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Data Quality Objectives 

Planning Document 
 
1.0  State the Problem 

1.1 Planning Team Members 

The Clean Air Status and Trends Network (CASTNET) Data Quality Objectives (DQO) planning 
team is comprised of the Wood Environment & Infrastructure Solutions, Inc. (Wood) Project 
Manager, Quality Assurance (QA) Supervisor, operations managers, and other personnel with 
appropriate expertise as needed, and the U.S. Environmental Protection Agency (EPA) QA Officer 
and Technical Monitors. The DQO decision makers are the AMEC Project Manager, QA 
Supervisor, and operations managers, together with the EPA Project Officer, QA Officer, and 
monitors. This planning team will develop and refine CASTNET DQO to support and maintain 
CASTNET project objectives. The decision makers have the ultimate authority to make final 
decisions based on the recommendations of the planning team. 

1.2 Problem Description/Background 

When the U.S. Congress amended the Clean Air Act in 1990, Title IV (Acid Deposition Control 
Program) mandated a significant reduction in the emissions of sulfur and nitrogen oxides, 
primarily from the electric utility industry. Titles IV and IX of the Clean Air Act Amendments 
(CAAA) required that the environmental effectiveness of the Acid Deposition Control Program 
be assessed through environmental monitoring. This monitoring was required for gauging the 
impact of emission reductions on air pollution, atmospheric deposition, and the health of 
affected human populations and ecosystems. 
 
Prior to CASTNET, EPA operated the National Dry Deposition Network (NDDN), which was 
established in 1986. As with CASTNET, the objective of the NDDN was to obtain field data to 
establish patterns and trends of dry deposition at approximately 50 sites throughout the United 
States. The approach adopted by NDDN was to estimate dry deposition using measured air 
pollutant concentrations and modeled deposition velocities (Vd) estimated from meteorological, 
land use, and site characteristic data. Since four to five years of data had been collected using 
the site locations, sampling methodology and frequencies, and equipment types established 
under NDDN, the same project design was used as the basis for CASTNET. CASTNET became 
operational in mid-1991. NDDN was incorporated into CASTNET at that time. 

1.3 Resources 

Published technical studies indicate that using NDDN as a guide/basis for CASTNET was a 
proper and cost effective strategy, especially in light of the data previously collected by NDDN. 
Clarke et al. (1997) demonstrated the accuracy and precision of CASTNET/NDDN monitoring 
data and Holland et al. (1998) demonstrated CASTNET/NDDN trend measurement sensitivity. 
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2.0  Identify the Decision 

CASTNET’s primary goal is to function effectively as a national, long-term deposition monitoring 
network that provides information for assessing the effectiveness of current and future emission 
reductions mandated under the Clean Air Act. To meet this goal, the CASTNET program was 
designed to fulfill the following objectives: 

1. To monitor the status and trends in air quality and atmospheric deposition; 
2. To provide atmospheric data on the dry deposition component of total acid deposition, 

rural ground-level ozone, and other forms of atmospheric pollution that enter the 
environment as particles and gases; and 

3. To assess and report on geographic patterns and long-term, temporal trends in ambient 
air pollutant concentrations and acid deposition. 

 
The network design was developed based on the assumption that dry deposition can be 
estimated mathematically using ambient concentrations and meteorological inputs. 

2.1 DQO Trends Study Objective 

The objective for trends in atmospheric sulfur and nitrogen species is a 10 percent minimum 
detectable trend after 10 years with a 95 percent level of confidence. This DQO was established 
based on the study published by Holland et al. (1998) that utilized CASTNET data for 34 sites in 
the eastern United States. Analysis of data from 1989 through 1995 demonstrated that a 
10 percent trend could be detected after 10 years of data collection with a 95 percent level of 
confidence for sulfur dioxide (SO  

