

Draft Engineering Performance Standards Public Review Copy

Part 2: Performance Standard for Dredging Residuals

May 2003

Prepared for:

U.S. Army Corps of Engineers, Kansas City District USACE Contract No. DACW41-02-D-0003 On Behalf of: U.S. Environmental Protection Agency, Region 2

TAMS

Prepared by:

Malcolm Pirnie, Inc. 104 Corporate Park Drive White Plains, New York 10602

and

TAMS Consultants, Inc. an Earth Tech Company 300 Broadacres Drive Bloomfield, New Jersey 07003

Volume 2 of 4

Part 2:

Draft Performance Standard for Dredging Residuals Public Review Copy Table of Contents

1.0 Staten	nent of the Performance Standard for Dredging Residuals	1
1.1 Res	iduals Standard Criteria	1
1.2 Dra	ft Residuals Standard Implementation	4
2.0 Techn	ical Basis of the Performance Standard for Dredging Residuals	5
2.1 Bac	kground and Approach	
2.1.1	Criteria in the Record of Decision	5
2.1.2	Case Studies	6
2.1.3	Regulatory Guidance	6
2.2 Sup	porting Analyses	7
2.2.1	Case Study Statistical Data Evaluation	
2.2.1.1		
2.2.1.2	2 Description of the Case Studies	
2.2.1.3		
2.2.2	Relevance of the PL Criteria	
2.2.3	Estimate of Re-dredging Area by Percent Reduction in PCBs	
2.2.4	Estimate of Re-dredging Area Resulting from the PL Action Levels	
2.2.5	Achievement of 1 mg/kg Tri+ PCBs Residual Concentrations	
2.2.6	Size of Certification Units	
2.2.7	Number of Samples Per Certification Unit	
2.2.8	Case Study Data Geostatistical Analysis	
2.2.8.1		
2.2.8.2	\mathcal{I}	
2.2.8.3	1	
2.2.8.4	1	
2.2.8.5	3	
2.2.8.6	1	
2.2.8.7		
2.2.8.8		
2.2.8.9	\mathcal{E}	
2.2.9	Evaluation of Available Sampling Techniques	
2.2.9.1	\mathcal{E}	
2.2.9.2		
2.2.9.3	T S	27
2.2.9.4	Γ	
2.2.9.5	J	
2.2.10	Examination of Analytical Methods and Data Validation Methods	
	ionale for the Development of the Performance Standard	
2.3.1	Sample Collection	
2.3.2	Sample Management	
2.3.3	Sample Analysis	
2.3.4	Data Evaluation and Required Actions	
2.3.5	Determining the Number of Re-dredging Attempts	35

Part 2:

Draft Performance Standard for Dredging Residuals Public Review Copy

Table of Contents

2.3.6 Engi	ineering Contingencies for the Residuals Standard	35
2.3.6.1 A	Iternative Dredges	36
2.3.6.2 C	apping	36
	-Situ Treatment	
2.3.6.4 E ₁	ngineering Contingencies Used at Other Sites	38
3.0 Implementa	tion of the Performance Standard for Dredging Residuals	40
3.1 Sampling	Grid Establishment	40
3.2 Sample C	Collection	41
3.3 Sample N	Management	42
3.4 Sample A	nalysis	43
3.5 Evaluatio	on of Sample Data and Required Actions	44
3.5.1 Re-d	Iredging and Required Number of Re-dredging Attempts	47
3.5.2 Dete	ermining the Extent of the Non-Compliant Area	48
	ing Contingencies	
	finement of the Performance Standard for Dredging Residuals	
5.0 List Of Acro	onyms	53
6.0 References.		55
LIST OF TABLES		
Table 1-1	Summary of Performance Standard for Dredging Residuals	
Table 2-1	Case Study Information	
Table 2-2	Summary Statistics for Case Studies	
Table 2-3	Summary Statistics for All Sites and Estimates of the UCL ar	ıd PL
Table 2-4	Summary of UCL and PL Values for the Hudson River	
Table 2-5	Area within the Action Levels for a Percentage of Inventory	
	Remaining in the Residuals	
Table 2-6	Non-compliant Areas Resulting from the PL Criteria	
Table 2-7	Estimate of the Number of Sample/Target Areas	
Table 2-8	Impact of Settled Material on Surface Sediment Concentratio	ns
LIST OF FIGURE	ES	
Figure 1-1	Flow Diagram for Performance Standard for Dredging Residu	uals
Figure 2-1	Polygonal Declustering Plots for Case Study Residuals Data	
Figure 2-2	Quantile-Quantile Plots for Case Study Residuals Data	
Figure 2-3	Mahalanobis Jackknife Distance for the 8 Case Studies	
Figure 2-4	Histograms for Case Study Residuals Data	
Figure 2-5	Mean vs. Standard Deviation for the Case Study Sites	
Figure 2-6	Mean vs. Standard Deviation for the Logs of the Case Study	Sites
Figure 2-7	Tri+ PCB Residual Concentrations by Percent Removal	-
Figure 2-8	Reynolds Metals Residual Data Semivariogram Analysis	
Figs. 2-9	Marathon Battery Residual Data Semivariogram Analysis	
Figs. 2-10	New Bedford Harbor Core and Grab Samples Residual Data	
5	Semivariogram Analysis	

Part 2:

Draft Performance Standard for Dredging Residuals Public Review Copy Table of Contents

LIST OF FIGURES (continued)

Figure 2-10	New Bedford Harbor Core and Grab Samples
Figure 2-11	New Bedford Harbor Grab Sample Residual Data Semivariogram Analysis
Figure 2-12	New Bedford Harbor Core Sample Residual Data Semivariogram Analysis
Figure 2-13	Cumberland Bay Residual Data Semivariogram Analysis
Figure 2-14	Fox River Deposit N Residual Data Semivariogram Analysis
Figure 2-15	Fox River SMUs 56/57 Residual Data Semivariogram Analysis
Figure 2-16	GM Massena Residual Data Semivariogram Analysis
Figure 3-1	Example for Determining the Extent of Re-dredging

ATTACHMENTS

Attachment A Case Study Site Residual Data

New Bedford Harbor Pre-Design Test Residual Results Evaluation

<u>Draft Engineering Performance Standards – Public Review Copy</u> <u>Hudson River PCBs Superfund Site</u> Performance Standard for Dredging Residuals

1.0 Statement of the Performance Standard for Dredging Residuals

The Performance Standard for Dredging Residuals (referred to as the Residuals Standard) is designed to detect and manage contaminated sediments that may remain after initial dredging in the Upper Hudson River. The ROD calls for removal of all PCB-contaminated sediments in areas targeted for dredging, and anticipates a residual of approximately 1 mg/kg Tri+ PCBs (prior to backfilling). The "residual sediments" may consist of contaminated sediments that were disturbed but escaped capture by the dredge, resuspended sediments that were redeposited/settled, or contaminated sediments remaining below the design dredging cut elevations (*e.g.*, due to uncertainties associated with interpolation between core nodes or insufficient core recovery).

The Residuals Standard requires the implementation of a post-dredging sampling and analysis program to detect and characterize PCB concentrations in the residual sediments. The post-dredging sediment data are compared to the anticipated residual of approximately 1 mg/kg Tri+ PCBs stated in the ROD and a group of statistical action levels developed for the Residuals Standard. The approach to be taken to manage the residual sediments (including re-dredging) is then selected depending on the statistical analyses of the post-dredging data. The use of statistical analyses to evaluate environmental datasets is a scientifically accepted practice.

Following the summary of the Residuals Standard in Section 1.0 of this document, subsequent chapters provide the technical basis for the development of the standard (Section 2.0), a full version of the Residuals Standard (Section 3.0), and a plan for adjustments to the Standard (Section 4.0). Section 1.1 below briefly describes the action levels, sampling requirements, and decision points included in the Residuals Standard.

1.1 Residuals Standard Criteria

The Residuals Standard refers to each dredged area to be evaluated as a "certification unit," and uses a group of action levels for evaluation of sediment quality in each certification unit after dredging. Certification units are defined as 5 acres in size, based on the average size of existing targeted areas. In each certification unit, 40 sediment cores (each at minimum 0-6 inches in length) are to be collected immediately after the dredging contractor has reached the design cut lines, as confirmed by USEPA oversight. Each core sample will then be analyzed for Tri+ PCB concentration and the results compared to the Residuals Standard's action levels, which are associated with the required actions summarized below. In addition, core samples may need to be collected and analyzed from deeper intervals until a compliant horizon is encountered (see below). This is necessary in specific instances to ensure that the vertical extent of contaminated

residual sediment is adequately characterized prior to implementing the required actions of the Residuals Standard, such as re-dredging, if necessary.

The Residuals Standard requires the review of: 1) the Tri+ PCB concentrations in all 40 individual sediment samples within each 5-acre certification unit, 2) the arithmetic average (mean) Tri+ PCB concentration of the certification unit, and 4) the arithmetic average of the mean Tri+ PCB concentrations of a 20-acre joint evaluation area (certification unit under review and the three previously dredged units within a 2 mile stretch of river). The following actions are required for Phase 1 of the dredging project (adjustments may be made for Phase 2 based on the findings collected during Phase 1, including statistical site-specific concentration values and increasing, if justified, the joint evaluation area to 40 acres):

- 1. <u>Backfill (where appropriate) and Demobilize</u>: At certification units with an arithmetic average residual concentration of 1 mg/kg Tri+ PCBs or less, no sediment sample result of 27 mg/kg Tri+ PCBs or greater, and not more than one sediment sample result of 15 mg/kg Tri+ PCBs or greater, backfill (where appropriate) and demobilize from the certification unit.
- 2. <u>Jointly Evaluate a 20-acre Area</u>: At a certification unit with an arithmetic average residuals concentration greater than 1 mg/kg Tri+ PCBs and less than or equal to 3 mg/kg Tri+ PCBs, no sediment sample result of 27 mg/kg Tri+ PCBs or greater, and not more than one sediment sample result of 15 mg/kg Tri+ PCBs or greater, jointly evaluate a 20-acre area.
 - For the 20-acre evaluation, if the area-weighted arithmetic average of the individual arithmetic averages (means) from the certification unit under evaluation and the 3 previously dredged certification units (within 2 miles of the current unit, measured along the River's centerline) is 1 mg/kg Tri+ PCBs or less, backfill may be placed (with subsequent testing required). Otherwise, all or part of the certification unit must be re-dredged (see #4 below for actions required during and following re-dredging) or a sub-aqueous cap constructed. Re-dredging or capping is to be conducted at the specific areas within the certification unit that are causing the non-compliant mean concentration. If the certification unit does not comply with #1 or #2, above, after two re-dredging attempts, contingency actions may be implemented in lieu of further re-dredging attempts, as described in #5, below.
- 3. Re-dredge or Construct Sub-aqueous Cap: At a certification unit with an arithmetic average residuals concentration greater than 3 mg/kg Tri+ PCBs but less than or equal to 6 mg/kg Tri+ PCBs, no sediment sample result of 27 mg/kg Tri+ PCBs or greater, and not more than one sediment sample result of 15 mg/kg Tri+ PCBs or greater, redredge or construct a sub-aqueous cap. The choice of two options is provided to maintain flexibility and productivity (e.g., some areas may not be conducive to dredging). If re-dredging is chosen, the surface sediment of the re-dredged area must be sampled and the certification unit re-evaluated. If the certification unit does not meet the objectives of #1 or #2, above, following two re-dredging attempts,

contingency actions may be implemented in lieu of further re-dredging attempts, as described in #5, below.

4. Additional Sampling and Re-dredging Required: For areas of elevated Tri+ PCB concentrations within a certification unit with an arithmetic average residuals concentration greater than 6 mg/kg Tri+ PCBs or to address individual sampling point(s) with concentrations of 27 mg/kg Tri+ PCBs or greater or more than one sampling point with concentrations of 15 mg/kg Tri+ PCBs or greater, additional sampling and re-dredging is required.

Sampling at depths greater than 6 inches will be triggered by an arithmetic average residual concentration greater than 6 mg/kg Tri+ PCBs. The spatial extent of this sampling at greater depth will be determined by the median Tri+ PCB concentration. If the median concentration in the certification unit is greater than 6 mg/kg Tri+ PCBs, collection and analysis of additional sediment core samples is required from deeper intervals over the entire certification unit (e.g., 6-12 inch, 12-18 inch, etc.) as necessary to re-characterize the vertical extent of PCB contamination. If the median concentration is 6 mg/kg Tri+ PCBs or less, characterization of the vertical extent of contamination is required only in the areas within the certification unit that are contributing to the non-compliant arithmetic average concentration. Additional sampling to characterize the vertical extent of contamination is contemplated only once.

The Residuals Standard provides a mechanism for calculating the horizontal extent of re-dredging. All re-dredging attempts are to be designed to reduce the mean Tri+PCB concentration of the certification unit to 1 mg/kg Tri+PCBs or less. If after two re-dredging attempts, the arithmetic average Tri+PCB concentration in the surface sediment is still greater than 1 mg/kg, then contingency actions are to be implemented as stated in #5, below.

5. <u>Contingency Actions</u>: At areas where two re-dredging attempts do not achieve compliance with the action levels, construct an appropriately designed sub-aqueous cap, where conditions allow, or choose to continue re-dredging.

In cases where re-dredging is required but fails to reduce the concentration below the action levels (after two additional attempts), there are two options available: (1) an appropriately designed sub-aqueous cap may be placed to isolate the PCB residuals, as provided in the contingency elements of the Residuals Standard (refer to Section 2.3.6), or (2) the Construction Manager (as defined in Section 2.3.4) may choose to continue dredging, based on cost considerations, consideration of impacts to the schedule, and knowledge of the dredging area and equipment.

The rationale for the action levels is provided in Section 2.1.1, Criteria in the Record of Decision and Section 2.2.1.3, Action Levels for Average and Individual Sample Concentrations. Based on an evaluation of currently available case study data, the action

levels chosen represent the following statistical limits on the certification unit arithmetic averages and individual sample concentrations:

- 27 mg/kg Tri+ PCBs 99% Prediction Limit (PL)
- 15 mg/kg Tri+ PCBs 97.5% PL
- 6 mg/kg Tri+ PCBs 99% Upper Confidence Limit (UCL)
- 3 mg/kg Tri+ PCBs 95% UCL

The 99% PL and 95% PL are prediction limits considering individual samples, and the 99% UCL and 95% UCL are upper confidence limits on the mean (*i.e.*, arithmetic average; see Section 2.2.1.3.1 for further information).

Note that all PCB concentrations are to be rounded conventionally to whole numbers in mg/kg Tri+ PCBs. These values may be revised pending new data that may be available prior to the Phase 1 effort, or during or subsequent to the Phase 1 dredging effort (refer to Section 4.0).

1.2 Draft Residuals Standard Implementation

Post-dredging sediment sampling must be completed within seven days after dredging is completed within the certification unit. Dredging completion is defined as the entire certification unit meeting the design cut elevations. Post-dredging sediment sampling and analyses generally consists of the following tasks:

- Visual investigation of the dredging residuals in the certification unit using sediment profile imaging (SPI) equipment.
- Collection of 40 uniformly spaced sediment cores from each certification unit less than or equal to 5 acres in size (refer to Section 2.2.7).
- Processing of each sediment core to obtain a 0-6 inch sample.
- Laboratory extraction of the samples and analysis of the extracts for PCBs. Analysis of deeper samples (6-12 inch, 12-18 inch, etc.) may be required, even if the collection of additional core samples is required, based on the arithmetic average concentration encountered in the 0-6 inch layer.
- Calculations of arithmetic average, area-weighted average for 20-acre area, and median from certification unit laboratory data.
- Comparison of individual results, arithmetic averages, area-weighted averages and median to Residuals Standard action levels.

Required actions following the tasks described above are shown in Figure 1-1 as a flowchart and summarized in Table 1-1.

2.0 Technical Basis of the Performance Standard for Dredging Residuals

2.1 Background and Approach

2.1.1 Criteria in the Record of Decision

The USEPA 2002 Record of Decision (ROD) states that the selected remedy includes the "removal of all PCB-contaminated sediments within areas targeted for remediation, with an anticipated residual of approximately 1 mg/kg Tri+ PCBs (prior to backfilling)."

The Residuals Standard requires dredging residual concentrations to be compared to the ROD's anticipated residual of approximately 1 mg/kg Tri+ PCBs, which was based on the findings of previously conducted USEPA modeling to evaluate the recovery of fish tissue PCB concentrations following dredging and backfill placement. parameters included an assumption that the PCB concentrations in the backfill would be 0.25 mg/kg Tri+ PCBs for all dredged areas (areas outside the targeted dredging areas were modeled using existing Tri+ PCBs surface concentrations as estimated from field sampling). The modeled PCB concentration in backfill was based on a conservative estimate of the potential mixing of a 1-foot thick backfill layer with a dredged surface that had a residual concentration of 1 mg/kg Tri+ PCBs. While it was assumed for the purposes of the Residuals Standard that residuals could be completely encapsulated by carefully placed backfill, some case studies have shown that backfill placement can disturb and displace residuals, allowing them to resettle on top of the backfill. The model indicated that fish tissue recovery trajectories are acceptable with a backfill Tri+ PCBs concentration of 0.25 mg/kg or less; however, model runs using higher backfill PCB concentrations yielded more elongated (i.e., slower) recovery trajectories. Therefore, the Residuals Standard must control Tri+ PCBs concentrations in residuals that may impact the backfill, and the criterion of approximately 1 mg/kg Tri+ PCBs stated in the ROD is considered to be an appropriate threshold for evaluation of the dredging residuals. Areas where backfill is not to be placed (e.g., navigation channel) were modeled at 1 mg/kg Tri+ PCBs, therefore, this criterion is appropriate for such areas.

The Residuals Standard further builds on the ROD's stated objective of "an anticipated residual concentration of approximately 1 mg/kg Tri+ PCBs" by including a group of statistically derived action levels. The action levels are used to trigger specific responses (including re-dredging) from a range of responses appropriate for managing residual sediments. The use of statistics to generate the action levels is based on sound science, is a common approach for the interpretation of environmental datasets, and ensures that application of the action levels to evaluate residuals data will clearly indicate whether the ROD's criterion of approximately 1 mg/kg Tri+ PCBs has been achieved.

2.1.2 Case Studies

The development of the Residuals Standard included a review of residuals sampling programs previously designed or completed for other environmental dredging projects. Although the post-dredging sediment sampling protocol in the Residuals Standard is specific to the Hudson River PCBs Site, applicable information from other dredging projects was considered, including pre-dredging contaminant concentrations, the type of dredging (mechanical/hydraulic) conducted, the characteristics of the area, the presence of debris or boulders, post-dredging contaminant concentrations, the number of samples (sample density), depth of samples, type of samples (e.g. grab, core, composite), sample location and the timing of collection (i.e., length of time between completion of dredging and sampling). The review performed for the Residuals Standard supplements the extensive literature search on post-dredging residual PCB concentrations prepared for the ROD, which can be found in the Appendix: Case Studies of Environmental Dredging Projects (provided under separate cover as Volume 4 of 4). A brief summary of project information for the case studies reviewed is provided in Table 2-1.

2.1.3 Regulatory Guidance

Relevant guidance documents were identified and reviewed for development of the residual sampling strategy, including but not limited to:

- Guidance for Choosing a Sampling Design for Environmental Data Collection, EPA/240/R-02/005 (USEPA, 2002a), hereafter referred to as the "Sampling Guidance."
- Guidance for the Data Quality Objectives Process, EPA QA/G-4 (USEPA, 1994).
- Requirements for the Preparation of Sampling and Analysis Plans, EM-200-1-3 (USACE, 1994).
- Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846 3rd Edition (USEPA, 1998).
- Methods for Evaluating the Attainment of Cleanup Standards, Volume 1: Soils and Solid Media (USEPA, 1989).

USEPA's Sampling Guidance (available online at http://www.epa.gov/quality/qs-docs/g5s-final.pdf) describes several relevant basic and innovative sampling designs, as well as the process for deciding which design is appropriate for a particular application. Based in statistical theory, it explains the benefits and drawbacks of each design and describes relevant examples for illustration of environmental measurement applications. The information in this document is consistent with other U.S. USEPA guidance documents on sampling design, including the Soil Screening Guidance (USEPA, 1996) and SW-846 (USEPA, 1986), but it includes innovative designs not covered in earlier USEPA's documents, including geostatistical studies.

USEPA's Sampling Guidance discusses two main categories of sampling designs: probability-based designs and judgmental designs. An essential feature of a probability-based design is that each member of the sample population has a known probability of

selection. When a probability-based design is used, *statistical inferences* may be made about the target population from the data obtained from the sampling units. Judgmental sampling designs involve the selection of sampling units on the basis of expert knowledge or professional judgment. Key points from the USEPA's Sampling Guidance are included below.

Systematic and Grid Sampling. In this method, samples are taken at regularly spaced intervals over space or time. An initial location or time is chosen at random, and then the remaining sampling locations are defined so that all locations are in regular intervals over an area (grid) or time (systematic). Examples of systematic grids include square, rectangular, triangular, or radial grids. Systematic and grid sampling typically is used to search for hot spots and to infer means, percentiles, or other parameters and also is useful for estimating spatial patterns or trends over time. This design provides a practical and easy method for designating sample locations and ensures uniform coverage of the site, unit, or process.

Soil Contamination Applications. For applications where the goal of sampling is to evaluate the attainment of cleanup standards for soil and solid media (including sediments), the guidance recommends collecting samples in the reference areas and cleanup units on a random-start equilateral triangular grid except when the remedial action method may leave contamination in a pattern that could be missed by a triangular grid; in this case, unaligned grid sampling is recommended. If nothing is known about the spatial characteristics of the target population, grid sampling is efficient in finding patterns or locating rare events. If there is a known pattern or spatial or temporal characteristic of interest, grid sampling may have advantages over other sampling designs depending on what is known of the target population and what questions are being addressed by sampling.

2.2 Supporting Analyses

2.2.1 Case Study Statistical Data Evaluation

2.2.1.1 Introduction

Case study data were acquired for a number of projects with related contamination and remediation strategies. These datasets were used to develop parameters for the Residuals Standard. Specifically, action levels for evaluation of the Hudson River PCBs residuals data and the number of samples required to assess the arithmetic average concentration of the certification units were derived using the case study data, as described below.

2.2.1.2 Description of the Case Studies

Case study data were used to determine action levels and other parameters for the Residuals Standard. Case studies with similar conditions and remedial operations were considered. For instance, projects where the excavation was done "in the dry" are not as

relevant as are those done "in the wet;" projects done more recently with newer technology are more relevant than projects completed ten or more years ago; sites with PCB contamination are preferred, but sites with other contaminants were considered.

Post-excavation dredging data were obtained for eight sites (described below). Table 2-1 contains project information for seven of these sites. The post-dredging sample data obtained are provided in Attachment A.

The sub-bottom sediments at these sites were fine grained with some exceptions. The sites located in the St. Lawrence River (General Motors Massena and Reynolds Metals) had gravel and cobbles. The Grasse River removal had rocky conditions. The majority of the target areas in the Upper Hudson River are likely to be fine grained, but there are some coarse-grained areas that will require dredging (not including the rocky areas exempted from dredging by the ROD, which consist of exposed bedrock). All of the sites required multiple dredging attempts to achieve the clean up goals, except the New Bedford Harbor Pre Design Test, where no concentration goal was set. It is possible that the sites requiring multiple re-dredging attempts used technology that was incapable of meeting the remediation goals at certain areas of the site. For example, at Reynolds Metals, the most contaminated area had DNAPL contamination on cobbles. This terrain would be difficult to remediate using conventional dredging technologies.

Most of the sites were sampled on a grid. The grid spacing varied from 40 to 100 feet. Core samples were collected from all sites with the depth of collection varying from 4 to 12 inches below the surface. Grab samples were also collected at three of the sites. The depth of the grab samples was specified for two of the sites at 0-2 cm.

All of the sites listed on Table 2-1 have PCB contamination except for Marathon Battery, which has cadmium contamination. Six of the sites listed used Aroclors, usually USEPA Method 8082, to quantify the residual contamination. At New Bedford Harbor, 18 congeners were analyzed, and a relationship from a previous effort was used to calculate the Total PCB concentration. Of the four sites that had a target post-excavation concentration, two of the sites were able to achieve the goal.

The spatial distribution of the residual concentrations is shown in Figure 2-1 for several of the sites using polygonal declustering analysis. In most cases, the distribution of the residuals concentrations was heterogeneous with a few locations of higher concentration.

