Worksheet 15

NSPS Subpart WWW

Standards of Performance for Municipal Solid Waste Landfills

Commenced construction, reconstruction, modification on or after 5/30/1991

Design capacity > 2.5 million Mg, emission rate > 50 Mg/yr, active collection, collection/control system design plan includes no alternatives to provisions of §60.753-758, not complying with the alternative provisions to §60.759, geomembrane, open flare

§60.750 Applicability, designation of affected facility, and delegation of authority.

(a) The provisions of this subpart apply to each municipal solid waste landfill that commenced construction, reconstruction or modification on or after May 30, 1991. Physical or operational changes made to an existing MSW landfill solely to comply with subpart Cc of this part are not considered construction, reconstruction, or modification for the purposes of this section.

Reporting Requirements

§60.752(b)(2)(i)(A), (C)

(b) Each owner or operator of an MSW landfill having a design capacity equal to or greater than 2.5 million megagrams and 2.5 million cubic meters, shall either comply with paragraph (b)(2) of this section or calculate an NMOC emission rate for the landfill using the procedures specified in §60.754. The NMOC emission rate shall be recalculated annually, except as provided in §60.757(b)(1)(ii) of this subpart. The owner or operator of an MSW landfill subject to this subpart with a design capacity greater than or equal to 2.5 million megagrams and 2.5 million cubic meters is subject to part 70 or 71 permitting requirements.

(2) If the calculated NMOC emission rate is equal to or greater than 50 megagrams per year, the owner or operator shall:

(i) Submit a collection and control system design plan prepared by a professional engineer to the Administrator within 1 year:

(A) The collection and control system as described in the plan shall meet the design requirements of paragraph (b)(2)(ii) of this section.

(C) The collection and control system design plan shall either conform with specifications for active collection systems in §60.759 or include a demonstration to the Administrator’s satisfaction of the sufficiency of the alternative provisions to §60.759.

1 Disclaimer: The content provided in this software tool is intended solely as assistance for potential reporters to aid in assessing requirements for compliance under the Standards of Performance for Municipal Solid Waste Landfills, 40 CFR Part 60 Subpart WWW. Any variation between the rule and the information provided in this tool is unintentional, and, in the case of such variations, the requirements of the rule govern. Use of this tool does not constitute an assessment by EPA of the applicability of the rule to any particular facility. In any particular case, EPA will make its assessment by applying the law and regulations to the specific facts of the case.
§60.755(a)(6)
(a) Except as provided in §60.752(b)(2)(i)(B), the specified methods in paragraphs (a)(1) through (a)(6) of this section shall be used to determine whether the gas collection system is in compliance with §60.752(b)(2)(ii).

(6) An owner or operator seeking to demonstrate compliance with §60.752(b)(2)(ii)(A)(4) through the use of a collection system not conforming to the specifications provided in §60.759 shall provide information satisfactory to the Administrator as specified in §60.752(b)(2)(i)(C) demonstrating that off-site migration is being controlled.

§60.756(e)
(e) Each owner or operator seeking to install a collection system that does not meet the specifications in §60.759 or seeking to monitor alternative parameters to those required by §§60.753 through 60.756 shall provide information satisfactory to the Administrator as provided in §60.752(b)(2)(i)(B) and (C) describing the design and operation of the collection system, the operating parameters that would indicate proper performance, and appropriate monitoring procedures. The Administrator may specify additional appropriate monitoring procedures.

§60.757(a)(1)-(2), (b)-(c)
Except as provided in §60.752(b)(2)(i)(B),

(a) Each owner or operator subject to the requirements of this subpart shall submit an initial design capacity report to the Administrator.

(1) The initial design capacity report shall fulfill the requirements of the notification of the date construction is commenced as required by §60.7(a)(1) and shall be submitted no later than:

(i) June 10, 1996, for landfills that commenced construction, modification, or reconstruction on or after May 30, 1991 but before March 12, 1996 or

(ii) Ninety days after the date of commenced construction, modification, or reconstruction for landfills that commence construction, modification, or reconstruction on or after March 12, 1996.

(2) The initial design capacity report shall contain the following information:

(i) A map or plot of the landfill, providing the size and location of the landfill, and identifying all areas where solid waste may be landfilled according to the permit issued by the State, local, or tribal agency responsible for regulating the landfill.

(ii) The maximum design capacity of the landfill. Where the maximum design capacity is specified in the permit issued by the State, local, or tribal agency responsible for regulating the landfill, a copy of the permit specifying the maximum design capacity may be submitted as part of the report. If the maximum design capacity of the landfill is not specified in the permit, the maximum design capacity
shall be calculated using good engineering practices. The calculations shall be provided, along with the relevant parameters as part of the report. The State, Tribal, local agency or Administrator may request other reasonable information as may be necessary to verify the maximum design capacity of the landfill.

(b) Each owner or operator subject to the requirements of this subpart shall submit an NMOC emission rate report to the Administrator initially and annually thereafter, except as provided for in paragraphs (b)(1)(ii) or (b)(3) of this section. The Administrator may request such additional information as may be necessary to verify the reported NMOC emission rate.