2), particulate sulfate (SO2-
4 ), and nitrogen [nitric acid (HNO  

3) + 
particulate nitrate (NO- 

3)]. Analyses were conducted using generalized additive models (GAM) to 
estimate percent change per year in mean monthly concentrations. Unlike the usual linear 
models, GAM allow the data to suggest the form of the model. GAM were used rather than 
linear models to account for variables such as meteorology and seasonality. Confidence was 
evaluated by iterative deletion of one month of data from the total for a given site. The model 
estimate for a certain month using all collected data was compared with the model estimate for 
the same month with its data removed. The study showed that a yearly trend of less than 
1.0 percent could be detected with 95 percent confidence. In other words, there is a 95 percent 
probability of detecting a minimum trend of 10 percent after 10 years at any particular site, for 
SO  

2, SO2-
4  and nitrogen (N). The objective for trends in CASTNET data is to detect, at minimum, a 

1.0 percent annual trend in concentrations after 10 years of data collection. 
 
The CAAA Title IV Control Program mandated a 10-million ton reduction from 1980 emissions 
for SO  

2 and a 2-million ton reduction for NOx. In 1980, SO  
2 emissions were measured at 

26 million short tons1. A 10-million ton reduction from 1980 levels would be equal to an 
approximate 38 percent decrease. If this reduction had been achieved in 1991 when CASTNET 

                                                 
1 http://www.epa.gov/oar/emtrnd94/tres.pdf 

http://www.epa.gov/oar/emtrnd94/tres.pdf
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started, it would indicate a decrease of 4 percent per year from 1980 levels. NOx emissions were 
measured at 23 million short tons in 19802. If achieved, a 2-million ton reduction would be equal 
to an approximate 8.7 percent decrease in 1991 or about 0.9 percent per year. Holland et al. 
(1998) demonstrated that SO  

2 and N trends in airborne concentrations could be detected at 1.0 
percent per year with a 95 percent level of confidence for sites in the eastern United States. For 
western sites, low site density and low concentrations prevent extrapolation of this result. 
However, since the U.S. Congress is the de facto decision-maker as regards the reductions 
required by CAAA Title IV, the 4 percent SO  

2 and 1 percent NOx decisions still apply for western 
sites. More data from western sites, including better geographic coverage and coverage of 
meteorological conditions, are needed to make a reasonable determination of the sensitivity of 
trend calculations for this region. 

2.2 Additional DQO 

Spatial patterns are also desired for policy decision-making. Initial study into formulation of a 
spatial pattern DQO was performed by Dr. William Tucker of AMEC. The Technical Memorandum 
resulting from this initial study is attached as Appendix A. 
 
Uncertainties in the computer model have not been sufficiently quantified to determine a 
precise DQO for deposition flux. 
 
3.0  Identify the Inputs to the Decision 

Parameters used by the computer model for CASTNET/NDDN are listed in the following table: 
 

Measurement Parameter Medium Method 
Wind Speed Continuous Ambient Monitoring Anemometer 
Wind Direction Continuous Ambient Monitoring Wind Vane 
Sigma Theta Continuous Ambient Monitoring Wind Vane 
Relative Humidity Continuous Ambient Monitoring Thin Film Capacitor 
Solar Radiation Continuous Ambient Monitoring Pyranometer 
Precipitation Continuous Ambient Monitoring Tipping Bucket Rain Gauge 

Weighing Rain Gauge 
Ambient Temperature Continuous Ambient Monitoring Platinum RTD 
Surface Wetness Continuous Ambient Monitoring Conductivity Bridge 
O  

3 Continuous Ambient Monitoring Ultraviolet Absorbance 
Filter Pack Flow* Continuous Ambient Monitoring Mass Flow Controller 
Ammonium (NH+ 

4 ) Filter Pack Samples Automated Colorimetry 

Sodium (Na+ 
 ) Filter Pack Samples ICAP-AE 

Potassium (K+ 
 ) Filter Pack Samples ICAP-AE 

Magnesium (Mg2+
  ) Filter Pack Samples ICAP-AE 

                                                 
2 Ibid. 
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Measurement Parameter Medium Method 
Calcium (Ca2+

  ) Filter Pack Samples ICAP-AE 

Nitric Acid (HNO  
3) Filter Pack Samples ICAP-AE 

Nitrate (NO- 
3) Filter Pack Samples ICAP-AE 

Sulfate (SO2-
4 ) Filter Pack Samples ICAP-AE 

Note: *Flow rate is used along with filter pack sample measurements to calculate atmospheric concentrations. The calculated 
atmospheric concentrations are then used in the model. 