For Reynolds Metals, the "hottest" (most contaminated) quadrants were located in a small area relative to the entire site. This area was located near an outlet and was the most contaminated area in the target area. It was underlain with cobbles and boulders, making the remediation more difficult. There were other sections of the target area with similar bottom conditions, but the sediments were remediated to below 10 mg/kg PCBs.

For the Marathon Battery site, most of the area had a pre-dredging cadmium concentration between 3 and 30 mg/kg. The more contaminated samples (>30 mg/kg) were located along the boundaries of the dredging area, with two exceptions. The pre-

dredging samples were examined to determine if there was a relationship between the pre- and post-dredging concentrations for the hotter residual areas (>30 mg/kg). There was a considerable range of pre-dredging sample concentrations (45 mg/kg to 13,800 mg/kg) in the areas with high post-dredging sample concentrations. Other areas of the site having similar concentrations were remediated to concentrations below 30 mg/kg. Most of the post-excavation samples with high cadmium concentrations were located near or outside the boundary of the dredging area. This may indicate that the higher residual results are associated with the estimation and location of the dredging cut lines.

At the Fox River Deposit N site, most of the area was remediated to less than 3 mg/kg PCBs with the higher residual concentrations coinciding with the areas of higher predredging concentrations. At General Motors (GM) Massena, the dredging successfully reduced the concentrations from greater than 500 mg/kg PCBs to less than 10 mg/kg PCBs in most locations. A portion of the GM Massena site had residual concentrations as high as 6,281 mg/kg and was capped. Both Cumberland Bay and the Fox River Sediment Management Units (SMUs) 56/57 site displayed a heterogeneous distribution of the residual concentrations.

At New Bedford Harbor, the majority of the highly contaminated sediment (>500 mg/kg PCBs) was removed. The few sections of higher contamination in the 0-1 foot layer appeared to coincide with the pre-dredging hotter areas. The pattern and magnitude of contamination in the 0-2 cm (corresponding to approximately 0-1 inch) layer is much different and higher than the 0-1 foot layer, which is probably a result of spillage during dredging and sloughing from the sides of the dredge cuts.

The Non-Time-Critical Removal Action (NTCRA) on the Grasse River, performed on only a portion of the site, successfully removed 27 percent of the contaminant inventory in the river. Dredging was hampered by unexpectedly rocky sub-bottom conditions and a boulder field that ran the length of the targeted area. A target residuals concentration was not specified as a project goal, but the average concentration in post-dredging samples was substantially reduced from the pre-dredging conditions. The length weighted average concentration (LWA) of the pre-dredging cores gives a measure of the concentration removed by dredging. The depth of the pre-dredging cores varied from 12 inches to 36 inches. The average of the LWA values was 801 mg/kg PCBs with concentrations in individual samples ranging from 12 mg/kg to 11,000 mg/kg. Following dredging, the concentration in the residual layer was 80 mg/kg PCBs on average, with sample concentrations ranging from 11 mg/kg to 260 mg/kg. On average, the contaminant concentration in the targeted sediment was reduced by 90%. A pattern relating the preand post-dredging concentrations is not evident.

2.2.1.3 Action Levels for Average and Individual Sample Concentrations

2.2.1.3.1 Overview

The Hudson River post-dredging residual sample concentrations are to be compared to action levels to determine if the certification unit concentrations are within acceptable

limits (as explained in Section 1.1, certification units are defined as dredged areas 5 acres in size, based on the average size of existing targeted areas). These action levels were developed based on the case study residual data. The ROD states that the anticipated residual concentration will be approximately 1 mg/kg Tri+ PCBs. This implies that the arithmetic average concentration and any individual points may exceed 1 mg/kg Tri+ PCBs, and that it is appropriate to develop statistical action levels to evaluate the degree to which the ROD's objective has been achieved in a particular certification unit.

Two types of action levels were developed to assess the Upper Hudson River residuals data. The first type of action level specifies upper bounds on the certification unit arithmetic average concentration. There will be two numerical action levels for the certification unit arithmetic average: 1) an acceptable upper limit below which the area could be backfilled (with conditions) without requiring re-dredging and 2) an "unacceptably high" limit, below which either re-dredging or construction of an engineered cap would be required, and above which re-dredging would be required. The second type of action level is an upper bound concentration for an individual sample. There will be two numerical action levels for individual samples (also referred to as sampling nodes). The lower of the two action levels can be exceeded at only one sampling node in a certification unit. The higher of the two action levels cannot be exceeded at any sampling nodes in a certification unit. Non-compliant individual sampling nodes will be addressed by re-dredging or capping, according to the average concentration of the certification unit and the number of re-dredging attempts already conducted.

The action levels were calculated based on the case study data, using a variety of statistical approaches to determine upper confidence limits and prediction limits. The 95% upper confidence limit (95% UCL) on the mean (*i.e.*, arithmetic average) is the upper bound of the interval that would contain the true mean of the population 95 percent of the time if the sampling process could be repeated an infinite number of times. The 97.5% prediction limit (97.5% PL) considers the value of individual responses. This interval considers the relationship between the estimation of the true arithmetic average (mean) value of the certification unit and the variability of the individual responses around the mean. If a new observation comes from the same distribution as the previously collected data, there is only a 2.5 percent chance that it will be outside the 97.5% prediction level.

These interval estimates (along with the 99% UCL and the 99% PL) will be the bases for the action levels set for the Residuals Standard. The intention is to establish action levels that, when exceeded in residuals sampling, clearly indicate that the ROD's objective of approximately 1 mg/kg Tri+ PCBs has not been achieved. The UCL represents the upper bound on the average concentration and the PL represents the upper bound for any individual concentration. The 95% UCL will be used as a limit for acceptable average concentrations in a target area. The 99% UCL will be used to determine if a target area has an unacceptably high average concentration. The 97.5% PL and 99% PL will be developed as additional checks on the true arithmetic average. Finding samples in excess of the PL criteria indicate a significant probability that the ROD's objective of 1 mg/kg

Tri+ PCBs has not been achieved. One point in a target area will be allowed to exceed the 97.5% PL value. Using these statistics indicates that 2.5 percent of the sampling locations (or 1 of 40 samples) could be greater than this value and the average concentration could still be in compliance. No points will be allowed to exceed the 99% PL.

As noted above, potentially applicable interval estimates were calculated from the case study data by a variety of means. The case study data were used to obtain estimated UCLs and PLs for evaluation of Upper Hudson River post-dredging residuals because no residuals data will be available from the Upper Hudson River until the dredging project commences. Final action levels were then selected based on weight of evidence.

The first approach relies on direct analysis of the UCLs and PLs obtained in the individual case studies. The UCLs and PLs from each case study are not directly usable, as these values were obtained from a wide variety of sites with differing targets and different residual concentrations. To convert the individual case study results to a common basis, this approach assumed that the distribution of the residuals for the Upper Hudson River would be similar and proportional to the case study residual sample distribution; therefore the UCL and PL action levels for the Upper Hudson River can be estimated using the following equation.

$$M_{cs} / M_{hr} = L_{cs} / L_{hr} \qquad (1)$$

where:

 M_{cs} = the mean of the case study data,

M_{hr} = the mean of the Upper Hudson River data (the anticipated average concentration for the residuals is 1 mg/kg Tri+ PCBs),

 L_{cs} = the limit (confidence or prediction) of the case study data, and

 L_{hr} = the limit (confidence or prediction) of the Upper Hudson River data.

This approach is based on the observation that, in general, the mean and standard deviation of environmental data sets show some degree of proportionality. A problem with this approach is that both the UCL and PL equations have dependence on the sample size. As an alternative approach, the action levels were estimated by substituting the mean (1 ppm) and sample size (40) that are expected in the Upper Hudson River certification units (CUs) and an estimate of variance from the case studies into the equations for the UCL and PL. Several variants on this approach are summarized below.

2.2.1.3.2 <u>Analyses</u>

The statistics were calculated using Pro-UCL (USEPA, 2001) for the assessment of the distribution and the UCLs. Statistics for each data set are presented in Table 2-2.

The Shapiro-Wilks W test was used to test normality and lognormality for data sets with 50 or fewer samples. The Lillefiors test was used to test normality and lognormality for data sets with more than 50 samples. The results are summarized in Table 2-3. Quantile-Quantile (Q-Q) plots were also used to test for approximate lognormality of the data

distributions (Figure 2-2). These plots provide a simple graphical approach to test for approximate lognormality of the data distributions.

Pro-UCL was used to calculate the UCLs for the case study data using lognormal and nonparametric equations. A recommendation for the appropriate 95% UCL equation is given by Pro-UCL, depending on the number of samples and the standard deviation for the lognormal data sets. For the lognormal distributions, the 99% UCL Chebyshev (Mean, Std) equation for lognormal data was used. For the nonparametric UCLs, the 95% and 99% Chebyshev (Mean, Std) value for nonparametric data was used.

The following equations were used to estimate the UCLs and PLs when substituting the mean, number of samples and variance. The Chebyshev (Mean, Std) UCL for non-parametric data is as follows:

$$UCL = \bar{x} + \frac{S_x \sqrt{((1/\alpha) - 1)}}{\sqrt{n}}$$
 (2)

where:

 \bar{x} = the arithmetic average,

 S_{x} = the standard deviation,

 α = defined such that $100*(1-\alpha)$ is the confidence limit required, and

n = the number of measurements.

An equation for the UCL, assuming the data are lognormal, is Land's method (Gilbert, 1987):

$$UCL = e^{\left(\frac{1}{y} + 0.5 \cdot S_y^2 + \frac{S_y \cdot H_{1-\alpha}}{\sqrt{n-1}}\right)}$$
(3)

where:

 \overline{y} = the average of the log values,

 S_{ν} = the standard deviation of the log values,

 $H_{1-\alpha}$ = quantities found in the tables provided in Land (1975),

 α = defined such that $100*(1-\alpha)$ is the confidence limit required, and

n = the number of measurements.

The prediction limit for nonparametric data is the percentile. For nonparametric data and α of 0.05, the prediction interval is the 95th percentile.

The parametric asymmetric prediction interval was computed assuming the data follow a lognormal distribution:

$$PL = e^{\left(\overline{y} + t(\alpha, n-1)\sqrt{S_y^2 + \frac{S_y^2}{n}}\right)}$$
(4)

the mean of the log values,

defined such that $100*(1-\alpha)$ is the confidence limit required,

the variance of the log values,

the number of measurements, and

the Students t value from a table (Gilbert, 1987).

The central tendency for the lognormally distributed and nonparametric data required in Equation 1 was either the arithmetic mean or the minimum unbiased estimator of the mean (MVUE) depending on the amount of skew in the distribution. If the coefficient of variation was greater than 1.2, the MVUE was used; otherwise, the arithmetic mean was used (Gilbert, 1987). The sample geometric mean is not appropriate for Equation 1, because it is a biased estimator of the mean, tending to underestimate the true mean. The MVUE is calculated as follows:

$$MVUE = \left[\exp(\bar{y})\right] \Psi_n \left(\frac{S_y^2}{2}\right)$$
 (6)

where:

 $\exp(y)$ = the geometric mean of the day S_y = the variance of the logarithms Ψ_n = the infinite series defined as: = the geometric mean of the data,

the variance of the logarithms of the data, and

$$\Psi_{n}(t) = 1 + \frac{(n-1)t}{n} + \frac{(n-1)^{3}t^{2}}{2!n^{2}(n+1)} + \frac{(n-1)^{5}t^{3}}{3!n^{3}(n+1)(n+3)} + \frac{(n-1)^{7}t^{4}}{4!n^{4}(n+1)(n+3)(n+5)} + \dots$$

$$t = \frac{S_y^2}{2}$$

All sample points were used from each case study except for areas of the Reynolds Metals and GM Massena sites. One sample from the Reynolds Metals site had a concentration of 5,941 mg/kg PCBs, which is 50 times higher than the next largest sample. This result can be reasonably omitted because the bottom conditions in that area, a boulder field with dense non-aqueous phase liquid (DNAPL) contamination, are not

representative of the Upper Hudson River, which is not expected to have DNAPL contamination

Quadrant 3 of the GM Massena site had elevated concentrations and was capped. Samples from the capped area were not used in the development of the single estimate of variance based on the case studies because these data represent an extreme condition, with concentrations as high as 6,281 mg/kg PCBs. This level of residual contamination is not expected to routinely occur during remediation of the Upper Hudson River. These samples were included in the summary statistics for each of the multiple passes in order to provide an example of the effect of additional passes on the concentration levels.

Summary statistics are provided for the New Bedford Harbor grab samples, but are not used to estimate action levels due to the interval sampled. These samples were collected to characterize the concentrations caused by spillage in the topmost layer (0-2 cm). Because the residual samples for the Upper Hudson River will be collected from the 0-6 inch interval to characterize residual concentrations that are not only a result of spillage (sloughing, homogenization of the sediment, etc.), the New Bedford Harbor grab samples are not comparable. The one-foot thick core samples from the same New Bedford Harbor study were used instead.

Data from the Grasse River have been included in some of the calculations where the data have been lognormally transformed. The untransformed data were not included in the calculations because the residual concentrations differ greatly in magnitude from the other case study sites. The Mahanalobis jackknife distances test for outliers shows the mean and standard deviation to be possible outliers (Figure 2-3). The concentrations are not comparable to the other sites, because the bottom conditions were not conducive to conventional dredging and the primary goal of the remediation was inventory removal, not concentration reduction.

Variance in the case study samples appears to increase with mean concentration, a phenomenon commonly observed in environmental monitoring data (heteroscedasticity). Two approaches were used to obtain summary estimates of variability from the case study data. First, a simple linear regression analysis provided an estimate of the variance from the case study data as a function of the untransformed mean. With this estimate of the variance (S_x) , the UCL can be calculated using the nonparametric Chebyshev equation (Equation 2). (The linear fit and 95% confidence curves on the line of fit were calculated using JMP software.)

The second approach follows from the observation that a lognormal transformation provides a better approximation to the observed distributions than the normal and also reduces the dependence of the variance on the mean. Therefore, the average of the standard deviation of the logarithms from the case studies can be used as an estimate of the expected standard deviation of logarithms (S_y) in the Upper Hudson River, and the upper confidence limit equation for lognormal data (Equation 3) and the parametric asymmetric prediction limit equation (Equation 4) can be applied.

2.2.1.3.3 Results

The statistics for each case study are summarized in Table 2-3. The site-specific UCL and PL values are presented for the distribution specified or for the nonparametric case if the data are not normal or lognormal. Examination of the Q-Q plots for the log-transformed data show a somewhat linear pattern with high correlation coefficients. Of the Q-Q plots shown, 7 of 10 data sets have correlation coefficients greater than 0.95, which is indicative of data that are approximately lognormal (USEPA, 2001). The Grasse River is the only site that may be normally distributed. Histograms of the untransformed data and the log-transformed data for each of the data sets are presented in Figure 2-4. For most of the sites, the log-transformed data show a more normally shaped distribution. Although most of the data sets were not lognormal according to Lilliefors Test, from review of the Q-Q plots and the histograms, most of the data sets appear to be approximately lognormal.

Values for multiple dredging attempts at the GM Massena site show the effect on the average concentration with each additional re-dredging attempt. The difference in concentration between the first and second attempts was the most significant (93.5 to 34.5 mg/kg on average). For the remaining attempts the decrease was less pronounced, and from the fifth to the sixth attempt, the average concentration actually increased. The reduction in contamination at the GM Massena site is associated with the type of dredge selected and the river conditions, which may differ at the Upper Hudson River site. It cannot be inferred that the Upper Hudson River residual concentrations will decrease in a similar manner, but this gives an indication of what might occur in portions of the river during the remediation.

UCL and PL estimates for the Upper Hudson River are also presented in Table 2-3. For each site, the value based on proportionality and the value based on substitution are presented. The Chebyshev nonparametric UCL equation (Equation 2) was chosen because most of the case studies are not strictly normal or lognormal based on the test for normality. The parametric asymmetric PL equation (Equation 4) was chosen because the data appear to be approximately lognormal for most of the sites and the nonparametric PL is calculated with the percentile, which would not be useable for substitution. For the substitution approach, the controlling factor is the case study site standard deviation. The proportionality approach yields Tri+ PCB values ranging from 1 to 3 mg/kg for the 95% UCL, 2 to 6 mg/kg for the 99% UCL, 3 to 15 mg/kg for the 97.5% PL and 4 to 23 for the 99% PL. The substitution approach yields Tri+ PCB values ranging from 3 to 24 mg/kg for the 95% UCL, 5 to 54 mg/kg for the 99% UCL, 7 to 25 mg/kg for the 97.5% PL and 10 to 48 for the 99% PL.

With this range of estimated values, it is difficult to select any single value to represent the expected post-dredging Upper Hudson River conditions. The substitution approach could be used most effectively if a best estimate of the standard deviation of the residuals is determined. A linear regression of the arithmetic mean and standard deviation provided this value. Scatter plots of the data are shown in Figure 2-5. The GM Massena data, including the uncapped area, and the New Bedford Harbor grab sample estimates are identified on the top graph. Most of the GM Massena attempts and the New Bedford Harbor grab samples are distant from the values for the other data sets. For this analysis, only one estimate of the mean and standard deviation will be used per site, in order to not heavily weight the results with the data from a single site. For the reasons given in Section 2.2.1.3.2, the New Bedford Harbor grab samples, GM Massena capped area, and Grasse River site data are not included in the regression.

The simple linear regression of these variables shows the mean and standard deviation to be related and have a good fit with a R² of 0.92. This is plotted in the lower graph of Figure 2-5. At a mean of 1 mg/kg Tri+ PCBs, the standard deviation based on the linear regression is 6. Substituting this standard deviation into the Chebyshev nonparametric UCL equation gives Tri+ PCB estimates of 3 mg/kg for the 95% UCL and 6 mg/kg for the 99% UCL.

A second estimate of expected variability was obtained using the standard deviation of the log-transformed data (S_y) from the case studies. A linear regression of the arithmetic mean and S_y was attempted, but was not found to be predictive. A plot of the mean vs. S_y is shown in Figure 2-6. These plots show that S_y has only a weak dependence on the mean. To estimate this value for the Upper Hudson River, the average of the S_y values for the eight sites will be used to get a second estimate of the action levels.

UCLs were calculated by substituting the average S_y value, 1.3, 0 (the natural log of 1 mg/kg) for \bar{y} , 40 for n and the appropriate value for $H_{1-\alpha}$ (2.731 for α = 0.05 and 4.560 for α = 0.01) into the UCL equation for lognormally distributed data (Equation 3). This gives Tri+ PCB values for the 95% UCL of 4 mg/kg and the 99% UCL of 6 mg/kg.

A value for the 97.5% PL can be estimated using the asymmetric parametric prediction limit equation (Equation 4) and substituting 1.3 for S_y , 0 for \bar{y} , 40 for n and 2.023 for t. This gives a 97.5% PL of 15 mg/kg Tri+ PCBs. For the 99% PL, t is 2.426, giving a value of 27 mg/kg Tri+ PCBs. Another, more simple approach will be taken for the PLs: the average PL of the seven sites calculated using substitution. The individual PL values are shown on Table 2-3. The average 97.5% PL is 15 mg/kg Tri+ PCBs and the average 99% PL is 25 mg/L Tri+ PCBs.

A summary of the UCL and PL values calculated using a single estimate of the variance from the case studies, where possible, is given in Table 2-4. The range of UCL and PL values estimated using the variance from the individual case studies is shown for comparison. Even with four different approaches to estimating the thresholds, the values are similar among these approaches for each statistic. For the 95% UCL, Tri+ PCB values of 3 mg/kg and 4 mg/kg were calculated. The lower value of 3 mg/kg Tri+ PCBs was chosen to be conservative, because, under specific conditions, a target area may be

backfilled if the area weighted concentration is as high as the 95% UCL.

For the 99% UCL, both means of calculating this value gave 6 mg/kg Tri+ PCBs. An average concentration less than 6 mg/kg should be attainable in most cases, considering the high percent reduction in inventory found at other sites (USEPA, 2002).

For the 97.5% PL, 15 mg/kg Tri+ PCBs was calculated using both approaches. For the 99% PL, values of 25 mg/kg and 27 mg/kg were calculated. The higher value of 27 mg/kg Tri+ PCBs was chosen to balance the Residuals Standard with dredging productivity goals.

2.2.1.3.4 Summary of Action Levels

The action levels that will be used to evaluate the Phase 1 residuals data for the Upper Hudson River are as follows:

Action Level	Value (mg/kg Tri+ PCBs)
95% UCL	3
99% UCL	6
97.5% PL	15
99% PL	27

2.2.2 Relevance of the PL Criteria

The Residual Performance Standard is based on average Tri+ PCB concentrations in the certification unit. Because compliance with the residual standard is based on a relatively small number of samples from a heterogeneous medium, the possibility exists that the mean calculated from the sampling results will meet the action level but the true mean will not. The PL action levels were developed as additional checks on the true mean's compliance. Essentially, the PL action levels are individual sample values that have a low degree of probability of occurring if the true population mean is compliant. Finding samples in excess of the PL criteria indicates a significant probability that the ROD's objective of approximately 1 mg/kg Tri+ PCBs is not achieved, and is thus a rationale for focused re-dredging. A secondary benefit of the PL action levels is that their application will minimize the possibility for areas of elevated concentration to remain in the remediated area.

2.2.3 Estimate of Re-dredging Area by Percent Reduction in PCBs

Historical sediment sampling data can be used to estimate the Tri+ PCB concentrations in a hypothetical six-inch thick residual sediment layer, assuming a certain percent reduction in PCB contamination (e.g., 95% or 99% reduction) accomplished by the first dredging attempt, and also assuming that the residual layer contains the remainder of the PCB contamination. The estimated concentrations can be used to forecast the percent of

the dredged area that will require re-dredging or capping. The NYSDEC 1984 sediment samples provide the most comprehensive coverage of the Upper River, with the samples concentrated in the Thompson Island (TI) Pool. These samples provide an estimate that can be applied to all river sections.

The 1984 samples were analyzed with a method that captured the Tri+ PCB fraction. Total PCB concentrations were estimated using the method outlined in the White Paper - Relationship Between Tri+ and Total PCBs in the Responsiveness Summary to the ROD (USEPA, 2002). Polygonal declustering was used to estimate the spatial extent of the contamination (USEPA, 1999). The area was further limited to the target areas defined in the FS for the remedy selected in the ROD.

Mass per unit area is calculated with:

$$MPA(g/sq.m) = \sum_{i=1}^{n} C_{i} \left(\frac{mg}{kg_{DW}}\right) \cdot L_{i}(cm) \cdot SSW_{i} \left(\frac{g_{DW}}{cc}\right) \cdot \frac{1kg}{1000g} \cdot \frac{1g}{1000mg} \cdot \left(100\frac{cm}{m}\right)^{2} (6)$$

where:

 C_i - the Total PCB concentration in the core segment in mg/kg dry weight (mg/kg),

 L_i - the length of the core segment in cm,

 SSW_i - the mass of dry solids per unit wet core volume in $\frac{g_{dryweight}}{cc}$, and

n - the number of segments in the core analyzed for PCBs.

Tri+ PCB concentrations representing a fraction of the inventory remaining were calculated by solving Equation 6 for concentration and substituting 6 inches for L, the length weighted average SSW for that location and the Total PCB MPA for each location multiplied by the percentage of the inventory remaining. The Tri+ PCB concentrations were calculated for 1, 5 and 10 percent contamination remaining in the residual layer. Figure 2-7 shows the spatial distribution of the concentration levels in the target areas for each percent inventory remaining. Areas requiring additional re-dredging or capping are located throughout the target area and are not limited to a few hot spots.

The calculated percentages of dredged area expected to have Tri+ PCB concentrations that comply with the Residual Standard's action levels are listed in Table 2-5. For a 6-inch thick residuals layer, if 99 percent removal can be achieved, only 9 percent of the area will require additional treatment (e.g., re-dredging). If 95 percent removal can be achieved, 58 percent of the area will require no additional treatment, 25 percent of the area can be considered for backfilling (with backfill testing required), 5 percent could be capped immediately and 11 percent would require re-dredging. A remedial goal of this project has been inventory removal of between 95 and 98 percent (USEPA, 2002). Review of the case study data has shown that, generally, this level of removal has been achieved at other sites, some with more difficult environmental conditions than those expected in the Upper Hudson River (USEPA, 2002).

