr>
<td>2012</td>
<td>4.21E-05</td>
<td>3.58E-05</td>
<td>1.68E-05</td>
</tr>
<tr>
<td>2013</td>
<td>4.04E-05</td>
<td>3.72E-05</td>
<td>1.62E-05</td>
</tr>
<tr>
<td>2014</td>
<td>3.68E-05</td>
<td>3.54E-05</td>
<td>1.48E-05</td>
</tr>
<tr>
<td>2015</td>
<td>3.37E-05</td>
<td>3.11E-05</td>
<td>1.37E-05</td>
</tr>
<tr>
<td>2016</td>
<td>3.43E-05</td>
<td>3.48E-05</td>
<td>1.47E-05</td>
</tr>
<tr>
<td>2017</td>
<td>2.96E-05</td>
<td>2.65E-05</td>
<td>1.21E-05</td>
</tr>
<tr>
<td>2018</td>
<td>2.87E-05</td>
<td>2.54E-05</td>
<td>1.10E-05</td>
</tr>
</tbody>
</table>
TABLE 3-97: SUMMARY OF ADD$_{5\%\text{UCL}}$ FOR FEMALE OTTER ON A TEQ BASIS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Total 95% UCL Dietary Dose (mg/Kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
</tr>
<tr>
<td>1993</td>
<td>3.58E-04</td>
</tr>
<tr>
<td>1994</td>
<td>2.37E-04</td>
</tr>
<tr>
<td>1995</td>
<td>2.58E-04</td>
</tr>
<tr>
<td>1996</td>
<td>2.53E-04</td>
</tr>
<tr>
<td>1997</td>
<td>1.98E-04</td>
</tr>
<tr>
<td>1998</td>
<td>1.64E-04</td>
</tr>
<tr>
<td>1999</td>
<td>1.49E-04</td>
</tr>
<tr>
<td>2000</td>
<td>1.39E-04</td>
</tr>
<tr>
<td>2001</td>
<td>1.29E-04</td>
</tr>
<tr>
<td>2002</td>
<td>1.27E-04</td>
</tr>
<tr>
<td>2003</td>
<td>1.12E-04</td>
</tr>
<tr>
<td>2004</td>
<td>1.04E-04</td>
</tr>
<tr>
<td>2005</td>
<td>9.44E-05</td>
</tr>
<tr>
<td>2006</td>
<td>9.12E-05</td>
</tr>
<tr>
<td>2007</td>
<td>8.57E-05</td>
</tr>
<tr>
<td>2008</td>
<td>8.16E-05</td>
</tr>
<tr>
<td>2009</td>
<td>7.92E-05</td>
</tr>
<tr>
<td>2010</td>
<td>6.97E-05</td>
</tr>
<tr>
<td>2011</td>
<td>6.34E-05</td>
</tr>
<tr>
<td>2012</td>
<td>6.11E-05</td>
</tr>
<tr>
<td>2013</td>
<td>5.88E-05</td>
</tr>
<tr>
<td>2014</td>
<td>5.25E-05</td>
</tr>
<tr>
<td>2015</td>
<td>4.87E-05</td>
</tr>
<tr>
<td>2016</td>
<td>4.89E-05</td>
</tr>
<tr>
<td>2017</td>
<td>4.40E-05</td>
</tr>
<tr>
<td>2018</td>
<td>4.21E-05</td>
</tr>
<tr>
<td></td>
<td>168</td>
</tr>
<tr>
<td>1993</td>
<td>2.58E-04</td>
</tr>
<tr>
<td>1994</td>
<td>1.76E-04</td>
</tr>
<tr>
<td>1995</td>
<td>1.95E-04</td>
</tr>
<tr>
<td>1996</td>
<td>1.59E-04</td>
</tr>
<tr>
<td>1997</td>
<td>1.38E-04</td>
</tr>
<tr>
<td>1998</td>
<td>1.25E-04</td>
</tr>
<tr>
<td>1999</td>
<td>1.04E-04</td>
</tr>
<tr>
<td>2000</td>
<td>9.69E-05</td>
</tr>
<tr>
<td>2001</td>
<td>9.37E-05</td>
</tr>
<tr>
<td>2002</td>
<td>9.95E-05</td>
</tr>
<tr>
<td>2003</td>
<td>8.44E-05</td>
</tr>
<tr>
<td>2004</td>
<td>8.16E-05</td>
</tr>
<tr>
<td>2005</td>
<td>6.24E-05</td>
</tr>
<tr>
<td>2006</td>
<td>6.80E-05</td>
</tr>
<tr>
<td>2007</td>
<td>5.65E-05</td>
</tr>
<tr>
<td>2008</td>
<td>5.17E-05</td>
</tr>
<tr>
<td>2009</td>
<td>5.53E-05</td>
</tr>
<tr>
<td>2010</td>
<td>5.06E-05</td>
</tr>
<tr>
<td>2011</td>
<td>4.33E-05</td>
</tr>
<tr>
<td>2012</td>
<td>4.39E-05</td>
</tr>
<tr>
<td>2013</td>
<td>4.55E-05</td>
</tr>
<tr>
<td>2014</td>
<td>4.32E-05</td>
</tr>
<tr>
<td>2015</td>
<td>3.77E-05</td>
</tr>
<tr>
<td>2016</td>
<td>4.24E-05</td>
</tr>
<tr>
<td>2017</td>
<td>3.24E-05</td>
</tr>
<tr>
<td>2018</td>
<td>3.11E-05</td>
</tr>
<tr>
<td></td>
<td>154</td>
</tr>
<tr>
<td>1993</td>
<td>1.30E-04</td>
</tr>
<tr>
<td>1994</td>
<td>9.10E-05</td>
</tr>
<tr>
<td>1995</td>
<td>9.70E-05</td>
</tr>
<tr>
<td>1996</td>
<td>8.82E-05</td>
</tr>
<tr>
<td>1997</td>
<td>7.55E-05</td>
</tr>
<tr>
<td>1998</td>
<td>6.23E-05</td>
</tr>
<tr>
<td>1999</td>
<td>4.88E-05</td>
</tr>
<tr>
<td>2000</td>
<td>4.55E-05</td>
</tr>
<tr>
<td>2001</td>
<td>4.40E-05</td>
</tr>
<tr>
<td>2002</td>
<td>4.71E-05</td>
</tr>
<tr>
<td>2003</td>
<td>4.03E-05</td>
</tr>
<tr>
<td>2004</td>
<td>4.14E-05</td>
</tr>
<tr>
<td>2005</td>
<td>3.13E-05</td>
</tr>
<tr>
<td>2006</td>
<td>3.23E-05</td>
</tr>
<tr>
<td>2007</td>
<td>2.51E-05</td>
</tr>
<tr>
<td>2008</td>
<td>2.50E-05</td>
</tr>
<tr>
<td>2009</td>
<td>2.68E-05</td>
</tr>
<tr>
<td>2010</td>
<td>2.21E-05</td>
</tr>
<tr>
<td>2011</td>
<td>2.19E-05</td>
</tr>
<tr>
<td>2012</td>
<td>2.11E-05</td>
</tr>
<tr>
<td>2013</td>
<td>2.05E-05</td>
</tr>
<tr>
<td>2014</td>
<td>1.83E-05</td>
</tr>
<tr>
<td>2015</td>
<td>1.72E-05</td>
</tr>
<tr>
<td>2016</td>
<td>1.82E-05</td>
</tr>
<tr>
<td>2017</td>
<td>1.58E-05</td>
</tr>
<tr>
<td>2018</td>
<td>1.40E-05</td>
</tr>
</tbody>
</table>
| **Hepatotoxicity** | Hepatomegaly; bile duct hyperplasia, proliferation of smooth ER
| | Focal necrosis; fatty degeneration
| | Induction of microsomal enzymes; implications for hormone imbalances, pancreas and reproductive effects
| | Depletion of fat soluble vitamins (predominantly vitamin A)
| | Porphyria
| **Immunotoxicity** | Atrophy of lymphoid tissues
| | Reduction in circulating leukocytes and lymphocytes
| | Suppressed antibody responses
| | Enhanced susceptibility to viruses
| | Suppression of natural killer cells
| **Neurotoxicity** | Impaired behavioral responses
| | Alterations in catecholamine levels
| | Depressed spontaneous motor activity
| | Developmental deficits
| | Numbness in extremities
| **Reproduction** | Increased abortion; low birth weights
| | Decreased survival and mating success
| | Increased length of estrus
| | Embryo and fetal mortality
| | Gross teratogenic effects
| | Biochemical, neurological, and functional changes following in utero exposure (mammals)
| | Decreased libido, decreased sperm numbers and motility
| **Gastrointestinal** | Gastric hyperplasia
| | Ulceration and necrosis
| **Respiratory** | Chronic bronchitis
| | Decreased vital capacity
| **Dermal Toxicity** | Chloracne
| | Hyperplasia and hyperkeratosis of epithelium
| | Edema
| **Mutagenic Effects** | Commercial mixtures are weakly mutagenic
| **Carcinogenic Effects** | Preneoplastic changes
| | Neoplastic changes
| | Promotion considered main contribution
| | Attenuation of other carcinogens under certain conditions

TABLE 4-2
WORLD-HEALTH ORGANIZATION FOR TOXIC EQUIVALENCY FACTORS (TEFs) FOR HUMANS, MAMMALS, FISH, AND BIRDS

<table>
<thead>
<tr>
<th>Congener</th>
<th>Toxic Equivalency Factor</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Humans/Mammals</td>
<td>Fish</td>
<td>Birds</td>
</tr>
<tr>
<td>Non-ortho PCBs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4,4',5-TetraCB (81)</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>3,3',4,4'-TetraCB (77)</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>3,3',4,4',5-PentaCB (126)</td>
<td>0.1</td>
<td>0.005</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>3,3',4,4',5,5'-HexaCB (169)</td>
<td>0.01</td>
<td>0.00005</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Mono-ortho PCBs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,3',4,4'-PentaCB (105)</td>
<td>0.0001</td>
<td><0.000005</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>2,3,4,4',5-PentaCB (114)</td>
<td>0.0005</td>
<td><0.000005</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>2,3',4,4',5-PentaCB (118)</td>
<td>0.0001</td>
<td><0.000005</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>2',3,4,4',5-PentaCB (123)</td>
<td>0.0001</td>
<td><0.000005</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>2,3',3',4,4',5-HexaCB (156)</td>
<td>0.0005</td>
<td><0.000005</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>2,3,3',4,4',5'-HexaCB (157)</td>
<td>0.0005</td>
<td><0.000005</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>2,3',4,4',5,5'-HexaCB (167)</td>
<td>0.000001</td>
<td><0.000005</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>2,3',4,4',5,5'-HeptaCB (189)</td>
<td>0.0001</td>
<td><0.000005</td>
<td>0.00001</td>
<td></td>
</tr>
</tbody>
</table>

Notes: CB = chlorinated biphenyls

Reference: van den Berg, et al. (1998). Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife. Environmental Health Perspectives, 106:12, 775-791.
Table 4-3
SELECTED SEDIMENT SCREENING GUIDELINES: PCBs

<table>
<thead>
<tr>
<th>Source / Authority</th>
<th>Concentration Type</th>
<th>Aroclor 1254</th>
<th>Aroclor 1248</th>
<th>Aroclor 1016</th>
<th>Aroclor 1260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hudson River Sediment Effect Concentrations (mg/kg, ppm)</td>
<td>(MacDonald Env. Sci., 1999) (Estuarine, freshwater, and saltwater)</td>
<td>Threshold Effect Concentration</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mid-range Effect Concentration</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extreme Effect Concentration</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYSDEC (1998) (Freshwater) (mg/kg organic carbon)</td>
<td>Benthic Aquatic Life Acute Toxicity</td>
<td>2760.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benthic Aquatic Life Chronic Toxicity</td>
<td></td>
<td>19.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wildlife Bioaccumulation</td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYSDEC (1998) (Saltwater) (mg/kg organic carbon)</td>
<td>Benthic Aquatic Life Acute Toxicity</td>
<td>13803.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benthic Aquatic Life Chronic Toxicity</td>
<td></td>
<td>41.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wildlife Bioaccumulation</td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario Ministry of the Environment Sediment Guidelines (Freshwater) (Persaud et al., 1993)</td>
<td>No Effect Level (mg/kg)</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lowest Effect Level (mg/kg)</td>
<td>0.07</td>
<td>0.06</td>
<td>0.03</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Severe Effect Level (mg/kg organic carbon)</td>
<td>530</td>
<td>54</td>
<td>150</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Effects-Range-Median</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingersoll et al. (1996) Sediment Guidelines (ug/kg, or ppb) (Freshwater)</td>
<td>(Derived from 28-day Hyalella azteca data)</td>
<td>Effects-Range-Low</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effects-Range-Median</td>
<td>730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Threshold Effect Level</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probable Effect Level</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Effect Concentration</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington State Dept of Ecology 1997 Sediment Guidelines (Freshwater) (ug/kg, or ppb)</td>
<td>Apparent Effects Threshold (Microtox)</td>
<td>21</td>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apparent Effects Threshold (Hyalella azteca)</td>
<td>820</td>
<td>350</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Probable Apparent Effects Threshold (Microtox)</td>
<td>21</td>
<td>7.3</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probable Apparent Effects Threshold (Hyalella azteca)</td>
<td>450</td>
<td>240</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Lowest Apparent Effects Threshold</td>
<td>21</td>
<td>7.3</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(between Microtox and H. azteca)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida Department of Environmental Protection (ug/kg, or ppb) (Marine and Estuarine)</td>
<td>Threshold Effect Level</td>
<td>21.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probable Effect Level</td>
<td>189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones et al. (1997) (ug/kg, or ppb)</td>
<td>EqP-derived; recommended TOC adjustment</td>
<td>Secondary Chronic Value</td>
<td>810</td>
<td>1000</td>
<td>450000</td>
</tr>
<tr>
<td>Smith et al. (1996) (ug/kg, or ppb)</td>
<td>Threshold Effect Level</td>
<td>34.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probable Effect Level</td>
<td>277</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: All values are dry weight unless noted. Some values also available in mg/kg organic carbon.
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>EXPOSURE MEDIA</th>
<th>PCB TYPE</th>
<th>EXPOSURE DURATION</th>
<th>EFFECT LEVEL</th>
<th>EFFECT CONC, WHOLE BODY CONC. (mg/kg wet wt)</th>
<th>EFFECT ENDPOINT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipod (Gammarus pseudolimnaeus)</td>
<td>Water</td>
<td>Aroclor 1248</td>
<td>2 months</td>
<td>LD₅₀</td>
<td>552</td>
<td>Mortality</td>
<td>Nebeker and Puglisi (1974)</td>
</tr>
<tr>
<td>Amphipod (Hyalella azteca)</td>
<td>Water</td>
<td>PCB 52</td>
<td>> or = 10 weeks</td>
<td>LD₃₀</td>
<td>180</td>
<td>Mortality</td>
<td>Borgmann et al. (1990)</td>
</tr>
<tr>
<td>Amphipod (Hyalella azteca)</td>
<td>Water</td>
<td>Aroclor 1242</td>
<td>> or = 10 weeks</td>
<td>LD₃₀</td>
<td>100</td>
<td>Mortality</td>
<td>Borgmann et al. (1990)</td>
</tr>
<tr>
<td>Amphipod (Gammarus pseudolimnaeus)</td>
<td>Water</td>
<td>Aroclor 1242</td>
<td>2 months</td>
<td>LD₃₀</td>
<td>316</td>
<td>Mortality</td>
<td>Nebeker and Puglisi (1974)</td>
</tr>
<tr>
<td>C. Cladoceran (Daphnia magna)</td>
<td>Model ecosystem</td>
<td>2,3,7,8-TCDD</td>
<td>33 days</td>
<td>EL (no effect)</td>
<td>1570</td>
<td>Reproduction reduced by at least 50%</td>
<td>Isensee and Jones (1975)</td>
</tr>
<tr>
<td>Amphipod (Gammarus pseudolimnaeus)</td>
<td>Water</td>
<td>Aroclor 1248</td>
<td>2 months</td>
<td>LOAEL</td>
<td>552</td>
<td>Mortality</td>
<td>Nebeker and Puglisi (1974)</td>
</tr>
<tr>
<td>Snail (Physa spp.)</td>
<td>Water</td>
<td>2,3,7,8-TCDD</td>
<td>33 days</td>
<td>EL (no effect)</td>
<td>502</td>
<td>Mortality</td>
<td>Isensee and Jones (1975)</td>
</tr>
<tr>
<td>Amphipod (Gammarus pseudolimnaeus)</td>
<td>Water</td>
<td>Aroclor 1242</td>
<td>2 months</td>
<td>EL (effect)</td>
<td>316</td>
<td>No reproduction</td>
<td>Nebeker and Puglisi (1974)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 153</td>
<td>35 days</td>
<td>LOAEL</td>
<td>126</td>
<td>Mortality</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 153</td>
<td>35 days</td>
<td>LOAEL</td>
<td>126</td>
<td>Weight loss</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 15</td>
<td>35 days</td>
<td>LOAEL</td>
<td>119</td>
<td>Mortality</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 47</td>
<td>35 days</td>
<td>LOAEL</td>
<td>113</td>
<td>Mortality</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Grass shrimp (Palaemonetes rugo)</td>
<td>Water</td>
<td>Aroclor 1254</td>
<td>7 days</td>
<td>LOAEL</td>
<td>65</td>
<td>Mortality (60%)</td>
<td>Nimmo et al. (1974)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 1</td>
<td>35 days</td>
<td>LOAEL</td>
<td>64</td>
<td>Mortality</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 1</td>
<td>35 days</td>
<td>LOAEL</td>
<td>64</td>
<td>Weight loss</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Grass shrimp (Palaemonetes rugo)</td>
<td>Water</td>
<td>Aroclor 1254</td>
<td>16 days</td>
<td>LOAEL</td>
<td>27</td>
<td>Mortality (45%)</td>
<td>Nimmo et al. (1974)</td>
</tr>
<tr>
<td>Amphipod (Gammarus pseudolimnaeus)</td>
<td>Water</td>
<td>Aroclor 1242</td>
<td>2 months</td>
<td>NOAEL</td>
<td>76</td>
<td>Reproduction</td>
<td>Nebeker and Puglisi (1974)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 153</td>
<td>35 days</td>
<td>NOAEL</td>
<td>65</td>
<td>Mortality</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 153</td>
<td>35 days</td>
<td>NOAEL</td>
<td>65</td>
<td>Weight loss</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 15</td>
<td>35 days</td>
<td>NOAEL</td>
<td>63.1</td>
<td>Mortality</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 15</td>
<td>35 days</td>
<td>NOAEL</td>
<td>63.1</td>
<td>Weight loss</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Amphipod (Hyalella azteca)</td>
<td>Water</td>
<td>PCB 52</td>
<td>> or = 10 weeks</td>
<td>NOAEL</td>
<td>54</td>
<td>Mortality</td>
<td>Borgmann et al. (1990)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 47</td>
<td>35 days</td>
<td>NOAEL</td>
<td>49.3</td>
<td>Mortality</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 47</td>
<td>35 days</td>
<td>NOAEL</td>
<td>49.3</td>
<td>Weight loss</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 1</td>
<td>35 days</td>
<td>NOAEL</td>
<td>33.2</td>
<td>Mortality</td>
<td>Fisher et al. (1998)</td>
</tr>
<tr>
<td>Oligochaete (Lumbricillus variegatus)</td>
<td>Algae (Food)</td>
<td>PCB 1</td>
<td>35 days</td>
<td>NOAEL</td>
<td>33.2</td>
<td>Weight loss</td>
<td>Fisher et al. (1998)</td>
</tr>
</tbody>
</table>
TABLE 4-4
TOXICITY ENDPOINTS FOR BENTHIC INVERTEBRATES
EFFECTIVE CONCENTRATIONS OF TOTAL PCBs, AROCLORS, AND DIOXIN TOXIC EQUIVALENTS (TEQs)

<table>
<thead>
<tr>
<th>SPECIES (species)</th>
<th>EXPOSURE MEDIA</th>
<th>PCB TYPE</th>
<th>EXPOSURE DURATION</th>
<th>EFFECT LEVEL</th>
<th>EFFECT CONC, WHOLE BODY CONC. (mg/kg wet wt)</th>
<th>EFFECT ENDPOINT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipod (Hyalella azteca)</td>
<td>Water</td>
<td>Aroclor 1242</td>
<td>> or = 10 weeks</td>
<td>NOAEL</td>
<td>30</td>
<td>Mortality</td>
<td>Bergmann et al. (1990)</td>
</tr>
<tr>
<td>Grass shrimp (Palaemonetes pugio)</td>
<td>Water</td>
<td>Aroclor 1254</td>
<td>16 days</td>
<td>NOAEL</td>
<td>18</td>
<td>Mortality</td>
<td>Nimmo et al. (1974)</td>
</tr>
<tr>
<td>Grass shrimp (Palaemonetes pugio)</td>
<td>Water</td>
<td>Aroclor 1255</td>
<td>7 days</td>
<td>NOAEL</td>
<td>5.4</td>
<td>Mortality</td>
<td>Nimmo et al. (1974)</td>
</tr>
<tr>
<td>SPECIES</td>
<td>EXPOSURE MEDIA</td>
<td>PCB TYPE</td>
<td>EXPOSURE DURATION</td>
<td>EFFECT LEVEL</td>
<td>EFFECT CONCENTRATION WHOLE BODY CONCENTRATION mg/kg wet wt.</td>
<td>EFFECT ENDPOINT</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---</td>
<td>-----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Lake trout</td>
<td>Water</td>
<td>PCB-153</td>
<td>15 days</td>
<td>LD100</td>
<td>7.6</td>
<td>Fry mortality</td>
<td>Broyles and Noveck, 1979</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Water</td>
<td>PCB-153</td>
<td>15 days</td>
<td>LD100</td>
<td>3.6</td>
<td>Fry mortality</td>
<td>Broyles and Noveck, 1979</td>
</tr>
<tr>
<td>Adult Fathead Minnow</td>
<td>Water</td>
<td>Aroclor 1254</td>
<td>9 months</td>
<td>LOAEL</td>
<td>999</td>
<td>Adult mortality</td>
<td>Nebeker et al., 1974</td>
</tr>
<tr>
<td>Adult Fathead Minnow</td>
<td>Water</td>
<td>Aroclor 1254</td>
<td>9 months</td>
<td>LOAEL</td>
<td>429</td>
<td>Spawning</td>
<td>Nebeker et al., 1974</td>
</tr>
<tr>
<td>Adult Minnow</td>
<td>Diet</td>
<td>Clophen A50</td>
<td>40 days, studied</td>
<td>LOAEL</td>
<td>170</td>
<td>Egg hatchability</td>
<td>Nebeker et al., 1974</td>
</tr>
<tr>
<td>Brook trout fry</td>
<td>Water</td>
<td>Aroclor 1254</td>
<td>118 days</td>
<td>LOAEL</td>
<td>125</td>
<td>Fry mortality</td>
<td>Manck et al., 1978</td>
</tr>
<tr>
<td>Salmonidae (Salvelinus namaycush)</td>
<td>Water</td>
<td>PCB-153</td>
<td>15 days</td>
<td>LD100</td>
<td>7.6</td>
<td>Fry mortality</td>
<td>Broyles and Noveck, 1979</td>
</tr>
<tr>
<td>Chinook salmon</td>
<td>Water</td>
<td>PCB-153</td>
<td>15 days</td>
<td>LD100</td>
<td>3.6</td>
<td>Fry mortality</td>
<td>Broyles and Noveck, 1979</td>
</tr>
<tr>
<td>Adult Fathead Minnow</td>
<td>Water</td>
<td>Aroclor 1254</td>
<td>9 months</td>
<td>NOAEL</td>
<td>436</td>
<td>Adult mortality</td>
<td>Nebeker et al., 1974</td>
</tr>
<tr>
<td>Adult Fathead Minnow</td>
<td>Water</td>
<td>Aroclor 1254</td>
<td>9 months</td>
<td>NOAEL</td>
<td>429</td>
<td>Egg hatchability</td>
<td>Nebeker et al., 1974</td>
</tr>
<tr>
<td>Adult Minnow</td>
<td>Diet</td>
<td>Clophen A50</td>
<td>40 days, studied</td>
<td>LOAEL</td>
<td>170</td>
<td>Egg hatchability</td>
<td>Nebeker et al., 1974</td>
</tr>
<tr>
<td>Brook trout fry</td>
<td>Water</td>
<td>Aroclor 1254</td>
<td>118 days</td>
<td>NOAEL</td>
<td>71</td>
<td>Fry mortality</td>
<td>Manck et al., 1978</td>
</tr>
<tr>
<td>Juvenile Spot</td>
<td>Water</td>
<td>Aroclor 1254</td>
<td>1 Lab Stu</td>
<td>NOAEL</td>
<td>27</td>
<td>Adult mortality</td>
<td>Hansen et al., 1971</td>
</tr>
<tr>
<td>Adult Minnow</td>
<td>Diet</td>
<td>Clophen A50</td>
<td>40 days, studied</td>
<td>NOAEL</td>
<td>15</td>
<td>Egg hatchability</td>
<td>Bengtsson, B., 1980</td>
</tr>
<tr>
<td>Killfish</td>
<td>Single injection into adults</td>
<td>PCB mixture</td>
<td>Single injection, 40 days of observation</td>
<td>NOAEL</td>
<td>3.8 (nominal dose)</td>
<td>Egg production and food consumption</td>
<td>Black et al., 1998a</td>
</tr>
<tr>
<td>Killfish</td>
<td>Single injection into adults</td>
<td>PCB mixture</td>
<td>Single injection, 40 days of observation</td>
<td>NOAEL</td>
<td>0.76 (nominal dose)</td>
<td>Egg production and food consumption</td>
<td>Black et al., 1998a</td>
</tr>
<tr>
<td>SPECIES</td>
<td>FIELD COMPONENT</td>
<td>CONTAMINANT TYPE</td>
<td>EFFECT LEVEL</td>
<td>EFFECT CONCENTRATION (mg/kg wet wt or as noted below)</td>
<td>EFFECT ENDPOINT</td>
<td>REFERENCE</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>------------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Arctic char (Salvelinus alpinus)</td>
<td>Adult fish and eggs collected from Lake Geneva</td>
<td>PCBs</td>
<td>EL-effect</td>
<td>10 to 75 mg/kg lipid</td>
<td>Embryomortality</td>
<td>Monod, 1985</td>
<td></td>
</tr>
<tr>
<td>Winter ronconet (Pseudopleuronectes americanus)</td>
<td>Adult and eggs collected from New Bedford Harbor</td>
<td>PCBs</td>
<td>EL-effect</td>
<td>36.0 mg/kg dry wt in eggs</td>
<td>Growth rate of larvae</td>
<td>Black et al., 1988b</td>
<td></td>
</tr>
<tr>
<td>Katfish (Fundulus heteroclitus)</td>
<td>Fish collected from New Bedford Harbor</td>
<td>PCBs</td>
<td>LOAEL</td>
<td>20.5 mg/kg dry wt in liver</td>
<td>Embryo and larval survival</td>
<td>Black et al., 1998b</td>
<td></td>
</tr>
<tr>
<td>Kamrin (Fundulus heteroclitus)</td>
<td>Fish collected from New Bedford Harbor</td>
<td>PCBs</td>
<td>EL-effect</td>
<td>5.7 mg/kg dry wt in liver</td>
<td>Embryo and larval survival</td>
<td>Black et al., 1998b</td>
<td></td>
</tr>
<tr>
<td>English sole (Parophrys vetulus)</td>
<td>Fish collected from Puget Sound</td>
<td>PCBs, PAHs</td>
<td>EL-effect</td>
<td>0.461 mg/kg dry wt in liver</td>
<td>Larval mortality</td>
<td>Westin et al., 1983</td>
<td></td>
</tr>
<tr>
<td>Stripped bass (Morone saxatilis)</td>
<td>Eggs from hatcheries. Larvae fed naturally contaminated</td>
<td>PCBs, HCl, pesticides</td>
<td>EL-effect</td>
<td>0.1 to 10 in eggs</td>
<td>Larval mortality</td>
<td>Westin et al., 1983</td>
<td></td>
</tr>
<tr>
<td>Chinook salmon (Oncorhynchus tshawytscha)</td>
<td>Adult fish and eggs collected from Lake Michigan</td>
<td>PCBs, pesticides</td>
<td>EL-effect</td>
<td>0.5 to 9.9 mg/kg in eggs</td>
<td>Hatching success</td>
<td>Giesy et al., 1986</td>
<td></td>
</tr>
<tr>
<td>Chinook salmon (Oncorhynchus tshawytscha)</td>
<td>Adult fish and eggs collected from Lake Michigan</td>
<td>PCBs</td>
<td>EL-effect</td>
<td>2.75 to 5.75 in eggs</td>
<td>Hatching success</td>
<td>Ankley et al., 1981</td>
<td></td>
</tr>
<tr>
<td>Elan thought (Salmo gairdneri)</td>
<td>Juvenile fish and eggs from hatchery</td>
<td>PCBs, DDT</td>
<td>EL-effect</td>
<td>2.7 in eggs</td>
<td>Embryomortality</td>
<td>Hogan and Braun, 1975</td>
<td></td>
</tr>
<tr>
<td>English sole (Parophrys vetulus)</td>
<td>Adult and eggs collected from Puget Sound</td>
<td>PCBs</td>
<td>LOAEL</td>
<td>2.56 in liver</td>
<td>Production of normal larvae</td>
<td>Casillas et al., 1991</td>
<td></td>
</tr>
<tr>
<td>Lake trout (Salvelinus nannycz)</td>
<td>Adult fish and eggs collected from Great Lakes</td>
<td>PCBs</td>
<td>EL-effect</td>
<td>0.25 to 1.77 in eggs</td>
<td>Egg mortality and percent of normal fry hatching</td>
<td>Mac et al., 1993</td>
<td></td>
</tr>
<tr>
<td>Chinook salmon (Oncorhynchus tshawytscha)</td>
<td>Adult fish and eggs collected from Lake Michigan</td>
<td>PCBs, pesticides</td>
<td>EL-effect</td>
<td>0.22 ± 0.8 in eggs</td>
<td>Hatching success</td>
<td>Giesy et al., 1986</td>
<td></td>
</tr>
<tr>
<td>Starry flounder (Platichthys stellatus)</td>
<td>Adult fish and eggs from area of San Francisco Bay</td>
<td>PCBs, HCl, Phthalates</td>
<td>EL-effect</td>
<td>about 50 to 200 in eggs</td>
<td>Hatching success</td>
<td>Spies and Rice, 1988</td>
<td></td>
</tr>
<tr>
<td>Redbreast sunfish (Lepomis auritus)</td>
<td>Adult fish collected from East Tennessee stream</td>
<td>PCBs, PAHs, metals, chlorine</td>
<td>EL-effect</td>
<td>0.95</td>
<td>Fecundity, clutch size, growth</td>
<td>Adams et al., 1989, 1990, 1992</td>
<td></td>
</tr>
<tr>
<td>Baltic shiner (Stizostedion mormon)</td>
<td>Adult fish and eggs collected from Baltic Sea</td>
<td>PCBs</td>
<td>EL-effect</td>
<td>≥ 0.120</td>
<td>Hatching success</td>
<td>Hansen et al., 1985</td>
<td></td>
</tr>
<tr>
<td>Baltic flounder (Platichthys fluvius)</td>
<td>Adult fish and eggs collected from Baltic Sea</td>
<td>PCBs, pesticides, metals</td>
<td>EL-effect</td>
<td>≥ 0.120</td>
<td>Hatching success</td>
<td>von Winternhagen et al., 1981</td>
<td></td>
</tr>
<tr>
<td>Katfish (Fundulus heteroclitus)</td>
<td>Fish collected from New Bedford Harbor</td>
<td>PCBs</td>
<td>NOAEL</td>
<td>9.5 mg/kg dry wt in liver</td>
<td>Embryo and larval mortality</td>
<td>Black et al., 1998b</td>
<td></td>
</tr>
<tr>
<td>Stripped bass (Morone saxatilis)</td>
<td>Larvae fed naturally contaminated food</td>
<td>PCBs</td>
<td>EL-no effect</td>
<td>3.1 in post yolk sac larvae</td>
<td>Larval mortality</td>
<td>Westin et al., 1983</td>
<td></td>
</tr>
<tr>
<td>Winter ronconet (Pseudopleuronectes americanus)</td>
<td>Adult and eggs collected from New Bedford Harbor</td>
<td>PCBs</td>
<td>EL-no effect</td>
<td>1.08 mg/kg dry wt in eggs</td>
<td>Growth rate of larvae</td>
<td>Black et al., 1988b</td>
<td></td>
</tr>
<tr>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Adult and eggs collected from Puget Sound</td>
<td>PCBs</td>
<td>NOAEL</td>
<td>0.09 in liver</td>
<td>Production of normal larvae</td>
<td>Casillas et al., 1991</td>
<td></td>
</tr>
<tr>
<td>Redbreast sunfish (Lepomis auritus)</td>
<td>Fish from an East Tennessee stream</td>
<td>PCBs, PAHs, metals, chlorine</td>
<td>EL-no effect</td>
<td>0.5</td>
<td>Fecundity, clutch size, growth</td>
<td>Adams et al., 1989, 1990, 1992</td>
<td></td>
</tr>
<tr>
<td>Katfish (Fundulus heteroclitus)</td>
<td>Fish collected from New Bedford Harbor</td>
<td>PCBs</td>
<td>NOAEL</td>
<td>0.461 mg/kg dry wt in liver</td>
<td>Adult female mortality</td>
<td>Black et al., 1998b</td>
<td></td>
</tr>
<tr>
<td>Norwegian (Gobius niger)</td>
<td>Adults and eggs collected from Baltic Sea</td>
<td>PCBs</td>
<td>EL-effect</td>
<td>≥ 1.05 in ovaries</td>
<td>Hatching success</td>
<td>Hansen et al., 1985</td>
<td></td>
</tr>
<tr>
<td>Arctic char (Salvelinus alpinus)</td>
<td>Adult fish and eggs collected from Lake Geneva</td>
<td>DDT</td>
<td>EL-no effect</td>
<td>≥ 1.05 in ovaries</td>
<td>Hatching success</td>
<td>Monod, 1985</td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>EXPOSURE MEDIA</td>
<td>EFFECT LEVEL</td>
<td>TISSUE</td>
<td>CONTAMINANT TYPE</td>
<td>EFFECT CONC. (ug/kg ww)</td>
<td>LIPID CONTENT OF EGG (g lipid/gww egg)</td>
<td>TEF</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Fathead minnow</td>
<td>Water</td>
<td>LD50</td>
<td>Embryo</td>
<td>2,3,7,8-TCDD</td>
<td>25.7</td>
<td>0.024</td>
<td>1</td>
</tr>
<tr>
<td>Zebrafish (Danio danio)</td>
<td>Water</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>2.61</td>
<td>0.017</td>
<td>1</td>
</tr>
<tr>
<td>White sucker (Catosomus commersoni)</td>
<td>Water</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>2.5</td>
<td>0.017</td>
<td>1</td>
</tr>
<tr>
<td>Northern Pike (Esox lucius)</td>
<td>Water</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>1.89</td>
<td>0.025</td>
<td>1</td>
</tr>
<tr>
<td>Medaka (Oryzias latipes)</td>
<td>Water</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>1.11</td>
<td>0.029</td>
<td>1</td>
</tr>
<tr>
<td>Fathead minnow</td>
<td>Water</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.539</td>
<td>0.024</td>
<td>1</td>
</tr>
<tr>
<td>Lake herring (Coregonus artedi)</td>
<td>Water</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.902</td>
<td>0.066</td>
<td>1</td>
</tr>
<tr>
<td>Dalmatian eel (Ichthys punctatus)</td>
<td>Water</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.644</td>
<td>0.048</td>
<td>1</td>
</tr>
<tr>
<td>Rainbow Trout - Erwin strain</td>
<td>Water</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.439</td>
<td>0.087</td>
<td>1</td>
</tr>
<tr>
<td>Brook Trout (Salvelinus fontinalis)</td>
<td>Injection</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.421</td>
<td>0.087</td>
<td>1</td>
</tr>
<tr>
<td>Rainbow Trout - Erwin strain</td>
<td>Water</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.409</td>
<td>0.087</td>
<td>1</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>Egg injection</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.374</td>
<td>0.087</td>
<td>1</td>
</tr>
<tr>
<td>Brook Trout (Salvelinus fontinalis)</td>
<td>Egg injection</td>
<td>LD50</td>
<td>Egg</td>
<td>PCB 126</td>
<td>74</td>
<td>0.087</td>
<td>0.005</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>Egg injection</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.200</td>
<td>0.068</td>
<td>1</td>
</tr>
<tr>
<td>Lake trout (Salvelinus namaycush)</td>
<td>Egg injection</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.242</td>
<td>0.087</td>
<td>1</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>Egg injection</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.206</td>
<td>0.024</td>
<td>1</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>Egg injection</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.085</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>Lake trout (Salvelinus namaycush)</td>
<td>Water</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.065</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>Lake trout (Salvelinus namaycush)</td>
<td>Injection</td>
<td>LD50</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.047</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>Fathead minnow</td>
<td>Water</td>
<td>LD100</td>
<td>Larvae</td>
<td>2,3,7,8-TCDD</td>
<td>163</td>
<td>Not reported for larvae</td>
<td>1</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>Water</td>
<td>LD50</td>
<td>Larvae</td>
<td>2,3,7,8-TCDD</td>
<td>70.9</td>
<td>Not reported for larvae</td>
<td>1</td>
</tr>
<tr>
<td>SPECIES</td>
<td>MEDIA</td>
<td>EFFECT LEVEL</td>
<td>TISSUE</td>
<td>CONTAMINANT TYPE</td>
<td>EFFECT CONC. (ug/kg ww)</td>
<td>LIPID CONTENT OF EGG (g lipid/gww egg)</td>
<td>TEF</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>Zebrafish (Danio rerio)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>2</td>
<td>0.017</td>
<td>1</td>
</tr>
<tr>
<td>Fathead minnow (Pimephales promelas)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>2.46</td>
<td>0.024</td>
<td>1</td>
</tr>
<tr>
<td>White sucker (Catostomus commersoni)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>1.22</td>
<td>0.025</td>
<td>1</td>
</tr>
<tr>
<td>Northern Pike (Esox lucius)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>1.8</td>
<td>0.042</td>
<td>1</td>
</tr>
<tr>
<td>Metaka (Oryzias latipes)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.949</td>
<td>0.029</td>
<td>1</td>
</tr>
<tr>
<td>Fathead minnow (Pimephales promelas)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.435</td>
<td>0.024</td>
<td>1</td>
</tr>
<tr>
<td>Channel catfish (Ictalurus punctatus)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.855</td>
<td>0.048</td>
<td>1</td>
</tr>
<tr>
<td>Lake trout (Coregonus artedii)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.27</td>
<td>0.066</td>
<td>1</td>
</tr>
<tr>
<td>Rainbow Trout (Salmo gairdneri)</td>
<td>Injection</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.291</td>
<td>0.087</td>
<td>1</td>
</tr>
<tr>
<td>Rainbow Trout (Salmo gairdneri)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.279</td>
<td>0.087</td>
<td>1</td>
</tr>
<tr>
<td>Brook Trout (Salvenius fontinalis)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.185</td>
<td>0.068</td>
<td>1</td>
</tr>
<tr>
<td>Lake trout (Salvelinus namaycush)</td>
<td>Injection</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.058</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>Lake trout (Salvelinus namaycush)</td>
<td>Injection</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.055</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>Lake trout (Salvelinus namaycush)</td>
<td>Water</td>
<td>LOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.055</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>Lake trout (Salvelinus namaycush)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.04</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>Fathead minnow (Pimephales promelas)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Larvae</td>
<td>2,3,7,8-TCDD</td>
<td>20</td>
<td>Not reported for larvae</td>
<td>1</td>
</tr>
<tr>
<td>White sucker (Catostomus commersoni)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.848</td>
<td>0.025</td>
<td>1</td>
</tr>
<tr>
<td>Northern Pike (Esox lucius)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>1.19</td>
<td>0.042</td>
<td>1</td>
</tr>
<tr>
<td>Zebra danio (Danio rerio)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.424</td>
<td>0.017</td>
<td>1</td>
</tr>
<tr>
<td>Metaka (Oryzias latipes)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.455</td>
<td>0.029</td>
<td>1</td>
</tr>
<tr>
<td>Fathead minnow (Pimephales promelas)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.235</td>
<td>0.024</td>
<td>1</td>
</tr>
<tr>
<td>Channel catfish (Ictalurus punctatus)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.385</td>
<td>0.048</td>
<td>1</td>
</tr>
<tr>
<td>Fathead minnow (Pimephales promelas)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Embryo</td>
<td>2,3,7,8-TCDD</td>
<td>0.13</td>
<td>0.024</td>
<td>1</td>
</tr>
<tr>
<td>Lake trout (Coregonus artedii)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.175</td>
<td>0.066</td>
<td>1</td>
</tr>
<tr>
<td>Rainbow Trout (Salmo gairdneri)</td>
<td>Injection</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.291</td>
<td>0.087</td>
<td>1</td>
</tr>
<tr>
<td>Brook Trout (Salvenius fontinalis)</td>
<td>Water</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.135</td>
<td>0.068</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE 4-7 TOXICITY ENDPOINTS FOR FISH - LABORATORY STUDIES EFFECTIVE CONCENTRATIONS OF DIOXIN TOXIC EQUIVALENTS (TEQs)
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>EXPOSURE MEDIA</th>
<th>EFFECT LEVEL</th>
<th>TISSUE</th>
<th>CONTAMINANT TYPE</th>
<th>EFFECT CONC. (ug/kg ww)</th>
<th>LIPID CONTENT OF EGG (g lipid/gww egg)</th>
<th>TEF</th>
<th>EFFECT CONC. DIOXIN EQUIVALENTS (ug TEQ/kg lipid)</th>
<th>EFFECT ENDPOINT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake trout</td>
<td>Injection</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.044</td>
<td>0.08</td>
<td>1</td>
<td>0.55</td>
<td>Early life stage mortality</td>
<td>Walker et al., 1992</td>
</tr>
<tr>
<td>Lake trout</td>
<td>Injection</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.044</td>
<td>0.08</td>
<td>1</td>
<td>0.55</td>
<td>Early life stage mortality</td>
<td>Walker et al., 1994</td>
</tr>
<tr>
<td>Lake trout</td>
<td>Water</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.034</td>
<td>0.08</td>
<td>1</td>
<td>0.43</td>
<td>Early life stage mortality</td>
<td>Walker et al., 1992</td>
</tr>
<tr>
<td>Lake trout</td>
<td>Maternal transfer</td>
<td>NOAEL</td>
<td>Egg</td>
<td>2,3,7,8-TCDD</td>
<td>0.023</td>
<td>0.08</td>
<td>1</td>
<td>0.29</td>
<td>Early life stage mortality</td>
<td>Walker et al., 1994</td>
</tr>
<tr>
<td>Fathead minnow</td>
<td>Water</td>
<td>NOAEL</td>
<td>Larvae</td>
<td>2,3,7,8-TCDD</td>
<td>3.59</td>
<td>Not reported for larvae</td>
<td>1</td>
<td>Early life stage mortality</td>
<td>Olivieri and Cooper, 1997</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
* No relevant field studies were found.
* Fathead minnow embryo is assumed to have same lipid content as reported for eggs.
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>EXPOSURE MEDIA</th>
<th>EFFECT LEVEL</th>
<th>TISSUE</th>
<th>CONTAMINANT TYPE</th>
<th>EFFECT CONC. (ug/kg ww, unless noted differently)</th>
<th>LIPID CONTENT OF EGG (g lipid/gww egg)</th>
<th>EFFECT CONC. DIOXIN EQUIVALENTS (ug TEQ/kg lipid)</th>
<th>TEF</th>
<th>EFFECT ENDPOINT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Trout - Arlee strain (Salmo gairdneri)</td>
<td>Egg injection of extract from field-collected fish</td>
<td>LD50</td>
<td>Eggs</td>
<td>TEQs</td>
<td>0.514</td>
<td>0.087</td>
<td>5.9</td>
<td>1</td>
<td>5.9 Embryomortality</td>
<td>Wright and Tillitt, 1999</td>
</tr>
<tr>
<td>Rainbow Trout - Erwin strain (Salmo gairdneri)</td>
<td>Egg injection of extract from field-collected fish</td>
<td>LD50</td>
<td>Eggs</td>
<td>TEQs</td>
<td>0.206</td>
<td>0.087</td>
<td>2.4</td>
<td>1</td>
<td>2.4 Embryomortality</td>
<td>Wright and Tillitt, 1999</td>
</tr>
<tr>
<td>Rainbow Trout - Lake Superior (Salmo gairdneri)</td>
<td>Egg injection of extract from field-collected fish</td>
<td>LD50</td>
<td>Eggs</td>
<td>TEQs</td>
<td>1.43</td>
<td>0.087</td>
<td>16.4</td>
<td>1</td>
<td>16.4 Embryomortality</td>
<td>Wright and Tillitt, 1999</td>
</tr>
<tr>
<td>Killifish (Fundulus heteroclitus)</td>
<td>Fish collected from New Bedford Harbor</td>
<td>LOAEL</td>
<td>Liver</td>
<td>TEQs</td>
<td>1.56 ug/kg dry et</td>
<td>Not available</td>
<td>Not available</td>
<td>1</td>
<td>Not available Embryo and larval survival</td>
<td>Black et al., 1998</td>
</tr>
<tr>
<td>Killifish (Fundulus heteroclitus)</td>
<td>Fish collected from New Bedford Harbor</td>
<td>LOAEL</td>
<td>Liver</td>
<td>TEQs</td>
<td>0.543 ug/kg dry wt</td>
<td>Not available</td>
<td>Not available</td>
<td>1</td>
<td>Not available Adult female mortality</td>
<td>Black et al., 1998</td>
</tr>
<tr>
<td>Killifish (Fundulus heteroclitus)</td>
<td>Fish collected from New Bedford Harbor</td>
<td>NOAEL</td>
<td>Liver</td>
<td>TEQs</td>
<td>0.132 ug/kg dry wt</td>
<td>Not available</td>
<td>Not available</td>
<td>1</td>
<td>Not available Embryo and larval survival</td>
<td>Black et al., 1998</td>
</tr>
<tr>
<td>Lake trout (Salvelinus namaycush)</td>
<td>Fish collected from Lake Ontario</td>
<td>EL-no-effect</td>
<td>Eggs</td>
<td>TEQs</td>
<td>0.011</td>
<td>0.08</td>
<td>0.1</td>
<td>1</td>
<td>0.1 Early life stage mortality</td>
<td>Guiney et al., 1996</td>
</tr>
<tr>
<td>Killifish (Fundulus heteroclitus)</td>
<td>Fish collected from New Bedford Harbor</td>
<td>NOAEL</td>
<td>Liver</td>
<td>TEQs</td>
<td>0.08572 ug/kg dry set</td>
<td>Not available</td>
<td>Not available</td>
<td>1</td>
<td>Not available Adult female mortality</td>
<td>Black et al., 1998</td>
</tr>
<tr>
<td>SPECIES</td>
<td>EXPOSURE MEDIA</td>
<td>EXPOSURE DURATION</td>
<td>EFFECT LEVEL</td>
<td>PCB TYPE</td>
<td>EFFECTIVE DOSE (mg/kg/day)</td>
<td>EFFECTIVE FOOD CONC. (mg/kg)</td>
<td>EFFECT ENDPOINT</td>
<td>REFERENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard Duck (Anas platyrhynchos)</td>
<td>Diet</td>
<td>5 day</td>
<td>LD50</td>
<td>Aroclor1254</td>
<td>853</td>
<td>8122</td>
<td>Mortality</td>
<td>Hill et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese Quail (Coturnix coturnix)</td>
<td>Diet</td>
<td>5 day</td>
<td>LD50</td>
<td>Aroclor1254</td>
<td>759</td>
<td>6737</td>
<td>Mortality</td>
<td>Hill et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bobwhite Quail (Colinus virginianus)</td>
<td>Diet</td>
<td>5 day</td>
<td>LD50</td>
<td>Aroclor1254</td>
<td>141</td>
<td>1516</td>
<td>Mortality</td>
<td>Hill et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown-headed Cowbird (Molothrus ater)</td>
<td>Diet</td>
<td>7 days</td>
<td>EL-effect</td>
<td>Aroclor1254</td>
<td>333</td>
<td>1500</td>
<td>Mortality</td>
<td>Stickel et al., 1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-winged Blackbird (Agelaius phoeniceus)</td>
<td>Diet</td>
<td>6 days</td>
<td>EL-effect</td>
<td>Aroclor1254</td>
<td>321</td>
<td>1500</td>
<td>Mortality</td>
<td>Stickel et al., 1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese Quail (Coturnix coturnix)</td>
<td>Oral by syringe</td>
<td>7 days</td>
<td>LOAEL</td>
<td>Aroclor1260</td>
<td>100</td>
<td>888</td>
<td>Weight loss</td>
<td>Vos et al., 1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard Duck (Anas platyrhynchos)</td>
<td>Diet</td>
<td>12 weeks</td>
<td>EL-effect</td>
<td>Aroclor1242</td>
<td>16</td>
<td>150</td>
<td>Decreased weight gain in hens, eggshell thinning</td>
<td>Haseltine and Prouty, 1980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Drinking water</td>
<td>7 days</td>
<td>EL-effect</td>
<td>Aroclor1254</td>
<td>3.5</td>
<td>50</td>
<td>Egg production</td>
<td>Tumasonis et al., 1973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring Necked Pheasant (Phasianus colchicus)</td>
<td>Diet in gelatin capsules</td>
<td>Once per week for 17 weeks</td>
<td>LOAEL</td>
<td>Aroclor1254</td>
<td>2.9</td>
<td>50</td>
<td>Egg production</td>
<td>Dahlgren et al., 1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>Not available</td>
<td>LOAEL</td>
<td>Aroclor1254</td>
<td>2.9</td>
<td>50</td>
<td>Female fertility</td>
<td>Roberts et al., 1978</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>LOAEL</td>
<td>Aroclor1242</td>
<td>1.4</td>
<td>20</td>
<td>Egg production, hatching success, chick growth</td>
<td>Lille et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>LOAEL</td>
<td>Aroclor1248</td>
<td>1.4</td>
<td>20</td>
<td>Egg production, hatching success, chick growth</td>
<td>Lille et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>LOAEL</td>
<td>Aroclor1254</td>
<td>1.4</td>
<td>20</td>
<td>Egg production, hatching success, chick growth</td>
<td>Lille et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>LOAEL</td>
<td>Aroclor1242</td>
<td>1.4</td>
<td>20</td>
<td>Hatching success</td>
<td>Cecil et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>LOAEL</td>
<td>Aroclor1248</td>
<td>1.4</td>
<td>20</td>
<td>Hatching success</td>
<td>Cecil et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ringed Turtle Dove (Streptopelia risoria)</td>
<td>Diet</td>
<td>3 months</td>
<td>EL-effect</td>
<td>Aroclor1254</td>
<td>1.1</td>
<td>10</td>
<td>Hatching success</td>
<td>Peakall et al., 1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>6 weeks</td>
<td>LOAEL</td>
<td>Aroclor1254</td>
<td>1.1</td>
<td>10</td>
<td>Hatching success</td>
<td>Peakall and Peakall, 1973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>LOAEL</td>
<td>Aroclor1242</td>
<td>0.7</td>
<td>10</td>
<td>Hatching success</td>
<td>Britton and Huston, 1973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>LOAEL</td>
<td>Aroclor1248</td>
<td>0.7</td>
<td>10</td>
<td>Hatching success</td>
<td>Lille et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>LOAEL</td>
<td>Aroclor1248</td>
<td>0.7</td>
<td>10</td>
<td>Hatching success</td>
<td>Lille et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>LOAEL</td>
<td>Aroclor1248</td>
<td>0.7</td>
<td>10</td>
<td>Hatching success</td>
<td>Scott, 1977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>LOAEL</td>
<td>Aroclor1248</td>
<td>0.7</td>
<td>10</td>
<td>Hatching success</td>
<td>Lille et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>LOAEL</td>
<td>Aroclor1248</td>
<td>0.7</td>
<td>10</td>
<td>Hatching success</td>
<td>Scott, 1977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>LOAEL</td>
<td>Aroclor1248</td>
<td>0.7</td>
<td>10</td>
<td>Hatching success</td>
<td>Lille et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>EXPOSURE MEDIA</td>
<td>EXPOSURE DURATION</td>
<td>EFFECT LEVEL</td>
<td>PCB TYPE</td>
<td>EFFECTIVE DOSE (mg/kg/day)</td>
<td>EFFECTIVE FOOD CONC. (mg/kg)</td>
<td>EFFECT ENDPOINT</td>
<td>REFERENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>------------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Starling (Sturnus vulgaris)</td>
<td>Diet</td>
<td>4 days</td>
<td>EL-effect</td>
<td>Aroclor 1254</td>
<td>Not available</td>
<td>1,500</td>
<td>Mortality</td>
<td>Stickel et al., 1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Grackle (Quiscalus quiscula)</td>
<td>Diet</td>
<td>8 days</td>
<td>EL-effect</td>
<td>Aroclor 1254</td>
<td>Not available</td>
<td>1,500</td>
<td>Mortality</td>
<td>Stickel et al., 1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard Duck (Anas platyrhynchos)</td>
<td>Diet</td>
<td>12 weeks</td>
<td>EL-no effect</td>
<td>Aroclor 1242</td>
<td>16</td>
<td>150</td>
<td>Reproduction success, hatching success, survival and growth of chicks</td>
<td>Haseltine and Prouty, 1980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese Quail (Coturnix coturnix)</td>
<td>Diet</td>
<td>14 weeks</td>
<td>EL-no effect</td>
<td>Aroclor 1254</td>
<td>5.6</td>
<td>50</td>
<td>Mortality and growth rates of adults</td>
<td>Chang and Stickel, 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard Duck (Anas platyrhynchos)</td>
<td>Diet</td>
<td>Approx. 1 month</td>
<td>EL-no effect</td>
<td>Aroclor 1254</td>
<td>2.6</td>
<td>25</td>
<td>Reproduction success</td>
<td>Custer and Heinz, 1980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese Quail (Coturnix coturnix)</td>
<td>Diet</td>
<td>Not reported</td>
<td>NOAEL</td>
<td>Aroclor 1248</td>
<td>2.3</td>
<td>20</td>
<td>Hatching success</td>
<td>Scott, 1977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1016</td>
<td>1.4</td>
<td>20</td>
<td>Egg production</td>
<td>Lillie et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1254</td>
<td>1.4</td>
<td>20</td>
<td>Egg production</td>
<td>Lillie et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>EL-no effect</td>
<td>Aroclor 1221</td>
<td>1.4</td>
<td>20</td>
<td>Hatching success</td>
<td>Cud et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>EL-no effect</td>
<td>Aroclor 1232</td>
<td>1.4</td>
<td>20</td>
<td>Hatching success</td>
<td>Cud et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>EL-no effect</td>
<td>Aroclor 1268</td>
<td>1.4</td>
<td>20</td>
<td>Hatching success</td>
<td>Cud et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>EL-no effect</td>
<td>Aroclor 5442</td>
<td>1.4</td>
<td>20</td>
<td>Hatching success</td>
<td>Cud et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring-necked Pheasant (Phasianus colchicus)</td>
<td>Diet</td>
<td>Once per week for 17 weeks</td>
<td>EL-no effect</td>
<td>Aroclor 1248</td>
<td>0.7</td>
<td>12.5</td>
<td>Egg production</td>
<td>Dahlgren et al., 1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosaceh Owl (Otus asio)</td>
<td>Diet</td>
<td>> 8 weeks</td>
<td>EL-no effect</td>
<td>Aroclor 1248</td>
<td>0.4</td>
<td>3</td>
<td>Egg production, hatching success, fledging success</td>
<td>McLane and Hughes, 1980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>6 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1242</td>
<td>0.3</td>
<td>5</td>
<td>Hatching success</td>
<td>Britton and Huston, 1973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1242</td>
<td>0.3</td>
<td>5</td>
<td>Hatching success</td>
<td>Lillie et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1248</td>
<td>0.3</td>
<td>5</td>
<td>Hatching success</td>
<td>Lillie et al., 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1242</td>
<td>0.1</td>
<td>2</td>
<td>Egg production, hatching success, chick growth</td>
<td>Lillie et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1248</td>
<td>0.1</td>
<td>2</td>
<td>Egg production, hatching success, chick growth</td>
<td>Lillie et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1254</td>
<td>0.1</td>
<td>2</td>
<td>Hatching success</td>
<td>Cud et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1248</td>
<td>0.1</td>
<td>2</td>
<td>Hatching success</td>
<td>Cud et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1248</td>
<td>0.1</td>
<td>2</td>
<td>Hatching success</td>
<td>Cud et al., 1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>9 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1254</td>
<td>0.1</td>
<td>2</td>
<td>Hatching success</td>
<td>Scott, 1977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>FIELD COMPONENT</td>
<td>EFFECT LEVEL</td>
<td>CONTAMINANT TYPE</td>
<td>EFFECTIVE DOSE (mg/kg/day)</td>
<td>EFFECTIVE FOOD CONC.</td>
<td>EFFECT ENDPOINT</td>
<td>REFERENCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Swallow (Tachycineta bicolor)</td>
<td>Populations in Fox River and Green Bay, Lake Michigan, studied</td>
<td>NOAEL</td>
<td>PCBs, DDE</td>
<td>0.55</td>
<td>up to 0.61</td>
<td>Clutch and egg success</td>
<td>Custer et al., 1998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Swallow (Tachycineta bicolor)</td>
<td>Populations along Hudson River studied</td>
<td>NOAEL</td>
<td>PCBs</td>
<td>16.1</td>
<td>up to 17.9</td>
<td>Growth, mortality, reproduction</td>
<td>US EPA Phase 2 Database (1998)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-11
Toxicity Endpoints for Avians - Laboratory Studies
Effective Dietary Doses of Dioxin Toxic Equivalents (TEQs)