 
 ICAP-AE = inductively coupled argon plasma-atomic emission 
 RTD = resistance-temperature device 
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4.0  Define the Study Boundaries 

The study boundaries for site-by-site concentration trends encompass the entire network, as 
would the boundaries of future studies to quantify deposition and spatial distribution within the 
network. However, the western region of the network has a lower site density compared with the 
eastern region. For this reason, results from the studies cited previously should not be 
extrapolated to apply to the entire network. More data from western sites, including new sites 
with additional coverage of geographic and meteorological conditions, are needed to make a 
reasonable determination of any network-wide trends or spatial distribution DQO. Current 
CASTNET site locations are indicated on the following map. Only the sites located within and to 
the east of the line of states extending from Minnesota in the north to Louisiana in the south 
(outlined in blue) comprise the area where complete DQO for concentration trends and spatial 
distribution of SO  

2 can be established with reasonable rigor. 
 

 
 
5.0  Develop a Decision Rule 

The accuracy of reported CASTNET concentration data allows for measurement of a minimum 
annual change of 1.0 percent for SO  

2, SO2-
4 , and N at a given site in the eastern region with a 

statistical confidence of 95 percent. Spatial distribution maps for SO  
2 are accurate with 

90 percent confidence for eastern sites. 
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6.0  Specify Tolerable Limits on Decision Errors 

6.1 Sulfur Dioxide, Particulate Sulfate, and Nitrogen 

Limits on decision errors for SO  
2, SO2-

4 , and N are indicated by the study published by Holland et 
al. (1998) that utilized CASTNET data from 1989 through 1995 for 34 sites in the eastern United 
States. Analysis of these data demonstrated that an approximate 1.0 percent trend could be 
detected per year with a 95 percent level of confidence. In other words, there is a 95 percent 
probability of detecting a minimum trend of 10 percent after 10 years at any particular site, for 
SO  

2, SO2-
4 , and N at eastern sites. 

6.2 Ozone 

Limits on decision errors for ozone (O  
3) are based on analysis of historical O  

3 calibration results 
at eastern sites. All calibrations were performed using EPA traceable standards, which provide a 
good indication of analyzer accuracy. The data show that 98 percent of all calibrations on record 
from January 1989 through October 2001 were within the established ±10 percent criterion (i.e., 
calibration curve slopes were between 0.90 and 1.10) and 97 percent were within the ±5 percent 
criterion (slopes were between 0.95 to 1.05). Calibration results for all collocated sites 
(approximately 106, paired) for the same period yielded a measured precision of 3 percent. 
Using the following propagated uncertainties:  
 

Analyzer accuracy = 5 percent or 0.05 
Network precision = 3 percent or 0.03 
Total Propagated Uncertainty (TPU) = SQRT[(0.05)2 + (0.03)2] = 0.06 percent 

 
These data indicate that trends above 6 percent can be detected after approximately 13 years 
with a 97 percent confidence level. For the sake of simplicity, the stated DQO for O  

3 will match 
the sulfur and nitrogen species DQO (i.e., 10 percent minimum detectable trend after 10 years 
with 95 percent confidence). 

6.3 Spatial Distribution of SO  
2 

Spatial distribution maps for SO  
2 in the eastern United States show a real pattern with 

90 percent confidence that the maximum interpolated value is greater than the minimum 
interpolated value. This applies to the area shown on the map as a whole. More analysis is 
needed to establish accuracy for a given locality within the mapped region. The test for local 
areas will likely involve analysis of absolute errors in the kriging estimates as compared with the 
estimated geometric means for the region as described in Appendix A. 