The tiered action levels in the standard provide flexibility in the approach to the remediation, with a mandatory re-dredging requirement (certification unit mean, *i.e.*, arithmetic average > 6 ppm) for only 11 percent of the targeted area if 95 percent of the contamination is removed by meeting the design cut lines through the first dredging attempt. Capping or backfilling with testing is an option for the remaining 30 percent of the target areas with average concentrations greater than 1 mg/kg Tri+ PCBs and less than or equal to 6 mg/kg Tri+ PCBs. Appropriate selection of the cut lines will be an important factor in minimizing the number of re-dredging attempts.

2.2.4 Estimate of Re-dredging Area Resulting from the PL Action Levels

The re-dredging area resulting from the application of the PL action levels in the Residuals Standard can be projected, because each 0-6 inch residual sample can be considered compliant or non-compliant depending on the measured concentration. If the concentration is less than the PL, it is compliant. If the residual concentrations conform to the desired distribution with a mean value of 1 mg/kg Tri+ PCBs, then there is a 97.5 percent probability of each sample to comply with the 97.5% PL (*i.e.*, the sample result is less than the 97.5% PL) and a 99 percent probability of each sample to comply with the 99% PL. The result of each sample is independent from the other samples. The binomial distribution can be used to estimate the probability that a number of samples will be noncompliant:

$$p(x) = p(y = n - x) = \frac{n!}{y!(n - y)!} p^{y} (1 - p)^{n - y} (7)$$

where:

p = probability of compliance (0.975 or 0.99),

n = number of trials (40),

y = number of samples less than the target, and

x = n - y, the number of non-compliant samples.

The probabilities for the non-compliance of 0-40 nodes at the PL action levels are listed in Table 2-6, for both the 97.5% PL and the 99% PL. The probability for 1 to 40 non-compliant sampling nodes is shown even though more than 3 sampling nodes in a certification unit with concentrations at or above 97.5% PL will result in an estimated average concentration greater than 1 mg/kg Tri+ PCBs. The Residuals Standard permits one sampling node to exceed the 97.5% PL. According to the equation above, there is a 73.6% probability (36.3% + 37.3%) that zero or only one sampling node will exceed the 97.5% PL, and 27.0% of the areas with one exceedance of the 97.5% PL will fail for the 99% PL. This leads to the conclusion that 46.6% (73.6% - 27.0%) of the certification units with an areal average of 1 mg/kg Tri+ PCBs will not have exceedances of the PLs.

Assuming that each non-compliant node will require dredging to the surrounding nodes that are located 80 feet away, the area of re-dredging for each node is 0.38 acres. Using the probabilities given by the binomial distribution and assuming that a total of 100 CUs will be dredged, exceedances of the PL action levels will require re-dredging or capping of 33 acres. For the selected remedy, the area dredged for contaminant removal was estimated to be 432 acres. Thirty-three acres is equivalent to 8 percent of the total area targeted for removal. This estimate of the non-compliant area is conservative, because it assumes that there is no spatial correlation between the nodes.

2.2.5 Achievement of 1 mg/kg Tri+ PCBs Residual Concentrations

Removal of PCBs in a target area should be achievable if the design of the cut lines factors in a sufficient overcut, because the sediment deposition rates in the river are relatively low and the majority of the PCB contamination is located within a foot or so of the sediment surface. A means of determining the cut lines during design should take into account methods and reasoning described in the FS and the White Paper – Post-Dredging PCB Residuals of the Responsiveness Summary (Part 3 of the ROD, USEPA, 2002). The goal of the remediation is a 96 to 98 percent reduction in concentration. Reductions of similar magnitude have been found at other projects, some with more difficult environmental conditions. The reductions in concentration found at other dredging projects are:

•	Grasse River	90%
•	GM Massena	99%
•	Fox River SMUs 56/57	90%
•	Cumberland Bay	98 %
	NI D 10 1 III 1	0.70/ (0.1.0

• New Bedford Harbor 97% (0-1 foot layer)

Marathon Battery 99.6%Lake Jarnsjon 99%

Two of the sites have comparatively lower percent reductions in contaminant concentration (Grasse River and Fox River). For the Grasse River, inventory removal was the primary goal. For the Fox River, the goal for concentration reduction was set at 90 percent. The average Total PCB concentrations of in-situ material in the targeted areas in River Sections 1 and 2 of the Upper Hudson River are estimated at approximately 27 mg/kg and 60 mg/kg, respectively, with the average concentration in River Section 3 similar to River Section 1. If 96 percent reduction of concentration is achieved in these river sections, the Total PCB residual concentrations will be 1.4 mg/kg in River Section 1 and 2.4 mg/kg in River Section 2. Using a factor of 2.2 to convert the Total PCB concentrations to Tri+ PCBs (USEPA, 2002), the Tri+ PCB residual concentrations would be 0.6 mg/kg in River Section 1 and 1 mg/kg in River Section 2. Reduction of concentrations by percentages similar to those achieved at case study sites will result in residual concentrations that are in compliance with the ROD.

2.2.6 Size of Certification Units

The certification unit size was estimated in the FS based on the 45 known target areas. The average size of these areas is 5 acres. The size of the target areas ranges from 0.5 acres to 122 acres, but 34 of the 45 target areas have an area of 6 acres or less. Five acres was selected as the typical size for the certification units on this basis. For comparison, the HUDTOX modeling performed by USEPA to evaluate the recovery of the Upper Hudson River after sediment remediation used 20-acre river segments in the TI Pool as the base unit for the calculations (USEPA, 2001a, 2002).

2.2.7 Number of Samples Per Certification Unit

The sampling frequency required to provide the best estimate of the central tendency of the residuals data was calculated using the variances from the case study residuals data. It was assumed that the residuals data from the Upper Hudson River are best approximated by a lognormal distribution.

For a lognormal distribution, the sample median is an estimate of the population geometric mean. The number of samples required to estimate the median value of a lognormal distribution can be determined if some measure of the variance can be made. The variances calculated from the case study data can be used in this calculation. From Gilbert (1987), the number of independent observations, n, required from a population (i.e., the number of cores from a certification unit) is equal to:

$$n = \frac{Z_{1-\alpha}^2 S_y^2}{\left[\ln(d+1)\right]^2 + Z_{1-\alpha}^2 S_y^2 / N}$$
 (6)

where: S_y^2 = The variance of the data Z = The Z-score based on α

 α = Defined such that 100*(1- α) is the confidence limit required (Type 1

error probability)

N = The total population

d = The error in the median which can be tolerated

Because the calculation is only concerned with exceedance of a threshold, a one-sided test was used. For a 95% confidence limit Z=1.65. The median is expected to be less than the arithmetic mean for a lognormal distribution, but a percentage error in estimation of the median is expected to yield a similar percentage error in estimation of the mean. A maximum 50 percent error in the estimate of the median is assumed to be tolerable, so d=0.5. Since N represents all possible cores from a certification unit (5 acres), N is very large and approaches infinity. Estimates of the number of samples required using this equation are presented for each of the case studies in Table 2-7. The number of samples ranges from 15 to 41 with a mean value of 34 for the selected data sets. The number of samples required for the data sets that were not used to develop the action levels is also shown (GM Massena, including the capped area, and the New Bedford Harbor grab samples). For these sites, the number of samples required ranges from 34 to 92.

For comparison, using the standard deviation of 1.46 from the 1984 New York State Department of Environmental Conservation (NYSDEC) samples that were contained within the Expanded Hot Spot remediation areas defined in the FS, and assuming that the standard deviation of residuals will be similar, the number of samples is 36. Using the value of S_y for the eight sites discussed above of 1.31, the resulting sample size is 28. Given the variability in estimates, a sample size of 40 is chosen to provide a safety factor on the tolerable error.

In the FS, the number of samples needed to properly characterize the existing conditions was estimated using the equation from Gilbert (1987) given above and a statistical analysis of the sampling requirements needed to assess depth of sediment removal. This second analysis was highly dependent on the method that will be used during design to select the cut line depths in the target areas. Both the current assessment and that developed in the FS yield a sample size of approximately 40 samples per target area. Using the case study variances has yielded numbers that are in a similar range. On a 5-acre certification unit, the uniform triangular grid spacing is 80 feet on center. This is also in the range of sample grids spacing for the case studies shown on Table 2-1. Assessment of the case study data supports the use of 40 samples per 5-acre certification unit.

2.2.8 Case Study Data Geostatistical Analysis

The spatial correlation of residual data from the case study sites was evaluated to determine whether a correlation could be found that would support the development of an asymmetrical residual sediment sampling grid for the Hudson River PCBs Superfund project. To evaluate the spatial correlation of residual sediment data, semi-variograms of post-dredging sediment data from the following dredging projects were generated:

- Reynolds Metals
- Marathon Battery
- New Bedford Harbor (grab and sediment core samples)
- Cumberland Bay
- Fox River SMUs 56/57
- Fox River Deposit N
- GM Massena.

A similar geostatistical analysis was performed on the Upper Hudson River historical data because hot-spot areas appeared elongated in the direction of the river flow as opposed to perpendicular to the direction of the river flow. These depositional patterns indicated that PCB concentrations in hot spot areas might exhibit a directional correlation that could be quantified using a semi-variogram. The residual data from Reynolds Metals, Marathon Battery, New Bedford Harbor, Cumberland Bay, Fox River Deposit N, Fox River SMUs 56/57, and GM Massena were evaluated using a similar approach to determine if these data exhibited any directional or spatial correlation. It should be noted

that some of the figures associated with this section of the report show only the relative sampling positions and detected concentrations for case study residual sampling datasets because base maps being prepared as part of the remedial design are not available for use.

2.2.8.1 Reynolds Metals

The Reynolds Metals site has a number of characteristics that are similar to the Hudson River PCBs site; the contaminants included PCBs and the spatial distribution of PCB data appeared to be similar to the Upper Hudson River hot spots. Figure 2-8 shows the distribution of total PCB concentrations in the residual sediments. The grid used for residual sampling was triangular, with 50-foot spacing in the hot-spot area and 70 feet on the periphery.

A directional semi-variogram analysis was conducted. A preferential direction was identified in the direction of the grid length, which was assumed to be in the direction of the river flow. The semi-variogram in the direction perpendicular to the assumed current showed no spatial correlation. As shown on Figure 2-8, the range of the semi-variogram in the direction of the river flow was approximately 130 feet.

Although the pre-dredging data were not reviewed for this analysis, the post-dredging persistence of the river flow-related directional correlation at Reynolds may be due to difficulties experienced during dredging (e.g., an inability to remove the contaminated material), and the available data cannot be used to assess the reason for the elevated residual PCB concentrations. Despite this data limitation, however, the semi-variogram did show a preferential (directional) spatial correlation in the data, so such an analysis could be used to target additional dredging areas.

2.2.8.2 East Foundry Cove/Marathon Battery

Residual sediment samples were collected in the East Foundry Cove area where sediments containing elevated concentrations of cadmium had been dredged. Sediment samples were collected using coring devices on a 50-foot by 50-foot grid. One sample from the upper six inches of each core was analyzed for cadmium. Figure 2-9 shows the distribution of cadmium concentrations in these shallow sediment samples. The highest residual concentration was located in the north-central portion of East Foundry Cove, and at least five other areas of elevated cadmium concentrations were identified. These areas appeared to be randomly distributed throughout the overall sampling area.

Directional semi-variograms were generated for this evaluation at 15-degree intervals. There was no preferential correlation in any one direction. Using all directions, no spatial correlation was identified in the data on the 50 by 50 foot grid spacing. The lack of correlation is illustrated in Figure 2-9, which shows the best-fit semi-variogram with a nugget of 92 and a contribution (sill) of 112. The nugget represents the inherent variance in the data at a distance of zero and the contribution is the average variance of the data. When the percentage of the nugget value is relatively high compared to the sill value, the data set has a high inherent variance and no spatial correlation. Therefore, cadmium

concentrations in residual sediment samples at East Foundry Cove (using a 50 by 50 foot grid) appear to be lacking spatial correlation and may be distributed randomly.

To check the correlation at larger sample spacing, the data set was thinned so that sample results at 100 by 100 foot spacing could be statistically evaluated. Like the data on the finer 50 by 50 foot grid, these data showed no spatial correlation.

2.2.8.3 New Bedford Harbor Grab Samples

At the New Bedford Harbor site, 35 grab samples were collected and analyzed for total PCBs. The spatial distribution of the New Bedford samples is shown in Figure 2-10, 2-11 (grab samples) and 2-12 (core samples). The samples were collected on an approximately 40-foot triangular grid with a clustering of additional grab samples in the northwestern corner of the site. Total PCB concentrations ranged from 0.47 to 470 mg/kg. The semi-variogram in Figure 2-11 shows that the PCB concentrations in the grab samples at the New Bedford Harbor site have no spatial correlation.

2.2.8.4 New Bedford Harbor Core Samples

A total of 18 core samples were collected from the New Bedford Harbor site and analyzed for Total PCBs. Spatial distribution of the New Bedford core samples is shown on Figure 2-12. Samples were collected on a 40-foot triangular grid. Total PCB concentrations ranged from 0.67 to 130 mg/kg. No clustering of samples with similar concentrations was apparent. A semi-variogram was generated (Figure 2-12) and shows that there is no spatial correlation in the data.

2.2.8.5 Cumberland Bay

PCBs were analyzed in 55 sediment samples collected at the Cumberland Bay site in New York. Spatial distribution of the Cumberland Bay samples is shown on Figure 2-13. Samples were collected in what appears to be a random pattern throughout the site. PCB concentrations ranged from 0.09 to 61.9 mg/kg.

As shown on Figure 2-13, the non-directional (all directions) semi-variogram of these data shows spatial correlation. Directional semi-variograms were generated at 15-degree intervals, but no preferential correlation was apparent in any one direction. The best-fit semi-variogram had a nugget of 0, a contribution (sill) of 130, and a range of 280 feet.

2.2.8.6 Fox River Deposit N

A total of 37 sediment samples were collected and analyzed for PCBs from the Fox River Deposit N site in Wisconsin. Spatial distribution of the Fox River Deposit N samples is shown on Figure 2-14. The sampling points generally followed the bend in the river and two separate areas were represented. Spacing of samples was between 25 and 50 feet perpendicular to the river channel and 75 to 150 feet parallel to the river channel. PCB concentrations ranged from 0 to 43 mg/kg.

The semi-variogram in Figure 2-14 shows that there is a non-directional spatial correlation in these data. Directional semi-variograms were generated at 15-degree intervals, but no preferential correlation was apparent in any one direction. The best-fit semi-variogram had a nugget of 0, a contribution (sill) of 120, and a range of 55 feet.

2.2.8.7 Fox River SMUs 56/57

At the Fox River SMUs 56/57 sites in Wisconsin, 28 core samples were collected and analyzed for Total PCBs. The spatial distribution of the Fox River SMUs 56/57 samples is shown on Figure 2-15. Samples appeared to have been collected in a random manner. PCB concentrations ranged from 0.0038 to 9.5 mg/kg. The higher concentrations were not clustered. The semi-variogram (Figure 2-15) shows that there is no spatial correlation of the data.

2.2.8.8 GM Massena

A total of 111 samples were collected and analyzed for PCBs at the GM Massena site on the St. Lawrence River in New York. As shown on Figures 2-16, the samples were collected in a semi-systematic grid pattern. PCB concentrations ranged from 0 to 91 mg/kg. The highest concentrations were all located in an approximately 400 by 400 foot area in the western portion of the site.

The semi-variogram in Figure 2-16 was generated for all directions and shows a spatial correlation. Directional semi-variograms were generated at 15-degree intervals, but no preferential correlation was apparent in any one direction. The best-fit semi-variogram had a nugget of 55, a contribution (sill) of 250 and a range of 230 feet.

2.2.8.9 Summary of Semi-Variogram Analysis

Of the seven post-dredging sediment sample data sets analyzed, four of these data sets showed spatial correlation in PCB concentrations. Only one of these data sets (Reynolds Metals) showed a specific directional correlation. This directional correlation was likely related to the limitations of dredging instead of a true correlation of PCB concentrations in the residual sediment veneer. Because of the general lack of directional correlation in the data sets, use of an asymmetrical sampling grid for the Upper Hudson River residual sediment samples is not supported by these case studies.

The statistical ranges of the semi-variograms from the four sites with spatial correlation ranged from 55 feet to 280 feet. This variability between data sets indicates that a single range cannot be reasonably estimated for a residual sediment sampling grid for the Upper Hudson River dredging project. However, because existing Hudson River PCB Site data have shown spatial and directional correlation, semi-variogram analyses of residual data may be useful in delineating areas where re-dredging attempts are required to meet cleanup objectives. No further analysis of pre-dredging sediment samples from the

Upper Hudson River is planned. Further geostatistical evaluation will be conducted using residual sediment data obtained during Phase 1 (refer to Section 4.0).

2.2.9 Evaluation of Available Sampling Techniques

Potentially applicable sediment sampling methods are introduced below and evaluated on the basis of representativeness, comparability to previous data sets, comparative cost, and ease of implementation. In addition, the advantages and disadvantages of discrete and composite sampling schemes are evaluated, and inferential or supplementary investigation techniques are discussed.

2.2.9.1 Coring

Core samplers retrieve vertical columns of sediment via a variety of hand-driven and powered sampling methods, and preserve the depositional sequence or layering of the collected sample. Turbulence created by the descent of a coring device through the water column is minimal compared to other sampling devices (USEPA, 2001), therefore the disturbance to potential fine-grained residuals at the sediment-water interface during sample collection would be minimal.

An advantage of core sampling is that clear plastic or glass core tubes can be used for sample collection, allowing visual examination of sediment samples on collection. While they do not penetrate as deep as other coring methods, box core rigs allow access to the retrieved bulk core sample in a manner that permits on-site subsampling with manually inserted sleeves or liners, providing greater flexibility for field characterization and sample management planning (USGS, 2001).

A disadvantage of core samplers is that particles that have a relatively large diameter (e.g., coarse gravel, cobbles, etc.) compared to the core tube diameter may adversely impact sample recovery and may prevent collection of a representative sample. Samplers may attempt to control this disadvantage by monitoring core recovery and making multiple sample collection attempts, where necessary.

The use of core sampling would maintain a large degree of comparability to historic core samples collected by USEPA and the Design Support Sediment Sampling program (QEA, 2002) being implemented by GE pursuant to an Administrative Order on Consent with USEPA.

The cost of implementing a core sampling program is dependent on whether hand-driven or powered equipment (e.g., vibratory coring) is used, which is in turn dependent on the water depth and the sediment texture at the sampling location. The involved cost and the ease of implementation can be moderately higher or significantly higher compared to the collection of samples using dredges, as discussed below.

2.2.9.2 Sampling with Small Dredges

Examples of small dredges used to collect sediment grab samples include the Peterson, Eckman, and Ponar dredges. These dredges are generally clamshell-type scoops that are lowered to the sediment surface and remotely closed. Peterson dredges are reported to be the most effective dredges on rocky substrates (USEPA, 2001). Eckman dredges are considered to have limited usefulness, and are unsuitable for sampling rocky, sandy, or other hard bottoms (USACE, 1994 and USEPA, 2001). Ponar dredges are considered to be effective, broadly applicable dredges that penetrate deeper and seal better than spring-activated dredges (*e.g.*, Eckman), however penetration depths will generally not exceed several centimeters (USACE, 1994).

Disadvantages of grab sample collection using dredges include their inability to collect an undisturbed sample. Shallow sediments collected from the first centimeter or so of sediment cannot be separated from deeper layers captured in the dredge (USACE, 1994). In addition, the shock wave created by the descent of the dredge through the water column may disturb fine surficial sediments (NJDEP, 1992). The construction of the Ponar dredge may result in reduced turbulence compared to other types of sampling dredges (USEPA, 2001). The residual sediments, which are the focus of the post-dredging sampling event, are expected to be loose materials that could be very prone to disturbances caused by the use of a small dredge.

Since the majority of the samples collected historically by USEPA and GE's Design Support Sediment Sampling program involve the collection of sediment samples via coring, grab samples collected using dredges will have a low level of comparability to the data sets for other sites.

The use of small sampling dredges involves a comparatively low cost (although larger, more sophisticated units may require a winch aboard the sampling boat for dredge deployment and retrieval) and the dredges are comparatively easy to operate.

2.2.9.3 Underway Surficial Sediment Sampling

The University of Georgia, Center for Applied Isotope Studies has developed a method for rapid collection and analysis of surface sediments. The system is composed of a towed sled that disturbs surface sediments as it is towed along a marine bottom by a sampling vessel. The sediment plume created in the wake of the sled is sampled by a vacuum pump, which transports sediment samples to the tow vessel for management and analysis. The sled perturbs sediments to a depth of 4-6 cm for sampling, and at a recommended towing speed of 3 knots, a maximum collection of three samples per kilometer is possible (USGS, 2001). Based on these parameters, the towed sled does not appear to meet the project sampling requirements (the sample collection depth is too shallow for the Residuals Standard sampling), however, the technology could warrant further consideration if it is found that an extremely thin residual layer is present in the Upper Hudson and there is an emphasis on characterizing this layer separately from layers below the dredging cut line.

2.2.9.4 Discrete vs. Composite Sampling

A grab sample is a discrete aliquot that is representative of a specific location at a given point in time (USACE, 1994). For example, the collection of a number of grab samples at various locations within a dredged area and individual analyses of those samples would constitute a discrete sampling program. Decision-making based on a discrete sampling data set could involve actions based both on mean (*i.e.*, arithmetic average) or median concentrations and also "single point maximum" concentrations, including remedial dredging of a specific sampling point of concern (or the grid area represented by that sample, if so arranged).

In composite sampling, several volumes of material (e.g., separate discrete samples) are combined and mixed to form a single homogeneous sample. This approach is often considered when analysis costs are large, relative to sample collection costs, and the mean contaminant concentration is the parameter of interest (USEPA, 2000).

Composite sampling is not appropriate for the purposes of the Residuals Standard. If discrete samples are combined into composite samples to represent larger dredged areas, and a particular composite sample result requires action to be taken (*i.e.*, re-dredging attempt), then the action would have to be applied to the larger area, or additional sampling would be needed. The schedule for dredging set forth in the ROD and cost concerns make this approach undesirable.

Discrete and composite sampling schemes can be combined. For example, aliquots of the discrete samples used to prepare the composite can be retained for separate analysis, where composite results are of interest or exceed action levels. However, the additional turn-around time (TAT) involved with analyzing archived discrete samples may have too great an adverse impact on project schedules to be considered.

Composite sampling over depth should not be implemented for the residual sampling program, except to the extent that each 0-6 inch core sample is to be homogenized prior to analysis. The interval of interest is expected to be a relatively thin veneer of residual sediment. In addition, at locations where backfill is not placed (*e.g.*, in the navigation channel), the biologically active zone or layer where receptors could be exposed to contamination is expected to include (but not necessarily be limited to) the upper 6 inches of sediment. Therefore the analysis of a discrete sample representing the residual sediment is expected to address the sampling objectives. If necessary, additional discrete samples representing deeper depth intervals can be collected. A composite sample representing a larger depth interval could "dilute" or obscure data of interest.

2.2.9.5 Inferential and Supplementary Techniques

Inferential and supplementary investigation techniques will provide information useful to the implementation of the residual sampling program. For example, underwater video photography and/or Sediment Profile Imaging (SPI) could be deployed to investigate the extent and thickness of residual sediments.

Underwater video photography or even visual surveys by divers could be used to explore dredged areas for swaths of sediment that were inadvertently "missed" by the dredge or areas of unusually thick residual deposits. Depending on their size and potentially unique conditions, such areas might not be identified by the post-dredging bathymetric survey conducted as part of the dredging QA/QC and oversight. Information obtained from the video surveys or noted by divers would be used to select some biased or judgmental sampling points during residual sampling.

The SPI camera is capable of obtaining a cross-sectional image of the sediment profile to a depth of 20 cm. Deployment of the SPI camera at multiple locations within a dredged area would allow the residual sampling team to map the thickness of the residual material. This information may be valuable for evaluation of the Phase 1 dredging program; therefore, use of the SPI camera will be required during Phase 1 residual sampling events and possibly during Phase 2, depending on the outcome of Phase 1.

2.2.10 Examination of Analytical Methods and Data Validation Methods

USEPA will review and approve appropriate analytical and data validation methods for the residual samples. For the purposes of this Residuals Standard it is assumed that PCB contamination in sediments will be determined using a method appropriate for quantification of PCB homolog concentrations for comparison to the Residual Standard action levels. A Standard Operating Procedure (SOP) for data validation will be developed that is based on the selected laboratory analytical method.