<table>
<thead>
<tr>
<th>Species</th>
<th>Exposure Media</th>
<th>Exposure Duration</th>
<th>Effect Level</th>
<th>Contaminant Type</th>
<th>Effective Dose Dioxin Equivalents (ug/kg/day)</th>
<th>Effect Endpoint</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ringed turtle dove (Streptopelia risoria)</td>
<td>Oral</td>
<td>Single dose</td>
<td>LD$_{50}$</td>
<td>2,3,7,8-TCDD</td>
<td>> 810</td>
<td>Mortality</td>
<td>Hudson et al., 1984</td>
</tr>
<tr>
<td>Mallard (Anas platyrhynchos)</td>
<td>Oral</td>
<td>Single dose</td>
<td></td>
<td>2,3,7,8-TCDD</td>
<td>> 108</td>
<td>Mortality</td>
<td>Hudson et al., 1984</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Oral</td>
<td>21 days</td>
<td>LD$_{50}$</td>
<td>2,3,7,8-TCDD</td>
<td>25 - 50</td>
<td>Mortality</td>
<td>Greig et al., 1973</td>
</tr>
<tr>
<td>Ring-necked pheasant (Phasianus colchicus)</td>
<td>Intraperitoneal</td>
<td>Single dose</td>
<td>LD$_{50}$</td>
<td>2,3,7,8-TCDD</td>
<td>25</td>
<td>Mortality</td>
<td>Nosek et al., 1992</td>
</tr>
<tr>
<td>Northern bobwhite quail (Colinus virginianus)</td>
<td>Oral</td>
<td>Single dose</td>
<td>LD$_{50}$</td>
<td>2,3,7,8-TCDD</td>
<td>15</td>
<td>Mortality</td>
<td>Hudson et al., 1984</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Oral</td>
<td>21 days</td>
<td>LOAE</td>
<td>2,3,7,8-TCDD</td>
<td>1.0</td>
<td>Mortality</td>
<td>Schwetz et al., 1973</td>
</tr>
<tr>
<td>Ring-necked pheasant (Phasianus colchicus)</td>
<td>Intraperitoneal</td>
<td>10 weeks</td>
<td>LOAE</td>
<td>2,3,7,8-TCDD</td>
<td>0.14</td>
<td>Fertility, embryo mortality</td>
<td>Nosek et al., 1992</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Oral</td>
<td>21 days</td>
<td>NOAE</td>
<td>2,3,7,8-TCDD</td>
<td>0.1</td>
<td>Mortality</td>
<td>Schwetz et al., 1973</td>
</tr>
<tr>
<td>Ring-necked pheasant (Phasianus colchicus)</td>
<td>Intraperitoneal</td>
<td>10 weeks</td>
<td>NOAE</td>
<td>2,3,7,8-TCDD</td>
<td>0.014</td>
<td>Fertility, embryo mortality</td>
<td>Nosek et al., 1992</td>
</tr>
</tbody>
</table>

Notes:
- * No relevant field studies were found.
- Note units of ug/kg/day.
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>FIELD COMPONENT</th>
<th>EFFECT LEVEL</th>
<th>CONTAMINANT TYPE</th>
<th>EFFECTIVE DOSE DIOXIN EQUIVALENTS (ug/kg/day)</th>
<th>EFFECTIVE FOOD CONC. (ug/kg)</th>
<th>EFFECT ENDPOINT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree Swallow (Tachycineta bicolor)</td>
<td>Populations along Hudson River studied</td>
<td>EL-no effect</td>
<td>TEQs</td>
<td>4.9</td>
<td>up to 5.41</td>
<td>Growth, mortality, reproduction</td>
<td>US EPA Phase 2 Database, 1998</td>
</tr>
<tr>
<td>Tree Swallow (Tachycineta bicolor)</td>
<td>Populations in Fox River and Green Bay, Lake Michigan, studied</td>
<td>EL-no effect</td>
<td>TEQs, DDE</td>
<td>0.08</td>
<td>up to 0.091</td>
<td>Clutch and egg success</td>
<td>Custer et al., 1998</td>
</tr>
<tr>
<td>SPECIES</td>
<td>EXPOSURE MEDIA</td>
<td>EXPOSURE DURATION</td>
<td>EFFECT LEVEL</td>
<td>PCB TYPE</td>
<td>EFFECTIVE EGG CONC. (mg/kg egg)</td>
<td>EFFECT ENDPOINT</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Drinking water</td>
<td>6 weeks</td>
<td>EL-effect</td>
<td>Aroclor 1254</td>
<td>0.01-0.15 ppm in yolk</td>
<td>Deformities</td>
<td>Tumasonis et al., 1973</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>LOAEL</td>
<td>10</td>
<td>Aroclor 1260</td>
<td>6.7</td>
<td>Growth rate of chicks</td>
<td>Carlson and Duby, 1973</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>LOAEL</td>
<td>5</td>
<td>Aroclor 1242</td>
<td>5.0</td>
<td>Growth and mortality of embryos</td>
<td>Gould et al., 1997</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>LOAEL</td>
<td>5</td>
<td>Aroclor 1254</td>
<td>5.0</td>
<td>Hatching success</td>
<td>Carlson and Duby, 1973</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>LOAEL</td>
<td>5</td>
<td>Aroclor 1242</td>
<td>5.0</td>
<td>Hatching success</td>
<td>Carlson and Duby, 1973</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>LOAEL</td>
<td>3.7</td>
<td>Aroclor 1248</td>
<td>2.21</td>
<td>Hatching success</td>
<td>Britton and Huston, 1973</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>NOAEL</td>
<td>10</td>
<td>Aroclor 1260</td>
<td>10.0</td>
<td>Hatching success</td>
<td>Carlson and Duby, 1973</td>
</tr>
<tr>
<td>Screech owl (Otus asio)</td>
<td>Diet of hens</td>
<td>> 8 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1248</td>
<td>7.1</td>
<td>Egg production, hatching success, and fledging success</td>
<td>McLane and Hughes, 1980</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>NOAEL</td>
<td>5</td>
<td>Aroclor 1260</td>
<td>2.5</td>
<td>Hatching success</td>
<td>Carlson and Duby, 1973</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>NOAEL</td>
<td>2.5</td>
<td>Aroclor 1242</td>
<td>2.5</td>
<td>Hatching success</td>
<td>Carlson and Duby, 1973</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>NOAEL</td>
<td>2.5</td>
<td>Aroclor 1242</td>
<td>2.5</td>
<td>Growth rate of chicks</td>
<td>Carlson and Duby, 1973</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>NOAEL</td>
<td>1.7</td>
<td>Aroclor 1242</td>
<td>0.67</td>
<td>Hatching success</td>
<td>Britton and Huston, 1973</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>NOAEL</td>
<td>0.33</td>
<td>Aroclor 1254</td>
<td>0.33</td>
<td>Hatching success</td>
<td>Scott, 1977</td>
</tr>
<tr>
<td>SPECIES</td>
<td>EFFECT LEVEL</td>
<td>CONTAMINANT TYPE</td>
<td>EFFECTIVE EGG CONC. (mg/kg egg)</td>
<td>EFFECT ENDPOINT</td>
<td>REFERENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bald eagle (Haliaeetus leucocephalus)</td>
<td>EL-Effect level</td>
<td>PCBs, Pesticides</td>
<td>20-54</td>
<td>Reproductive success</td>
<td>Clark et al., 1988</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-crested cormorant (Phalacrocorax auritus)</td>
<td>EL-Effect level</td>
<td>PCBs, Pesticides, Hg</td>
<td>23.8</td>
<td>Hatching success and fledging success</td>
<td>Weseloh et al., 1983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caspian tern (Hydroprogne caspia)</td>
<td>EL-Effect level</td>
<td>PCBs, Pesticides</td>
<td>4.2 - 18</td>
<td>Increased rate of embryo deformities</td>
<td>Yamashita et al., 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forster’s tern (Sterna forsteri)</td>
<td>LOAEL</td>
<td>PCBs, Pesticides, Dioxins, Furans</td>
<td>22.2</td>
<td>Hatching success</td>
<td>Kubiak et al., 1989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common tern (Sterna hirundo)</td>
<td>LOAEL</td>
<td>PCBs, Pesticides, Hg</td>
<td>7</td>
<td>Hatching success</td>
<td>Becker et al., 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common tern (Sterna hirundo)</td>
<td>NOAEL</td>
<td>PCBs, Pesticides, Hg</td>
<td>9.8</td>
<td>Hatching success</td>
<td>Hoffman et al., 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bald eagle (Haliaeetus leucocephalus)</td>
<td>NOAEL</td>
<td>PCBs, Pesticides, Hg</td>
<td>3 - 5.6</td>
<td>10% reduction in reproductive success</td>
<td>Wiemeyer et al., 1984, 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree swallow (Tachycineta bicolor)</td>
<td>NOAEL</td>
<td>PCBs</td>
<td>26.7</td>
<td>Reproductive output</td>
<td>U.S. EPA Phase 2 Database Release 4.1b, McCarty and Secord, 1999, Hoffman et al., 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common tern (Sterna hirundo)</td>
<td>NOAEL</td>
<td>PCBs, Pesticides, Hg</td>
<td>6.7</td>
<td>Hatching success</td>
<td>Hoffman et al., 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forster’s tern (Sterna forsteri)</td>
<td>NOAEL</td>
<td>PCBs, Pesticides, Dioxins, Furans</td>
<td>5.2</td>
<td>Hatching success</td>
<td>Kubiak et al., 1989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree swallow (Tachycineta bicolor)</td>
<td>NOAEL</td>
<td>PCBs, DDE</td>
<td>3.24 in eggs and pippers</td>
<td>Hatch success, egg success</td>
<td>Custer et al., 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bald eagle (Haliaeetus leucocephalus)</td>
<td>NOAEL</td>
<td>PCBs, Pesticides, Hg</td>
<td>< 3</td>
<td>Reproductive success</td>
<td>Wiemeyer et al., 1984, 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>laboratory studies</td>
<td>species</td>
<td>exposure MEDIA</td>
<td>exposure duration</td>
<td>effect level</td>
<td>contaminant TYPE</td>
<td>effective EGG Conc. (ug/kg egg)</td>
<td>TEF</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>American kestrel (Falco sparverius)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>LD50</td>
<td>PCB 77</td>
<td>316</td>
<td>0.05</td>
<td>16</td>
</tr>
<tr>
<td>cormorant (Phalacrocorax carbo)</td>
<td>Egg injection</td>
<td>21 days</td>
<td>PCB 126</td>
<td>158</td>
<td>0.1</td>
<td>16</td>
<td>Embryo mortality</td>
</tr>
<tr>
<td>common tern (Sterna hirundo)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>PCB 126</td>
<td>104</td>
<td>0.1</td>
<td>10</td>
<td>Embryo mortality</td>
</tr>
<tr>
<td>American kestrel (Falco sparverius)</td>
<td>Egg injection</td>
<td>20 days</td>
<td>LD50</td>
<td>PCB 126</td>
<td>65</td>
<td>0.1</td>
<td>7</td>
</tr>
<tr>
<td>ring-necked pheasant (Phasianus colchicus)</td>
<td>Egg injection</td>
<td>28 days</td>
<td>LD50</td>
<td>2,3,7,8-TCDD</td>
<td>1.35</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>PCB 105</td>
<td>5592</td>
<td>0.0001</td>
<td>1</td>
<td>Embryo mortality</td>
</tr>
<tr>
<td>chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>24 days</td>
<td>PCB 126</td>
<td>4</td>
<td>0.4</td>
<td>0.04</td>
<td>Embryo mortality</td>
</tr>
<tr>
<td>chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>LD50</td>
<td>8.8</td>
<td>0.05</td>
<td>0.4</td>
<td>Embryo mortality</td>
</tr>
<tr>
<td>chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>24 days</td>
<td>PCB 105</td>
<td>2.3</td>
<td>0.1</td>
<td>0.2</td>
<td>Embryo mortality</td>
</tr>
<tr>
<td>chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>24 days</td>
<td>PCB 126</td>
<td>0.15</td>
<td>1</td>
<td>0.2</td>
<td>Embryo mortality</td>
</tr>
<tr>
<td>chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>20 days</td>
<td>LD50</td>
<td>PCB 77</td>
<td>2.6</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>LD50</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>Embryo mortality</td>
</tr>
<tr>
<td>cormorant (Phalacrocorax carbo)</td>
<td>Egg injection</td>
<td>21 days</td>
<td>LOAEL</td>
<td>PCB 126</td>
<td>800</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>American kestrel (Falco sparverius)</td>
<td>Egg injection</td>
<td>20 days</td>
<td>LOAEL</td>
<td>PCB 126</td>
<td>233</td>
<td>0.1</td>
<td>23</td>
</tr>
<tr>
<td>American kestrel (Falco sparverius)</td>
<td>Egg injection</td>
<td>20 days</td>
<td>LOAEL</td>
<td>PCB 77</td>
<td>100</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>common tern (Sterna hirundo)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>LOAEL</td>
<td>PCB 126</td>
<td>44</td>
<td>0.1</td>
<td>4</td>
</tr>
<tr>
<td>Double-crested cormorant</td>
<td>Egg injection</td>
<td>21 days</td>
<td>LOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ring-necked pheasant (Phasianus colchicus)</td>
<td>Egg injection</td>
<td>21 days</td>
<td>LOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>chick (Gallus domesticus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>LOAEL</td>
<td>PCB 105</td>
<td>1000</td>
<td>0.0001</td>
<td>1</td>
</tr>
<tr>
<td>chick (Gallus domesticus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>LOAEL</td>
<td>PCB 77</td>
<td>9</td>
<td>0.05</td>
<td>0.5</td>
</tr>
<tr>
<td>chick (Gallus domesticus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>LOAEL</td>
<td>PCB 77</td>
<td>6</td>
<td>0.05</td>
<td>0.3</td>
</tr>
<tr>
<td>chick (Gallus domesticus)</td>
<td>Egg injection</td>
<td>24 days</td>
<td>LOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.16</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>pigeon (Columba livia)</td>
<td>Egg injection</td>
<td>3</td>
<td>EL-No effect</td>
<td>2,3,7,8-TCDD</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>pigeon (Columba livia)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>LOAEL</td>
<td>PCB 126</td>
<td>0.9</td>
<td>0.1</td>
<td>0.09</td>
</tr>
<tr>
<td>pigeon (Columba livia)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>LOAEL</td>
<td>PCB 126</td>
<td>0.5</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>chick (Gallus domesticus)</td>
<td>Egg injection</td>
<td>24 days</td>
<td>LOAEL</td>
<td>PCB 126</td>
<td>0.2</td>
<td>0.1</td>
<td>0.02</td>
</tr>
<tr>
<td>Double-crested cormorant</td>
<td>Egg injection</td>
<td>21 days</td>
<td>NOAEL</td>
<td>PCB 126</td>
<td>400</td>
<td>0.1</td>
<td>40</td>
</tr>
<tr>
<td>great blue heron (Ardea herodias)</td>
<td>Egg injection</td>
<td>20 days</td>
<td>NOAEL</td>
<td>PCB 126</td>
<td>23</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>American kestrel (Falco sparverius)</td>
<td>Egg injection</td>
<td>20 days</td>
<td>NOAEL</td>
<td>PCB 126</td>
<td>316</td>
<td>0.05</td>
<td>16</td>
</tr>
<tr>
<td>Double-crested cormorant</td>
<td>Egg injection</td>
<td>21 days</td>
<td>NOAEL</td>
<td>PCB 126</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SPECIES</td>
<td>EXPOSURE MEDIA</td>
<td>EXPOSURE DURATION</td>
<td>EFFECT LEVEL</td>
<td>CONTAMINANT TYPE</td>
<td>EFFECTIVE EGG CONC. (ug/kg egg)</td>
<td>EFFECTIVE EGG CONC. DIOXIN EQUIVALENTS (ug TEQ/kg egg)</td>
<td>TEF</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>NOAEL</td>
<td>PCB 105</td>
<td>2700</td>
<td>0.0001</td>
<td>0.3</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>NOAEL</td>
<td>PCB 77</td>
<td>3</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>Ring-necked pheasant (Phasianus colchicus)</td>
<td>Egg injection</td>
<td>28 days</td>
<td>NOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>24 days</td>
<td>NOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.08</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Chicken (Gallus gallus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>NOAEL</td>
<td>PCB 77</td>
<td>1.2</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Chicken (Gallus gallus)</td>
<td>Egg injection</td>
<td>Embryonic Day</td>
<td>EL-No effect</td>
<td>2,3,7,8-TCDD</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Chicken (Gallus gallus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>NOAEL</td>
<td>PCB 126</td>
<td>0.3</td>
<td>0.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>18 days</td>
<td>NOAEL</td>
<td>PCB 126</td>
<td>0.3</td>
<td>0.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td>Egg injection</td>
<td>24 days</td>
<td>NOAEL</td>
<td>PCB 126</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>SPECIES</td>
<td>EFFECT LEVEL</td>
<td>CONTAMINANT TYPE</td>
<td>EFFECTIVE EGG CONC. DIOXIN EQUIVALENTS (ug TEQ/kg egg)</td>
<td>EFFECT ENDPOINT</td>
<td>REFERENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osprey (Pandion haliaetus)</td>
<td>EL-Effect level</td>
<td>TCDD</td>
<td>29 - 162</td>
<td>Growth rate of chicks</td>
<td>Woodford, et al., 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bald eagle (Haliaeetus leucocephalus)</td>
<td>EL-Effect level</td>
<td>TEQs, DDE</td>
<td>0.51 - 1.2</td>
<td>Reproductive success</td>
<td>Clark et al., 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great blue heron (Ardea herodias)</td>
<td>LOAEL</td>
<td>TEQs</td>
<td>0.5</td>
<td>Growth rate</td>
<td>Sanderson et al., 1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cormorant (Phalacrocorax carbo)</td>
<td>EL-Effect level</td>
<td>TEQs, pesticides</td>
<td>0.5</td>
<td>Growth rate</td>
<td>Hart et al., 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great blue heron (Ardea herodias)</td>
<td>EL-Effect level</td>
<td>TEQs, pesticides</td>
<td>0.5</td>
<td>Growth rate</td>
<td>Sanderson et al., 1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forster's tern (Sterna forsteri)</td>
<td>EL-Effect level</td>
<td>TEQs, pesticides</td>
<td>0.23</td>
<td>Reproductive success</td>
<td>Kubiak et al., 1989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forster's tern (Sterna forsteri)</td>
<td>EL-Effect level</td>
<td>TEQs, pesticides</td>
<td>2.20</td>
<td>Hatching success, growth rate of chicks</td>
<td>Kubiak et al., 1989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood duck (Aix sponsa)</td>
<td>LOAEL</td>
<td>TEQs, pesticides</td>
<td>0.2</td>
<td>Hatching success, duckling production</td>
<td>1994; White and Hoffman, 1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree swallow (Tachycineta bicolor)</td>
<td>NOAEL</td>
<td>TEQs</td>
<td>13</td>
<td>Reproductive success</td>
<td>US EPA Phase 2 Database (1998), Custer et al., 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree swallow (Tachycineta bicolor)</td>
<td>NOAEL</td>
<td>TEQs</td>
<td>0.589 in papers</td>
<td>Reproductive success</td>
<td>Custer et al., 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great blue heron (Ardea herodias)</td>
<td>NOAEL</td>
<td>TEQs</td>
<td>0.3</td>
<td>Reduced body weight</td>
<td>Sanderson et al., 1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great blue heron (Ardea herodias)</td>
<td>NOAEL</td>
<td>TEQs</td>
<td>0.24</td>
<td>Growth rate</td>
<td>Hart et al., 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forster's tern (Sterna forsteri)</td>
<td>EL-No effect</td>
<td>TEQs, pesticides</td>
<td>0.2</td>
<td>Hatching success, growth rate of chicks</td>
<td>Kubiak et al., 1989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forster's tern (Sterna forsteri)</td>
<td>EL-No effect</td>
<td>TEQs, pesticides</td>
<td>0.079</td>
<td>Reproductive success</td>
<td>Elliott et al., 1989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood duck (Aix sponsa)</td>
<td>NOAEL</td>
<td>TEQs, pesticides</td>
<td>0.005</td>
<td>Hatching success, duckling production</td>
<td>1994; White and Hoffman, 1995</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TAMS/MCA
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>EXPOSURE MEDIA</th>
<th>EXPOSURE DURATION</th>
<th>EFFECT LEVEL</th>
<th>PCB TYPE</th>
<th>EFFECTIVE DOSE (mg/kg/day)</th>
<th>FOOD INGESTION RATE (kg/kg/day)</th>
<th>EFFECTIVE FOOD CONC. (mg/kg)</th>
<th>EFFECT ENDPOINT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osborne-Mendel Rat</td>
<td>Oral-gavage</td>
<td>2.5 wk, 2 d per week</td>
<td>LD<sub>50</sub></td>
<td>Aroclor 1254</td>
<td>1530</td>
<td>0.099</td>
<td>Mortality</td>
<td>Garthoff et al., 1981 (ATSDR)</td>
<td></td>
</tr>
<tr>
<td>Osborne-Mendel Rat</td>
<td>Oral-gavage</td>
<td>2.5 wk, 2 d per week</td>
<td>LD<sub>50</sub></td>
<td>Aroclor 1254</td>
<td>1530</td>
<td>0.099</td>
<td>Mortality</td>
<td>Garthoff et al., 1981 (ATSDR)</td>
<td></td>
</tr>
<tr>
<td>Wistar Rat</td>
<td>Diet</td>
<td>From mating to weaning of pups</td>
<td>LD<sub>50</sub></td>
<td>Aroclor 1254</td>
<td>22</td>
<td>0</td>
<td>269</td>
<td>2 day postnatal mortality of offspring</td>
<td>Overmann et al., 1987</td>
</tr>
<tr>
<td>Juvenile Male Rat</td>
<td>Single intraperitoneal injection</td>
<td>Observed after 14 days</td>
<td>LAOEL</td>
<td>Aroclor 1248</td>
<td>2000</td>
<td></td>
<td>Growth rate of juveniles</td>
<td>Harris et al., 1993</td>
<td></td>
</tr>
<tr>
<td>Juvenile Male Rat</td>
<td>Single intraperitoneal injection</td>
<td>Observed after 14 days</td>
<td>LAOEL</td>
<td>Aroclor 1232</td>
<td>2000</td>
<td></td>
<td>Growth rate of juveniles</td>
<td>Harris et al., 1993</td>
<td></td>
</tr>
<tr>
<td>Sherman Rat</td>
<td>Diet</td>
<td>8 months</td>
<td>LAOEL</td>
<td>Aroclor 1260</td>
<td>72.4</td>
<td>0.08</td>
<td>Mortality</td>
<td>Gumbletch et al., 1972 (ATSDR)</td>
<td></td>
</tr>
<tr>
<td>Raccoon</td>
<td>(Procyon lotor)</td>
<td>Diet</td>
<td>8 days</td>
<td>EL-effect</td>
<td>Aroclor 1254</td>
<td>50</td>
<td></td>
<td>Decreased weight gain</td>
<td>Monte et al., 1982</td>
</tr>
<tr>
<td>Osborne-Mendel Rat</td>
<td>Diet</td>
<td>During pregnancy and lactation</td>
<td>LAOEL</td>
<td>Not reported</td>
<td>49.471</td>
<td>0.080</td>
<td>500</td>
<td>Reduced litter size</td>
<td>Collins & Capen, 1980</td>
</tr>
<tr>
<td>Bald Mouse</td>
<td>Oral</td>
<td>6 months</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>48.75</td>
<td>0.18</td>
<td>Mortality</td>
<td>ATSDR</td>
<td></td>
</tr>
<tr>
<td>Adult Female Rat</td>
<td>Oral</td>
<td>Day 17, 18, 19 and 1st lactation</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>32</td>
<td>0.08</td>
<td></td>
<td>Reduced growth rate of offspring</td>
<td>Sugar & Girard, 1994</td>
</tr>
<tr>
<td>Wistar Rat</td>
<td>Oral-gavage</td>
<td>1 month</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>30</td>
<td>0.08</td>
<td></td>
<td>Decreased litter size and survival of weanlings</td>
<td>ATSDR</td>
</tr>
<tr>
<td>White-Monkey Mouse (Macaca fascicularis)</td>
<td>Diet</td>
<td>12 weeks</td>
<td>EL-effect</td>
<td>Aroclor 1254</td>
<td>17</td>
<td>10</td>
<td></td>
<td>Reduced growth rate reproduction in second generation</td>
<td>Linery, 1988 (Golub)</td>
</tr>
<tr>
<td>Wistar Rat</td>
<td>Diet</td>
<td>42 days</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>13.5</td>
<td>0.08</td>
<td>Neonatal death</td>
<td>Overmann, 1987 (ATSDR)</td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>Diet</td>
<td>108 days</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>12.5</td>
<td>0.18</td>
<td>Decreased conception</td>
<td>Welsch, 1975 (ATSDR)</td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Oral-gavage</td>
<td>28 days</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>12.5</td>
<td>0.034</td>
<td>Fetal death</td>
<td>Thomas et al., 1971 (ATSDR)</td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>Diet</td>
<td>91 days</td>
<td>LAOEL</td>
<td>Aroclor 1248</td>
<td>9.2</td>
<td>0</td>
<td>250</td>
<td>Reduced growth rate in offspring</td>
<td>Golub</td>
</tr>
<tr>
<td>New Zealand White Rabbit</td>
<td>Diet</td>
<td>> 4 weeks</td>
<td>LAOEL</td>
<td>Aroclor 1248</td>
<td>8.9</td>
<td>0.0</td>
<td></td>
<td>Decreased weight gain</td>
<td>Hansen et al., 1976</td>
</tr>
<tr>
<td>Osborne-Mendel Rat</td>
<td>Diet</td>
<td>During pregnancy and lactation</td>
<td>LAOEL</td>
<td>Not reported</td>
<td>4.947</td>
<td>0.080</td>
<td>500</td>
<td>Reduced growth rate of offspring</td>
<td>Collins & Capen, 1980</td>
</tr>
<tr>
<td>Belgian Monkey (Macaca mulatta)</td>
<td>Diet</td>
<td>2 months</td>
<td>LAOEL</td>
<td>Aroclor 1248</td>
<td>4.3</td>
<td>0.2</td>
<td></td>
<td>Decreased conception</td>
<td>Aml et al., 1974 (ATSDR)</td>
</tr>
<tr>
<td>Belgian Monkey (Macaca mulatta)</td>
<td>Diet</td>
<td>2 months</td>
<td>LAOEL</td>
<td>Aroclor 1248</td>
<td>4.3</td>
<td>0.2</td>
<td></td>
<td>Abortion</td>
<td>Aml et al., 1974 (ATSDR)</td>
</tr>
<tr>
<td>Fischer Rat</td>
<td>Diet</td>
<td>105 weeks</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>1.7</td>
<td>0.08</td>
<td></td>
<td>Decreased survival</td>
<td>NC 1979 (ATSDR)</td>
</tr>
<tr>
<td>Guinea Pig</td>
<td>Oral-gavage</td>
<td>Gestational day 18-60</td>
<td>LAOEL</td>
<td>Clophen A50</td>
<td>2.5</td>
<td></td>
<td></td>
<td>Fetal death</td>
<td>Landravant, 1990 (ATSDR)</td>
</tr>
<tr>
<td>Sherman Rat</td>
<td>Diet</td>
<td>Multi-generational</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>1.5</td>
<td>0.08</td>
<td>20</td>
<td>Decreased litter size</td>
<td>Lind et al., 1974</td>
</tr>
<tr>
<td>Wistar Rat</td>
<td>Diet</td>
<td>25 weeks</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>1</td>
<td>0.08</td>
<td></td>
<td>Decreased growth rate</td>
<td>Blasiga et al., 1972</td>
</tr>
<tr>
<td>Oilfield Mouse (Peromyscus polionotus)</td>
<td>Diet</td>
<td>12 months</td>
<td>EL-effect</td>
<td>Aroclor 1254</td>
<td>0.68</td>
<td>0.01</td>
<td>5</td>
<td>Decreased conception, growth retardation, reducing litter size, no weight gain</td>
<td>Carter et al., 1971</td>
</tr>
<tr>
<td>Belgian Monkey (Macaca mulatta)</td>
<td>Diet</td>
<td>38 weeks</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td>No conception, abortion</td>
<td>ATSDR</td>
</tr>
<tr>
<td>Belgian Monkey (Macaca mulatta)</td>
<td>Diet</td>
<td>7 months</td>
<td>LAOEL</td>
<td>Aroclor 1248</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td>Decreased conception</td>
<td>Bartolli et al., 1976 (ATSDR)</td>
</tr>
<tr>
<td>Wistar Rat</td>
<td>Diet</td>
<td>From mating to weaning of pups</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>0.2</td>
<td>0.08</td>
<td>2.5</td>
<td>Reduced growth rate in offspring</td>
<td>Overmann et al., 1987</td>
</tr>
<tr>
<td>Belgian Monkey (Macaca mulatta)</td>
<td>Diet</td>
<td>2 months</td>
<td>LAOEL</td>
<td>Aroclor 1242</td>
<td>0.12</td>
<td>0.2</td>
<td></td>
<td>No weight gain</td>
<td>ATSDR</td>
</tr>
<tr>
<td>Belgian Monkey (Macaca mulatta)</td>
<td>Diet</td>
<td>1.5 years</td>
<td>LAOEL</td>
<td>Aroclor 1248</td>
<td>0.12</td>
<td>0.2</td>
<td></td>
<td>Reduced birth weight</td>
<td>Aml and Baroselli, 1976 (Golub)</td>
</tr>
<tr>
<td>Belgian Monkey (Macaca mulatta)</td>
<td>Diet</td>
<td>18 months</td>
<td>LAOEL</td>
<td>Aroclor 1248</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td>Infant mortality</td>
<td>Allen et al., 1980 (ATSDR)</td>
</tr>
<tr>
<td>Cynomolgus Monkey</td>
<td>Diet</td>
<td>238 days</td>
<td>LAOEL</td>
<td>Aroclor 1254</td>
<td>0.1</td>
<td></td>
<td>100% fetal death</td>
<td>Tron et al., 1982 (ATSDR)</td>
<td></td>
</tr>
<tr>
<td>Belgian Monkey (Macaca mulatta)</td>
<td>Diet</td>
<td>18.2</td>
<td>LAOEL</td>
<td>Aroclor 1248</td>
<td>0.08</td>
<td>0.2</td>
<td></td>
<td>Decreased birth weight</td>
<td>Levin et al., 1988 (ATSDR)</td>
</tr>
<tr>
<td>SPECIES</td>
<td>EXPOSURE MEDIA</td>
<td>EXPOSURE DURATION</td>
<td>EFFECT LEVEL</td>
<td>PCB TYPE</td>
<td>EFFECTIVE DOSE (mg/kg/day)</td>
<td>FOOD INGESTION RATE (kg/kg/day)</td>
<td>EFFECTIVE FOOD CONC. (mg/kg)</td>
<td>EFFECT ENDPOINT</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Rhesus Monkey (Macaca mulatta)</td>
<td>Diet</td>
<td>> 8 months</td>
<td>LOAEL</td>
<td>Aroclor 1016</td>
<td>0.04</td>
<td>0.2</td>
<td>1</td>
<td>Reduced birth weight</td>
<td>Barsotti and Van Miller, 1984 (Golub)</td>
</tr>
<tr>
<td>Swine</td>
<td>Diet</td>
<td>Throughout gestation</td>
<td>EL-effect</td>
<td>Aroclor 1242</td>
<td>Not available</td>
<td>20</td>
<td>Decreased litter size</td>
<td>Hansen et al., 1975 (Golub)</td>
<td></td>
</tr>
<tr>
<td>Juvenile Male Rat</td>
<td>Single intraperitoneal injection</td>
<td>Observed after 14 days</td>
<td>NOAEL</td>
<td>Aroclor 1248</td>
<td>480</td>
<td></td>
<td>Growth rate of juveniles</td>
<td>Harris et al., 1993</td>
<td></td>
</tr>
<tr>
<td>Juvenile Male Rat</td>
<td>Single intraperitoneal injection</td>
<td>Observed after 14 days</td>
<td>NOAEL</td>
<td>Aroclor 1232</td>
<td>480</td>
<td></td>
<td>Growth rate of juveniles</td>
<td>Harris et al., 1993</td>
<td></td>
</tr>
<tr>
<td>Wistar Rat</td>
<td>Diet</td>
<td>52 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1254</td>
<td>10</td>
<td>0.08</td>
<td>Decreased growth rate</td>
<td>Phillips et al., 1972</td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Oral-gavage</td>
<td>28 days</td>
<td>NOAEL</td>
<td>Aroclor 1254</td>
<td>10</td>
<td>0.034</td>
<td>Fetal death</td>
<td>Viidik and others, 1981 (ATSDR)</td>
<td></td>
</tr>
<tr>
<td>Adult Female Rat</td>
<td>Oral</td>
<td>Days 1, 3, 5 and 9 of lactation</td>
<td>NOAEL</td>
<td>Aroclor 1254</td>
<td>8</td>
<td>0.099</td>
<td>Growth rate of offspring</td>
<td>Sager & Girard, 1994</td>
<td></td>
</tr>
<tr>
<td>New Zealand White Rabbit</td>
<td>Diet</td>
<td>> 4 weeks</td>
<td>NOAEL</td>
<td>Aroclor 1248</td>
<td>3.6</td>
<td>0.034</td>
<td>100</td>
<td>Reduced growth rate in offspring</td>
<td>Trinanes and others, 1980 (Golub)</td>
</tr>
<tr>
<td>Sherman Rat</td>
<td>Diet</td>
<td>Multigenerational</td>
<td>NOAEL</td>
<td>Aroclor 1254</td>
<td>0.32</td>
<td>0.08</td>
<td>5</td>
<td>Decreased litter size</td>
<td>Under et al., 1974</td>
</tr>
<tr>
<td>Osborne-Mendel Rat</td>
<td>Diet</td>
<td>During pregnancy and lactation</td>
<td>NOAEL</td>
<td>Aroclor 1254</td>
<td>0.059</td>
<td>0.08</td>
<td>50</td>
<td>Reduced litter size</td>
<td>Collins & Capen, 1980</td>
</tr>
<tr>
<td>Mouse Monkey (Macaca mulatta)</td>
<td>Diet</td>
<td>> 8 months</td>
<td>NOAEL</td>
<td>Aroclor 1016</td>
<td>0.01</td>
<td>0.2</td>
<td>0.25</td>
<td>Reduced birth weight</td>
<td>Barsotti and Van Miller, 1984 (Golub)</td>
</tr>
<tr>
<td>Wistar Rat</td>
<td>Diet</td>
<td>From mating to weaning of pups</td>
<td>NOAEL</td>
<td>Aroclor 1254</td>
<td>0.0016</td>
<td>0.08</td>
<td>0.02</td>
<td>Reduced growth rate in offspring</td>
<td>Overmann et al., 1987</td>
</tr>
</tbody>
</table>

Notes:
- No relevant field studies were found.
- Dose to rhesus monkey calculated using food ingestion rate of 0.2 kg/day and body weight of 5 kg (Sample et al., 1996)
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>EXPOSURE MEDIA</th>
<th>EXPOSURE DURATION</th>
<th>EFFECT LEVEL</th>
<th>CONTAMINANT TYPE</th>
<th>EFFECTIVE DOSE DIOXIN EQUIVALENTS (ug TEQ/kg/day)*</th>
<th>EFFECT ENDPOINT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamster</td>
<td>Oral</td>
<td>Single dose</td>
<td>LD₅₀</td>
<td>2,3,7,8-TCDD</td>
<td>1,160 - 5,050</td>
<td>Mortality</td>
<td>Kociba and Schwetz,</td>
</tr>
<tr>
<td>Mouse</td>
<td>Oral</td>
<td>Single dose</td>
<td>LD₅₀</td>
<td>2,3,7,8-TCDD</td>
<td>114 - 284</td>
<td>Mortality</td>
<td>Kociba and Schwetz,</td>
</tr>
<tr>
<td>Dog</td>
<td>Oral</td>
<td>Single dose</td>
<td>LD₅₀</td>
<td>2,3,7,8-TCDD</td>
<td>about 100 - 200</td>
<td>Mortality</td>
<td>Kociba and Schwetz,</td>
</tr>
<tr>
<td>Rabbit</td>
<td>Oral</td>
<td>Single dose</td>
<td>LD₅₀</td>
<td>2,3,7,8-TCDD</td>
<td>115</td>
<td>Mortality</td>
<td>Schwetz et al., 1973</td>
</tr>
<tr>
<td>Rhesus monkey</td>
<td>Oral</td>
<td>Single dose</td>
<td>LD₅₀</td>
<td>2,3,7,8-TCDD</td>
<td>approx. 70</td>
<td>Mortality</td>
<td>1982</td>
</tr>
<tr>
<td>Rat</td>
<td>Oral</td>
<td>Single dose</td>
<td>LD₅₀</td>
<td>2,3,7,8-TCDD</td>
<td>22 - 45</td>
<td>Mortality</td>
<td>Schwetz et al., 1973</td>
</tr>
<tr>
<td>Guinea pig</td>
<td>Oral</td>
<td>Single dose</td>
<td>LD₅₀</td>
<td>2,3,7,8-TCDD</td>
<td>0.6 - 2.1</td>
<td>Mortality</td>
<td>Schwetz et al., 1973</td>
</tr>
<tr>
<td>Rat</td>
<td>Gestation days 6 to 20</td>
<td>LOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.25</td>
<td>Litter size, pup weight</td>
<td>Khera and Rodnick, 1973</td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>3 generations</td>
<td>LOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.01</td>
<td>Female mortality</td>
<td>Kociba et al., 1978</td>
<td></td>
</tr>
<tr>
<td>Rhesus monkey</td>
<td>7 months</td>
<td>LOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.0021</td>
<td>Number of births</td>
<td>Allen et al., 1979</td>
<td></td>
</tr>
<tr>
<td>Rhesus monkey</td>
<td>7 to 48 months, maternal</td>
<td>LOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.00059</td>
<td>Reproductive</td>
<td>Bowman et al., 1990b</td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>Gestation days 6 to 20</td>
<td>NOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.125</td>
<td>Litter size, pup weight</td>
<td>Khera and Rodnick, 1973</td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>2 years</td>
<td>NOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.01</td>
<td>Female mortality</td>
<td>Kociba et al., 1978</td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>3 generations</td>
<td>NOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.001</td>
<td>Reproductive capacity</td>
<td>Murray et al., 1979</td>
<td></td>
</tr>
<tr>
<td>Rhesus monkey</td>
<td>7 to 48 months, maternal</td>
<td>NOAEL</td>
<td>2,3,7,8-TCDD</td>
<td>0.00012</td>
<td>Reproductive</td>
<td>Bowman et al., 1989</td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>EXPOSURE MEDIA</td>
<td>EXPOSURE DURATION</td>
<td>EFFECT LEVEL</td>
<td>PCB TYPE</td>
<td>EFFECTIVE DOSE (mg/kg/day)</td>
<td>EFFECTIVE FOOD CONC. (mg/kg)</td>
<td>EFFECT ENDPOINT</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>4 weeks</td>
<td>LD50</td>
<td>Aroclor 1254</td>
<td>11.5</td>
<td>84</td>
<td>Adult mortality</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>4 weeks</td>
<td>LD50</td>
<td>Aroclor 1254</td>
<td>10.8</td>
<td>79</td>
<td>Adult mortality</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>4 weeks</td>
<td>LD50</td>
<td>Aroclor 1254</td>
<td>6.4</td>
<td>47</td>
<td>Adult mortality</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>4 weeks</td>
<td>LD50</td>
<td>Aroclor 1254 (weathered)</td>
<td>6.4</td>
<td>47</td>
<td>Adult mortality</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>9 months</td>
<td>LD50</td>
<td>Aroclor 1254</td>
<td>0.9</td>
<td>6.6</td>
<td>Mortality</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>8 months</td>
<td>EL-effect</td>
<td>Aroclor 1016</td>
<td>2.7</td>
<td>20</td>
<td>Reduced birth weight and growth rate</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>8 months</td>
<td>EL-effect</td>
<td>Aroclor 1016</td>
<td>1.4</td>
<td>10</td>
<td>Reduced weight gain in juveniles</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>8 months</td>
<td>LOAEL</td>
<td>Aroclor 1242</td>
<td>1.4</td>
<td>10</td>
<td>Adult mortality</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>3 months</td>
<td>EL-effect</td>
<td>Clophen A-50</td>
<td>2</td>
<td>Not reported</td>
<td>Decreased number of kits born alive</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>3 months</td>
<td>EL-effect</td>
<td>Aroclor 1254</td>
<td>2</td>
<td>Not reported</td>
<td>Decreased number of kits born alive</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>8 months</td>
<td>LOAEL</td>
<td>Aroclor 1242</td>
<td>0.7</td>
<td>5</td>
<td>Reduced reproduction</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>4 months</td>
<td>LOAEL</td>
<td>Aroclor 1254</td>
<td>0.7</td>
<td>5</td>
<td>Decreased number of kits born alive</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>6 months</td>
<td>LOAEL</td>
<td>Aroclor 1254 (weathered)</td>
<td>0.5</td>
<td>3.57</td>
<td>Adult mortality</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>66 days</td>
<td>LOAEL</td>
<td>Not reported</td>
<td>0.5</td>
<td>3.3</td>
<td>Decreased number of kits born alive</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>4 months</td>
<td>EL-effect</td>
<td>Aroclor 1254</td>
<td>0.3</td>
<td>2.5</td>
<td>Decreased number of kits born alive</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>6 months</td>
<td>EL-effect</td>
<td>Aroclor 1254</td>
<td>0.1</td>
<td>1</td>
<td>Reduced growth rates of kits</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>160 days</td>
<td>LOAEL</td>
<td>Aroclor 1254 (weathered)</td>
<td>0.09</td>
<td>0.64</td>
<td>Reduced number of kits born alive</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>8 months</td>
<td>NOAEL</td>
<td>Aroclor 1242</td>
<td>0.9</td>
<td>5</td>
<td>Adult mortality</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Diet</td>
<td>4 months</td>
<td>NOAEL</td>
<td>Aroclor 1254</td>
<td>0.1</td>
<td>1</td>
<td>Decreased number of kits born alive</td>
</tr>
<tr>
<td>SPECIES</td>
<td>FIELD COMPONENT</td>
<td>STUDY DURATION</td>
<td>EFFECT LEVEL</td>
<td>CONTAMINANT TYPE</td>
<td>EFFECTIVE DOSE (mg/kg/day)</td>
<td>EFFECTIVE FOOD CONC. (μg/kg)</td>
<td>EFFECT ENDPOINT</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Field studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Mink were fed prior to and throughout the reproductive period</td>
<td>LOAEL</td>
<td>PCBs, TEQs, others</td>
<td>0.13</td>
<td>N/A</td>
<td>Reproductive success, growth/survival of offspring</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Mink fed prior to breeding and over two generations</td>
<td>LOAEL</td>
<td>PCBs, pesticides</td>
<td>0.08</td>
<td>0.5</td>
<td>Kit survival</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Mink fed prior to breeding and over two generations</td>
<td>LOAEL</td>
<td>PCBs, pesticides</td>
<td>0.04</td>
<td>0.25</td>
<td>Reduced growth rate of kits</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Mink fed prior to breeding and over two generations</td>
<td>LOAEL</td>
<td>PCBs, pesticides</td>
<td>0.04</td>
<td>0.25</td>
<td>Kit survival</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Mink were fed prior to and throughout the reproductive period</td>
<td>NOAEL</td>
<td>PCBs, TEQs, others</td>
<td>0.004</td>
<td>N/A</td>
<td>Reproductive success, growth/survival of offspring</td>
</tr>
<tr>
<td>SPECIES</td>
<td>FIELD COMPONENT</td>
<td>STUDY DURATION</td>
<td>EFFECT LEVEL</td>
<td>CONTAMINANT TYPE</td>
<td>EFFECTIVE DOSE (mg/kg/day)</td>
<td>EFFECTIVE DOSE DIOXIN EQUIVALENTS (ug TEQ/kg/day)</td>
<td>EFFECT ENDPOINT</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Laboratory studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mink kits (Mustela vison)</td>
<td>Intraperitoneal</td>
<td>12 days</td>
<td>LD₅₀</td>
<td>2,3,7,8-TCDD</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>Mortality</td>
</tr>
<tr>
<td>Mink males (Mustela vison)</td>
<td>Oral</td>
<td>Single dose</td>
<td>LD₅₀</td>
<td>2,3,7,8-TCDD</td>
<td>4.2</td>
<td>4.2</td>
<td>Mortality</td>
</tr>
<tr>
<td>SPECIES</td>
<td>FIELD COMPONENT</td>
<td>STUDY DURATION</td>
<td>EFFECT LEVEL</td>
<td>CONTAMINANT TYPE</td>
<td>EFFECTIVE DOSE DIOXIN EQUIVALENTS (ug TEQ/kg/day)</td>
<td>EFFECT ENDPOINT</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Field studies</td>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Fed prior to and throughout breeding period</td>
<td>LOAEL</td>
<td>TEQs, pesticides</td>
<td>0.0036</td>
<td>Growth rate of kits</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Fed prior to and throughout breeding period</td>
<td>LOAEL</td>
<td>TEQs (chemically derived)</td>
<td>0.0024</td>
<td>Growth and survival rate of kits</td>
<td>Tillitt et al., 1996</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Fed prior to and throughout breeding period</td>
<td>LOAEL</td>
<td>TEQs (bioassay derived)</td>
<td>0.00027</td>
<td>Growth and survival rate of kits</td>
<td>Tillitt et al., 1996</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Fed prior to and throughout breeding period</td>
<td>NOAEL</td>
<td>TEQs (bioassay derived)</td>
<td>0.00344</td>
<td>Growth and survival rate of kits</td>
<td>Tillitt et al., 1996</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Fed prior to and throughout breeding period</td>
<td>NOAEL</td>
<td>TEQs, pesticides</td>
<td>0.00025</td>
<td>Growth rate of kits</td>
<td>Heaton et al. (1995)</td>
</tr>
<tr>
<td>Mink (Mustela vision)</td>
<td>Fed contaminated carp from Saginaw Bay, MI</td>
<td>Fed prior to and throughout breeding period</td>
<td>NOAEL</td>
<td>TEQs (chemically derived)</td>
<td>0.00008</td>
<td>Growth and survival rate of kits</td>
<td>Tillitt et al., 1996</td>
</tr>
<tr>
<td>Phylum</td>
<td>Class</td>
<td>Subclass</td>
<td>Order</td>
<td>Family</td>
<td>Genus</td>
<td>Species</td>
<td>Common name</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Chordata</td>
<td>Mammalia</td>
<td></td>
<td>Carnivora</td>
<td>Mustelidae</td>
<td>Lutra</td>
<td>canadensis</td>
<td>River Otter</td>
</tr>
<tr>
<td>Chordata</td>
<td>Mammalia</td>
<td></td>
<td>Carnivora</td>
<td>Mustelidae</td>
<td>Mustela</td>
<td>vision</td>
<td>Mink</td>
</tr>
<tr>
<td>Chordata</td>
<td>Mammalia</td>
<td></td>
<td>Carnivora</td>
<td>Procyonidae</td>
<td>Procyon</td>
<td>lotor</td>
<td>Raccoon</td>
</tr>
<tr>
<td>Chordata</td>
<td>Mammalia</td>
<td></td>
<td>Chiroptera</td>
<td>Vespertilionidae</td>
<td>Myotis</td>
<td>lucifugus</td>
<td>Little Brown Bat</td>
</tr>
<tr>
<td>Chordata</td>
<td>Mammalia</td>
<td></td>
<td>Lagomorphus</td>
<td>Leporidae</td>
<td>[Sylvilagus]</td>
<td>[transitionalis]</td>
<td>Rabbit [Eastern Cottontail]</td>
</tr>
<tr>
<td>Chordata</td>
<td>Mammalia</td>
<td></td>
<td>Rodentia</td>
<td>Muridae</td>
<td>[Peromyscus]</td>
<td>[polionotus]</td>
<td>Mouse [Oldfield Mouse]</td>
</tr>
<tr>
<td>Chordata</td>
<td>Mammalia</td>
<td></td>
<td>Rodentia</td>
<td>Muridae</td>
<td>[Rattus]</td>
<td>[rattus]</td>
<td>Rat</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Anseriformes</td>
<td>Anatidae</td>
<td>Aix</td>
<td>sponsa</td>
<td>Wood Duck</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Anseriformes</td>
<td>Anatidae</td>
<td>Anas</td>
<td>platyrhynchos</td>
<td>Mallard Duck</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Charadriiforms</td>
<td>Laridae</td>
<td>Hydropogne</td>
<td>caspia</td>
<td>Caspian tern</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Charadriiforms</td>
<td>Laridae</td>
<td>Sterna</td>
<td>hirundo</td>
<td>Common tern</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Charadriiforms</td>
<td>Laridae</td>
<td>Sterna</td>
<td>forsteri</td>
<td>Forster's tern</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Ciconiiformes</td>
<td>Ardeidae</td>
<td>Ardea</td>
<td>herodias</td>
<td>Great Blue Heron</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Coraciiformes</td>
<td>Alcedinidae</td>
<td>Ceryle</td>
<td>alcyon</td>
<td>Kingfisher</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Falconiformes</td>
<td>Accipitridae</td>
<td>Haliaeetus</td>
<td>leucocephalus</td>
<td>Bald Eagle</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Falconiformes</td>
<td>Falconidae</td>
<td>Falco</td>
<td>sparvenius</td>
<td>American Kestrel</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Falconiformes</td>
<td>Pandionidae</td>
<td>Pandion</td>
<td>haliaeetus</td>
<td>Osprey</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Galiformes</td>
<td>Phasianidae</td>
<td>Collinus</td>
<td>virginianus</td>
<td>Northern Bobwhite</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Galiformes</td>
<td>Phasianidae</td>
<td>Coturnix</td>
<td>coturnix</td>
<td>Japanese Quail</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Galiformes</td>
<td>Phasianidae</td>
<td>Gallus</td>
<td>domesticus</td>
<td>Domestic Chicken</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Galiformes</td>
<td>Phasianidae</td>
<td>Phasianus</td>
<td>colchicus</td>
<td>Ring-Necked Pheasant</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Passeriformes</td>
<td>Hirundinidae</td>
<td>Tachycineta</td>
<td>bicolor</td>
<td>Tree Swallow</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Passeriformes</td>
<td>Icteridae</td>
<td>Agelaius</td>
<td>phoeniceus</td>
<td>Red-Winged Blackbird</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Passeriformes</td>
<td>Icteridae</td>
<td>Molothrus</td>
<td>ater</td>
<td>Brown-Headed Cowbird</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Passeriformes</td>
<td>Icteridae</td>
<td>Quiscalus</td>
<td>quiscala</td>
<td>Common Grackle</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Passeriformes</td>
<td>Sturnidae</td>
<td>Sturnus</td>
<td>vulgaris</td>
<td>European Starling</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Telecaniformes</td>
<td>Phalacrocoracida</td>
<td>Phalacrocorax</td>
<td>auritus</td>
<td>Double-Crested Cormorant</td>
</tr>
<tr>
<td>Chordata</td>
<td>Aves</td>
<td></td>
<td>Strigiformes</td>
<td>Strigidae</td>
<td>Otus</td>
<td>asio</td>
<td>Screech Owl</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Acipenseriformes</td>
<td>Acipenser</td>
<td>brevirostrum</td>
<td>Shortnose Sturgeon</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Belioniformes</td>
<td>Adrianichthyidae</td>
<td>Oryzias</td>
<td>Latipes</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Clupeiformes</td>
<td>Clupeidae</td>
<td>Clupea</td>
<td>harengus</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Cypriniformes</td>
<td>Catostomidae</td>
<td>Catostomas</td>
<td>commersont</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Cypriniformes</td>
<td>Cypriniidae</td>
<td>Danio</td>
<td>danio</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Cypriniformes</td>
<td>Cypriniidae</td>
<td>Notropis</td>
<td>hudsonius</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Cypriniformes</td>
<td>Cypriniidae</td>
<td>Phoxinus</td>
<td>phoxinus</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Cypriniformes</td>
<td>Cyprinodontidae</td>
<td>Fundulus</td>
<td>heteroclitus</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Perciformes</td>
<td>Centrarchidae</td>
<td>Lepomis</td>
<td>gibbosus</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Perciformes</td>
<td>Centrarchidae</td>
<td>Lepomis</td>
<td>auritus</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Perciformes</td>
<td>Centrarchidae</td>
<td>Micropterus</td>
<td>salmoides</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Perciformes</td>
<td>Moronidae</td>
<td>Morone</td>
<td>americana</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Perciformes</td>
<td>Moronidae</td>
<td>Morone</td>
<td>saxatilis</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Perciformes</td>
<td>Percidae</td>
<td>Percus</td>
<td>flavescens</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td></td>
<td>Actinopterygi</td>
<td>Perciformes</td>
<td>Sciaenidae</td>
<td>Leiostomus</td>
<td>santharus</td>
</tr>
<tr>
<td>Phylum</td>
<td>Class</td>
<td>Subclass</td>
<td>Order</td>
<td>Family</td>
<td>Genus</td>
<td>Species</td>
<td>Common name</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Perciformes</td>
<td>Sparidae</td>
<td>Lagodon</td>
<td>rhomboides</td>
<td>Pinfish</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Pleuronectiformes</td>
<td>Pleuronectidae</td>
<td>Parophrys</td>
<td>vetulus</td>
<td>English Sole</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Pleuronectiformes</td>
<td>Pleuronectidae</td>
<td>Platichthys</td>
<td>flesus</td>
<td>Baltic Flounder</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Pleuronectiformes</td>
<td>Pleuronectidae</td>
<td>Platichthys</td>
<td>stellatus</td>
<td>Starry Flounder</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Pleuronectiformes</td>
<td>Pleuronectidae</td>
<td>Platichthys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Salmoniformes</td>
<td>Esocidae</td>
<td>Esox</td>
<td>lucius</td>
<td>Northern Pike</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Salmoniformes</td>
<td>Salmonidae</td>
<td>Oncorhynchus</td>
<td>tshawytscha</td>
<td>Chinook Salmon</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Salmoniformes</td>
<td>Salmonidae</td>
<td>Salmo</td>
<td>gairdneri</td>
<td>Rainbow Trout</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Salmoniformes</td>
<td>Salmonidae</td>
<td>Salvelinus</td>
<td>alpinus</td>
<td>Arctic Char</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Salmoniformes</td>
<td>Salmonidae</td>
<td>Salvelinus</td>
<td>fontinalis</td>
<td>Brook Trout</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Salmoniformes</td>
<td>Salmonidae</td>
<td>Salvelinus</td>
<td>namaycush</td>
<td>Lake Trout</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Siluriformes</td>
<td>Ictaluridae</td>
<td>Ictalurus</td>
<td>nebulosus</td>
<td>Brown Bullhead</td>
</tr>
<tr>
<td>Chordata</td>
<td>Pisces</td>
<td>Actinopterygii</td>
<td>Siluriformes</td>
<td>Ictaluridae</td>
<td>Ictalurus</td>
<td>punctatus</td>
<td>Channel Catfish</td>
</tr>
<tr>
<td>Animal</td>
<td>Body Weight (kg)</td>
<td>Food Ing. Rate (g/d)</td>
<td>Food Ingestion Rate (kg/d)</td>
<td>Food factor (kg/kg body wt/d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAMMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mink</td>
<td>1</td>
<td>0.137</td>
<td>0.137</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>0.03</td>
<td>0.0055</td>
<td>0.180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Mouse</td>
<td>0.029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse, Oldfield</td>
<td>0.014</td>
<td>1.9</td>
<td>0.0019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>3.8</td>
<td>0.135</td>
<td>0.034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhesus Monkey</td>
<td>5</td>
<td>0.2</td>
<td>0.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>0.35</td>
<td>0.028</td>
<td>0.080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Rat</td>
<td>0.331</td>
<td>0.03275</td>
<td>0.099</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIRDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackbird, Red-Winged</td>
<td>0.064</td>
<td>0.0137</td>
<td>0.214</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken, Domestic--adult</td>
<td>1.6</td>
<td>0.11</td>
<td>0.069</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Chicken, Domestic--adult</td>
<td>1.5</td>
<td>0.106</td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chickens, Domestic--chick</td>
<td>0.121</td>
<td>0.108</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Chicken, Domestic--chick</td>
<td>0.3275</td>
<td>0.0283</td>
<td>0.086</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowbird, Brown-headed</td>
<td>0.049</td>
<td>0.01087</td>
<td>0.222</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dove, Ringed</td>
<td>0.155</td>
<td>0.017</td>
<td>0.110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duck, Mallard--adult</td>
<td>1</td>
<td>0.1</td>
<td>0.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Duck, Mallard--adult</td>
<td>1.0946</td>
<td>1.1148</td>
<td>0.105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duck, Mallard--duckling</td>
<td>0.782</td>
<td>78.2</td>
<td>0.0782</td>
<td>0.100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kestrel, American</td>
<td>0.13</td>
<td>0.01</td>
<td>0.077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owl, Screech</td>
<td>0.181</td>
<td>25</td>
<td>0.025</td>
<td>0.138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pheasant, Ring-necked</td>
<td>1</td>
<td>0.0582</td>
<td>0.058</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quail, Japanese</td>
<td>0.15</td>
<td>0.0169</td>
<td>0.113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quail, Japanese--3 months</td>
<td>0.072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: All values are from Toxicological Benchmarks for Wildlife:1996 Revision (USEPA, 1996) unless otherwise noted.
TABLE 4-25
TOXICITY REFERENCE VALUES FOR FISH
DIETARY DOSES AND EGG CONCENTRATIONS OF TOTAL PCBs AND DIOXIN TOXIC EQUIVALENTS (TEQs)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAEL</td>
<td>17</td>
<td>170</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>NOAEL</td>
<td>1.5</td>
<td>15</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

White perch and striped bass: Westin et al. (1983)

Notes:

- LOAEL: Lowest Observable Adverse Effect Level
- NOAEL: No Observable Adverse Effect Level
- NA: Not available

Note:
- Pumpkinseed (Lepomis gibbosus) and spottail shiner (Notropis hudsonius)
- Units vary for PCBs and TEQ
- Selected TRVs are **bolded** and *italicized*.
TABLE 4-26
TOXICITY REFERENCE VALUES FOR BIRDS
DIETARY DOSES AND EGG CONCENTRATIONS OF TOTAL PCBs AND DIOXIN TOXIC EQUIVALENTS (TEQs)

<table>
<thead>
<tr>
<th>TRVs</th>
<th>Tree Swallow (Tachycineta bicolor)</th>
<th>Mallard Duck (Anas platyrhynchos)</th>
<th>Belted Kingfisher (Ceryle alcyon)</th>
<th>Great Blue Heron (Ardea herodias)</th>
<th>Bald Eagle (Haliaeetus leucocephalus)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary Dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab-based TRVs for PCBs (mg/kg/day)</td>
<td>LOAEL</td>
<td>0.07</td>
<td>2.6</td>
<td>0.07</td>
<td>0.07</td>
<td>Mallard: Custer and Heinz (1980) All others: Scott (1977)</td>
</tr>
<tr>
<td></td>
<td>NOAEL</td>
<td>0.01</td>
<td>0.26</td>
<td>0.01</td>
<td>0.01</td>
<td>Tree Swallow: US EPA Phase 2 Database (1998)</td>
</tr>
<tr>
<td>Field-based TRVs for PCBs (mg/kg/day)</td>
<td>LOAEL</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOAEL</td>
<td>16.1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Lab-based TRVs for TEQs (ug/kg/day)</td>
<td>LOAEL</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>Nosek et al. (1992)</td>
</tr>
<tr>
<td></td>
<td>NOAEL</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0014</td>
<td></td>
</tr>
<tr>
<td>Field-based TRVs for TEQs (ug/kg/day)</td>
<td>LOAEL</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>US EPA Phase 2 Database (1998)</td>
</tr>
<tr>
<td></td>
<td>NOAEL</td>
<td>4.9</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Egg Concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab-based TRVs for PCBs (mg/kg egg)</td>
<td>LOAEL</td>
<td>2.21</td>
<td>2.21</td>
<td>2.21</td>
<td>2.21</td>
<td>Scott (1977)</td>
</tr>
<tr>
<td></td>
<td>NOAEL</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>Bald Eagle: Wiemeyer (1984, 1993) Tree Swallow: US EPA Phase 2 Database (1998)</td>
</tr>
<tr>
<td>Field-based TRVs for PCBs (mg/kg egg)</td>
<td>LOAEL</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOAEL</td>
<td>26.7</td>
<td>NA</td>
<td>NA</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Lab-based TRVs for TEQs (ug/kg egg)</td>
<td>LOAEL</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>NA</td>
<td>Great Blue Heron: Janz and Bellward (1996) Others: Powell et al. (1996a)</td>
</tr>
<tr>
<td></td>
<td>NOAEL</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>2</td>
<td>Mallard: White and Seguiak (1994); White and Hoffman (1995) Great Blue Heron: Sanderson et al. (1994)</td>
</tr>
<tr>
<td>Field-based TRVs for TEQs (ug/kg egg)</td>
<td>LOAEL</td>
<td>NA</td>
<td>0.02</td>
<td>NA</td>
<td>0.5</td>
<td>Tree Swallow: US EPA Phase 2 Database (1998)</td>
</tr>
<tr>
<td></td>
<td>NOAEL</td>
<td>13</td>
<td>NA</td>
<td>0.005</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Note: Units vary for PCBs and TEQ.
NA = Not Available
Selected TRVs are bolded and italicized.
TABLE 4-27

TOXICITY REFERENCE VALUES FOR MAMMALS

DIETARY DOSES OF TOTAL PCBs AND DIOXIN TOXIC EQUIVALENTS (TEQs)

<table>
<thead>
<tr>
<th>TRVs</th>
<th>Little Brown Bat (Myotis lucifugus)</th>
<th>Raccoon (Procyon lotor)</th>
<th>Mink (Mustela vison)</th>
<th>Otter (Lutra canadensis)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab-based TRVs for PCBs (mg/kg/day)</td>
<td>LOAEL 0.15 0.15</td>
<td>0.07</td>
<td>0.07</td>
<td>Mink and otter: Aulerich and Ringer (1977)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOAEL 0.032 0.032</td>
<td>0.01</td>
<td>0.01</td>
<td>Raccoon and bat: Linder et al. (1984)</td>
<td></td>
</tr>
<tr>
<td>Field-based TRVs for PCBs (mg/kg/day)</td>
<td>LOAEL NA NA</td>
<td>0.13</td>
<td>0.13</td>
<td>Heaton et al. (1995)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOAEL NA NA</td>
<td>0.004</td>
<td>0.004</td>
<td>Mink and otter: Aulerich and Ringer (1977)</td>
<td></td>
</tr>
<tr>
<td>Lab-based TRVs for TEQs (ug/kg/day)</td>
<td>LOAEL 0.001 0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>Murray et al. (1979)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOAEL 0.0001 0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>Heaton et al. (1995)</td>
<td></td>
</tr>
<tr>
<td>Field-based TRVs for TEQs (ug/kg/day)</td>
<td>LOAEL NA NA</td>
<td>0.00224</td>
<td>0.00224</td>
<td>Tillitt et al. (1996)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOAEL NA NA</td>
<td>0.00008</td>
<td>0.00008</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Units vary for PCBs and TEQ.