6.4 Dry Deposition 

A DQO for trends in dry deposition is not practical at this time. Although Meyers et al. (1998) 
and Finkelstein et al. (2000) demonstrated that the MLM is essentially unbiased for flat, non-
forested settings, the uncertainties in the MLM have not been sufficiently quantified for 
establishing a definitive DQO. 
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6.5 Other Measurements 

As stated previously, more data are needed to quantify accuracy and uncertainties in all 
measurements at western sites.  
 
In addition, more analysis is needed to determine a spatial patterns DQO for all pollutants. More 
analysis using kriging is necessary to allow for more accurate extrapolation of spatial distribution 
data to smaller localized areas. 
 
7.0  Optimize the Design 

Since NDDN sites were transferred to CASTNET at the beginning of the project, initial network 
and site design were necessarily driven by the prior design of NDDN and the four to five years 
of data collection already performed. Site design and sampling methodology have largely been 
dictated by this and by computer model requirements. Sampling duration and frequency were 
selected for increased comparability with other networks such as the National Oceanic and 
Atmospheric Administration’s (NOAA) Atmospheric Integrated Research Monitoring Network 
(AIRMoN). The selection of the parameters measured and completeness requirements are all 
model-driven. Factors not driven by model requirements, such as regional site density, may 
allow for further optimization if research shows that project objectives may still be met. For 
example, automated sequential samplers may reduce costs if it is determined that filter packs 
can remain on the tower for a certain period after sampling is complete, thus reducing site 
operator visits. The spatial pattern estimation, as noted in Dr. William Tucker’s technical 
memorandum (Appendix A), may be cost-optimized with further research into the level of site 
densities required per region to achieve a certain minimum accuracy of kriging estimates. 
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Technical Memorandum 

 
 
TO: Tom Lavery DATE: January 23, 2002 
 Kemp Howell 

Cc: Mary Burnett 

FROM: William Tucker 

SUBJECT: CASTNET Data Quality Objectives – Spatial Patterns 
The purpose of this memorandum is to recommend a technical approach for defining Data 
Quality Objectives for the Clean Air Status and Trends Network regarding spatial patterns of air 
quality and deposition. 
 
The objectives of the analysis are: 

• Identify quantitative measures that characterize the reliability of inferred spatial patterns. 
“Spatial Patterns” imply such products as maps that depict concentration and/or 
deposition isopleths. These isopleths are necessarily the result of interpolating data 
between fixed stations where these parameters were measured. 

• Provide a tool that would facilitate future decision-making regarding optimal station 
locations. This tool could support decisions to add or remove stations. 

 
Kriging is the preferred statistical tool for supporting the analysis, and is, in effect, the only 
reasonable approach. Kriging is the only standard spatial interpolation technique that provides a 
statistically meaningful estimate of the uncertainty in interpolated values. This is the critical 
feature of kriging that makes it ideal for this analysis. Kriging also has other features/benefits 
that may be valuable to EPA: 

• Many users find that kriging has the capacity to produce smoothed contours that are 
aesthetically pleasing and tend to “look like” subjective hand-drawn isopleths 

• Kriging can specifically account for anisotropy if present in the data. Anisotropy could 
occur if concentrations are better correlated along a prevailing wind direction and less 
correlated transverse to the prevailing wind direction. 

 
GEO-EAS was used to conduct preliminary analyses. GEO-EAS is EPA-supported public domain 
software (EPA. 1991. GEO-EAS 1.2.1 User’s Guide. EPA/600/8-91/008) and has the required 
features to support this analysis. 
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Recommended Analytical Approach 

Several, though not all, of the steps in this process were preliminarily tested using SO  
2 

concentrations from 46 stations in the northeastern United States in the 4th quarter of 2000. 
Lessons learned from the preliminary testing are incorporated into the recommended approach. 
Findings specifically related to the test-case (4th quarter 2000 SO  

2 concentrations) are 
highlighted with bold text. 
 