2.3 Rationale for the Development of the Performance Standard

2.3.1 Sample Collection

The sediment samples will be collected using manual core retrieval, box cores, or vibracoring techniques, except where coring is infeasible and other technologies such as small dredges or grab sampling by divers are implemented. As discussed in Section 2.2.9.1, core sampling preserves the depositional sequence of the sediment sample, creates a comparatively minimal disturbance at the sediment-water interface, and maintains comparability with historic data sets collected by USEPA and the design support sampling being conducted by GE.

Composite sampling was rejected as a method of sample management. The Residual Standard objectives require a discrete sampling method for the collection of residual sediments. Coring was selected as the most appropriate sampling method for assessing both the potential redistribution of PCB-containing sediment in each certification unit and confirming that the original cut lines were delineated appropriately for the removal of the targeted PCB-contaminated sediment "inventory" (where the term inventory refers to PCB mass in sediment deposits requiring removal to meet the ROD's objectives).

Residual sediment samples will be collected from 40 locations in each certification unit less than or equal to 5 acres in size. In larger dredging areas, 40 samples will be collected per five-acre area. The identification of a particular certification unit will be based on pragmatic considerations (*e.g.*, a single area enclosed by silt curtains or barriers, etc.) or by dividing a dredging area into 5-acre parcels, using the following rules:

- Isolated dredging areas smaller than 5 acres in size are to be designated single certification units and 40 residual sediment cores must be collected on a grid with a proportionate spacing.
- Dredging areas smaller than 5 acres in size within ½ mile of one another can be "lassoed" into a single certification unit. The sum of the grouped dredging areas must be less than 7.5 acres. The sampling grid is to be proportionally sized so that a minimum of 40 cores are collected from within the dredging areas, and up to 60 cores are collected (by applying the 80-foot grid spacing within areas grouped into a single certification unit with a total dredged area of 7.5 acres).
- Dredging areas up to 7.5 acres in size can be considered a single certification unit and the sampling grid can be extended at an 80-foot spacing to allow collection of up to 60 core samples.
- For dredging areas from 7.5 to 10 acres in size, the dredging area is to be divided into two certification units of equivalent area and 40 samples collected from each using proportionally sized grids.
- Dredging areas larger than 10 acres in size are to be divided into equally sized, approximately 5-acre certification units and a triangular grid with 80 foot spacing established in each certification unit.

The samples will be collected on a uniform triangular grid, designed and oriented to maximize information on the spatial distribution of potential residual contamination remaining after dredging within each 5-acre or smaller sampling area. The residual sampling grid will be offset from the pre-design sampling grid (the average distance between the locations of the design grid and the residual grid will be between 40 and 60 percent of the design grid nodal spacing). Acceptable criteria for relocating grid nodes in the event an obstruction is encountered (*e.g.*, a grid node "falls" on exposed bedrock) are defined as relocating the sample within a 20-foot radius of the original node location.

Observations will be made prior to and during core collection to evaluate the thickness of the veneer. SPI information, field assessment of penetration resistance, and visual classification of the material retrieved in the core tube will be used to quantify the thickness of the dredging residuals. The sediment core will be advanced as necessary to collect a representative 6-inch core (or to refusal, whichever is first encountered). It may be desirable to collect and archive deeper sediment intervals during sampling of the 0-6 inch layer, but it is not required by the Standard. If the average concentration of the samples representing the 0-6 inch layer exceeds the 99% UCL action level in the Residuals Standard (6 mg/kg Tri+ PCBs), additional core sampling will be required to collect and analyze deeper sediment intervals, so that the vertical extent of PCB-contaminated sediment can be re-characterized. The additional sampling and analyses

must be conducted to define the elevation of the sediment stratum with non-detect PCB concentrations in part of or in the entire certification unit, as directed by the Standard.

As part of performance standard development, an evaluation was performed to assess whether it was necessary or appropriate to include a "waiting period," meaning that the residuals sampling should not occur until at least 24 hours after the dredging operation ceased. The purpose of a waiting period would be to allow time for contaminated material still in suspension to settle so that the residuals samples would be representative of the final surface sediment concentrations. A calculation of the likely impact of suspended material on the surface sediment concentration was conducted to determine if the waiting period is warranted, as described below.

Some conservative assumptions were made about the total suspended solids (TSS) concentrations in a certification unit and the PCB concentration on the TSS. The TSS concentration in a 5-acre certification unit was estimated at 50 mg/L, although it is unlikely that the entire certification unit would have this concentration in the water column. At the New Bedford Harbor site, where the sediments were fine grained, the TSS concentration was less than 50 mg/L during dredging (measured 50 feet from the dredge). The PCB concentration on these particles was estimated to be 100 mg/kg Tri+ PCBs, which is twice the average concentration of the sediments in River Section 1 of the Upper Hudson (i.e., Thompson Island Pool). A "fluffy" bulk density of 1.1 g/cc was also assumed. The calculation is presented in Table 2-8. If a 6-inch sample is collected and the undisturbed portion is assumed to have a Tri+ PCBs concentration of 1 mg/kg, then the calculated increase in concentration due to the settled materials would be 0.072 mg/kg, for an adjusted total of 1.072 mg/kg Tri+ PCBs. Because suspended material is likely to account for only a minor increase in PCB concentration of the surface sediment layer in a certification unit, residuals sampling need not be delayed to allow suspended solids to settle, but can proceed immediately after it is confirmed that the design cut-lines have been achieved

2.3.2 Sample Management

Following core sample collection, each 0-6 inch sample will be adequately homogenized in preparation for laboratory analysis. The 0-6 inch sample is intended to characterize both the dredging residuals and potential contaminated sediments that may remain below the design dredging cut lines due to inadequate design or design support characterization (also referred to as un-dredged "PCB inventory").

If the certification unit average Tri+ PCB concentration is greater than the 99% UCL, deeper core sampling must be conducted to re-characterize the vertical extent of contamination. This requirement is included because an exceedance of the 99% UCL indicates the dredge was still removing contaminated sediment when the design cut-line was reached, possibly due to deficiencies in the design support characterization and cut-line design. In this case, deeper sampling (compared to the 0-6 inch depth interval) is required to investigate for the potential presence of deeper PCB-contaminated sediment inventory as a planning step for the required re-dredging attempt.

The deeper cores will be divided (segmented) into successive 6-inch depth-discrete grab samples, which are to be analyzed until the sediment stratum with non-detect PCB concentrations is encountered. This sampling methodology will avoid the disadvantages related to compositing schemes (refer to Section 2.2.5.4) and will provide flexibility for decision-making related to further remedial dredging. The rationale for segmenting the residual sampling cores into 6-inch intervals is based on likely minimum re-dredging depths and an evaluation of case study data from the New Bedford Harbor site that indicated that segments shorter than 6 inches would not provide useful data (refer to Attachment A).

2.3.3 Sample Analysis

Sediment samples will be extracted and analyzed via an analytical method approved by USEPA to provide PCB homolog concentrations for comparison to the action levels in the Residuals Standard, which are expressed as the sum of the Tri- and higher PCB homologs (Tri+ PCBs).

2.3.4 Data Evaluation and Required Actions

The results of the sediment sample analyses from the 0-6 inch depth interval will be used to evaluate the certification unit by comparing the following values (rounded to whole numbers) to the action levels in the Residuals Standard:

- average Tri+ PCBs concentration in a "moving" 20-acre area consisting of the certification unit under evaluation and the three previously dredged certification units within 2 river miles of the unit under evaluation (measured along the centerline);
- average Tri+ PCB concentration in the certification unit under evaluation;
- median Tri+ PCB concentration in the certification unit under evaluation;
- individual sample concentrations in the certification unit under evaluation.

The Residuals Standard action levels are to be compared to the above-listed values as follows:

- The 1 mg/kg Tri+ PCBs residuals objective stated in the ROD (refer to Section 2.1.1) is to be compared to the average Tri+ PCB concentrations of both the 20-acre area and the certification unit under evaluation.
- The 95% UCL (3 mg/kg Tri+ PCBs) and the 99% UCL (6 mg/kg Tri+ PCBs) are to be compared to the average Tri+ PCB concentration of the certification unit under evaluation.
- The 97.5% PL action level (15 mg/kg Tri+ PCBs) and the 99% PL action level (27 mg/kg Tri+ PCBs) are to be compared to each sediment sample analytical result.

The values currently representing the UCLs and PLs were derived from statistical evaluation of the case study datasets, as discussed in Section 2.2.1, and applied proportionally to the criterion in the ROD (assuming that an average residual of 1 mg/kg Tri+ PCBs is the desired central tendency of the residual sediments). The action levels (the UCL and PL values) are intended to measure the comparability of the true mean (arithmetic average) of the sediment sample population's Tri+ PCB concentrations to the 1 mg/kg Tri+ PCBs residuals concentration stated in the ROD.

For a certification unit with average concentration of 1 mg/kg Tri+ PCBs or less, not more than one individual sample concentration equal to the 97.5% PL or greater, and no individual sample concentrations equal to the 99% PL or greater, the objective of the ROD has been demonstrably achieved and no further remedial action is required prior to placement of backfill (where appropriate) and demobilization of the dredge and ancillary equipment from the certification unit.

For a certification unit with a mean greater than 1 mg/kg Tri+ PCBs but less than or equal to the 95% UCL, not more than one individual sample concentration equal to the 97.5% PL or greater, and no individual sample concentrations equal to the 99% PL or greater, the comparability to the ROD's anticipated residual of approximately 1 mg/kg Tri+ PCBs is sufficient (only a 5 percent probability that the true mean (arithmetic average) is 3 mg/kg or greater) to allow the option of placing backfill without requiring re-dredging attempts, provided that the 20-acre arithmetic average is 1 mg/kg Tri+ PCBs or less. This option is included in the Residuals Standard because the HUDTOX model used to assess the adverse impacts of PCB contamination in the sediments is based on 20-acre (Thompson Island Pool) and 40-acre (remainder of the Upper Hudson) river segments. Therefore, no adverse impact from local concentrations up to the 95% UCL is forecast if the 20-acre arithmetic average is controlled at 1 mg/kg Tri+ PCBs. To further control potential impacts, testing of the placed backfill is required to demonstrate that the surface concentration is 0.25 mg/kg Tri+ PCBs or less (refer to Section 2.1.1). The backfill must be sampled using the same grid spacing as the residual sediment samples, via the collection of 40 0-6 inch cores (for a 5-acre certification unit). The backfill samples will be analyzed for PCB homologs via a method approved by USEPA. If the arithmetic average PCB concentration of the backfill is greater than 0.25 mg/kg Tri+ PCBs, the noncompliant portions of the backfill must be re-dredged, replaced, and re-sampled (or additional backfill may be added, as approved by USEPA on a case-by-case basis). If the 20-acre arithmetic average is greater than 1 mg/kg Tri+ PCBs, the option of placing and testing backfill is not available, and the grid nodes contributing to the elevated arithmetic average in the certification unit must be re-dredged or isolated with an appropriately designed sub-aqueous cap (both are examples of an engineering contingency; refer to Section 2.3.6). The selection of either the re-dredging or the capping option is to be decided by the Construction Manager (for the purposes of this Residuals Standard, the Construction Manager is defined as a resident engineer responsible for execution of all construction activities including implementation of the Residuals Standard requirements).

The planning process for conducting re-dredging or capping in a certification unit is to commence with identification of the cluster(s) that are contributing to the non-compliant

arithmetic average PCB concentration, focusing on the cluster(s) with the highest detected concentrations. The horizontal extent of the non-compliant sediments must be fully characterized and an appropriate dredging area and cut elevation designed prior to conducting a re-dredging attempt. If after two re-dredging attempts, the residual concentrations do not comply with the action levels, the Construction Manager may choose to place an appropriately designed sub-aqueous cap over the clusters. The sub-aqueous cap top elevation is to be equivalent with the backfill elevation in the remainder of the certification unit.

For a certification unit with arithmetic average exceeding the 95% UCL and less than or equal to the 99% UCL, no 20-acre evaluation is permitted. The grid nodes contributing to the elevated arithmetic average in the certification unit must be re-dredged or isolated with an appropriately designed sub-aqueous cap (an instance of an engineering contingency; refer to Section 2.3.6); the selected option is to be chosen by the Construction Manager.

The option to place an appropriately designed sub-aqueous cap to isolate residuals (without attempting re-dredging) was included based on evaluation of case study data that showed continuous re-dredging of target areas decreased productivity without meeting the goals of the remediation. The cost of construction and maintenance of a sub-aqueous cap should be considered and compared to the costs and schedule impacts of re-dredging when selecting this option. The sub-aqueous cap is not comparable to the capping remedial option evaluated in the FS and ROD, because it is not to be used to isolate contaminated sediment inventory. The sub-aqueous cap is only intended to isolate recalcitrant residuals, and must be constructed so that the arithmetic average of the nodes in the uncapped area within the certification unit is 1 mg/kg Tri+ PCBs or less, no individual node is 27 mg/kg Tri+ PCBs or greater, and not more than one node is 15 mg/kg Tri+ PCBs or greater.

Re-dredging is required at certification units with an arithmetic average Tri+ PCBs concentration greater than the 99% UCL, and/or with more than one sampling location equal to the 97.5% PL or greater, and/or at any sampling locations with results equal to the 99% PL or greater (even in targeted areas where the arithmetic average concentration is equal to or below 1 mg/kg Tri+ PCBs) to reduce the uncertainty in the statistical evaluation and contribute to achievement of the ROD's goal of removal of all PCBcontaminated sediments in a targeted area (i.e., dredge to non-detect Tri+ PCBs stratum, with a residual of approximately 1 mg/kg, and post-backfill levels of 0.25 mg/kg Tri+ PCBs or less). When the certification unit average exceeds the 99% UCL, additional core sampling must be conducted to re-characterize the vertical extent of contamination prior to re-dredging. The additional core sampling must consist of the collection and analysis of sufficient depth intervals to identify the elevation of the sediment stratum with a nondetect PCB concentration and design the re-dredging cut lines for the non-compliant certification unit. If the median Tri+ PCB concentration in the certification unit is greater than 6 mg/kg, the entire certification unit must be re-sampled. If the median Tri+ PCB concentration is 6 mg/kg or less, the additional core sampling may be limited to areas of elevated PCB concentrations that are contributing to the non-compliant average concentration in the certification unit. For re-dredging of a sampling location that exceeds the PL action levels, or in any case where an elevated cluster is to be re-dredged, the re-dredging boundary is to be calculated in proportion to the difference in PCB concentrations detected at the non-compliant node and the nearest compliant node and the distance between the two (refer to Section 3.5.2). In addition to the results of the calculation, the boundary is not to be set at less than half of the distance between the non-compliant node and the nearest compliant node. Compliant nodes completely surrounded by non-compliant nodes should be treated as non-compliant, for the purposes of redredging.

2.3.5 Determining the Number of Re-dredging Attempts

Residual sediment samples will be collected after obtaining the design cut elevations and after each successive re-dredging attempt, and within seven days after dredging is completed. In the event that the Tri+ PCB concentrations exceed the action levels in the Residuals Standard, additional dredging and re-sampling may be required, as shown on Figure 1-1. Due to the impact on the productivity rate and project schedule as well as the diminishing returns reported in environmental dredging case studies, a contingency option must be provided after a selected number of re-dredging attempts have been conducted. The number of required re-dredging attempts was limited based on engineering judgment and case study findings, with the understanding that case study site conditions will differ from those in the Upper Hudson River to varying degrees. For example, in the Reynolds Metals project, reduction of PCB residual concentrations was not found after the fifth attempt. At the GM Massena site, the greatest improvement was experienced through the second dredging attempt. Based on case study data and engineering judgment, a limit of two re-dredging attempts following the initial residual sampling event was established for the Residuals Standard, unless the Construction Manager determines that additional re-dredging attempts could provide a desired reduction in contaminant concentrations. Necessary modification can be made based on the experience and observations collected on the Site during Phase 1 dredging.

2.3.6 Engineering Contingencies for the Residuals Standard

In the event that the sediment removal operations are unsuccessful in achieving a mean residual concentration of approximately 1 mg/kg Tri+ PCBs, engineering contingencies are to be implemented. To direct the dredging, the Residuals Standard is organized in three layers, with limits for an individual sample concentration, the average concentration of any 5-acre certification unit, and a moving 20-acre (comparable to the HUDTOX segment size) evaluation area weighted average concentration. Should the sediments exceed the Residuals Standard action levels after two re-dredging attempts, a contingency action will be implemented, consisting of the construction of a sub-aqueous cap. The use of a sub-aqueous cap and other technologies, which were surveyed but not specifically required by the Residuals Standard (e.g., in-situ remediation and alternative dredges), are described in the following sections and will be considered for use as engineering contingencies by the Construction Manager.

2.3.6.1 Alternative Dredges

In areas where primary dredging is performed but the ROD's objective of approximately 1 mg/kg Tri+ PCBs is not immediately achieved due to inaccessibility of the sediments (e.g., areas with shallow bedrock, outcrops, boulders, cobbles, gravel or debris), alternative dredges should be considered for use. Alternative dredges include, but are not limited to, amphibious excavators, clean-up dredges, and diver-assisted dredging. Amphibious excavators are readily transportable units that have the potential to specifically remove contaminated sediments along river shorelines and within shallow secondary channels. One of the unique characteristics of these machines is that they have hydraulically actuated arms that can be fitted with any of several heads, including a bucket, a rake or a cutterhead pump bucket. The clean-up dredge is an auger-type system developed in Japan for removal of highly contaminated sediments. The auger is shielded with pivoting wings, which are intended to contain sediment during collection, and with shrouds for collecting gas for venting, in order to minimize resuspension. An underwater television camera is used to monitor resuspension, while sonar devices are used to monitor the depth of the cut. In diver-assisted dredging, divers hold small-diameter suction hoses or guide submersible pumps to manually remove sediments.

The production rate of alternative dredges is relatively low and the operating cost of the alternative dredges is relatively high compared to the initial dredge. The versatility brought by these dredges, such as using amphibious excavators in shallow areas and using diver-assisted dredging in rocky areas, may provide the ability to reduce PCB residual levels in these special areas. The use of alternative dredges to respond to non-compliant residual sediment concentrations should be explored during the design of the dredging project.

2.3.6.2 Capping

In areas where the residual level of approximately 1 mg/kg Tri+ PCBs cannot be achieved after two re-dredging attempts, or optionally in certification units where the arithmetic average Tri+ PCBs concentration is greater than the 95% UCL and less than or equal to the 99% UCL (refer to Figure 1-1), a sub-aqueous cap may be constructed over elevated clusters. Different technologies with regard to capping were evaluated and described in the FS (USEPA, 2000) and are summarized below. In addition to the capping technologies summarized, appropriately designed caps may be constructed from granular materials. The design of sub-aqueous capping systems is to consider impacts to habitat and is to be accomplished as part of the remedial design. Monitoring of cap effectiveness and long-term monitoring of capped areas are outside the scope of the Residuals Standard and are not addressed in this document.

The placement of backfill and sub-aqueous cap construction are undesirable in the navigation channel. Capping is also restricted in shallow water areas. However, there may be an instance where a recalcitrant, contaminated residual is present in the navigation channel, and the construction of a sub-aqueous cap is a desirable option to

isolate the residual PCB concentrations. To accommodate the sub-aqueous cap in this situation, it would be necessary to conduct additional dredging to place the layers of the cap below the channel depth, and include an indicator layer of coarse material to signal the proximity of the cap during future maintenance dredging. If the cap thickness cannot be accommodated (*e.g.*, shallow bedrock is present) and all practical re-dredging attempts have failed, the area may need to be abandoned, subject to USEPA approval.

Capping Using Inert Materials - Inert materials include clay, silt, sand, geosynthetic clay liners (GCLs), geomembranes, and AquaBlokTM. Only the use of AquaBlokTM was retained in the FS. AquaBlokTM is a capping system consisting of gravel particles to which bentonite clay is bonded. Gravel or crushed stone is obtained from a local quarry and is initially coated with a polymer. The bentonite is then added, forming a dry, hard aggregate. The composite particles, herein referred to as AquaBlokTM, are spread from the surface of the water and sink quickly to the bottom of the river on top of the sediment. As the bentonite hydrates, a uniform, continuous, cohesive low permeability cap (1 x 10⁻⁸ cm/sec) is formed over the contaminated sediments. Standard construction equipment such as front-end loaders, conveyors, and barges can be used to place AquaBlokTM. The hydrated particles are cohesive and are more resistant to erosion than sand. In laboratory flume tests there was little loss of AquaBlokTM particles at a current velocity of 3 ft/sec, when compared with the amount of sand lost at the same velocity. The innovative aspects of the AquaBlokTM composite particle system are as follows:

- It overcomes the technical difficulty of sub-aqueous placement by using an innovative delivery system.
- It utilizes readily available materials such as bentonite and gravel or aggregate.

Based on the results of a capping project conducted in the Ottawa River (Hull & Associates, 2000), the generalized unit cost for AquaBlokTM cap construction using a barge-based conveyor, including material costs, was approximately \$1.04 per square foot. This cost was developed assuming construction of a targeted six-inch hydrated AquaBlokTM cap without the geogrid or stone-layer components present.

Capping Using Active Materials - Active materials such as activated carbon can be applied to the surface of subaqueous sediment or mixed with the sediment in an attempt to limit contaminant mobility. Active materials need to be combined or covered with inert materials to provide stability, erosion resistance, and, in some cases, protection for benthic organisms. Capping using activated carbon or other active materials can be effective, but has the disadvantage of potential future release of capped (adsorbed) contaminants due to breakthrough in the active materials. In consideration of this concern, use of this technology should be limited.

Capping Using Sealing Agents - Sealing agents such as cement, quicklime, or grout may be applied to the surface of subaqueous sediments or mixed with the uppermost layer to form a crust upon curing. This technique stabilizes the surface, preventing erosion and resuspension of the contaminated material, and reduces or eliminates

leaching of contaminants into the water column. Mobile (barge-mounted) concrete pumps may be used to apply the material in order to minimize sediment disturbance. Diversion of stream flow may be required for effective application of a cap composed of sealing agents. Also, the sealing agent cap surface is not a desirable habitat for biota. Therefore, capping using sealing agents should only be implemented on a limited basis.

2.3.6.3 In-Situ Treatment

In areas not feasible to cap, such as shallow or navigational areas, other in-situ treatments may be considered during design of the dredging project. Not all of these technologies have been proven effective in the remediation of PCBs. Also, the mobilization and fixed costs associated with implementing these technologies on small, widely spread areas could be prohibitive. The main limitation of in-situ treatment is the lack of process control during treatment, which can lead to incomplete or ineffective treatment and release of treatment by-products to the water column. In-situ treatment technologies are most effective in low-flow streams or embayments where flow can be diverted during treatment. In-situ treatment technologies include physical/chemical methods.

Immobilization immobilization methods In-situ involve mixing solidification/stabilization agents such as cement, quicklime, grout, and pozzolanic materials, as well as reagents, with sediments in place to solidify/stabilize contaminants in the matrix. The solidification/stabilization agents are mixed throughout the zone of contamination using conventional excavation equipment or specially designed injection apparatus such as mixing blades attached to vertical-drive augers. The effectiveness of stabilization/solidification technologies is variable depending on the characteristics of the contaminated soil and the particular additives used. In general, this technique is more effective for inorganic constituents (metals) than for organic constituents. Since PCBs tend to strongly adsorb to sediments, stabilization/solidification can potentially be effective in reducing the mobility of PCBs. Solidification/stabilization may not be appropriate for shallow areas of the river, where volume expansion of the treated sediments may interfere with small craft navigation in these areas. In addition, a solidified mass may present problems as habitat for biota in the river, and its implementation should be limited on that basis.

2.3.6.4 Engineering Contingencies Used at Other Sites

Engineering contingencies have been designed and implemented at other dredging sites. Some examples are presented below:

Reynolds Metals – At the Reynolds Metals site, a Cable-Arm environmental bucket was employed to dredge the PCB-contaminated sediments. When sampling results indicated that the Cable Arm environmental bucket was not effectively removing the contaminated sediments, the conventional rock bucket and hydraulic clamshell of the Caterpillar Model 350 (Cat 350) were used as an alternative dredge for re-dredging. The decision to utilize alternative dredging methods was based on the presence of persistent contamination in certain cells and the fact that the previous dredging attempt had not been successful in

reducing contamination levels. The conventional rock bucket consisted of a 2.5 yd³ clamshell bucket that could be used with the lattice boom cranes on the derrick barge. The bucket was capable of digging into the more resistant hard bottom materials and also more effective in removing rocks and gravel. The disadvantages of the conventional bucket is that it did not have the venting system to allow water to pass through the opened bucket during descent, which minimizes downward water pressure and sediment disturbance, nor did it have the regulated closing system or overlapping side seals that minimize both the disturbance of sediment on the bottom and the sediment loss on closure. The Cat 350 had a hydraulically operated clamshell bucket with a 2.5 yd³ capacity. The hydraulics on this bucket provided for better closure, and also allowed it to dig into stiff sediment and rocky material. Its primary disadvantage was that the operator had to be extremely careful not to overfill.

