Indoor Air Unit Conversion

Background

In dilute aqueous systems at room temperature and 1 atmosphere of pressure, 1 liter (L) of water weighs 1 kilogram (kg). Therefore, 1 milligram (mg) of a contaminant in 1 liter (L) of water has a concentration of $1 \mathrm{mg} / \mathrm{L}$, which is the same as 1 mg of containment/ 1 kg of water on a mass/mass basis. Since there are 1 million mg in 1 kg , the kg in the denominator may be converted to 1 million mg . So our $1 \mathrm{mg} / \mathrm{L}$ solution is equivalent to $1 \mathrm{mg} / 1,000,000 \mathrm{mg}$. This is referred to as " 1 part per million" or ppm in aqueous solutions. Similarly, $1 \mu \mathrm{~g} / \mathrm{L}$ is referred to as " 1 part per billion" or ppb in dilute aqueous solutions because there are 1 billion micrograms in 1 kg .

However, indoor air units are not expressed as a mass-per-mass ratio, even though they are given as ppm or ppb. The units of ppm and ppb in gas systems are computed on a volume-per-volume ratio and should more accurately be termed ppmV and ppbV. For example:

1 ppmV $=\frac{1 \text { volume of gaseous contaminant }}{1,000,000 \text { volumes of air }+ \text { contaminant }}$
So, how do we convert between the mass-per-volume units and ppmV or ppbV in a gas system?

- First, we must use the ideal gas law to convert the measured contaminant mass to a volume. The ideal gas law ($\mathrm{PV}=\mathrm{nRT}$) relates pressure, volume, temperature and mass of a gaseous contaminant:

1. $P_{\text {air }} \times V_{\text {contaminant }}=$ moles $_{\text {contaminant }} \times R \times T_{\text {air }}$
where $P_{\text {air }}$ is air pressure
$V_{\text {contaminant }}$ is the volume occupied by the contaminant
R is the universal gas constant, and
$T_{\text {air }}$ is air temperature. (" x " represents multiplication.)
Any units for pressure, volume and temperature may be used, as long as the universal gas constant is in consistent units. Noting that \# moles contaminant $=$ mass $_{\text {contaminant }} / \mathrm{molecular}$ weight $_{\text {contaminant }}$, and using pressure, temperature and volume in units of [KPa], [K [and [L$]$, we can solve the preceding relationship for the volume of our contaminant, given its mass in grams:
2. $V_{\text {contaminant }}[L]=\frac{\text { Mass }{ }_{\text {contaminant }}[g]}{\text { Molecular Weight } t_{\text {contaminant }}[g / \text { mol }]} \times 8.3144\left[\frac{L-k P a}{m o l K}\right] x T_{\text {air }}[K] x \frac{1}{P_{\text {air }[k P a]}}$

Note that $\mathrm{T}[\mathrm{K}]=\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]+273.15$.

- Now that we have the mass of the contaminant converted to a volume, we simply need to divide by the volume of the sample measurement, and work out the units. For example, ppmV is equivalent to $1 \mathrm{~mL} / \mathrm{m}^{3}$ and ppbV is equivalent to $1 \mu \mathrm{~L} / \mathrm{m}^{3}$. Or in equation form:

3. $p p m V=\frac{V_{\text {contaminant }}[m L]}{V_{\text {sample }}\left[m m^{8}\right]}$ and $p p b V=\frac{V_{\text {contaminant }}[\mu L]}{V_{\text {sample }}\left[m_{\mathbb{R}}\right]}$

- So, to convert from $\mu \mathrm{g} / \mathrm{m}^{3}$ to ppmV , we plug in our mass values in equation 2 above, making sure to convert our $\mu \mathrm{g}$ to units of grams required by the equation. This will give us the volume of our contaminant in liters. We must now convert this into mL for equation 3 . Then we simply divide by the sample volume in m^{3} to obtain our result in ppmV . Likewise, to convert $\mu \mathrm{g} / \mathrm{m}^{3}$ to ppbV , we would follow the same procedure, except we'd convert the volume of the contaminant to $\mu \mathrm{L}$ instead of mL .

Example

For a numerical example, let's convert $123.45 \mu \mathrm{~g} / \mathrm{m}^{3}$ of benzene to ppmV . We'll assume $25^{\circ} \mathrm{C}$ and 1 atmosphere pressure (101.325 kPa). So using equation $2,123.45 \mu \mathrm{~g}$ (which is $123.45 \times 10^{-6} \mathrm{grams}$) of benzene (which has a molecular weight of $78.11 \mathrm{~g} / \mathrm{mole}$) occupies the following volume:
$V_{\text {benzene }}[L]=\frac{123.45 \times 10^{-6}[g]}{78.11\left[\frac{g}{m o l e}\right]} \times 8.3144\left[\frac{L \cdot k P a}{\mathrm{~mol} \cdot \mathrm{~K}}\right] x 298.15[\mathrm{~K}] x \frac{1}{101.325[\mathrm{kPa}]}$
$=3.866 \times 10^{-5} \mathrm{~L}$ or 0.03866 mL .