The recommended approach closely follows standard methods for statistical evaluation of data, 
in general, and standard methods and guidance for applications of kriging, in particular. The 
GEO-EAS User’s Guide (EPA, 1991) is a good example of such guidance. The first step is a 
general examination of the data set. The data set should be examined to determine appropriate 
distributional assumptions. Kriging is a parametric statistical method, which relies, in some steps, 
on assumptions of normality. It is commonly observed that environmental concentration data 
follow a lognormal distribution. The 4th qtr 2000 SO  

2 concentrations were reviewed, station-by-
station, using the Shapiro and Wilk W test. These tests indicated that, by station and within a 
quarter, SO  

2 concentrations are lognormal. Further, the uncertainty in central tendency estimates 
at stations (both means and geometric means) shows generally constant relative standard 
deviations. Absolute standard deviations, on the other hand, are proportional to the mean 
concentration. This is a typical characteristic of lognormal data. Parametric statistical calculations 
should be performed on logarithms of the data, rather than the absolute values. If CASTNET 
data consistently follow a lognormal distribution, as expected both theoretically and from 
experience, it may be acceptable to assume the data is lognormal without testing of each data 
set. If so, kriging analyses should be performed on logarithms of the data values. The resulting 
values should not be subsequently used in any interpretive analysis or calculation where an 
average or integral should be used, such as estimation of deposition rates. The geometric means 
or relative standard deviations produced from lognormal distributions are not accurate 
measures of time-weighted averages or area-weighted fluxes that would be required for such 
analyses. 
 
The time interval over which the analysis should be performed is the one that will produce the 
most reliable spatial pattern. This can be defined as the time interval that produces the smallest 
standard deviation of the station means of the logarithms of the data. If there were no seasonal 
variations or long term trends, the entire data set should be used because the large sample size 
would produce the least uncertainty in the means at each station. On the other hand, strong 
seasonal variation or trends could lead to actually more variance and uncertainty. This should be 
tested. Choose either quarters, ½ year (e.g., October through March) or 1 year depending on 
which yields smallest uncertainty in mean concentration. 
 
Follow GEO-EAS guidance and develop the variogram model. Evaluate potential anisotropy. The 
4th quarter 2000 SO  

2 results were evaluated with locations specified by latitude and longitude. 
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Logarithms of 4th quarter 2000 SO  
2 data were adequately modeled using a Gaussian model with 

a nugget of 0.1, a sill of 1.4, and a range of 18. The variogram exhibited anisotropy, with a larger 
range in the east/west direction, implying better correlation between points far apart in the 
east-west direction, but less correlation if far apart in a north-south direction. Consequently the 
data were kriged using a Gaussian variogram, a nugget of 0.1, a sill of 1.4, and a range of 22 in 
the east-west direction, but a range of 12 in the north-south direction. The east-west range of 
22 implies that data were no longer correlated if they were separated by 22 units of longitude. 
The north-south range implies that data were no longer correlated if they were separated by 
12 units of latitude. 
 
The best fit nugget of 0.1 is meaningful and consistent with other characteristics of the data set. 
The average standard deviation of the mean of the log-transformed data was 0.07. The nugget 
represents the uncertainty in each data point, which may be due to measurement error. The fact 
that the nugget is similar to the standard deviation of the typical station means is consistent 
with this concept. 
 
Figure 1 illustrates the kriged interpolation of the geometric mean concentrations of SO  

2 during 
the 4th quarter of 2000. 

 
Figure 1: Kriging Estimated SO  

2 Concentration (µg/m3 
 ), 4th Quarter 2000 
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If the “best” variogram model appears to vary from data set to data set, it may be advisable to 
select the “best” model in accordance with GEO-EAS guidance, but also, as a sensitivity test, 
examine all data sets with the same model type, choosing the model that best fits most of the 
data sets. Variogram model selection is partially an art, and the results can vary somewhat 
according to decisions made during the course of the application. For this reason verification 
tests are recommended: 

• Compare model predicted values (using ordinary or “block” kriging) with the values 
observed at the station locations. Compute the root mean square deviation between 
observed and model interpolated results. This calculation should be done using the log 
transformed values. This is analogous to examining the residuals during regression 
analysis. The residual should be randomly distributed within the model domain, without 
pattern. If the deviations are similar to, or greater than, the area-weighted average of the 
kriging relative standard deviation (AWA KRSD) it would imply that the kriging model is 
not as reliable as might be indicated by the kriging standard deviation alone. 