Cells with residual concentrations greater than 10 mg/kg were designated for capping. The cap consisted of a 6-inch separation layer, a 12-inch containment layer, and a greater than 9-inch armor and bioturbation layer. At the end of first year construction, an average of 2.2 ft of gravel was placed as the interim cap.

Cumberland Bay – Hydraulic dredging was used to dredge the contaminated sediments in the Cumberland Bay project. Divers dredged some areas using hand-held hydraulic dredge lines to remove pockets of sludge. The hand-held dredging proved effective in areas that had been identified as difficult to dredge using the hydraulic auger.

Manistique River - Diver assisted dredging was utilized with a suction pump to aid in the removal of residual sediment areas and furrows that remained after removal operations to the required dredge depth. It was indicated that a single diver would guide the suction hose over the mounded material to ensure accurate removal of residuals.

3.0 Implementation of the Performance Standard for Dredging Residuals

The Residuals Standard covers the collection and analysis of sediment samples representing dredging residuals in all Phase 1 target areas and describes the procedures by which the sediment sampling data will be used to characterize residuals, evaluate the effectiveness of the dredging remedy, and plan post-dredging construction actions. The Residuals Standard is comprised of the following tasks:

- Sampling Grid Establishment
- Sample Collection
- Sample Management
- Sample Analysis
- Data Evaluation and Required Actions
- Engineering Contingencies

3.1 Sampling Grid Establishment

Cores of the residual sediment will be collected at 40 locations in each 5-acre certification unit. The cores will be collected on a regular triangular grid developed to maximize the spatial distribution of samples within each dredged area. This grid should be offset from the design support sampling grid so that the average distance between the design grid nodes and the residuals grid nodes is between 40 and 60 percent of the design grid nodal distance. In the event an obstruction is encountered (*e.g.*, a grid node "falls" on exposed bedrock), the sample is to be relocated within a 20-foot radius of the original location. For backfill testing (refer to Section 3.5, item no. 2 "Jointly Evaluate 20-acre Areas"), core samples will be collected using the same grid established for the residuals. The following guidelines are to be used to implement a sampling grid on certification units other than 5 acres in size:

- Isolated dredging areas smaller than 5 acres in size are to be designated single certification units and 40 residual sediment cores must be collected on a triangular grid with a proportionate spacing.
- Dredging areas smaller than 5 acres in size within ½ mile of one another can be "lassoed" into a single certification unit. The sum of the grouped dredging areas must be less than 7.5 acres. The sampling grid is to be proportionally sized so that a minimum of 40 cores are collected from within the dredged areas, and up to 60 cores are collected (by applying the 80-foot grid spacing within areas grouped into a single certification unit with a total dredging area of 7.5 acres). If a number of dredging areas smaller than 5 acres in size are contained within a common silt barrier during dredging, the Construction Manager must submit a proposal to USEPA discussing how the dredging project will be managed to prevent the spread of contamination to the interstitial, non-targeted areas, or propose additional sampling to investigate those areas during the residuals sampling in the certification units.

- Dredging areas up to 7.5 acres in size can be considered a single certification unit and the sampling grid can be extended at an 80-foot spacing to allow collection of up to 60 core samples.
- For dredging areas between 7.5 and 10 acres in size, the dredging area is to be divided into two certification units of equivalent area and 40 samples collected from each using proportionally sized grids.
- Dredging areas larger than 10 acres in size are to be divided equally into approximately 5-acre certification units and a triangular grid with 80 foot spacing established in each certification unit. (For example, a 32-acre dredging area would be divided into 6 certification units, each 5.33 acres in size.)

3.2 Sample Collection

Residual sediment sample collection will take place once inventory removal (as designed) has been confirmed and within seven days after dredging is completed in a particular targeted area.

Visual observations of the thickness of the dredging residuals layer will be collected from each sampling location using sediment profile imaging (SPI) technology and the results will be recorded and submitted with the analytical results and core stratigraphic descriptions.

The sediment samples will be collected via coring, using vibracoring or manual coring techniques (including box coring, as appropriate). Core samples will be retrieved in clear Lexan® (or other appropriate semi-transparent) sleeves or liners. Where vibracoring techniques are used, the vibracoring rig will be activated at the sediment water interface and used throughout the depth of the core. Where difficult conditions, for example shallow bedrock, preclude the collection of core samples, sediment samples will be collected using small dredges or via grab sampling by divers. Both the core sampling and SPI locations are to be located using GPS and referenced to an appropriate horizontal coordinate system and vertical datum. The locational data is to be recorded with the other information collected in the field.

Prior to core collection, sediment probing will be conducted in an area adjacent to the target location (so as not to disturb the sediments in the target area) to identify the approximate depth and the texture of the sediments. The information will be used to determine two pieces of information: whether or not a core can be obtained, and what type of core tube material should be used to collect the core. In cohesive sediments, core samples will be collected using transparent polycarbonate (Lexan®) tubes. In non-cohesive sediments, core samples will be collected using aluminum tubes.

Sediment cores will be advanced as necessary for the collection of a representative 0-6 inch core or to refusal, whichever occurs first. The target coring depth will be determined using design information and field assessment of penetration resistance

(probing). Backfill samples (refer to Section 3.5, item no. 2) will also be collected as 0-6 inch core samples; and in all respects sample collection, management, and analysis will be identical to residual sediment samples. Based on the comparison of the sediment sample results to the Residual Standard's action levels, additional core sampling may be required to re-characterize the depth of contamination in all or part of a certification unit. In this case, sediment cores will be advanced to the depth necessary to define the vertical extent of non-compliant sediments.

Core recovery in Lexan® tubes will be measured directly though visual inspection of the sample. Core recovery in aluminum tubes will be estimated by measuring the depth to the sediment-water interface using a dedicated or decontaminated probe. The actual sample recovery will be calculated by dividing the length of the sediment recovered by the total penetration depth of the core. The sampler will then document the sediment recovery and visually classify the sediment sample, including the thickness of the residual veneer (if collected in a Lexan® tube). If sediment probing indicates a sediment depth of less than 6 inches over a hard material, only one attempt will be made to collect a core. If a sediment sample cannot be retrieved via coring, a Ponar grab sample will be collected.

Once a core has been collected, the core will be capped, sealed, and labeled. Labeling will be done by writing directly on the core tube using a permanent marker, and will include the following: core identification information, date, and time. In addition, an arrow will also be drawn on the core to indicate which end is the top. All other field data will be recorded in a field logbook. The cores will be stored on ice in a storage rack in a vertical position and kept in the dark until they are submitted for processing and analysis. Ponar grab samples will be homogenized in a dedicated, laboratory-decontaminated, stainless steel bowl, transferred to an appropriately selected and labeled sample jar, and stored on ice in a cooler until they are submitted for laboratory analysis.

3.3 Sample Management

The retrieved core samples are to be photographed and prepared for laboratory analysis (if re-characterization of the vertical extent of contamination is required, the core samples must be divided into successive 6-inch depth-discrete samples). The sampling methodology is intended to provide flexibility for decision-making if remedial dredging or contingency actions are required.

A field processing facility similar to that used by GE for the design support sediment sampling program (QEA, 2002) will be required for management of the sediment cores collected for characterization of the residuals. When a sediment core arrives at the field processing facility, the field notes prepared by the sampling personnel will accompany it, along with the results of the SPI investigation at the sampling location. A sample custodian will enter the information contained in the field notes into a database.

The initial step in the processing of each core will be to remove the cap and siphon off excess water contained in the core tube, as the cores will be transported with river water in the headspace to minimize disturbance of the top core layer. The weight of the core

tube will then be measured and will be used as an initial estimate of the sediment bulk density. Any additional standing water above the sediment will be siphoned off once the fines have settled. The length of the recovered core will then be measured, and the outside of the core tube will be marked to identify where the core tube will be cut into segments (may not be necessary where only 0-6 inch core samples are required). The marking procedure will include the placement of arrows on each segment to indicate the upper end.

Prior to extrusion of the sediment core from the core tube, the tube will be cut into segments. Since the core sections will be separated prior to the extrusion process, the sediment will only be extruded from the section of core tubing that corresponds to the sample that will be mixed and analyzed. While the core tube is being cut, the areas above and below the cut will be supported. Once the core tube has been cut through, the core segment will be separated from the rest of the core.

The sediment will then be extruded from the core tubing using a decontaminated stainless steel tool. The extruded sample will subsequently be rigorously homogenized, because there will be a potential for very high heterogeneity in the 0-6 inch interval. All reusable equipment will be constructed of stainless steel or glass (*e.g.*, blenders for homogenization, if used) and decontaminated prior to reuse.

A description of the physical characteristics of each core segment will be recorded in the field database, including observations on the general soil type (sand, silt, clay, and organic/other matter such as wood chips, as determined using the Unified Soil Classification System (USCS)), approximate grain size (fine, medium, coarse), presence of observable biota, odor, and color. During the extrusion process, each core segment will be examined visually to identify changes in sediment characteristics. If stratigraphy changes are observed within a core segment, then the nature and approximate length of the layers will also be noted in the field database. If any objects of cultural significance are observed during the processing of the core, they will be noted in the field database, separated from the sediment and stored at the field processing facility for inspection by a qualified geomorphologist or archeologist. Wood chips will not be separated from the sample due to size but will be manually pulverized or chopped, as necessary, to allow their homogenization with and inclusion in the sediment samples submitted for laboratory analysis.

Sample aliquots designated for analysis will be chilled to 4°C and kept in a dark location until they are sent to the analytical laboratory.

3.4 Sample Analysis

Each sample will be extracted and analyzed for PCB homologs via an analytical method approved by USEPA and that provides at least equivalent sensitivity and accuracy to the analytical method used during the design support sediment sampling. Grain size and moisture content analyses will also be required for selected core sample analyses.

3.5 Evaluation of Sample Data and Required Actions

The results of the sediment sample analyses will be used to evaluate the certification unit by converting the validated results to Tri+ PCB equivalents and comparing the following values (rounded to whole numbers) to the action levels in the Standard:

- Area weighted average Tri+ PCB concentration in a moving 20-acre area consisting of the certification unit under evaluation and the three previously dredged certification units within 2 river miles of the current unit (measured along the centerline).
- Arithmetic average Tri+ PCB concentration in the certification unit or portion of a certification unit under evaluation.
- Individual sample concentrations in the certification unit under evaluation.
- The median Tri+ PCB concentration.

The equations provided below are to be used to calculate the certification unit arithmetic average and 20-acre area weighted average concentrations.

Certification Unit Arithmetic Average

$$m_{t,\text{int}} = \frac{\sum_{i=i}^{n} C_{i,\text{int}}}{n}$$
where:

 $n = \text{the number of sample locations in the certification unit}$
 $C_{i,\text{int}} = \text{the Tri+ PCB concentration associated with the } ith sample location}$
in a single depth interval

The following guidelines address handling of special cases in the calculation of mean (*i.e.*, arithmetic average) concentrations:

- Non-detect sample results are to be included in the mean calculation at a value of one-half the detection limit.
- If no sample is available from a grid node due to field difficulties that cannot be resolved, the mean should be calculated based on the reduced total of data points (e.g., 39 data points instead of 40).
- If a sub-aqueous cap is constructed or certified backfill placed over a location, two evaluations must be conducted. For consideration of the affected certification unit in a subsequent 20-acre joint evaluation, the certification unit average is to be calculated using the PCB concentration of the upper layer capping material/backfill for the associated nodes, which should in all cases be 0.25 mg/kg Tri+ PCBs or less (or one-half the detection limit if it is non-detect). To verify the certification unit's compliance with the Residuals Standard following the construction of a sub-aqueous cap, the Standard's action levels must be applied to the nodes in the uncapped area alone.

20-Acre Area-Weighted Average

$$m_{40,\text{int}} = \frac{\sum_{i=i}^{n} a_{t,i} m_{t,\text{int},i}}{\sum_{i=i}^{n} a_{t,i}}$$

n = the number of certification units included in the 20-acre average $a_{t,i}$ = the area associated with the *i*th certification unit $m_{t,int,i}$ = the Tri+ PCB average concentration associated with the *i*th certification unit in a single depth interval (*i*nt)

The following actions are required by the standard, based on the sediment sample analytical results obtained (refer to Figure 1-1 and Table 1-1):

- 1. <u>Backfill (where appropriate) and Demobilize</u>: At a certification unit with an arithmetic average residual concentration of 1 mg/kg Tri+ PCB or less, no single sediment sample result of 27 mg/kg Tri+ PCBs or greater, and not more than one sediment sample result of 15 mg/kg Tri+ PCBs or greater, backfill (where appropriate) and demobilize from the certification unit.
- 2. <u>Jointly Evaluate a 20-acre Area</u>: At a certification unit with an arithmetic average residuals concentration greater than 1 mg/kg Tri+ PCBs and less than or equal to 3 mg/kg Tri+ PCBs, no sediment sample result of 27 mg/kg Tri+ PCBs or greater, and not more than one sediment sample result of 15 mg/kg Tri+ PCBs or greater, jointly evaluate a 20-acre area.

For the 20-acre evaluation, if the area weighted arithmetic average of the individual arithmetic averages (means) from the certification unit under evaluation and the 3 previously dredged certification units (within 2 miles of the current unit, measured along the River's centerline) is 1 mg/kg Tri+ PCBs or less, backfill may be placed (with subsequent testing required). Otherwise, all or part of the certification unit must be re-dredged (see #4 below for actions required during and following re-dredging) or a sub-aqueous cap constructed. Re-dredging or capping is to be conducted at the specific areas within the certification unit that are causing the non-compliant mean concentration. If the certification unit does not comply with #1 or #2 above, after two re-dredging attempts, contingency actions may be implemented in lieu of further re-dredging attempts, as described in #5, below.

3. <u>Re-dredge or Construct Sub-aqueous Cap</u>: At a certification unit with an arithmetic average residuals concentration greater than 3 mg/kg Tri+ PCBs but less than or equal to 6 mg/kg Tri+ PCBs, no sediment sample result of 27 mg/kg

Tri+ PCBs or greater, and not more than one sediment sample result of 15 mg/kg Tri+ PCBs or greater, re-dredge or construct a sub-aqueous cap (see Figure 1-1 and further description in Table 1-1). The choice of two options is provided to maintain flexibility and productivity (e.g., some areas may not be conducive to dredging). If re-dredging is chosen, the surface sediment of the re-dredged area must be sampled and the certification unit re-evaluated. If the certification unit does not meet the objectives of #1 or #2, above, following two re-dredging attempts, contingency actions may be implemented in lieu of further re-dredging attempts, as described in #5, below.

4. <u>Re-dredging Required</u>: For areas of elevated Tri+ PCB concentrations within a certification unit with an arithmetic average residuals concentration greater than 6 mg/kg Tri+ PCBs or to address sampling node(s) where more than one concentration was 15 mg/kg Tri+ PCBs or greater, and to address any sampling node(s) where concentrations of 27 mg/kg Tri+ PCBs or greater were detected, redredging is required (see Figure 1-1 and further description in Table 1-1).

Sampling at depths greater than 6 inches will be triggered by an arithmetic average residuals concentration greater than 6 mg/kg Tri+ PCBs. The spatial extent of this sampling at greater depth will be determined by the median Tri+ PCB concentration. If the median concentration in the certification unit is greater than 6 mg/kg Tri+ PCBs, collection and analysis of additional sediment samples is required from deeper intervals over the entire certification unit (*e.g.*, 6-12 inch, 12-18 inch, etc.) as necessary to re-characterize the vertical extent of PCB contamination. If the median concentration is 6 mg/kg Tri+ PCBs or less, characterization of the vertical extent of contamination is required only in the areas within the certification unit that are contributing to the non-compliant mean concentration. Re-sampling for vertical characterization is contemplated only once.

The Residuals Standard provides a mechanism for calculating the horizontal extent of re-dredging. All re-dredging attempts are to be designed to reduce the mean Tri+ PCB concentration of the certification unit to 1 mg/kg Tri+ PCBs or less. If after two re-dredging attempts, the certification unit is still non-compliant, contingency actions are to be implemented as stated in #5, below.

5. <u>Contingency Actions</u>: At areas where two re-dredging attempts do not achieve compliance with the action levels, as verified by USEPA, construct an appropriately designed sub-aqueous cap, where conditions allow, or choose to continue re-dredging.

Portions of a contiguous 5-acre certification unit may be backfilled after the cut lines are met as long as the area will not be re-contaminated, dredging proceeds downstream in the certification unit, the Tri+ PCB arithmetic average concentration of the samples collected from the portion of the certification unit is 1 mg/kg or less and all such nodes sampled are less than both PL action levels. This may be helpful in

managing the operation and a benefit to productivity. If this option is chosen, a proposal to implement closing out sections of a certification unit must be presented with schedules of the operation for USEPA review and approval.

3.5.1 Re-dredging and Required Number of Re-dredging Attempts

Re-dredging must be conducted at locations where more than one sediment sample result is greater than or equal to the 97.5% PL (in which case, all must be re-dredged), any sediment sample results are greater than or equal to the 99% PL, and in part (elevated clusters) or all of certification units as necessary to address residual sediments with an arithmetic average concentration greater than the 99% UCL. Re-dredging is an option to reduce PCB concentrations in certification units with average concentrations greater than 1 mg/kg Tri+ PCBs and less than or equal to the 99% UCL, depending on the 20-acre joint evaluation area average (refer to Figure 1-1 and Table 1-1).

Prior to conducting a re-dredging attempt, the horizontal extent (and vertical extent, if the certification unit average concentration exceeds the 99% UCL) of the contaminated sediments requiring removal must be appropriately characterized through sediment sampling and analysis, and appropriate dredge areas and cut elevations designed. If PCB contamination exceeding the 99% UCL is detected in the 0-6 inch sediment interval, this is considered indicative of the presence of un-dredged contaminated sediment inventory, which should have been removed during implementation of the initial remedial dredging design. Re-dredging attempts to remove such inventory will not be counted towards the required two re-dredging attempts in a certification unit.

Sediment coring will be conducted after each completed re-dredging attempt. Following re-dredging, the re-dredged locations will be re-sampled (10-foot offset from the original locations) using the same coring and sample management procedures required in Sections 3.2 and 3.3. The analytical results will be substituted into the original data set and compliance with the standard's action levels re-evaluated through calculations of the appropriate arithmetic average concentration(s) and review of single sampling locations.

Up to two re-dredging attempts are required under this standard. If the Residuals Standard action levels are not met after three dredging attempts (including the initial dredging event), engineering contingencies may be implemented as described in Section 3.6. If, in the Construction Manager's judgment, additional dredging attempts are reasonably expected to realize the desired reduction in residual sediment concentrations, additional re-dredging may be conducted before resorting to the implementation of a contingency such as a sub-aqueous cap. As stated above, dredging attempts required to remove contaminated sediment inventory (where the certification unit arithmetic average concentration is greater than the 99% UCL after the initial dredging attempt and recharacterization of the vertical extent of contamination reveals more than 6 inches of contaminated residuals are present) are not counted towards the requirement for two redredging attempts in non-compliant certification units.

3.5.2 Determining the Extent of the Non-Compliant Area

Use of geostatistics to define the non-compliant area that will require re-dredging or capping was not considered viable for the remediation. Multiple interpretations of the data are possible, potentially leading to conflicts and delays. Analysis of residuals data from other sites has not shown a strong spatial correlation. The lack of spatial correlation could reasonably be interpreted as a need to re-dredge the entire area in any certification unit that does not comply with the standard. Instead, it is assumed that there will be some degree of spatial correlation even if it is not well defined and a conservative routine approach for defining the non-compliant areas can be implemented as a part of the standard.

The extent of the non-compliant area about any single point will be determined by the following equation (repeated for each surrounding node) as long as the result is at least half the distance between the evenly spaced grid nodes:

$$d_r = \frac{d^{-*}(C_1 - C_3)}{(C_1 - C_2)}$$

where:

 d_r = the distance to re-dredge from the C_1 to C_2

d = the distance between nodes

 C_1 = the concentration at the elevated node under consideration

 C_2 = the concentration at a compliant node surrounding C_1

 C_3 = the desired concentration for the area (1 mg/kg).

If d_r is less than half of the distance between nodes, the distance to define the non-compliant area is, at a minimum, half of the distance between nodes. C_3 will always be set to 1 mg/kg Tri+ PCBs which is the desired average concentration for the area. The estimate of distance is conservative, making the assumption that a linear relationship exists between concentration and distance. The non-compliant area will be contained within a boundary that has sides perpendicular to the axes between the sampled nodes. This area will not extend beyond the hexagon created by connecting the surrounding nodes. An example is shown on Figure 3-1. If the node is next to the boundary of the certification area, the non-compliant area should follow the boundary because there is no information to reduce the area.

3.6 Engineering Contingencies

The Residuals Standard contains the option to place an appropriately designed sub-aqueous cap if a certification unit arithmetic average concentration following dredging exceeds 1 mg/kg Tri+ PCBs but is less than the 99% UCL, or where re-dredging attempts

to reduce more elevated concentrations are unsuccessful after two attempts (refer to Figure 1-1 and Table 1-1 for further detail). Depending on the concentration and thickness of the residual sediment requiring capping, an appropriately designed subaqueous cap may be either a residual cap or an isolation cap. An appropriately designed sub-aqueous cap differs from the placement of backfill material. For purposes of these standards, backfill, residual cap, and isolation cap are defined as follows:

Backfill is to be placed, where appropriate, over a dredged surface that meets the residual standard of 1 mg/kg Tri+ PCBs or less. Backfill will consist of a 1-foot thickness of material. Where a certification unit arithmetic average is greater than 1 mg/kg and less than the 95% UCL, and the 20-acre joint evaluation area weighted average is less than or equal to 1 mg/kg Tri+ PCBs, backfill may also be placed, with testing to certify that the upper 6 inches of placed backfill contains less than 0.25 mg/kg Tri+ PCBs.

A **residual cap** is defined as placement of a thin cap layer over a thin layer of residual sediment with concentrations of Tri+ PCB greater than the 95% UCL but less than the 99% UCL. Such residual layers are typically a few centimeters thick. Residual capping serves to mix with and partially isolate this thin layer of contaminated sediment and speed up the natural recovery process. Residual caps are not designed as fully engineered isolation caps. Residual caps may be placed on a thickness of residual sediment defined by a single depth interval of 6 inches. The thickness of a residual cap will be greater than 1 foot (*i.e.*, thicker than backfill), and will result in a Tri+ PCB concentration less than or equal to 0.25 mg/kg in the upper 6 inches. The residuals cap must be sampled subsequent to placement, following the same procedure and requirements for backfill that requires testing.

An **isolation cap** is defined as the placement of an engineered sub-aqueous cover, or cap, of clean isolating material over the contaminated sediment. Such an isolation cap would be designed and constructed such that the cap will remain physically stable and that concentration of Tri+ PCBs in the upper 6 inches will remain at concentrations less than 0.25 mg/kg. An isolation cap would be appropriate for a situation in which a portion of the contaminated sediment inventory cannot be effectively dredged due to rocky conditions, etc., and a thickness of contaminated residual sediment and/or inventory greater than 6 inches remains.

The sub-aqueous cap must be constructed so that the arithmetic average concentration in the uncapped area within the certification unit is 1 mg/kg Tri+ PCBs or less, no uncapped nodes are greater than or equal to the 99% PL, and not more than one uncapped node is greater than or equal to the 97.5% PL.

The placement of backfill and sub-aqueous cap construction are undesirable in the navigation channel. Cap construction will also be restricted in areas of shallow water. However, there may be instances where a recalcitrant, contaminated residual is present in the navigation channel, and the construction of a sub-aqueous cap is a desirable option to isolate the residual PCB concentrations. To accommodate the sub-aqueous cap in this situation, it would be necessary to conduct additional dredging to place the layers of the

cap below the channel depth, and include an indicator layer of coarse material to signal the proximity of the cap during future maintenance dredging. Cap construction will not be permitted where shallow bedrock is present in the navigation channel.