Note: TRVs for raccoon and bat are based on multi-generational studies to which interspecies uncertainty factors are applied.

NA = Not Available

Final selected TRVs are bolded and italicized.
TABLE 4-28: WILDLIFE SURVEY RESULTS Amphibians

Hudson River
New York

<table>
<thead>
<tr>
<th>Information Source</th>
<th>Date</th>
<th>Contact</th>
<th>Response</th>
<th>Contact Information</th>
<th>Data Available</th>
<th>Information/Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibian Expert</td>
<td>1-Jun-99</td>
<td>Email</td>
<td>Yes</td>
<td>Thomas Palmer, frog consultant for Wellesley Project; Ophis@world.std.com</td>
<td>He doesn't know anything about PCB effects on frogs; posted message on amphibian web page</td>
<td>Recommended the following website: http://cciw.ca/green-lane/herptox/</td>
</tr>
<tr>
<td>NYSDEC - Amphibian and Reptile Atlas Project</td>
<td>3-Jun-99</td>
<td>Email</td>
<td>No</td>
<td>herps@gw.dec.state.ny.us; http://www.dec.state.ny.us/website/dfwrmr/wildlife/herp/index.html</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndakinna Wilderness Project</td>
<td>6/3/1999</td>
<td>Email</td>
<td>No</td>
<td>Jim Brushek (518) 583-9980x3, 23 Middle Grove Road, Greenfield Center, NY 12833; Received address from Saratoga County Information - Annamaria Dalton (annamaria@spa.net)</td>
<td>Professional Tracker</td>
<td>Common amphibians present in strong numbers. Box, snapper, and painted turtles. Some snakes which he could not identify.</td>
</tr>
</tbody>
</table>
TABLE 5-1
BENTHIC INVERTEBRATES COLLECTED AT TI POOL STATIONS

<table>
<thead>
<tr>
<th>Taxa in Rank Order</th>
<th>Common Name</th>
<th>Mean % of Total Ind. Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caecidotea racovitzai</td>
<td>Isopod (sowbug)</td>
<td>34.6</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>Midge</td>
<td>~30.2</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>Aquatic worms</td>
<td>14.3</td>
</tr>
<tr>
<td>Gammarus fasciatus</td>
<td>Amphipod</td>
<td>10.3</td>
</tr>
<tr>
<td>Pisidium sp.</td>
<td>Pill Clam</td>
<td>5.0</td>
</tr>
<tr>
<td>Canthocamptes sp.</td>
<td>Harpacticoid copepod</td>
<td>1.5</td>
</tr>
<tr>
<td>Nematoda</td>
<td>Nematods (worms)</td>
<td>1.1</td>
</tr>
<tr>
<td>Phylocentropus sp.</td>
<td>Caddis fly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Dubiraphia sp.</td>
<td>Beetle larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Menetus sp.</td>
<td>Caddis fly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Valvata sp.</td>
<td>Snail</td>
<td><1.0</td>
</tr>
<tr>
<td>Sialis sp.</td>
<td>Alderfly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Oecetis sp.</td>
<td>Caddisfly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Probezzia sp.</td>
<td>Biting midges</td>
<td><1.0</td>
</tr>
<tr>
<td>Enallagma sp.</td>
<td>Damselfly nymph</td>
<td><1.0</td>
</tr>
<tr>
<td>Chydoridae</td>
<td>Water fleas (Cladoceran)</td>
<td><1.0</td>
</tr>
<tr>
<td>Acariformes</td>
<td>Mites</td>
<td><1.0</td>
</tr>
<tr>
<td>Ammicola sp.</td>
<td>Snail</td>
<td><1.0</td>
</tr>
<tr>
<td>Mystacides sp.</td>
<td>Caddisfly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Diaphanosoma sp.</td>
<td>Water fleas (Cladoceran)</td>
<td><1.0</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>Biting midges</td>
<td><1.0</td>
</tr>
<tr>
<td>Helobdella fusca</td>
<td>Leech</td>
<td><1.0</td>
</tr>
<tr>
<td>Arthropoda</td>
<td>Arthropods</td>
<td><1.0</td>
</tr>
<tr>
<td>Eukiefferiella sp.</td>
<td>Biting Midge</td>
<td><1.0</td>
</tr>
<tr>
<td>Taxa in Rank Order</td>
<td>Common Name</td>
<td>Mean % of Total Ind. Collected</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Turbellaria</td>
<td>Flatworms</td>
<td><1.0</td>
</tr>
<tr>
<td>Dugesia tigrina</td>
<td>Flatworm</td>
<td><1.0</td>
</tr>
<tr>
<td>Bithynia tentaculata</td>
<td></td>
<td><1.0</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>Caddisfly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Chydorus sp.</td>
<td>Water fleas (Cladoceran)</td>
<td><1.0</td>
</tr>
<tr>
<td>Caenis sp.</td>
<td>Mayfly nymph</td>
<td><1.0</td>
</tr>
<tr>
<td>Physa sp.</td>
<td>Snail</td>
<td><1.0</td>
</tr>
<tr>
<td>Helobdella sp.</td>
<td>Leech</td>
<td><1.0</td>
</tr>
<tr>
<td>Mesocyclops sp.</td>
<td>Cyclopoid copepods</td>
<td><1.0</td>
</tr>
<tr>
<td>Orthotrichia sp.</td>
<td>Caddisfly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Aeschnidae</td>
<td>Dragonfly nymph</td>
<td><1.0</td>
</tr>
<tr>
<td>Hexagenia sp.</td>
<td>Mayfly nymph</td>
<td><1.0</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>Leeches</td>
<td><1.0</td>
</tr>
<tr>
<td>Neureclipsis sp.</td>
<td>Caddisfly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Culicoides sp.</td>
<td>Mosquito larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Corixidae</td>
<td>Water boatman</td>
<td><1.0</td>
</tr>
<tr>
<td>Neoperla sp.</td>
<td>Stonefly nymph</td>
<td><1.0</td>
</tr>
<tr>
<td>Caenidae</td>
<td>Mayfly nymph</td>
<td><1.0</td>
</tr>
<tr>
<td>Donacia sp.</td>
<td>Beetle</td>
<td><1.0</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>True bugs</td>
<td><1.0</td>
</tr>
<tr>
<td>Molanna sp.</td>
<td>Caddisfly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Copepoda</td>
<td>Copepods</td>
<td><1.0</td>
</tr>
<tr>
<td>Insecta</td>
<td>Insects</td>
<td><1.0</td>
</tr>
<tr>
<td>Baetidae</td>
<td>Mayfly nymph</td>
<td><1.0</td>
</tr>
<tr>
<td>Macronychus sp.</td>
<td>Riffle beetle</td>
<td><1.0</td>
</tr>
<tr>
<td>Tipulidae</td>
<td>Crunefly larvae</td>
<td><1.0</td>
</tr>
</tbody>
</table>
TABLE 5-1
BENTHIC INVERTEBRATES COLLECTED AT TI POOL STATIONS

<table>
<thead>
<tr>
<th>Taxa in Rank Order</th>
<th>Common Name</th>
<th>Mean % of Total Ind. Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cymatia sp.</td>
<td>Water boatman</td>
<td><1.0</td>
</tr>
<tr>
<td>Notonecta sp.</td>
<td>Water boatman</td>
<td><1.0</td>
</tr>
<tr>
<td>Talitridae</td>
<td>Amphipod</td>
<td><1.0</td>
</tr>
<tr>
<td>Baetis sp.</td>
<td>Mayfly nymph</td>
<td><1.0</td>
</tr>
<tr>
<td>Dromogomphus sp.</td>
<td>Dragonfly nymph</td>
<td><1.0</td>
</tr>
<tr>
<td>Oxyethira sp.</td>
<td>Caddis fly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Diptera</td>
<td>Flies and midges</td>
<td><1.0</td>
</tr>
<tr>
<td>Atherix sp.</td>
<td>Snipe fly</td>
<td><1.0</td>
</tr>
<tr>
<td>Tabanidae</td>
<td>Horsefly larvae</td>
<td><1.0</td>
</tr>
<tr>
<td>Elliptio sp.</td>
<td>Eastern elliptio mussel</td>
<td><1.0</td>
</tr>
</tbody>
</table>

Notes: Taxa are listed in order of absolute abundance. Mean Percent of individuals is based on the mean of Stations 3 to 7.

1 Chironomidae were primarily composed of Chironominae, *Proclaudius* sp., *Tanytarsus* sp., *Dicrotendipes* sp., *Polypedilum* sp., *Clinotanypus* sp., *Tribelos jucundus*, and Tanypodinae.
TABLE 5-2
RELATIVE ABUNDANCE OF FIVE DOMINANT TAXANOMIC GROUPS AT TI POOL STATIONS

<table>
<thead>
<tr>
<th>Group/Taxa</th>
<th>Station 3 Abundance</th>
<th>Station 4 Abundance</th>
<th>Station 5 Abundance</th>
<th>Station 6 Abundance</th>
<th>Station 7 Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ind/m²</td>
<td>Percent</td>
<td>ind/m²</td>
<td>Percent</td>
<td>ind/m²</td>
</tr>
<tr>
<td>Total Dominant Isopoda</td>
<td>653</td>
<td>5.6%</td>
<td>3245</td>
<td>24.6%</td>
<td>14256</td>
</tr>
<tr>
<td>Caecidotea racovitzai</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Dominant Chironomids</td>
<td>3775</td>
<td>32.3%</td>
<td>3959</td>
<td>30.1%</td>
<td>7619</td>
</tr>
<tr>
<td>Unidentified Chironomidae</td>
<td>1398</td>
<td>12.0%</td>
<td>122</td>
<td>0.9%</td>
<td>2232</td>
</tr>
<tr>
<td>Unidentified Chironominae</td>
<td>510</td>
<td>4.4%</td>
<td>1490</td>
<td>11.3%</td>
<td>374</td>
</tr>
<tr>
<td>Procladius sp.</td>
<td>479</td>
<td>4.1%</td>
<td>204</td>
<td>1.5%</td>
<td>1474</td>
</tr>
<tr>
<td>Tanytarsus sp.</td>
<td>255</td>
<td>2.2%</td>
<td>0</td>
<td>0.0%</td>
<td>1409</td>
</tr>
<tr>
<td>Dicrotendipes sp.</td>
<td>479</td>
<td>4.1%</td>
<td>337</td>
<td>2.6%</td>
<td>560</td>
</tr>
<tr>
<td>Polypedilum sp.</td>
<td>82</td>
<td>0.7%</td>
<td>102</td>
<td>0.8%</td>
<td>396</td>
</tr>
<tr>
<td>Clinotanypus sp.</td>
<td>51</td>
<td>0.4%</td>
<td>133</td>
<td>1.0%</td>
<td>200</td>
</tr>
<tr>
<td>Tribelos jucundus</td>
<td>112</td>
<td>1.0%</td>
<td>571</td>
<td>4.3%</td>
<td>131</td>
</tr>
<tr>
<td>Unidentified Tanypodinae</td>
<td>214</td>
<td>1.8%</td>
<td>51</td>
<td>0.4%</td>
<td>194</td>
</tr>
<tr>
<td>Chironomus sp.</td>
<td>41</td>
<td>0.3%</td>
<td>41</td>
<td>0.3%</td>
<td>650</td>
</tr>
<tr>
<td>Cricotopus trifascia</td>
<td>102</td>
<td>0.9%</td>
<td>41</td>
<td>0.3%</td>
<td>0</td>
</tr>
<tr>
<td>Unidentified Orthocladiinae</td>
<td>51</td>
<td>0.4%</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>Total Dominant Oligochaeta</td>
<td>2918</td>
<td>25.0%</td>
<td>2245</td>
<td>17.0%</td>
<td>2681</td>
</tr>
<tr>
<td>Unidentified Oligochaeta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Dominant Amphipoda</td>
<td>1030</td>
<td>8.8%</td>
<td>1102</td>
<td>8.4%</td>
<td>682</td>
</tr>
<tr>
<td>Gammarus fasciatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Dominant Pelecypoda</td>
<td>1245</td>
<td>10.6%</td>
<td>1581</td>
<td>12.0%</td>
<td>49</td>
</tr>
<tr>
<td>Pisidium sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotals</td>
<td>9621</td>
<td>82.3%</td>
<td>12132</td>
<td>92.1%</td>
<td>25287</td>
</tr>
<tr>
<td>Total Abundance (all taxa)</td>
<td>11691</td>
<td></td>
<td>13172</td>
<td></td>
<td>27983</td>
</tr>
<tr>
<td>Station</td>
<td>Simpson Diversity D_s</td>
<td>Simpson Dominance I</td>
<td>Eveness Distribution</td>
<td>Species Richness</td>
<td>Abundance No. Ind./Sq M</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Infauna</td>
<td>Total Benthos</td>
<td>Infauna</td>
<td>Total Benthos</td>
<td>Infauna</td>
</tr>
<tr>
<td>3</td>
<td>0.84</td>
<td>0.87</td>
<td>0.16</td>
<td>0.13</td>
<td>0.88</td>
</tr>
<tr>
<td>4</td>
<td>0.79</td>
<td>0.83</td>
<td>0.21</td>
<td>0.17</td>
<td>0.84</td>
</tr>
<tr>
<td>5</td>
<td>0.81</td>
<td>0.69</td>
<td>0.19</td>
<td>0.31</td>
<td>0.87</td>
</tr>
<tr>
<td>6</td>
<td>0.78</td>
<td>0.84</td>
<td>0.22</td>
<td>0.16</td>
<td>0.82</td>
</tr>
<tr>
<td>7</td>
<td>0.84</td>
<td>0.57</td>
<td>0.16</td>
<td>0.43</td>
<td>0.95</td>
</tr>
<tr>
<td>TI Pool</td>
<td>0.81</td>
<td>0.76</td>
<td>0.19</td>
<td>0.24</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Notes: Total benthos equals the sum of infaunal and epibenthic macroinvertebrates
TABLE 5-4
RELATIVE PERCENT ABUNDANCE OF MACROINVERTEBRATES -- LOWER HUDSON RIVER

<table>
<thead>
<tr>
<th>Species/Group</th>
<th>%</th>
<th>Station 14</th>
<th>Species/Group</th>
<th>%</th>
<th>Station 15</th>
<th>Species/Group</th>
<th>%</th>
<th>Station 17</th>
<th>Species/Group</th>
<th>%</th>
<th>Station 18</th>
<th>Species/Group</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligochaeta</td>
<td>42.4</td>
<td>Oligochaeta</td>
<td>36.1</td>
<td>Chironominae Indet.</td>
<td>12.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironominae Indet.</td>
<td>12.9</td>
<td>Dicrotendipes sp.</td>
<td>10.5</td>
<td>Chironomus sp.</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae Indet.</td>
<td>10.3</td>
<td>Procladius sp.</td>
<td>10.0</td>
<td>Polyplepidium sp.</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procladius sp.</td>
<td>8.0</td>
<td>Clinotanyus sp.</td>
<td>6.4</td>
<td>Clinotanyus sp.</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyplepidium sp.</td>
<td>7.1</td>
<td>Oligochaeta</td>
<td>4.1</td>
<td>Polyplepidium sp.</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisidium sp.</td>
<td>2.9</td>
<td>Gammarus fasciatus</td>
<td>2.6</td>
<td>Acariformes</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribelos sp.</td>
<td>2.9</td>
<td>Pisidium sp.</td>
<td>2.3</td>
<td>Dicrotendipes sp.</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptotendipes sp.</td>
<td>2.9</td>
<td>Chironomidae Indet.</td>
<td>2.3</td>
<td>Cladotanytarsus sp.</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanytarsus sp.</td>
<td>2.3</td>
<td>Amnicola limosa</td>
<td>1.9</td>
<td>Amnicola sp.</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomus sp.</td>
<td>1.9</td>
<td>Cladotanytarsus sp.</td>
<td>1.5</td>
<td>Synorthocladius sp.</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus fasciatus</td>
<td>1.0</td>
<td>Orthotrichia sp.</td>
<td>1.1</td>
<td>Tríbelos sp.</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acariformes</td>
<td>0.6</td>
<td>Nematoda</td>
<td>1.1</td>
<td>Cyclopoda</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanytarsinae Indet.</td>
<td>0.6</td>
<td>Gastropoda</td>
<td>1.1</td>
<td>Gammarus fasciatus</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladotanytarsus sp.</td>
<td>0.6</td>
<td>Cricotopus bicinctus</td>
<td>1.1</td>
<td>Hydroptilidae</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culeptera</td>
<td>0.3</td>
<td>Tanytarsus sp.</td>
<td>1.1</td>
<td>Hydroptilidae</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bithynia tentaculata</td>
<td>0.3</td>
<td>Triãenodes sp.</td>
<td>0.8</td>
<td>Cyathura polita</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvata sp.</td>
<td>0.3</td>
<td>Orthocladinae Indet.</td>
<td>0.8</td>
<td>Hydroptila sp.</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nematoda</td>
<td>0.3</td>
<td>Chironomus sp.</td>
<td>0.8</td>
<td>Chironomus sp.</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyathura polita</td>
<td>0.3</td>
<td>Acariformes</td>
<td>0.4</td>
<td>Dicrotendipes sp.</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostracoda</td>
<td>0.3</td>
<td>Dugesia tigrina</td>
<td>0.4</td>
<td>Visonuctolida</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptoceridae</td>
<td>0.3</td>
<td>Diaphanosoma sp.</td>
<td>0.4</td>
<td>Hydroptila sp.</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>0.3</td>
<td>Proberlia sp.</td>
<td>0.4</td>
<td>Proberlia sp.</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera</td>
<td>0.3</td>
<td>Bithynia tentaculata</td>
<td>0.4</td>
<td>Visonuctolida</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilothauma sp.</td>
<td>0.3</td>
<td>Synorthocladius sp.</td>
<td>0.4</td>
<td>Visonuctolida</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptochironomus sp.</td>
<td>0.3</td>
<td>Tribelos sp.</td>
<td>0.4</td>
<td>Visonuctolida</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Djalnabatista sp.</td>
<td>0.4</td>
<td>Visonuctolida</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labrundinia sp.</td>
<td>0.4</td>
<td>Visonuctolida</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coelotanytarsus sp.</td>
<td>0.4</td>
<td>Visonuctolida</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synorthocladius sp.</td>
<td>0.4</td>
<td>Visonuctolida</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptotendipes sp.</td>
<td>0.4</td>
<td>Visonuctolida</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5-5
SUMMARY OF DIVERSITY INDICES AND ABUNDANCE DATA – LOWER HUDSON RIVER

<table>
<thead>
<tr>
<th>Station</th>
<th>D_s</th>
<th>I</th>
<th>D_{max}</th>
<th>E_s</th>
<th>Species Richness</th>
<th>Abundance ind/m²</th>
<th>Biomass mg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station 12 Stockport Flats</td>
<td>0.70</td>
<td>0.30</td>
<td>0.92</td>
<td>0.76</td>
<td>14</td>
<td>5,289</td>
<td>63</td>
</tr>
<tr>
<td>Station 14 Tivoli Bays</td>
<td>0.82</td>
<td>0.18</td>
<td>0.95</td>
<td>0.86</td>
<td>16</td>
<td>4,524</td>
<td>126</td>
</tr>
<tr>
<td>Station 15 Esopus Meadows</td>
<td>0.86</td>
<td>0.14</td>
<td>0.93</td>
<td>0.93</td>
<td>11</td>
<td>2,551</td>
<td>65</td>
</tr>
<tr>
<td>Station 17 Iona Island</td>
<td>0.71</td>
<td>0.29</td>
<td>0.90</td>
<td>0.79</td>
<td>9</td>
<td>5,136</td>
<td>365</td>
</tr>
<tr>
<td>Station 18 Piermont Pier</td>
<td>0.84</td>
<td>0.16</td>
<td>0.90</td>
<td>0.93</td>
<td>9</td>
<td>6,480</td>
<td>291</td>
</tr>
<tr>
<td>Grand Mean</td>
<td>0.79</td>
<td>0.21</td>
<td>0.92</td>
<td>0.85</td>
<td>12</td>
<td>4,796</td>
<td>182</td>
</tr>
</tbody>
</table>
Table 5-6
Selected Sediment Screening Guidelines: PCBs

<table>
<thead>
<tr>
<th>Sediment Guidelines/Effect Levels</th>
<th>Total PCBs</th>
<th>Aroclor 1254</th>
<th>Aroclor 1248</th>
<th>Aroclor 1260</th>
<th>Aroclor 1242</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hudson River Sediment Effect Concentrations</td>
<td>(NOAA, 1999) - mg/kg (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Effect Concentration</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-range Effect Concentration</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extreme Effect Concentration</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYSDEC (1998) Freshwater (µg/g OC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benthic Aquatic Life Acute Toxicity</td>
<td>2760.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benthic Aquatic Life Chronic Toxicity</td>
<td>19.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildlife Bioaccumulation</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario Ministry of the Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshwater Guidelines (Persaud et al., 1993)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Effect Level (µg/g)</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest Effect Level (µg/g)</td>
<td>0.07 0.06 0.03 0.007 0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe Effect Level (µg/g OC)</td>
<td>530 34 150 53 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long et al. (1995) Marine & Estuaries- ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effects-Range-Low</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effects-Range-Median</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingersoll et al. (1996) Freshwater Guidelines based on Hyalella azteca - ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effects-Range-Low</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effects-Range-Median</td>
<td>730</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Effect Level</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Effect Level</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Effect Concentration</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Apparent Effects Threshold - Microtox</td>
<td>21 7.3 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAET - Hyalella azteca</td>
<td>450 240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparent Effects Threshold - Microtox</td>
<td>21 7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AET - Hyalella azteca</td>
<td>820 350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparent Effects Threshold - Microtox mg/kg OC</td>
<td>2.6 0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AET - Hyalella azteca mg/kg OC</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones et al. (1997) ppb; Eq-P-derived assuming 1% OC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended TOC adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Chronic Values</td>
<td>810 1000 4500000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: All values are provided in dry weight unless noted

Mean PCB conc. Upper Hudson benthic stations: 9.292 - 29.320 ppm
Mean PCB conc. Lower Hudson benthic stations: 0.367 - 1.313 ppm
TABLE 5-7: FEDERAL AND STATE PCB WATER QUALITY CRITERIA

<table>
<thead>
<tr>
<th>Total PCB Water Quality Criteria (µg/L)</th>
<th>Upper Hudson 1993 (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USEPA/NYSDEC - Benthic Aquatic Life</td>
<td></td>
</tr>
<tr>
<td>Acute Toxicity - Freshwater</td>
<td>2</td>
</tr>
<tr>
<td>Acute Toxicity - Saltwater</td>
<td>10</td>
</tr>
<tr>
<td>Chronic Toxicity - Freshwater</td>
<td>0.014</td>
</tr>
<tr>
<td>Chronic Toxicity - Saltwater</td>
<td>0.03</td>
</tr>
<tr>
<td>NYSDEC - Wildlife Bioaccumulation</td>
<td></td>
</tr>
<tr>
<td>Freshwater</td>
<td>0.001</td>
</tr>
<tr>
<td>Saltwater</td>
<td>0.001</td>
</tr>
<tr>
<td>NYSDEC Surface Water Standards</td>
<td></td>
</tr>
<tr>
<td>Wildlife Criterion</td>
<td>0.00012</td>
</tr>
</tbody>
</table>

TABLE 5-8: RATIO OF OBSERVED SEDIMENT CONCENTRATIONS TO GUIDELINES

<table>
<thead>
<tr>
<th>Location</th>
<th>TEC</th>
<th>MEC</th>
<th>EEC</th>
<th>NYSDEC Benthic Chronic</th>
<th>NYSDEC Wildlife</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.04 mg/kg dry weight</td>
<td>0.4 mg/kg dry weight</td>
<td>1.7 mg/kg dry weight</td>
<td>19.3 mg/kg OC</td>
<td>1.4 mg/kg OC</td>
</tr>
<tr>
<td></td>
<td>Average 95% UCL</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool</td>
<td>297</td>
<td>435</td>
<td>7.0</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>776</td>
<td>1354</td>
<td>18</td>
<td>32</td>
<td>43</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>70</td>
<td>117</td>
<td>1.6</td>
<td>2.8</td>
<td>9.2</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>22</td>
<td>24</td>
<td>2.2</td>
<td>2.4</td>
<td>1.4</td>
</tr>
<tr>
<td>137.2</td>
<td>38</td>
<td>77</td>
<td>3.8</td>
<td>7.7</td>
<td>1.8</td>
</tr>
<tr>
<td>122.4</td>
<td>24</td>
<td>27</td>
<td>2.4</td>
<td>2.7</td>
<td>0.6</td>
</tr>
<tr>
<td>113.8</td>
<td>25</td>
<td>42</td>
<td>2.5</td>
<td>4.2</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>215</td>
<td>1.0</td>
<td>22</td>
<td>0.2</td>
</tr>
<tr>
<td>88.9</td>
<td>20</td>
<td>57</td>
<td>2.0</td>
<td>5.7</td>
<td>0.5</td>
</tr>
<tr>
<td>58.7</td>
<td>63</td>
<td>70</td>
<td>0.6</td>
<td>7.0</td>
<td>0.1</td>
</tr>
<tr>
<td>47.3</td>
<td>38</td>
<td>150</td>
<td>3.8</td>
<td>15</td>
<td>0.9</td>
</tr>
<tr>
<td>25.8</td>
<td>14</td>
<td>39</td>
<td>1.4</td>
<td>3.9</td>
<td>0.3</td>
</tr>
</tbody>
</table>
TABLE 5-8: RATIO OF OBSERVED SEDIMENT CONCENTRATIONS TO GUIDELINES

<table>
<thead>
<tr>
<th>Location</th>
<th>Persaud LEL</th>
<th>Persaud SEL</th>
<th>Washington State</th>
<th>Washington State</th>
<th>Washington State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.007 mg/kg dry weight</td>
<td>53 mg/kg OC</td>
<td>PAET 1242 100 ppb</td>
<td>PAET Microtox</td>
<td>AET Microtox OC</td>
</tr>
<tr>
<td></td>
<td>Average Sediment</td>
<td>95% UCL Sediment</td>
<td>Average 95% UCL Sediment</td>
<td>Average 95% UCL Sediment</td>
<td>Average 95% UCL Sediment</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>1697</td>
<td>2483</td>
<td>4.5</td>
<td>5.7</td>
<td>119</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>4433</td>
<td>7739</td>
<td>16</td>
<td>27</td>
<td>310</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>399</td>
<td>669</td>
<td>3.4</td>
<td>5.6</td>
<td>28</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>123</td>
<td>135</td>
<td>0.5</td>
<td>0.5</td>
<td>8.6</td>
</tr>
<tr>
<td>137.2</td>
<td>217</td>
<td>438</td>
<td>1.0</td>
<td>2.1</td>
<td>15</td>
</tr>
<tr>
<td>122.4</td>
<td>138</td>
<td>153</td>
<td>0.9</td>
<td>0.9</td>
<td>10</td>
</tr>
<tr>
<td>113.8</td>
<td>144</td>
<td>238</td>
<td>0.6</td>
<td>1.0</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>57</td>
<td>1230</td>
<td>0.3</td>
<td>6.4</td>
<td>4.0</td>
</tr>
<tr>
<td>88.9</td>
<td>112</td>
<td>326</td>
<td>0.4</td>
<td>1.2</td>
<td>7.8</td>
</tr>
<tr>
<td>58.7</td>
<td>36</td>
<td>399</td>
<td>0.4</td>
<td>3.5</td>
<td>2.5</td>
</tr>
<tr>
<td>47.3</td>
<td>220</td>
<td>857</td>
<td>0.8</td>
<td>3.2</td>
<td>15</td>
</tr>
<tr>
<td>25.8</td>
<td>83</td>
<td>223</td>
<td>0.5</td>
<td>1.4</td>
<td>5.8</td>
</tr>
<tr>
<td>Year</td>
<td>189 Total</td>
<td>168 Total</td>
<td>154 Total</td>
<td>189 Total</td>
<td>168 Total</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1993</td>
<td>720</td>
<td>232</td>
<td>103</td>
<td>760</td>
<td>233</td>
</tr>
<tr>
<td>1994</td>
<td>667</td>
<td>218</td>
<td>95</td>
<td>704</td>
<td>219</td>
</tr>
<tr>
<td>1995</td>
<td>628</td>
<td>212</td>
<td>93</td>
<td>662</td>
<td>212</td>
</tr>
<tr>
<td>1996</td>
<td>570</td>
<td>190</td>
<td>78</td>
<td>601</td>
<td>191</td>
</tr>
<tr>
<td>1997</td>
<td>527</td>
<td>172</td>
<td>68</td>
<td>555</td>
<td>173</td>
</tr>
<tr>
<td>1998</td>
<td>475</td>
<td>155</td>
<td>58</td>
<td>501</td>
<td>156</td>
</tr>
<tr>
<td>1999</td>
<td>433</td>
<td>141</td>
<td>51</td>
<td>457</td>
<td>142</td>
</tr>
<tr>
<td>2000</td>
<td>396</td>
<td>129</td>
<td>45</td>
<td>417</td>
<td>130</td>
</tr>
<tr>
<td>2001</td>
<td>374</td>
<td>127</td>
<td>42</td>
<td>395</td>
<td>127</td>
</tr>
<tr>
<td>2002</td>
<td>354</td>
<td>122</td>
<td>40</td>
<td>373</td>
<td>122</td>
</tr>
<tr>
<td>2003</td>
<td>330</td>
<td>116</td>
<td>38</td>
<td>348</td>
<td>117</td>
</tr>
<tr>
<td>2004</td>
<td>302</td>
<td>108</td>
<td>35</td>
<td>318</td>
<td>109</td>
</tr>
<tr>
<td>2005</td>
<td>278</td>
<td>97</td>
<td>30</td>
<td>293</td>
<td>97</td>
</tr>
<tr>
<td>2006</td>
<td>268</td>
<td>94</td>
<td>29</td>
<td>282</td>
<td>94</td>
</tr>
<tr>
<td>2007</td>
<td>251</td>
<td>87</td>
<td>26</td>
<td>265</td>
<td>87</td>
</tr>
<tr>
<td>2008</td>
<td>234</td>
<td>81</td>
<td>24</td>
<td>247</td>
<td>82</td>
</tr>
<tr>
<td>2009</td>
<td>223</td>
<td>78</td>
<td>23</td>
<td>235</td>
<td>78</td>
</tr>
<tr>
<td>2010</td>
<td>209</td>
<td>74</td>
<td>22</td>
<td>220</td>
<td>75</td>
</tr>
<tr>
<td>2011</td>
<td>185</td>
<td>67</td>
<td>20</td>
<td>194</td>
<td>67</td>
</tr>
<tr>
<td>2012</td>
<td>170</td>
<td>63</td>
<td>19</td>
<td>179</td>
<td>63</td>
</tr>
<tr>
<td>2013</td>
<td>161</td>
<td>62</td>
<td>18</td>
<td>170</td>
<td>62</td>
</tr>
<tr>
<td>2014</td>
<td>148</td>
<td>57</td>
<td>16</td>
<td>157</td>
<td>57</td>
</tr>
<tr>
<td>2015</td>
<td>139</td>
<td>54</td>
<td>15</td>
<td>147</td>
<td>54</td>
</tr>
<tr>
<td>2016</td>
<td>133</td>
<td>53</td>
<td>15</td>
<td>141</td>
<td>53</td>
</tr>
<tr>
<td>2017</td>
<td>122</td>
<td>49</td>
<td>13</td>
<td>129</td>
<td>49</td>
</tr>
<tr>
<td>2018</td>
<td>115</td>
<td>46</td>
<td>12</td>
<td>121</td>
<td>46</td>
</tr>
<tr>
<td>Year</td>
<td>189 Total</td>
<td>168 Total</td>
<td>154 Total</td>
<td>189 Total</td>
<td>168 Total</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1993</td>
<td>74</td>
<td>47</td>
<td>26</td>
<td>84</td>
<td>48</td>
</tr>
<tr>
<td>1994</td>
<td>69</td>
<td>45</td>
<td>24</td>
<td>78</td>
<td>45</td>
</tr>
<tr>
<td>1995</td>
<td>65</td>
<td>43</td>
<td>24</td>
<td>73</td>
<td>43</td>
</tr>
<tr>
<td>1996</td>
<td>59</td>
<td>39</td>
<td>19</td>
<td>67</td>
<td>39</td>
</tr>
<tr>
<td>1997</td>
<td>55</td>
<td>35</td>
<td>17</td>
<td>62</td>
<td>35</td>
</tr>
<tr>
<td>1998</td>
<td>50</td>
<td>32</td>
<td>12</td>
<td>56</td>
<td>32</td>
</tr>
<tr>
<td>1999</td>
<td>45</td>
<td>29</td>
<td>11</td>
<td>51</td>
<td>29</td>
</tr>
<tr>
<td>2000</td>
<td>41</td>
<td>27</td>
<td>9.2</td>
<td>47</td>
<td>27</td>
</tr>
<tr>
<td>2001</td>
<td>39</td>
<td>26</td>
<td>8.6</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>2002</td>
<td>37</td>
<td>25</td>
<td>8.3</td>
<td>42</td>
<td>25</td>
</tr>
<tr>
<td>2003</td>
<td>35</td>
<td>24</td>
<td>7.8</td>
<td>39</td>
<td>24</td>
</tr>
<tr>
<td>2004</td>
<td>32</td>
<td>22</td>
<td>7.2</td>
<td>36</td>
<td>22</td>
</tr>
<tr>
<td>2005</td>
<td>29</td>
<td>20</td>
<td>6.3</td>
<td>33</td>
<td>20</td>
</tr>
<tr>
<td>2006</td>
<td>28</td>
<td>19</td>
<td>6.0</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>2007</td>
<td>27</td>
<td>18</td>
<td>5.4</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>2008</td>
<td>25</td>
<td>17</td>
<td>4.9</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>2009</td>
<td>24</td>
<td>16</td>
<td>4.7</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>2010</td>
<td>22</td>
<td>15</td>
<td>4.6</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>2011</td>
<td>20</td>
<td>14</td>
<td>4.1</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>2012</td>
<td>18</td>
<td>13</td>
<td>3.8</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>2013</td>
<td>17</td>
<td>12</td>
<td>3.8</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>2014</td>
<td>16</td>
<td>11</td>
<td>3.3</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>2015</td>
<td>15</td>
<td>11</td>
<td>3.1</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>2016</td>
<td>14</td>
<td>10</td>
<td>3.1</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>2017</td>
<td>13</td>
<td>10</td>
<td>2.6</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>2018</td>
<td>12</td>
<td>8.9</td>
<td>2.4</td>
<td>14</td>
<td>8.9</td>
</tr>
</tbody>
</table>
TABLE 5-9: RATIO OF HUDTOX PREDICTED SEDIMENT CONCENTRATIONS TO SEDIMENT GUIDELINES

<table>
<thead>
<tr>
<th>Year</th>
<th>Average PCB Results</th>
<th>Tri+ 95% UCL Results</th>
<th>Average PCB Results</th>
<th>Tri+ 95% UCL Results</th>
<th>Average PCB Results</th>
<th>Tri+ 95% UCL Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189 Total</td>
<td>Sed Conc</td>
<td>168 Total</td>
<td>Sed Conc</td>
<td>154 Total</td>
<td>Sed Conc</td>
</tr>
<tr>
<td>1993</td>
<td>27</td>
<td>17</td>
<td>10</td>
<td>31</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>1994</td>
<td>25</td>
<td>16</td>
<td>8.9</td>
<td>28</td>
<td>16</td>
<td>8.9</td>
</tr>
<tr>
<td>1995</td>
<td>24</td>
<td>16</td>
<td>8.6</td>
<td>27</td>
<td>16</td>
<td>8.6</td>
</tr>
<tr>
<td>1996</td>
<td>22</td>
<td>14</td>
<td>7.1</td>
<td>24</td>
<td>14</td>
<td>7.2</td>
</tr>
<tr>
<td>1997</td>
<td>20</td>
<td>13</td>
<td>6.3</td>
<td>23</td>
<td>13</td>
<td>6.4</td>
</tr>
<tr>
<td>1998</td>
<td>18</td>
<td>12</td>
<td>4.4</td>
<td>20</td>
<td>12</td>
<td>4.4</td>
</tr>
<tr>
<td>1999</td>
<td>16</td>
<td>11</td>
<td>3.9</td>
<td>19</td>
<td>11</td>
<td>3.9</td>
</tr>
<tr>
<td>2000</td>
<td>15</td>
<td>10</td>
<td>3.4</td>
<td>17</td>
<td>10</td>
<td>3.4</td>
</tr>
<tr>
<td>2001</td>
<td>14</td>
<td>10</td>
<td>3.1</td>
<td>16</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>2002</td>
<td>14</td>
<td>9.2</td>
<td>3.0</td>
<td>15</td>
<td>9.2</td>
<td>3.0</td>
</tr>
<tr>
<td>2003</td>
<td>13</td>
<td>8.8</td>
<td>2.8</td>
<td>14</td>
<td>8.8</td>
<td>2.9</td>
</tr>
<tr>
<td>2004</td>
<td>12</td>
<td>8.1</td>
<td>2.6</td>
<td>13</td>
<td>8.2</td>
<td>2.6</td>
</tr>
<tr>
<td>2005</td>
<td>11</td>
<td>7.3</td>
<td>2.3</td>
<td>12</td>
<td>7.3</td>
<td>2.3</td>
</tr>
<tr>
<td>2006</td>
<td>10</td>
<td>7.0</td>
<td>2.2</td>
<td>12</td>
<td>7.0</td>
<td>2.2</td>
</tr>
<tr>
<td>2007</td>
<td>10</td>
<td>6.5</td>
<td>2.0</td>
<td>11</td>
<td>6.5</td>
<td>2.0</td>
</tr>
<tr>
<td>2008</td>
<td>9.0</td>
<td>6.0</td>
<td>1.8</td>
<td>10</td>
<td>6.1</td>
<td>1.8</td>
</tr>
<tr>
<td>2009</td>
<td>8.6</td>
<td>5.7</td>
<td>1.7</td>
<td>10</td>
<td>5.7</td>
<td>1.7</td>
</tr>
<tr>
<td>2010</td>
<td>8.1</td>
<td>5.5</td>
<td>1.7</td>
<td>9.1</td>
<td>5.5</td>
<td>1.7</td>
</tr>
<tr>
<td>2011</td>
<td>7.1</td>
<td>4.9</td>
<td>1.5</td>
<td>8.0</td>
<td>4.9</td>
<td>1.5</td>
</tr>
<tr>
<td>2012</td>
<td>6.5</td>
<td>4.6</td>
<td>1.4</td>
<td>7.4</td>
<td>4.6</td>
<td>1.4</td>
</tr>
<tr>
<td>2013</td>
<td>6.2</td>
<td>4.5</td>
<td>1.4</td>
<td>7.0</td>
<td>4.5</td>
<td>1.4</td>
</tr>
<tr>
<td>2014</td>
<td>5.7</td>
<td>4.1</td>
<td>1.2</td>
<td>6.4</td>
<td>4.1</td>
<td>1.2</td>
</tr>
<tr>
<td>2015</td>
<td>5.3</td>
<td>3.9</td>
<td>1.1</td>
<td>6.1</td>
<td>3.9</td>
<td>1.1</td>
</tr>
<tr>
<td>2016</td>
<td>5.1</td>
<td>3.8</td>
<td>1.1</td>
<td>5.8</td>
<td>3.8</td>
<td>1.1</td>
</tr>
<tr>
<td>2017</td>
<td>4.6</td>
<td>3.5</td>
<td>1.0</td>
<td>5.3</td>
<td>3.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2018</td>
<td>4.4</td>
<td>3.2</td>
<td>0.9</td>
<td>5.0</td>
<td>3.2</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Average PCB Results

Tri+ 95% UCL Results
Table 5-10: Ratio of Measured Whole Water Concentrations to Benchmarks

<table>
<thead>
<tr>
<th>Location</th>
<th>USEPA/NYSDEC - Benthic Aquatic Life</th>
<th>NYSDEC - Wildlife Bioaccumulation</th>
<th>USEPA Wildlife Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Conc. in Water</td>
<td>95% UCL Conc. In Water</td>
<td>Average Conc. in Water</td>
</tr>
<tr>
<td>Hudson River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>5.3</td>
<td>17</td>
<td>74</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>9.3</td>
<td>30</td>
<td>131</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>6.5</td>
<td>14</td>
<td>91</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>5.1</td>
<td>55</td>
<td>71</td>
</tr>
<tr>
<td>137.2</td>
<td>5.1</td>
<td>55</td>
<td>71</td>
</tr>
<tr>
<td>122.4</td>
<td>2.3</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>113.8</td>
<td>2.3</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>100</td>
<td>2.3</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>88.9</td>
<td>1.5</td>
<td>6.8</td>
<td>21</td>
</tr>
<tr>
<td>58.7</td>
<td>0.7</td>
<td>3.2</td>
<td>21</td>
</tr>
<tr>
<td>47.3</td>
<td>0.7</td>
<td>3.2</td>
<td>21</td>
</tr>
<tr>
<td>25.8</td>
<td>0.7</td>
<td>3.2</td>
<td>21</td>
</tr>
</tbody>
</table>

Notes:
Source: TAMS/Gradient Database Release 4.1b
<table>
<thead>
<tr>
<th>Year</th>
<th>Whole Water Conc</th>
<th>Tri+ Average PCB Results</th>
<th>Tri+ 95% UCL Results</th>
<th>USEPA/NYSDEC - Wildlife Bioaccumulation</th>
<th>USEPA/NYSDEC - Benthic Aquatic Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>3.5</td>
<td>1.2</td>
<td>1.5</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>1994</td>
<td>3.0</td>
<td>1.2</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>1995</td>
<td>4.7</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>1996</td>
<td>1.9</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>1997</td>
<td>2.0</td>
<td>1.1</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>1998</td>
<td>2.1</td>
<td>1.1</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>1999</td>
<td>1.7</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2000</td>
<td>1.4</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2001</td>
<td>1.8</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2002</td>
<td>1.5</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2003</td>
<td>1.2</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2004</td>
<td>1.1</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2005</td>
<td>1.4</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2006</td>
<td>1.4</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2007</td>
<td>0.7</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2008</td>
<td>1.0</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2009</td>
<td>1.2</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2010</td>
<td>0.7</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2011</td>
<td>0.7</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2012</td>
<td>0.9</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2013</td>
<td>0.6</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2014</td>
<td>0.5</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2015</td>
<td>0.5</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2016</td>
<td>0.4</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2017</td>
<td>0.4</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
<tr>
<td>2018</td>
<td>0.5</td>
<td>1.0</td>
<td>1.4</td>
<td>0.014 ug/L</td>
<td>0.014 ug/L</td>
</tr>
</tbody>
</table>
TABLE 5-12: RATIO OF MEASURED FORAGE FISH CONCENTRATIONS TO TOXICITY BENCHMARKS

<table>
<thead>
<tr>
<th>Location</th>
<th>Pumpkinseed field-based NOAEL</th>
<th>95% UCL</th>
<th>Spottail shiner lab-based NOAEL</th>
<th>95% UCL</th>
<th>Spottail shiner lab-based LOAEL</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pumpkinseed field-based NOAEL</td>
<td>95% UCL</td>
<td>Spottail shiner lab-based NOAEL</td>
<td>95% UCL</td>
<td>Spottail shiner lab-based LOAEL</td>
<td>95% UCL</td>
</tr>
<tr>
<td></td>
<td>Conc/Kg</td>
<td>Conc/Kg</td>
<td>Conc/Kg</td>
<td>Conc/Kg</td>
<td>Conc/Kg</td>
<td>Conc/Kg</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>42</td>
<td>85</td>
<td>1.4</td>
<td>2.8</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>14</td>
<td>20</td>
<td>0.5</td>
<td>0.7</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>3.3</td>
<td>4.8</td>
<td>0.1</td>
<td>0.2</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>3.9</td>
<td>4.6</td>
<td>0.1</td>
<td>0.2</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>137.2</td>
<td>7.8</td>
<td>17</td>
<td>0.3</td>
<td>0.6</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>122.4</td>
<td>3.0</td>
<td>4.8</td>
<td>0.1</td>
<td>0.2</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>113.8</td>
<td>3.1</td>
<td>3.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.009</td>
<td>0.01</td>
</tr>
<tr>
<td>100</td>
<td>1.4</td>
<td>2.3</td>
<td>0.05</td>
<td>0.08</td>
<td>0.004</td>
<td>0.007</td>
</tr>
<tr>
<td>88.9</td>
<td>2.7</td>
<td>3.7</td>
<td>0.09</td>
<td>0.1</td>
<td>0.008</td>
<td>0.01</td>
</tr>
<tr>
<td>58.7</td>
<td>2.9</td>
<td>3.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.009</td>
<td>0.01</td>
</tr>
<tr>
<td>47.3</td>
<td>2.6</td>
<td>3.5</td>
<td>0.09</td>
<td>0.1</td>
<td>0.008</td>
<td>0.01</td>
</tr>
<tr>
<td>25.8</td>
<td>2.0</td>
<td>2.4</td>
<td>0.07</td>
<td>0.08</td>
<td>0.006</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Source: TAMS/Gradient Database Release 4.1b
<table>
<thead>
<tr>
<th>Year</th>
<th>Thompson Island Pool</th>
<th>River Mile 168</th>
<th>River Mile 154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25th (mg/kg wet)</td>
<td>Median (mg/kg wet)</td>
<td>95th (mg/kg wet)</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td>Weight</td>
<td>Weight</td>
</tr>
<tr>
<td>1993</td>
<td>7.8</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>1994</td>
<td>6.4</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>1995</td>
<td>7.0</td>
<td>17</td>
<td>37</td>
</tr>
<tr>
<td>1996</td>
<td>4.9</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>1997</td>
<td>4.2</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>1998</td>
<td>3.6</td>
<td>8.5</td>
<td>18</td>
</tr>
<tr>
<td>1999</td>
<td>2.6</td>
<td>6.2</td>
<td>15</td>
</tr>
<tr>
<td>2000</td>
<td>2.6</td>
<td>6.4</td>
<td>14</td>
</tr>
<tr>
<td>2001</td>
<td>2.5</td>
<td>5.9</td>
<td>14</td>
</tr>
<tr>
<td>2002</td>
<td>2.4</td>
<td>5.9</td>
<td>13</td>
</tr>
<tr>
<td>2003</td>
<td>2.0</td>
<td>4.9</td>
<td>11</td>
</tr>
<tr>
<td>2004</td>
<td>2.0</td>
<td>4.8</td>
<td>11</td>
</tr>
<tr>
<td>2005</td>
<td>1.7</td>
<td>4.0</td>
<td>9.9</td>
</tr>
<tr>
<td>2006</td>
<td>1.7</td>
<td>4.1</td>
<td>9.6</td>
</tr>
<tr>
<td>2007</td>
<td>1.6</td>
<td>3.8</td>
<td>8.6</td>
</tr>
<tr>
<td>2008</td>
<td>1.4</td>
<td>3.4</td>
<td>8.5</td>
</tr>
<tr>
<td>2009</td>
<td>1.5</td>
<td>3.7</td>
<td>8.2</td>
</tr>
<tr>
<td>2010</td>
<td>1.5</td>
<td>3.5</td>
<td>7.5</td>
</tr>
<tr>
<td>2011</td>
<td>1.2</td>
<td>2.9</td>
<td>6.4</td>
</tr>
<tr>
<td>2012</td>
<td>1.2</td>
<td>2.9</td>
<td>6.3</td>
</tr>
<tr>
<td>2013</td>
<td>1.2</td>
<td>2.9</td>
<td>6.3</td>
</tr>
<tr>
<td>2014</td>
<td>1.0</td>
<td>2.4</td>
<td>5.6</td>
</tr>
<tr>
<td>2015</td>
<td>1.0</td>
<td>2.4</td>
<td>5.2</td>
</tr>
<tr>
<td>2016</td>
<td>0.9</td>
<td>2.4</td>
<td>5.3</td>
</tr>
<tr>
<td>2017</td>
<td>0.8</td>
<td>2.1</td>
<td>4.5</td>
</tr>
<tr>
<td>2018</td>
<td>0.8</td>
<td>1.9</td>
<td>4.4</td>
</tr>
</tbody>
</table>