• Cross-validation – a standard test of a kriging model – sequentially eliminate each data 
point from the data base and compare the interpolated value to the missing data point. 
Compute the root mean square deviation between observed and cross-validated 
interpolated results. Cross validation is more rigorous than the simple comparison of 
observed and interpolated results described in paragraph (a) but is substantially more 
resource-intensive (the kriging analysis must be repeated as many times as there are 
data points). Consequently, this technique should be applied to one representative data 
set, and the results interpreted. On the other hand method (a) should be performed for 
each data set evaluated. 

 
Identification of a Metric for Characterizing Data Quality 

The kriging program produces interpolated estimates of the input variable (in the example case, 
the logarithm of the concentrations) and an estimate of the uncertainty in this parameter, 
referred to as the kriging standard deviation. In the subject case, this parameter is also in 
logarithmic (base e) units. Several potential metrics are suggested. First convert the kriging 
standard deviation from logarithmic units by taking its exponential. For example, if the kriging 
standard deviation is 0.2 in logarithmic units, then exp(0.2) = 1.22, implying a relative standard 
deviation (RSD) of 22%. This will be referred to as the kriging relative standard deviation (KRSD). 
Two metrics are suggested: 
 
(a) the AWA KRSD over the model domain (the network), and 
(b) the maximum kriging relative standard deviation (MAX KRSD) within the model domain. 
 
For the example case, the AWA KRSD over the model domain was 20%. The MAX KRSD was 40% 
and that value occurred near the edge of the network, at Alpena, MI. Relatively large KRSDs will 
always exist at the boundaries of the network, simply because they are at the boundary and 
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there is no data outside network to “bound” the estimates. These types of errors must be 
tolerated unless a high density of stations were established along the boundary. This is probably 
not cost-effective. The KRSDs are shown in Figure 2. 

 

Figure 2: Kriging Relative Standard Deviation (%), SO  
2, 4th Quarter 2000 

 
A second meaningful metric is the kriging absolute standard deviation, KASD, which would be 
calculated by multiplying the geometric mean by the KRSD. For the test case, results of this 
calculation are illustrated on Figure 3. The maximum kriging absolute standard deviation (MAX 
KASD) is approximately 1.6 µg/m3 

  near Atlantic City, NJ, and Cape Hatteras, NC. As was the case 
with KRSDs, large KASDs occur near the boundary. A large KASD at the boundary is a greater 
problem than a large KRSD and possible corrective actions may be considered. This could lead 
to greater density of stations near the boundary, but only in areas with high absolute 
concentrations. The area-weighted average kriging absolute standard deviation (AWA KASD) 
over the northeastern United States was 1.1 µg/m3 

 . 
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Figure 3: Kriging Absolute Standard Deviation (µg/m3 
 ), SO  

2 4th Quarter 2000 
 
These metrics appear suitable for characterizing the success of the network in defining 
spatial patterns. 
 
Additional Applications/Benefits of the Kriging Technology 

The primary management benefit of performing the kriging analyses would be to provide an 
objective method to evaluate cost/benefit of alternative network configurations. Existing stations 
could be prioritized by quantifying the effect that their removal would have on the spatial 
pattern metric (e.g., removal of station X would increase the MAX KASD from 1.6 µg/m3 

  to 
1.8 µg/m3 

 , and the AWA KASD from 1.10 µg/m3 
  to 1.16 µg/m3 

 ; while removal of station Y might 
have a negligible effect. Consequently station Y is more easily sacrificed than station X). Likewise 
optimum locations of new stations could be identified by identifying points within the domain 
with large absolute or relative kriging standard deviations. 
 
Does the Current Network Adequately Define Spatial Patterns? 