4.0 Plan for Refinement of the Performance Standard for Dredging Residuals

There will be two opportunities to modify the Residuals Standard developed for the Phase 1 operations in response to peer review recommendations: before Phase 1, and between Phase 1 and the start of Phase 2. It is possible that additional case study data will become available prior to the commencement of Phase 1 activities that could be used to modify the Standard. This scenario is not expected to occur given the current state of dredging projects at other sites.

It is anticipated that a significant amount of information will be gathered from the Phase 1 remedial operations. The residual samples that will be collected as directed in the Residuals Standard will be analyzed in the same manner as the case study data to determine if the size of the certification unit, the number of sample locations per certification unit, and sample depths are appropriate for the Upper Hudson River sediments. Another aspect of the standard that will be scrutinized is the extent of redredging for different patterns of concentration exceedances. The sampling parameters developed for the Phase 1 standard have been developed using case study data that may have different sediment textures, spatial distributions and contaminants. The use of the Phase 1 residuals data will allow site-specific parameters to be developed for comparison to, and possible modification of, the performance standard. The SPI data gathered during Phase 1 will be used to evaluate the Residual Standard's core sampling intervals and required depths.

Semi-variograms will be generated for residual sediment sampling results in certified units from Phase 1. The semi-variograms will be used to determine whether the data are spatially correlated, and if so, calculate the distance at which the spatial correlation is statistically significant. This information will be used to refine USEPA's understanding of the spatial distribution of the residual contamination and adjust, as necessary, the scheme for re-dredging around individual samples that exceed the criterion.

The spatial distribution of Phase 1 residual sediment sampling results will be evaluated using the polygonal declustering method. This method includes the calculation and mapping of Theissen polygons, which are based on the spatial distribution of sample locations. For each Theissen polygon, an average Total PCB concentration will be calculated. The results of this analysis will be used to evaluate the degree to which samples containing Total PCB concentrations greater than the action levels are clustered, and indicate if adjustments are needed to the procedures for re-dredging in certification units that do not initially satisfy the Residual Standard action levels.

Statistical analysis of the Phase 1 residual sediment analytical data will be conducted to test the assumptions used for selecting the sampling frequency. The spatial distribution and correlation analyses will be used to refine residual sampling in areas where redredging attempts may be required. The distribution of the residual sediment data in each target area will be determined using goodness of fit tests. The action levels (UCLs and

PLs) may be adjusted according to the site-specific variance of the residual concentrations, although it is unlikely that these values will be changed without substantial modifications to the framework of the standard.

The size of the 20-acre joint evaluation areas included in the Residuals Standard may be revisited during Phase 2. The joint evaluation area concept was based on the approximate size of the HUDTOX segments used to model recovery of the Hudson River after remediation. Since the model used approximately 20-acre segments in the TI Pool and approximately 40-acre segments in River Sections 2 and 3, the Standard may be modified to include the use of 40-acre joint evaluation areas in appropriate River Sections during Phase 2.

The engineering contingency plan developed for Phase 1 may be altered for Phase 2. The trigger for implementation of contingency actions is based on a set number of dredging attempts (2 re-dredging attempts), which may occur after the design cut-lines are met. Subsequently, contingency actions, specifically capping, may be implemented in areas where the required residual PCB concentration cannot be achieved by dredging alone. The number of dredging attempts required and the efficacy of the non-dredging technologies will be examined, as implemented. The analysis will consist of a review of the results of the Phase 1 operations and will require engineering judgment.

In summary, the parameters of the standard developed for the Phase 1 are open to modification, however, the framework of the standard is expected to remain substantively the same as presented in this document. Data from the design samples and the Phase 1 operations will be analyzed. If the conclusions drawn from these analyses are substantially different, the Residuals Standard may be modified for Phase 2.

5.0 List Of Acronyms

CAB Cellulose Acetate Butyrate

CERCLA Comprehensive Environmental Response and Compensation Liability Act

CLP Contract Laboratory Program

cm centimeter
CU certification unit

DNAPL Denser Non-Aqueous Phase Liquid EMP Environmental Monitoring Plan

FS Feasibility Study

ft foot

GE General Electric Company

GEHR General Electric Hudson River SOP

GCL Geosynthetic Clay Liners

GM General Motors

GPS Global Positioning System

JMP a commercial software package for statistical analysis

mg/kg milligrams per kilogram (equivalent to ppm)

LWA length-weighted average MPA Mass per Unit Area

MVUE minimum unbiased estimator of the mean

NJDEP New Jersey Department of Environmental Protection

NTCRA Non-Time-Critical Removal Action

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health PAHs Polycyclic Aromatic Hydrocarbons

PCBs Polychlorinated Biphenyls PCDFs Polychlorinated Dibenzofurans

PL Prediction Limit

ppm part per million (equivalent to mg/kg)

PVC Polyvinyl Chloride Q-Q Quantile-Quantile

QA/QC Quality Assurance / Quality Control QAPP Quality Assurance Project Plan

ORT Ouality Review Team

REP Report

RCRA Resource Conservation and Recovery Act RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

SMU Sediment Management Unit
SOP Standard Operating Procedure
SPI Sediment Profile Imaging
SQV Sediment Quality Value
TAT Turn Around Time
TI Thompson Island

TSCA Toxic Substances Control Act

Total Suspended Solids Upper Confidence Limit TSS UCL

USACE

United States Army Corps of Engineers
United States Environmental Protection Agency **USEPA**

6.0 References

Area A Sampling and Analysis Plan, Reynolds Metals Site (July 1996).

Environmental Monitoring Plan, Reynolds Metals Site, Appendix A – Procedure for Surface and Subsurface Sediment Sampling (REP-002).

Gilbert, R. O., *Statistical Methods for Environmental Pollution Monitoring*, Van Nostrand Reinhold, New York, 1987.

Land, C.E., 1975. Tables of confidence limits for linear functions of the normal mean and variance, in Selected Tables in Mathematical Statistics, vol. III. American Mathematical Society, Providence, R.I. pp. 385-419.

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology 39: 20-31.

NJDEP, 1992. Field Sampling Procedures Manual. Prepared by New Jersey Department of Environmental Protection.

QEA, 2002. Quality Assurance Project Plan for the Hudson River PCBs Site, Design Support Sediment Sampling and Analysis Program. Prepared for General Electric Co. by Environmental Standards, Inc. and Quantitative Environmental Analysis, LLC.

SAS, 1997. JMP Software and Reference Manual.

USACE, 1994. Requirements for the Preparation of Sampling and Analysis Plans, EM 200-1-3.

USEPA, 1989. Methods for Evaluating the Attainment of Cleanup Standards, Volume 1: Soils and Solid Media. Prepared by Office of Policy, Planning and Evaluation. EPA 230/02-89-042.

USEPA, 1994. Guidance for the Data Quality Objectives Process, EPA QA/G-4.

USEPA, 1996. Soil Screening Guidance.

USEPA, 1998. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846 3rd Edition.

USEPA, 1999. Responsiveness Summary for Volume 2C-A Low Resolution Sediment Coring Report Addendum to the Data Evaluation and Interpretation Report. Prepared by TAMS Consultants, Inc. and TetraTech, Inc. February 1999.

USEPA, 2000. Hudson River PCBs Feasibility Study Report. December 2000.

USEPA, 2001. Environmental Investigations Standard Operating Procedures and Quality Assurance Manual, Section 11 – Sediment Sampling. Prepared by USEPA Region IV, Athens, GA.

USEPA, 2001a. Software Pro-UCL User's Manual. NERL, USEPA, Las Vegas, Nevada.

USEPA, 2002. Record of Decision and Responsiveness Summary for Hudson River PCBs Site. February, 2002.

USEPA, 2002a. Guidance for Choosing a Sampling Design for Environmental Data Collection, EPA/240/R-02/005.

USGS, 2001. Environmental Geochemistry and Sediment Quality in Lake Ponchartrain, Box and Push-Piston Coring; Underway Surficial Sediment Sampling. Prepared by USGS (http://pubs.usgs.gov/of/of98-805/html/jf box.htm & jf surf.htm).

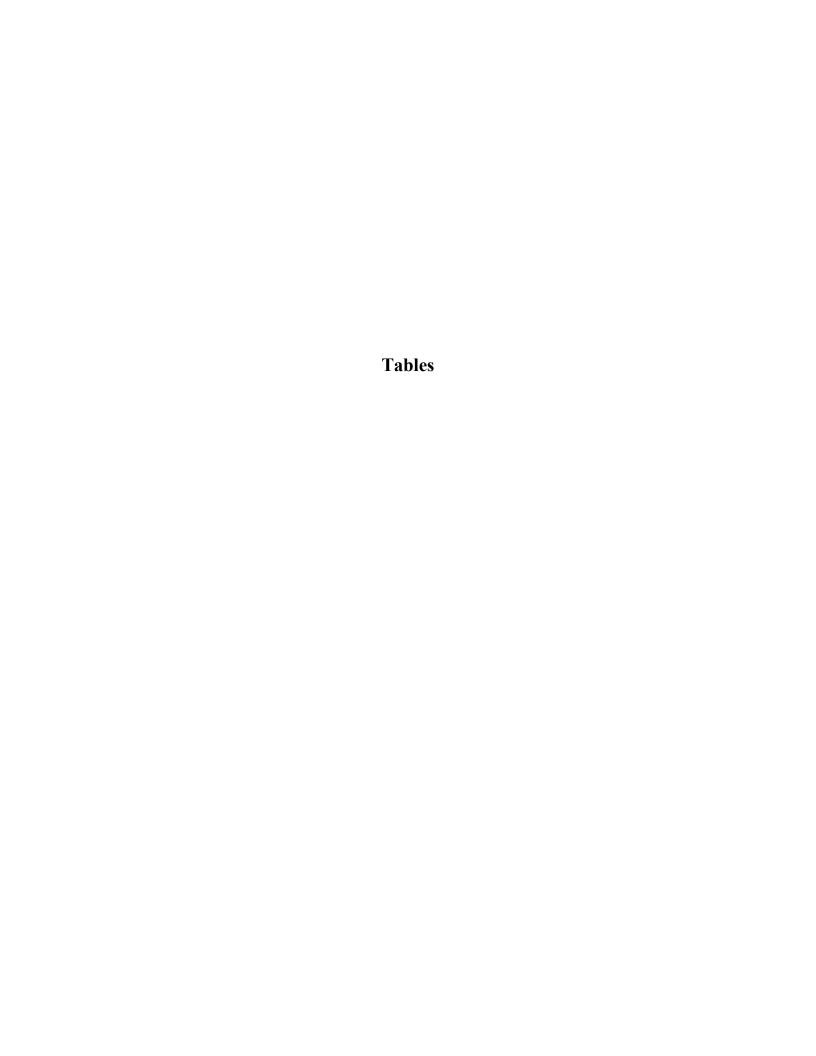


TABLE 1-1 SUMMARY OF DRAFT PERFORMANCE STANDARD FOR DREDGING RESIDUALS

Case	Certification Unit Arithmetic Average (mg/kg Tri+ PCBs)	No. of Sample Results ≥15 mg/kg Tri+ PCBs AND < 27 mg/kg Tri+ PCBs	No. of Sample Results ≥ 27 mg/kg Tri+ PCBs	No. of Re- Dredging Attempts Conducted	Required Action (when all conditions are met)*
A	avg. ≤ 1	≤1	0	N/A	Backfill certification unit (where appropriate); no testing of backfill required.
В	N/A	<u>≥</u> 2	N/A	< 2	Redredge sampling nodes and re-sample.
С	N/A	N/A	1 or more	< 2	Redredge sampling node(s) and re-sample.
D	1 < avg. ≤ 3	≤1	0	N/A	Evaluate 20-acre area-weighted average concentration. If 20-acre area-weighted average concentration ≤ 1 mg/kg Tri+ PCBs, place and sample backfill. If 20-acre area-weighted average concentration > 1 mg/kg, follow actions for Case E below.
E	$3 < \text{avg.} \le 6$	≤1	0	< 2	Construct sub-aqueous cap immediately OR re-dredge. Construct cap so that arithmetic avg. of uncapped nodes is ≤ 1 mg/kg Tri+ PCBs, no nodes > 27 mg/kg Tri+ PCBs, and not more than one node > 15 mg/kg Tri+ PCBs.
F	avg. > 6	N/A	N/A	0	Collect additional sediment samples to recharacterize vertical extent of contamination and re-dredge. If certification unit median > 6 mg/kg Tri+ PCBs, entire certification unit must be sampled for vertical extent. If certification unit median ≤ 6 mg/kg Tri+ PCBs, additional sampling required only in portions of certification unit contributing to elevated mean concentration.
G	avg. > 6	N/A	N/A	1	Re-dredge.
Н	avg. > 1 (20- acre avg. > 1)	≥2	≥ 1	2	Construct sub-aqueous cap (if any of these arithmetic average/sample result conditions are true) as described in Case E and two re-dredging attempts have been conducted OR choose to continue to re-dredge.

^{*}Except for Case H, where any of the listed conditions will require cap construction.

Table 2-1 Case Study Information

Site	Dredge	Subbottom	Number of	No. of	Sample	Sample	Sample	Analytical	PostDredge	Target
			Passes	Samples	Grid Size	Method	Depth	Method	Avg. Conc.	Conc.
									ppm	ppm
Reynolds Metals	Cable Arm; Rock	Mud, clay, sand,	Maximum of 10	263	50x50' &	Core	0-8"	Aroclors 8082	2	1
	Bucket & Hydraulic	gravel and cobbles			70x70'			& Immunoassay	Excluding the one	
	Clamshell	underlain by till							quadrent with	
		·							conc. 5,941	
GM Massena	Horizontal Auger	Clay, silt and fine-grained	Typically 2 to 6	111	50x50' &	Core	0-6"	Aroclors 8082	3	1
		sand, containing gravel,	15 to 18 passes		70x70'					
		cobbles and large boulders underlain by till	in some areas.							
New Bedford	Hydraulic Excavator	Soft Clay	1	18	~40x40'	Cores and	0-1 ft.	NOAA	29 (0-1')	None
PreDredge Test	with a Clamshell					Grabs	0-2 cm	18 Congener		
Cumberland Bay	Hydralic	Sand	Multiple	69	50x50'	Cores and	0-2 ft.	Aroclor	6-7	10
	Cutterhead					Grabs	0-2 cm	Method 8082		
Fox River	Hydraulic	Silty-Sand Overlying	4 subunits	28	Random within	Core	0-4" and	Aroclors	2 (0-4")	10
SMU 56/57	Cutterhead	Clay	were redredged		100x100' grids		4-12"	SW846 8082		
Fox River	Hydraulic	Silty-Sand Overlying	Not Available	36	Random within	Cores and	0-6"	Aroclors	8	None
Deposit N	Cutterhead with a	Clay			50x50' grids	Grabs				
	Swinging Ladder	·			_					
Grasse River	Horizontal Auger	Rocky with a Boulder	Multiple	12	Random	Cores	0-6" to 0-	Aroclors	80	None
Inventory Removal		field	_				8"			

Notes:

- 1. The Marathon Battery site is omitted from this table because a report was not available .
- 2. PCBs are a contaminant for each site listed.

Table 2-2 Summary Statistics for Case Studies

Reynolds Metals

Units: mg/kg					
Normal Distribution			Lognormal		
Number of Samples		Number of Samples	263	Minimum	-3.218876
Minimum	0.04	Minimum	0.04	Maximum	4.7912928
Maximum	120.457	Maximum	120.457	Mean	-0.317828
Mean	2.37546768	Mean	2.3754677	Standard Deviation	1.1903279
Median	0.5	Median	0.5	Variance	1.4168806
Standard Deviation	9.58444658	Standard Deviation	9.5844466		
Variance	91.8616162	Variance	91.861616	Lilliefors Test Statisitic	0.2165685
Coefficient of Variation	4.03476194	Coefficient of Variation	4.0347619	Lilliefors 5% Critical Value	0.0546331
Skewness	9.39213246	Skewness	9.3921325	Data Not Lognormal at 5% Significant	nce Level
				Try Normal or Non-parametric UCL	
Lilliefors Test Statisitic	0.40374222	95 % UCL (Normal Data)			
Lilliefors 5% Critical Value	0.0546331	Student's t	3.3510293	Estimates Assuming Lognormal Dist	ribution
Data Not Normal at 0.05 Significance				MLE Mean	1.4778851
Try Lognormal or Non-parametric U	CL	95 % UCL (Adjusted for Skewness)		MLE Standard Deviation	2.6122367
		Adjusted CLT	3.713306	MLE Coefficient of Variation	1.7675506
95 % UCL (Normal Data)		Modified t	3.4080751	MLE Skewness	10.824896
Student's t	3.35102925			MLE Median	0.7277278
		95 % Non-parametric UCL		MLE 80% Quantile	1.9897298
95 % UCL (Adjusted for Sl		CLT	3.3475799	MLE 90% Quantile	3.3593354
Adjusted CLT	3.71330602		3.3510293	MLE 95% Quantile	5.1565163
Modified t	3.40807513	Standard Bootstrap	3.3277375	MLE 99% Quantile	11.598486
		Bootstrap t	4.4723665		
95 % Non-parametric UCL		Chebyshev (Mean, Std)	4.951587	MVU Estimate of Median	0.7257701
CLT	3.34757995			MVU Estimate of Mean	1.4711508
Jackknife	3.35102925	1		MVU Estimate of Std. Dev.	2.5512107
Standard Bootstrap	3.35265422	Chebyshev (Mean, Std)	6.0662758	MVU Estimate of SE of Mean	0.139453
Bootstrap t	4.39854247				
Chebyshev (Mean, Std)	4.95158696	99 % Non-parametric UCL		UCL Assuming Lognormal Distrib	oution
		Chebyshev (Mean, Std)	8.2558663	95% H-UCL	1.7485376
				95% Chebyshev (MVUE) UCL	2.0790125
				99% Chebyshev (MVUE) UCL	2.858691
				Recommended UCL to use:	H-UCL

Table 2-2 Summary Statistics for Case Studies

East Foundry Cove Marathon Battery

Units: mg/kg			T	I Distribution	
Normal Distribution		N. 1. 00 1		1 Distribution	0.00000000
Number of Samples		Number of Samples	85	Minimum	-2.30258509
Minimum		Minimum	0.1	Maximum	4.477336814
Maximum		Maximum	88	Mean	2.232355205
Mean	13.265294		13.265294	Standard Deviation	0.946246934
Median		Median	9.2	Variance	0.895383259
Standard Deviation		Standard Deviation	12.53175		
Variance	157.04476		157.04476	Lilliefors Test Statisitic	0.104529935
Coefficient of Variation		Coefficient of Variation	0.944702	Lilliefors 5% Critical Value	0.096100193
Skewness	3.2110989	Skewness	3.2110989	Data Not Lognormal at 5% Significa	nce Level
				Try Normal or Non-parametric UCL	
Lilliefors Test Statisitic	0.1752375	95 % UCL (Normal Data)			
Lilliefors 5% Critical Value	0.0961002	Student's t	15.526009	Estimates Assuming Lognormal Dist	ribution
Data Not Normal at 0.05 Significand	ce Level			MLE Mean	14.5857764
Try Lognormal or Non-parametric U	JCL	95 % UCL (Adjusted for Skewness)		MLE Standard Deviation	17.55314371
		Adjusted CLT	16.006932	MLE Coefficient of Variation	1.203442534
95 % UCL (Normal Data)		Modified t	15.604912	MLE Skewness	5.353242056
Student's t	15.526009			MLE Median	9.321794982
		95 % Non-parametric UCL		MLE 80% Quantile	20.73729694
95 % UCL (Adjusted for S		CLT	15.501076	MLE 90% Quantile	31.44633727
Adjusted CLT	16.006932		15.526009	MLE 95% Quantile	44.20913361
Modified t	15.604912	Standard Bootstrap	15.456639	MLE 99% Quantile	84.21100154
		Bootstrap t	16.225874		
95 % Non-parametric UCI		Chebyshev (Mean, Std)	19.190167	MVU Estimate of Median	9.272823537
CLT	15.501076			MVU Estimate of Mean	14.47660349
Jackknife	15.526009	97.5 % Non-parametric UCL		MVU Estimate of Std. Dev.	16.91577065
Standard Bootstrap	15.42967	Chebyshev (Mean, Std)	21.753865	MVU Estimate of SE of Mean	1.748954098
Bootstrap t	16.182128				
Chebyshev (Mean, Std)	19.190167	99 % Non-parametric UCL		UCL Assuming Lognormal Distril	oution
		Chebyshev (Mean, Std)	26.789752	95% H-UCL	18.26224888
				95% Chebyshev (MVUE) UCL	22.10011766
				99% Chebyshev (MVUE) UCL	31.87847705
				Recommended UCL to use:	H-UCL

Table 2-2 Summary Statistics for Case Studies

New Bedford Harbor (0-1 ft.)

0.67 130 29.065	Number of Samples Minimum Maximum	Lognormal 18 0.67	Minimum	-0.400478
0.67 130 29.065	Minimum			-0.400478
130 29.065		0.67		
29.065	Maximum	0.07	Maximum	4.8675345
	IVIAXIIIIUIII	130	Mean	2.7656102
15	Mean	29.065	Standard Deviation	1.2326933
13	Median	15	Variance	1.5195329
33.8794253	Standard Deviation	33.879425		
1147.81546	Variance	1147.8155	Shapiro-Wilk Test Statisitic	0.9501964
1.1656434	Coefficient of Variation	1.1656434	Shapiro-Wilk 5% Critical Value	0.897
1.95343137	Skewness	1.9534314	Data Are Lognormal at 5% Significant	nce Level
0.74634222	95 % UCL (Normal Data)		Estimates Assuming Lognormal Dist	ribution
0.897	Student's t	42.956553	MLE Mean	33.966565
Level			MLE Standard Deviation	64.178741
L	95 % UCL (Adjusted for Skewness)		MLE Coefficient of Variation	1.8894681
	Adjusted CLT	46.128547	MLE Skewness	12.413975
	Modified t	43.569341	MLE Median	15.888733
42.956553			MLE 80% Quantile	45.025819
	95 % Non-parametric UCL		MLE 90% Quantile	77.449116
wness)	Chebyshev (Mean, Std)	63.872801	MLE 95% Quantile	120.70997
46.1285469			MLE 99% Quantile	279.45881
43.5693412	97.5 % Non-parametric UCL			
	CLT	46.584386	MVU Estimate of Median	15.230602
	Jackknife	47.929724	MVU Estimate of Mean	31.76221
42.1999081	Standard Bootstrap	46.02077	MVU Estimate of Std. Dev.	48.170573
42.956553	Bootstrap t	60.975621	MVU Estimate of SE of Mean	10.560521
42.0065579	Chebyshev (Mean, Std)	82.627761		
50.8459146			UCL Assuming Lognormal Distrib	oution
63.8728007	99 % Non-parametric UCL		95% H-UCL	83.653334
	Chebyshev (Mean, Std)	108.5193	95% Chebyshev (MVUE) UCL	77.794451
			99% Chebyshev (MVUE) UCL	136.83806
			Recommended UCL to use:	
			95 % Chebyshev (MVU	JE) UCL
	33.8794253 147.81546 1.1656434 95343137 0.74634222 0.897 .evel 42.956553 vness) 46.1285469 43.5693412 42.956553 42.0956553 42.0956553 60.8459146	0.897 Student's t 2.evel 95 % UCL (Adjusted for Sket Adjusted CLT Modified t 42.956553 95 % Non-parametric UCL Chebyshev (Mean, Std) 43.5693412 97.5 % Non-parametric UCL CLT Jackknife 42.1999081 42.956553 Bootstrap t 42.956553 Bootstrap t Chebyshev (Mean, Std) 42.0065579 Chebyshev (Mean, Std) 99 % Non-parametric UCL	33.8794253 Standard Deviation 33.879425 1.147.81546 Variance 1147.8155 1.1656434 Coefficient of Variation 1.1656434 1.95343137 Skewness 1.9534314 2.74634222 95 % UCL (Normal Data) 42.956553 2.evel 95 % UCL (Adjusted for Skewness) 3.42.956553 Adjusted CLT 46.128547 42.956553 95 % Non-parametric UCL Chebyshev (Mean, Std) 63.872801 42.956553 97.5 % Non-parametric UCL 46.584386 42.1999081 Standard Bootstrap 46.02077 42.956553 Bootstrap t 60.975621 42.065579 Chebyshev (Mean, Std) 82.627761 60.8459146 99 % Non-parametric UCL 63.8728007 99 % Non-parametric UCL	33.8794253 Standard Deviation 33.879425 Standard Deviation 1147.8155 Shapiro-Wilk Test Statisitic 1.1656434 Coefficient of Variation 1.1656434 Shapiro-Wilk 5% Critical Value Data Are Lognormal at 5% Significal Data Are Lognormal Dist Data Are Lognormal at 5% Significal Data Are Lognormal Dist Data Are Lognormal at 5% Significal Data Are Lognormal Dist Data Are Lognormal Dist