TABLE 5-13: RATIO OF PREDICTED PUMPKINSEED CONCENTRATIONS TO FIELD-BASED NOAEL FOR TRI+ PCBS
<table>
<thead>
<tr>
<th>Year</th>
<th>Thompson Island Pool</th>
<th>River Mile 168</th>
<th>River Mile 154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25th (mg/kg wet)</td>
<td>Median (mg/kg wet)</td>
<td>95th (mg/kg wet)</td>
</tr>
<tr>
<td></td>
<td>weight</td>
<td>Percentile</td>
<td>weight</td>
</tr>
<tr>
<td>1993</td>
<td>0.3</td>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>1994</td>
<td>0.3</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>1995</td>
<td>0.3</td>
<td>0.6</td>
<td>1.4</td>
</tr>
<tr>
<td>1996</td>
<td>0.2</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>1997</td>
<td>0.2</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>1998</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>1999</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>2000</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>2001</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2002</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2003</td>
<td>0.08</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2004</td>
<td>0.08</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2005</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2006</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2007</td>
<td>0.06</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>2008</td>
<td>0.06</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2009</td>
<td>0.06</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2010</td>
<td>0.06</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2011</td>
<td>0.05</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2012</td>
<td>0.05</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2013</td>
<td>0.05</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2014</td>
<td>0.04</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2015</td>
<td>0.04</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>2016</td>
<td>0.04</td>
<td>0.09</td>
<td>0.2</td>
</tr>
<tr>
<td>2017</td>
<td>0.03</td>
<td>0.08</td>
<td>0.2</td>
</tr>
<tr>
<td>2018</td>
<td>0.03</td>
<td>0.08</td>
<td>0.2</td>
</tr>
<tr>
<td>Year</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>1993</td>
<td>0.026</td>
<td>0.058</td>
<td>0.123</td>
</tr>
<tr>
<td>1994</td>
<td>0.024</td>
<td>0.054</td>
<td>0.111</td>
</tr>
<tr>
<td>1995</td>
<td>0.025</td>
<td>0.056</td>
<td>0.121</td>
</tr>
<tr>
<td>1996</td>
<td>0.018</td>
<td>0.041</td>
<td>0.108</td>
</tr>
<tr>
<td>1997</td>
<td>0.015</td>
<td>0.035</td>
<td>0.082</td>
</tr>
<tr>
<td>1998</td>
<td>0.012</td>
<td>0.029</td>
<td>0.073</td>
</tr>
<tr>
<td>1999</td>
<td>0.009</td>
<td>0.023</td>
<td>0.064</td>
</tr>
<tr>
<td>2000</td>
<td>0.009</td>
<td>0.023</td>
<td>0.059</td>
</tr>
<tr>
<td>2001</td>
<td>0.009</td>
<td>0.021</td>
<td>0.057</td>
</tr>
<tr>
<td>2002</td>
<td>0.009</td>
<td>0.021</td>
<td>0.054</td>
</tr>
<tr>
<td>2003</td>
<td>0.007</td>
<td>0.018</td>
<td>0.049</td>
</tr>
<tr>
<td>2004</td>
<td>0.007</td>
<td>0.018</td>
<td>0.047</td>
</tr>
<tr>
<td>2005</td>
<td>0.006</td>
<td>0.015</td>
<td>0.042</td>
</tr>
<tr>
<td>2006</td>
<td>0.006</td>
<td>0.015</td>
<td>0.042</td>
</tr>
<tr>
<td>2007</td>
<td>0.006</td>
<td>0.014</td>
<td>0.037</td>
</tr>
<tr>
<td>2008</td>
<td>0.005</td>
<td>0.013</td>
<td>0.036</td>
</tr>
<tr>
<td>2009</td>
<td>0.005</td>
<td>0.013</td>
<td>0.034</td>
</tr>
<tr>
<td>2010</td>
<td>0.005</td>
<td>0.012</td>
<td>0.030</td>
</tr>
<tr>
<td>2011</td>
<td>0.004</td>
<td>0.011</td>
<td>0.027</td>
</tr>
<tr>
<td>2012</td>
<td>0.004</td>
<td>0.010</td>
<td>0.027</td>
</tr>
<tr>
<td>2013</td>
<td>0.004</td>
<td>0.010</td>
<td>0.026</td>
</tr>
<tr>
<td>2014</td>
<td>0.004</td>
<td>0.009</td>
<td>0.022</td>
</tr>
<tr>
<td>2015</td>
<td>0.004</td>
<td>0.008</td>
<td>0.021</td>
</tr>
<tr>
<td>2016</td>
<td>0.003</td>
<td>0.008</td>
<td>0.022</td>
</tr>
<tr>
<td>2017</td>
<td>0.003</td>
<td>0.007</td>
<td>0.019</td>
</tr>
<tr>
<td>2018</td>
<td>0.003</td>
<td>0.007</td>
<td>0.020</td>
</tr>
</tbody>
</table>
TABLE 5-16: RATIO OF PREDICTED PUMPKINSEED CONCENTRATIONS TO LABORATORY-DERIVED NOAEL ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Year</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>0.8</td>
<td>2.2</td>
<td>5.8</td>
<td>0.8</td>
<td>2.3</td>
<td>6.1</td>
<td>0.004</td>
<td>0.007</td>
<td>0.018</td>
</tr>
<tr>
<td>1994</td>
<td>0.6</td>
<td>1.7</td>
<td>4.4</td>
<td>0.6</td>
<td>1.8</td>
<td>4.5</td>
<td>0.003</td>
<td>0.007</td>
<td>0.016</td>
</tr>
<tr>
<td>1995</td>
<td>0.7</td>
<td>1.9</td>
<td>5.0</td>
<td>0.7</td>
<td>2.1</td>
<td>5.6</td>
<td>0.003</td>
<td>0.007</td>
<td>0.017</td>
</tr>
<tr>
<td>1996</td>
<td>0.5</td>
<td>1.3</td>
<td>4.0</td>
<td>0.5</td>
<td>1.3</td>
<td>3.2</td>
<td>0.002</td>
<td>0.005</td>
<td>0.012</td>
</tr>
<tr>
<td>1997</td>
<td>0.4</td>
<td>1.1</td>
<td>2.9</td>
<td>0.4</td>
<td>1.1</td>
<td>2.9</td>
<td>0.003</td>
<td>0.005</td>
<td>0.012</td>
</tr>
<tr>
<td>1998</td>
<td>0.4</td>
<td>1.0</td>
<td>2.5</td>
<td>0.4</td>
<td>1.1</td>
<td>2.7</td>
<td>0.002</td>
<td>0.004</td>
<td>0.010</td>
</tr>
<tr>
<td>1999</td>
<td>0.3</td>
<td>0.7</td>
<td>2.1</td>
<td>0.3</td>
<td>0.8</td>
<td>1.9</td>
<td>0.002</td>
<td>0.004</td>
<td>0.009</td>
</tr>
<tr>
<td>2000</td>
<td>0.3</td>
<td>0.7</td>
<td>2.1</td>
<td>0.3</td>
<td>0.7</td>
<td>1.8</td>
<td>0.002</td>
<td>0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>2001</td>
<td>0.3</td>
<td>0.7</td>
<td>1.9</td>
<td>0.3</td>
<td>0.8</td>
<td>2.1</td>
<td>0.002</td>
<td>0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>2002</td>
<td>0.3</td>
<td>0.7</td>
<td>1.8</td>
<td>0.3</td>
<td>0.7</td>
<td>1.8</td>
<td>0.002</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>2003</td>
<td>0.2</td>
<td>0.5</td>
<td>1.6</td>
<td>0.2</td>
<td>0.6</td>
<td>1.5</td>
<td>0.002</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>2004</td>
<td>0.2</td>
<td>0.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.6</td>
<td>1.5</td>
<td>0.001</td>
<td>0.003</td>
<td>0.006</td>
</tr>
<tr>
<td>2005</td>
<td>0.2</td>
<td>0.5</td>
<td>1.4</td>
<td>0.2</td>
<td>0.5</td>
<td>1.2</td>
<td>0.001</td>
<td>0.003</td>
<td>0.006</td>
</tr>
<tr>
<td>2006</td>
<td>0.2</td>
<td>0.5</td>
<td>1.4</td>
<td>0.2</td>
<td>0.5</td>
<td>1.4</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>2007</td>
<td>0.2</td>
<td>0.4</td>
<td>1.2</td>
<td>0.2</td>
<td>0.5</td>
<td>1.1</td>
<td>0.002</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>2008</td>
<td>0.1</td>
<td>0.4</td>
<td>1.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.9</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>2009</td>
<td>0.2</td>
<td>0.4</td>
<td>1.1</td>
<td>0.2</td>
<td>0.5</td>
<td>1.2</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>2010</td>
<td>0.2</td>
<td>0.4</td>
<td>1.0</td>
<td>0.2</td>
<td>0.4</td>
<td>1.0</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>2011</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>2012</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
<td>0.1</td>
<td>0.4</td>
<td>1.0</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>2013</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
<td>0.2</td>
<td>0.4</td>
<td>0.9</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>2014</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
<td>0.1</td>
<td>0.4</td>
<td>0.9</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>2015</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>2016</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
<td>0.1</td>
<td>0.4</td>
<td>1.0</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>2017</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.1</td>
<td>0.3</td>
<td>0.6</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>2018</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.001</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>Year</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th (mg/kg wet weight)</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th (mg/kg wet weight)</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th (mg/kg wet weight)</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>1993</td>
<td>0.4</td>
<td>1.05</td>
<td>2.8</td>
<td>0.4</td>
<td>1.1</td>
<td>3.0</td>
<td>0.002</td>
<td>0.004</td>
<td>0.009</td>
</tr>
<tr>
<td>1994</td>
<td>0.3</td>
<td>0.8</td>
<td>2.1</td>
<td>0.3</td>
<td>0.9</td>
<td>2.2</td>
<td>0.002</td>
<td>0.003</td>
<td>0.008</td>
</tr>
<tr>
<td>1995</td>
<td>0.3</td>
<td>0.9</td>
<td>2.4</td>
<td>0.3</td>
<td>1.0</td>
<td>2.7</td>
<td>0.002</td>
<td>0.003</td>
<td>0.008</td>
</tr>
<tr>
<td>1996</td>
<td>0.2</td>
<td>0.6</td>
<td>1.9</td>
<td>0.2</td>
<td>0.6</td>
<td>1.6</td>
<td>0.001</td>
<td>0.002</td>
<td>0.006</td>
</tr>
<tr>
<td>1997</td>
<td>0.2</td>
<td>0.5</td>
<td>1.4</td>
<td>0.2</td>
<td>0.6</td>
<td>1.4</td>
<td>0.001</td>
<td>0.002</td>
<td>0.006</td>
</tr>
<tr>
<td>1998</td>
<td>0.2</td>
<td>0.5</td>
<td>1.2</td>
<td>0.2</td>
<td>0.5</td>
<td>1.3</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>1999</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.9</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>2000</td>
<td>0.1</td>
<td>0.4</td>
<td>1.0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.9</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>2001</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
<td>0.1</td>
<td>0.4</td>
<td>1.0</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>2002</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
<td>0.1</td>
<td>0.4</td>
<td>0.9</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>2003</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
<td>0.11</td>
<td>0.3</td>
<td>0.7</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>2004</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
<td>0.11</td>
<td>0.3</td>
<td>0.7</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>2005</td>
<td>0.09</td>
<td>0.2</td>
<td>0.7</td>
<td>0.10</td>
<td>0.2</td>
<td>0.6</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>2006</td>
<td>0.09</td>
<td>0.2</td>
<td>0.7</td>
<td>0.10</td>
<td>0.3</td>
<td>0.7</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>2007</td>
<td>0.08</td>
<td>0.2</td>
<td>0.6</td>
<td>0.09</td>
<td>0.2</td>
<td>0.5</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>2008</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
<td>0.08</td>
<td>0.2</td>
<td>0.4</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>2009</td>
<td>0.08</td>
<td>0.2</td>
<td>0.5</td>
<td>0.08</td>
<td>0.2</td>
<td>0.6</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>2010</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
<td>0.08</td>
<td>0.2</td>
<td>0.5</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>2011</td>
<td>0.06</td>
<td>0.2</td>
<td>0.4</td>
<td>0.07</td>
<td>0.2</td>
<td>0.4</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>2012</td>
<td>0.06</td>
<td>0.2</td>
<td>0.4</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>2013</td>
<td>0.06</td>
<td>0.2</td>
<td>0.4</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>2014</td>
<td>0.05</td>
<td>0.1</td>
<td>0.4</td>
<td>0.06</td>
<td>0.2</td>
<td>0.4</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>2015</td>
<td>0.05</td>
<td>0.1</td>
<td>0.3</td>
<td>0.06</td>
<td>0.2</td>
<td>0.4</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>2016</td>
<td>0.05</td>
<td>0.1</td>
<td>0.3</td>
<td>0.06</td>
<td>0.2</td>
<td>0.5</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>2017</td>
<td>0.04</td>
<td>0.1</td>
<td>0.3</td>
<td>0.05</td>
<td>0.1</td>
<td>0.3</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>2018</td>
<td>0.04</td>
<td>0.1</td>
<td>0.3</td>
<td>0.05</td>
<td>0.1</td>
<td>0.3</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Year</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>1993</td>
<td>0.092</td>
<td>0.233</td>
<td>0.690</td>
<td>0.088</td>
<td>0.248</td>
<td>0.655</td>
<td>0.005</td>
<td>0.012</td>
<td>0.029</td>
</tr>
<tr>
<td>1994</td>
<td>0.081</td>
<td>0.215</td>
<td>0.615</td>
<td>0.076</td>
<td>0.198</td>
<td>0.497</td>
<td>0.005</td>
<td>0.011</td>
<td>0.026</td>
</tr>
<tr>
<td>1995</td>
<td>0.089</td>
<td>0.228</td>
<td>0.680</td>
<td>0.079</td>
<td>0.221</td>
<td>0.583</td>
<td>0.005</td>
<td>0.011</td>
<td>0.027</td>
</tr>
<tr>
<td>1996</td>
<td>0.060</td>
<td>0.168</td>
<td>0.599</td>
<td>0.055</td>
<td>0.142</td>
<td>0.363</td>
<td>0.004</td>
<td>0.008</td>
<td>0.021</td>
</tr>
<tr>
<td>1997</td>
<td>0.053</td>
<td>0.144</td>
<td>0.455</td>
<td>0.050</td>
<td>0.128</td>
<td>0.338</td>
<td>0.004</td>
<td>0.008</td>
<td>0.019</td>
</tr>
<tr>
<td>1998</td>
<td>0.045</td>
<td>0.118</td>
<td>0.382</td>
<td>0.044</td>
<td>0.113</td>
<td>0.294</td>
<td>0.003</td>
<td>0.006</td>
<td>0.016</td>
</tr>
<tr>
<td>1999</td>
<td>0.032</td>
<td>0.096</td>
<td>0.337</td>
<td>0.035</td>
<td>0.088</td>
<td>0.231</td>
<td>0.003</td>
<td>0.006</td>
<td>0.014</td>
</tr>
<tr>
<td>2000</td>
<td>0.033</td>
<td>0.094</td>
<td>0.320</td>
<td>0.032</td>
<td>0.081</td>
<td>0.201</td>
<td>0.003</td>
<td>0.006</td>
<td>0.014</td>
</tr>
<tr>
<td>2001</td>
<td>0.031</td>
<td>0.088</td>
<td>0.304</td>
<td>0.035</td>
<td>0.088</td>
<td>0.226</td>
<td>0.003</td>
<td>0.005</td>
<td>0.012</td>
</tr>
<tr>
<td>2002</td>
<td>0.031</td>
<td>0.086</td>
<td>0.281</td>
<td>0.034</td>
<td>0.083</td>
<td>0.206</td>
<td>0.002</td>
<td>0.005</td>
<td>0.011</td>
</tr>
<tr>
<td>2003</td>
<td>0.026</td>
<td>0.073</td>
<td>0.255</td>
<td>0.028</td>
<td>0.070</td>
<td>0.184</td>
<td>0.002</td>
<td>0.005</td>
<td>0.011</td>
</tr>
<tr>
<td>2004</td>
<td>0.026</td>
<td>0.071</td>
<td>0.240</td>
<td>0.028</td>
<td>0.067</td>
<td>0.168</td>
<td>0.002</td>
<td>0.004</td>
<td>0.010</td>
</tr>
<tr>
<td>2005</td>
<td>0.022</td>
<td>0.062</td>
<td>0.218</td>
<td>0.022</td>
<td>0.054</td>
<td>0.142</td>
<td>0.002</td>
<td>0.004</td>
<td>0.009</td>
</tr>
<tr>
<td>2006</td>
<td>0.022</td>
<td>0.061</td>
<td>0.216</td>
<td>0.024</td>
<td>0.058</td>
<td>0.148</td>
<td>0.002</td>
<td>0.004</td>
<td>0.009</td>
</tr>
<tr>
<td>2007</td>
<td>0.020</td>
<td>0.056</td>
<td>0.186</td>
<td>0.021</td>
<td>0.052</td>
<td>0.128</td>
<td>0.002</td>
<td>0.004</td>
<td>0.009</td>
</tr>
<tr>
<td>2008</td>
<td>0.019</td>
<td>0.053</td>
<td>0.189</td>
<td>0.019</td>
<td>0.045</td>
<td>0.112</td>
<td>0.002</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>2009</td>
<td>0.019</td>
<td>0.052</td>
<td>0.181</td>
<td>0.020</td>
<td>0.050</td>
<td>0.136</td>
<td>0.002</td>
<td>0.003</td>
<td>0.008</td>
</tr>
<tr>
<td>2010</td>
<td>0.018</td>
<td>0.049</td>
<td>0.164</td>
<td>0.020</td>
<td>0.050</td>
<td>0.129</td>
<td>0.002</td>
<td>0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>2011</td>
<td>0.015</td>
<td>0.043</td>
<td>0.150</td>
<td>0.015</td>
<td>0.038</td>
<td>0.096</td>
<td>0.002</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>2012</td>
<td>0.015</td>
<td>0.042</td>
<td>0.143</td>
<td>0.018</td>
<td>0.046</td>
<td>0.124</td>
<td>0.002</td>
<td>0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>2013</td>
<td>0.015</td>
<td>0.040</td>
<td>0.134</td>
<td>0.017</td>
<td>0.042</td>
<td>0.106</td>
<td>0.002</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>2014</td>
<td>0.013</td>
<td>0.036</td>
<td>0.124</td>
<td>0.015</td>
<td>0.039</td>
<td>0.104</td>
<td>0.002</td>
<td>0.003</td>
<td>0.006</td>
</tr>
<tr>
<td>2015</td>
<td>0.012</td>
<td>0.034</td>
<td>0.113</td>
<td>0.015</td>
<td>0.037</td>
<td>0.093</td>
<td>0.001</td>
<td>0.003</td>
<td>0.006</td>
</tr>
<tr>
<td>2016</td>
<td>0.012</td>
<td>0.032</td>
<td>0.110</td>
<td>0.014</td>
<td>0.037</td>
<td>0.096</td>
<td>0.002</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>2017</td>
<td>0.011</td>
<td>0.030</td>
<td>0.098</td>
<td>0.012</td>
<td>0.029</td>
<td>0.073</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>2018</td>
<td>0.010</td>
<td>0.028</td>
<td>0.099</td>
<td>0.011</td>
<td>0.029</td>
<td>0.076</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>Year</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>1993</td>
<td>0.005</td>
<td>0.012</td>
<td>0.036</td>
<td>0.005</td>
<td>0.013</td>
<td>0.034</td>
<td>0.0003</td>
<td>0.0006</td>
<td>0.0015</td>
</tr>
<tr>
<td>1994</td>
<td>0.004</td>
<td>0.011</td>
<td>0.032</td>
<td>0.004</td>
<td>0.010</td>
<td>0.026</td>
<td>0.0002</td>
<td>0.0006</td>
<td>0.0014</td>
</tr>
<tr>
<td>1995</td>
<td>0.005</td>
<td>0.012</td>
<td>0.036</td>
<td>0.004</td>
<td>0.012</td>
<td>0.031</td>
<td>0.0003</td>
<td>0.0006</td>
<td>0.0014</td>
</tr>
<tr>
<td>1996</td>
<td>0.003</td>
<td>0.009</td>
<td>0.031</td>
<td>0.003</td>
<td>0.007</td>
<td>0.019</td>
<td>0.0002</td>
<td>0.0004</td>
<td>0.0011</td>
</tr>
<tr>
<td>1997</td>
<td>0.003</td>
<td>0.008</td>
<td>0.024</td>
<td>0.003</td>
<td>0.007</td>
<td>0.018</td>
<td>0.0002</td>
<td>0.0004</td>
<td>0.0010</td>
</tr>
<tr>
<td>1998</td>
<td>0.002</td>
<td>0.006</td>
<td>0.020</td>
<td>0.002</td>
<td>0.006</td>
<td>0.015</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0008</td>
</tr>
<tr>
<td>1999</td>
<td>0.002</td>
<td>0.005</td>
<td>0.018</td>
<td>0.002</td>
<td>0.005</td>
<td>0.012</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0007</td>
</tr>
<tr>
<td>2000</td>
<td>0.002</td>
<td>0.005</td>
<td>0.017</td>
<td>0.002</td>
<td>0.004</td>
<td>0.011</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0007</td>
</tr>
<tr>
<td>2001</td>
<td>0.002</td>
<td>0.005</td>
<td>0.016</td>
<td>0.002</td>
<td>0.005</td>
<td>0.012</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0007</td>
</tr>
<tr>
<td>2002</td>
<td>0.002</td>
<td>0.004</td>
<td>0.015</td>
<td>0.002</td>
<td>0.004</td>
<td>0.011</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0006</td>
</tr>
<tr>
<td>2003</td>
<td>0.001</td>
<td>0.004</td>
<td>0.013</td>
<td>0.001</td>
<td>0.004</td>
<td>0.010</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0006</td>
</tr>
<tr>
<td>2004</td>
<td>0.001</td>
<td>0.004</td>
<td>0.013</td>
<td>0.001</td>
<td>0.004</td>
<td>0.009</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0005</td>
</tr>
<tr>
<td>2005</td>
<td>0.001</td>
<td>0.003</td>
<td>0.011</td>
<td>0.001</td>
<td>0.003</td>
<td>0.007</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0005</td>
</tr>
<tr>
<td>2006</td>
<td>0.001</td>
<td>0.003</td>
<td>0.011</td>
<td>0.001</td>
<td>0.003</td>
<td>0.008</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0004</td>
</tr>
<tr>
<td>2007</td>
<td>0.001</td>
<td>0.003</td>
<td>0.010</td>
<td>0.001</td>
<td>0.003</td>
<td>0.007</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0005</td>
</tr>
<tr>
<td>2008</td>
<td>0.001</td>
<td>0.003</td>
<td>0.010</td>
<td>0.001</td>
<td>0.002</td>
<td>0.006</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0004</td>
</tr>
<tr>
<td>2009</td>
<td>0.001</td>
<td>0.003</td>
<td>0.010</td>
<td>0.001</td>
<td>0.003</td>
<td>0.007</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0004</td>
</tr>
<tr>
<td>2010</td>
<td>0.001</td>
<td>0.003</td>
<td>0.009</td>
<td>0.001</td>
<td>0.003</td>
<td>0.007</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0004</td>
</tr>
<tr>
<td>2011</td>
<td>0.001</td>
<td>0.002</td>
<td>0.008</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0004</td>
</tr>
<tr>
<td>2012</td>
<td>0.001</td>
<td>0.002</td>
<td>0.007</td>
<td>0.001</td>
<td>0.002</td>
<td>0.006</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0004</td>
</tr>
<tr>
<td>2013</td>
<td>0.001</td>
<td>0.002</td>
<td>0.007</td>
<td>0.001</td>
<td>0.002</td>
<td>0.006</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0003</td>
</tr>
<tr>
<td>2014</td>
<td>0.001</td>
<td>0.002</td>
<td>0.007</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0003</td>
</tr>
<tr>
<td>2015</td>
<td>0.001</td>
<td>0.002</td>
<td>0.006</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0003</td>
</tr>
<tr>
<td>2016</td>
<td>0.001</td>
<td>0.002</td>
<td>0.006</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0003</td>
</tr>
<tr>
<td>2017</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0003</td>
</tr>
<tr>
<td>2018</td>
<td>0.001</td>
<td>0.001</td>
<td>0.005</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0002</td>
</tr>
<tr>
<td>Year</td>
<td>Thompson Island Pool</td>
<td>River Mile 168</td>
<td>River Mile 154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25th (mg/kg wet)</td>
<td>Median (mg/kg wet)</td>
<td>95th (mg/kg wet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>weight</td>
<td>weight</td>
<td>weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25th (mg/kg wet)</td>
<td>Median (mg/kg wet)</td>
<td>95th (mg/kg wet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>weight</td>
<td>weight</td>
<td>weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>6.5</td>
<td>22</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>5.2</td>
<td>1.8</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>4.1</td>
<td>1.9</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>3.8</td>
<td>1.5</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>3.1</td>
<td>1.4</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>2.6</td>
<td>1.1</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>2.3</td>
<td>0.9</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>2.3</td>
<td>0.8</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>2.2</td>
<td>0.8</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>2.1</td>
<td>0.7</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>2.0</td>
<td>0.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>1.9</td>
<td>0.5</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>1.8</td>
<td>0.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1.7</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>1.6</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>1.5</td>
<td>0.5</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1.4</td>
<td>0.5</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1.3</td>
<td>0.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>1.2</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>1.1</td>
<td>0.5</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>1.0</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>0.9</td>
<td>0.5</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>0.8</td>
<td>0.5</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>0.7</td>
<td>0.5</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5-20: RATIO OF PREDICTED BROWN BULLHEAD CONCENTRATIONS TO LABORATORY-DERIVED NOAEL FOR TRI+ PCBS
<table>
<thead>
<tr>
<th>Year</th>
<th>Thompson Island Pool</th>
<th>River Mile 168</th>
<th>River Mile 154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25th (mg/kg wet)</td>
<td>5th Percentile (mg/kg wet)</td>
<td>25th (mg/kg wet)</td>
</tr>
<tr>
<td>1993</td>
<td>0.6</td>
<td>1.5</td>
<td>4.8</td>
</tr>
<tr>
<td>1994</td>
<td>0.5</td>
<td>1.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1995</td>
<td>0.5</td>
<td>1.3</td>
<td>4.3</td>
</tr>
<tr>
<td>1996</td>
<td>0.4</td>
<td>1.2</td>
<td>4.3</td>
</tr>
<tr>
<td>1997</td>
<td>0.4</td>
<td>1.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1998</td>
<td>0.3</td>
<td>1.0</td>
<td>3.3</td>
</tr>
<tr>
<td>1999</td>
<td>0.3</td>
<td>0.9</td>
<td>3.0</td>
</tr>
<tr>
<td>2000</td>
<td>0.3</td>
<td>0.8</td>
<td>2.8</td>
</tr>
<tr>
<td>2001</td>
<td>0.3</td>
<td>0.7</td>
<td>2.6</td>
</tr>
<tr>
<td>2002</td>
<td>0.2</td>
<td>0.7</td>
<td>2.5</td>
</tr>
<tr>
<td>2003</td>
<td>0.2</td>
<td>0.6</td>
<td>2.3</td>
</tr>
<tr>
<td>2004</td>
<td>0.2</td>
<td>0.6</td>
<td>2.1</td>
</tr>
<tr>
<td>2005</td>
<td>0.2</td>
<td>0.6</td>
<td>2.0</td>
</tr>
<tr>
<td>2006</td>
<td>0.2</td>
<td>0.5</td>
<td>1.9</td>
</tr>
<tr>
<td>2007</td>
<td>0.2</td>
<td>0.5</td>
<td>1.7</td>
</tr>
<tr>
<td>2008</td>
<td>0.2</td>
<td>0.5</td>
<td>1.6</td>
</tr>
<tr>
<td>2009</td>
<td>0.2</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>2010</td>
<td>0.1</td>
<td>0.4</td>
<td>1.4</td>
</tr>
<tr>
<td>2011</td>
<td>0.1</td>
<td>0.4</td>
<td>1.3</td>
</tr>
<tr>
<td>2012</td>
<td>0.1</td>
<td>0.4</td>
<td>1.2</td>
</tr>
<tr>
<td>2013</td>
<td>0.1</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>2014</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>2015</td>
<td>0.09</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>2016</td>
<td>0.09</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>2017</td>
<td>0.08</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>2018</td>
<td>0.08</td>
<td>0.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

TABLE 5-21: RATIO OF PREDICTED BROWN BULLHEAD CONCENTRATIONS TO LABORATORY-DERIVED LOAEL FOR TRI+ PCBS
TABLE 5-22: RATIO OF PREDICTED BROWN BULLHEAD CONCENTRATIONS TO LABORATORY-DERIVED NOAEL ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Year</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>0.05</td>
<td>0.19</td>
<td>0.9</td>
<td>0.04</td>
<td>0.11</td>
<td>0.39</td>
<td>0.01</td>
<td>0.03</td>
<td>0.13</td>
</tr>
<tr>
<td>1994</td>
<td>0.04</td>
<td>0.17</td>
<td>0.7</td>
<td>0.03</td>
<td>0.10</td>
<td>0.35</td>
<td>0.01</td>
<td>0.03</td>
<td>0.12</td>
</tr>
<tr>
<td>1995</td>
<td>0.05</td>
<td>0.17</td>
<td>0.8</td>
<td>0.03</td>
<td>0.10</td>
<td>0.36</td>
<td>0.01</td>
<td>0.03</td>
<td>0.12</td>
</tr>
<tr>
<td>1996</td>
<td>0.04</td>
<td>0.15</td>
<td>0.7</td>
<td>0.03</td>
<td>0.09</td>
<td>0.31</td>
<td>0.01</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>1997</td>
<td>0.03</td>
<td>0.14</td>
<td>0.6</td>
<td>0.03</td>
<td>0.08</td>
<td>0.28</td>
<td>0.01</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>1998</td>
<td>0.03</td>
<td>0.12</td>
<td>0.6</td>
<td>0.02</td>
<td>0.07</td>
<td>0.25</td>
<td>0.01</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>1999</td>
<td>0.03</td>
<td>0.11</td>
<td>0.5</td>
<td>0.02</td>
<td>0.06</td>
<td>0.23</td>
<td>0.01</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>2000</td>
<td>0.03</td>
<td>0.10</td>
<td>0.5</td>
<td>0.02</td>
<td>0.06</td>
<td>0.22</td>
<td>0.01</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>2001</td>
<td>0.02</td>
<td>0.10</td>
<td>0.4</td>
<td>0.02</td>
<td>0.06</td>
<td>0.21</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>2002</td>
<td>0.02</td>
<td>0.09</td>
<td>0.4</td>
<td>0.02</td>
<td>0.06</td>
<td>0.20</td>
<td>0.03</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>2003</td>
<td>0.02</td>
<td>0.09</td>
<td>0.4</td>
<td>0.02</td>
<td>0.05</td>
<td>0.19</td>
<td>0.03</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>2004</td>
<td>0.02</td>
<td>0.08</td>
<td>0.4</td>
<td>0.01</td>
<td>0.05</td>
<td>0.17</td>
<td>0.03</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>2005</td>
<td>0.02</td>
<td>0.07</td>
<td>0.3</td>
<td>0.01</td>
<td>0.04</td>
<td>0.16</td>
<td>0.03</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>2006</td>
<td>0.02</td>
<td>0.07</td>
<td>0.3</td>
<td>0.01</td>
<td>0.04</td>
<td>0.15</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>2007</td>
<td>0.02</td>
<td>0.07</td>
<td>0.3</td>
<td>0.01</td>
<td>0.04</td>
<td>0.14</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>2008</td>
<td>0.01</td>
<td>0.06</td>
<td>0.3</td>
<td>0.01</td>
<td>0.04</td>
<td>0.13</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>2009</td>
<td>0.01</td>
<td>0.06</td>
<td>0.3</td>
<td>0.01</td>
<td>0.03</td>
<td>0.13</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>2010</td>
<td>0.01</td>
<td>0.05</td>
<td>0.2</td>
<td>0.01</td>
<td>0.03</td>
<td>0.12</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>2011</td>
<td>0.01</td>
<td>0.05</td>
<td>0.2</td>
<td>0.01</td>
<td>0.03</td>
<td>0.11</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>2012</td>
<td>0.01</td>
<td>0.05</td>
<td>0.2</td>
<td>0.01</td>
<td>0.03</td>
<td>0.10</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>2013</td>
<td>0.01</td>
<td>0.04</td>
<td>0.2</td>
<td>0.01</td>
<td>0.03</td>
<td>0.10</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>2014</td>
<td>0.01</td>
<td>0.04</td>
<td>0.2</td>
<td>0.01</td>
<td>0.03</td>
<td>0.09</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>2015</td>
<td>0.01</td>
<td>0.04</td>
<td>0.2</td>
<td>0.01</td>
<td>0.02</td>
<td>0.09</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>2016</td>
<td>0.01</td>
<td>0.04</td>
<td>0.2</td>
<td>0.01</td>
<td>0.02</td>
<td>0.09</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>2017</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.01</td>
<td>0.02</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>2018</td>
<td>0.01</td>
<td>0.03</td>
<td>0.1</td>
<td>0.01</td>
<td>0.02</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Year</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>1993</td>
<td>0.024</td>
<td>0.086</td>
<td>0.381</td>
<td>0.017</td>
<td>0.049</td>
<td>0.172</td>
<td>0.004</td>
<td>0.014</td>
<td>0.060</td>
</tr>
<tr>
<td>1994</td>
<td>0.019</td>
<td>0.076</td>
<td>0.333</td>
<td>0.014</td>
<td>0.043</td>
<td>0.155</td>
<td>0.003</td>
<td>0.013</td>
<td>0.054</td>
</tr>
<tr>
<td>1995</td>
<td>0.020</td>
<td>0.077</td>
<td>0.338</td>
<td>0.016</td>
<td>0.045</td>
<td>0.161</td>
<td>0.003</td>
<td>0.012</td>
<td>0.053</td>
</tr>
<tr>
<td>1996</td>
<td>0.018</td>
<td>0.069</td>
<td>0.319</td>
<td>0.012</td>
<td>0.038</td>
<td>0.138</td>
<td>0.003</td>
<td>0.010</td>
<td>0.045</td>
</tr>
<tr>
<td>1997</td>
<td>0.015</td>
<td>0.062</td>
<td>0.263</td>
<td>0.011</td>
<td>0.035</td>
<td>0.125</td>
<td>0.002</td>
<td>0.009</td>
<td>0.039</td>
</tr>
<tr>
<td>1998</td>
<td>0.014</td>
<td>0.055</td>
<td>0.246</td>
<td>0.010</td>
<td>0.031</td>
<td>0.113</td>
<td>0.002</td>
<td>0.008</td>
<td>0.034</td>
</tr>
<tr>
<td>1999</td>
<td>0.012</td>
<td>0.050</td>
<td>0.221</td>
<td>0.008</td>
<td>0.028</td>
<td>0.101</td>
<td>0.002</td>
<td>0.007</td>
<td>0.029</td>
</tr>
<tr>
<td>2000</td>
<td>0.011</td>
<td>0.046</td>
<td>0.203</td>
<td>0.008</td>
<td>0.026</td>
<td>0.096</td>
<td>0.002</td>
<td>0.006</td>
<td>0.026</td>
</tr>
<tr>
<td>2001</td>
<td>0.010</td>
<td>0.045</td>
<td>0.194</td>
<td>0.008</td>
<td>0.025</td>
<td>0.092</td>
<td>0.001</td>
<td>0.006</td>
<td>0.024</td>
</tr>
<tr>
<td>2002</td>
<td>0.010</td>
<td>0.041</td>
<td>0.189</td>
<td>0.008</td>
<td>0.025</td>
<td>0.087</td>
<td>0.001</td>
<td>0.005</td>
<td>0.023</td>
</tr>
<tr>
<td>2003</td>
<td>0.009</td>
<td>0.038</td>
<td>0.173</td>
<td>0.007</td>
<td>0.023</td>
<td>0.083</td>
<td>0.001</td>
<td>0.005</td>
<td>0.022</td>
</tr>
<tr>
<td>2004</td>
<td>0.008</td>
<td>0.035</td>
<td>0.161</td>
<td>0.007</td>
<td>0.022</td>
<td>0.077</td>
<td>0.001</td>
<td>0.005</td>
<td>0.020</td>
</tr>
<tr>
<td>2005</td>
<td>0.008</td>
<td>0.033</td>
<td>0.146</td>
<td>0.005</td>
<td>0.019</td>
<td>0.069</td>
<td>0.001</td>
<td>0.004</td>
<td>0.018</td>
</tr>
<tr>
<td>2006</td>
<td>0.008</td>
<td>0.031</td>
<td>0.145</td>
<td>0.006</td>
<td>0.019</td>
<td>0.068</td>
<td>0.001</td>
<td>0.004</td>
<td>0.017</td>
</tr>
<tr>
<td>2007</td>
<td>0.007</td>
<td>0.029</td>
<td>0.127</td>
<td>0.005</td>
<td>0.017</td>
<td>0.062</td>
<td>0.001</td>
<td>0.004</td>
<td>0.015</td>
</tr>
<tr>
<td>2008</td>
<td>0.007</td>
<td>0.028</td>
<td>0.126</td>
<td>0.005</td>
<td>0.016</td>
<td>0.059</td>
<td>0.001</td>
<td>0.003</td>
<td>0.014</td>
</tr>
<tr>
<td>2009</td>
<td>0.006</td>
<td>0.026</td>
<td>0.117</td>
<td>0.005</td>
<td>0.015</td>
<td>0.057</td>
<td>0.001</td>
<td>0.003</td>
<td>0.013</td>
</tr>
<tr>
<td>2010</td>
<td>0.006</td>
<td>0.024</td>
<td>0.105</td>
<td>0.004</td>
<td>0.014</td>
<td>0.052</td>
<td>0.001</td>
<td>0.003</td>
<td>0.013</td>
</tr>
<tr>
<td>2011</td>
<td>0.005</td>
<td>0.021</td>
<td>0.098</td>
<td>0.004</td>
<td>0.013</td>
<td>0.048</td>
<td>0.001</td>
<td>0.003</td>
<td>0.012</td>
</tr>
<tr>
<td>2012</td>
<td>0.005</td>
<td>0.020</td>
<td>0.089</td>
<td>0.004</td>
<td>0.013</td>
<td>0.046</td>
<td>0.001</td>
<td>0.003</td>
<td>0.011</td>
</tr>
<tr>
<td>2013</td>
<td>0.005</td>
<td>0.019</td>
<td>0.085</td>
<td>0.004</td>
<td>0.012</td>
<td>0.043</td>
<td>0.001</td>
<td>0.003</td>
<td>0.010</td>
</tr>
<tr>
<td>2014</td>
<td>0.004</td>
<td>0.017</td>
<td>0.076</td>
<td>0.004</td>
<td>0.012</td>
<td>0.041</td>
<td>0.001</td>
<td>0.002</td>
<td>0.009</td>
</tr>
<tr>
<td>2015</td>
<td>0.004</td>
<td>0.017</td>
<td>0.075</td>
<td>0.003</td>
<td>0.011</td>
<td>0.039</td>
<td>0.001</td>
<td>0.002</td>
<td>0.009</td>
</tr>
<tr>
<td>2016</td>
<td>0.004</td>
<td>0.016</td>
<td>0.070</td>
<td>0.003</td>
<td>0.011</td>
<td>0.038</td>
<td>0.001</td>
<td>0.002</td>
<td>0.009</td>
</tr>
<tr>
<td>2017</td>
<td>0.003</td>
<td>0.014</td>
<td>0.063</td>
<td>0.003</td>
<td>0.009</td>
<td>0.035</td>
<td>0.001</td>
<td>0.002</td>
<td>0.008</td>
</tr>
<tr>
<td>2018</td>
<td>0.003</td>
<td>0.014</td>
<td>0.064</td>
<td>0.003</td>
<td>0.010</td>
<td>0.034</td>
<td>0.000</td>
<td>0.002</td>
<td>0.007</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>95% UCL</td>
<td>Maximum</td>
<td>Average</td>
<td>95% UCL</td>
<td>Maximum</td>
<td>Average</td>
<td>95% UCL</td>
<td>Maximum</td>
</tr>
<tr>
<td>1993</td>
<td>22</td>
<td>*</td>
<td>69</td>
<td>34</td>
<td>43</td>
<td>76</td>
<td>8.5</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>1994</td>
<td>31</td>
<td>72</td>
<td>104</td>
<td>27</td>
<td>55</td>
<td>64</td>
<td>5.7</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>1995</td>
<td>16</td>
<td>21</td>
<td>60</td>
<td>26</td>
<td>36</td>
<td>57</td>
<td>6.0</td>
<td>7.7</td>
<td>13</td>
</tr>
<tr>
<td>1996</td>
<td>19</td>
<td>32</td>
<td>53</td>
<td>56</td>
<td>64</td>
<td>114</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1997</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.7</td>
<td>1.2</td>
<td>1.6</td>
<td>11</td>
</tr>
<tr>
<td>1998</td>
<td>NA</td>
<td>NA</td>
<td>0.7</td>
<td>1.2</td>
<td>1.5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.5</td>
</tr>
</tbody>
</table>

TABLE 5-24: RATIO OF OBSERVED LARGEMOUTH BASS AND BROWN BULLHEAD CONCENTRATIONS TO TOXICITY BENCHMARKS USING NYSDEC DATASET
TABLE 5-25: RATIO OF OBSERVED WHITE PERCH AND YELLOW PERCH CONCENTRATIONS TO TOXICITY BENCHMARKS USING NYSDEC DATASET

<table>
<thead>
<tr>
<th></th>
<th>RATIO OF WET WEIGHT CONCENTRATION TO NOAEL</th>
<th>RATIO OF WET WEIGHT CONCENTRATION TO LOAEL</th>
<th>RATIO OF LIPID NORMALIZED CONCENTRATIONS: TEQ BASIS TO NOAEL</th>
<th>RATIO OF LIPID NORMALIZED CONCENTRATIONS: TEQ BASIS TO LOAEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White Perch</td>
<td>White Perch</td>
<td>Yellow Perch</td>
<td>Yellow Perch</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>152</td>
<td>113</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>Minimum</td>
<td>Average</td>
<td>Minimum</td>
</tr>
<tr>
<td>1993</td>
<td>0.8</td>
<td>1.8</td>
<td>1.2</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>6.0</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>1994</td>
<td>0.3</td>
<td>0.7</td>
<td>1.6</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1995</td>
<td>0.3</td>
<td>0.7</td>
<td>1.6</td>
<td>2.8</td>
</tr>
<tr>
<td>1996</td>
<td>1.6</td>
<td>2.9</td>
<td>0.9</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

TAMS/MCA
<table>
<thead>
<tr>
<th>Year</th>
<th>Thompson Island Pool</th>
<th>River Mile 168</th>
<th>River Mile 154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25th (mg/kg wet)</td>
<td>Median (mg/kg wet)</td>
<td>95th Percentile (mg/kg wet)</td>
</tr>
<tr>
<td>1993</td>
<td>2.2</td>
<td>5.1</td>
<td>14.2</td>
</tr>
<tr>
<td>1994</td>
<td>1.6</td>
<td>4.1</td>
<td>13.1</td>
</tr>
<tr>
<td>1995</td>
<td>1.8</td>
<td>4.4</td>
<td>12.7</td>
</tr>
<tr>
<td>1996</td>
<td>1.4</td>
<td>3.7</td>
<td>12.8</td>
</tr>
<tr>
<td>1997</td>
<td>1.2</td>
<td>3.3</td>
<td>10.4</td>
</tr>
<tr>
<td>1998</td>
<td>1.1</td>
<td>2.8</td>
<td>9.3</td>
</tr>
<tr>
<td>1999</td>
<td>0.9</td>
<td>2.5</td>
<td>8.7</td>
</tr>
<tr>
<td>2000</td>
<td>0.9</td>
<td>2.4</td>
<td>7.8</td>
</tr>
<tr>
<td>2001</td>
<td>0.8</td>
<td>2.3</td>
<td>7.4</td>
</tr>
<tr>
<td>2002</td>
<td>0.8</td>
<td>2.1</td>
<td>7.1</td>
</tr>
<tr>
<td>2003</td>
<td>0.7</td>
<td>1.9</td>
<td>6.7</td>
</tr>
<tr>
<td>2004</td>
<td>0.7</td>
<td>1.8</td>
<td>6.0</td>
</tr>
<tr>
<td>2005</td>
<td>0.6</td>
<td>1.7</td>
<td>5.4</td>
</tr>
<tr>
<td>2006</td>
<td>0.6</td>
<td>1.6</td>
<td>5.6</td>
</tr>
<tr>
<td>2007</td>
<td>0.5</td>
<td>1.5</td>
<td>4.9</td>
</tr>
<tr>
<td>2008</td>
<td>0.5</td>
<td>1.4</td>
<td>4.6</td>
</tr>
<tr>
<td>2009</td>
<td>0.5</td>
<td>1.4</td>
<td>4.3</td>
</tr>
<tr>
<td>2010</td>
<td>0.4</td>
<td>1.2</td>
<td>4.0</td>
</tr>
<tr>
<td>2011</td>
<td>0.4</td>
<td>1.1</td>
<td>3.6</td>
</tr>
<tr>
<td>2012</td>
<td>0.4</td>
<td>1.1</td>
<td>3.4</td>
</tr>
<tr>
<td>2013</td>
<td>0.4</td>
<td>1.0</td>
<td>3.2</td>
</tr>
<tr>
<td>2014</td>
<td>0.3</td>
<td>0.9</td>
<td>2.9</td>
</tr>
<tr>
<td>2015</td>
<td>0.3</td>
<td>0.8</td>
<td>2.7</td>
</tr>
<tr>
<td>2016</td>
<td>0.3</td>
<td>0.8</td>
<td>2.7</td>
</tr>
<tr>
<td>2017</td>
<td>0.3</td>
<td>0.7</td>
<td>2.5</td>
</tr>
<tr>
<td>2018</td>
<td>0.3</td>
<td>0.7</td>
<td>2.4</td>
</tr>
</tbody>
</table>
TABLE 5-27: RATIO OF PREDICTED YELLOW PERCH CONCENTRATIONS TO LABORATORY-DERIVED NOAEL FOR TRI+ PCBS

<table>
<thead>
<tr>
<th>Year</th>
<th>Thompson Island Pool</th>
<th>River Mile 168</th>
<th>River Mile 154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25th (mg/kg wet)</td>
<td>Median (mg/kg wet)</td>
<td>95th Percentile (mg/kg wet)</td>
</tr>
<tr>
<td>1993</td>
<td>3.4</td>
<td>8.7</td>
<td>18</td>
</tr>
<tr>
<td>1994</td>
<td>2.5</td>
<td>6.0</td>
<td>13</td>
</tr>
<tr>
<td>1995</td>
<td>2.7</td>
<td>6.8</td>
<td>14</td>
</tr>
<tr>
<td>1996</td>
<td>2.0</td>
<td>5.0</td>
<td>13</td>
</tr>
<tr>
<td>1997</td>
<td>1.8</td>
<td>4.3</td>
<td>10</td>
</tr>
<tr>
<td>1998</td>
<td>1.6</td>
<td>3.6</td>
<td>8.8</td>
</tr>
<tr>
<td>1999</td>
<td>1.2</td>
<td>2.9</td>
<td>7.5</td>
</tr>
<tr>
<td>2000</td>
<td>1.2</td>
<td>2.8</td>
<td>6.9</td>
</tr>
<tr>
<td>2001</td>
<td>1.0</td>
<td>2.6</td>
<td>6.6</td>
</tr>
<tr>
<td>2002</td>
<td>1.1</td>
<td>2.5</td>
<td>6.3</td>
</tr>
<tr>
<td>2003</td>
<td>0.9</td>
<td>2.2</td>
<td>5.6</td>
</tr>
<tr>
<td>2004</td>
<td>0.8</td>
<td>2.1</td>
<td>5.2</td>
</tr>
<tr>
<td>2005</td>
<td>0.7</td>
<td>1.9</td>
<td>4.7</td>
</tr>
<tr>
<td>2006</td>
<td>0.8</td>
<td>1.8</td>
<td>4.8</td>
</tr>
<tr>
<td>2007</td>
<td>0.7</td>
<td>1.6</td>
<td>4.2</td>
</tr>
<tr>
<td>2008</td>
<td>0.6</td>
<td>1.5</td>
<td>4.1</td>
</tr>
<tr>
<td>2009</td>
<td>0.7</td>
<td>1.6</td>
<td>4.0</td>
</tr>
<tr>
<td>2010</td>
<td>0.6</td>
<td>1.4</td>
<td>3.6</td>
</tr>
<tr>
<td>2011</td>
<td>0.5</td>
<td>1.3</td>
<td>3.2</td>
</tr>
<tr>
<td>2012</td>
<td>0.5</td>
<td>1.2</td>
<td>3.0</td>
</tr>
<tr>
<td>2013</td>
<td>0.5</td>
<td>1.2</td>
<td>2.9</td>
</tr>
<tr>
<td>2014</td>
<td>0.4</td>
<td>1.1</td>
<td>2.8</td>
</tr>
<tr>
<td>2015</td>
<td>0.4</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>2016</td>
<td>0.4</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>2017</td>
<td>0.3</td>
<td>0.8</td>
<td>2.2</td>
</tr>
<tr>
<td>2018</td>
<td>0.3</td>
<td>0.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Year</td>
<td>25th (mg/kg wet)</td>
<td>Median (mg/kg wet)</td>
<td>95th (mg/kg wet)</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1993</td>
<td>0.3</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>1994</td>
<td>0.2</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>1995</td>
<td>0.2</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>1996</td>
<td>0.2</td>
<td>0.4</td>
<td>1.2</td>
</tr>
<tr>
<td>1997</td>
<td>0.2</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>1998</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>1999</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>2000</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2001</td>
<td>0.09</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2002</td>
<td>0.09</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2003</td>
<td>0.08</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2004</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2005</td>
<td>0.07</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>2006</td>
<td>0.07</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>2007</td>
<td>0.06</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2008</td>
<td>0.05</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2009</td>
<td>0.06</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2010</td>
<td>0.05</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2011</td>
<td>0.05</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2012</td>
<td>0.04</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2013</td>
<td>0.04</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2014</td>
<td>0.04</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>2015</td>
<td>0.04</td>
<td>0.09</td>
<td>0.2</td>
</tr>
<tr>
<td>2016</td>
<td>0.04</td>
<td>0.09</td>
<td>0.2</td>
</tr>
<tr>
<td>2017</td>
<td>0.03</td>
<td>0.07</td>
<td>0.2</td>
</tr>
<tr>
<td>2018</td>
<td>0.03</td>
<td>0.07</td>
<td>0.2</td>
</tr>
</tbody>
</table>
TABLE 5-29: RATIO OF PREDICTED WHITE PERCH CONCENTRATIONS TO LABORATORY-DERIVED NOAEL ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Year</th>
<th>Thompson Island Pool 25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>River Mile 168 25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>River Mile 154 25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>0.7</td>
<td>2.5</td>
<td>9.6</td>
<td>0.5</td>
<td>1.6</td>
<td>5.2</td>
<td>0.1</td>
<td>0.46</td>
<td>1.9</td>
</tr>
<tr>
<td>1994</td>
<td>0.5</td>
<td>2.1</td>
<td>8.5</td>
<td>0.4</td>
<td>1.4</td>
<td>4.5</td>
<td>0.1</td>
<td>0.43</td>
<td>1.7</td>
</tr>
<tr>
<td>1995</td>
<td>0.6</td>
<td>2.1</td>
<td>8.4</td>
<td>0.5</td>
<td>1.5</td>
<td>4.8</td>
<td>0.11</td>
<td>0.41</td>
<td>1.7</td>
</tr>
<tr>
<td>1996</td>
<td>0.5</td>
<td>1.9</td>
<td>8.2</td>
<td>0.3</td>
<td>1.1</td>
<td>3.7</td>
<td>0.09</td>
<td>0.34</td>
<td>1.4</td>
</tr>
<tr>
<td>1997</td>
<td>0.4</td>
<td>1.6</td>
<td>6.8</td>
<td>0.3</td>
<td>1.1</td>
<td>3.6</td>
<td>0.08</td>
<td>0.31</td>
<td>1.2</td>
</tr>
<tr>
<td>1998</td>
<td>0.4</td>
<td>1.4</td>
<td>6.2</td>
<td>0.3</td>
<td>0.9</td>
<td>3.2</td>
<td>0.07</td>
<td>0.26</td>
<td>1.0</td>
</tr>
<tr>
<td>1999</td>
<td>0.3</td>
<td>1.3</td>
<td>5.6</td>
<td>0.2</td>
<td>0.8</td>
<td>2.8</td>
<td>0.06</td>
<td>0.23</td>
<td>0.9</td>
</tr>
<tr>
<td>2000</td>
<td>0.3</td>
<td>1.2</td>
<td>5.1</td>
<td>0.2</td>
<td>0.8</td>
<td>2.6</td>
<td>0.06</td>
<td>0.21</td>
<td>0.8</td>
</tr>
<tr>
<td>2001</td>
<td>0.3</td>
<td>1.1</td>
<td>4.9</td>
<td>0.2</td>
<td>0.8</td>
<td>2.5</td>
<td>0.05</td>
<td>0.19</td>
<td>0.8</td>
</tr>
<tr>
<td>2002</td>
<td>0.3</td>
<td>1.1</td>
<td>4.7</td>
<td>0.2</td>
<td>0.8</td>
<td>2.5</td>
<td>0.05</td>
<td>0.18</td>
<td>0.7</td>
</tr>
<tr>
<td>2003</td>
<td>0.2</td>
<td>1.0</td>
<td>4.2</td>
<td>0.2</td>
<td>0.7</td>
<td>2.3</td>
<td>0.05</td>
<td>0.18</td>
<td>0.7</td>
</tr>
<tr>
<td>2004</td>
<td>0.2</td>
<td>0.9</td>
<td>4.0</td>
<td>0.2</td>
<td>0.6</td>
<td>2.1</td>
<td>0.04</td>
<td>0.16</td>
<td>0.6</td>
</tr>
<tr>
<td>2005</td>
<td>0.2</td>
<td>0.8</td>
<td>3.6</td>
<td>0.2</td>
<td>0.5</td>
<td>1.8</td>
<td>0.04</td>
<td>0.14</td>
<td>0.6</td>
</tr>
<tr>
<td>2006</td>
<td>0.2</td>
<td>0.8</td>
<td>3.6</td>
<td>0.2</td>
<td>0.6</td>
<td>1.9</td>
<td>0.04</td>
<td>0.13</td>
<td>0.5</td>
</tr>
<tr>
<td>2007</td>
<td>0.2</td>
<td>0.7</td>
<td>3.4</td>
<td>0.1</td>
<td>0.5</td>
<td>1.6</td>
<td>0.04</td>
<td>0.13</td>
<td>0.5</td>
</tr>
<tr>
<td>2008</td>
<td>0.2</td>
<td>0.7</td>
<td>3.1</td>
<td>0.1</td>
<td>0.5</td>
<td>1.6</td>
<td>0.03</td>
<td>0.11</td>
<td>0.4</td>
</tr>
<tr>
<td>2009</td>
<td>0.2</td>
<td>0.7</td>
<td>2.9</td>
<td>0.1</td>
<td>0.4</td>
<td>1.6</td>
<td>0.03</td>
<td>0.11</td>
<td>0.4</td>
</tr>
<tr>
<td>2010</td>
<td>0.1</td>
<td>0.6</td>
<td>2.7</td>
<td>0.1</td>
<td>0.4</td>
<td>1.4</td>
<td>0.03</td>
<td>0.11</td>
<td>0.4</td>
</tr>
<tr>
<td>2011</td>
<td>0.1</td>
<td>0.5</td>
<td>2.4</td>
<td>0.11</td>
<td>0.4</td>
<td>1.3</td>
<td>0.03</td>
<td>0.10</td>
<td>0.4</td>
</tr>
<tr>
<td>2012</td>
<td>0.1</td>
<td>0.5</td>
<td>2.3</td>
<td>0.11</td>
<td>0.4</td>
<td>1.3</td>
<td>0.03</td>
<td>0.10</td>
<td>0.4</td>
</tr>
<tr>
<td>2013</td>
<td>0.1</td>
<td>0.5</td>
<td>2.1</td>
<td>0.11</td>
<td>0.4</td>
<td>1.2</td>
<td>0.03</td>
<td>0.09</td>
<td>0.3</td>
</tr>
<tr>
<td>2014</td>
<td>0.1</td>
<td>0.4</td>
<td>1.9</td>
<td>0.10</td>
<td>0.3</td>
<td>1.1</td>
<td>0.02</td>
<td>0.08</td>
<td>0.3</td>
</tr>
<tr>
<td>2015</td>
<td>0.10</td>
<td>0.4</td>
<td>1.8</td>
<td>0.10</td>
<td>0.3</td>
<td>1.1</td>
<td>0.02</td>
<td>0.08</td>
<td>0.3</td>
</tr>
<tr>
<td>2016</td>
<td>0.10</td>
<td>0.4</td>
<td>1.8</td>
<td>0.10</td>
<td>0.3</td>
<td>1.1</td>
<td>0.02</td>
<td>0.08</td>
<td>0.3</td>
</tr>
<tr>
<td>2017</td>
<td>0.09</td>
<td>0.4</td>
<td>1.7</td>
<td>0.08</td>
<td>0.3</td>
<td>0.9</td>
<td>0.02</td>
<td>0.06</td>
<td>0.2</td>
</tr>
<tr>
<td>2018</td>
<td>0.09</td>
<td>0.4</td>
<td>1.6</td>
<td>0.08</td>
<td>0.3</td>
<td>0.9</td>
<td>0.02</td>
<td>0.06</td>
<td>0.2</td>
</tr>
</tbody>
</table>

TAMS/MCA
<table>
<thead>
<tr>
<th>Year</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>0.3</td>
<td>1.2</td>
<td>4.6</td>
<td>0.2</td>
<td>0.8</td>
<td>2.5</td>
<td>0.06</td>
<td>0.22</td>
<td>0.90</td>
</tr>
<tr>
<td>1994</td>
<td>0.3</td>
<td>1.0</td>
<td>4.1</td>
<td>0.2</td>
<td>0.7</td>
<td>2.2</td>
<td>0.06</td>
<td>0.21</td>
<td>0.82</td>
</tr>
<tr>
<td>1995</td>
<td>0.3</td>
<td>1.0</td>
<td>4.1</td>
<td>0.2</td>
<td>0.7</td>
<td>2.3</td>
<td>0.05</td>
<td>0.20</td>
<td>0.80</td>
</tr>
<tr>
<td>1996</td>
<td>0.2</td>
<td>0.9</td>
<td>3.9</td>
<td>0.2</td>
<td>0.6</td>
<td>1.8</td>
<td>0.04</td>
<td>0.16</td>
<td>0.67</td>
</tr>
<tr>
<td>1997</td>
<td>0.2</td>
<td>0.8</td>
<td>3.3</td>
<td>0.2</td>
<td>0.5</td>
<td>1.7</td>
<td>0.04</td>
<td>0.15</td>
<td>0.59</td>
</tr>
<tr>
<td>1998</td>
<td>0.2</td>
<td>0.7</td>
<td>3.0</td>
<td>0.1</td>
<td>0.5</td>
<td>1.5</td>
<td>0.03</td>
<td>0.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1999</td>
<td>0.2</td>
<td>0.6</td>
<td>2.7</td>
<td>0.1</td>
<td>0.4</td>
<td>1.4</td>
<td>0.03</td>
<td>0.11</td>
<td>0.45</td>
</tr>
<tr>
<td>2000</td>
<td>0.1</td>
<td>0.6</td>
<td>2.5</td>
<td>0.1</td>
<td>0.4</td>
<td>1.3</td>
<td>0.03</td>
<td>0.10</td>
<td>0.39</td>
</tr>
<tr>
<td>2001</td>
<td>0.1</td>
<td>0.6</td>
<td>2.4</td>
<td>0.1</td>
<td>0.4</td>
<td>1.2</td>
<td>0.03</td>
<td>0.09</td>
<td>0.37</td>
</tr>
<tr>
<td>2002</td>
<td>0.1</td>
<td>0.5</td>
<td>2.3</td>
<td>0.1</td>
<td>0.4</td>
<td>1.2</td>
<td>0.02</td>
<td>0.09</td>
<td>0.35</td>
</tr>
<tr>
<td>2003</td>
<td>0.1</td>
<td>0.5</td>
<td>2.0</td>
<td>0.1</td>
<td>0.3</td>
<td>1.1</td>
<td>0.02</td>
<td>0.08</td>
<td>0.33</td>
</tr>
<tr>
<td>2004</td>
<td>0.1</td>
<td>0.4</td>
<td>1.9</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
<td>0.02</td>
<td>0.08</td>
<td>0.30</td>
</tr>
<tr>
<td>2005</td>
<td>0.09</td>
<td>0.4</td>
<td>1.7</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
<td>0.02</td>
<td>0.07</td>
<td>0.27</td>
</tr>
<tr>
<td>2006</td>
<td>0.09</td>
<td>0.4</td>
<td>1.7</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
<td>0.02</td>
<td>0.06</td>
<td>0.25</td>
</tr>
<tr>
<td>2007</td>
<td>0.09</td>
<td>0.4</td>
<td>1.6</td>
<td>0.1</td>
<td>0.2</td>
<td>0.8</td>
<td>0.02</td>
<td>0.06</td>
<td>0.23</td>
</tr>
<tr>
<td>2008</td>
<td>0.08</td>
<td>0.3</td>
<td>1.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.8</td>
<td>0.01</td>
<td>0.05</td>
<td>0.21</td>
</tr>
<tr>
<td>2009</td>
<td>0.08</td>
<td>0.3</td>
<td>1.4</td>
<td>0.1</td>
<td>0.2</td>
<td>0.8</td>
<td>0.01</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>2010</td>
<td>0.07</td>
<td>0.3</td>
<td>1.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
<td>0.02</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>2011</td>
<td>0.06</td>
<td>0.3</td>
<td>1.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.01</td>
<td>0.05</td>
<td>0.18</td>
</tr>
<tr>
<td>2012</td>
<td>0.06</td>
<td>0.3</td>
<td>1.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.01</td>
<td>0.05</td>
<td>0.17</td>
</tr>
<tr>
<td>2013</td>
<td>0.06</td>
<td>0.2</td>
<td>1.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.01</td>
<td>0.04</td>
<td>0.16</td>
</tr>
<tr>
<td>2014</td>
<td>0.05</td>
<td>0.2</td>
<td>0.9</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.01</td>
<td>0.04</td>
<td>0.15</td>
</tr>
<tr>
<td>2015</td>
<td>0.05</td>
<td>0.2</td>
<td>0.9</td>
<td>0.0</td>
<td>0.2</td>
<td>0.5</td>
<td>0.01</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>2016</td>
<td>0.05</td>
<td>0.2</td>
<td>0.9</td>
<td>0.0</td>
<td>0.2</td>
<td>0.5</td>
<td>0.01</td>
<td>0.04</td>
<td>0.13</td>
</tr>
<tr>
<td>2017</td>
<td>0.04</td>
<td>0.2</td>
<td>0.8</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.01</td>
<td>0.03</td>
<td>0.12</td>
</tr>
<tr>
<td>2018</td>
<td>0.04</td>
<td>0.2</td>
<td>0.8</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.01</td>
<td>0.03</td>
<td>0.11</td>
</tr>
</tbody>
</table>