The current analysis provides metrics that can be used in answering this question. The kriged 
estimates (shown in Figure 1) represent the best estimate geometric mean on the map at any 
location without a station. In effect, this describes what you know at places where you did not 
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make a measurement. These exhibit a range from high (12.5 µg/m3 
 ) to low (1.6 µg/m3 

 ) of 
10.9 µg/m3 

 . The AWA KASD is 1.1 µg/m3 
 . So the error is only 10% of the apparent range. The 

corollary to this result is that, with statistical confidence, 90% of the apparent spatial pattern is 
real. Consequently it can be concluded that the apparent spatial pattern is an actual spatial 
pattern. This quantity is a reasonable measure of the validity of apparent spatial patterns. The 
formula would be: 
 
Spatial Pattern Validity = 1 - �

AWAKASD
Max Krige Geometric Mean - Min Krige Geometric Mean

�=1 - �
1.1

12.5-1.6
�= 0.90 = 90% 

 
This formula produces a non-dimensional result that can be computed and readily compared 
across all air quality parameters. 
 
Identification of a Data Quality Objective that Can be Applied to other Parameters and 
Averaging Times 
 
As previously discussed, the Spatial Pattern DQO should be based on the most accurate 
definition of the spatial pattern, and should not depend on time. The most reliable definition of 
the spatial pattern will be achieved when the averaging time is selected so as to produce the 
smallest intrastation uncertainty in means, specifically, when the standard deviation of the 
station means of the logarithms of the data within that averaging period is minimal. This is 
calculated by: 
 

• Take the logarithms of the reported values. 
• Determine the standard deviation of the resulting logarithms. 
• Divide the standard deviation of the logarithms by the square root of N, the number of 

samples in the averaging period.  
• Identify the averaging period for which the resulting quantity is minimal, across the grid 

(each station has a resulting standard deviation of the mean – select an averaging period 
for which the average and/or maximum of these values is at a minimum). 

 
This process was tested for SO  

2 concentrations measured during the period October 1999 
through September 2000. Three averaging periods were tested, quarters, half years (October 
through March), and the full year. It was found that the standard deviations of the logarithms 
(result of step 2) were steady when the averaging period was increased from the quarter to the 
half year, but increased significantly over the full year. The result of step 3 (after dividing by the 
square root of N) was that the full year produced a more reliable estimate of intrastation means 
(lower standard deviation of the means). Based on these results either the half-year (Summer vs. 
Winter) or the full year should be selected as the appropriate averaging period for SO  

2. 
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In contrast to the test case, it is recommended that the kriging process be applied to all the 
available data, characterizing the entire network, rather than just the northeastern United States. 
After performing the kriging analysis for the appropriate averaging period, determine whether 
the maximum interpolated logarithmic mean is significantly greater than the minimum 
interpolated logarithmic mean, using the t test. Recognize that all variances entering into this 
analysis are actually standard deviation of the means rather than standard deviations of the 
population of values.  
 
For the 4th quarter 2000 SO  

2, the maximum interpolated logarithmic mean is 2.524 
(corresponding to the maximum interpolated geometric mean of 12.48, i.e., 12.48 = e2.524). The 
standard deviation of this logarithmic mean is 0.107 (corresponding to the KRSD of 11.3%, i.e., 
0.113 = e0.107 – 1). The minimum interpolated logarithmic mean on the network is 0.478 
(corresponding to the minimum interpolated geometric mean of 1.61), and its standard 
deviation is 0.299 (corresponding to its KRSD of 34.9%). The test is whether the maximum is 
significantly greater than the minimum, a one-tailed test. The test statistic is (2.524 – 0.478) ÷ 
(0.1072 + 0.2992)1/2 = 2.046 ÷ 0.318 = 6.434. This implies that the high concentration is greater 
than the low concentration with more than 99.9% confidence, and the spatial pattern is real. 
 