Table 2-2 Summary Statistics for Case Studies

New Bedford Harbor (0-2 cm)

Units: mg/kg		•			
Normal Distribution			Lognormal	Distribution	
Number of Samples		Number of Samples	35	Minimum	-0.755023
Minimum		Minimum	0.47	Maximum	6.1527327
Maximum		Maximum	470	Mean	4.6412476
Mean	173.922	Mean	173.922	Standard Deviation	1.38356
Median	140	Median	140	Variance	1.9142383
Standard Deviation	136.498253	Standard Deviation	136.49825		
Variance	18631.7732	Variance	18631.773	Shapiro-Wilk Test Statisitic	0.8313256
Coefficient of Variation	0.78482454	Coefficient of Variation	0.7848245	Shapiro-Wilk 5% Critical Value	0.934
Skewness	0.76596072	Skewness	0.7659607	Data Not Lognormal at 5% Significa	nce Level
				Try Normal or Non-parametric UCL	
Shapiro-Wilk Test Statisitic	0.90555522	95 % UCL (Normal Data)			
Shapiro-Wilk 5% Critical Value	0.934	Student's t	212.9357	Estimates Assuming Lognormal Dist	ribution
Data Not Normal at 0.05 Significanc	e Level			MLE Mean	269.98509
Try Lognormal or Non-parametric U	CL	95 % UCL (Adjusted for Skewness)		MLE Standard Deviation	649.18764
		Adjusted CLT	215.06462	MLE Coefficient of Variation	2.4045314
95 % UCL (Normal Data)		Modified t	213.43357	MLE Skewness	21.116045
Student's t	212.935702			MLE Median	103.67361
		95 % Non-parametric UCL		MLE 80% Quantile	333.73785
95 % UCL (Adjusted for Sl	kewness)	CLT	211.87275	MLE 90% Quantile	613.46439
Adjusted CLT	215.064623	Jackknife	212.9357	MLE 95% Quantile	1009.4933
Modified t	213.43357	Standard Bootstrap	210.91456	MLE 99% Quantile	2589.9871
		Bootstrap t	216.07113		
95 % Non-parametric UCL		Chebyshev (Mean, Std)	274.49233	MVU Estimate of Median	100.87484
CLT	211.872747			MVU Estimate of Mean	256.83879
Jackknife	212.935702	97.5 % Non-parametric UCL		MVU Estimate of Std. Dev.	514.7549
Standard Bootstrap	211.209841	Chebyshev (Mean, Std)	318.00919	MVU Estimate of SE of Mean	75.435962
Bootstrap t	217.189058				
Chebyshev (Mean, Std)	274.492329	99 % Non-parametric UCL		UCL Assuming Lognormal Distrib	oution
		Chebyshev (Mean, Std)	403.48964	95% H-UCL	534.68894
				95% Chebyshev (MVUE) UCL	585.65652
				99% Chebyshev (MVUE) UCL	1007.4171
				Recommended UCL to use:	H-UCL

Table 2-2 Summary Statistics for Case Studies

Fox River Deposit N

Units: mg/kg					
Normal Distribution			Lognormal	Distribution	
Number of Samples	36	Number of Samples	36	Minimum	-2.302585
Minimum	0.1	Minimum	0.1	Maximum	3.7612001
Maximum	43	Maximum	43	Mean	0.9788068
Mean	7.56388889	Mean	7.5638889	Standard Deviation	1.5784163
Median	2.2	Median	2.2	Variance	2.4913981
Standard Deviation	11.0019778	Standard Deviation	11.001978		
Variance	121.043516	Variance	121.04352	Shapiro-Wilk Test Statisitic	0.9585836
Coefficient of Variation	1.45453985	Coefficient of Variation	1.4545399	Shapiro-Wilk 5% Critical Value	0.935
Skewness	1.90171296	Skewness	1.901713	Data Are Lognormal at 5% Significa	ance Level
Shapiro-Wilk Test Statisitic	0.68743355	95 % UCL (Normal Data)		Estimates Assuming Lognormal Dis	stribution
Shapiro-Wilk 5% Critical Value	0.935	Student's t	10.661995	MLE Mean	9.2489112
Data Not Normal at 0.05 Significan	ce Level			MLE Standard Deviation	30.783944
Try Lognormal or Non-parametric l	UCL	95 % UCL (Adjusted for Skewness)		MLE Coefficient of Variation	3.3283857
		Adjusted CLT	11.200999	MLE Skewness	46.857517
95 % UCL (Normal Data)		Modified t	10.758859	MLE Median	2.6612788
Student's t	10.6619947			MLE 80% Quantile	10.100335
		95 % Non-parametric UCL		MLE 90% Quantile	20.228081
95 % UCL (Adjusted for S	Skewness)	Chebyshev (Mean, Std)	15.55664	MLE 95% Quantile	35.70539
Adjusted CLT	11.200999			MLE 99% Quantile	104.60624
Modified t	10.7588586	1			
		Chebyshev (Mean, Std)	25.808605	MVU Estimate of Median	2.5706829
95 % Non-parametric UC	L			MVU Estimate of Mean	8.6125296
CLT	10.5799961			MVU Estimate of Std. Dev.	22.078824
Jackknife	10.6619947	97.5 % Non-parametric UCL		MVU Estimate of SE of Mean	2.9588652
Standard Bootstrap	10.5022151	CLT	11.157802		
Bootstrap t	11.5704128	Jackknife	11.286422	UCL Assuming Lognormal Distri	ibution
Chebyshev (Mean, Std)	15.5566405	Standard Bootstrap	11.147567	95% H-UCL	21.350789
		Bootstrap t	12.993791	95% Chebyshev (MVUE) UCL	21.509924
		Chebyshev (Mean, Std)	19.01511	99% Chebyshev (MVUE) UCL	38.052866
				Recommended UCL to use:	
				95 % Chebyshev (MV	UE) UCL

Table 2-2 Summary Statistics for Case Studies

Fox River SMU 56/57

Units: mg/kg					
Normal Distribution			Lognormal	Distribution	
Number of Samples	28	Number of Samples	28	Minimum	-3.963316
Minimum	0.019	Minimum	0.019	Maximum	2.2512918
Maximum	9.5	Maximum	9.5	Mean	0.0418062
Mean	2.15235714	Mean	2.1523571	Standard Deviation	1.4477639
Median	1.5	Median	1.5	Variance	2.0960202
Standard Deviation	2.46622094	Standard Deviation	2.4662209		
Variance	6.08224572		6.0822457	Shapiro-Wilk Test Statisitic	0.9473799
Coefficient of Variation	1.14582329	Coefficient of Variation	1.1458233	Shapiro-Wilk 5% Critical Value	0.924
Skewness	1.87173306	Skewness	1.8717331	Data Are Lognormal at 5% Signific	ance Level
Shapiro-Wilk Test Statisitic	0.7627895	` '		Estimates Assuming Lognormal Dis	stribution
Shapiro-Wilk 5% Critical Value	0.924	Student's t	2.946212	MLE Mean	2.9737279
Data Not Normal at 0.05 Significan	ce Level			MLE Standard Deviation	7.9425453
Try Lognormal or Non-parametric I	UCL	95 % UCL (Adjusted for Skewness)		MLE Coefficient of Variation	2.6709053
		Adjusted CLT	3.0951336	MLE Skewness	27.066246
95 % UCL (Normal Data)		Modified t	2.9736888	MLE Median	1.0426924
Student's t	2.94621196			MLE 80% Quantile	3.5436834
		95 % Non-parametric UCL		MLE 90% Quantile	6.7005043
95 % UCL (Adjusted for S		CLT	2.9189773	MLE 95% Quantile	11.28391
Adjusted CLT	3.09513362		2.946212	MLE 99% Quantile	30.244217
Modified t	2.97368879	Standard Bootstrap	2.916509		
		Bootstrap t	3.2880817	MVU Estimate of Median	1.0043382
95 % Non-parametric UC		Chebyshev (Mean, Std)	4.1839177	MVU Estimate of Mean	2.7729667
CLT	2.91897728			MVU Estimate of Std. Dev.	5.7946196
Jackknife	2.94621196	97.5 % Non-parametric UCL		MVU Estimate of SE of Mean	0.94187
Standard Bootstrap	2.89246037	Chebyshev (Mean, Std)	5.0629755		
Bootstrap t	3.23818912			UCL Assuming Lognormal Distr	ibution
Chebyshev (Mean, Std)	4.18391767	1		95% H-UCL	6.9967449
		Chebyshev (Mean, Std)	6.7897145	95% Chebyshev (MVUE) UCL	6.878483
				99% Chebyshev (MVUE) UCL	12.144455
				Recommended UCL to use:	H-UCL

Table 2-2 Summary Statistics for Case Studies

Cumberland Bay

Normal Distribution			Lognormal	Distribution	
Number of Samples	69	Number of Samples	69	Minimum	-2.407946
Minimum	0.09	Minimum	0.09	Maximum	4.8675345
Maximum	130	Maximum	130	Mean	1.9421117
Mean	13.4402899	Mean	13.44029	Standard Deviation	1.3535453
Median	8.7	Median	8.7	Variance	1.832085
Standard Deviation	18.4796242	Standard Deviation	18.479624		
Variance	341.496512	Variance	341.49651	Lilliefors Test Statisitic	0.1704982
Coefficient of Variation	1.37494239	Coefficient of Variation	1.3749424	Lilliefors 5% Critical Value	0.1066619
Skewness	4.27803012	Skewness	4.2780301	Data Not Lognormal at 5% Significa	ince Level
				Try Normal or Non-parametric UCL	r
Lilliefors Test Statisitic	0.24897719	95 % UCL (Normal Data)			
Lilliefors 5% Critical Value	0.10666187	Student's t	17.150113	Estimates Assuming Lognormal Dist	tribution
Data Not Normal at 0.05 Significan	ce Level			MLE Mean	17.429325
Try Lognormal or Non-parametric U	JCL	95 % UCL (Adjusted for Skewness)		MLE Standard Deviation	39.9238
		Adjusted CLT	18.323816	MLE Coefficient of Variation	2.2906107
95 % UCL (Normal Data)		Modified t	17.34107	MLE Skewness	18.890432
Student's t	17.1501128			MLE Median	6.9734611
		95 % Non-parametric UCL		MLE 80% Quantile	21.886226
95 % UCL (Adjusted for S	/	CLT	17.099572	MLE 90% Quantile	39.702629
Adjusted CLT	18.3238165	Jackknife	17.150113	MLE 95% Quantile	64.630972
Modified t	17.3410703	Standard Bootstrap	17.00876	MLE 99% Quantile	162.46427
		Bootstrap t	19.747748		
95 % Non-parametric UCI	L	Chebyshev (Mean, Std)	23.137468	MVU Estimate of Median	6.8814761
CLT	17.0995716			MVU Estimate of Mean	17.006707
Jackknife	17.1501128	97.5 % Non-parametric UCL		MVU Estimate of Std. Dev.	35.348288
Standard Bootstrap	16.9797274	Chebyshev (Mean, Std)	27.333445	MVU Estimate of SE of Mean	3.624611
Bootstrap t	19.4844389				
Chebyshev (Mean, Std)	23.1374684	99 % Non-parametric UCL		UCL Assuming Lognormal Distri	bution
		Chebyshev (Mean, Std)	35.575629	95% H-UCL	26.827136
				95% Chebyshev (MVUE) UCL	32.80602
				99% Chebyshev (MVUE) UCL	53.071131
				Recommended UCL to use:	H-UCL

Table 2-2 Summary Statistics for Case Studies

GM Massena Uncapped Areas

Units: mg/kg		T	т ,	D1 + 3 - 4	
Normal Distribution				Distribution	
Number of Samples		Number of Samples	83	Minimum	-2.302585
Minimum		Minimum	0.1	Maximum	2.1282317
Maximum		Maximum	8.4	Mean	0.6180034
Mean	3.24337349	Mean	3.2433735	Standard Deviation	1.3229122
Median	3.1	Median	3.1	Variance	1.7500967
Standard Deviation	2.51610388	Standard Deviation	2.5161039		
Variance	6.33077873	Variance	6.3307787	Lilliefors Test Statisitic	0.1763712
Coefficient of Variation	0.77576754	Coefficient of Variation	0.7757675	Lilliefors 5% Critical Value	0.0972511
Skewness	0.38505553	Skewness	0.3850555	Data Not Lognormal at 5% Signification	ance Level
				Try Normal or Non-parametric UCI	_
Lilliefors Test Statisitic	0.12870992	95 % UCL (Normal Data)			
Lilliefors 5% Critical Value	0.09725113	Student's t	3.7028372	Estimates Assuming Lognormal Dis	stribution
Data Not Normal at 0.05 Significa	ince Level			MLE Mean	4.4506571
Try Lognormal or Non-parametric	UCL	95 % UCL (Adjusted for Skewness)		MLE Standard Deviation	9.7052486
		Adjusted CLT	3.7101189	MLE Coefficient of Variation	2.1806327
95 % UCL (Normal Data	a)	Modified t	3.7047826	MLE Skewness	16.911154
Student's t	3.70283719			MLE Median	1.8552202
		95 % Non-parametric UCL		MLE 80% Quantile	5.6738291
95 % UCL (Adjusted for	Skewness)	CLT	3.6976463	MLE 90% Quantile	10.154791
Adjusted CLT	3.71011886	Jackknife	3.7028372	MLE 95% Quantile	16.349445
Modified t	3.70478265	Standard Bootstrap	3.6817777	MLE 99% Quantile	40.249484
		Bootstrap t	3.7199999		
95 % Non-parametric U	CL	Chebyshev (Mean, Std)	4.4472067	MVU Estimate of Median	1.8357614
CLT	3.69764634			MVU Estimate of Mean	4.3659761
Jackknife	3.70283719	99 % Non-parametric UCL		MVU Estimate of Std. Dev.	8.8141736
Standard Bootstrap	3.69274581	CLT	3.8858603	MVU Estimate of SE of Mean	0.8294745
Bootstrap t	3.71693112	Jackknife	3.8986581		
Chebyshev (Mean, Std)	4.44720671	Standard Bootstrap	3.8847076	UCL Assuming Lognormal Distri	ibution
Chebyshev (Mean, Std)	4.44720671	Bootstrap t	3.9534834	95% H-UCL	6.4661883
		Chebyshev (Mean, Std)	5.9913127	95% Chebyshev (MVUE) UCL	7.9815715
				99% Chebyshev (MVUE) UCL	12.619143
				Recommended UCL to use:	H-UCL

Table 2-2 Summary Statistics for Case Studies

GM Massena Pass 1

Units: mg/kg					
Normal Distribution			Lognormal	Distribution	
Number of Samples		Number of Samples	83	Minimum	-2.617296
Minimum		Minimum	0.073	Maximum	8.9834398
Maximum		Maximum	7970	Mean	1.883984
Mean	192.840265	Mean	192.84027	Standard Deviation	2.3538202
Median	5.68	Median	5.68	Variance	5.5404693
Standard Deviation	940.857471	Standard Deviation	940.85747		
Variance	885212.78	Variance	885212.78	Lilliefors Test Statisitic	0.1341868
Coefficient of Variation	4.8789472	Coefficient of Variation	4.8789472	Lilliefors 5% Critical Value	0.0972511
Skewness	7.34681485	Skewness	7.3468148	Data Not Lognormal at 5% Significa	ance Level
				Try Normal or Non-parametric UCL	_
Lilliefors Test Statisitic	0.41883114	95 % UCL (Normal Data)			
Lilliefors 5% Critical Value	0.09725113	Student's t	364.64949	Estimates Assuming Lognormal Dis	tribution
Data Not Normal at 0.05 Significan	ce Level			MLE Mean	105.02712
Try Lognormal or Non-parametric U	JCL	95 % UCL (Adjusted for Skewness)		MLE Standard Deviation	1673.1897
		Adjusted CLT	451.69518	MLE Coefficient of Variation	15.931025
95 % UCL (Normal Data)		Modified t	378.52962	MLE Skewness	4091.0481
Student's t	364.649486			MLE Median	6.5796658
		95 % Non-parametric UCL		MLE 80% Quantile	48.084601
95 % UCL (Adjusted for S	Skewness)	CLT	362.70845	MLE 90% Quantile	135.45546
Adjusted CLT	451.695182	Jackknife	364.64949	MLE 95% Quantile	316.08719
Modified t	378.529618	Standard Bootstrap	353.66584	MLE 99% Quantile	1570.2178
		Bootstrap t	769.82837		
95 % Non-parametric UCI		Chebyshev (Mean, Std)	642.99476	MVU Estimate of Median	6.3636006
CLT	362.708451			MVU Estimate of Mean	93.546427
Jackknife	364.649486	99 % Non-parametric UCL		MVU Estimate of Std. Dev.	905.03614
Standard Bootstrap	359.140366	Chebyshev (Mean, Std)	1220.3889	MVU Estimate of SE of Mean	40.037661
Bootstrap t	744.579574				
Chebyshev (Mean, Std)	642.994761			UCL Assuming Lognormal Distri	bution
				95% H-UCL	282.22836
				95% Chebyshev (MVUE) UCL	268.06654
				99% Chebyshev (MVUE) UCL	491.91612
				Recommended UCL to use:	H-UCL

Table 2-2 Summary Statistics for Case Studies

Normal Distribution		Lognormal Distribution							
Number of Samples	101	Number of Samples	101	Minimum	-2.617296				
Minimum	0.073	Minimum	0.073	Maximum	7.927685				
Maximum	2773	Maximum	2773	Mean	1.4946466				
Mean	51.3407723	Mean	51.340772	Standard Deviation	2.0537772				
Median	4.66	Median	4.66	Variance	4.2180006				
Standard Deviation	279.519802	Standard Deviation	279.5198						
Variance	78131.3195	Variance	78131.32	Lilliefors Test Statisitic	0.0915029				
Coefficient of Variation	5.44440197	Coefficient of Variation	5.444402	Lilliefors 5% Critical Value	0.0881603				
Skewness	9.43741581	Skewness	9.4374158	Data Not Lognormal at 5% Significan	ice Level				
				Try Normal or Non-parametric UCL					
Lilliefors Test Statisitic	0.42723671	95 % UCL (Normal Data)							
Lilliefors 5% Critical Value	0.0881603	Student's t	97.517293	Estimates Assuming Lognormal Distr	ribution				
Data Not Normal at 0.05 Significance				MLE Mean	36.731951				
Try Lognormal or Non-parametric U	CL	95 % UCL (Adjusted for Ske	ewness)	MLE Standard Deviation	300.43412				
		Adjusted CLT	124.99726	MLE Coefficient of Variation	8.1790951				
95 % UCL (Normal Data)		Modified t	101.87034	MLE Skewness	571.6991				
Student's t	97.517293			MLE Median	4.4577611				
		95 % Non-parametric UCL		MLE 80% Quantile	25.281891				
95 % UCL (Adjusted for Sk	/	CLT	97.089514	MLE 90% Quantile	62.411547				
Adjusted CLT	124.997256		97.517293	MLE 95% Quantile	130.72686				
Modified t	101.870337	Standard Bootstrap	97.094767	MLE 99% Quantile	529.39367				
		Bootstrap t	269.39029						
95 % Non-parametric UCL		Chebyshev (Mean, Std)	172.57596	MVU Estimate of Median	4.3656242				
CLT	97.0895136			MVU Estimate of Mean	34.541133				
Jackknife	97.517293	1		MVU Estimate of Std. Dev.	215.85848				
Standard Bootstrap		Chebyshev (Mean, Std)	328.07921	MVU Estimate of SE of Mean	11.271008				
Bootstrap t	276.540047								
Chebyshev (Mean, Std)	172.575961			UCL Assuming Lognormal Distrib					
				95% H-UCL	73.243625				
				95% Chebyshev (MVUE) UCL	83.670317				
				99% Chebyshev (MVUE) UCL	146.68624				
				Recommended UCL to use:	H-UCL				

Table 2-2 Summary Statistics for Case Studies

Normal Distribution			Lognormal	Distribution	
Number of Samples	108	Number of Samples	108	Minimum	-2.617296
Minimum	0.073	Minimum	0.073	Maximum	7.1308988
Maximum	1250	Maximum	1250	Mean	1.4193864
Mean	40.9644537	Mean	40.964454	Standard Deviation	2.0443003
Median	3.995	Median	3.995	Variance	4.1791635
Standard Deviation	145.395453	Standard Deviation	145.39545		
Variance	21139.8377	Variance	21139.838	Lilliefors Test Statisitic	0.109575
Coefficient of Variation	3.54930774	Coefficient of Variation	3.5493077	Lilliefors 5% Critical Value	0.0852554
Skewness	6.30064135	Skewness	6.3006414	Data Not Lognormal at 5% Significa	nce Level
				Try Normal or Non-parametric UCL	
Lilliefors Test Statisitic	0.40580308	95 % UCL (Normal Data)			
Lilliefors 5% Critical Value	0.08525539	Student's t	64.178062	Estimates Assuming Lognormal Dist	tribution
Data Not Normal at 0.05 Significand	ce Level			MLE Mean	33.413773
Try Lognormal or Non-parametric U	JCL	95 % UCL (Adjusted for Ske	ewness)	MLE Standard Deviation	267.95929
		Adjusted CLT	73.040504	MLE Coefficient of Variation	8.0194263
95 % UCL (Normal Data)		Modified t	65.591772	MLE Skewness	539.7972
Student's t	64.1780616			MLE Median	4.1345828
		95 % Non-parametric UCL		MLE 80% Quantile	23.261977
95 % UCL (Adjusted for S	/	CLT	63.977081	MLE 90% Quantile	57.186179
Adjusted CLT	73.0405038	Jackknife	64.178062	MLE 95% Quantile	119.37387
Modified t	65.5917724	Standard Bootstrap	63.40722	MLE 99% Quantile	480.3086
		Bootstrap t	87.332635		
95 % Non-parametric UCI		Chebyshev (Mean, Std)	101.94843	MVU Estimate of Median	4.055342
CLT	63.977081			MVU Estimate of Mean	31.567596
Jackknife	64.1780616	99 % Non-parametric UCL		MVU Estimate of Std. Dev.	197.0267
Standard Bootstrap	63.3977181	Chebyshev (Mean, Std)	180.17	MVU Estimate of SE of Mean	9.9507611
Bootstrap t	88.1537284				
Chebyshev (Mean, Std) 101.948431				UCL Assuming Lognormal Distril	oution
				95% H-UCL	64.560527
				95% Chebyshev (MVUE) UCL	74.941957
				99% Chebyshev (MVUE) UCL	130.57642
				Recommended UCL to use:	H-UCL

Table 2-2 Summary Statistics for Case Studies

Units: mg/kg					
Normal Distribution			Lognormal	Distribution	
Number of Samples	111	Number of Samples	111	Minimum	-2.617296
Minimum	0.073	Minimum	0.073	Maximum	6.9382845
Maximum	1031	Maximum	1031	Mean	1.3653794
Mean	34.7532162	Mean	34.753216	Standard Deviation	2.012762
Median	3.81	Median	3.81	Variance	4.051211
Standard Deviation	118.195981	Standard Deviation	118.19598		
Variance	13970.2899	Variance	13970.29	Lilliefors Test Statisitic	0.1178874
Coefficient of Variation	3.40100842	Coefficient of Variation	3.4010084	Lilliefors 5% Critical Value	0.0840954
Skewness	6.36035657	Skewness	6.3603566	Data Not Lognormal at 5% Significan	nce Level
				Try Normal or Non-parametric UCL	
Lilliefors Test Statisitic	0.39445567	95 % UCL (Normal Data)			
Lilliefors 5% Critical Value	0.0840954	Student's t	53.363008	Estimates Assuming Lognormal Distr	ribution
Data Not Normal at 0.05 Significance	e Level			MLE Mean	29.695184
Try Lognormal or Non-parametric U	CL	95 % UCL (Adjusted for Sk	ewness)	MLE Standard Deviation	223.14307
		Adjusted CLT	60.442997	MLE Coefficient of Variation	7.5144532
95 % UCL (Normal Data)		Modified t	54.491789	MLE Skewness	446.86205
Student's t	53.3630076			MLE Median	3.9172089
		95 % Non-parametric UCL		MLE 80% Quantile	21.459411
95 % UCL (Adjusted for Sl	(ewness)	CLT	53.20628	MLE 90% Quantile	52.027821
Adjusted CLT	60.4429971	Jackknife	53.363008	MLE 95% Quantile	107.37989
Modified t	54.4917892	Standard Bootstrap	53.206037	MLE 99% Quantile	422.86961
		Bootstrap t	74.226061		
95 % Non-parametric UCL		Chebyshev (Mean, Std)	83.654248	MVU Estimate of Median	3.8463618
CLT	53.2062797			MVU Estimate of Mean	28.172485
Jackknife	53.3630076	99 % Non-parametric UCL		MVU Estimate of Std. Dev.	167.81704
Standard Bootstrap	53.1596447	Chebyshev (Mean, Std)	146.37753	MVU Estimate of SE of Mean	8.5803464
Bootstrap t	73.0054821				
Chebyshev (Mean, Std)	83.6542477			UCL Assuming Lognormal Distrib	ution
				95% H-UCL	55.809618
				95% Chebyshev (MVUE) UCL	65.573348
				99% Chebyshev (MVUE) UCL	113.54585
				Recommended UCL to use:	H-UCL