Dividing this by the sample volume in $\mathrm{m}^{3}\left(=1 \mathrm{~m}^{3}\right)$ gives us our result in ppmV :
$123.45 \mu \mathrm{~g} / \mathrm{m}^{3}$ of benzene at $25^{\circ} \mathrm{C}$ and 1 atm pressure $=0.0386 \mathrm{ppmV}$.

For more information, see Introduction to Air Toxics Analyses by Don Harrington of Teledyne instruments. http://www.ingenieria-
analitica.com/LlocIA1/PDF/TEKMAR JL04/57 Introduction\%20to\%20Air\%20Toxics\%20Analyses.pdf

Here are the conversions used in the online calculator, all based on a equations 2 and 3 and appropriate units:

$\mu \mathrm{g} / \mathrm{m}^{3}$ to ppmV

$p p m V=\frac{\mu g}{m^{3}} x\left(10^{-3}\right) x \frac{1}{\text { Molecular Weight }}$ contaminant $[g / m o l e] \quad x 8.3144\left[\frac{L \cdot k P a}{m o l \cdot K}\right] x T_{\text {air }}[K] x \frac{1}{P_{\text {air }}[k P a]}$
$\mathrm{mg} / \mathrm{m}^{3}$ to $\mathrm{ppm} V$
$p p m V=\frac{\mathrm{mg}}{m^{3}} x \frac{1}{\text { Molecular Weight } \text { contaminant }[g / \text { mole }]} \times 8.3144\left[\frac{L \cdot k P a}{\mathrm{~mol} \cdot \mathrm{~K}}\right] \times T_{\text {air }}[\mathrm{K}] x \frac{1}{P_{\text {air }}[k P a]}$
$\mu \mathrm{g} / \mathrm{L}$ to ppmV
$p p m V=\frac{\mu \mathrm{g}}{L} \times \frac{1}{\text { Molecular Weight } \text { contaminant }[\mathrm{g} / \mathrm{mole}]} \times 8.3144\left[\frac{L \cdot k P a}{\mathrm{~mol} \cdot K}\right] x T_{\text {air }}[K] x \frac{1}{P_{\text {air }}[k P a]}$
mg / L to ppmV

$\mu \mathrm{g} / \mathrm{m}^{3}$ to ppbV
$p p b V=\frac{\mu \mathrm{g}}{m^{3}} \times \frac{1}{\left.\text { Molecular Weight } t_{\text {contaminant }[g / m o l e}\right]} \times 8.3144\left[\frac{L \cdot k P a}{\mathrm{~mol} \cdot \mathrm{~K}}\right] \times T_{\text {air }}[\mathrm{K}] x \frac{1}{P_{\text {air }}[\mathrm{kPa}]}$
$\mathrm{mg} / \mathrm{m}^{3}$ to ppbV
$p p b V=\frac{\mathrm{mg}}{m^{3}} \times\left(10^{3}\right) \times \frac{1}{\text { Molecular Weight }}$ contaminant $[g /$ mole $] ~ \times 8.3144\left[\frac{L \cdot k P a}{m o l \cdot K}\right] \times T_{\text {air }}[K] x \frac{1}{P_{\text {air }}[k P a]}$
$\mu \mathrm{g} / \mathrm{L}$ to ppbV
$p p b V=\frac{\mu \mathrm{g}}{L} x\left(10^{3}\right) \times \frac{1}{\text { Molecular Weight }}$ contaminant $[g /$ mole $] ~ x 8.3144\left[\frac{L \cdot k P a}{m o l \cdot K}\right] \times T_{\text {air }}[K] x \frac{1}{P_{\text {air }}[k P a]}$
mg / L to ppbV
ppbV
$=\frac{\mathrm{mg}}{L} x\left(10^{6}\right) x \frac{1}{\left.\text { Molecular Weight } t_{\text {contaminant }[g / m o l e ~}\right]} \times 8.3144\left[\frac{L \cdot k P a}{m o l \cdot K}\right] x T_{\text {air }}[K] x \frac{1}{P_{\text {air }}[k P a]}$

Here are some other useful conversions:
$p p m V \times 1,000=p p b V$
$1 \%=\frac{10,000}{1,000,000}=10,000 \mathrm{ppmV}=10,000,000 \mathrm{ppbV}$
$\frac{\mu g}{L}=\frac{m g}{m^{3}}$