Although it is more appropriate to perform this calculation on the logarithms, because the 
underlying data is lognormal, a similar result is obtained if the geometric means and the KASDs 
are used, and this may be helpful to illustrate the idea. Expressed in concentration units, the 
maximum interpolated value is 12.48 ± 1.41, the minimum interpolated value is 1.61 ± 0.56. The 
high value is significantly greater than the low value. If these results were characterizing a 
normal variate, the test statistic would be (12.48 – 1.61) ÷ (1.412 + 0.562)1/2 = 10.87 ÷ 1.52 = 
7.15, i.e., the test statistic by this inappropriate method is practically the same as the test statistic 
calculated from the lognormal distribution. In either case the maximum is significantly greater 
than the minimum, implying that the observed spatial pattern is real. 
 
There may be parameters or averaging periods that exhibit less pronounced spatial patterns 
than the test data set. It is assumed that parameters that have less than a factor of 2 between 
the high and low interpolated values, have a negligible spatial pattern. It is not necessary to 
accurately and definitively define the spatial pattern for parameters with such negligible 
spatial patterns.  
 
The recommended Spatial Pattern DQO following this procedure can be stated as: 

Where the maximum interpolated value within the network exceeds the minimum 
interpolated value by a factor of 2, the difference is statistically significant with 90% 
confidence. The quantitative test is that the maximum interpolated value will be shown 
to be greater than the minimum interpolated value with 90% confidence. Specifically, this 
means that the test statistic must exceed 1.28. 
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Identification of Locations where Additional Stations Should be Located 

The above-described DQO characterizes whether apparent spatial patterns are statistically 
significant, looking at the network footprint as a whole. It is not useful for identifying local areas 
where interpolation errors are unacceptably large. 
 
A simple criterion would be that the KRSD should not exceed a specified value. For example, if 
the KRSD exceeds 52%, then the interpolated geometric mean is not reliable, with 90% 
confidence, to within a factor of 2. This result is obtained from the logarithmic standard 
deviations as follows: 

• KRSD = 52%, implies that the kriging standard deviation in natural logarithm units is 
ln(1.52) = 0.418; 

• To be 90% confident that the true concentration is within a factor of 2 of the 
interpolated estimate, then ln(2) ÷ 0.418 > 1.645 (this is tcritical for a two-tailed test, with 
infinite degrees of freedom; the approximation at infinite degrees of freedom is 
appropriate because the number of data that were used to estimate the interpolated 
value is very large). 

• ln(2) ÷ 0.418 = 0.693 ÷ 0.418 = 1.66, which is greater than, but approximately equal to, 
1.645. 

 
In the test case, the MAX KRSD = 39.6%, so all interpolated values are accurate to within a factor 
of 2, with 90% confidence. 
 
This statistically simple test, however, may not appropriately represent the needs of EPA and 
other stakeholders. For example, an area with very low concentrations could have a high KRSD 
without compromising the utility of the network. One may still be highly confident, in such a 
case, that concentrations are well below thresholds expected to cause adverse effects. Additional 
stations in such areas would not be warranted. 
 
Consider a criterion based on absolute errors. When the KASD anywhere in the network 
approaches the maximum geometric mean within the network, then the local error is large 
relative to any apparent spatial pattern. In the test case, the MAX KASD was 1.6 µg/m3 

  (on the 
mid-Atlantic seaboard) while the maximum geometric mean was 12.5 µg/m3 

  in central 
Pennsylvania. The MAX KASD is 13% of the maximum interpolated concentration. Wherever the 
KASD exceeds 25% of the maximum geometric mean, the error at that location is presumed to 
compromise the validity of the apparent spatial pattern, and additional stations at or near such 
locations should be considered. This presumptive and preliminary DQO is defined as: 

MAX KASD anywhere within the network should not exceed 25% of the maximum 
geometric mean within the network. As previously discussed, the statistical significance 
of this criterion is not obvious, so it is a subjectively defined criterion. Further experience 
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with statistical evaluation of the network could lead to modifying the numerical value 
associated with this criterion. Nonetheless, areas with high KASD should be priorities for 
siting of new stations. 
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