TABLE 5-30: RATIO OF PREDICTED WHITE PERCH CONCENTRATIONS TO LABORATORY-DERIVED LOAEL ON A TEQ BASIS
<table>
<thead>
<tr>
<th>Year</th>
<th>Thompson Island Pool</th>
<th>River Mile 168</th>
<th>River Mile 154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
<td>95th Percentile (mg/kg wet weight)</td>
</tr>
<tr>
<td>1993</td>
<td>1.0</td>
<td>2.7</td>
<td>7.5</td>
</tr>
<tr>
<td>1994</td>
<td>0.7</td>
<td>1.9</td>
<td>5.2</td>
</tr>
<tr>
<td>1995</td>
<td>0.8</td>
<td>2.1</td>
<td>5.6</td>
</tr>
<tr>
<td>1996</td>
<td>0.6</td>
<td>1.6</td>
<td>5.1</td>
</tr>
<tr>
<td>1997</td>
<td>0.5</td>
<td>1.4</td>
<td>3.9</td>
</tr>
<tr>
<td>1998</td>
<td>0.4</td>
<td>1.2</td>
<td>3.3</td>
</tr>
<tr>
<td>1999</td>
<td>0.3</td>
<td>0.9</td>
<td>2.9</td>
</tr>
<tr>
<td>2000</td>
<td>0.3</td>
<td>0.9</td>
<td>2.7</td>
</tr>
<tr>
<td>2001</td>
<td>0.3</td>
<td>0.8</td>
<td>2.4</td>
</tr>
<tr>
<td>2002</td>
<td>0.3</td>
<td>0.8</td>
<td>2.4</td>
</tr>
<tr>
<td>2003</td>
<td>0.3</td>
<td>0.7</td>
<td>2.1</td>
</tr>
<tr>
<td>2004</td>
<td>0.2</td>
<td>0.7</td>
<td>2.1</td>
</tr>
<tr>
<td>2005</td>
<td>0.2</td>
<td>0.6</td>
<td>1.8</td>
</tr>
<tr>
<td>2006</td>
<td>0.2</td>
<td>0.6</td>
<td>1.8</td>
</tr>
<tr>
<td>2007</td>
<td>0.2</td>
<td>0.5</td>
<td>1.6</td>
</tr>
<tr>
<td>2008</td>
<td>0.2</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>2009</td>
<td>0.2</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>2010</td>
<td>0.2</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>2011</td>
<td>0.1</td>
<td>0.4</td>
<td>1.2</td>
</tr>
<tr>
<td>2012</td>
<td>0.1</td>
<td>0.4</td>
<td>1.2</td>
</tr>
<tr>
<td>2013</td>
<td>0.1</td>
<td>0.4</td>
<td>1.1</td>
</tr>
<tr>
<td>2014</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>2015</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>2016</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>2017</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>2018</td>
<td>0.09</td>
<td>0.3</td>
<td>0.8</td>
</tr>
</tbody>
</table>

TABLE 5-31: RATIO OF PREDICTED YELLOW PERCH CONCENTRATIONS TO LABORATORY-DERIVED NOAEL ON A TEQ BASIS
<table>
<thead>
<tr>
<th>Year</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>0.5</td>
<td>1.3</td>
<td>3.6</td>
<td>0.4</td>
<td>1.1</td>
<td>3.2</td>
<td>0.2</td>
<td>0.7</td>
<td>2.3</td>
</tr>
<tr>
<td>1994</td>
<td>0.3</td>
<td>0.9</td>
<td>2.5</td>
<td>0.3</td>
<td>0.9</td>
<td>2.3</td>
<td>0.2</td>
<td>0.6</td>
<td>2.2</td>
</tr>
<tr>
<td>1995</td>
<td>0.4</td>
<td>1.0</td>
<td>2.7</td>
<td>0.4</td>
<td>1.0</td>
<td>2.9</td>
<td>0.5</td>
<td>0.6</td>
<td>2.1</td>
</tr>
<tr>
<td>1996</td>
<td>0.3</td>
<td>0.8</td>
<td>2.5</td>
<td>0.2</td>
<td>0.7</td>
<td>1.8</td>
<td>0.2</td>
<td>0.5</td>
<td>1.7</td>
</tr>
<tr>
<td>1997</td>
<td>0.2</td>
<td>0.7</td>
<td>1.9</td>
<td>0.2</td>
<td>0.6</td>
<td>1.6</td>
<td>0.1</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1998</td>
<td>0.2</td>
<td>0.6</td>
<td>1.6</td>
<td>0.2</td>
<td>0.6</td>
<td>1.5</td>
<td>0.1</td>
<td>0.4</td>
<td>1.3</td>
</tr>
<tr>
<td>1999</td>
<td>0.2</td>
<td>0.4</td>
<td>1.4</td>
<td>0.2</td>
<td>0.4</td>
<td>1.1</td>
<td>0.1</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>2000</td>
<td>0.1</td>
<td>0.4</td>
<td>1.3</td>
<td>0.1</td>
<td>0.4</td>
<td>1.0</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>2001</td>
<td>0.1</td>
<td>0.4</td>
<td>1.2</td>
<td>0.2</td>
<td>0.4</td>
<td>1.1</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>2002</td>
<td>0.1</td>
<td>0.4</td>
<td>1.1</td>
<td>0.2</td>
<td>0.4</td>
<td>1.0</td>
<td>0.09</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>2003</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.9</td>
<td>0.09</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>2004</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
<td>0.08</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>2005</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
<td>0.07</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2006</td>
<td>0.1</td>
<td>0.3</td>
<td>0.9</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
<td>0.07</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2007</td>
<td>0.09</td>
<td>0.3</td>
<td>0.8</td>
<td>0.09</td>
<td>0.3</td>
<td>0.6</td>
<td>0.07</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2008</td>
<td>0.08</td>
<td>0.2</td>
<td>0.7</td>
<td>0.08</td>
<td>0.2</td>
<td>0.5</td>
<td>0.06</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2009</td>
<td>0.09</td>
<td>0.2</td>
<td>0.7</td>
<td>0.09</td>
<td>0.3</td>
<td>0.6</td>
<td>0.06</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2010</td>
<td>0.08</td>
<td>0.2</td>
<td>0.7</td>
<td>0.09</td>
<td>0.2</td>
<td>0.6</td>
<td>0.06</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2011</td>
<td>0.07</td>
<td>0.2</td>
<td>0.6</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
<td>0.06</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2012</td>
<td>0.07</td>
<td>0.2</td>
<td>0.6</td>
<td>0.08</td>
<td>0.2</td>
<td>0.5</td>
<td>0.06</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2013</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
<td>0.08</td>
<td>0.2</td>
<td>0.5</td>
<td>0.05</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2014</td>
<td>0.06</td>
<td>0.2</td>
<td>0.5</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
<td>0.05</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2015</td>
<td>0.06</td>
<td>0.2</td>
<td>0.5</td>
<td>0.07</td>
<td>0.2</td>
<td>0.4</td>
<td>0.05</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2016</td>
<td>0.06</td>
<td>0.2</td>
<td>0.5</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
<td>0.05</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2017</td>
<td>0.05</td>
<td>0.1</td>
<td>0.4</td>
<td>0.05</td>
<td>0.15</td>
<td>0.4</td>
<td>0.04</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2018</td>
<td>0.04</td>
<td>0.1</td>
<td>0.4</td>
<td>0.05</td>
<td>0.13</td>
<td>0.3</td>
<td>0.03</td>
<td>0.09</td>
<td>0.3</td>
</tr>
</tbody>
</table>
TABLE 5-33: RATIO OF PREDICTED LARGEMOUTH BASS CONCENTRATIONS TO FIELD-BASED NOAEL FOR TRI+ PCBs

<table>
<thead>
<tr>
<th>Year</th>
<th>River Mile 168</th>
<th>River Mile 154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
</tr>
<tr>
<td>1993</td>
<td>42</td>
<td>88</td>
</tr>
<tr>
<td>1994</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>1995</td>
<td>26</td>
<td>56</td>
</tr>
<tr>
<td>1996</td>
<td>22</td>
<td>48</td>
</tr>
<tr>
<td>1997</td>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td>1998</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>1999</td>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td>2000</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>2001</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>2002</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>2003</td>
<td>8.6</td>
<td>20</td>
</tr>
<tr>
<td>2004</td>
<td>8.1</td>
<td>19</td>
</tr>
<tr>
<td>2005</td>
<td>7.0</td>
<td>16</td>
</tr>
<tr>
<td>2006</td>
<td>7.3</td>
<td>16</td>
</tr>
<tr>
<td>2007</td>
<td>6.4</td>
<td>15</td>
</tr>
<tr>
<td>2008</td>
<td>5.8</td>
<td>14</td>
</tr>
<tr>
<td>2009</td>
<td>6.2</td>
<td>14</td>
</tr>
<tr>
<td>2010</td>
<td>5.7</td>
<td>13</td>
</tr>
<tr>
<td>2011</td>
<td>4.5</td>
<td>11</td>
</tr>
<tr>
<td>2012</td>
<td>4.6</td>
<td>11</td>
</tr>
<tr>
<td>2013</td>
<td>4.5</td>
<td>10</td>
</tr>
<tr>
<td>2014</td>
<td>4.2</td>
<td>9.7</td>
</tr>
<tr>
<td>2015</td>
<td>3.8</td>
<td>8.8</td>
</tr>
<tr>
<td>2016</td>
<td>4.0</td>
<td>9.1</td>
</tr>
<tr>
<td>2017</td>
<td>3.2</td>
<td>7.5</td>
</tr>
<tr>
<td>2018</td>
<td>3.3</td>
<td>7.4</td>
</tr>
<tr>
<td>Year</td>
<td>Thompson Island Pool</td>
<td>River Mile 168</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>25th (mg/kg wet weight)</td>
<td>Median (mg/kg wet weight)</td>
</tr>
<tr>
<td>1993</td>
<td>1.8</td>
<td>6.0</td>
</tr>
<tr>
<td>1994</td>
<td>1.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1995</td>
<td>1.2</td>
<td>4.0</td>
</tr>
<tr>
<td>1996</td>
<td>1.0</td>
<td>3.4</td>
</tr>
<tr>
<td>1997</td>
<td>0.8</td>
<td>2.6</td>
</tr>
<tr>
<td>1998</td>
<td>0.6</td>
<td>2.3</td>
</tr>
<tr>
<td>1999</td>
<td>0.5</td>
<td>1.9</td>
</tr>
<tr>
<td>2000</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>2001</td>
<td>0.5</td>
<td>1.7</td>
</tr>
<tr>
<td>2002</td>
<td>0.5</td>
<td>1.6</td>
</tr>
<tr>
<td>2003</td>
<td>0.4</td>
<td>1.4</td>
</tr>
<tr>
<td>2004</td>
<td>0.4</td>
<td>1.3</td>
</tr>
<tr>
<td>2005</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>2006</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>2007</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>2008</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>2009</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>2010</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>2011</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>2012</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>2013</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2014</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2015</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2016</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2017</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2018</td>
<td>0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

TABLE 5-34: RATIO OF PREDICTED LARGEMOUTH BASS CONCENTRATIONS TO LABORATORY-DERIVED NOAEL ON A TEQ BASIS
TABLE 5-35: RATIO OF PREDICTED LARGEMOUTH BASS CONCENTRATIONS TO LABORATORY-DERIVED LOAEL ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Year</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
<th>25th (mg/kg wet weight)</th>
<th>Median (mg/kg wet weight)</th>
<th>95th Percentile (mg/kg wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>0.9</td>
<td>2.9</td>
<td>12.2</td>
<td>0.7</td>
<td>2.2</td>
<td>9.4</td>
<td>0.2</td>
<td>0.5</td>
<td>1.6</td>
</tr>
<tr>
<td>1994</td>
<td>0.5</td>
<td>1.7</td>
<td>8.0</td>
<td>0.5</td>
<td>1.6</td>
<td>6.6</td>
<td>0.2</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1995</td>
<td>0.6</td>
<td>1.9</td>
<td>8.7</td>
<td>0.6</td>
<td>1.7</td>
<td>7.1</td>
<td>0.2</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1996</td>
<td>0.5</td>
<td>1.6</td>
<td>9.0</td>
<td>0.4</td>
<td>1.4</td>
<td>1.5</td>
<td>0.4</td>
<td>0.4</td>
<td>1.2</td>
</tr>
<tr>
<td>1997</td>
<td>0.4</td>
<td>1.3</td>
<td>6.4</td>
<td>0.4</td>
<td>1.2</td>
<td>5.0</td>
<td>0.4</td>
<td>0.4</td>
<td>1.1</td>
</tr>
<tr>
<td>1998</td>
<td>0.3</td>
<td>1.1</td>
<td>5.7</td>
<td>0.3</td>
<td>1.1</td>
<td>4.5</td>
<td>0.11</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>1999</td>
<td>0.3</td>
<td>0.9</td>
<td>4.8</td>
<td>0.3</td>
<td>0.9</td>
<td>3.6</td>
<td>0.10</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>2000</td>
<td>0.2</td>
<td>0.9</td>
<td>4.3</td>
<td>0.3</td>
<td>0.8</td>
<td>3.5</td>
<td>0.10</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>2001</td>
<td>0.2</td>
<td>0.8</td>
<td>4.3</td>
<td>0.3</td>
<td>0.8</td>
<td>3.4</td>
<td>0.09</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2002</td>
<td>0.2</td>
<td>0.8</td>
<td>4.0</td>
<td>0.3</td>
<td>0.9</td>
<td>3.5</td>
<td>0.08</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2003</td>
<td>0.2</td>
<td>0.7</td>
<td>3.6</td>
<td>0.2</td>
<td>0.7</td>
<td>2.9</td>
<td>0.09</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2004</td>
<td>0.2</td>
<td>0.6</td>
<td>3.4</td>
<td>0.2</td>
<td>0.7</td>
<td>2.8</td>
<td>0.08</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2005</td>
<td>0.2</td>
<td>0.6</td>
<td>3.0</td>
<td>0.2</td>
<td>0.5</td>
<td>2.2</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2006</td>
<td>0.2</td>
<td>0.6</td>
<td>2.9</td>
<td>0.2</td>
<td>0.6</td>
<td>2.5</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2007</td>
<td>0.15</td>
<td>0.5</td>
<td>2.6</td>
<td>0.2</td>
<td>0.5</td>
<td>2.1</td>
<td>0.07</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2008</td>
<td>0.14</td>
<td>0.5</td>
<td>2.6</td>
<td>0.1</td>
<td>0.4</td>
<td>1.9</td>
<td>0.06</td>
<td>0.14</td>
<td>0.4</td>
</tr>
<tr>
<td>2009</td>
<td>0.14</td>
<td>0.5</td>
<td>2.6</td>
<td>0.2</td>
<td>0.5</td>
<td>1.9</td>
<td>0.05</td>
<td>0.13</td>
<td>0.4</td>
</tr>
<tr>
<td>2010</td>
<td>0.13</td>
<td>0.4</td>
<td>2.3</td>
<td>0.14</td>
<td>0.4</td>
<td>1.8</td>
<td>0.06</td>
<td>0.15</td>
<td>0.4</td>
</tr>
<tr>
<td>2011</td>
<td>0.10</td>
<td>0.4</td>
<td>2.0</td>
<td>0.12</td>
<td>0.4</td>
<td>1.6</td>
<td>0.06</td>
<td>0.14</td>
<td>0.4</td>
</tr>
<tr>
<td>2012</td>
<td>0.10</td>
<td>0.4</td>
<td>1.9</td>
<td>0.12</td>
<td>0.4</td>
<td>1.6</td>
<td>0.06</td>
<td>0.15</td>
<td>0.4</td>
</tr>
<tr>
<td>2013</td>
<td>0.10</td>
<td>0.4</td>
<td>1.8</td>
<td>0.12</td>
<td>0.4</td>
<td>1.6</td>
<td>0.06</td>
<td>0.14</td>
<td>0.4</td>
</tr>
<tr>
<td>2014</td>
<td>0.09</td>
<td>0.3</td>
<td>1.7</td>
<td>0.12</td>
<td>0.4</td>
<td>1.5</td>
<td>0.05</td>
<td>0.12</td>
<td>0.4</td>
</tr>
<tr>
<td>2015</td>
<td>0.09</td>
<td>0.3</td>
<td>1.6</td>
<td>0.10</td>
<td>0.3</td>
<td>1.3</td>
<td>0.05</td>
<td>0.12</td>
<td>0.3</td>
</tr>
<tr>
<td>2016</td>
<td>0.09</td>
<td>0.3</td>
<td>1.5</td>
<td>0.12</td>
<td>0.4</td>
<td>1.5</td>
<td>0.05</td>
<td>0.13</td>
<td>0.4</td>
</tr>
<tr>
<td>2017</td>
<td>0.08</td>
<td>0.3</td>
<td>1.4</td>
<td>0.09</td>
<td>0.3</td>
<td>1.2</td>
<td>0.04</td>
<td>0.10</td>
<td>0.3</td>
</tr>
<tr>
<td>2018</td>
<td>0.07</td>
<td>0.3</td>
<td>1.3</td>
<td>0.09</td>
<td>0.3</td>
<td>1.1</td>
<td>0.04</td>
<td>0.08</td>
<td>0.2</td>
</tr>
<tr>
<td>River Mile</td>
<td>Year</td>
<td>Field-Based NOAEL Average</td>
<td>95% UCL</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>---------------------------</td>
<td>---------</td>
<td>---------------------------</td>
<td>---------</td>
<td>---------------------------</td>
<td>---------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>GW Bridge</td>
<td>1993</td>
<td>0.4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Nyack</td>
<td>1993</td>
<td>0.8</td>
<td>1.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croton</td>
<td>1993</td>
<td>1.4</td>
<td>2.7</td>
<td>0.5</td>
<td>0.9</td>
<td>1.0</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoney Point</td>
<td>1993</td>
<td>0.5</td>
<td>0.7</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornwall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poughkeepsie</td>
<td>1993</td>
<td>1.0</td>
<td>1.6</td>
<td>0.7</td>
<td>1.2</td>
<td>1.4</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catskill</td>
<td>1993</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.9</td>
<td>2.3</td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troy</td>
<td>1993</td>
<td>4.0</td>
<td>5.7</td>
<td>2.8</td>
<td>4.9</td>
<td>5.8</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW Bridge</td>
<td>1994</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyack</td>
<td>1994</td>
<td>0.6</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.9</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croton</td>
<td>1994</td>
<td>0.6</td>
<td>1.0</td>
<td>0.4</td>
<td>0.8</td>
<td>0.9</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoney Point</td>
<td>1994</td>
<td>0.6</td>
<td>0.9</td>
<td>0.4</td>
<td>0.5</td>
<td>0.8</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornwall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poughkeepsie</td>
<td>1994</td>
<td>0.8</td>
<td>1.4</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catskill</td>
<td>1994</td>
<td>1.0</td>
<td>2.7</td>
<td>1.2</td>
<td>4.3</td>
<td>2.5</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troy</td>
<td>1994</td>
<td>2.1</td>
<td>3.2</td>
<td>2.3</td>
<td>3.1</td>
<td>4.8</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW Bridge</td>
<td>1995</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyack</td>
<td>1995</td>
<td>0.6</td>
<td>0.9</td>
<td>0.5</td>
<td>0.8</td>
<td>1.0</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croton</td>
<td>1995</td>
<td>0.4</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoney Point</td>
<td>1995</td>
<td>0.7</td>
<td>0.9</td>
<td>1.5</td>
<td>2.3</td>
<td>3.1</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornwall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poughkeepsie</td>
<td>1995</td>
<td>0.6</td>
<td>0.9</td>
<td>0.3</td>
<td>0.3</td>
<td>0.6</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catskill</td>
<td>1995</td>
<td>0.5</td>
<td>0.9</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troy</td>
<td>1995</td>
<td>2.1</td>
<td>2.7</td>
<td>1.6</td>
<td>2.1</td>
<td>3.3</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW Bridge</td>
<td>1996</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyack</td>
<td>1996</td>
<td>0.4</td>
<td>0.6</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croton</td>
<td>1996</td>
<td>0.6</td>
<td>0.9</td>
<td>0.4</td>
<td>0.5</td>
<td>0.8</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoney Point</td>
<td>1996</td>
<td>0.5</td>
<td>0.7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.9</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornwall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poughkeepsie</td>
<td>1996</td>
<td>0.6</td>
<td>0.8</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catskill</td>
<td>1996</td>
<td>0.6</td>
<td>1.0</td>
<td>0.8</td>
<td>1.7</td>
<td>1.6</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troy</td>
<td>1996</td>
<td>1.6</td>
<td>3.6</td>
<td>2.0</td>
<td>4.8</td>
<td>4.1</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold values indicate exceedances.
TABLE 5-37: RATIO OF MODELED DIETARY DOSE AND EGG CONCENTRATIONS TO BENCHMARKS
BASED ON 1993 DATA FOR FEMALE TREE SWALLOW FOR TRI+ CONGENERS

<table>
<thead>
<tr>
<th>Location</th>
<th>Hazard Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>NA</td>
<td>NA</td>
<td>0.7</td>
<td>1.2</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>NA</td>
<td>NA</td>
<td>1.2</td>
<td>5.5</td>
<td>NA</td>
<td>NA</td>
<td>1.7</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.1</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>137.2</td>
<td>NA</td>
<td>NA</td>
<td>0.08</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>122.4</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.1</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>113.8</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>NA</td>
<td>NA</td>
<td>0.02</td>
<td>0.1</td>
<td>NA</td>
<td>NA</td>
<td>0.03</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>88.9</td>
<td>NA</td>
<td>NA</td>
<td>0.01</td>
<td>0.02</td>
<td>NA</td>
<td>NA</td>
<td>0.01</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>NA</td>
<td>NA</td>
<td>0.03</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>47.3</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.05</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>25.8</td>
<td>NA</td>
<td>NA</td>
<td>0.01</td>
<td>0.0</td>
<td>NA</td>
<td>NA</td>
<td>0.01</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Bold value indicates exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>NA</td>
<td>NA</td>
<td>0.8</td>
<td>1.2</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.7</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>NA</td>
<td>NA</td>
<td>0.7</td>
<td>1.1</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.7</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>NA</td>
<td>NA</td>
<td>0.6</td>
<td>0.9</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.6</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>NA</td>
<td>NA</td>
<td>0.7</td>
<td>0.8</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>NA</td>
<td>NA</td>
<td>0.5</td>
<td>0.7</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>NA</td>
<td>NA</td>
<td>0.5</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.6</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.05</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td>NA</td>
<td>NA</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td>NA</td>
<td>NA</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold value indicates exceedances
TABLE 5-39: RATIO OF MODELED EGG CONCENTRATIONS TO BENCHMARKS FOR FEMALE TREE SWALLOWS BASED ON THE SUM OF TRI+ CONGENERS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>NA</td>
<td>NA</td>
<td>1.1</td>
<td>1.6</td>
<td>NA</td>
<td>NA</td>
<td>0.6</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
<td>1.5</td>
<td>NA</td>
<td>NA</td>
<td>0.6</td>
<td>0.9</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>NA</td>
<td>NA</td>
<td>0.9</td>
<td>1.3</td>
<td>NA</td>
<td>NA</td>
<td>0.5</td>
<td>0.8</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>NA</td>
<td>NA</td>
<td>0.8</td>
<td>1.2</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.7</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>NA</td>
<td>NA</td>
<td>0.7</td>
<td>1.1</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.6</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>NA</td>
<td>NA</td>
<td>0.7</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.6</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>NA</td>
<td>NA</td>
<td>0.6</td>
<td>0.9</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>NA</td>
<td>NA</td>
<td>0.6</td>
<td>0.8</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>NA</td>
<td>NA</td>
<td>0.5</td>
<td>0.8</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>NA</td>
<td>NA</td>
<td>0.5</td>
<td>0.7</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>NA</td>
<td>NA</td>
<td>0.5</td>
<td>0.7</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>NA</td>
<td>NA</td>
<td>0.5</td>
<td>0.7</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.6</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.6</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.6</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>NA</td>
<td>NA</td>
<td>0.3</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>NA</td>
<td>NA</td>
<td>0.2</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold value indicates exceedances
TABLE 5-40: RATIO OF MODELED DIETARY DOSE AND EGG CONCENTRATIONS TO BENCHMARKS
BASED ON 1993 DATA FOR FEMALE TREE SWALLOW ON TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Dietary Dose</th>
<th>Egg Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOAEL vs. Average</td>
<td>LOAEL vs. 95%</td>
</tr>
<tr>
<td></td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>137.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>122.4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>113.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>100</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>88.9</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>58.7</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>47.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>25.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Year</td>
<td>Average LOAEL</td>
<td>95% UCL LOAEL</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1993</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1994</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1995</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1996</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1997</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1998</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1999</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2000</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2001</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2002</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2003</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2004</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2005</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2006</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2007</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2008</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2009</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2010</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2011</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2012</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2013</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2014</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2015</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2016</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2017</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2018</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Year</td>
<td>Average 95% UCL</td>
<td>Average 95% UCL</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1993</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1994</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1995</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1996</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1997</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1998</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1999</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2000</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2001</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2002</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2003</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2004</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2005</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2006</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2007</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2008</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2009</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2010</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2011</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2012</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2013</td>
<td>NA</td>
<td>0.095</td>
</tr>
<tr>
<td>2014</td>
<td>NA</td>
<td>0.088</td>
</tr>
<tr>
<td>2015</td>
<td>NA</td>
<td>0.083</td>
</tr>
<tr>
<td>2016</td>
<td>NA</td>
<td>0.078</td>
</tr>
<tr>
<td>2017</td>
<td>NA</td>
<td>0.072</td>
</tr>
<tr>
<td>2018</td>
<td>NA</td>
<td>0.072</td>
</tr>
</tbody>
</table>
TABLE 5-43: RATIO OF MODELED DIETARY DOSE AND EGG CONCENTRATIONS TO BENCHMARKS
BASED ON 1993 DATA FOR FEMALE MALLARD FOR TRI+ CONGENERS

<table>
<thead>
<tr>
<th>Location</th>
<th>Lower River</th>
<th>Upper River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard Quotient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>137.2</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>122.4</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>113.8</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>100</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>88.9</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>58.7</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>47.3</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>25.8</td>
<td>0.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Hazard Quotient		
143.5	0.1	0.2
137.2	0.1	0.3
122.4	0.1	0.6
113.8	0.1	0.5
100	0.0	0.6
88.9	0.0	0.4
58.7	0.0	0.5
47.3	0.1	0.7
25.8	0.0	0.4

Bold values indicate exceedances
TABLE 5-44: RATIO OF MODELED DIETARY DOSE TO BENCHMARKS FOR FEMALE MALLARD BASED ON FISHRAND RESULTS FOR THE TRI+ CONGENERS

<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>0.9</td>
<td>1.3</td>
<td>9.1</td>
<td>13</td>
<td>0.6</td>
<td>0.8</td>
<td>5.7</td>
<td>8.2</td>
<td>0.2</td>
<td>0.2</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>1994</td>
<td>0.9</td>
<td>1.2</td>
<td>8.7</td>
<td>12</td>
<td>0.6</td>
<td>0.8</td>
<td>5.6</td>
<td>8.1</td>
<td>0.2</td>
<td>0.2</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>1995</td>
<td>0.8</td>
<td>1.1</td>
<td>8.4</td>
<td>11</td>
<td>0.5</td>
<td>0.8</td>
<td>5.3</td>
<td>7.6</td>
<td>0.2</td>
<td>0.2</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>1996</td>
<td>0.7</td>
<td>1.0</td>
<td>6.8</td>
<td>9.7</td>
<td>0.4</td>
<td>0.6</td>
<td>4.1</td>
<td>6.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>1997</td>
<td>0.6</td>
<td>0.9</td>
<td>6.4</td>
<td>9.0</td>
<td>0.4</td>
<td>0.6</td>
<td>4.2</td>
<td>6.1</td>
<td>0.1</td>
<td>0.2</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>1998</td>
<td>0.5</td>
<td>0.8</td>
<td>5.5</td>
<td>7.7</td>
<td>0.3</td>
<td>0.5</td>
<td>3.2</td>
<td>4.9</td>
<td>0.1</td>
<td>0.1</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>1999</td>
<td>0.5</td>
<td>0.7</td>
<td>5.0</td>
<td>7.3</td>
<td>0.3</td>
<td>0.5</td>
<td>3.1</td>
<td>4.6</td>
<td>0.1</td>
<td>0.1</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>2000</td>
<td>0.5</td>
<td>0.7</td>
<td>4.6</td>
<td>6.5</td>
<td>0.3</td>
<td>0.4</td>
<td>2.8</td>
<td>4.2</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2001</td>
<td>0.4</td>
<td>0.6</td>
<td>4.4</td>
<td>6.3</td>
<td>0.3</td>
<td>0.4</td>
<td>3.0</td>
<td>4.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>2002</td>
<td>0.4</td>
<td>0.6</td>
<td>4.1</td>
<td>6.0</td>
<td>0.3</td>
<td>0.4</td>
<td>2.7</td>
<td>4.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>2003</td>
<td>0.4</td>
<td>0.5</td>
<td>3.8</td>
<td>5.5</td>
<td>0.3</td>
<td>0.4</td>
<td>2.6</td>
<td>3.8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>2004</td>
<td>0.4</td>
<td>0.5</td>
<td>3.5</td>
<td>5.0</td>
<td>0.2</td>
<td>0.4</td>
<td>2.5</td>
<td>3.6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>2005</td>
<td>0.3</td>
<td>0.5</td>
<td>3.3</td>
<td>4.7</td>
<td>0.2</td>
<td>0.3</td>
<td>2.1</td>
<td>3.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>2006</td>
<td>0.3</td>
<td>0.5</td>
<td>3.2</td>
<td>4.5</td>
<td>0.2</td>
<td>0.3</td>
<td>2.1</td>
<td>3.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>2007</td>
<td>0.3</td>
<td>0.4</td>
<td>2.9</td>
<td>4.2</td>
<td>0.2</td>
<td>0.3</td>
<td>1.9</td>
<td>2.9</td>
<td>0.1</td>
<td>0.1</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>2008</td>
<td>0.3</td>
<td>0.4</td>
<td>2.8</td>
<td>3.9</td>
<td>0.2</td>
<td>0.3</td>
<td>1.7</td>
<td>2.6</td>
<td>0.05</td>
<td>0.05</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2009</td>
<td>0.3</td>
<td>0.4</td>
<td>2.7</td>
<td>3.8</td>
<td>0.2</td>
<td>0.3</td>
<td>1.8</td>
<td>2.6</td>
<td>0.05</td>
<td>0.06</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>2010</td>
<td>0.2</td>
<td>0.3</td>
<td>2.4</td>
<td>3.5</td>
<td>0.2</td>
<td>0.2</td>
<td>1.6</td>
<td>2.4</td>
<td>0.05</td>
<td>0.06</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>2011</td>
<td>0.2</td>
<td>0.3</td>
<td>2.1</td>
<td>3.1</td>
<td>0.1</td>
<td>0.2</td>
<td>1.4</td>
<td>2.2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2012</td>
<td>0.2</td>
<td>0.3</td>
<td>2.1</td>
<td>2.9</td>
<td>0.1</td>
<td>0.2</td>
<td>1.5</td>
<td>2.2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2013</td>
<td>0.2</td>
<td>0.3</td>
<td>1.9</td>
<td>2.7</td>
<td>0.1</td>
<td>0.2</td>
<td>1.4</td>
<td>2.0</td>
<td>0.04</td>
<td>0.05</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>2014</td>
<td>0.2</td>
<td>0.3</td>
<td>1.8</td>
<td>2.5</td>
<td>0.1</td>
<td>0.2</td>
<td>1.3</td>
<td>1.9</td>
<td>0.04</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>2015</td>
<td>0.2</td>
<td>0.2</td>
<td>1.6</td>
<td>2.4</td>
<td>0.1</td>
<td>0.2</td>
<td>1.2</td>
<td>1.8</td>
<td>0.04</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>2016</td>
<td>0.2</td>
<td>0.2</td>
<td>1.6</td>
<td>2.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1.2</td>
<td>1.8</td>
<td>0.04</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>2017</td>
<td>0.1</td>
<td>0.2</td>
<td>1.4</td>
<td>2.1</td>
<td>0.1</td>
<td>0.2</td>
<td>1.0</td>
<td>1.6</td>
<td>0.03</td>
<td>0.03</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>2018</td>
<td>0.1</td>
<td>0.2</td>
<td>1.5</td>
<td>2.1</td>
<td>0.1</td>
<td>0.2</td>
<td>1.1</td>
<td>1.7</td>
<td>0.04</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>20</td>
<td>29</td>
<td>135</td>
<td>197</td>
<td>11</td>
<td>18</td>
<td>75</td>
<td>118</td>
<td>4.9</td>
<td>5.3</td>
<td>33</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>19</td>
<td>28</td>
<td>126</td>
<td>187</td>
<td>11</td>
<td>17</td>
<td>71</td>
<td>113</td>
<td>4.6</td>
<td>5.0</td>
<td>31</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>18</td>
<td>26</td>
<td>118</td>
<td>171</td>
<td>10</td>
<td>16</td>
<td>67</td>
<td>106</td>
<td>4.2</td>
<td>4.6</td>
<td>28</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>16</td>
<td>23</td>
<td>107</td>
<td>156</td>
<td>8.9</td>
<td>14</td>
<td>60</td>
<td>94</td>
<td>3.6</td>
<td>3.9</td>
<td>24</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>15</td>
<td>21</td>
<td>98</td>
<td>143</td>
<td>8.1</td>
<td>13</td>
<td>54</td>
<td>86</td>
<td>3.1</td>
<td>3.4</td>
<td>21</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>13</td>
<td>19</td>
<td>90</td>
<td>128</td>
<td>7.3</td>
<td>12</td>
<td>49</td>
<td>78</td>
<td>2.7</td>
<td>2.9</td>
<td>18</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>12</td>
<td>18</td>
<td>81</td>
<td>120</td>
<td>6.7</td>
<td>11</td>
<td>45</td>
<td>71</td>
<td>2.4</td>
<td>2.6</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>11</td>
<td>16</td>
<td>75</td>
<td>107</td>
<td>6.3</td>
<td>10</td>
<td>42</td>
<td>67</td>
<td>2.1</td>
<td>2.3</td>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>11</td>
<td>15</td>
<td>71</td>
<td>103</td>
<td>6.1</td>
<td>10</td>
<td>41</td>
<td>65</td>
<td>2.0</td>
<td>2.2</td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>10</td>
<td>15</td>
<td>66</td>
<td>98</td>
<td>5.9</td>
<td>9.3</td>
<td>39</td>
<td>62</td>
<td>1.9</td>
<td>2.1</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>9.2</td>
<td>13</td>
<td>62</td>
<td>90</td>
<td>5.5</td>
<td>8.8</td>
<td>37</td>
<td>59</td>
<td>1.8</td>
<td>1.9</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>8.5</td>
<td>12</td>
<td>57</td>
<td>82</td>
<td>5.1</td>
<td>8.0</td>
<td>34</td>
<td>54</td>
<td>1.6</td>
<td>1.7</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>7.9</td>
<td>12</td>
<td>53</td>
<td>77</td>
<td>4.7</td>
<td>7.5</td>
<td>32</td>
<td>50</td>
<td>1.5</td>
<td>1.6</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>7.6</td>
<td>11</td>
<td>51</td>
<td>74</td>
<td>4.5</td>
<td>7.1</td>
<td>30</td>
<td>47</td>
<td>1.4</td>
<td>1.5</td>
<td>9.1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>7.1</td>
<td>10</td>
<td>47</td>
<td>68</td>
<td>4.2</td>
<td>6.6</td>
<td>28</td>
<td>44</td>
<td>1.2</td>
<td>1.3</td>
<td>8.3</td>
<td>8.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>6.7</td>
<td>10</td>
<td>45</td>
<td>64</td>
<td>3.9</td>
<td>6.2</td>
<td>26</td>
<td>42</td>
<td>1.1</td>
<td>1.2</td>
<td>7.7</td>
<td>8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>6.3</td>
<td>9.1</td>
<td>42</td>
<td>61</td>
<td>3.7</td>
<td>5.9</td>
<td>25</td>
<td>40</td>
<td>1.1</td>
<td>1.2</td>
<td>7.4</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>5.7</td>
<td>8.4</td>
<td>38</td>
<td>56</td>
<td>3.5</td>
<td>5.6</td>
<td>23</td>
<td>37</td>
<td>1.0</td>
<td>1.1</td>
<td>7.0</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>5.2</td>
<td>7.5</td>
<td>35</td>
<td>50</td>
<td>3.2</td>
<td>5.1</td>
<td>22</td>
<td>34</td>
<td>1.0</td>
<td>1.0</td>
<td>6.4</td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>4.8</td>
<td>7.0</td>
<td>32</td>
<td>47</td>
<td>3.1</td>
<td>4.9</td>
<td>21</td>
<td>33</td>
<td>0.9</td>
<td>1.0</td>
<td>6.1</td>
<td>6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>4.5</td>
<td>6.7</td>
<td>30</td>
<td>45</td>
<td>2.9</td>
<td>4.6</td>
<td>20</td>
<td>31</td>
<td>0.8</td>
<td>0.9</td>
<td>5.7</td>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>4.2</td>
<td>6.2</td>
<td>28</td>
<td>41</td>
<td>2.7</td>
<td>4.4</td>
<td>18</td>
<td>29</td>
<td>0.8</td>
<td>0.8</td>
<td>5.2</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>3.9</td>
<td>5.8</td>
<td>26</td>
<td>39</td>
<td>2.6</td>
<td>4.2</td>
<td>18</td>
<td>28</td>
<td>0.7</td>
<td>0.8</td>
<td>5.0</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>3.7</td>
<td>5.4</td>
<td>25</td>
<td>36</td>
<td>2.5</td>
<td>4.0</td>
<td>17</td>
<td>27</td>
<td>0.7</td>
<td>0.7</td>
<td>4.6</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>3.4</td>
<td>5.1</td>
<td>23</td>
<td>34</td>
<td>2.4</td>
<td>3.7</td>
<td>16</td>
<td>25</td>
<td>0.6</td>
<td>0.7</td>
<td>4.1</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>3.4</td>
<td>5.1</td>
<td>23</td>
<td>34</td>
<td>2.3</td>
<td>3.6</td>
<td>15</td>
<td>24</td>
<td>0.6</td>
<td>0.6</td>
<td>4.0</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold values indicate exceedances.
TABLE 5-46: RATIO OF MODELED DIETARY DOSE AND EGG CONCENTRATIONS TO BENCHMARKS FOR FEMALE MALLARD BASED ON 1993 DATA ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Hazard Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>93</td>
<td>345</td>
<td>933</td>
<td>3451</td>
<td>1055</td>
<td>1657</td>
<td>4218</td>
<td>6627</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>156</td>
<td>397</td>
<td>1557</td>
<td>3975</td>
<td>1967</td>
<td>3424</td>
<td>7870</td>
<td>13698</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>135</td>
<td>280</td>
<td>1353</td>
<td>2796</td>
<td>469</td>
<td>816</td>
<td>1875</td>
<td>3264</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>75</td>
<td>225</td>
<td>753</td>
<td>2245</td>
<td>65</td>
<td>114</td>
<td>261</td>
<td>455</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.2</td>
<td>76</td>
<td>226</td>
<td>759</td>
<td>2258</td>
<td>129</td>
<td>224</td>
<td>515</td>
<td>896</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122.4</td>
<td>45</td>
<td>684</td>
<td>450</td>
<td>6842</td>
<td>60</td>
<td>151</td>
<td>240</td>
<td>603</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113.8</td>
<td>45</td>
<td>684</td>
<td>449</td>
<td>6839</td>
<td>52</td>
<td>90</td>
<td>206</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>45</td>
<td>686</td>
<td>446</td>
<td>6862</td>
<td>28</td>
<td>194</td>
<td>113</td>
<td>775</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.9</td>
<td>33</td>
<td>631</td>
<td>327</td>
<td>6309</td>
<td>14</td>
<td>25</td>
<td>57</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>33</td>
<td>631</td>
<td>328</td>
<td>6313</td>
<td>37</td>
<td>64</td>
<td>146</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.3</td>
<td>33</td>
<td>634</td>
<td>331</td>
<td>6342</td>
<td>50</td>
<td>365</td>
<td>199</td>
<td>1459</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.8</td>
<td>33</td>
<td>631</td>
<td>327</td>
<td>6308</td>
<td>15</td>
<td>25</td>
<td>59</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>Average LOAEL</th>
<th>95% UCL LOAEL</th>
<th>Average NOAEL</th>
<th>95% UCL NOAEL</th>
<th>Average LOAEL</th>
<th>95% UCL LOAEL</th>
<th>Average NOAEL</th>
<th>95% UCL NOAEL</th>
<th>Average LOAEL</th>
<th>95% UCL LOAEL</th>
<th>Average NOAEL</th>
<th>95% UCL NOAEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>182</td>
<td>189</td>
<td>1818</td>
<td>196</td>
<td>203</td>
<td>1964</td>
<td>2026</td>
<td>36</td>
<td>37</td>
<td>360</td>
<td>369</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>204</td>
<td>212</td>
<td>2039</td>
<td>216</td>
<td>230</td>
<td>2231</td>
<td>2298</td>
<td>37</td>
<td>38</td>
<td>373</td>
<td>382</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>217</td>
<td>225</td>
<td>2174</td>
<td>210</td>
<td>216</td>
<td>2102</td>
<td>2164</td>
<td>58</td>
<td>60</td>
<td>584</td>
<td>597</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>92</td>
<td>97</td>
<td>925</td>
<td>99</td>
<td>103</td>
<td>994</td>
<td>1032</td>
<td>21</td>
<td>21</td>
<td>209</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>98</td>
<td>102</td>
<td>977</td>
<td>1023</td>
<td>158</td>
<td>1584</td>
<td>1633</td>
<td>33</td>
<td>34</td>
<td>329</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>32</td>
<td>35</td>
<td>322</td>
<td>351</td>
<td>57</td>
<td>567</td>
<td>594</td>
<td>23</td>
<td>23</td>
<td>229</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>42</td>
<td>45</td>
<td>419</td>
<td>451</td>
<td>73</td>
<td>725</td>
<td>754</td>
<td>23</td>
<td>24</td>
<td>234</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>32</td>
<td>35</td>
<td>322</td>
<td>348</td>
<td>53</td>
<td>525</td>
<td>549</td>
<td>23</td>
<td>23</td>
<td>225</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>44</td>
<td>46</td>
<td>436</td>
<td>464</td>
<td>91</td>
<td>909</td>
<td>941</td>
<td>17</td>
<td>17</td>
<td>170</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>37</td>
<td>40</td>
<td>371</td>
<td>397</td>
<td>66</td>
<td>664</td>
<td>690</td>
<td>13</td>
<td>13</td>
<td>125</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>31</td>
<td>34</td>
<td>313</td>
<td>336</td>
<td>62</td>
<td>617</td>
<td>641</td>
<td>21</td>
<td>21</td>
<td>209</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>28</td>
<td>30</td>
<td>282</td>
<td>303</td>
<td>71</td>
<td>710</td>
<td>735</td>
<td>17</td>
<td>18</td>
<td>173</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>27</td>
<td>29</td>
<td>267</td>
<td>287</td>
<td>40</td>
<td>398</td>
<td>416</td>
<td>19</td>
<td>19</td>
<td>187</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>32</td>
<td>34</td>
<td>324</td>
<td>344</td>
<td>57</td>
<td>570</td>
<td>591</td>
<td>14</td>
<td>14</td>
<td>135</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>24</td>
<td>26</td>
<td>242</td>
<td>259</td>
<td>40</td>
<td>404</td>
<td>421</td>
<td>19</td>
<td>19</td>
<td>186</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
<td>22</td>
<td>204</td>
<td>220</td>
<td>29</td>
<td>287</td>
<td>301</td>
<td>10</td>
<td>10</td>
<td>97</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>32</td>
<td>34</td>
<td>318</td>
<td>336</td>
<td>49</td>
<td>487</td>
<td>505</td>
<td>12</td>
<td>13</td>
<td>122</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>23</td>
<td>25</td>
<td>235</td>
<td>250</td>
<td>38</td>
<td>381</td>
<td>396</td>
<td>16</td>
<td>17</td>
<td>165</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>16</td>
<td>17</td>
<td>157</td>
<td>170</td>
<td>22</td>
<td>225</td>
<td>236</td>
<td>12</td>
<td>12</td>
<td>120</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>25</td>
<td>26</td>
<td>246</td>
<td>260</td>
<td>40</td>
<td>397</td>
<td>412</td>
<td>20</td>
<td>21</td>
<td>204</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>16</td>
<td>18</td>
<td>165</td>
<td>177</td>
<td>31</td>
<td>309</td>
<td>322</td>
<td>17</td>
<td>17</td>
<td>168</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>18</td>
<td>19</td>
<td>176</td>
<td>187</td>
<td>29</td>
<td>287</td>
<td>298</td>
<td>18</td>
<td>19</td>
<td>183</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>15</td>
<td>16</td>
<td>146</td>
<td>156</td>
<td>25</td>
<td>248</td>
<td>259</td>
<td>13</td>
<td>13</td>
<td>131</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>19</td>
<td>20</td>
<td>193</td>
<td>203</td>
<td>31</td>
<td>314</td>
<td>326</td>
<td>18</td>
<td>19</td>
<td>183</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>11</td>
<td>12</td>
<td>107</td>
<td>116</td>
<td>15</td>
<td>147</td>
<td>155</td>
<td>9</td>
<td>10</td>
<td>93</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>19</td>
<td>20</td>
<td>187</td>
<td>197</td>
<td>37</td>
<td>366</td>
<td>378</td>
<td>22</td>
<td>23</td>
<td>221</td>
<td>226</td>
<td></td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>1106</td>
<td>1618</td>
<td>4422</td>
<td>6474</td>
<td>612</td>
<td>966</td>
<td>2449</td>
<td>3865</td>
<td>269</td>
<td>289</td>
<td>1077</td>
<td>1157</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>1994</td>
<td>1038</td>
<td>1535</td>
<td>4150</td>
<td>6140</td>
<td>583</td>
<td>926</td>
<td>2331</td>
<td>3702</td>
<td>254</td>
<td>275</td>
<td>1016</td>
<td>1098</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>1995</td>
<td>970</td>
<td>1403</td>
<td>3880</td>
<td>5611</td>
<td>548</td>
<td>868</td>
<td>2194</td>
<td>3472</td>
<td>233</td>
<td>251</td>
<td>932</td>
<td>1003</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>1996</td>
<td>874</td>
<td>1280</td>
<td>3497</td>
<td>5120</td>
<td>489</td>
<td>773</td>
<td>1958</td>
<td>3091</td>
<td>197</td>
<td>214</td>
<td>789</td>
<td>856</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>1997</td>
<td>804</td>
<td>1171</td>
<td>3215</td>
<td>4684</td>
<td>447</td>
<td>709</td>
<td>1786</td>
<td>2836</td>
<td>172</td>
<td>184</td>
<td>687</td>
<td>737</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>1998</td>
<td>737</td>
<td>1054</td>
<td>2948</td>
<td>4215</td>
<td>403</td>
<td>638</td>
<td>1611</td>
<td>2553</td>
<td>150</td>
<td>161</td>
<td>599</td>
<td>643</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>1999</td>
<td>666</td>
<td>987</td>
<td>2665</td>
<td>3949</td>
<td>366</td>
<td>583</td>
<td>1466</td>
<td>2332</td>
<td>131</td>
<td>141</td>
<td>522</td>
<td>564</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2000</td>
<td>613</td>
<td>882</td>
<td>2451</td>
<td>3527</td>
<td>346</td>
<td>546</td>
<td>1382</td>
<td>2186</td>
<td>117</td>
<td>126</td>
<td>469</td>
<td>504</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2001</td>
<td>579</td>
<td>842</td>
<td>2314</td>
<td>3368</td>
<td>337</td>
<td>536</td>
<td>1349</td>
<td>2142</td>
<td>111</td>
<td>119</td>
<td>442</td>
<td>477</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2002</td>
<td>541</td>
<td>802</td>
<td>2163</td>
<td>3208</td>
<td>322</td>
<td>512</td>
<td>1287</td>
<td>2048</td>
<td>105</td>
<td>113</td>
<td>419</td>
<td>454</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2003</td>
<td>505</td>
<td>738</td>
<td>2019</td>
<td>2950</td>
<td>304</td>
<td>483</td>
<td>1216</td>
<td>1930</td>
<td>98</td>
<td>106</td>
<td>392</td>
<td>423</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2004</td>
<td>469</td>
<td>677</td>
<td>1876</td>
<td>2707</td>
<td>279</td>
<td>441</td>
<td>1116</td>
<td>1764</td>
<td>89</td>
<td>95</td>
<td>355</td>
<td>381</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2005</td>
<td>433</td>
<td>635</td>
<td>1732</td>
<td>2539</td>
<td>258</td>
<td>410</td>
<td>1034</td>
<td>1639</td>
<td>81</td>
<td>87</td>
<td>323</td>
<td>348</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2006</td>
<td>416</td>
<td>606</td>
<td>1665</td>
<td>2424</td>
<td>245</td>
<td>389</td>
<td>979</td>
<td>1556</td>
<td>75</td>
<td>81</td>
<td>299</td>
<td>323</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2007</td>
<td>388</td>
<td>560</td>
<td>1551</td>
<td>2242</td>
<td>230</td>
<td>364</td>
<td>918</td>
<td>1456</td>
<td>68</td>
<td>73</td>
<td>272</td>
<td>293</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2008</td>
<td>369</td>
<td>529</td>
<td>1476</td>
<td>2114</td>
<td>215</td>
<td>341</td>
<td>859</td>
<td>1363</td>
<td>63</td>
<td>68</td>
<td>252</td>
<td>273</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2009</td>
<td>348</td>
<td>498</td>
<td>1392</td>
<td>1994</td>
<td>206</td>
<td>326</td>
<td>824</td>
<td>1306</td>
<td>61</td>
<td>66</td>
<td>244</td>
<td>263</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2010</td>
<td>315</td>
<td>463</td>
<td>1260</td>
<td>1850</td>
<td>192</td>
<td>306</td>
<td>768</td>
<td>1223</td>
<td>57</td>
<td>62</td>
<td>229</td>
<td>248</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2011</td>
<td>286</td>
<td>414</td>
<td>1142</td>
<td>1655</td>
<td>177</td>
<td>283</td>
<td>709</td>
<td>1131</td>
<td>52</td>
<td>57</td>
<td>210</td>
<td>226</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2012</td>
<td>266</td>
<td>386</td>
<td>1063</td>
<td>1546</td>
<td>169</td>
<td>268</td>
<td>676</td>
<td>1071</td>
<td>50</td>
<td>54</td>
<td>199</td>
<td>215</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2013</td>
<td>246</td>
<td>367</td>
<td>984</td>
<td>1470</td>
<td>161</td>
<td>255</td>
<td>643</td>
<td>1019</td>
<td>47</td>
<td>50</td>
<td>186</td>
<td>201</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2014</td>
<td>230</td>
<td>338</td>
<td>918</td>
<td>1353</td>
<td>151</td>
<td>240</td>
<td>603</td>
<td>960</td>
<td>43</td>
<td>46</td>
<td>171</td>
<td>184</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2015</td>
<td>215</td>
<td>320</td>
<td>858</td>
<td>1279</td>
<td>146</td>
<td>231</td>
<td>582</td>
<td>926</td>
<td>41</td>
<td>44</td>
<td>163</td>
<td>176</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2016</td>
<td>204</td>
<td>294</td>
<td>814</td>
<td>1176</td>
<td>138</td>
<td>220</td>
<td>553</td>
<td>878</td>
<td>38</td>
<td>41</td>
<td>150</td>
<td>162</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2017</td>
<td>188</td>
<td>279</td>
<td>753</td>
<td>1117</td>
<td>129</td>
<td>205</td>
<td>518</td>
<td>821</td>
<td>33</td>
<td>36</td>
<td>134</td>
<td>145</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>2018</td>
<td>187</td>
<td>278</td>
<td>746</td>
<td>1112</td>
<td>126</td>
<td>200</td>
<td>505</td>
<td>801</td>
<td>33</td>
<td>35</td>
<td>130</td>
<td>140</td>
<td>154</td>
<td>154</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-49: RATIO OF MODELED DIETARY DOSE AND EGG CONCENTRATIONS TO BENCKMARKS BASED ON 1993 DATA FOR FEMALE BELTED KINGFISHER FOR TRI+ CONGENERS

<table>
<thead>
<tr>
<th>Location</th>
<th>Dietary Dose</th>
<th>Egg Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOAEL vs. Average</td>
<td>LOAEL vs. 95% ADD</td>
</tr>
<tr>
<td></td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>107</td>
<td>213</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>59</td>
<td>173</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>9.3</td>
<td>12</td>
</tr>
<tr>
<td>137.2</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>122.4</td>
<td>7.5</td>
<td>13</td>
</tr>
<tr>
<td>113.8</td>
<td>7.8</td>
<td>11</td>
</tr>
<tr>
<td>100</td>
<td>3.4</td>
<td>8.4</td>
</tr>
<tr>
<td>88.9</td>
<td>6.1</td>
<td>8.5</td>
</tr>
<tr>
<td>58.7</td>
<td>7.1</td>
<td>14</td>
</tr>
<tr>
<td>47.3</td>
<td>6.5</td>
<td>14</td>
</tr>
<tr>
<td>25.8</td>
<td>4.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-50: RATIO OF MODELED DIETARY DOSE AND EGG CONCENTRATIONS TO BENCHMARKS BASED ON 1993 DATA FOR FEMALE GREAT BLUE HERON FOR TRI+ CONGENERS