Table 2-2 Summary Statistics for Case Studies

Units: mg/kg					
Normal Distribution			Lognormal	Distribution	
Number of Samples		Number of Samples	111	Minimum	-2.617296
Minimum	0.073	Minimum	0.073	Maximum	6.4457198
Maximum	630	Maximum	630	Mean	1.3107931
Mean	31.3812342	Mean	31.381234	Standard Deviation	1.9320256
Median	3.9	Median	3.9	Variance	3.7327229
Standard Deviation	98.1246579	Standard Deviation	98.124658		
Variance	9628.44849		9628.4485	Lilliefors Test Statisitic	0.1346319
Coefficient of Variation	3.12685783	Coefficient of Variation	3.1268578	Lilliefors 5% Critical Value	0.0840954
Skewness	4.26605032	Skewness	4.2660503	Data Not Lognormal at 5% Significant	nce Level
				Try Normal or Non-parametric UCL	
Lilliefors Test Statisitic	0.44087919	95 % UCL (Normal Data)			
Lilliefors 5% Critical Value	0.0840954	Student's t	46.830824	Estimates Assuming Lognormal Dist	ribution
Data Not Normal at 0.05 Significance	e Level			MLE Mean	23.978426
Try Lognormal or Non-parametric U	CL	95 % UCL (Adjusted for Ske	ewness)	MLE Standard Deviation	153.14829
		Adjusted CLT	50.730307	MLE Coefficient of Variation	6.3869202
95 % UCL (Normal Data)		Modified t	47.45936	MLE Skewness	279.7008
Student's t	46.830824			MLE Median	3.7091141
		95 % Non-parametric UCL		MLE 80% Quantile	18.97941
95 % UCL (Adjusted for Sk	tewness)	CLT	46.700711	MLE 90% Quantile	44.409169
Adjusted CLT	50.7303072	Jackknife	46.830824	MLE 95% Quantile	89.030158
Modified t	47.4593596	Standard Bootstrap	46.425293	MLE 99% Quantile	331.85051
		Bootstrap t	52.604719		
95 % Non-parametric UCL		Chebyshev (Mean, Std)	71.97819	MVU Estimate of Median	3.647261
CLT	46.7007107			MVU Estimate of Mean	22.897888
Jackknife	46.830824	97.5 % Non-parametric UCL		MVU Estimate of Std. Dev.	119.49894
Standard Bootstrap	47.069511	Chebyshev (Mean, Std)	89.544525	MVU Estimate of SE of Mean	6.5653365
Bootstrap t	55.4274201				
Chebyshev (Mean, Std)	71.9781898	99 % Non-parametric UCL		UCL Assuming Lognormal Distrib	oution
		Chebyshev (Mean, Std)	124.05019	95% H-UCL	43.161392
				95% Chebyshev (MVUE) UCL	51.515527
				99% Chebyshev (MVUE) UCL	88.222161
				Recommended UCL to use:	H-UCL

Table 2-2 Summary Statistics for Case Studies

Normal Distribution		Lognormal Distribution							
Number of Samples	111	Number of Samples	111	Minimum	-2.617296				
Minimum	0.073	Minimum	0.073	Maximum	9.7526647				
Maximum	17200	Maximum	17200	Mean	1.3846902				
Mean	192.104207	Mean	192.10421	Standard Deviation	2.0984493				
Median	4.09	Median	4.09	Variance	4.4034896				
Standard Deviation	1635.6954	Standard Deviation	1635.6954						
Variance	2675499.45	Variance	2675499.4	Lilliefors Test Statisitic	0.1689156				
Coefficient of Variation	8.51462561	Coefficient of Variation	8.5146256	Lilliefors 5% Critical Value	0.0840954				
Skewness	10.409404	Skewness	10.409404	Data Not Lognormal at 5% Significa	ance Level				
				Try Normal or Non-parametric UCL	,				
Lilliefors Test Statisitic	0.45673265	95 % UCL (Normal Data)							
Lilliefors 5% Critical Value	0.0840954	Student's t	449.64215	Estimates Assuming Lognormal Dis	tribution				
Data Not Normal at 0.05 Significance	e Level			MLE Mean	36.105131				
Try Lognormal or Non-parametric U	CL	95 % UCL (Adjusted for Sk	ewness)	MLE Standard Deviation	324.4154				
		Adjusted CLT	611.37578	MLE Coefficient of Variation	8.9852991				
95 % UCL (Normal Data)		Modified t	475.20764	MLE Skewness	752.3894				
Student's t	449.642153			MLE Median	3.9935883				
		95 % Non-parametric UCL		MLE 80% Quantile	23.520676				
95 % UCL (Adjusted for Sk		CLT	447.47322	MLE 90% Quantile	59.216343				
Adjusted CLT	611.37578		449.64215	MLE 95% Quantile	126.04504				
Modified t	475.20764	Standard Bootstrap	445.98904	MLE 99% Quantile	526.20103				
		Bootstrap t	4021.0674						
95 % Non-parametric UCL		Chebyshev (Mean, Std)	868.83781	MVU Estimate of Median	3.9151401				
CLT	447.473222			MVU Estimate of Mean	33.991844				
Jackknife	449.642153	99 % Non-parametric UCL		MVU Estimate of Std. Dev.	233.61177				
Standard Bootstrap	445.240568	Chebyshev (Mean, Std)	1736.8554	MVU Estimate of SE of Mean	11.009002				
Bootstrap t	4059.15934								
Chebyshev (Mean, Std)	868.837814			UCL Assuming Lognormal Distri	bution				
				95% H-UCL	71.161377				
				95% Chebyshev (MVUE) UCL	81.978971				
				99% Chebyshev (MVUE) UCL	143.53003				
				Recommended UCL to use:	H-UCL				

Table 2-2 Summary Statistics for Case Studies

Units: mg/kg									
Normal Distribution		Lognormal Distribution							
Number of Samples		Number of Samples	111	Minimum	-2.617296				
Minimum		Minimum	0.073	Maximum	7.4079243				
Maximum		Maximum	1649	Mean	1.2276367				
Mean	26.9147477	Mean	26.914748	Standard Deviation	1.7823737				
Median		Median	4.09	Variance	3.1768559				
Standard Deviation		Standard Deviation	158.20013						
Variance	25027.2812		25027.281	Lilliefors Test Statisitic	0.1202548				
Coefficient of Variation		Coefficient of Variation	5.8778233	Lilliefors 5% Critical Value	0.0840954				
Skewness	10.0042568	Skewness	10.004257	Data Not Lognormal at 5% Significa	nce Level				
				Try Normal or Non-parametric UCL					
Lilliefors Test Statisitic	0.432635								
Lilliefors 5% Critical Value		Student's t	51.823136	Estimates Assuming Lognormal Dist	ribution				
Data Not Normal at 0.05 Significanc				MLE Mean	16.710958				
Try Lognormal or Non-parametric U	CL	95 % UCL (Adjusted for Ske	ewness)	MLE Standard Deviation	80.092865				
		Adjusted CLT	66.848596	MLE Coefficient of Variation	4.7928351				
95 % UCL (Normal Data)		Modified t	54.199525	MLE Skewness	124.476				
Student's t	51.8231363			MLE Median	3.4131537				
		95 % Non-parametric UCL		MLE 80% Quantile	15.390377				
95 % UCL (Adjusted for Sl	,	CLT	51.613363	MLE 90% Quantile	33.716484				
Adjusted CLT	66.848596		51.823136	MLE 95% Quantile	64.04855				
Modified t	54.1995248	Standard Bootstrap	51.791586	MLE 99% Quantile	215.60281				
		Bootstrap t	182.64378						
95 % Non-parametric UCL		Chebyshev (Mean, Std)	92.366631	MVU Estimate of Median	3.3646525				
CLT	51.613363			MVU Estimate of Mean	16.12557				
Jackknife	51.8231363			MVU Estimate of Std. Dev.	66.267232				
Standard Bootstrap		Chebyshev (Mean, Std)	120.68771	MVU Estimate of SE of Mean	4.1065247				
Bootstrap t	184.358978								
Chebyshev (Mean, Std)	92.3666311	-		UCL Assuming Lognormal Distrib					
		Chebyshev (Mean, Std)	176.319	95% H-UCL	27.89429				
				95% Chebyshev (MVUE) UCL	34.025497				
				99% Chebyshev (MVUE) UCL	56.984976				
				Recommended UCL to use:	H-UCL				

Table 2-2 Summary Statistics for Case Studies

Normal Distribution		Lognormal Distribution						
Number of Samples	111	Number of Samples	111	Minimum	-2.617296			
Minimum	0.073	Minimum	0.073	Maximum	4.5108595			
Maximum	91	Maximum	91	Mean	1.149203			
Mean	9.34051351	Mean	9.3405135	Standard Deviation	1.6232285			
Median	4.09	Median	4.09	Variance	2.6348707			
Standard Deviation	16.6216972	Standard Deviation	16.621697					
Variance	276.280818	Variance	276.28082	Lilliefors Test Statisitic	0.1148705			
Coefficient of Variation	1.77952713	Coefficient of Variation	1.7795271	Lilliefors 5% Critical Value	0.0840954			
Skewness	3.0985833	Skewness	3.0985833	Data Not Lognormal at 5% Significa	nce Level			
				Try Normal or Non-parametric UCL				
Lilliefors Test Statisitic	0.34289033	95 % UCL (Normal Data)						
Lilliefors 5% Critical Value	0.0840954	Student's t	11.957576	Estimates Assuming Lognormal Dist	tribution			
Data Not Normal at 0.05 Significance	Level			MLE Mean	11.78277			
Try Lognormal or Non-parametric UC	CL	95 % UCL (Adjusted for Ske	ewness)	MLE Standard Deviation	42.387702			
		Adjusted CLT	12.431324	MLE Coefficient of Variation	3.5974309			
95 % UCL (Normal Data)		Modified t	12.034909	MLE Skewness	57.348478			
Student's t	11.9575764			MLE Median	3.1556768			
		95 % Non-parametric UCL		MLE 80% Quantile	12.43893			
95 % UCL (Adjusted for Sk	,	CLT	11.935536	MLE 90% Quantile	25.407682			
Adjusted CLT	12.431324	Jackknife	11.957576	MLE 95% Quantile	45.577484			
Modified t	12.0349093	Standard Bootstrap	11.933457	MLE 99% Quantile	137.66627			
		Bootstrap t	12.815109					
95 % Non-parametric UCL		Chebyshev (Mean, Std)	16.217381	MVU Estimate of Median	3.1184402			
CLT	11.9355361			MVU Estimate of Mean	11.473004			
Jackknife	11.9575764	97.5 % Non-parametric UCL		MVU Estimate of Std. Dev.	36.867029			
Standard Bootstrap	11.9830084	Chebyshev (Mean, Std)	19.193008	MVU Estimate of SE of Mean	2.5490774			
Bootstrap t	12.9503849							
Chebyshev (Mean, Std) 16.2173813		99 % Non-parametric UCL		UCL Assuming Lognormal Distril	bution			
		Chebyshev (Mean, Std)	25.038049	95% H-UCL	18.267251			
				95% Chebyshev (MVUE) UCL	22.584175			
				99% Chebyshev (MVUE) UCL	36.836004			
				Recommended UCL to use:	H-UCL			

Table 2-2 Summary Statistics for Case Studies

Grasse River Non-Time-Critical Removal Action

Units: mg/kg					
Normal Distribution			Lognormal		
Number of Samples	12	Number of Samples	12	Minimum	0.0953102
Minimum	1.1	Minimum	1.1	Maximum	5.5606816
Maximum	260	Maximum	260	Mean	3.8216843
Mean	80.3166667	Mean	80.316667	Standard Deviation	1.4394868
Median	63	Median	63	Variance	2.0721223
Standard Deviation	72.4489141	Standard Deviation	72.448914		
Variance	5248.84515	Variance	5248.8452	Shapiro-Wilk Test Statisitic	0.8657577
Coefficient of Variation	0.90204085	Coefficient of Variation	0.9020408	Shapiro-Wilk 5% Critical Value	0.859
Skewness	1.46808782	Skewness	1.4680878	Data Are Lognormal at 5% Significant	nce Level
Shapiro-Wilk Test Statisitic	0.88071442	95 % UCL (Normal Data)		Estimates Assuming Lognormal Distr	ribution
Shapiro-Wilk 5% Critical Value		Student's t	117.87616	MLE Mean	128.73365
Data Are Normal at 0.05 Significance	e Level			MLE Standard Deviation	339.17493
Recommended UCL to use	Student's t	95 % UCL (Adjusted for Ske	wness)	MLE Coefficient of Variation	2.6347031
		Adjusted CLT	124.18819	MLE Skewness	26.193323
95 % UCL (Normal Data)		Modified t	119.3534	MLE Median	45.681086
Student's t	117.876158			MLE 80% Quantile	154.1692
		95 % Non-parametric UCL		MLE 90% Quantile	290.4481
95 % UCL (Adjusted for Sk	,	CLT	114.71746	MLE 95% Quantile	487.6706
Adjusted CLT	124.188186		117.87616	MLE 99% Quantile	1299.7545
Modified t	119.353399	Standard Bootstrap	113.35923		
		Bootstrap t	134.71237	MVU Estimate of Median	41.878121
95 % Non-parametric UCL		Chebyshev (Mean, Std)	171.47955	MVU Estimate of Mean	111.24064
CLT	114.717465			MVU Estimate of Std. Dev.	191.42658
Jackknife	117.876158			MVU Estimate of SE of Mean	50.57418
Standard Bootstrap	113.142199				
Bootstrap t	140.660245			UCL Assuming Lognormal Distrib	
Chebyshev (Mean, Std)	171.479551			95% H-UCL	661.23971
				95% Chebyshev (MVUE) UCL	331.68838
99 % UCL (Normal Data)				99% Chebyshev (MVUE) UCL	614.44738
Student's t	137.163116			Recommended UCL to use:	
				95 % Chebyshev (MVU	E) UCL

Table 2-3 Summary Statistics for All Sites and Estimates of the UCL and PL

									95% U			99% U(97.5%			99% F		
	Result of	Arith.	MVUE	Coef. of	Sy	Sx	Central	Site	Hudson River	Hudson River	Site	Hudson River	Hudson River	Site	Hudson River	Hudson River	Site	Hudson River	Hudson Rive	er (4)
	Normality Test	Mean		Variance	-		Tendency		(Proportional)	(Using Eqn.) (2)		(Proportional)	(Using Eqn.) (2)		(Proportional)	(Using Eqn.) (3)		(Proportional)	(Using Eqn.)	(3)
							(1)		- /	(0 1 °)		- ,	3 1 1		- ′	. 5 1 9		- /	· · · · · · · · · · · · · · · · · · ·	
Reynolds Metals	Not Normal	2.4	1.5	4.0	1.2	10	1.5	5	3	8	8	6	16	17	11	11	34	23	19	*
	or Lognormal																			
	Not Normal	13	14	0.94	0.95	13	13	19	1	10	27	2	21	44	3	7	57	4	10	*
East Cove	or Lognormal																			
New Bedford	Lognormal	29	32	1.2	1.2	34	29	78	3	24	137	5	54	230	8	12	410	14	21	*
Harbor Cores																				
New Bedford	Not Normal	174	257	0.78	1.4	136	174													
Harbor Grabs	or Lognormal																			
Cumberland Bay	Not Normal	13	17	1.4	1.4	18	17	23	1	14	36	2	30	55	3	16	83	5	28	*
	or Lognormal																			
Fox River	Lognormal	2.2	2.8	1.1	1.4	2	2.2	7	3	3	12	6	5	21	10	19	40	19	35	*
SMU 56/57																				
Fox River	Lognormal	7.6	8.6	1.5	1.6	11	8.6	22	2	9	38	4	18	132	15	25	132	15	48	*
Deposit N																				
GM Massena	Not Normal	3	2	0.8	1.3	3	2	4	2	3	6	3	5	8	4	15	8	4	26	*
Uncapped Areas	or Lognormal																			
GM Massena	Not Normal	193	94	4.9	2.4	941	94													
Pass 1	or Lognormal																			
GM Massena	Not Normal	51	35	5.4	2.1	280	35													
Pass 2	or Lognormal																			
GM Massena	Not Normal	41	32	3.5	2.0	145	32													
Pass 3	or Lognormal																			
GM Massena	Not Normal	35	28	3.4	2.0	118	28													
Pass 4	or Lognormal																			
GM Massena	Not Normal	31	23	3.1	1.9	98	23													
Pass 5	or Lognormal																			
GM Massena	Not Normal	192	34	8.5	2.1	1636	34													
Pass 6	or Lognormal																			
GM Massena	Not Normal	27	16	5.9	1.8	158	16													
Pass 7	or Lognormal																			
GM Massena	Not Normal	9.3	11	1.8	1.6	17	11													
Pass 8	or Lognormal																			1
Grasse River	Normal	80.3	111	0.9	1.4	72	80	1												
Inventory Removal																				
·	-												Average:			15			27	

Notes:
The central tendency is either the arithmetic mean or the minimum variance unbiased estimator of the mean (MVUE) depending the on the coefficient of variance. If the coefficient of variance is less than or equal to 1.2, the arithmetic mean

- 1. is selected, otherwise the MVUE is selected.
- 2. The upper confidence limits are calculated using the following equation:

$$UCL = \bar{x} + \frac{S_x \sqrt{((1/\alpha) - 1)}}{\sqrt{n}}$$

substituting 40 for n, 1 for \bar{x} and the case study standard deviation for S_x .

3. The prediction limit is calculated using the following equation:

$$PL = e^{\left(\frac{y}{y} + t(\alpha, n-1)\sqrt{S_y^2 + \frac{S_y^2}{n}}\right)}$$

1.685 2.5% 39 2.023 1% 39 2.426

substituting 40 for n, 0 for \overline{y} and the case study variance for s_y^2 .

- 4. These sites were selected because the average concentrations are in the same range as the target concentration for the Hudson River CUs. The New Bedford Harbor Grab and GM Massena (passes 1, 2 and 3) were determined to be outliers.
- 5. The GM passes 1 through 8 include the capped area.

Table 2-4

Summary of UCL and PL Values for the Hudson River Based on Estimates of the Variability from the Case Studies

Units are ppm.

Units are ppm.	Man an Cu ¹
	on Mean vs. Sx ¹
Sx at 1 ppm	3
Equation	Nonparametric Chebyshev UCL (Eqn. 2)
95% UCL	3
99% UCL	6
Average of PL V	Values Calculated Using the Sx from Each Case
Study Parametri	c Assymetric PL (Table 3) 1
Equation	Parametric Assymetric PL (Eqn. 4)
97.5% PL	15
99% PL	27
Average Sy of the	ne Case Studies
Sy ²	
-	1.31
Equation	H-UCL (Eqn. 3)
95% UCL	4
99% UCL	6
Equation	Parametric Assymetric PL (Eqn. 4)
97.5% PL	15
99% PL	25
Range of LICL a	and PL Values Using the Variance from Each
	Study (shown on Table 3)
Equation	Proportion (Eqn. 1)
95% UCL	1-3
99% UCL	2-6
97.5% PL	3-15
99% PL	4-23
Equation	
Equation 95% UCL	Nonparametric Chebyshev UCL (Eqn. 2) 3-24
	5-24 5-54
99% UCL	
Equation	Parametric Assymetric PL (Eqn. 4)
97.5% PL	7-25
99% PL	10-48

Notes:

- 1. Excludes the Grasse River Site because both the mean and standard deviation of the untransformed data are outliers.
- 2. Includes the Grasse River Site because the standard deviation of the transformed data is not an outlier.

Table 2-5
Area Within the Action Levels For a Percentage of Inventory Remaining in the Residuals

Tri+ PCB	PCBs (mg/kg) Percentage						Acreage				
Inventory	Residual	0-1	1-3	3-6	>6	0-1	1-3	3-6	>6		
Remaining	Thickness	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
1%	6"	91%	6%	2%	1%	385	26	8	5		
5%	6"	58%	25%	5%	11%	247	107	23	47		
10%	6"	52%	9%	22%	17%	221	39	94	71		

Table 2-6 Non-Compliant Area Resulting from the PL Criteria if the Average Concentration is 1 mg/kg Tri+ PCBs

Public Review Draft – May 2003 Part 2: Dredging Residuals

No. of Failures per	-	hat the No. of will Occur	No. of CUs with Exceedances of PL	No. of Nodes to Address per CU	Area to be Redredged
CU			Assuming 100 CUs		(Acres)
	97.5%	99%	(Approximate)		
0	36.3%	66.9%	0	0	0
1	37.3%	27.0%	27	1	10.3
2	18.6%	5.3%	19	2	14.4
3	6.0%	0.7%	6	3	6.8
4	1.4%	0.1%	1	4	1.5
5-40	0.4% 0.0%				
		Total:	52		33

Table 2-7
Estimate of the Number of Samples/Target Area

		No. of Samples		
	Std. Dev. of	(1)		
	Log. Sy			
Reynolds Metals	1.19	23		
Marathon Battery	0.95	15		
East Cove				
New Bedford	1.23	25		
Harbor Cores				
New Bedford	1.38	32		
Harbor Grabs				
Cumberland Bay	1.35	30		
Fox River	1.45	35		
SMU 56/57				
Fox River	1.58	41		
Deposit N				
GM Massena	1.32	29		
Uncapped Areas				
GM Massena	2.35	92		
Pass 1				
GM Massena	2.05	70		
Pass 2				
GM Massena	2.04	69		
Pass 3				
GM Massena	2.01	67		
Pass 4				
GM Massena	1.93	62		
Pass 5				
GM Massena	2.10	73		
Pass 6				
GM Massena	1.78	53		
Pass 7				
GM Massena	1.62	44		
Pass 8				
Grasse River	1.44	34		
Inventory Removal				
minimum		15		
mean		29		
maximum		41		

Notes

1. From Gilbert (1987) n=(Z^2*Sy^2)/((ln(d+1))^2+ Z^2*Sy^2 N)

Sy=the standard deviation of the data

Z=the Z-score based on z (1.65)

a=Defined such that 100*(1-a) is the confidence limit required (0.05)

N= the total population (very large)

d=the error in the median which can be tolerated (0.5)

2. Sites marked with an asterisk (*) are included in the summary statistics.

Table 2-8
Impact of the Settled Material on Surface Sediment Concentrations

	In suspension just following dredging in the entire 5						
		_					
TSS Conc.	50	mg/L	acre area				
Area	5	acres	4.05E+03	sq.m/acre	20234	sq.m	
Depth	8	ft	3.05E-01	m/ft	2.44	m	
Volume	49339	cu.m	1000	L/cu.m	49339317.12	L	
TSS Mass	2466965856	mg	1.00E-06	kg/mg	2466.965856	kg	
Sediment Bulk							
Density	1.1	g/cc	0.001	kg/g	0.0011	kg/cc	
Thickness of the	e Settled Mate	rial					
Volume	2242696	cc	1.00E-06	cu.m/cc	2.24	cu.m	
Thickness	0.000111	m	1000	mm/m	0.111	mm	
			1.00E+06	microns/m	111	microns	
			39.4	in./m	0.0044	inches	
Residual Sampl	e Concentrati	on					
Thickness	6	inches					
Concentration in	_	mg/kg	5.996	inches			
Concentration of		terial mg/kg					
Length Weighto		ncentra	ntion				

Public Review Draft - May 2003

Part 2: Dredging Residuals