<table>
<thead>
<tr>
<th>Location</th>
<th><<<<< ---- Dietary Dose ---- >>>>></th>
<th><<<<< ---- Egg Concentration ---- >>>>></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOAEL vs. Average vs. 95% UCL ADD Hazard Quotient</td>
<td>LOAEL vs. Average vs. 95% UCL Conc. Hazard Quotient</td>
</tr>
<tr>
<td></td>
<td>NOAEL vs. Average vs. 95% UCL ADD Hazard Quotient</td>
<td>NOAEL vs. Average vs. 95% UCL Conc. Hazard Quotient</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>47 95 327 667 284 580 1902 3883</td>
<td>107 178 96 137 642 918</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>17 25 116 178 96 137 642 918</td>
<td>4.3 5.2 30 36 26 31 175 210</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>3.8 5.6 27 39 22 33 151 219</td>
<td>8.7 19 61 132 53 115 354 768</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>4.3 5.2 30 36 26 31 175 210</td>
<td>137.2</td>
</tr>
<tr>
<td>137.2</td>
<td>8.7 19 61 132 53 115 354 768</td>
<td>122.4</td>
</tr>
<tr>
<td>122.4</td>
<td>3.3 5.4 23 38 20 33 135 219</td>
<td>113.8</td>
</tr>
<tr>
<td>113.8</td>
<td>3.5 3.7 24 26 21 22 142 147</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>1.5 2.8 11 19 9 16 61 106</td>
<td>88.9</td>
</tr>
<tr>
<td>88.9</td>
<td>3.0 4.1 21 29 18 25 122 168</td>
<td>58.7</td>
</tr>
<tr>
<td>58.7</td>
<td>3.3 3.8 23 27 20 23 133 151</td>
<td>47.3</td>
</tr>
<tr>
<td>47.3</td>
<td>2.9 4.0 20 28 18 23 119 157</td>
<td>25.8</td>
</tr>
<tr>
<td>25.8</td>
<td>2.2 2.6 15 18 13 16 89 107</td>
<td></td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-52: RATIO OF MODELED DIETARY DOSE TO BENCHMARKS BASED ON FISHRAND FOR FEMALE BELTED KINGFISHER BASED ON THE SUM OF TRI+ CONGENERS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>LOAEL 189</th>
<th>LOAEL 189</th>
<th>NOAEL 189</th>
<th>NOAEL 189</th>
<th>LOAEL 168</th>
<th>LOAEL 168</th>
<th>NOAEL 168</th>
<th>NOAEL 168</th>
<th>LOAEL 154</th>
<th>LOAEL 154</th>
<th>NOAEL 154</th>
<th>NOAEL 154</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>95% UCL</td>
</tr>
<tr>
<td>1993</td>
<td>113</td>
<td>192</td>
<td>792</td>
<td>1346</td>
<td>56</td>
<td>75</td>
<td>392</td>
<td>524</td>
<td>28</td>
<td>48</td>
<td>193</td>
<td>339</td>
</tr>
<tr>
<td>1994</td>
<td>62</td>
<td>100</td>
<td>433</td>
<td>699</td>
<td>47</td>
<td>59</td>
<td>326</td>
<td>416</td>
<td>22</td>
<td>33</td>
<td>151</td>
<td>231</td>
</tr>
<tr>
<td>1995</td>
<td>57</td>
<td>90</td>
<td>401</td>
<td>631</td>
<td>50</td>
<td>67</td>
<td>352</td>
<td>471</td>
<td>25</td>
<td>42</td>
<td>173</td>
<td>297</td>
</tr>
<tr>
<td>1996</td>
<td>57</td>
<td>94</td>
<td>402</td>
<td>655</td>
<td>35</td>
<td>45</td>
<td>245</td>
<td>315</td>
<td>17</td>
<td>29</td>
<td>116</td>
<td>203</td>
</tr>
<tr>
<td>1997</td>
<td>45</td>
<td>79</td>
<td>312</td>
<td>555</td>
<td>31</td>
<td>40</td>
<td>217</td>
<td>277</td>
<td>15</td>
<td>24</td>
<td>107</td>
<td>167</td>
</tr>
<tr>
<td>1998</td>
<td>39</td>
<td>64</td>
<td>272</td>
<td>450</td>
<td>28</td>
<td>36</td>
<td>194</td>
<td>254</td>
<td>12</td>
<td>20</td>
<td>87</td>
<td>141</td>
</tr>
<tr>
<td>1999</td>
<td>34</td>
<td>59</td>
<td>236</td>
<td>414</td>
<td>23</td>
<td>29</td>
<td>158</td>
<td>204</td>
<td>9.4</td>
<td>14</td>
<td>66</td>
<td>99</td>
</tr>
<tr>
<td>2000</td>
<td>28</td>
<td>52</td>
<td>198</td>
<td>367</td>
<td>21</td>
<td>27</td>
<td>147</td>
<td>190</td>
<td>8.3</td>
<td>13</td>
<td>58</td>
<td>93</td>
</tr>
<tr>
<td>2001</td>
<td>27</td>
<td>49</td>
<td>192</td>
<td>342</td>
<td>22</td>
<td>28</td>
<td>154</td>
<td>199</td>
<td>9.4</td>
<td>15</td>
<td>66</td>
<td>107</td>
</tr>
<tr>
<td>2002</td>
<td>26</td>
<td>47</td>
<td>179</td>
<td>326</td>
<td>21</td>
<td>27</td>
<td>148</td>
<td>190</td>
<td>8.6</td>
<td>14</td>
<td>60</td>
<td>95</td>
</tr>
<tr>
<td>2003</td>
<td>24</td>
<td>44</td>
<td>171</td>
<td>307</td>
<td>18</td>
<td>23</td>
<td>127</td>
<td>164</td>
<td>7.7</td>
<td>13</td>
<td>54</td>
<td>89</td>
</tr>
<tr>
<td>2004</td>
<td>22</td>
<td>40</td>
<td>152</td>
<td>283</td>
<td>17</td>
<td>22</td>
<td>121</td>
<td>154</td>
<td>7.5</td>
<td>13</td>
<td>53</td>
<td>89</td>
</tr>
<tr>
<td>2005</td>
<td>21</td>
<td>38</td>
<td>145</td>
<td>265</td>
<td>15</td>
<td>19</td>
<td>102</td>
<td>132</td>
<td>6.2</td>
<td>10</td>
<td>43</td>
<td>70</td>
</tr>
<tr>
<td>2006</td>
<td>18</td>
<td>34</td>
<td>129</td>
<td>237</td>
<td>15</td>
<td>19</td>
<td>105</td>
<td>135</td>
<td>6.1</td>
<td>10</td>
<td>42</td>
<td>71</td>
</tr>
<tr>
<td>2007</td>
<td>18</td>
<td>33</td>
<td>127</td>
<td>232</td>
<td>14</td>
<td>18</td>
<td>96</td>
<td>124</td>
<td>5.1</td>
<td>8.6</td>
<td>36</td>
<td>60</td>
</tr>
<tr>
<td>2008</td>
<td>17</td>
<td>30</td>
<td>116</td>
<td>208</td>
<td>12</td>
<td>16</td>
<td>85</td>
<td>110</td>
<td>4.6</td>
<td>7.4</td>
<td>32</td>
<td>52</td>
</tr>
<tr>
<td>2009</td>
<td>16</td>
<td>29</td>
<td>111</td>
<td>205</td>
<td>13</td>
<td>17</td>
<td>90</td>
<td>117</td>
<td>5.3</td>
<td>9.3</td>
<td>37</td>
<td>65</td>
</tr>
<tr>
<td>2010</td>
<td>15</td>
<td>28</td>
<td>107</td>
<td>197</td>
<td>13</td>
<td>16</td>
<td>89</td>
<td>114</td>
<td>4.8</td>
<td>8.1</td>
<td>34</td>
<td>56</td>
</tr>
<tr>
<td>2011</td>
<td>14</td>
<td>25</td>
<td>100</td>
<td>174</td>
<td>10</td>
<td>13</td>
<td>70</td>
<td>92</td>
<td>4.0</td>
<td>6.9</td>
<td>28</td>
<td>48</td>
</tr>
<tr>
<td>2012</td>
<td>13</td>
<td>23</td>
<td>88</td>
<td>159</td>
<td>11</td>
<td>15</td>
<td>80</td>
<td>105</td>
<td>4.6</td>
<td>7.6</td>
<td>32</td>
<td>53</td>
</tr>
<tr>
<td>2013</td>
<td>12</td>
<td>22</td>
<td>84</td>
<td>151</td>
<td>11</td>
<td>14</td>
<td>75</td>
<td>96</td>
<td>3.9</td>
<td>6.5</td>
<td>28</td>
<td>46</td>
</tr>
<tr>
<td>2014</td>
<td>11</td>
<td>20</td>
<td>80</td>
<td>143</td>
<td>10</td>
<td>13</td>
<td>68</td>
<td>88</td>
<td>3.6</td>
<td>6.1</td>
<td>26</td>
<td>43</td>
</tr>
<tr>
<td>2015</td>
<td>10</td>
<td>18</td>
<td>73</td>
<td>129</td>
<td>9.4</td>
<td>12</td>
<td>66</td>
<td>84</td>
<td>3.4</td>
<td>5.3</td>
<td>24</td>
<td>37</td>
</tr>
<tr>
<td>2016</td>
<td>10</td>
<td>17</td>
<td>69</td>
<td>121</td>
<td>9.2</td>
<td>12</td>
<td>65</td>
<td>86</td>
<td>3.9</td>
<td>8.0</td>
<td>27</td>
<td>56</td>
</tr>
<tr>
<td>2017</td>
<td>9.3</td>
<td>17</td>
<td>65</td>
<td>122</td>
<td>7.6</td>
<td>10</td>
<td>53</td>
<td>69</td>
<td>2.8</td>
<td>5.2</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>2018</td>
<td>8.8</td>
<td>16</td>
<td>61</td>
<td>113</td>
<td>7.5</td>
<td>10</td>
<td>52</td>
<td>68</td>
<td>2.6</td>
<td>4.3</td>
<td>18</td>
<td>30</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-53: RATIO OF MODELED DIETARY DOSE TO BENCHMARKS BASED ON FISHRAND FOR FEMALE BLUE HERON

BASED ON THE SUM OF TRI+ CONGENERS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Average LOAEL</th>
<th>95% UCL LOAEL</th>
<th>Average NOAEL</th>
<th>95% UCL NOAEL</th>
<th>Average LOAEL</th>
<th>95% UCL LOAEL</th>
<th>Average NOAEL</th>
<th>95% UCL NOAEL</th>
<th>Average LOAEL</th>
<th>95% UCL LOAEL</th>
<th>Average NOAEL</th>
<th>95% UCL NOAEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>48</td>
<td>84</td>
<td>337</td>
<td>589</td>
<td>23</td>
<td>30</td>
<td>164</td>
<td>211</td>
<td>12</td>
<td>16</td>
<td>83</td>
<td>110</td>
</tr>
<tr>
<td>1994</td>
<td>23</td>
<td>38</td>
<td>158</td>
<td>266</td>
<td>19</td>
<td>23</td>
<td>132</td>
<td>158</td>
<td>8.8</td>
<td>11</td>
<td>62</td>
<td>77</td>
</tr>
<tr>
<td>1995</td>
<td>21</td>
<td>34</td>
<td>146</td>
<td>239</td>
<td>21</td>
<td>27</td>
<td>147</td>
<td>190</td>
<td>11</td>
<td>14</td>
<td>74</td>
<td>97</td>
</tr>
<tr>
<td>1996</td>
<td>22</td>
<td>37</td>
<td>152</td>
<td>258</td>
<td>14</td>
<td>17</td>
<td>96</td>
<td>116</td>
<td>6.8</td>
<td>9.1</td>
<td>48</td>
<td>64</td>
</tr>
<tr>
<td>1997</td>
<td>16</td>
<td>31</td>
<td>111</td>
<td>214</td>
<td>12</td>
<td>14</td>
<td>84</td>
<td>100</td>
<td>6.3</td>
<td>7.9</td>
<td>44</td>
<td>56</td>
</tr>
<tr>
<td>1998</td>
<td>13</td>
<td>24</td>
<td>94</td>
<td>167</td>
<td>11</td>
<td>13</td>
<td>75</td>
<td>92</td>
<td>5.1</td>
<td>6.5</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>1999</td>
<td>11</td>
<td>22</td>
<td>80</td>
<td>153</td>
<td>8.4</td>
<td>10</td>
<td>59</td>
<td>70</td>
<td>3.7</td>
<td>4.6</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>2000</td>
<td>9.2</td>
<td>19</td>
<td>64</td>
<td>135</td>
<td>7.8</td>
<td>9.3</td>
<td>54</td>
<td>65</td>
<td>3.3</td>
<td>4.2</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>2001</td>
<td>9.1</td>
<td>18</td>
<td>63</td>
<td>125</td>
<td>8.4</td>
<td>10</td>
<td>59</td>
<td>70</td>
<td>3.8</td>
<td>5.0</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>2002</td>
<td>8.4</td>
<td>17</td>
<td>59</td>
<td>119</td>
<td>8.1</td>
<td>10</td>
<td>57</td>
<td>67</td>
<td>3.5</td>
<td>4.4</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>2003</td>
<td>8.1</td>
<td>16</td>
<td>57</td>
<td>113</td>
<td>6.7</td>
<td>7.9</td>
<td>47</td>
<td>55</td>
<td>3.1</td>
<td>4.0</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>2004</td>
<td>7.0</td>
<td>15</td>
<td>49</td>
<td>104</td>
<td>6.5</td>
<td>7.6</td>
<td>45</td>
<td>53</td>
<td>3.1</td>
<td>4.0</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>2005</td>
<td>6.9</td>
<td>14</td>
<td>48</td>
<td>98</td>
<td>5.2</td>
<td>6.2</td>
<td>37</td>
<td>43</td>
<td>2.5</td>
<td>3.2</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>2006</td>
<td>5.8</td>
<td>12</td>
<td>41</td>
<td>85</td>
<td>5.6</td>
<td>6.6</td>
<td>39</td>
<td>46</td>
<td>2.5</td>
<td>3.2</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>2007</td>
<td>5.9</td>
<td>12</td>
<td>41</td>
<td>85</td>
<td>5.0</td>
<td>6.0</td>
<td>35</td>
<td>42</td>
<td>2.0</td>
<td>2.7</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>2008</td>
<td>5.3</td>
<td>11</td>
<td>37</td>
<td>75</td>
<td>4.4</td>
<td>5.2</td>
<td>31</td>
<td>36</td>
<td>1.8</td>
<td>2.3</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>2009</td>
<td>5.1</td>
<td>11</td>
<td>36</td>
<td>75</td>
<td>4.9</td>
<td>5.8</td>
<td>34</td>
<td>41</td>
<td>2.2</td>
<td>2.9</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>2010</td>
<td>5.1</td>
<td>10</td>
<td>36</td>
<td>73</td>
<td>4.9</td>
<td>5.8</td>
<td>34</td>
<td>41</td>
<td>2.0</td>
<td>2.6</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>2011</td>
<td>4.9</td>
<td>9.2</td>
<td>34</td>
<td>64</td>
<td>3.6</td>
<td>4.3</td>
<td>25</td>
<td>30</td>
<td>1.6</td>
<td>2.1</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>2012</td>
<td>4.2</td>
<td>8.3</td>
<td>29</td>
<td>58</td>
<td>4.4</td>
<td>5.4</td>
<td>31</td>
<td>38</td>
<td>1.9</td>
<td>2.5</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>2013</td>
<td>4.0</td>
<td>7.9</td>
<td>28</td>
<td>55</td>
<td>4.1</td>
<td>4.9</td>
<td>29</td>
<td>34</td>
<td>1.6</td>
<td>2.1</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>2014</td>
<td>3.9</td>
<td>7.5</td>
<td>27</td>
<td>53</td>
<td>3.7</td>
<td>4.4</td>
<td>26</td>
<td>31</td>
<td>1.5</td>
<td>2.0</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>2015</td>
<td>3.5</td>
<td>6.7</td>
<td>24</td>
<td>47</td>
<td>3.6</td>
<td>4.2</td>
<td>25</td>
<td>29</td>
<td>1.4</td>
<td>1.7</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2016</td>
<td>3.3</td>
<td>6.3</td>
<td>23</td>
<td>44</td>
<td>3.6</td>
<td>4.5</td>
<td>25</td>
<td>31</td>
<td>1.7</td>
<td>2.4</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>2017</td>
<td>3.1</td>
<td>6.5</td>
<td>22</td>
<td>46</td>
<td>2.8</td>
<td>3.3</td>
<td>19</td>
<td>23</td>
<td>1.2</td>
<td>1.6</td>
<td>8.1</td>
<td>11</td>
</tr>
<tr>
<td>2018</td>
<td>2.9</td>
<td>5.9</td>
<td>20</td>
<td>41</td>
<td>2.8</td>
<td>3.3</td>
<td>19</td>
<td>23</td>
<td>1.1</td>
<td>1.4</td>
<td>7.5</td>
<td>10</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances

TAMS/MCA
Year	Average	95% UCL										
1993	95	120	668	838	72	88	504	615	35	44	248	309
1994	58	78	406	547	50	60	347	417	25	31	176	216
1995	64	86	448	599	55	66	385	462	27	33	190	231
1996	58	84	408	589	44	54	309	377	24	30	167	210
1997	45	65	318	458	39	47	271	326	21	26	144	180
1998	38	54	265	378	35	42	244	296	17	21	121	148
1999	33	49	231	342	28	35	199	246	13	17	92	116
2000	31	46	216	321	27	33	188	229	13	15	88	108
2001	29	43	201	298	26	32	181	222	12	15	84	105
2002	28	42	199	293	28	34	193	236	13	16	90	112
2003	25	37	174	259	23	29	162	200	11	14	76	96
2004	23	34	163	239	23	28	158	193	11	14	79	99
2005	21	31	144	217	17	21	120	147	8.5	11	59	74
2006	20	30	142	210	19	23	131	161	9.0	11	63	77
2007	19	28	131	197	16	19	110	133	6.9	8.5	49	60
2008	18	27	124	188	14	17	99	122	6.7	8.5	47	60
2009	18	26	125	183	15	19	107	131	7.2	9.1	51	64
2010	16	23	110	160	14	17	97	120	6.0	7.5	42	52
2011	14	21	96	146	12	15	83	102	5.9	7.5	41	52
2012	14	20	96	141	12	15	84	104	5.7	7.2	40	50
2013	13	19	92	136	13	15	88	108	5.5	7.0	39	49
2014	12	17	83	121	12	15	83	102	5.0	6.2	35	44
2015	11	16	76	112	10	13	73	89	4.6	5.9	33	41
2016	11	16	78	113	12	14	82	100	5.0	6.2	35	43
2017	10	15	67	102	8.9	11	62	76	4.1	5.4	29	38
2018	9.3	14	65	97	8.5	11	60	74	3.7	4.8	26	33

Bold values indicate exceedances

TABLE 5-54: RATIO OF MODELED DIETARY DOSE TO BENCHMARKS BASED ON FISHRAND FOR FEMALE BALD EAGLE BASED ON THE SUM OF TRI+ CONGENERS FOR THE PERIOD 1993 - 2018

TAMS/MCA
<table>
<thead>
<tr>
<th>Year</th>
<th>Average LOAEL</th>
<th>Average NOAEL</th>
<th>95% UCL LOAEL</th>
<th>95% UCL NOAEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>269</td>
<td>459</td>
<td>1799</td>
<td>3073</td>
<td>134</td>
<td>179</td>
<td>895</td>
<td>1199</td>
<td>66</td>
<td>116</td>
<td>441</td>
<td>777</td>
</tr>
<tr>
<td>1994</td>
<td>145</td>
<td>237</td>
<td>973</td>
<td>1585</td>
<td>111</td>
<td>142</td>
<td>742</td>
<td>950</td>
<td>51</td>
<td>79</td>
<td>343</td>
<td>530</td>
</tr>
<tr>
<td>1995</td>
<td>134</td>
<td>214</td>
<td>901</td>
<td>1430</td>
<td>120</td>
<td>161</td>
<td>802</td>
<td>1078</td>
<td>59</td>
<td>102</td>
<td>394</td>
<td>681</td>
</tr>
<tr>
<td>1996</td>
<td>135</td>
<td>222</td>
<td>905</td>
<td>1488</td>
<td>83</td>
<td>107</td>
<td>557</td>
<td>720</td>
<td>40</td>
<td>70</td>
<td>265</td>
<td>466</td>
</tr>
<tr>
<td>1997</td>
<td>105</td>
<td>188</td>
<td>700</td>
<td>1258</td>
<td>74</td>
<td>94</td>
<td>494</td>
<td>633</td>
<td>36</td>
<td>57</td>
<td>243</td>
<td>382</td>
</tr>
<tr>
<td>1998</td>
<td>91</td>
<td>152</td>
<td>608</td>
<td>1019</td>
<td>66</td>
<td>86</td>
<td>440</td>
<td>579</td>
<td>30</td>
<td>48</td>
<td>199</td>
<td>324</td>
</tr>
<tr>
<td>1999</td>
<td>79</td>
<td>140</td>
<td>527</td>
<td>938</td>
<td>54</td>
<td>69</td>
<td>359</td>
<td>464</td>
<td>22</td>
<td>34</td>
<td>150</td>
<td>226</td>
</tr>
<tr>
<td>2000</td>
<td>66</td>
<td>124</td>
<td>442</td>
<td>830</td>
<td>50</td>
<td>65</td>
<td>333</td>
<td>434</td>
<td>20</td>
<td>32</td>
<td>132</td>
<td>213</td>
</tr>
<tr>
<td>2001</td>
<td>64</td>
<td>116</td>
<td>429</td>
<td>774</td>
<td>52</td>
<td>68</td>
<td>351</td>
<td>453</td>
<td>22</td>
<td>37</td>
<td>149</td>
<td>246</td>
</tr>
<tr>
<td>2002</td>
<td>60</td>
<td>110</td>
<td>399</td>
<td>737</td>
<td>50</td>
<td>65</td>
<td>337</td>
<td>433</td>
<td>21</td>
<td>33</td>
<td>137</td>
<td>218</td>
</tr>
<tr>
<td>2003</td>
<td>57</td>
<td>104</td>
<td>381</td>
<td>695</td>
<td>43</td>
<td>56</td>
<td>289</td>
<td>373</td>
<td>18</td>
<td>31</td>
<td>123</td>
<td>205</td>
</tr>
<tr>
<td>2004</td>
<td>51</td>
<td>96</td>
<td>338</td>
<td>641</td>
<td>41</td>
<td>52</td>
<td>275</td>
<td>351</td>
<td>18</td>
<td>30</td>
<td>120</td>
<td>204</td>
</tr>
<tr>
<td>2005</td>
<td>49</td>
<td>90</td>
<td>325</td>
<td>601</td>
<td>34</td>
<td>45</td>
<td>231</td>
<td>300</td>
<td>15</td>
<td>24</td>
<td>98</td>
<td>159</td>
</tr>
<tr>
<td>2006</td>
<td>43</td>
<td>80</td>
<td>287</td>
<td>536</td>
<td>35</td>
<td>46</td>
<td>238</td>
<td>307</td>
<td>14</td>
<td>24</td>
<td>97</td>
<td>163</td>
</tr>
<tr>
<td>2007</td>
<td>42</td>
<td>79</td>
<td>283</td>
<td>526</td>
<td>32</td>
<td>42</td>
<td>217</td>
<td>282</td>
<td>12</td>
<td>21</td>
<td>82</td>
<td>137</td>
</tr>
<tr>
<td>2008</td>
<td>39</td>
<td>70</td>
<td>259</td>
<td>471</td>
<td>29</td>
<td>37</td>
<td>193</td>
<td>250</td>
<td>11</td>
<td>18</td>
<td>73</td>
<td>118</td>
</tr>
<tr>
<td>2009</td>
<td>37</td>
<td>69</td>
<td>248</td>
<td>464</td>
<td>31</td>
<td>40</td>
<td>205</td>
<td>267</td>
<td>13</td>
<td>22</td>
<td>85</td>
<td>149</td>
</tr>
<tr>
<td>2010</td>
<td>36</td>
<td>67</td>
<td>238</td>
<td>446</td>
<td>30</td>
<td>39</td>
<td>203</td>
<td>261</td>
<td>12</td>
<td>19</td>
<td>77</td>
<td>129</td>
</tr>
<tr>
<td>2011</td>
<td>33</td>
<td>59</td>
<td>224</td>
<td>393</td>
<td>24</td>
<td>31</td>
<td>159</td>
<td>209</td>
<td>10</td>
<td>16</td>
<td>64</td>
<td>110</td>
</tr>
<tr>
<td>2012</td>
<td>29</td>
<td>54</td>
<td>197</td>
<td>360</td>
<td>27</td>
<td>36</td>
<td>183</td>
<td>239</td>
<td>11</td>
<td>18</td>
<td>74</td>
<td>122</td>
</tr>
<tr>
<td>2013</td>
<td>28</td>
<td>51</td>
<td>188</td>
<td>343</td>
<td>26</td>
<td>33</td>
<td>171</td>
<td>218</td>
<td>9</td>
<td>16</td>
<td>63</td>
<td>104</td>
</tr>
<tr>
<td>2014</td>
<td>27</td>
<td>48</td>
<td>179</td>
<td>323</td>
<td>23</td>
<td>30</td>
<td>154</td>
<td>201</td>
<td>9</td>
<td>15</td>
<td>58</td>
<td>98</td>
</tr>
<tr>
<td>2015</td>
<td>24</td>
<td>44</td>
<td>163</td>
<td>292</td>
<td>22</td>
<td>29</td>
<td>150</td>
<td>191</td>
<td>8</td>
<td>13</td>
<td>54</td>
<td>85</td>
</tr>
<tr>
<td>2016</td>
<td>23</td>
<td>41</td>
<td>155</td>
<td>273</td>
<td>22</td>
<td>29</td>
<td>147</td>
<td>197</td>
<td>9</td>
<td>19</td>
<td>62</td>
<td>129</td>
</tr>
<tr>
<td>2017</td>
<td>22</td>
<td>41</td>
<td>146</td>
<td>277</td>
<td>18</td>
<td>24</td>
<td>120</td>
<td>157</td>
<td>7</td>
<td>13</td>
<td>45</td>
<td>84</td>
</tr>
<tr>
<td>2018</td>
<td>21</td>
<td>38</td>
<td>137</td>
<td>256</td>
<td>18</td>
<td>23</td>
<td>119</td>
<td>155</td>
<td>6</td>
<td>10</td>
<td>42</td>
<td>68</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-56: RATIO OF MODELED EGG CONCENTRATIONS TO BENCHMARKS FOR FEMALE BLUE HERON

Based on the Sum of TRI+ Congeners for the Period 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>291</td>
<td>511</td>
<td>1949</td>
<td>3422</td>
<td>142</td>
<td>182</td>
<td>948</td>
<td>1220</td>
<td>71</td>
<td>95</td>
<td>479</td>
<td>637</td>
</tr>
<tr>
<td>1994</td>
<td>135</td>
<td>228</td>
<td>903</td>
<td>1524</td>
<td>114</td>
<td>136</td>
<td>761</td>
<td>912</td>
<td>53</td>
<td>67</td>
<td>357</td>
<td>447</td>
</tr>
<tr>
<td>1995</td>
<td>124</td>
<td>205</td>
<td>833</td>
<td>1370</td>
<td>127</td>
<td>164</td>
<td>850</td>
<td>1098</td>
<td>64</td>
<td>85</td>
<td>430</td>
<td>566</td>
</tr>
<tr>
<td>1996</td>
<td>130</td>
<td>222</td>
<td>872</td>
<td>1487</td>
<td>83</td>
<td>99</td>
<td>553</td>
<td>666</td>
<td>41</td>
<td>55</td>
<td>275</td>
<td>369</td>
</tr>
<tr>
<td>1997</td>
<td>94</td>
<td>183</td>
<td>630</td>
<td>1227</td>
<td>73</td>
<td>86</td>
<td>486</td>
<td>575</td>
<td>38</td>
<td>48</td>
<td>256</td>
<td>322</td>
</tr>
<tr>
<td>1998</td>
<td>80</td>
<td>143</td>
<td>534</td>
<td>958</td>
<td>64</td>
<td>79</td>
<td>432</td>
<td>530</td>
<td>31</td>
<td>40</td>
<td>206</td>
<td>265</td>
</tr>
<tr>
<td>1999</td>
<td>68</td>
<td>131</td>
<td>454</td>
<td>875</td>
<td>51</td>
<td>60</td>
<td>338</td>
<td>401</td>
<td>22</td>
<td>28</td>
<td>150</td>
<td>186</td>
</tr>
<tr>
<td>2000</td>
<td>54</td>
<td>115</td>
<td>362</td>
<td>771</td>
<td>47</td>
<td>56</td>
<td>312</td>
<td>374</td>
<td>20</td>
<td>25</td>
<td>131</td>
<td>169</td>
</tr>
<tr>
<td>2001</td>
<td>53</td>
<td>106</td>
<td>357</td>
<td>713</td>
<td>50</td>
<td>60</td>
<td>338</td>
<td>403</td>
<td>23</td>
<td>30</td>
<td>155</td>
<td>201</td>
</tr>
<tr>
<td>2002</td>
<td>49</td>
<td>101</td>
<td>331</td>
<td>678</td>
<td>49</td>
<td>57</td>
<td>326</td>
<td>385</td>
<td>21</td>
<td>27</td>
<td>142</td>
<td>180</td>
</tr>
<tr>
<td>2003</td>
<td>48</td>
<td>97</td>
<td>320</td>
<td>647</td>
<td>40</td>
<td>47</td>
<td>269</td>
<td>317</td>
<td>19</td>
<td>24</td>
<td>125</td>
<td>164</td>
</tr>
<tr>
<td>2004</td>
<td>41</td>
<td>89</td>
<td>277</td>
<td>598</td>
<td>39</td>
<td>45</td>
<td>260</td>
<td>303</td>
<td>19</td>
<td>25</td>
<td>125</td>
<td>164</td>
</tr>
<tr>
<td>2005</td>
<td>41</td>
<td>84</td>
<td>272</td>
<td>560</td>
<td>31</td>
<td>37</td>
<td>210</td>
<td>247</td>
<td>15</td>
<td>19</td>
<td>100</td>
<td>128</td>
</tr>
<tr>
<td>2006</td>
<td>34</td>
<td>73</td>
<td>229</td>
<td>486</td>
<td>33</td>
<td>39</td>
<td>224</td>
<td>264</td>
<td>15</td>
<td>20</td>
<td>100</td>
<td>131</td>
</tr>
<tr>
<td>2007</td>
<td>35</td>
<td>73</td>
<td>233</td>
<td>489</td>
<td>30</td>
<td>36</td>
<td>202</td>
<td>239</td>
<td>12</td>
<td>16</td>
<td>82</td>
<td>108</td>
</tr>
<tr>
<td>2008</td>
<td>31</td>
<td>64</td>
<td>209</td>
<td>428</td>
<td>26</td>
<td>31</td>
<td>177</td>
<td>207</td>
<td>11</td>
<td>14</td>
<td>72</td>
<td>94</td>
</tr>
<tr>
<td>2009</td>
<td>30</td>
<td>64</td>
<td>202</td>
<td>430</td>
<td>29</td>
<td>35</td>
<td>195</td>
<td>234</td>
<td>13</td>
<td>18</td>
<td>89</td>
<td>119</td>
</tr>
<tr>
<td>2010</td>
<td>30</td>
<td>63</td>
<td>200</td>
<td>419</td>
<td>29</td>
<td>35</td>
<td>197</td>
<td>233</td>
<td>12</td>
<td>16</td>
<td>80</td>
<td>105</td>
</tr>
<tr>
<td>2011</td>
<td>29</td>
<td>55</td>
<td>192</td>
<td>367</td>
<td>22</td>
<td>26</td>
<td>145</td>
<td>173</td>
<td>10</td>
<td>13</td>
<td>64</td>
<td>86</td>
</tr>
<tr>
<td>2012</td>
<td>25</td>
<td>50</td>
<td>164</td>
<td>333</td>
<td>27</td>
<td>32</td>
<td>179</td>
<td>217</td>
<td>12</td>
<td>15</td>
<td>79</td>
<td>102</td>
</tr>
<tr>
<td>2013</td>
<td>24</td>
<td>47</td>
<td>159</td>
<td>317</td>
<td>25</td>
<td>29</td>
<td>166</td>
<td>195</td>
<td>10</td>
<td>13</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>2014</td>
<td>23</td>
<td>45</td>
<td>152</td>
<td>302</td>
<td>22</td>
<td>27</td>
<td>148</td>
<td>178</td>
<td>9</td>
<td>12</td>
<td>61</td>
<td>80</td>
</tr>
<tr>
<td>2015</td>
<td>20</td>
<td>40</td>
<td>137</td>
<td>268</td>
<td>21</td>
<td>25</td>
<td>144</td>
<td>168</td>
<td>8</td>
<td>11</td>
<td>56</td>
<td>71</td>
</tr>
<tr>
<td>2016</td>
<td>19</td>
<td>38</td>
<td>130</td>
<td>253</td>
<td>21</td>
<td>27</td>
<td>143</td>
<td>179</td>
<td>10</td>
<td>15</td>
<td>68</td>
<td>98</td>
</tr>
<tr>
<td>2017</td>
<td>19</td>
<td>39</td>
<td>124</td>
<td>262</td>
<td>17</td>
<td>20</td>
<td>111</td>
<td>133</td>
<td>7</td>
<td>10</td>
<td>47</td>
<td>65</td>
</tr>
<tr>
<td>2018</td>
<td>17</td>
<td>35</td>
<td>114</td>
<td>236</td>
<td>17</td>
<td>20</td>
<td>111</td>
<td>131</td>
<td>6</td>
<td>8</td>
<td>43</td>
<td>56</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-57: RATIO OF MODELED EGG CONCENTRATIONS TO BENCHMARKS FOR FEMALE BALD EAGLES
BASED ON THE SUM OF TRI+ CONGENERS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>LOAEL Average</th>
<th>LOAEL 95% UCL</th>
<th>NOAEL Average</th>
<th>NOAEL 95% UCL</th>
<th>LOAEL Average</th>
<th>LOAEL 95% UCL</th>
<th>NOAEL Average</th>
<th>NOAEL 95% UCL</th>
<th>LOAEL Average</th>
<th>LOAEL 95% UCL</th>
<th>NOAEL Average</th>
<th>NOAEL 95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>NA</td>
<td>NA</td>
<td>489</td>
<td>614</td>
<td>NA</td>
<td>NA</td>
<td>369</td>
<td>451</td>
<td>NA</td>
<td>NA</td>
<td>182</td>
<td>226</td>
</tr>
<tr>
<td>1994</td>
<td>NA</td>
<td>NA</td>
<td>297</td>
<td>400</td>
<td>NA</td>
<td>NA</td>
<td>254</td>
<td>306</td>
<td>NA</td>
<td>NA</td>
<td>129</td>
<td>159</td>
</tr>
<tr>
<td>1995</td>
<td>NA</td>
<td>NA</td>
<td>328</td>
<td>439</td>
<td>NA</td>
<td>NA</td>
<td>282</td>
<td>339</td>
<td>NA</td>
<td>NA</td>
<td>139</td>
<td>169</td>
</tr>
<tr>
<td>1996</td>
<td>NA</td>
<td>NA</td>
<td>299</td>
<td>431</td>
<td>NA</td>
<td>NA</td>
<td>226</td>
<td>276</td>
<td>NA</td>
<td>NA</td>
<td>122</td>
<td>154</td>
</tr>
<tr>
<td>1997</td>
<td>NA</td>
<td>NA</td>
<td>233</td>
<td>336</td>
<td>NA</td>
<td>NA</td>
<td>198</td>
<td>239</td>
<td>NA</td>
<td>NA</td>
<td>105</td>
<td>132</td>
</tr>
<tr>
<td>1998</td>
<td>NA</td>
<td>NA</td>
<td>194</td>
<td>276</td>
<td>NA</td>
<td>NA</td>
<td>178</td>
<td>217</td>
<td>NA</td>
<td>NA</td>
<td>88</td>
<td>109</td>
</tr>
<tr>
<td>1999</td>
<td>NA</td>
<td>NA</td>
<td>169</td>
<td>251</td>
<td>NA</td>
<td>NA</td>
<td>146</td>
<td>180</td>
<td>NA</td>
<td>NA</td>
<td>67</td>
<td>85</td>
</tr>
<tr>
<td>2000</td>
<td>NA</td>
<td>NA</td>
<td>158</td>
<td>235</td>
<td>NA</td>
<td>NA</td>
<td>137</td>
<td>168</td>
<td>NA</td>
<td>NA</td>
<td>64</td>
<td>79</td>
</tr>
<tr>
<td>2001</td>
<td>NA</td>
<td>NA</td>
<td>148</td>
<td>218</td>
<td>NA</td>
<td>NA</td>
<td>132</td>
<td>162</td>
<td>NA</td>
<td>NA</td>
<td>62</td>
<td>77</td>
</tr>
<tr>
<td>2002</td>
<td>NA</td>
<td>NA</td>
<td>146</td>
<td>214</td>
<td>NA</td>
<td>NA</td>
<td>141</td>
<td>173</td>
<td>NA</td>
<td>NA</td>
<td>66</td>
<td>82</td>
</tr>
<tr>
<td>2003</td>
<td>NA</td>
<td>NA</td>
<td>127</td>
<td>189</td>
<td>NA</td>
<td>NA</td>
<td>118</td>
<td>146</td>
<td>NA</td>
<td>NA</td>
<td>56</td>
<td>70</td>
</tr>
<tr>
<td>2004</td>
<td>NA</td>
<td>NA</td>
<td>119</td>
<td>175</td>
<td>NA</td>
<td>NA</td>
<td>115</td>
<td>141</td>
<td>NA</td>
<td>NA</td>
<td>58</td>
<td>72</td>
</tr>
<tr>
<td>2005</td>
<td>NA</td>
<td>NA</td>
<td>106</td>
<td>159</td>
<td>NA</td>
<td>NA</td>
<td>88</td>
<td>108</td>
<td>NA</td>
<td>NA</td>
<td>44</td>
<td>54</td>
</tr>
<tr>
<td>2006</td>
<td>NA</td>
<td>NA</td>
<td>104</td>
<td>154</td>
<td>NA</td>
<td>NA</td>
<td>96</td>
<td>118</td>
<td>NA</td>
<td>NA</td>
<td>46</td>
<td>56</td>
</tr>
<tr>
<td>2007</td>
<td>NA</td>
<td>NA</td>
<td>96</td>
<td>145</td>
<td>NA</td>
<td>NA</td>
<td>80</td>
<td>98</td>
<td>NA</td>
<td>NA</td>
<td>36</td>
<td>44</td>
</tr>
<tr>
<td>2008</td>
<td>NA</td>
<td>NA</td>
<td>90</td>
<td>138</td>
<td>NA</td>
<td>NA</td>
<td>72</td>
<td>89</td>
<td>NA</td>
<td>NA</td>
<td>34</td>
<td>44</td>
</tr>
<tr>
<td>2009</td>
<td>NA</td>
<td>NA</td>
<td>92</td>
<td>134</td>
<td>NA</td>
<td>NA</td>
<td>78</td>
<td>96</td>
<td>NA</td>
<td>NA</td>
<td>37</td>
<td>47</td>
</tr>
<tr>
<td>2010</td>
<td>NA</td>
<td>NA</td>
<td>80</td>
<td>118</td>
<td>NA</td>
<td>NA</td>
<td>71</td>
<td>88</td>
<td>NA</td>
<td>NA</td>
<td>31</td>
<td>38</td>
</tr>
<tr>
<td>2011</td>
<td>NA</td>
<td>NA</td>
<td>70</td>
<td>107</td>
<td>NA</td>
<td>NA</td>
<td>61</td>
<td>75</td>
<td>NA</td>
<td>NA</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>2012</td>
<td>NA</td>
<td>NA</td>
<td>70</td>
<td>103</td>
<td>NA</td>
<td>NA</td>
<td>62</td>
<td>76</td>
<td>NA</td>
<td>NA</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>2013</td>
<td>NA</td>
<td>NA</td>
<td>67</td>
<td>99</td>
<td>NA</td>
<td>NA</td>
<td>64</td>
<td>79</td>
<td>NA</td>
<td>NA</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>2014</td>
<td>NA</td>
<td>NA</td>
<td>61</td>
<td>89</td>
<td>NA</td>
<td>NA</td>
<td>61</td>
<td>75</td>
<td>NA</td>
<td>NA</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>2015</td>
<td>NA</td>
<td>NA</td>
<td>56</td>
<td>82</td>
<td>NA</td>
<td>NA</td>
<td>54</td>
<td>65</td>
<td>NA</td>
<td>NA</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>2016</td>
<td>NA</td>
<td>NA</td>
<td>57</td>
<td>83</td>
<td>NA</td>
<td>NA</td>
<td>60</td>
<td>74</td>
<td>NA</td>
<td>NA</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>2017</td>
<td>NA</td>
<td>NA</td>
<td>49</td>
<td>75</td>
<td>NA</td>
<td>NA</td>
<td>46</td>
<td>56</td>
<td>NA</td>
<td>NA</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>2018</td>
<td>NA</td>
<td>NA</td>
<td>48</td>
<td>71</td>
<td>NA</td>
<td>NA</td>
<td>44</td>
<td>54</td>
<td>NA</td>
<td>NA</td>
<td>19</td>
<td>25</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Location</th>
<th>Hazard Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>124</td>
<td>250</td>
<td>1237</td>
<td>2498</td>
<td>4078</td>
<td>8287</td>
<td>8157</td>
<td>16574</td>
<td></td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>54</td>
<td>103</td>
<td>537</td>
<td>1027</td>
<td>1575</td>
<td>3049</td>
<td>3149</td>
<td>6099</td>
<td></td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>12</td>
<td>17</td>
<td>116</td>
<td>174</td>
<td>370</td>
<td>552</td>
<td>741</td>
<td>1104</td>
<td></td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>11</td>
<td>14</td>
<td>112</td>
<td>138</td>
<td>371</td>
<td>456</td>
<td>742</td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>137.2</td>
<td>23</td>
<td>50</td>
<td>226</td>
<td>499</td>
<td>750</td>
<td>1657</td>
<td>1500</td>
<td>3313</td>
<td></td>
</tr>
<tr>
<td>122.4</td>
<td>8.8</td>
<td>14</td>
<td>88</td>
<td>144</td>
<td>289</td>
<td>475</td>
<td>578</td>
<td>951</td>
<td></td>
</tr>
<tr>
<td>113.8</td>
<td>9.2</td>
<td>10</td>
<td>92</td>
<td>105</td>
<td>303</td>
<td>340</td>
<td>606</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>4.0</td>
<td>9.3</td>
<td>40</td>
<td>93</td>
<td>131</td>
<td>248</td>
<td>263</td>
<td>497</td>
<td></td>
</tr>
<tr>
<td>88.9</td>
<td>7.8</td>
<td>11</td>
<td>78</td>
<td>109</td>
<td>255</td>
<td>351</td>
<td>511</td>
<td>702</td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>8.4</td>
<td>12</td>
<td>84</td>
<td>117</td>
<td>282</td>
<td>372</td>
<td>565</td>
<td>744</td>
<td></td>
</tr>
<tr>
<td>47.3</td>
<td>7.8</td>
<td>13</td>
<td>78</td>
<td>126</td>
<td>253</td>
<td>379</td>
<td>506</td>
<td>759</td>
<td></td>
</tr>
<tr>
<td>25.8</td>
<td>5.7</td>
<td>7.1</td>
<td>57</td>
<td>71</td>
<td>187</td>
<td>226</td>
<td>374</td>
<td>451</td>
<td></td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-59: RATIO OF MODELED DIETARY DOSE AND EGG CONCENTRATIONS TO BENCHMARKS
BASED ON 1993 DATA FOR FEMALE GREAT BLUE HERON ON TEQ BASIS

Location	Hazard Quotient																						
Upper River																							
Thompson Island Pool (189)	62	125	616	1245	204	417	340	694															
Stillwater (168)	26	39	256	388	69	98	115	164															
Federal Dam (154)	5.2	7.7	52	77	16	23	27	39															
Lower River																							
143.5	5.6	6.8	56	68	19	23	31	38															
137.2	11	25	114	246	38	82	63	137															
122.4	4.4	7.0	44	70	15	23	24	39															
113.8	4.6	4.9	46	49	15	16	25	26															
100	2.0	4.9	20	49	7	11	11	19															
88.9	4.0	5.6	40	56	13	18	22	30															
58.7	4.2	5.2	42	52	14	16	24	27															
47.3	4.0	6.0	40	60	13	17	21	28															
25.8	2.9	3.6	29	36	10	11	16	19															

Bold values indicate exceedances
TABLE 5-60: RATIO OF MODELED DIETARY DOSE AND EGG CONCENTRATIONS TO BENCHMARKS
BASED ON 1993 DATA FOR FEMALE BALD EAGLE ON TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Hazard Quotient</th>
<th>Hazard Quotient</th>
<th>Hazard Quotient</th>
<th>Hazard Quotient</th>
<th>Hazard Quotient</th>
<th>Hazard Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thompson Island Pool (189)</td>
<td>221</td>
<td>427</td>
<td>2208</td>
<td>4272</td>
<td>23037</td>
<td>44582</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>39</td>
<td>51</td>
<td>392</td>
<td>505</td>
<td>4095</td>
<td>5274</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>28</td>
<td>51</td>
<td>285</td>
<td>511</td>
<td>2970</td>
<td>5337</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Hazard Quotient</th>
<th>Hazard Quotient</th>
<th>Hazard Quotient</th>
<th>Hazard Quotient</th>
<th>Hazard Quotient</th>
<th>Hazard Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>143.5</td>
<td>28</td>
<td>51</td>
<td>285</td>
<td>512</td>
<td>2970</td>
<td>5337</td>
</tr>
<tr>
<td>137.2</td>
<td>107</td>
<td>256</td>
<td>1074</td>
<td>2555</td>
<td>11204</td>
<td>26663</td>
</tr>
<tr>
<td>122.4</td>
<td>25</td>
<td>34</td>
<td>250</td>
<td>344</td>
<td>2611</td>
<td>3588</td>
</tr>
<tr>
<td>113.8</td>
<td>23</td>
<td>32</td>
<td>226</td>
<td>317</td>
<td>2362</td>
<td>3302</td>
</tr>
<tr>
<td>100</td>
<td>26</td>
<td>80</td>
<td>260</td>
<td>803</td>
<td>2711</td>
<td>8377</td>
</tr>
<tr>
<td>88.9</td>
<td>17</td>
<td>32</td>
<td>167</td>
<td>318</td>
<td>1746</td>
<td>3322</td>
</tr>
<tr>
<td>58.7</td>
<td>19</td>
<td>29</td>
<td>194</td>
<td>288</td>
<td>2029</td>
<td>3007</td>
</tr>
<tr>
<td>47.3</td>
<td>22</td>
<td>60</td>
<td>223</td>
<td>599</td>
<td>2323</td>
<td>6254</td>
</tr>
<tr>
<td>25.8</td>
<td>16</td>
<td>31</td>
<td>157</td>
<td>312</td>
<td>1641</td>
<td>3260</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>147</td>
<td>241</td>
<td>1472</td>
<td>2412</td>
<td>68</td>
<td>87</td>
<td>682</td>
<td>865</td>
<td>34</td>
<td>60</td>
<td>338</td>
<td>602</td>
</tr>
<tr>
<td>1994</td>
<td>81</td>
<td>122</td>
<td>809</td>
<td>1224</td>
<td>56</td>
<td>67</td>
<td>561</td>
<td>669</td>
<td>26</td>
<td>41</td>
<td>260</td>
<td>405</td>
</tr>
<tr>
<td>1995</td>
<td>75</td>
<td>111</td>
<td>751</td>
<td>1111</td>
<td>61</td>
<td>78</td>
<td>613</td>
<td>779</td>
<td>30</td>
<td>53</td>
<td>304</td>
<td>529</td>
</tr>
<tr>
<td>1996</td>
<td>75</td>
<td>116</td>
<td>753</td>
<td>1158</td>
<td>42</td>
<td>50</td>
<td>421</td>
<td>503</td>
<td>20</td>
<td>36</td>
<td>202</td>
<td>359</td>
</tr>
<tr>
<td>1997</td>
<td>59</td>
<td>98</td>
<td>587</td>
<td>979</td>
<td>37</td>
<td>44</td>
<td>372</td>
<td>439</td>
<td>19</td>
<td>29</td>
<td>186</td>
<td>294</td>
</tr>
<tr>
<td>1998</td>
<td>51</td>
<td>79</td>
<td>509</td>
<td>792</td>
<td>33</td>
<td>40</td>
<td>332</td>
<td>402</td>
<td>15</td>
<td>25</td>
<td>151</td>
<td>249</td>
</tr>
<tr>
<td>1999</td>
<td>44</td>
<td>72</td>
<td>444</td>
<td>724</td>
<td>27</td>
<td>32</td>
<td>268</td>
<td>316</td>
<td>11</td>
<td>17</td>
<td>114</td>
<td>172</td>
</tr>
<tr>
<td>2000</td>
<td>37</td>
<td>64</td>
<td>373</td>
<td>643</td>
<td>25</td>
<td>29</td>
<td>248</td>
<td>294</td>
<td>10</td>
<td>16</td>
<td>100</td>
<td>163</td>
</tr>
<tr>
<td>2001</td>
<td>36</td>
<td>60</td>
<td>362</td>
<td>599</td>
<td>26</td>
<td>31</td>
<td>262</td>
<td>310</td>
<td>11</td>
<td>19</td>
<td>113</td>
<td>189</td>
</tr>
<tr>
<td>2002</td>
<td>34</td>
<td>57</td>
<td>338</td>
<td>569</td>
<td>25</td>
<td>30</td>
<td>253</td>
<td>297</td>
<td>10</td>
<td>17</td>
<td>104</td>
<td>167</td>
</tr>
<tr>
<td>2003</td>
<td>32</td>
<td>54</td>
<td>322</td>
<td>539</td>
<td>22</td>
<td>25</td>
<td>215</td>
<td>252</td>
<td>9.3</td>
<td>16</td>
<td>93</td>
<td>157</td>
</tr>
<tr>
<td>2004</td>
<td>29</td>
<td>50</td>
<td>285</td>
<td>497</td>
<td>21</td>
<td>24</td>
<td>206</td>
<td>239</td>
<td>9.1</td>
<td>16</td>
<td>91</td>
<td>157</td>
</tr>
<tr>
<td>2005</td>
<td>27</td>
<td>46</td>
<td>273</td>
<td>464</td>
<td>17</td>
<td>20</td>
<td>171</td>
<td>200</td>
<td>7.4</td>
<td>12</td>
<td>74</td>
<td>122</td>
</tr>
<tr>
<td>2006</td>
<td>24</td>
<td>41</td>
<td>243</td>
<td>414</td>
<td>18</td>
<td>21</td>
<td>177</td>
<td>209</td>
<td>7.4</td>
<td>13</td>
<td>74</td>
<td>125</td>
</tr>
<tr>
<td>2007</td>
<td>24</td>
<td>41</td>
<td>239</td>
<td>408</td>
<td>16</td>
<td>19</td>
<td>162</td>
<td>190</td>
<td>6.2</td>
<td>11</td>
<td>62</td>
<td>105</td>
</tr>
<tr>
<td>2008</td>
<td>22</td>
<td>36</td>
<td>218</td>
<td>363</td>
<td>14</td>
<td>17</td>
<td>143</td>
<td>168</td>
<td>5.5</td>
<td>9.0</td>
<td>55</td>
<td>90</td>
</tr>
<tr>
<td>2009</td>
<td>21</td>
<td>36</td>
<td>209</td>
<td>360</td>
<td>15</td>
<td>18</td>
<td>153</td>
<td>182</td>
<td>6.4</td>
<td>12</td>
<td>64</td>
<td>116</td>
</tr>
<tr>
<td>2010</td>
<td>20</td>
<td>35</td>
<td>202</td>
<td>346</td>
<td>15</td>
<td>18</td>
<td>153</td>
<td>180</td>
<td>5.9</td>
<td>10</td>
<td>59</td>
<td>99</td>
</tr>
<tr>
<td>2011</td>
<td>19</td>
<td>30</td>
<td>188</td>
<td>304</td>
<td>12</td>
<td>14</td>
<td>118</td>
<td>140</td>
<td>4.8</td>
<td>8.4</td>
<td>48</td>
<td>84</td>
</tr>
<tr>
<td>2012</td>
<td>17</td>
<td>28</td>
<td>166</td>
<td>278</td>
<td>14</td>
<td>17</td>
<td>137</td>
<td>165</td>
<td>5.6</td>
<td>9.4</td>
<td>56</td>
<td>94</td>
</tr>
<tr>
<td>2013</td>
<td>16</td>
<td>26</td>
<td>159</td>
<td>264</td>
<td>13</td>
<td>15</td>
<td>128</td>
<td>150</td>
<td>4.8</td>
<td>8.0</td>
<td>48</td>
<td>80</td>
</tr>
<tr>
<td>2014</td>
<td>15</td>
<td>25</td>
<td>150</td>
<td>249</td>
<td>12</td>
<td>14</td>
<td>115</td>
<td>137</td>
<td>4.4</td>
<td>7.5</td>
<td>44</td>
<td>75</td>
</tr>
<tr>
<td>2015</td>
<td>14</td>
<td>22</td>
<td>137</td>
<td>225</td>
<td>11</td>
<td>13</td>
<td>112</td>
<td>130</td>
<td>4.1</td>
<td>6.5</td>
<td>41</td>
<td>65</td>
</tr>
<tr>
<td>2016</td>
<td>13</td>
<td>21</td>
<td>131</td>
<td>212</td>
<td>11</td>
<td>14</td>
<td>111</td>
<td>136</td>
<td>4.8</td>
<td>10</td>
<td>48</td>
<td>101</td>
</tr>
<tr>
<td>2017</td>
<td>12</td>
<td>21</td>
<td>123</td>
<td>214</td>
<td>8.9</td>
<td>11</td>
<td>89</td>
<td>106</td>
<td>3.4</td>
<td>6.5</td>
<td>34</td>
<td>65</td>
</tr>
<tr>
<td>2018</td>
<td>11</td>
<td>19</td>
<td>114</td>
<td>195</td>
<td>8.8</td>
<td>10</td>
<td>88</td>
<td>104</td>
<td>3.2</td>
<td>5.2</td>
<td>32</td>
<td>52</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>LOAEL Average</th>
<th>95% UCL</th>
<th>LOAEL Average</th>
<th>95% UCL</th>
<th>NOAEL Average</th>
<th>95% UCL</th>
<th>NOAEL Average</th>
<th>95% UCL</th>
<th>NOAEL Average</th>
<th>95% UCL</th>
<th>NOAEL Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>66</td>
<td>112</td>
<td>661</td>
<td>1124</td>
<td>31</td>
<td>40</td>
<td>398</td>
<td>16</td>
<td>21</td>
<td>157</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>33</td>
<td>53</td>
<td>330</td>
<td>527</td>
<td>25</td>
<td>30</td>
<td>253</td>
<td>301</td>
<td>12</td>
<td>15</td>
<td>119</td>
<td>146</td>
</tr>
<tr>
<td>1995</td>
<td>31</td>
<td>48</td>
<td>305</td>
<td>476</td>
<td>28</td>
<td>36</td>
<td>281</td>
<td>359</td>
<td>14</td>
<td>18</td>
<td>141</td>
<td>184</td>
</tr>
<tr>
<td>1996</td>
<td>31</td>
<td>51</td>
<td>313</td>
<td>508</td>
<td>19</td>
<td>22</td>
<td>186</td>
<td>222</td>
<td>9.1</td>
<td>12</td>
<td>91</td>
<td>121</td>
</tr>
<tr>
<td>1997</td>
<td>23</td>
<td>42</td>
<td>235</td>
<td>423</td>
<td>16</td>
<td>19</td>
<td>164</td>
<td>192</td>
<td>8.5</td>
<td>11</td>
<td>85</td>
<td>106</td>
</tr>
<tr>
<td>1998</td>
<td>20</td>
<td>34</td>
<td>201</td>
<td>335</td>
<td>15</td>
<td>18</td>
<td>146</td>
<td>177</td>
<td>6.8</td>
<td>8.7</td>
<td>68</td>
<td>87</td>
</tr>
<tr>
<td>1999</td>
<td>17</td>
<td>31</td>
<td>173</td>
<td>306</td>
<td>12</td>
<td>14</td>
<td>116</td>
<td>136</td>
<td>5.0</td>
<td>6.2</td>
<td>50</td>
<td>62</td>
</tr>
<tr>
<td>2000</td>
<td>14</td>
<td>27</td>
<td>141</td>
<td>271</td>
<td>11</td>
<td>13</td>
<td>107</td>
<td>126</td>
<td>4.4</td>
<td>5.6</td>
<td>44</td>
<td>56</td>
</tr>
<tr>
<td>2001</td>
<td>14</td>
<td>25</td>
<td>138</td>
<td>251</td>
<td>11</td>
<td>14</td>
<td>115</td>
<td>135</td>
<td>5.2</td>
<td>6.6</td>
<td>52</td>
<td>66</td>
</tr>
<tr>
<td>2002</td>
<td>13</td>
<td>24</td>
<td>129</td>
<td>239</td>
<td>11</td>
<td>13</td>
<td>111</td>
<td>129</td>
<td>4.7</td>
<td>5.9</td>
<td>47</td>
<td>59</td>
</tr>
<tr>
<td>2003</td>
<td>12</td>
<td>23</td>
<td>124</td>
<td>227</td>
<td>9.3</td>
<td>11</td>
<td>93</td>
<td>108</td>
<td>4.2</td>
<td>5.4</td>
<td>42</td>
<td>54</td>
</tr>
<tr>
<td>2004</td>
<td>11</td>
<td>21</td>
<td>108</td>
<td>210</td>
<td>8.9</td>
<td>10</td>
<td>89</td>
<td>103</td>
<td>4.1</td>
<td>5.4</td>
<td>41</td>
<td>54</td>
</tr>
<tr>
<td>2005</td>
<td>10</td>
<td>20</td>
<td>105</td>
<td>196</td>
<td>7.3</td>
<td>8.4</td>
<td>73</td>
<td>84</td>
<td>3.3</td>
<td>4.2</td>
<td>33</td>
<td>42</td>
</tr>
<tr>
<td>2006</td>
<td>9.1</td>
<td>17</td>
<td>91</td>
<td>172</td>
<td>7.7</td>
<td>9.0</td>
<td>77</td>
<td>90</td>
<td>3.3</td>
<td>4.3</td>
<td>33</td>
<td>43</td>
</tr>
<tr>
<td>2007</td>
<td>9.1</td>
<td>17</td>
<td>91</td>
<td>172</td>
<td>7.0</td>
<td>8.1</td>
<td>70</td>
<td>81</td>
<td>2.8</td>
<td>3.6</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>2008</td>
<td>8.2</td>
<td>15</td>
<td>82</td>
<td>151</td>
<td>6.1</td>
<td>7.1</td>
<td>61</td>
<td>71</td>
<td>2.4</td>
<td>3.1</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>2009</td>
<td>7.9</td>
<td>15</td>
<td>79</td>
<td>151</td>
<td>6.7</td>
<td>7.9</td>
<td>67</td>
<td>79</td>
<td>2.9</td>
<td>3.9</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>2010</td>
<td>7.7</td>
<td>15</td>
<td>77</td>
<td>147</td>
<td>6.7</td>
<td>7.8</td>
<td>67</td>
<td>78</td>
<td>2.7</td>
<td>3.4</td>
<td>27</td>
<td>34</td>
</tr>
<tr>
<td>2011</td>
<td>7.3</td>
<td>13</td>
<td>73</td>
<td>129</td>
<td>5.0</td>
<td>5.9</td>
<td>50</td>
<td>59</td>
<td>2.2</td>
<td>2.8</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>2012</td>
<td>6.3</td>
<td>12</td>
<td>63</td>
<td>117</td>
<td>6.1</td>
<td>7.3</td>
<td>61</td>
<td>73</td>
<td>2.6</td>
<td>3.3</td>
<td>26</td>
<td>33</td>
</tr>
<tr>
<td>2013</td>
<td>6.1</td>
<td>11</td>
<td>61</td>
<td>111</td>
<td>5.6</td>
<td>6.5</td>
<td>56</td>
<td>65</td>
<td>2.2</td>
<td>2.8</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>2014</td>
<td>5.8</td>
<td>11</td>
<td>58</td>
<td>105</td>
<td>5.0</td>
<td>6.0</td>
<td>50</td>
<td>60</td>
<td>2.0</td>
<td>2.6</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>2015</td>
<td>5.3</td>
<td>9.4</td>
<td>53</td>
<td>94</td>
<td>4.9</td>
<td>5.6</td>
<td>49</td>
<td>56</td>
<td>1.9</td>
<td>2.3</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>2016</td>
<td>5.0</td>
<td>8.9</td>
<td>50</td>
<td>89</td>
<td>4.9</td>
<td>6.0</td>
<td>49</td>
<td>60</td>
<td>2.2</td>
<td>3.2</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>2017</td>
<td>4.7</td>
<td>9.1</td>
<td>47</td>
<td>91</td>
<td>3.8</td>
<td>4.5</td>
<td>38</td>
<td>45</td>
<td>1.6</td>
<td>2.1</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>2018</td>
<td>4.4</td>
<td>8.2</td>
<td>44</td>
<td>82</td>
<td>3.8</td>
<td>4.4</td>
<td>38</td>
<td>44</td>
<td>1.4</td>
<td>1.8</td>
<td>14</td>
<td>18</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances.
TABLE 5-63: RATIO OF MODELED DIETARY DOSE TO BENCHMARKS BASED ON FISHRAND FOR FEMALE BALD EAGLE USING TEQ FOR THE PERIOD 1993 - 2018

Year	Average LOAEL	95% UCL LOAEL	Average NOAEL	95% UCL NOAEL	Average LOAEL	95% UCL LOAEL	Average NOAEL	95% UCL NOAEL	Average LOAEL	95% UCL LOAEL	Average NOAEL	95% UCL NOAEL	Average LOAEL	95% UCL LOAEL	Average NOAEL	95% UCL NOAEL	Average LOAEL	95% UCL LOAEL	Average NOAEL	95% UCL NOAEL					
1993	122	154	1225	1536	92	113	924	1128	45	57	455	567	1994	74	100	745	1002	64	77	635	765	32	40	322	397
1997	58	84	583	840	50	60	496	598	26	33	263	330	1998	49	69	487	692	45	54	447	543	22	27	221	272
1999	42	63	423	628	36	45	364	451	17	21	169	213	2000	40	59	395	588	34	42	344	421	16	20	161	199
2001	37	55	369	546	33	41	331	407	15	19	154	192	2002	36	54	364	536	35	43	353	432	16	21	164	206
2007	24	36	240	362	20	24	201	244	9	11	89	109	2008	23	35	227	345	18	22	181	223	9	11	86	109
2009	23	34	229	335	20	24	196	240	9	12	93	117	2010	20	29	201	294	18	22	179	219	8	10	78	96
2011	18	27	176	268	15	19	152	187	8	10	75	96	2012	18	26	175	259	15	19	154	190	7	9	73	92
2013	17	25	168	249	16	20	160	198	7	9	71	90	2014	15	22	153	222	15	19	153	187	6	8	65	80
2015	14	21	140	206	13	16	134	163	6	8	60	75	2016	14	21	143	207	15	18	150	184	6	8	64	79

Bold values indicate exceedances.
<table>
<thead>
<tr>
<th>Year</th>
<th>Average LOAEL 189</th>
<th>95% UCL LOAEL 189</th>
<th>Average NOAEL 189</th>
<th>95% UCL NOAEL 189</th>
<th>Average LOAEL 168</th>
<th>95% UCL LOAEL 168</th>
<th>Average NOAEL 168</th>
<th>95% UCL NOAEL 168</th>
<th>Average LOAEL 154</th>
<th>95% UCL LOAEL 154</th>
<th>Average NOAEL 154</th>
<th>95% UCL NOAEL 154</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>4201</td>
<td>7327</td>
<td>8401</td>
<td>1465</td>
<td>2054</td>
<td>2670</td>
<td>4108</td>
<td>5340</td>
<td>1031</td>
<td>1920</td>
<td>2062</td>
<td>3841</td>
</tr>
<tr>
<td>1994</td>
<td>2023</td>
<td>3383</td>
<td>4046</td>
<td>677</td>
<td>1661</td>
<td>2025</td>
<td>3322</td>
<td>4050</td>
<td>778</td>
<td>1266</td>
<td>1555</td>
<td>2531</td>
</tr>
<tr>
<td>1995</td>
<td>1868</td>
<td>3044</td>
<td>3736</td>
<td>609</td>
<td>1842</td>
<td>2402</td>
<td>3684</td>
<td>4805</td>
<td>926</td>
<td>1684</td>
<td>1852</td>
<td>3367</td>
</tr>
<tr>
<td>1996</td>
<td>1935</td>
<td>3269</td>
<td>3870</td>
<td>654</td>
<td>1217</td>
<td>1494</td>
<td>2434</td>
<td>2987</td>
<td>598</td>
<td>1128</td>
<td>1196</td>
<td>2256</td>
</tr>
<tr>
<td>1997</td>
<td>1424</td>
<td>2714</td>
<td>2848</td>
<td>543</td>
<td>1072</td>
<td>1296</td>
<td>2145</td>
<td>2593</td>
<td>555</td>
<td>921</td>
<td>1110</td>
<td>1842</td>
</tr>
<tr>
<td>1998</td>
<td>1216</td>
<td>2139</td>
<td>2431</td>
<td>428</td>
<td>954</td>
<td>1191</td>
<td>1908</td>
<td>2383</td>
<td>448</td>
<td>778</td>
<td>896</td>
<td>1555</td>
</tr>
<tr>
<td>1999</td>
<td>1038</td>
<td>1958</td>
<td>2076</td>
<td>392</td>
<td>755</td>
<td>916</td>
<td>1510</td>
<td>1832</td>
<td>329</td>
<td>526</td>
<td>658</td>
<td>1053</td>
</tr>
<tr>
<td>2000</td>
<td>840</td>
<td>1727</td>
<td>1680</td>
<td>345</td>
<td>698</td>
<td>854</td>
<td>1396</td>
<td>1709</td>
<td>289</td>
<td>501</td>
<td>578</td>
<td>1002</td>
</tr>
<tr>
<td>2001</td>
<td>824</td>
<td>1601</td>
<td>1649</td>
<td>320</td>
<td>750</td>
<td>913</td>
<td>1500</td>
<td>1826</td>
<td>338</td>
<td>592</td>
<td>677</td>
<td>1183</td>
</tr>
<tr>
<td>2002</td>
<td>765</td>
<td>1523</td>
<td>1531</td>
<td>305</td>
<td>723</td>
<td>873</td>
<td>1445</td>
<td>1746</td>
<td>309</td>
<td>520</td>
<td>618</td>
<td>1040</td>
</tr>
<tr>
<td>2003</td>
<td>738</td>
<td>1449</td>
<td>1476</td>
<td>290</td>
<td>602</td>
<td>728</td>
<td>1205</td>
<td>1455</td>
<td>273</td>
<td>489</td>
<td>547</td>
<td>978</td>
</tr>
<tr>
<td>2004</td>
<td>643</td>
<td>1338</td>
<td>1286</td>
<td>268</td>
<td>580</td>
<td>692</td>
<td>1160</td>
<td>1385</td>
<td>271</td>
<td>493</td>
<td>542</td>
<td>986</td>
</tr>
<tr>
<td>2005</td>
<td>627</td>
<td>1253</td>
<td>1254</td>
<td>251</td>
<td>473</td>
<td>573</td>
<td>946</td>
<td>1146</td>
<td>218</td>
<td>377</td>
<td>437</td>
<td>755</td>
</tr>
<tr>
<td>2006</td>
<td>536</td>
<td>1096</td>
<td>1072</td>
<td>219</td>
<td>499</td>
<td>605</td>
<td>999</td>
<td>1210</td>
<td>217</td>
<td>391</td>
<td>435</td>
<td>783</td>
</tr>
<tr>
<td>2007</td>
<td>539</td>
<td>1094</td>
<td>1079</td>
<td>219</td>
<td>453</td>
<td>550</td>
<td>906</td>
<td>1099</td>
<td>180</td>
<td>327</td>
<td>361</td>
<td>654</td>
</tr>
<tr>
<td>2008</td>
<td>487</td>
<td>964</td>
<td>974</td>
<td>193</td>
<td>397</td>
<td>479</td>
<td>795</td>
<td>959</td>
<td>159</td>
<td>278</td>
<td>319</td>
<td>556</td>
</tr>
<tr>
<td>2009</td>
<td>470</td>
<td>964</td>
<td>939</td>
<td>193</td>
<td>434</td>
<td>532</td>
<td>869</td>
<td>1065</td>
<td>192</td>
<td>364</td>
<td>385</td>
<td>727</td>
</tr>
<tr>
<td>2010</td>
<td>461</td>
<td>936</td>
<td>922</td>
<td>187</td>
<td>436</td>
<td>527</td>
<td>872</td>
<td>1054</td>
<td>175</td>
<td>312</td>
<td>350</td>
<td>623</td>
</tr>
<tr>
<td>2011</td>
<td>439</td>
<td>821</td>
<td>879</td>
<td>164</td>
<td>327</td>
<td>400</td>
<td>655</td>
<td>800</td>
<td>141</td>
<td>264</td>
<td>283</td>
<td>527</td>
</tr>
<tr>
<td>2012</td>
<td>379</td>
<td>747</td>
<td>759</td>
<td>149</td>
<td>396</td>
<td>490</td>
<td>791</td>
<td>980</td>
<td>171</td>
<td>298</td>
<td>342</td>
<td>596</td>
</tr>
<tr>
<td>2013</td>
<td>367</td>
<td>712</td>
<td>733</td>
<td>142</td>
<td>367</td>
<td>441</td>
<td>735</td>
<td>883</td>
<td>142</td>
<td>251</td>
<td>285</td>
<td>503</td>
</tr>
<tr>
<td>2014</td>
<td>349</td>
<td>675</td>
<td>699</td>
<td>135</td>
<td>329</td>
<td>403</td>
<td>658</td>
<td>807</td>
<td>132</td>
<td>237</td>
<td>264</td>
<td>473</td>
</tr>
<tr>
<td>2015</td>
<td>315</td>
<td>603</td>
<td>630</td>
<td>121</td>
<td>319</td>
<td>382</td>
<td>639</td>
<td>764</td>
<td>123</td>
<td>202</td>
<td>246</td>
<td>404</td>
</tr>
<tr>
<td>2016</td>
<td>300</td>
<td>567</td>
<td>600</td>
<td>113</td>
<td>317</td>
<td>404</td>
<td>633</td>
<td>808</td>
<td>146</td>
<td>323</td>
<td>292</td>
<td>647</td>
</tr>
<tr>
<td>2017</td>
<td>285</td>
<td>584</td>
<td>569</td>
<td>117</td>
<td>249</td>
<td>306</td>
<td>499</td>
<td>613</td>
<td>102</td>
<td>204</td>
<td>203</td>
<td>409</td>
</tr>
<tr>
<td>2018</td>
<td>263</td>
<td>529</td>
<td>526</td>
<td>106</td>
<td>248</td>
<td>302</td>
<td>496</td>
<td>603</td>
<td>94</td>
<td>163</td>
<td>188</td>
<td>327</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>209</td>
<td>367</td>
<td>349</td>
<td>612</td>
<td>102</td>
<td>131</td>
<td>170</td>
<td>218</td>
<td>51</td>
<td>68</td>
<td>86</td>
<td>114</td>
</tr>
<tr>
<td>1994</td>
<td>97</td>
<td>163</td>
<td>161</td>
<td>272</td>
<td>82</td>
<td>98</td>
<td>136</td>
<td>163</td>
<td>38</td>
<td>48</td>
<td>64</td>
<td>80</td>
</tr>
<tr>
<td>1995</td>
<td>89</td>
<td>147</td>
<td>149</td>
<td>245</td>
<td>91</td>
<td>118</td>
<td>152</td>
<td>196</td>
<td>46</td>
<td>61</td>
<td>77</td>
<td>101</td>
</tr>
<tr>
<td>1996</td>
<td>94</td>
<td>160</td>
<td>156</td>
<td>266</td>
<td>59</td>
<td>71</td>
<td>99</td>
<td>119</td>
<td>29</td>
<td>40</td>
<td>49</td>
<td>66</td>
</tr>
<tr>
<td>1997</td>
<td>68</td>
<td>132</td>
<td>113</td>
<td>219</td>
<td>52</td>
<td>62</td>
<td>87</td>
<td>103</td>
<td>27</td>
<td>35</td>
<td>46</td>
<td>58</td>
</tr>
<tr>
<td>1998</td>
<td>57</td>
<td>103</td>
<td>96</td>
<td>171</td>
<td>46</td>
<td>57</td>
<td>77</td>
<td>95</td>
<td>22</td>
<td>28</td>
<td>37</td>
<td>47</td>
</tr>
<tr>
<td>1999</td>
<td>49</td>
<td>94</td>
<td>81</td>
<td>156</td>
<td>36</td>
<td>43</td>
<td>61</td>
<td>72</td>
<td>16</td>
<td>20</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>2000</td>
<td>39</td>
<td>83</td>
<td>65</td>
<td>138</td>
<td>34</td>
<td>40</td>
<td>56</td>
<td>67</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>2001</td>
<td>38</td>
<td>76</td>
<td>64</td>
<td>127</td>
<td>36</td>
<td>43</td>
<td>60</td>
<td>72</td>
<td>17</td>
<td>22</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>2002</td>
<td>36</td>
<td>73</td>
<td>59</td>
<td>121</td>
<td>35</td>
<td>41</td>
<td>58</td>
<td>69</td>
<td>15</td>
<td>19</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>2003</td>
<td>34</td>
<td>69</td>
<td>57</td>
<td>116</td>
<td>29</td>
<td>34</td>
<td>48</td>
<td>57</td>
<td>13</td>
<td>18</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>2004</td>
<td>30</td>
<td>64</td>
<td>50</td>
<td>107</td>
<td>28</td>
<td>32</td>
<td>47</td>
<td>54</td>
<td>13</td>
<td>18</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>2005</td>
<td>29</td>
<td>60</td>
<td>49</td>
<td>100</td>
<td>23</td>
<td>27</td>
<td>38</td>
<td>44</td>
<td>11</td>
<td>14</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>2006</td>
<td>25</td>
<td>52</td>
<td>41</td>
<td>87</td>
<td>24</td>
<td>28</td>
<td>40</td>
<td>47</td>
<td>11</td>
<td>14</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>2007</td>
<td>25</td>
<td>52</td>
<td>42</td>
<td>87</td>
<td>22</td>
<td>26</td>
<td>36</td>
<td>43</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>2008</td>
<td>22</td>
<td>46</td>
<td>37</td>
<td>77</td>
<td>19</td>
<td>22</td>
<td>32</td>
<td>37</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>2009</td>
<td>22</td>
<td>46</td>
<td>36</td>
<td>77</td>
<td>21</td>
<td>25</td>
<td>35</td>
<td>42</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>2010</td>
<td>21</td>
<td>45</td>
<td>36</td>
<td>75</td>
<td>21</td>
<td>25</td>
<td>35</td>
<td>42</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>2011</td>
<td>21</td>
<td>39</td>
<td>34</td>
<td>66</td>
<td>16</td>
<td>19</td>
<td>26</td>
<td>31</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>2012</td>
<td>18</td>
<td>36</td>
<td>29</td>
<td>60</td>
<td>19</td>
<td>23</td>
<td>32</td>
<td>39</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>2013</td>
<td>17</td>
<td>34</td>
<td>29</td>
<td>57</td>
<td>18</td>
<td>21</td>
<td>30</td>
<td>35</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>2014</td>
<td>16</td>
<td>32</td>
<td>27</td>
<td>54</td>
<td>16</td>
<td>19</td>
<td>27</td>
<td>32</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>2015</td>
<td>15</td>
<td>29</td>
<td>24</td>
<td>48</td>
<td>15</td>
<td>18</td>
<td>26</td>
<td>30</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>2016</td>
<td>14</td>
<td>27</td>
<td>23</td>
<td>45</td>
<td>15</td>
<td>19</td>
<td>26</td>
<td>32</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>2017</td>
<td>13</td>
<td>28</td>
<td>22</td>
<td>47</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>24</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>2018</td>
<td>12</td>
<td>25</td>
<td>20</td>
<td>42</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>23</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>12779</td>
<td>16033</td>
<td>25558</td>
<td>32065</td>
<td>9646</td>
<td>11769</td>
<td>19292</td>
<td>23538</td>
<td>4743</td>
<td>5915</td>
<td>9486</td>
<td>11829</td>
</tr>
<tr>
<td>1994</td>
<td>7771</td>
<td>10459</td>
<td>15543</td>
<td>20918</td>
<td>6630</td>
<td>7983</td>
<td>13261</td>
<td>15966</td>
<td>3362</td>
<td>4141</td>
<td>6724</td>
<td>8282</td>
</tr>
<tr>
<td>1995</td>
<td>8564</td>
<td>11457</td>
<td>17127</td>
<td>22914</td>
<td>7361</td>
<td>8845</td>
<td>14721</td>
<td>17690</td>
<td>3633</td>
<td>4417</td>
<td>7267</td>
<td>8835</td>
</tr>
<tr>
<td>1996</td>
<td>7811</td>
<td>11260</td>
<td>15623</td>
<td>22521</td>
<td>5916</td>
<td>7219</td>
<td>11833</td>
<td>14438</td>
<td>3189</td>
<td>4024</td>
<td>6377</td>
<td>8049</td>
</tr>
<tr>
<td>1997</td>
<td>6083</td>
<td>8771</td>
<td>12166</td>
<td>17542</td>
<td>4743</td>
<td>5915</td>
<td>9486</td>
<td>11829</td>
<td>4743</td>
<td>5915</td>
<td>9486</td>
<td>11829</td>
</tr>
<tr>
<td>1998</td>
<td>5078</td>
<td>7222</td>
<td>10156</td>
<td>14444</td>
<td>4660</td>
<td>5667</td>
<td>9319</td>
<td>11334</td>
<td>2311</td>
<td>2837</td>
<td>4623</td>
<td>5673</td>
</tr>
<tr>
<td>1999</td>
<td>4416</td>
<td>6550</td>
<td>8832</td>
<td>13099</td>
<td>3803</td>
<td>4703</td>
<td>7605</td>
<td>9406</td>
<td>1760</td>
<td>2220</td>
<td>3520</td>
<td>4440</td>
</tr>
<tr>
<td>2000</td>
<td>4127</td>
<td>6132</td>
<td>8254</td>
<td>12264</td>
<td>3590</td>
<td>4388</td>
<td>7181</td>
<td>8776</td>
<td>1678</td>
<td>2072</td>
<td>3356</td>
<td>4145</td>
</tr>
<tr>
<td>2001</td>
<td>3854</td>
<td>5695</td>
<td>7709</td>
<td>11389</td>
<td>3457</td>
<td>4244</td>
<td>6915</td>
<td>8488</td>
<td>1612</td>
<td>2003</td>
<td>3223</td>
<td>4006</td>
</tr>
<tr>
<td>2002</td>
<td>3802</td>
<td>5597</td>
<td>7604</td>
<td>11194</td>
<td>3684</td>
<td>4512</td>
<td>7367</td>
<td>9025</td>
<td>1713</td>
<td>2148</td>
<td>3427</td>
<td>4295</td>
</tr>
<tr>
<td>2003</td>
<td>3321</td>
<td>4947</td>
<td>6641</td>
<td>9984</td>
<td>3094</td>
<td>3821</td>
<td>6188</td>
<td>7642</td>
<td>1461</td>
<td>1838</td>
<td>2923</td>
<td>3675</td>
</tr>
<tr>
<td>2004</td>
<td>3109</td>
<td>4575</td>
<td>6219</td>
<td>9151</td>
<td>3014</td>
<td>3695</td>
<td>6029</td>
<td>7391</td>
<td>1508</td>
<td>1891</td>
<td>3016</td>
<td>3781</td>
</tr>
<tr>
<td>2005</td>
<td>2761</td>
<td>4160</td>
<td>5522</td>
<td>8319</td>
<td>2303</td>
<td>2815</td>
<td>4607</td>
<td>5629</td>
<td>1137</td>
<td>1423</td>
<td>2274</td>
<td>2845</td>
</tr>
<tr>
<td>2006</td>
<td>2716</td>
<td>4020</td>
<td>5432</td>
<td>8041</td>
<td>2511</td>
<td>3075</td>
<td>5023</td>
<td>6151</td>
<td>1199</td>
<td>1472</td>
<td>2397</td>
<td>2944</td>
</tr>
<tr>
<td>2007</td>
<td>2503</td>
<td>3777</td>
<td>5007</td>
<td>7554</td>
<td>2098</td>
<td>2550</td>
<td>4195</td>
<td>5101</td>
<td>929</td>
<td>1142</td>
<td>1858</td>
<td>2283</td>
</tr>
<tr>
<td>2008</td>
<td>2364</td>
<td>3601</td>
<td>4727</td>
<td>7203</td>
<td>1893</td>
<td>2332</td>
<td>3786</td>
<td>4664</td>
<td>900</td>
<td>1139</td>
<td>1800</td>
<td>2279</td>
</tr>
<tr>
<td>2009</td>
<td>2390</td>
<td>3497</td>
<td>4781</td>
<td>6994</td>
<td>2045</td>
<td>2500</td>
<td>4090</td>
<td>5001</td>
<td>969</td>
<td>1220</td>
<td>1937</td>
<td>2441</td>
</tr>
<tr>
<td>2010</td>
<td>2101</td>
<td>3069</td>
<td>4202</td>
<td>6139</td>
<td>1865</td>
<td>2288</td>
<td>3729</td>
<td>4577</td>
<td>809</td>
<td>1004</td>
<td>1619</td>
<td>2008</td>
</tr>
<tr>
<td>2011</td>
<td>1840</td>
<td>2797</td>
<td>3681</td>
<td>5595</td>
<td>1591</td>
<td>1953</td>
<td>3181</td>
<td>3906</td>
<td>786</td>
<td>998</td>
<td>1571</td>
<td>1995</td>
</tr>
<tr>
<td>2012</td>
<td>1827</td>
<td>2702</td>
<td>3655</td>
<td>5404</td>
<td>1611</td>
<td>1983</td>
<td>3221</td>
<td>3966</td>
<td>764</td>
<td>964</td>
<td>1528</td>
<td>1928</td>
</tr>
<tr>
<td>2013</td>
<td>1755</td>
<td>2599</td>
<td>3511</td>
<td>5197</td>
<td>1675</td>
<td>2062</td>
<td>3349</td>
<td>4124</td>
<td>737</td>
<td>934</td>
<td>1474</td>
<td>1889</td>
</tr>
<tr>
<td>2014</td>
<td>1597</td>
<td>2320</td>
<td>3194</td>
<td>4639</td>
<td>1596</td>
<td>1956</td>
<td>3191</td>
<td>3913</td>
<td>674</td>
<td>836</td>
<td>1348</td>
<td>1672</td>
</tr>
<tr>
<td>2015</td>
<td>1463</td>
<td>2147</td>
<td>2926</td>
<td>4294</td>
<td>1400</td>
<td>1706</td>
<td>2799</td>
<td>3411</td>
<td>622</td>
<td>784</td>
<td>1244</td>
<td>1568</td>
</tr>
<tr>
<td>2016</td>
<td>1493</td>
<td>2161</td>
<td>2985</td>
<td>4322</td>
<td>1570</td>
<td>1920</td>
<td>3140</td>
<td>3841</td>
<td>670</td>
<td>830</td>
<td>1339</td>
<td>1659</td>
</tr>
<tr>
<td>2017</td>
<td>1285</td>
<td>1946</td>
<td>2570</td>
<td>3893</td>
<td>1191</td>
<td>1463</td>
<td>2381</td>
<td>2926</td>
<td>550</td>
<td>724</td>
<td>1099</td>
<td>1447</td>
</tr>
<tr>
<td>2018</td>
<td>1246</td>
<td>1861</td>
<td>2492</td>
<td>3721</td>
<td>1142</td>
<td>1408</td>
<td>2284</td>
<td>2815</td>
<td>499</td>
<td>641</td>
<td>997</td>
<td>1281</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances.
<table>
<thead>
<tr>
<th>Information Source</th>
<th>Date</th>
<th>Contact</th>
<th>Response</th>
<th>Contact Information</th>
<th>Data Available</th>
<th>Information/Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hudsonia</td>
<td>2-Jun-99</td>
<td>Call/Fax</td>
<td>YES;</td>
<td>Eric Kiviat, Executive Director; (914) 758-7273 (7274) OR (914) 758-7053; FAX: (914) 758-7033; EMAIL: kiviat@bard.edu</td>
<td>He has no direct knowledge of the upper Hudson but provided names</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WATERFOWL/MALLARD: Steve Brown - Delmar NYSDEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KINGFISHER: Breeding bird atlas - DEC now computerized on web page; Bob Anderle/Janet Carroll - NYSDEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NYSDEC - Natural Resource Damage Assessment</td>
</tr>
<tr>
<td>NYS Department of Environmental Conservation - Endangered Species Unit</td>
<td>3-Jun-99</td>
<td>Call</td>
<td>No</td>
<td>Peter Nye (518) 439-7635x9 (Eagle Specialist); www.dec.state.ny.us</td>
<td>Left Message - Will call back</td>
<td></td>
</tr>
<tr>
<td>Manomet Center for Conservation Sciences</td>
<td>2-Jun-99</td>
<td>Email</td>
<td>No</td>
<td>John M. Hagen, Division Director (Conservation Forestry Staff); jmhagan@ime.net; www.manomet.org;</td>
<td>Left Message - Will call back</td>
<td></td>
</tr>
<tr>
<td>Saratoga National Historic Park, Stillwater, NY</td>
<td>4-Jun-99</td>
<td>Call</td>
<td>No</td>
<td>Chris (wildlife manager) (518) 664-9821x5; also can contact Richard Beresford</td>
<td>Left Message - Will call back</td>
<td></td>
</tr>
<tr>
<td>Federation of New York State Bird Clubs</td>
<td>3-Jun-99</td>
<td>Email</td>
<td>No</td>
<td>Valeria Freer, President (vfreer@sullivan.suny.edu); http://www.birds.cornell.edu/fnysec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union College Professor Emeritus</td>
<td>2-Jun-99 7-Jun-99</td>
<td>Call/Call</td>
<td>No Yes</td>
<td>Carl George (518) 388-6330; Bird Expert; (John Waldman - Hudson River Foundation Recommended I call)</td>
<td>He did not have any specific data, but recommended a number of different sources</td>
<td>He recommended that I contact: Bob Daniels (mammals) - NY State Museum; Walter Sabin (Hudson-Mohawk Bird Club, they do an intensive waterbird survey and publish results in the Kingbird Journal (518) 439-7344; Also Union College has survey information for a lake in Scotia near the Hudson for Collins Lake in Scotia (across river from Schenectady) - http://tardis.union.edu/~birds, presents 10 years of bird information - 15 air miles from Hudson; also recommended contacting Robert Yunick for regional baseline information from Audubon Christmas count and the mid-May Big Day</td>
</tr>
<tr>
<td>Manomet Center for Conservation Sciences</td>
<td>7-Jun-99</td>
<td>Email</td>
<td>No</td>
<td>Dr. Treavor Lloyd-Evans (tlloyd-evans@manomet.org) - avian expert</td>
<td>Avian Conservationist</td>
<td></td>
</tr>
<tr>
<td>Information Source</td>
<td>Date</td>
<td>Contact</td>
<td>Response</td>
<td>Contact Information</td>
<td>Data Available</td>
<td>Information/Findings</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>American Birding Association - Online</td>
<td>7-Jun-99</td>
<td>WWW</td>
<td>No</td>
<td>www.americanbirding.org</td>
<td>Good links - possibility for some bird information on Hudson</td>
<td></td>
</tr>
<tr>
<td>Breeding Bird Survey - OnLine</td>
<td>7-Jun-99</td>
<td>WWW</td>
<td>No</td>
<td>www.mbr.nbs.gov/bbs/bbs.html</td>
<td>Regional trend analysis by species - region=NY State, some additional details may be available</td>
<td></td>
</tr>
<tr>
<td>Hudson-Mohawk Bird Club</td>
<td>7-Jun-99</td>
<td>Call</td>
<td>No</td>
<td>Walter Sabin Home: (518) 439-7344</td>
<td>Intensive waterbird survey every year - publish results in Kingbird Journal</td>
<td></td>
</tr>
<tr>
<td>Ornithologist</td>
<td>7-Jun-99</td>
<td>Need</td>
<td>Number</td>
<td>Robert Yunick</td>
<td>regional baseline data from Audubon Christmas count and mid-May Big Day</td>
<td></td>
</tr>
<tr>
<td>NYS Department of Environmental Conservation - Endangered</td>
<td>8-Jun-99</td>
<td>WWW</td>
<td>No</td>
<td>www.dec.state.ny.us/website/dfwmr/wildlife/endspec/enspbird.html</td>
<td>Brief summaries, listed by species, for NY State.</td>
<td></td>
</tr>
<tr>
<td>Species Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ixobrychus exilis (Least Bittern): Populations along Hudson River Valley, uncommon and rare breeder, declines due to loss of marsh habitat due to drainage, vegetational changes, pollution, insecticides. Rallus elegans (King Rail): Nesting was reported in northern Hudson Valley, however there are no confirmed nests in NY state currently, decline due to degradation of wetlands. Bartramia longicauda (Upland Sand Piper): once common around NY state including Hudson, less than 250 breeding sites to date in NY, decline due to loss of grassland habitat. All considered threatened species.</td>
</tr>
<tr>
<td>Regional trend analysis by species - region=NY State, some additional details may be available</td>
<td>Tachycineta bicolor (Tree Swallow): Common breeder throughout entire state. Ceryle alcyon (Belted Kingfisher): Common summer resident throughout entire state. Ardea herodias (Great Blue Heron): Observed in Northern Hudson Valley, possibility of breeding there. Anas platyrhynchos (Mallard): Common breeder in wetlands. In the 1900's, rarely if ever seen as a breeder; creation/improvement of wetlands in mid-1900's and release of captive-bred adults and ducklings in the 1950's caused populations to increase. Birds not found in Northern Hudson Valley: Eagles and Osprey.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Source</td>
<td>Date</td>
<td>Contact</td>
<td>Response</td>
<td>Contact Information</td>
<td>Data Available</td>
<td>Information/Findings</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>NYSDEC</td>
<td>16-Jun-99</td>
<td>Call</td>
<td>Yes</td>
<td>Mark Brown (518) 623-3671</td>
<td>Familiar with the area regarding mammals, birds, and herps. Good source. See General Info page.</td>
<td>This area is rich in birds including water fowl. Bald Eagle is only a winter resident, migrates in the summer. Lots of Canada geese and mallard. Has not seen any Osprey nests. They only feed here and spend most of their time around the near-by lakes. Has also seen tree swallow, kingfisher, and great blue heron. Most of the water fowl and larger birds use the area for feeding but do not breed here. He hasn't seen many nests except those built by species which live in the more wooded areas. Here's a list of the other species he has seen in the area: Common Mergenser (Diving Duck), red tailed hawk, sparrow hawk, rough grouse, wild turkey, killdeer, wood cock, morning dove, barn owl, bard owl, sawat owl (occupying nest boxes built for ducks), swallows, ravens, crows, wrens, eastern blue bird, starlings.</td>
</tr>
<tr>
<td>Ndakinna Wilderness Project</td>
<td>6/3/1999</td>
<td>Email</td>
<td>No</td>
<td>Jim Brushek (518) 583-9980x3, 23 Middle Grove Road, Greenfield Center, NY 12833; Received address from Saratoga County Information - Annamaria Dalton (annamaria@spa.net)</td>
<td>Professional Tracker</td>
<td>Saw some bald eagles 3 or 4 weeks ago. Hasn't seen any osprey. Great Blue Heron and kingfisher in large numbers. Hasn't seen any tree swallow. Lots of mallards and Canada geese. Could not recall seeing any nests.</td>
</tr>
<tr>
<td></td>
<td>6/16/99</td>
<td>Call</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5-67: WILDLIFE SURVEY RESULTS - Birds

Hudson River

New York
<table>
<thead>
<tr>
<th>Location</th>
<th>LOAEL vs. Average ADD Hazard Quotient</th>
<th>LOAEL vs. 95% UCL ADD Hazard Quotient</th>
<th>NOAEL vs. Average ADD Hazard Quotient</th>
<th>NOAEL vs. 95% UCL ADD Hazard Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>30</td>
<td>52</td>
<td>140</td>
<td>244</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>52</td>
<td>244</td>
<td>245</td>
<td>1146</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>12</td>
<td>21</td>
<td>58</td>
<td>99</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>1.7</td>
<td>4.3</td>
<td>8.1</td>
<td>20</td>
</tr>
<tr>
<td>137.2</td>
<td>3.4</td>
<td>14</td>
<td>16</td>
<td>65</td>
</tr>
<tr>
<td>122.4</td>
<td>1.9</td>
<td>4.7</td>
<td>8.8</td>
<td>22</td>
</tr>
<tr>
<td>113.8</td>
<td>1.9</td>
<td>7.5</td>
<td>9.1</td>
<td>35</td>
</tr>
<tr>
<td>100</td>
<td>0.9</td>
<td>6.1</td>
<td>4.2</td>
<td>29</td>
</tr>
<tr>
<td>88.9</td>
<td>0.4</td>
<td>0.8</td>
<td>2.1</td>
<td>3.7</td>
</tr>
<tr>
<td>58.7</td>
<td>1.4</td>
<td>13</td>
<td>6.5</td>
<td>59</td>
</tr>
<tr>
<td>47.3</td>
<td>1.6</td>
<td>11</td>
<td>7.3</td>
<td>54</td>
</tr>
<tr>
<td>25.8</td>
<td>0.5</td>
<td>0.8</td>
<td>2.2</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>LOAEL Average</th>
<th>LOAEL 95% UCL</th>
<th>NOAEL Average</th>
<th>NOAEL 95% UCL</th>
<th>LOAEL Average</th>
<th>LOAEL 95% UCL</th>
<th>NOAEL Average</th>
<th>NOAEL 95% UCL</th>
<th>LOAEL Average</th>
<th>LOAEL 95% UCL</th>
<th>NOAEL Average</th>
<th>NOAEL 95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>30</td>
<td>45</td>
<td>140</td>
<td>211</td>
<td>12</td>
<td>13</td>
<td>55</td>
<td>63</td>
<td>5.2</td>
<td>6.6</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>1994</td>
<td>33</td>
<td>42</td>
<td>157</td>
<td>197</td>
<td>11</td>
<td>13</td>
<td>52</td>
<td>60</td>
<td>4.9</td>
<td>6.2</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>1995</td>
<td>31</td>
<td>39</td>
<td>145</td>
<td>182</td>
<td>10</td>
<td>12</td>
<td>49</td>
<td>56</td>
<td>4.5</td>
<td>5.7</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>1996</td>
<td>28</td>
<td>36</td>
<td>133</td>
<td>167</td>
<td>9.4</td>
<td>11</td>
<td>44</td>
<td>51</td>
<td>3.8</td>
<td>4.8</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>1997</td>
<td>26</td>
<td>32</td>
<td>121</td>
<td>152</td>
<td>8.5</td>
<td>10</td>
<td>40</td>
<td>46</td>
<td>3.3</td>
<td>4.2</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>1998</td>
<td>23</td>
<td>29</td>
<td>110</td>
<td>138</td>
<td>7.7</td>
<td>8.8</td>
<td>36</td>
<td>41</td>
<td>2.9</td>
<td>3.6</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>1999</td>
<td>21</td>
<td>27</td>
<td>100</td>
<td>126</td>
<td>7.0</td>
<td>8.1</td>
<td>33</td>
<td>38</td>
<td>2.5</td>
<td>3.2</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>2000</td>
<td>20</td>
<td>25</td>
<td>93</td>
<td>117</td>
<td>6.6</td>
<td>7.6</td>
<td>31</td>
<td>36</td>
<td>2.2</td>
<td>2.9</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>2001</td>
<td>19</td>
<td>24</td>
<td>88</td>
<td>110</td>
<td>6.5</td>
<td>7.4</td>
<td>30</td>
<td>35</td>
<td>2.1</td>
<td>2.7</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>2002</td>
<td>18</td>
<td>22</td>
<td>83</td>
<td>104</td>
<td>6.2</td>
<td>7.1</td>
<td>29</td>
<td>33</td>
<td>2.0</td>
<td>2.6</td>
<td>9.5</td>
<td>12</td>
</tr>
<tr>
<td>2003</td>
<td>16</td>
<td>20</td>
<td>76</td>
<td>96</td>
<td>5.8</td>
<td>6.7</td>
<td>27</td>
<td>31</td>
<td>1.9</td>
<td>2.4</td>
<td>8.9</td>
<td>11</td>
</tr>
<tr>
<td>2004</td>
<td>15</td>
<td>19</td>
<td>70</td>
<td>88</td>
<td>5.3</td>
<td>6.1</td>
<td>25</td>
<td>29</td>
<td>1.7</td>
<td>2.2</td>
<td>8.0</td>
<td>10</td>
</tr>
<tr>
<td>2005</td>
<td>14</td>
<td>18</td>
<td>66</td>
<td>83</td>
<td>4.9</td>
<td>5.7</td>
<td>23</td>
<td>27</td>
<td>1.5</td>
<td>2.0</td>
<td>7.3</td>
<td>9.2</td>
</tr>
<tr>
<td>2006</td>
<td>13</td>
<td>17</td>
<td>63</td>
<td>79</td>
<td>4.7</td>
<td>5.4</td>
<td>22</td>
<td>25</td>
<td>1.4</td>
<td>1.8</td>
<td>6.7</td>
<td>8.6</td>
</tr>
<tr>
<td>2007</td>
<td>13</td>
<td>16</td>
<td>59</td>
<td>74</td>
<td>4.4</td>
<td>5.0</td>
<td>20</td>
<td>24</td>
<td>1.3</td>
<td>1.7</td>
<td>6.1</td>
<td>7.8</td>
</tr>
<tr>
<td>2008</td>
<td>12</td>
<td>15</td>
<td>55</td>
<td>69</td>
<td>4.1</td>
<td>4.7</td>
<td>19</td>
<td>22</td>
<td>1.2</td>
<td>1.5</td>
<td>5.7</td>
<td>7.2</td>
</tr>
<tr>
<td>2009</td>
<td>11</td>
<td>14</td>
<td>52</td>
<td>66</td>
<td>3.9</td>
<td>4.5</td>
<td>18</td>
<td>21</td>
<td>1.2</td>
<td>1.5</td>
<td>5.5</td>
<td>7.0</td>
</tr>
<tr>
<td>2010</td>
<td>10</td>
<td>13</td>
<td>48</td>
<td>60</td>
<td>3.7</td>
<td>4.2</td>
<td>17</td>
<td>20</td>
<td>1.1</td>
<td>1.4</td>
<td>5.1</td>
<td>6.5</td>
</tr>
<tr>
<td>2011</td>
<td>9.1</td>
<td>11</td>
<td>43</td>
<td>54</td>
<td>3.4</td>
<td>3.9</td>
<td>16</td>
<td>18</td>
<td>1.0</td>
<td>1.3</td>
<td>4.7</td>
<td>6.0</td>
</tr>
<tr>
<td>2012</td>
<td>8.5</td>
<td>11</td>
<td>40</td>
<td>50</td>
<td>3.2</td>
<td>3.7</td>
<td>15</td>
<td>17</td>
<td>1.0</td>
<td>1.2</td>
<td>4.5</td>
<td>5.7</td>
</tr>
<tr>
<td>2013</td>
<td>8.0</td>
<td>10</td>
<td>37</td>
<td>47</td>
<td>3.1</td>
<td>3.5</td>
<td>14</td>
<td>17</td>
<td>0.9</td>
<td>1.1</td>
<td>4.2</td>
<td>5.3</td>
</tr>
<tr>
<td>2014</td>
<td>7.4</td>
<td>9.3</td>
<td>35</td>
<td>44</td>
<td>2.9</td>
<td>3.3</td>
<td>14</td>
<td>16</td>
<td>0.8</td>
<td>1.0</td>
<td>3.8</td>
<td>4.9</td>
</tr>
<tr>
<td>2015</td>
<td>7.0</td>
<td>8.8</td>
<td>33</td>
<td>41</td>
<td>2.8</td>
<td>3.2</td>
<td>13</td>
<td>15</td>
<td>0.8</td>
<td>1.0</td>
<td>3.7</td>
<td>4.7</td>
</tr>
<tr>
<td>2016</td>
<td>6.6</td>
<td>8.2</td>
<td>31</td>
<td>39</td>
<td>2.6</td>
<td>3.0</td>
<td>12</td>
<td>14</td>
<td>0.7</td>
<td>0.9</td>
<td>3.4</td>
<td>4.3</td>
</tr>
<tr>
<td>2017</td>
<td>6.2</td>
<td>7.8</td>
<td>29</td>
<td>36</td>
<td>2.5</td>
<td>2.9</td>
<td>12</td>
<td>13</td>
<td>0.6</td>
<td>0.8</td>
<td>3.0</td>
<td>3.9</td>
</tr>
<tr>
<td>2018</td>
<td>6.0</td>
<td>7.5</td>
<td>28</td>
<td>35</td>
<td>2.4</td>
<td>2.8</td>
<td>11</td>
<td>13</td>
<td>0.6</td>
<td>0.8</td>
<td>2.9</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-70: RATIO OF MODELED DIETARY DOSES TO BENCHMARKS FOR FEMALE BAT BASED ON 1993 DATA ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>LOAEL vs. Average ADD Hazard Quotient</th>
<th>LOAEL vs. 95% UCL ADD Hazard Quotient</th>
<th>NOAEL vs. Average ADD Hazard Quotient</th>
<th>NOAEL vs. 95% UCL ADD Hazard Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>133</td>
<td>232</td>
<td>1328</td>
<td>2323</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>232</td>
<td>1089</td>
<td>2324</td>
<td>10885</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>55</td>
<td>94</td>
<td>554</td>
<td>943</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>8</td>
<td>20</td>
<td>78</td>
<td>197</td>
</tr>
<tr>
<td>137.2</td>
<td>15</td>
<td>62</td>
<td>153</td>
<td>624</td>
</tr>
<tr>
<td>122.4</td>
<td>8.4</td>
<td>22</td>
<td>84</td>
<td>215</td>
</tr>
<tr>
<td>113.8</td>
<td>8.7</td>
<td>34</td>
<td>87</td>
<td>339</td>
</tr>
<tr>
<td>100</td>
<td>4.0</td>
<td>28</td>
<td>40</td>
<td>276</td>
</tr>
<tr>
<td>88.9</td>
<td>2.0</td>
<td>3.6</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>58.7</td>
<td>6.2</td>
<td>56</td>
<td>62</td>
<td>562</td>
</tr>
<tr>
<td>47.3</td>
<td>7.0</td>
<td>51</td>
<td>70</td>
<td>512</td>
</tr>
<tr>
<td>25.8</td>
<td>2.1</td>
<td>3.6</td>
<td>21</td>
<td>36</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-71: RATIO OF MODELED DIETARY DOSES TO TOXICITY BENCHMARKS
FOR FEMALE BAT ON A TEQ BASIS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>LOAEL 189 Average</th>
<th>LOAEL 189 95% UCL</th>
<th>NOAEL 189 Average</th>
<th>NOAEL 189 95% UCL</th>
<th>LOAEL 168 Average</th>
<th>LOAEL 168 95% UCL</th>
<th>NOAEL 168 Average</th>
<th>NOAEL 168 95% UCL</th>
<th>LOAEL 154 Average</th>
<th>LOAEL 154 95% UCL</th>
<th>NOAEL 154 Average</th>
<th>NOAEL 154 95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>133</td>
<td>200</td>
<td>1328</td>
<td>2001</td>
<td>52</td>
<td>60</td>
<td>522</td>
<td>599</td>
<td>23</td>
<td>29</td>
<td>231</td>
<td>293</td>
</tr>
<tr>
<td>1994</td>
<td>149</td>
<td>187</td>
<td>1487</td>
<td>1866</td>
<td>50</td>
<td>57</td>
<td>498</td>
<td>571</td>
<td>22</td>
<td>28</td>
<td>218</td>
<td>276</td>
</tr>
<tr>
<td>1995</td>
<td>138</td>
<td>173</td>
<td>1378</td>
<td>1730</td>
<td>47</td>
<td>54</td>
<td>467</td>
<td>536</td>
<td>20</td>
<td>25</td>
<td>199</td>
<td>253</td>
</tr>
<tr>
<td>1996</td>
<td>126</td>
<td>158</td>
<td>1261</td>
<td>1582</td>
<td>42</td>
<td>48</td>
<td>420</td>
<td>483</td>
<td>17</td>
<td>22</td>
<td>170</td>
<td>215</td>
</tr>
<tr>
<td>1997</td>
<td>115</td>
<td>145</td>
<td>1153</td>
<td>1446</td>
<td>38</td>
<td>44</td>
<td>380</td>
<td>436</td>
<td>15</td>
<td>19</td>
<td>147</td>
<td>187</td>
</tr>
<tr>
<td>1998</td>
<td>104</td>
<td>131</td>
<td>1045</td>
<td>1311</td>
<td>34</td>
<td>39</td>
<td>344</td>
<td>394</td>
<td>13</td>
<td>16</td>
<td>128</td>
<td>163</td>
</tr>
<tr>
<td>1999</td>
<td>95</td>
<td>120</td>
<td>953</td>
<td>1196</td>
<td>31</td>
<td>36</td>
<td>314</td>
<td>360</td>
<td>11</td>
<td>14</td>
<td>112</td>
<td>142</td>
</tr>
<tr>
<td>2000</td>
<td>88</td>
<td>111</td>
<td>884</td>
<td>1109</td>
<td>30</td>
<td>34</td>
<td>296</td>
<td>340</td>
<td>10</td>
<td>13</td>
<td>100</td>
<td>128</td>
</tr>
<tr>
<td>2001</td>
<td>84</td>
<td>105</td>
<td>836</td>
<td>1049</td>
<td>29</td>
<td>33</td>
<td>288</td>
<td>330</td>
<td>9</td>
<td>12</td>
<td>95</td>
<td>120</td>
</tr>
<tr>
<td>2002</td>
<td>79</td>
<td>99</td>
<td>786</td>
<td>986</td>
<td>28</td>
<td>32</td>
<td>276</td>
<td>317</td>
<td>9</td>
<td>11</td>
<td>90</td>
<td>115</td>
</tr>
<tr>
<td>2003</td>
<td>73</td>
<td>91</td>
<td>726</td>
<td>911</td>
<td>26</td>
<td>30</td>
<td>260</td>
<td>298</td>
<td>8</td>
<td>11</td>
<td>84</td>
<td>107</td>
</tr>
<tr>
<td>2004</td>
<td>67</td>
<td>84</td>
<td>667</td>
<td>837</td>
<td>24</td>
<td>27</td>
<td>238</td>
<td>273</td>
<td>8</td>
<td>10</td>
<td>76</td>
<td>97</td>
</tr>
<tr>
<td>2005</td>
<td>63</td>
<td>79</td>
<td>627</td>
<td>786</td>
<td>22</td>
<td>25</td>
<td>220</td>
<td>253</td>
<td>6.9</td>
<td>8.8</td>
<td>69</td>
<td>88</td>
</tr>
<tr>
<td>2006</td>
<td>60</td>
<td>75</td>
<td>596</td>
<td>749</td>
<td>21</td>
<td>24</td>
<td>209</td>
<td>240</td>
<td>6.4</td>
<td>8.1</td>
<td>64</td>
<td>81</td>
</tr>
<tr>
<td>2007</td>
<td>56</td>
<td>70</td>
<td>558</td>
<td>700</td>
<td>19</td>
<td>22</td>
<td>195</td>
<td>224</td>
<td>5.8</td>
<td>7.4</td>
<td>58</td>
<td>74</td>
</tr>
<tr>
<td>2008</td>
<td>52</td>
<td>66</td>
<td>525</td>
<td>659</td>
<td>18</td>
<td>21</td>
<td>184</td>
<td>211</td>
<td>5.4</td>
<td>6.9</td>
<td>54</td>
<td>69</td>
</tr>
<tr>
<td>2009</td>
<td>50</td>
<td>62</td>
<td>496</td>
<td>623</td>
<td>18</td>
<td>20</td>
<td>176</td>
<td>202</td>
<td>5.2</td>
<td>6.6</td>
<td>52</td>
<td>66</td>
</tr>
<tr>
<td>2010</td>
<td>45</td>
<td>57</td>
<td>453</td>
<td>568</td>
<td>16</td>
<td>19</td>
<td>164</td>
<td>188</td>
<td>4.9</td>
<td>6.2</td>
<td>49</td>
<td>62</td>
</tr>
<tr>
<td>2011</td>
<td>41</td>
<td>51</td>
<td>407</td>
<td>511</td>
<td>15</td>
<td>17</td>
<td>151</td>
<td>173</td>
<td>4.5</td>
<td>5.7</td>
<td>45</td>
<td>57</td>
</tr>
<tr>
<td>2012</td>
<td>38</td>
<td>48</td>
<td>380</td>
<td>476</td>
<td>14</td>
<td>17</td>
<td>144</td>
<td>166</td>
<td>4.3</td>
<td>5.4</td>
<td>43</td>
<td>54</td>
</tr>
<tr>
<td>2013</td>
<td>36</td>
<td>45</td>
<td>355</td>
<td>446</td>
<td>14</td>
<td>16</td>
<td>137</td>
<td>157</td>
<td>4.0</td>
<td>5.1</td>
<td>40</td>
<td>51</td>
</tr>
<tr>
<td>2014</td>
<td>33</td>
<td>41</td>
<td>330</td>
<td>414</td>
<td>13</td>
<td>15</td>
<td>128</td>
<td>147</td>
<td>3.6</td>
<td>4.6</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>2015</td>
<td>31</td>
<td>39</td>
<td>312</td>
<td>392</td>
<td>12</td>
<td>14</td>
<td>124</td>
<td>143</td>
<td>3.5</td>
<td>4.4</td>
<td>35</td>
<td>44</td>
</tr>
<tr>
<td>2016</td>
<td>29</td>
<td>37</td>
<td>293</td>
<td>367</td>
<td>12</td>
<td>14</td>
<td>118</td>
<td>135</td>
<td>3.2</td>
<td>4.1</td>
<td>32</td>
<td>41</td>
</tr>
<tr>
<td>2017</td>
<td>28</td>
<td>35</td>
<td>275</td>
<td>345</td>
<td>11</td>
<td>13</td>
<td>111</td>
<td>127</td>
<td>2.9</td>
<td>3.7</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>2018</td>
<td>27</td>
<td>34</td>
<td>268</td>
<td>336</td>
<td>11</td>
<td>12</td>
<td>108</td>
<td>124</td>
<td>2.8</td>
<td>3.5</td>
<td>28</td>
<td>35</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-72: RATIO OF MODELED DIETARY DOSES TO BENCHMARKS FOR FEMALE RACCOON BASED ON 1993 DATA FOR THE TRI+ CONGENERS

<table>
<thead>
<tr>
<th>Location</th>
<th>LOAEL vs. Average ADD Hazard Quotient</th>
<th>LOAEL vs. 95% UCL Hazard Quotient</th>
<th>NOAEL vs. Average ADD Hazard Quotient</th>
<th>NOAEL vs. 95% UCL Hazard Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>5.8</td>
<td>10</td>
<td>27</td>
<td>47</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>9.5</td>
<td>42</td>
<td>45</td>
<td>195</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>2.2</td>
<td>3.7</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>0.4</td>
<td>0.8</td>
<td>1.7</td>
<td>3.7</td>
</tr>
<tr>
<td>137.2</td>
<td>0.7</td>
<td>2.6</td>
<td>3.4</td>
<td>12</td>
</tr>
<tr>
<td>122.4</td>
<td>0.4</td>
<td>0.9</td>
<td>1.8</td>
<td>4.1</td>
</tr>
<tr>
<td>113.8</td>
<td>0.4</td>
<td>1.3</td>
<td>1.9</td>
<td>6.2</td>
</tr>
<tr>
<td>100</td>
<td>0.2</td>
<td>1.3</td>
<td>0.8</td>
<td>6.1</td>
</tr>
<tr>
<td>88.9</td>
<td>0.1</td>
<td>0.3</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>58.7</td>
<td>0.3</td>
<td>2.2</td>
<td>1.3</td>
<td>10</td>
</tr>
<tr>
<td>47.3</td>
<td>0.3</td>
<td>2.1</td>
<td>1.6</td>
<td>9.9</td>
</tr>
<tr>
<td>25.8</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>Average 95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>6.0 8.5 27.9 39.7</td>
<td>2.6 9.7 10.9 1.2</td>
<td>5.8 5.8 5.8 5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>6.5 7.9 30.3 37.0</td>
<td>2.5 7.8 8.8 0.8</td>
<td>5.4 5.4 5.4 5.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>6.0 7.4 28.2 34.5</td>
<td>2.1 8.6 10.9 1.1</td>
<td>5.0 5.0 5.0 5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>5.5 6.7 25.7 31.4</td>
<td>1.8 2.1 9.7 0.8</td>
<td>4.2 4.2 4.2 4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>5.0 6.1 23.5 28.7</td>
<td>1.7 1.9 7.9 0.8</td>
<td>3.7 3.7 3.7 3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>4.5 5.5 21.2 26.0</td>
<td>1.5 1.7 7.0 0.9</td>
<td>3.2 3.2 3.2 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>4.1 5.1 19.4 23.7</td>
<td>1.4 1.5 6.4 0.6</td>
<td>2.8 2.8 2.8 2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>3.8 4.7 17.9 21.9</td>
<td>1.3 1.4 6.0 0.5</td>
<td>2.5 2.5 2.5 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>3.6 4.4 17.0 20.8</td>
<td>1.3 1.4 5.9 0.5</td>
<td>2.4 2.4 2.4 2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>3.4 4.2 15.9 19.5</td>
<td>1.2 1.3 5.6 0.5</td>
<td>2.3 2.3 2.3 2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>3.1 3.9 14.7 18.1</td>
<td>1.1 1.3 5.3 0.5</td>
<td>2.1 2.1 2.1 2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>2.9 3.5 13.5 16.6</td>
<td>1.0 1.2 4.9 0.4</td>
<td>1.9 1.9 1.9 1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>2.7 3.3 12.7 15.5</td>
<td>1.0 1.1 4.5 0.4</td>
<td>1.7 1.7 1.7 1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>2.6 3.2 12.1 14.8</td>
<td>0.9 1.0 4.3 0.3</td>
<td>1.6 1.6 1.6 1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>2.4 3.0 11.3 13.9</td>
<td>0.8 1.0 4.3 0.3</td>
<td>1.5 1.5 1.5 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>2.3 2.8 10.6 13.0</td>
<td>0.8 0.9 3.7 0.3</td>
<td>1.4 1.4 1.4 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>2.1 2.6 10.1 12.3</td>
<td>0.8 0.9 3.6 0.3</td>
<td>1.3 1.3 1.3 1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>2.0 2.4 9.2 11.3</td>
<td>0.7 0.8 3.4 0.3</td>
<td>1.2 1.2 1.2 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>1.8 2.2 8.3 10.1</td>
<td>0.7 0.7 3.1 0.3</td>
<td>1.1 1.1 1.1 1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>1.6 2.0 7.7 9.4</td>
<td>0.6 0.7 3.0 0.2</td>
<td>1.1 1.1 1.1 1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>1.5 1.9 7.2 8.8</td>
<td>0.6 0.7 2.8 0.2</td>
<td>1.0 1.0 1.0 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>1.4 1.8 6.7 8.2</td>
<td>0.6 0.6 2.6 0.2</td>
<td>0.9 0.9 0.9 0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>1.4 1.7 6.3 7.8</td>
<td>0.5 0.6 2.5 0.2</td>
<td>0.9 0.9 0.9 0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>1.3 1.6 5.9 7.3</td>
<td>0.5 0.5 2.4 0.2</td>
<td>0.8 0.8 0.8 0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>1.2 1.5 5.6 6.8</td>
<td>0.5 0.5 2.2 0.2</td>
<td>0.7 0.7 0.7 0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>1.2 1.4 5.4 6.6</td>
<td>0.5 0.5 2.2 0.1</td>
<td>0.7 0.7 0.7 0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold values indicate exceedances.
TABLE 5-74: RATIO OF MODELED DIETARY DOSES TO BENCHMARKS
FOR FEMALE RACCOON BASED ON 1993 DATA ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>LOAEL vs. Average ADD</th>
<th>LOAEL vs. 95% UCL ADD</th>
<th>NOAEL vs. Average ADD</th>
<th>NOAEL vs. 95% UCL ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>69</td>
<td>107</td>
<td>685</td>
<td>1067</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>150</td>
<td>374</td>
<td>1504</td>
<td>3736</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>19</td>
<td>33</td>
<td>195</td>
<td>328</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>4.8</td>
<td>7.3</td>
<td>48</td>
<td>73</td>
</tr>
<tr>
<td>137.2</td>
<td>8.8</td>
<td>23</td>
<td>88</td>
<td>231</td>
</tr>
<tr>
<td>122.4</td>
<td>5.1</td>
<td>8.0</td>
<td>51</td>
<td>80</td>
</tr>
<tr>
<td>113.8</td>
<td>5.4</td>
<td>12</td>
<td>54</td>
<td>120</td>
</tr>
<tr>
<td>100</td>
<td>2.2</td>
<td>36</td>
<td>22</td>
<td>359</td>
</tr>
<tr>
<td>88.9</td>
<td>3.4</td>
<td>9.2</td>
<td>34</td>
<td>92</td>
</tr>
<tr>
<td>58.7</td>
<td>2.2</td>
<td>20</td>
<td>22</td>
<td>196</td>
</tr>
<tr>
<td>47.3</td>
<td>7.0</td>
<td>30</td>
<td>70</td>
<td>304</td>
</tr>
<tr>
<td>25.8</td>
<td>2.6</td>
<td>6.5</td>
<td>26</td>
<td>65</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>LOAEL 189</th>
<th>Average</th>
<th>95% UCL</th>
<th>LOAEL 189</th>
<th>Average</th>
<th>95% UCL</th>
<th>LOAEL 168</th>
<th>Average</th>
<th>95% UCL</th>
<th>LOAEL 168</th>
<th>Average</th>
<th>95% UCL</th>
<th>LOAEL 154</th>
<th>Average</th>
<th>95% UCL</th>
<th>LOAEL 154</th>
<th>Average</th>
<th>95% UCL</th>
<th>LOAEL 154</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>127</td>
<td>144</td>
<td>1437</td>
<td>43</td>
<td>44</td>
<td>427</td>
<td>441</td>
<td>19</td>
<td>20</td>
<td>189</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>122</td>
<td>133</td>
<td>1334</td>
<td>40</td>
<td>42</td>
<td>403</td>
<td>416</td>
<td>17</td>
<td>18</td>
<td>174</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>114</td>
<td>125</td>
<td>1252</td>
<td>39</td>
<td>40</td>
<td>388</td>
<td>400</td>
<td>17</td>
<td>18</td>
<td>168</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>104</td>
<td>114</td>
<td>1137</td>
<td>35</td>
<td>36</td>
<td>347</td>
<td>359</td>
<td>14</td>
<td>15</td>
<td>141</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>96</td>
<td>105</td>
<td>1047</td>
<td>32</td>
<td>33</td>
<td>316</td>
<td>326</td>
<td>12</td>
<td>13</td>
<td>123</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>86</td>
<td>95</td>
<td>945</td>
<td>28</td>
<td>29</td>
<td>283</td>
<td>293</td>
<td>11</td>
<td>11</td>
<td>106</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>79</td>
<td>86</td>
<td>862</td>
<td>26</td>
<td>27</td>
<td>259</td>
<td>267</td>
<td>9</td>
<td>10</td>
<td>94</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>72</td>
<td>79</td>
<td>790</td>
<td>24</td>
<td>25</td>
<td>238</td>
<td>246</td>
<td>8.2</td>
<td>8.7</td>
<td>82</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>68</td>
<td>75</td>
<td>683</td>
<td>23</td>
<td>24</td>
<td>233</td>
<td>240</td>
<td>7.6</td>
<td>8.1</td>
<td>76</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>65</td>
<td>71</td>
<td>645</td>
<td>22</td>
<td>23</td>
<td>224</td>
<td>231</td>
<td>7.3</td>
<td>7.7</td>
<td>73</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>60</td>
<td>66</td>
<td>600</td>
<td>21</td>
<td>22</td>
<td>213</td>
<td>220</td>
<td>6.9</td>
<td>7.3</td>
<td>69</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>55</td>
<td>60</td>
<td>550</td>
<td>20</td>
<td>20</td>
<td>197</td>
<td>204</td>
<td>6.3</td>
<td>6.7</td>
<td>63</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>51</td>
<td>56</td>
<td>509</td>
<td>18</td>
<td>18</td>
<td>178</td>
<td>184</td>
<td>5.6</td>
<td>5.9</td>
<td>56</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>49</td>
<td>53</td>
<td>488</td>
<td>17</td>
<td>18</td>
<td>171</td>
<td>177</td>
<td>5.3</td>
<td>5.6</td>
<td>53</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>46</td>
<td>50</td>
<td>458</td>
<td>16</td>
<td>16</td>
<td>159</td>
<td>164</td>
<td>4.8</td>
<td>5.1</td>
<td>48</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>43</td>
<td>47</td>
<td>428</td>
<td>15</td>
<td>15</td>
<td>149</td>
<td>154</td>
<td>4.4</td>
<td>4.6</td>
<td>44</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>41</td>
<td>44</td>
<td>407</td>
<td>14</td>
<td>15</td>
<td>142</td>
<td>147</td>
<td>4.2</td>
<td>4.7</td>
<td>42</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>38</td>
<td>41</td>
<td>379</td>
<td>14</td>
<td>14</td>
<td>136</td>
<td>140</td>
<td>4.1</td>
<td>4.3</td>
<td>41</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>34</td>
<td>37</td>
<td>336</td>
<td>12</td>
<td>13</td>
<td>123</td>
<td>127</td>
<td>3.7</td>
<td>3.9</td>
<td>37</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>31</td>
<td>34</td>
<td>310</td>
<td>12</td>
<td>12</td>
<td>116</td>
<td>120</td>
<td>3.4</td>
<td>3.6</td>
<td>34</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>29</td>
<td>32</td>
<td>293</td>
<td>11</td>
<td>12</td>
<td>113</td>
<td>116</td>
<td>3.3</td>
<td>3.5</td>
<td>33</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>27</td>
<td>30</td>
<td>270</td>
<td>10</td>
<td>11</td>
<td>104</td>
<td>108</td>
<td>3.0</td>
<td>3.1</td>
<td>30</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>25</td>
<td>28</td>
<td>254</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>103</td>
<td>2.8</td>
<td>3.0</td>
<td>28</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>24</td>
<td>27</td>
<td>242</td>
<td>10</td>
<td>10</td>
<td>97</td>
<td>100</td>
<td>2.7</td>
<td>2.9</td>
<td>27</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>22</td>
<td>24</td>
<td>223</td>
<td>8.9</td>
<td>9.2</td>
<td>89</td>
<td>92</td>
<td>2.3</td>
<td>2.5</td>
<td>23</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>21</td>
<td>23</td>
<td>211</td>
<td>8.5</td>
<td>8.7</td>
<td>85</td>
<td>87</td>
<td>2.2</td>
<td>2.3</td>
<td>22</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-76: RATIO OF OBSERVED MINK AND OTTER PCB CONCENTRATIONS TO BENCHMARKS

Comparison to Low Range LOAEL

<table>
<thead>
<tr>
<th>Species and Statistic</th>
<th>North Hudson Valley</th>
<th>South Hudson Valley</th>
<th>Hudson Valley</th>
<th>Other NY State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mink liver - average</td>
<td>0.5</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mink liver - minimum</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mink liver - maximum</td>
<td>1.4</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otter liver - average</td>
<td></td>
<td></td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Otter liver - minimum</td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Otter liver - maximum</td>
<td></td>
<td></td>
<td>5.9</td>
<td></td>
</tr>
</tbody>
</table>

Comparison to Upper Range LOAEL

<table>
<thead>
<tr>
<th>Species and Statistic</th>
<th>North Hudson Valley</th>
<th>South Hudson Valley</th>
<th>Hudson Valley</th>
<th>Other NY State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mink liver - average</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mink liver - minimum</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mink liver - maximum</td>
<td>0.5</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otter liver - average</td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Otter liver - minimum</td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Otter liver - maximum</td>
<td></td>
<td></td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>LOAEL vs. Average ADD</td>
<td>LOAEL vs. 95% UCL ADD</td>
<td>NOAEL vs. Average ADD</td>
<td>NOAEL vs. 95% UCL ADD</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>11</td>
<td>17</td>
<td>359</td>
<td>566</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>5.8</td>
<td>23</td>
<td>188</td>
<td>760</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>1.8</td>
<td>2.8</td>
<td>58</td>
<td>92</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>1.0</td>
<td>1.3</td>
<td>31</td>
<td>43</td>
</tr>
<tr>
<td>137.2</td>
<td>1.9</td>
<td>4.6</td>
<td>62</td>
<td>150</td>
</tr>
<tr>
<td>122.4</td>
<td>0.8</td>
<td>1.4</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>113.8</td>
<td>0.8</td>
<td>1.3</td>
<td>27</td>
<td>43</td>
</tr>
<tr>
<td>100</td>
<td>0.4</td>
<td>1.0</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>88.9</td>
<td>0.6</td>
<td>0.8</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>58.7</td>
<td>0.7</td>
<td>1.8</td>
<td>24</td>
<td>58</td>
</tr>
<tr>
<td>47.3</td>
<td>0.7</td>
<td>1.7</td>
<td>22</td>
<td>56</td>
</tr>
<tr>
<td>25.8</td>
<td>0.5</td>
<td>0.6</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances.
Table 5-78: Ratio of Modeled Dietary Doses to Benchmarks for Female Otter Based on 1993 Data for the TRI+ Congeners

<table>
<thead>
<tr>
<th>Location</th>
<th>LOAEL vs. Average ADD</th>
<th>LOAEL vs. 95% UCL</th>
<th>NOAEL vs. Average ADD</th>
<th>NOAEL vs. 95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>89</td>
<td>173</td>
<td>2906</td>
<td>5623</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>16</td>
<td>21</td>
<td>520</td>
<td>671</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>12</td>
<td>21</td>
<td>375</td>
<td>673</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>12</td>
<td>21</td>
<td>375</td>
<td>673</td>
</tr>
<tr>
<td>137.2</td>
<td>43</td>
<td>103</td>
<td>1413</td>
<td>3362</td>
</tr>
<tr>
<td>122.4</td>
<td>10</td>
<td>14</td>
<td>329</td>
<td>453</td>
</tr>
<tr>
<td>113.8</td>
<td>9.2</td>
<td>13</td>
<td>298</td>
<td>417</td>
</tr>
<tr>
<td>100</td>
<td>11</td>
<td>33</td>
<td>342</td>
<td>1057</td>
</tr>
<tr>
<td>88.9</td>
<td>6.8</td>
<td>13</td>
<td>220</td>
<td>419</td>
</tr>
<tr>
<td>58.7</td>
<td>7.9</td>
<td>12</td>
<td>256</td>
<td>379</td>
</tr>
<tr>
<td>47.3</td>
<td>9.0</td>
<td>24</td>
<td>293</td>
<td>789</td>
</tr>
<tr>
<td>25.8</td>
<td>6.4</td>
<td>13</td>
<td>207</td>
<td>411</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>5.6</td>
<td>7.1</td>
<td>181</td>
<td>231</td>
<td>2.4</td>
<td>2.6</td>
<td>79</td>
<td>86</td>
<td>0.9</td>
<td>1.0</td>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td>1994</td>
<td>5.7</td>
<td>6.6</td>
<td>185</td>
<td>216</td>
<td>2.3</td>
<td>2.5</td>
<td>75</td>
<td>82</td>
<td>0.9</td>
<td>1.0</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>1995</td>
<td>5.6</td>
<td>6.5</td>
<td>182</td>
<td>212</td>
<td>2.2</td>
<td>2.4</td>
<td>72</td>
<td>79</td>
<td>0.8</td>
<td>1.0</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>1996</td>
<td>4.8</td>
<td>5.6</td>
<td>156</td>
<td>182</td>
<td>1.8</td>
<td>1.9</td>
<td>58</td>
<td>63</td>
<td>0.7</td>
<td>0.8</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>1997</td>
<td>4.3</td>
<td>5.0</td>
<td>139</td>
<td>163</td>
<td>1.8</td>
<td>1.9</td>
<td>57</td>
<td>62</td>
<td>0.6</td>
<td>0.7</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>1998</td>
<td>3.8</td>
<td>4.5</td>
<td>123</td>
<td>145</td>
<td>1.4</td>
<td>1.5</td>
<td>44</td>
<td>49</td>
<td>0.5</td>
<td>0.6</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>1999</td>
<td>3.5</td>
<td>4.1</td>
<td>113</td>
<td>133</td>
<td>1.3</td>
<td>1.4</td>
<td>42</td>
<td>46</td>
<td>0.4</td>
<td>0.5</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>2000</td>
<td>3.2</td>
<td>3.8</td>
<td>104</td>
<td>123</td>
<td>1.2</td>
<td>1.3</td>
<td>38</td>
<td>42</td>
<td>0.4</td>
<td>0.5</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>2001</td>
<td>3.1</td>
<td>3.6</td>
<td>100</td>
<td>117</td>
<td>1.2</td>
<td>1.3</td>
<td>40</td>
<td>43</td>
<td>0.4</td>
<td>0.4</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>2002</td>
<td>2.8</td>
<td>3.4</td>
<td>93</td>
<td>109</td>
<td>1.1</td>
<td>1.2</td>
<td>36</td>
<td>40</td>
<td>0.4</td>
<td>0.4</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>2003</td>
<td>2.6</td>
<td>3.1</td>
<td>86</td>
<td>101</td>
<td>1.1</td>
<td>1.2</td>
<td>34</td>
<td>38</td>
<td>0.4</td>
<td>0.4</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>2004</td>
<td>2.4</td>
<td>2.9</td>
<td>79</td>
<td>93</td>
<td>1.0</td>
<td>1.1</td>
<td>32</td>
<td>35</td>
<td>0.3</td>
<td>0.4</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2005</td>
<td>2.3</td>
<td>2.7</td>
<td>74</td>
<td>87</td>
<td>0.9</td>
<td>1.0</td>
<td>29</td>
<td>32</td>
<td>0.3</td>
<td>0.3</td>
<td>9.3</td>
<td>11</td>
</tr>
<tr>
<td>2006</td>
<td>2.2</td>
<td>2.6</td>
<td>71</td>
<td>83</td>
<td>0.9</td>
<td>1.0</td>
<td>28</td>
<td>31</td>
<td>0.3</td>
<td>0.3</td>
<td>8.6</td>
<td>10</td>
</tr>
<tr>
<td>2007</td>
<td>2.0</td>
<td>2.4</td>
<td>66</td>
<td>78</td>
<td>0.8</td>
<td>0.9</td>
<td>25</td>
<td>28</td>
<td>0.3</td>
<td>0.3</td>
<td>8.2</td>
<td>9.5</td>
</tr>
<tr>
<td>2008</td>
<td>1.9</td>
<td>2.2</td>
<td>62</td>
<td>73</td>
<td>0.7</td>
<td>0.8</td>
<td>23</td>
<td>26</td>
<td>0.2</td>
<td>0.3</td>
<td>7.2</td>
<td>8.3</td>
</tr>
<tr>
<td>2009</td>
<td>1.8</td>
<td>2.1</td>
<td>59</td>
<td>69</td>
<td>0.7</td>
<td>0.8</td>
<td>24</td>
<td>26</td>
<td>0.2</td>
<td>0.3</td>
<td>7.5</td>
<td>8.6</td>
</tr>
<tr>
<td>2010</td>
<td>1.7</td>
<td>1.9</td>
<td>54</td>
<td>63</td>
<td>0.7</td>
<td>0.7</td>
<td>22</td>
<td>24</td>
<td>0.2</td>
<td>0.3</td>
<td>7.2</td>
<td>8.2</td>
</tr>
<tr>
<td>2011</td>
<td>1.5</td>
<td>1.7</td>
<td>48</td>
<td>57</td>
<td>0.6</td>
<td>0.7</td>
<td>19</td>
<td>21</td>
<td>0.2</td>
<td>0.2</td>
<td>6.5</td>
<td>7.4</td>
</tr>
<tr>
<td>2012</td>
<td>1.4</td>
<td>1.6</td>
<td>45</td>
<td>53</td>
<td>0.6</td>
<td>0.7</td>
<td>20</td>
<td>22</td>
<td>0.2</td>
<td>0.2</td>
<td>6.8</td>
<td>7.7</td>
</tr>
<tr>
<td>2013</td>
<td>1.3</td>
<td>1.5</td>
<td>42</td>
<td>50</td>
<td>0.6</td>
<td>0.6</td>
<td>18</td>
<td>20</td>
<td>0.2</td>
<td>0.2</td>
<td>5.9</td>
<td>6.8</td>
</tr>
<tr>
<td>2014</td>
<td>1.2</td>
<td>1.4</td>
<td>39</td>
<td>46</td>
<td>0.5</td>
<td>0.6</td>
<td>18</td>
<td>19</td>
<td>0.2</td>
<td>0.2</td>
<td>5.5</td>
<td>6.3</td>
</tr>
<tr>
<td>2015</td>
<td>1.1</td>
<td>1.3</td>
<td>37</td>
<td>44</td>
<td>0.5</td>
<td>0.6</td>
<td>17</td>
<td>18</td>
<td>0.2</td>
<td>0.2</td>
<td>5.4</td>
<td>6.1</td>
</tr>
<tr>
<td>2016</td>
<td>1.1</td>
<td>1.3</td>
<td>35</td>
<td>41</td>
<td>0.5</td>
<td>0.6</td>
<td>16</td>
<td>18</td>
<td>0.2</td>
<td>0.2</td>
<td>5.3</td>
<td>6.0</td>
</tr>
<tr>
<td>2017</td>
<td>1.0</td>
<td>1.2</td>
<td>33</td>
<td>38</td>
<td>0.4</td>
<td>0.5</td>
<td>14</td>
<td>16</td>
<td>0.1</td>
<td>0.2</td>
<td>4.3</td>
<td>4.9</td>
</tr>
<tr>
<td>2018</td>
<td>1.0</td>
<td>1.2</td>
<td>32</td>
<td>37</td>
<td>0.4</td>
<td>0.5</td>
<td>14</td>
<td>16</td>
<td>0.1</td>
<td>0.2</td>
<td>4.4</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances.
TABLE 5-80: RATIO OF MODELED DIETARY DOSE TO TOXICITY BENCHMARKS FOR FEMALE OTTER FOR TRI+ CONGENERS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>50</td>
<td>62</td>
<td>1615</td>
<td>2025</td>
<td>37</td>
<td>46</td>
<td>1217</td>
<td>1485</td>
<td>18</td>
<td>23</td>
<td>598</td>
<td>746</td>
</tr>
<tr>
<td>1994</td>
<td>30</td>
<td>41</td>
<td>983</td>
<td>1322</td>
<td>26</td>
<td>31</td>
<td>837</td>
<td>1008</td>
<td>13</td>
<td>16</td>
<td>424</td>
<td>523</td>
</tr>
<tr>
<td>1995</td>
<td>33</td>
<td>45</td>
<td>1083</td>
<td>1448</td>
<td>29</td>
<td>34</td>
<td>929</td>
<td>1116</td>
<td>14</td>
<td>17</td>
<td>459</td>
<td>557</td>
</tr>
<tr>
<td>1996</td>
<td>30</td>
<td>44</td>
<td>988</td>
<td>1423</td>
<td>23</td>
<td>28</td>
<td>747</td>
<td>911</td>
<td>12</td>
<td>16</td>
<td>402</td>
<td>508</td>
</tr>
<tr>
<td>1997</td>
<td>24</td>
<td>34</td>
<td>769</td>
<td>1108</td>
<td>20</td>
<td>24</td>
<td>654</td>
<td>788</td>
<td>11</td>
<td>13</td>
<td>347</td>
<td>434</td>
</tr>
<tr>
<td>1998</td>
<td>20</td>
<td>28</td>
<td>643</td>
<td>913</td>
<td>18</td>
<td>22</td>
<td>588</td>
<td>715</td>
<td>9.0</td>
<td>11</td>
<td>292</td>
<td>358</td>
</tr>
<tr>
<td>1999</td>
<td>17</td>
<td>25</td>
<td>559</td>
<td>828</td>
<td>15</td>
<td>18</td>
<td>480</td>
<td>594</td>
<td>6.8</td>
<td>8.6</td>
<td>222</td>
<td>280</td>
</tr>
<tr>
<td>2000</td>
<td>16</td>
<td>24</td>
<td>522</td>
<td>775</td>
<td>14</td>
<td>17</td>
<td>453</td>
<td>554</td>
<td>6.5</td>
<td>8.0</td>
<td>212</td>
<td>261</td>
</tr>
<tr>
<td>2001</td>
<td>15</td>
<td>22</td>
<td>488</td>
<td>720</td>
<td>13</td>
<td>16</td>
<td>436</td>
<td>536</td>
<td>6.3</td>
<td>7.8</td>
<td>203</td>
<td>253</td>
</tr>
<tr>
<td>2002</td>
<td>15</td>
<td>22</td>
<td>481</td>
<td>707</td>
<td>14</td>
<td>18</td>
<td>465</td>
<td>569</td>
<td>6.7</td>
<td>8.3</td>
<td>216</td>
<td>271</td>
</tr>
<tr>
<td>2003</td>
<td>13</td>
<td>19</td>
<td>420</td>
<td>625</td>
<td>12</td>
<td>15</td>
<td>391</td>
<td>482</td>
<td>5.7</td>
<td>7.1</td>
<td>184</td>
<td>232</td>
</tr>
<tr>
<td>2004</td>
<td>12</td>
<td>18</td>
<td>393</td>
<td>578</td>
<td>12</td>
<td>14</td>
<td>381</td>
<td>466</td>
<td>5.9</td>
<td>7.3</td>
<td>190</td>
<td>239</td>
</tr>
<tr>
<td>2005</td>
<td>11</td>
<td>16</td>
<td>349</td>
<td>526</td>
<td>8.9</td>
<td>11</td>
<td>291</td>
<td>355</td>
<td>4.4</td>
<td>5.5</td>
<td>143</td>
<td>180</td>
</tr>
<tr>
<td>2006</td>
<td>11</td>
<td>16</td>
<td>344</td>
<td>508</td>
<td>10</td>
<td>12</td>
<td>317</td>
<td>388</td>
<td>4.7</td>
<td>5.7</td>
<td>151</td>
<td>186</td>
</tr>
<tr>
<td>2007</td>
<td>10</td>
<td>15</td>
<td>317</td>
<td>477</td>
<td>8.1</td>
<td>10</td>
<td>265</td>
<td>322</td>
<td>3.6</td>
<td>4.4</td>
<td>117</td>
<td>144</td>
</tr>
<tr>
<td>2008</td>
<td>9.2</td>
<td>14</td>
<td>299</td>
<td>455</td>
<td>7.4</td>
<td>9.1</td>
<td>239</td>
<td>294</td>
<td>3.5</td>
<td>4.4</td>
<td>114</td>
<td>144</td>
</tr>
<tr>
<td>2009</td>
<td>9.3</td>
<td>14</td>
<td>302</td>
<td>442</td>
<td>7.9</td>
<td>10</td>
<td>258</td>
<td>316</td>
<td>3.8</td>
<td>4.7</td>
<td>122</td>
<td>154</td>
</tr>
<tr>
<td>2010</td>
<td>8.2</td>
<td>12</td>
<td>266</td>
<td>388</td>
<td>7.2</td>
<td>8.9</td>
<td>235</td>
<td>289</td>
<td>3.1</td>
<td>3.9</td>
<td>102</td>
<td>127</td>
</tr>
<tr>
<td>2011</td>
<td>7.2</td>
<td>11</td>
<td>233</td>
<td>354</td>
<td>6.2</td>
<td>7.6</td>
<td>201</td>
<td>247</td>
<td>3.1</td>
<td>3.9</td>
<td>99</td>
<td>126</td>
</tr>
<tr>
<td>2012</td>
<td>7.1</td>
<td>11</td>
<td>231</td>
<td>341</td>
<td>6.3</td>
<td>7.7</td>
<td>203</td>
<td>250</td>
<td>3.0</td>
<td>3.7</td>
<td>96</td>
<td>122</td>
</tr>
<tr>
<td>2013</td>
<td>6.8</td>
<td>10</td>
<td>222</td>
<td>328</td>
<td>6.5</td>
<td>8.0</td>
<td>211</td>
<td>260</td>
<td>2.9</td>
<td>3.6</td>
<td>93</td>
<td>118</td>
</tr>
<tr>
<td>2014</td>
<td>6.2</td>
<td>9.0</td>
<td>202</td>
<td>293</td>
<td>6.2</td>
<td>7.6</td>
<td>201</td>
<td>247</td>
<td>2.6</td>
<td>3.2</td>
<td>85</td>
<td>105</td>
</tr>
<tr>
<td>2015</td>
<td>5.7</td>
<td>8.4</td>
<td>185</td>
<td>271</td>
<td>5.4</td>
<td>6.6</td>
<td>177</td>
<td>215</td>
<td>2.4</td>
<td>3.0</td>
<td>78</td>
<td>99</td>
</tr>
<tr>
<td>2016</td>
<td>5.8</td>
<td>8.4</td>
<td>189</td>
<td>273</td>
<td>6.1</td>
<td>7.5</td>
<td>198</td>
<td>242</td>
<td>2.6</td>
<td>3.2</td>
<td>84</td>
<td>105</td>
</tr>
<tr>
<td>2017</td>
<td>5.0</td>
<td>7.6</td>
<td>163</td>
<td>246</td>
<td>4.6</td>
<td>5.7</td>
<td>150</td>
<td>185</td>
<td>2.1</td>
<td>2.8</td>
<td>69</td>
<td>91</td>
</tr>
<tr>
<td>2018</td>
<td>4.8</td>
<td>7.2</td>
<td>158</td>
<td>235</td>
<td>4.4</td>
<td>5.5</td>
<td>144</td>
<td>178</td>
<td>1.9</td>
<td>2.5</td>
<td>63</td>
<td>81</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-81: RATIO OF MODELED DIETARY DOSES TO BENCHMARKS
FOR FEMALE MINK BASED ON 1993 DATA ON A TEQ BASIS

<table>
<thead>
<tr>
<th>Location</th>
<th>LOAEL vs. Average ADD</th>
<th>LOAEL vs. 95% UCL</th>
<th>NOAEL vs. Average ADD</th>
<th>NOAEL vs. 95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>28</td>
<td>44</td>
<td>792</td>
<td>1233</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>18</td>
<td>55</td>
<td>510</td>
<td>1536</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>4.3</td>
<td>6.8</td>
<td>120</td>
<td>191</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>2.5</td>
<td>3.4</td>
<td>69</td>
<td>96</td>
</tr>
<tr>
<td>137.2</td>
<td>4.9</td>
<td>12</td>
<td>137</td>
<td>322</td>
</tr>
<tr>
<td>122.4</td>
<td>2.0</td>
<td>3.5</td>
<td>57</td>
<td>97</td>
</tr>
<tr>
<td>113.8</td>
<td>2.2</td>
<td>3.3</td>
<td>61</td>
<td>93</td>
</tr>
<tr>
<td>100</td>
<td>0.9</td>
<td>4.3</td>
<td>26</td>
<td>121</td>
</tr>
<tr>
<td>88.9</td>
<td>1.6</td>
<td>2.5</td>
<td>46</td>
<td>71</td>
</tr>
<tr>
<td>58.7</td>
<td>1.8</td>
<td>4.3</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>47.3</td>
<td>2.0</td>
<td>5.0</td>
<td>55</td>
<td>139</td>
</tr>
<tr>
<td>25.8</td>
<td>1.2</td>
<td>1.7</td>
<td>34</td>
<td>49</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Location</th>
<th>LOAEL vs. Average ADD</th>
<th>LOAEL vs. 95% UCL ADD</th>
<th>NOAEL vs. Average ADD</th>
<th>NOAEL vs. 95% UCL ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
<td>Hazard Quotient</td>
</tr>
<tr>
<td>Upper River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson Island Pool (189)</td>
<td>225</td>
<td>434</td>
<td>6286</td>
<td>12140</td>
</tr>
<tr>
<td>Stillwater (168)</td>
<td>45</td>
<td>60</td>
<td>1254</td>
<td>1683</td>
</tr>
<tr>
<td>Federal Dam (154)</td>
<td>29</td>
<td>52</td>
<td>817</td>
<td>1467</td>
</tr>
<tr>
<td>Lower River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>29</td>
<td>52</td>
<td>808</td>
<td>1453</td>
</tr>
<tr>
<td>137.2</td>
<td>108</td>
<td>258</td>
<td>3038</td>
<td>7230</td>
</tr>
<tr>
<td>122.4</td>
<td>25</td>
<td>35</td>
<td>711</td>
<td>978</td>
</tr>
<tr>
<td>113.8</td>
<td>23</td>
<td>32</td>
<td>644</td>
<td>904</td>
</tr>
<tr>
<td>100</td>
<td>26</td>
<td>82</td>
<td>735</td>
<td>2309</td>
</tr>
<tr>
<td>88.9</td>
<td>17</td>
<td>32</td>
<td>476</td>
<td>910</td>
</tr>
<tr>
<td>58.7</td>
<td>20</td>
<td>30</td>
<td>550</td>
<td>827</td>
</tr>
<tr>
<td>47.3</td>
<td>23</td>
<td>61</td>
<td>635</td>
<td>1720</td>
</tr>
<tr>
<td>25.8</td>
<td>16</td>
<td>32</td>
<td>447</td>
<td>890</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
TABLE 5-83: RATIO OF MODELED DIETARY DOSES TO TOXICITY BENCHMARKS FOR FEMALE MINK ON A TEQ BASIS FOR THE PERIOD 1993 - 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>19</td>
<td>22</td>
<td>522</td>
<td>612</td>
<td>7.5</td>
<td>7.9</td>
<td>209</td>
<td>221</td>
<td>2.9</td>
<td>3.1</td>
<td>80</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>18</td>
<td>20</td>
<td>510</td>
<td>569</td>
<td>7.0</td>
<td>7.5</td>
<td>197</td>
<td>209</td>
<td>2.7</td>
<td>3.0</td>
<td>76</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>18</td>
<td>20</td>
<td>498</td>
<td>556</td>
<td>6.9</td>
<td>7.3</td>
<td>192</td>
<td>203</td>
<td>2.7</td>
<td>2.9</td>
<td>75</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>15</td>
<td>17</td>
<td>431</td>
<td>482</td>
<td>5.6</td>
<td>5.9</td>
<td>156</td>
<td>166</td>
<td>2.1</td>
<td>2.3</td>
<td>60</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>14</td>
<td>16</td>
<td>388</td>
<td>435</td>
<td>5.4</td>
<td>5.7</td>
<td>152</td>
<td>161</td>
<td>1.9</td>
<td>2.1</td>
<td>53</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>12</td>
<td>14</td>
<td>345</td>
<td>388</td>
<td>4.4</td>
<td>4.7</td>
<td>122</td>
<td>130</td>
<td>1.6</td>
<td>1.8</td>
<td>45</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>11</td>
<td>13</td>
<td>317</td>
<td>356</td>
<td>4.1</td>
<td>4.4</td>
<td>115</td>
<td>122</td>
<td>1.4</td>
<td>1.6</td>
<td>40</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
<td>12</td>
<td>290</td>
<td>327</td>
<td>3.7</td>
<td>3.9</td>
<td>103</td>
<td>109</td>
<td>1.3</td>
<td>1.4</td>
<td>37</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>10</td>
<td>11</td>
<td>277</td>
<td>311</td>
<td>3.8</td>
<td>4.0</td>
<td>106</td>
<td>113</td>
<td>1.2</td>
<td>1.3</td>
<td>34</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>9.2</td>
<td>10</td>
<td>259</td>
<td>291</td>
<td>3.5</td>
<td>3.7</td>
<td>99</td>
<td>105</td>
<td>1.1</td>
<td>1.3</td>
<td>32</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>8.6</td>
<td>10</td>
<td>240</td>
<td>270</td>
<td>3.3</td>
<td>3.5</td>
<td>93</td>
<td>99</td>
<td>1.1</td>
<td>1.2</td>
<td>31</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>7.9</td>
<td>8.8</td>
<td>220</td>
<td>248</td>
<td>3.1</td>
<td>3.3</td>
<td>87</td>
<td>92</td>
<td>1.0</td>
<td>1.1</td>
<td>28</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>7.4</td>
<td>8.3</td>
<td>206</td>
<td>232</td>
<td>2.8</td>
<td>3.0</td>
<td>78</td>
<td>83</td>
<td>0.9</td>
<td>1.0</td>
<td>25</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>7.0</td>
<td>7.9</td>
<td>197</td>
<td>221</td>
<td>2.7</td>
<td>2.9</td>
<td>76</td>
<td>81</td>
<td>0.8</td>
<td>0.9</td>
<td>24</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>6.6</td>
<td>7.4</td>
<td>184</td>
<td>207</td>
<td>2.5</td>
<td>2.6</td>
<td>69</td>
<td>74</td>
<td>0.8</td>
<td>0.9</td>
<td>22</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>6.2</td>
<td>6.9</td>
<td>173</td>
<td>194</td>
<td>2.3</td>
<td>2.4</td>
<td>64</td>
<td>68</td>
<td>0.7</td>
<td>0.8</td>
<td>19</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>5.9</td>
<td>6.6</td>
<td>165</td>
<td>185</td>
<td>2.3</td>
<td>2.4</td>
<td>64</td>
<td>68</td>
<td>0.7</td>
<td>0.8</td>
<td>20</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>5.4</td>
<td>6.1</td>
<td>151</td>
<td>170</td>
<td>2.1</td>
<td>2.3</td>
<td>60</td>
<td>63</td>
<td>0.7</td>
<td>0.7</td>
<td>19</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>4.8</td>
<td>5.4</td>
<td>135</td>
<td>151</td>
<td>1.9</td>
<td>2.0</td>
<td>52</td>
<td>56</td>
<td>0.6</td>
<td>0.7</td>
<td>17</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>4.5</td>
<td>5.0</td>
<td>126</td>
<td>141</td>
<td>1.9</td>
<td>2.1</td>
<td>54</td>
<td>57</td>
<td>0.6</td>
<td>0.7</td>
<td>18</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>4.2</td>
<td>4.7</td>
<td>118</td>
<td>133</td>
<td>1.8</td>
<td>1.9</td>
<td>50</td>
<td>53</td>
<td>0.6</td>
<td>0.6</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>3.9</td>
<td>4.4</td>
<td>110</td>
<td>123</td>
<td>1.7</td>
<td>1.8</td>
<td>48</td>
<td>50</td>
<td>0.5</td>
<td>0.6</td>
<td>15</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>3.7</td>
<td>4.1</td>
<td>103</td>
<td>116</td>
<td>1.6</td>
<td>1.7</td>
<td>45</td>
<td>48</td>
<td>0.5</td>
<td>0.5</td>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>3.5</td>
<td>3.9</td>
<td>98</td>
<td>110</td>
<td>1.6</td>
<td>1.7</td>
<td>44</td>
<td>47</td>
<td>0.5</td>
<td>0.5</td>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>3.2</td>
<td>3.6</td>
<td>91</td>
<td>102</td>
<td>1.4</td>
<td>1.5</td>
<td>39</td>
<td>41</td>
<td>0.4</td>
<td>0.4</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>3.1</td>
<td>3.5</td>
<td>87</td>
<td>98</td>
<td>1.4</td>
<td>1.5</td>
<td>38</td>
<td>41</td>
<td>0.4</td>
<td>0.4</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold values indicate exceedances
<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>128</td>
<td>160</td>
<td>3591</td>
<td>4479</td>
<td>95</td>
<td>115</td>
<td>2653</td>
<td>3227</td>
<td>47</td>
<td>58</td>
<td>1302</td>
<td>1619</td>
</tr>
<tr>
<td>1994</td>
<td>80</td>
<td>106</td>
<td>2227</td>
<td>2961</td>
<td>66</td>
<td>79</td>
<td>1834</td>
<td>2200</td>
<td>33</td>
<td>41</td>
<td>927</td>
<td>1138</td>
</tr>
<tr>
<td>1995</td>
<td>87</td>
<td>115</td>
<td>2434</td>
<td>3223</td>
<td>73</td>
<td>87</td>
<td>2031</td>
<td>2432</td>
<td>36</td>
<td>43</td>
<td>1000</td>
<td>1212</td>
</tr>
<tr>
<td>1996</td>
<td>79</td>
<td>113</td>
<td>2220</td>
<td>3158</td>
<td>58</td>
<td>71</td>
<td>1636</td>
<td>1988</td>
<td>31</td>
<td>39</td>
<td>877</td>
<td>1103</td>
</tr>
<tr>
<td>1997</td>
<td>62</td>
<td>88</td>
<td>1744</td>
<td>2476</td>
<td>51</td>
<td>61</td>
<td>1434</td>
<td>1721</td>
<td>27</td>
<td>34</td>
<td>756</td>
<td>944</td>
</tr>
<tr>
<td>1998</td>
<td>52</td>
<td>73</td>
<td>1463</td>
<td>2047</td>
<td>46</td>
<td>56</td>
<td>1290</td>
<td>1562</td>
<td>23</td>
<td>28</td>
<td>636</td>
<td>778</td>
</tr>
<tr>
<td>1999</td>
<td>46</td>
<td>66</td>
<td>1276</td>
<td>1857</td>
<td>38</td>
<td>46</td>
<td>1055</td>
<td>1299</td>
<td>17</td>
<td>22</td>
<td>486</td>
<td>610</td>
</tr>
<tr>
<td>2000</td>
<td>43</td>
<td>62</td>
<td>1190</td>
<td>1737</td>
<td>36</td>
<td>43</td>
<td>996</td>
<td>1211</td>
<td>17</td>
<td>20</td>
<td>462</td>
<td>569</td>
</tr>
<tr>
<td>2001</td>
<td>40</td>
<td>58</td>
<td>1113</td>
<td>1614</td>
<td>34</td>
<td>42</td>
<td>959</td>
<td>1172</td>
<td>16</td>
<td>20</td>
<td>444</td>
<td>550</td>
</tr>
<tr>
<td>2002</td>
<td>39</td>
<td>57</td>
<td>1095</td>
<td>1584</td>
<td>36</td>
<td>44</td>
<td>1019</td>
<td>1244</td>
<td>17</td>
<td>21</td>
<td>471</td>
<td>588</td>
</tr>
<tr>
<td>2003</td>
<td>34</td>
<td>50</td>
<td>960</td>
<td>1403</td>
<td>31</td>
<td>38</td>
<td>859</td>
<td>1055</td>
<td>14</td>
<td>18</td>
<td>402</td>
<td>504</td>
</tr>
<tr>
<td>2004</td>
<td>32</td>
<td>46</td>
<td>898</td>
<td>1297</td>
<td>30</td>
<td>36</td>
<td>836</td>
<td>1020</td>
<td>15</td>
<td>19</td>
<td>414</td>
<td>518</td>
</tr>
<tr>
<td>2005</td>
<td>29</td>
<td>42</td>
<td>799</td>
<td>1180</td>
<td>23</td>
<td>28</td>
<td>641</td>
<td>780</td>
<td>11</td>
<td>14</td>
<td>313</td>
<td>391</td>
</tr>
<tr>
<td>2006</td>
<td>28</td>
<td>41</td>
<td>785</td>
<td>1140</td>
<td>25</td>
<td>30</td>
<td>697</td>
<td>849</td>
<td>12</td>
<td>14</td>
<td>330</td>
<td>404</td>
</tr>
<tr>
<td>2007</td>
<td>26</td>
<td>38</td>
<td>724</td>
<td>1071</td>
<td>21</td>
<td>25</td>
<td>584</td>
<td>706</td>
<td>9.1</td>
<td>11</td>
<td>256</td>
<td>314</td>
</tr>
<tr>
<td>2008</td>
<td>24</td>
<td>36</td>
<td>683</td>
<td>1020</td>
<td>19</td>
<td>23</td>
<td>527</td>
<td>646</td>
<td>8.9</td>
<td>11</td>
<td>248</td>
<td>313</td>
</tr>
<tr>
<td>2009</td>
<td>25</td>
<td>35</td>
<td>688</td>
<td>990</td>
<td>20</td>
<td>25</td>
<td>568</td>
<td>691</td>
<td>10</td>
<td>12</td>
<td>266</td>
<td>335</td>
</tr>
<tr>
<td>2010</td>
<td>22</td>
<td>31</td>
<td>607</td>
<td>871</td>
<td>19</td>
<td>23</td>
<td>518</td>
<td>633</td>
<td>8.0</td>
<td>10</td>
<td>223</td>
<td>276</td>
</tr>
<tr>
<td>2011</td>
<td>19</td>
<td>28</td>
<td>532</td>
<td>793</td>
<td>16</td>
<td>19</td>
<td>443</td>
<td>541</td>
<td>7.7</td>
<td>10</td>
<td>216</td>
<td>274</td>
</tr>
<tr>
<td>2012</td>
<td>19</td>
<td>27</td>
<td>526</td>
<td>764</td>
<td>16</td>
<td>20</td>
<td>448</td>
<td>548</td>
<td>7.5</td>
<td>9.4</td>
<td>210</td>
<td>264</td>
</tr>
<tr>
<td>2013</td>
<td>18</td>
<td>26</td>
<td>505</td>
<td>735</td>
<td>17</td>
<td>20</td>
<td>465</td>
<td>569</td>
<td>7.2</td>
<td>9.1</td>
<td>203</td>
<td>256</td>
</tr>
<tr>
<td>2014</td>
<td>16</td>
<td>23</td>
<td>460</td>
<td>657</td>
<td>16</td>
<td>19</td>
<td>442</td>
<td>540</td>
<td>6.6</td>
<td>8.2</td>
<td>185</td>
<td>229</td>
</tr>
<tr>
<td>2015</td>
<td>15</td>
<td>22</td>
<td>422</td>
<td>608</td>
<td>14</td>
<td>17</td>
<td>389</td>
<td>472</td>
<td>6.1</td>
<td>7.7</td>
<td>171</td>
<td>215</td>
</tr>
<tr>
<td>2016</td>
<td>15</td>
<td>22</td>
<td>429</td>
<td>611</td>
<td>16</td>
<td>19</td>
<td>435</td>
<td>529</td>
<td>6.6</td>
<td>8.1</td>
<td>184</td>
<td>227</td>
</tr>
<tr>
<td>2017</td>
<td>13</td>
<td>20</td>
<td>370</td>
<td>551</td>
<td>12</td>
<td>14</td>
<td>331</td>
<td>405</td>
<td>5.4</td>
<td>7.1</td>
<td>151</td>
<td>198</td>
</tr>
<tr>
<td>2018</td>
<td>13</td>
<td>19</td>
<td>358</td>
<td>526</td>
<td>11</td>
<td>14</td>
<td>318</td>
<td>389</td>
<td>4.9</td>
<td>6.3</td>
<td>137</td>
<td>175</td>
</tr>
</tbody>
</table>

Bold values indicate exceedances

TABLE 5-84: RATIO OF MODELED DIETARY DOSES TO TOXICITY BENCHMARKS FOR FEMALE OTTER ON A TEQ BASIS FOR THE PERIOD 1993 - 2018
<table>
<thead>
<tr>
<th>Information Source</th>
<th>Date</th>
<th>Contact</th>
<th>Response</th>
<th>Contact Information</th>
<th>Data Available</th>
<th>Information/Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hudsonia</td>
<td>2-Jun-99</td>
<td>Call/Fax</td>
<td>YES; spoke with on 6/2/999</td>
<td>Eric Kiviat, Executive Director; (914) 758-7273 (7274) OR (914) 758-7053; FAX: (914) 758-7033; EMAIL: kiviat@bard.edu; inside.bard.edu/specialprog/arch/hudsonia.html</td>
<td>He has no direct knowledge of the upper Hudson but provided names</td>
<td>RIVER OTTER: very rare; he has only seen one on the Hudson in 30 years</td>
</tr>
<tr>
<td>NYS Department of Environmental Conservation - Endangered Species Unit</td>
<td>3-Jun-99</td>
<td>Call</td>
<td>Yes</td>
<td>Al Hicks (Mammal Biologist) (518) 478-3056; www.dec.state.ny.us</td>
<td>Left Message - Will call back</td>
<td>RACCOON: Fur bearer unit - NYSDEC; trapper prices currently very low so may not have information</td>
</tr>
<tr>
<td>The New York River Otter Project</td>
<td>2-Jun-99</td>
<td>Email</td>
<td>No</td>
<td>Dennis Money, Dennis_Money@rge.com; www.nyotter.org</td>
<td>Left Message - Will call back</td>
<td>LITTLE BROWN BAT: Endangered species Unit - Allen Hicks (Delmar NYSDEC Endangered Species)</td>
</tr>
<tr>
<td>Professional Trapper</td>
<td>4-Jun-99</td>
<td>Call</td>
<td>No</td>
<td>Jim Comstock</td>
<td>Left Message - Will call back</td>
<td></td>
</tr>
<tr>
<td>New York State Trappers Association</td>
<td>4-Jun-99</td>
<td>Email</td>
<td>Yes</td>
<td>Jerry Leggieir (montcalm@earthlink.net)</td>
<td>Asked me to give him a call at night; also suggested that I call Everett Nack (518) 851-2901 - a commercial fisherman on the river</td>
<td></td>
</tr>
<tr>
<td>Professional Fisherman on the Hudson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recommended by Jerry Leggieir</td>
<td></td>
</tr>
<tr>
<td>NYSDEC</td>
<td>16-Jun-99</td>
<td>Call</td>
<td>Yes</td>
<td>Mark Brown (518) 623-3671</td>
<td>Familiar with the area regarding mammals, birds, and herps. Good source. See General Info page.</td>
<td>Otter, Mink, Musk Rat present. PCB contamination reduced their numbers severly but in the past 10 years, they have rebounded after clean-up work. Has also seen raccoon, short and long tail weasels, big and little brown bat, skunk, oppossum. The red fox, grey fox, and coyote especially common in the northern Hudson, and plenty of white tail deer suggesting no bears.</td>
</tr>
<tr>
<td>Ndakinna Wilderness Project</td>
<td>6/3/1999</td>
<td>Email</td>
<td>No</td>
<td>Jim Brushek (518) 583-9980x3; 23 Middle Grove Road, Greenfield Center, NY 12833; Received address from Saratoga County Information - Annamaria Dalton (annamaria@spa.net)</td>
<td>Professional Tracker</td>
<td>Quite a few otter. Mink numbers are large and increasing. Tons of raccoons ("road-kill count is staggering"). Some musk rat. Lots of beavers. Very recent reports of moose in the center of Saratoga, about 5 miles from Hudson. He expects moose to inhabit the Hudson very soon but he thinks they are already there. Sees fisher cats cruising the water occasionaly. Frequently sees red fox, grey fox, and deer visiting the water. The coyote population is very large. Coyotes and foxes will feed on the smaller aquatic mammals. Sees the occassional black bear.</td>
</tr>
</tbody>
</table>
Figure 1-2
Eight-Step Ecological Risk Assessment Process for Superfund
Hudson River PCB Reassessment
Ecological Risk Assessment

STEP 1: SCREENING-LEVEL:
- Site Visit
- Problem Formulation
- Toxicity Evaluation

STEP 2: SCREENING-LEVEL:
- Exposure Estimate
- Risk Calculation

STEP 3: PROBLEM FORMULATION
- Toxicity Evaluation
 - Assessment Endpoints
 - Conceptual Model Exposure Pathways
 - Questions/Hypotheses

STEP 4: STUDY AND DESIGN DQO PROCESS
- Lines of Evidence
- Measurement Endpoints
 - Work Plan and Sampling and Analysis Plan

STEP 5: VERIFICATION OF FIELD SAMPLING DESIGN

STEP 6: SITE INVESTIGATION AND DATA ANALYSIS

STEP 7: RISK CHARACTERIZATION

STEP 8: RISK MANAGEMENT

Risk Assessor and Risk Manager Agreement
Compile Existing Information
Data Collection
SMDP
ECOLOGICAL DATA SOURCES

OTHER

WATER COLUMN (USGS)
AVIAN (USFWS)
FISH (NOAA, NYSDEC)
FISH STOMACH CONTENTS (GE)
MACROINVERTEBRATES (NYSDOH)
SEDIMENTS (NYSDEC, NYSDOH)

PHASE2 (USEPA)

WATER COLUMN
SEDIMENT (High Resolution Coring)
ECOLOGICAL (Fish, Sediment & Macroinvertebrates)

Figure 1-3
Hudson River ERA Data Sources
Figure 2-1
Baseline Ecological Risk Assessment
Upper Hudson River Sampling Stations

LEGEND

190 RIVER MILE

ECOLOGICAL SAMPLING LOCATION
Figure 2-2
Baseline Ecological Risk Assessment
Lower Hudson River Sampling Stations

Legend

190 RIVER MILE

ECOLOGICAL SAMPLING LOCATION

SOURCE: Reassessment Database
TAMS / MCA
LEGEND:
- ECOLOGICAL SAMPLING STATION

SOURCE:
SHORELINES AND RM DESIGNATIONS ARE APPROXIMATE.
2. HOT SPOTS 5 THROUGH 8 WERE DIGITIZED FROM NYSDEN'S "PCB RECLAMATION PROJECT" DRAWINGS (DECEMBER 1985) AT A SCALE OF 1" = 200'.
3. HOT SPOTS 1 THROUGH 4 (AROUND ROGERS ISLAND) ARE NOT SHOWN SINCE THEIR CONTINUED EXISTENCE IS UNCERTAIN DUE TO CHANNEL MAINTENANCE DREDGING SUBSEQUENT TO NYSDEN'S 1977/78 SAMPLING.

PHASE 2 ECOCLOGICAL SAMPLING LOCATIONS—UPPER HUDSON RIVER

MATCH LINE "A"
SEE FIGURE 2-3B

BAKERS FALLS DAM
(RM 197.8)
FENIMORE BRIDGE
GE HUDSON FALLS SOURCE AREAS
ECO-STATION 20 (RM 196.9)
REMNANT DEPOSIT 1
GE FORT EDWARD
REMNANT DEPOSIT 2
REMNANT DEPOSIT 3
REMNANT DEPOSIT 4
REMNANT DEPOSIT 5
FORT EDWARD
RT. 197 BRIDGE
ECO-STATION 2 (RM 194.1)
LOCK 7
HOT SPOT 5
HOT SPOT 6
HOT SPOT 7
2000 1000 0 2000 FT.
MATCH LINE "B" — SEE FIGURE 2-3B

FORT MILLER DAM (RM 186.2)

LOCK 6

HOT SPOT 29

HOT SPOT 31

HOT SPOT 32

HOT SPOT 33

HOT SPOT 35

NORTHUMBERLAND DAM
(RM 183.4)

LOCK 6

MATCH LINE "C"
SEE FIGURE 2-3D

LEGEND:

ECCOLOGICAL SAMPLING STATION

SOURCES:

SHOULINES AND RM DESIGNATIONS ARE APPROXIMATE.
1. HOT SPOTS 28 THROUGH 35 WERE DIGITIZED FROM NUS CORPORATION'S "UPPER HUDSON RIVER AREA" DRAWINGS (APRIL 1984) AT A SCALE OF 1" = 1 MILE.
MATCH LINE "C" – SEE FIGURE 2–3C

MATCH LINE "D" – SEE FIGURE 1–3E

LEGEND:
- 180 RIVER MILE (RM) UPSTREAM OF THE BATTERY

SOURCES:
SHORELINES AND RM DESIGNATIONS ARE APPROXIMATE.
MATCH LINE "D" – SEE FIGURE 2-3D

MATCH LINE "E"
SEE FIGURE 2-3F

LEGEND:
- 175 RIVER MILE (RM) UPSTREAM OF THE BATTERY

SOURCES:
SHORELINES AND RM DESIGNATIONS ARE APPROXIMATE.
Figure 2-4
Hudson River PCB Reassessment
Conceptual Model Diagram Including Floodplain Soils

Notes:
1. All receptors may be directly exposed to river water and sediments.
2. Trophic levels are provided as a general guide to bioaccumulation potential, but vary according to species and food availability.
FIGURE 3-1: AVERAGE WET WEIGHT PCB CONCENTRATIONS IN SELECTED FISH SPECIES BASED ON NYSDEC DATA
FIGURE 3-2: AVERAGE LIPID-NORMALED PCB CONCENTRATIONS IN SELECTED FISH SPECIES BASED ON NYSDEC DATA

Average Lipid-Normalized PCB Concentrations at River Mile 189

Year	Lipid-Norm PCB (mg/kg)	Brown Bullhead	Largemouth Bass	Yellow Perch	Pumpkinseed
1982 | 0 | 0 | 0 | 0 | 0
1984 | 500 | 500 | 500 | 500 | 500
1986 | 1000 | 1000 | 1000 | 1000 | 1000
1988 | 1500 | 1500 | 1500 | 1500 | 1500
1992 | 2500 | 2500 | 2500 | 2500 | 2500
1994 | 3000 | 3000 | 3000 | 3000 | 3000
1996 | 3500 | 3500 | 3500 | 3500 | 3500

Average Lipid-Normalized Concentrations at River Mile 168

Year	Lipid-Norm PCB (mg/kg)	Brown Bullhead	Largemouth Bass	Yellow Perch	Pumpkinseed
1980 | 0 | 0 | 0 | 0 | 0
1982 | 500 | 500 | 500 | 500 | 500
1984 | 1000 | 1000 | 1000 | 1000 | 1000
1986 | 1500 | 1500 | 1500 | 1500 | 1500
1990 | 2500 | 2500 | 2500 | 2500 | 2500
1992 | 3000 | 3000 | 3000 | 3000 | 3000
1994 | 3500 | 3500 | 3500 | 3500 | 3500
1996 | 4000 | 4000 | 4000 | 4000 | 4000

Average Lipid-Normalized PCB Concentrations at River Mile 157

Year	Lipid-Norm PCB (mg/kg)	Brown Bullhead	Largemouth Bass	Yellow Perch	White Perch
1986 | 0 | 0 | 0 | 0 | 0
1987 | 100 | 100 | 100 | 100 | 100
1988 | 200 | 200 | 200 | 200 | 200
1989 | 300 | 300 | 300 | 300 | 300
1990 | 400 | 400 | 400 | 400 | 400
1991 | 500 | 500 | 500 | 500 | 500
1992 | 600 | 600 | 600 | 600 | 600
1993 | 700 | 700 | 700 | 700 | 700

Average Lipid-Normalized PCB Concentrations at River Mile 152

Year	Lipid-Norm PCB (mg/kg)	Brown Bullhead	Largemouth Bass	Yellow Perch	White Perch
1980 | 0 | 0 | 0 | 0 | 0
1982 | 200 | 200 | 200 | 200 | 200
1984 | 400 | 400 | 400 | 400 | 400
1986 | 600 | 600 | 600 | 600 | 600
1988 | 800 | 800 | 800 | 800 | 800
1990 | 1000 | 1000 | 1000 | 1000 | 1000
1992 | 1200 | 1200 | 1200 | 1200 | 1200
1994 | 1400 | 1400 | 1400 | 1400 | 1400
1996 | 1600 | 1600 | 1600 | 1600 | 1600
1998 | 1800 | 1800 | 1800 | 1800 | 1800
Figure 4-1: Shape of Biphenyl and Substitution Sites
Figure 4-2
Selected Fish Aroclor and Total PCB Toxicity Endpoints

- 46: Juvenile Spot, LOAEL, 20 days, adult mortality
- 36: Fathead Minnow, 16 weeks, LOAEL, spawning and fecundity
- 27: Juvenile Spot, NOAEL, 56 days, adult mortality
- 11.6: Fathead Minnow, NOAEL, 16 weeks, spawning and fecundity
- 3.8 (nominal dose): Killifish, LOAEL, 40 days observation, egg production and food consumption
- 0.76 (nominal dose): Killifish, NOAEL, 40 days of observation, egg production and food consumption
Figure 4-3
Selected Fish Egg Dioxin Equivalent Toxicity Endpoints

Endpoint: Early Life Stage Mortality

- 100: White sucker, LOAEL
- 34: White sucker, NOAEL
- 18: Channel catfish, LOAEL
- 8.0: Channel catfish, NOAEL
- 0.7: Lake trout, LOAEL
- 0.43: Lake trout, NOAEL
Figure 4-4
Selected Bird Diet Aroclor and Total PCB Toxicity Endpoints

- 16.1: Tree Swallow, NOAEL, field study, reproductive output
- 2.6: Mallard Duck, EL (no effect), approx. 1 month, reproductive success
- 1.1: Ringed Turtle Dove, EL (effect), hatching success
- 0.7: Domestic Chicken, LOAEL, hatching success
- 0.4: Screech Owl, EL (no effect), > 8 weeks, egg production, hatching success, and fledging success
- 0.1: Domestic Chicken, NOAEL, hatching success

Effective Dose (mg PCB/kg wet body wt./day)
Figure 4-5
Selected Bird Diet Dioxin Equivalent Toxicity Endpoints

Effective Dose Dioxin Equivalents (ug TEQ/kg wet body wt./day)

- 25: Ring-necked Pheasant, LD$_{50}$, single dose
- 15: Northern Bobwhite Quail, LD$_{50}$, single dose
- 4.9: Tree Swallow, NOAEL, field study, reproductive output
- 1.0: Domestic Chicken, LOAEL, 21 days, mortality
- 0.14: Ring-necked Pheasant, LOAEL, 10 weeks, fertility and embryo mortality
- 0.1: Domestic Chicken, NOAEL, 21 days, mortality
- 0.014: Ring-necked Pheasant, NOAEL, 10 weeks, fertility and embryo mortality
Figure 4-6
Selected Bird Egg Aroclor and Total PCB Toxicity Endpoints

26.7: Tree swallow, NOAEL, reproductive output
7.1: Screech owl, NOAEL, egg production, hatching success, and fledging success
5: Domestic chicken, LOAEL, hatching success
3.0: Bald eagle, NOAEL, reproductive success
2.5: Domestic chicken, NOAEL, hatching success
1.7: Domestic chicken, LOAEL, hatching success
0.33: Domestic chicken, NOAEL, hatching success

Effective Egg Concentration (mg PCB/kg egg)
Figure 4-7
Selected Bird Egg Dioxin Equivalent Toxicity Endpoints

Endpoint: Embryo Mortality

- 80: Cormorant, LOAEL
- 40: Cormorant, NOAEL
- 23: American Kestrel, LOAEL
- 13: Tree Swallow, NOAEL
- 5: American Kestrel, LOAEL
- 4: Common Tern, LOAEL
- 4: Cormorant, LOAEL
- 2.3: American Kestrel, NOAEL
- 1: Cormorant, NOAEL
- 0.5: Great Blue Heron, LOAEL
- 0.3: Great Blue Heron, NOAEL
- 0.1: Ring-necked Pheasant, NOAEL
- 0.02: Wood Duck, LOAEL
- 0.01: Domestic Chicken, NOAEL
- 0.005: Wood Duck, LOAEL

Effective Dose Dioxin Equivalents (ug TEQ/kg egg)

TAMS/MCA
Figure 4-8
Selected Mink Aroclor and Total PCB Toxicity Endpoints

- 11.5: LD$_{50}$, 4 weeks, adult mortality
- 10.8: LD$_{50}$, 4 weeks, adult mortality
- 6.4: LD$_{50}$, 4 weeks, adult mortality
- 6.4: LD$_{50}$, 4 weeks, adult mortality (weathered PCBs)
- 1.4: LOAEL, 4 weeks, reduced weight gain in juveniles
- 0.91: LC$_{50}$, 9 months, mortality
- 0.69: NOAEL, 4 months, decreased number of kits born live
- 0.49: LOAEL, 105 days, adult mortality
- 0.34: EL, 4 months, decreased number of kits born live
- 0.14: NOAEL, 4 months, decreased number of kits born live
- 0.14: EL, 6 months, reduced growth rates of kits
- 0.09: LOAEL, 160 days, reduced number of kits born alive
Figure 4-9
Selected Mammal Aroclor and Total PCB Toxicity Endpoints

- 50: Raccoon, EL (effect), 8 days, decreased weight gain
- 32: Female Rat, LOAEL, day 1, 3, 5, 7, and 9 of lactation, reduced growth rate of offspring
- 12.5: Mouse, LOAEL, 108 days, decreased conception
- 1.5: Sherman Rat, LOAEL, 129 days, decreased litter size
- 0.1: Rhesus Monkey, LOAEL, 18 months, infant mortality
Figure 4-10
Selected Mammal Dioxin Equivalent Toxicity Endpoints

- 0.25: Rat, LOAEL, gestation days 6-15, litter size and pup weight
- 0.125: Rat, NOAEL, gestation days 6-15, litter size and pup weight
- 0.1: Rat, LOAEL, 2 years, female mortality
- 0.01: Rat, LOAEL, 3 generations, reproductive capacity
- 0.0021: Rhesus Monkey, LOAEL, 7 months, number of births
- 0.001: Rat, NOAEL, 3 generations, reproductive capacity
- 0.00059: Rhesus Monkey, LOAEL, 7-48 months (maternal), reproductive
- 0.00012: Rhesus Monkey, NOAEL, 7-48 months (maternal), reproductive

Effective Dose Dioxin Equivalents (µg TEQ/kg wet body wt/day)
Note: The dendrogram is based on Morisita’s index (Sₕ) of community similarity and the computed fusion value of each junction is given.

Figure 5-1
Complete Linkage Clustering - TI Pool
Figure 5-2
Relative Percent Grain Size Classes - TI Pool

Note: Error bars represent one standard deviation.
Figure 5-3
Mean Sediment TOC - TI Pool

Note: Error bars represent one standard deviation.
Figure 5-4
Mean Total PCB Concentration in Sediment - TI Pool

Note: Error bars represent one standard deviation.
Figure 5-5
Biomass of Benthic Invertebrates - TI Pool

Note: Error bars represent one standard deviation.
Figure 5-6
Relative Percent Grain Size Classes - Lower Hudson River
Figure 5-7
Mean Sediment TOC - Lower Hudson River
Figure 5-8
Mean Total PCB Concentration in Sediment - Lower Hudson River

Note: Error bars represent one standard deviation.