(1) The NMOC emission rate report shall contain an annual or 5-year estimate of the NMOC emission rate calculated using the formula and procedures provided in §60.754(a) or (b), as applicable.

 (i) The initial NMOC emission rate report may be combined with the initial design capacity report required in paragraph (a) of this section and shall be submitted no later than indicated in paragraphs (b)(1)(i)(A) and (B) of this section. Subsequent NMOC emission rate reports shall be submitted annually thereafter, except as provided for in paragraphs (b)(1)(ii) and (b)(3) of this section.

 (A) June 10, 1996, for landfills that commenced construction, modification, or reconstruction on or after May 30, 1991, but before March 12, 1996, or

 (B) Ninety days after the date of commenced construction, modification, or reconstruction for landfills that commence construction, modification, or reconstruction on or after March 12, 1996.

 (ii) If the estimated NMOC emission rate as reported in the annual report to the Administrator is less than 50 megagrams per year in each of the next 5 consecutive years, the owner or operator may elect to submit an estimate of the NMOC emission rate for the next 5-year period in lieu of the annual report. This estimate shall include the current amount of solid waste-in-place and the estimated waste acceptance rate for each year of the 5 years for which an NMOC emission rate is estimated. All data and calculations upon which this estimate is based shall be provided to the Administrator. This estimate shall be revised at least once every 5 years. If the actual waste acceptance rate exceeds the estimated waste acceptance rate in any year reported in the 5-year estimate, a revised 5-year estimate shall be submitted to the Administrator. The revised estimate shall cover the 5-year period beginning with the year in which the actual waste acceptance rate exceeded the estimated waste acceptance rate.

 (2) The NMOC emission rate report shall include all the data, calculations, sample reports and measurements used to estimate the annual or 5-year emissions.

 (3) Each owner or operator subject to the requirements of this subpart is exempted from the requirements of paragraphs (b)(1) and (2) of this section, after the installation of a collection and control system in compliance with §60.752(b)(2), during such time as the collection and control system is in operation and in compliance with §§60.753 and 60.755.

(c) Each owner or operator subject to the provisions of §60.752(b)(2)(i) shall submit a collection and control system design plan to the Administrator within 1 year of the first report required under paragraph (b) of this section in which the emission rate equals or exceeds 50 megagrams per year, except as follows:
(1) If the owner or operator elects to recalculate the NMOC emission rate after Tier 2 NMOC sampling and analysis as provided in §60.754(a)(3) and the resulting rate is less than 50 megagrams per year, annual periodic reporting shall be resumed, using the Tier 2 determined site-specific NMOC concentration, until the calculated emission rate is equal to or greater than 50 megagrams per year or the landfill is closed. The revised NMOC emission rate report, with the recalculated emission rate based on NMOC sampling and analysis, shall be submitted within 180 days of the first calculated exceedance of 50 megagrams per year.

(2) If the owner or operator elects to recalculate the NMOC emission rate after determining a site-specific methane generation rate constant (k), as provided in Tier 3 in §60.754(a)(4), and the resulting NMOC emission rate is less than 50 Mg/yr, annual periodic reporting shall be resumed. The resulting site-specific methane generation rate constant (k) shall be used in the emission rate calculation until such time as the emissions rate calculation results in an exceedance. The revised NMOC emission rate report based on the provisions of §60.754(a)(4) and the resulting site-specific methane generation rate constant (k) shall be submitted to the Administrator within 1 year of the first calculated emission rate exceeding 50 megagrams per year.

§60.757 (d), (e)(1), (f)-(g)

(d) Each owner or operator of a controlled landfill shall submit a closure report to the Administrator within 30 days of waste acceptance cessation. The Administrator may request additional information as may be necessary to verify that permanent closure has taken place in accordance with the requirements of 40 CFR 258.60. If a closure report has been submitted to the Administrator, no additional wastes may be placed into the landfill without filing a notification of modification as described under §60.7(a)(4).

(e) Each owner or operator of a controlled landfill shall submit an equipment removal report to the Administrator 30 days prior to removal or cessation of operation of the control equipment.

(1) The equipment removal report shall contain all of the following items:

(i) A copy of the closure report submitted in accordance with paragraph (d) of this section;

(ii) A copy of the initial performance test report demonstrating that the 15 year minimum control period has expired; and

(iii) Dated copies of three successive NMOC emission rate reports demonstrating that the landfill is no longer producing 50 megagrams or greater of NMOC per year.

(f) Each owner or operator of a landfill seeking to comply with §60.752(b)(2) using an active collection system designed in accordance with §60.752(b)(2)(ii) shall submit to the Administrator annual reports of the recorded information in (f)(1) through (f)(6) of this paragraph. The initial annual report shall be submitted within 180 days of installation and start-up of the collection and control system, and shall include the initial performance test report required under §60.8. For enclosed combustion devices and flares, reportable exceedances are defined under §60.758(c).
(1) Value and length of time for exceedance of applicable parameters monitored under §60.756(a), (b), (c), and (d).

(2) Description and duration of all periods when the gas stream is diverted from the control device through a bypass line or the indication of bypass flow as specified under §60.756.

(3) Description and duration of all periods when the control device was not operating for a period exceeding 1 hour and length of time the control device was not operating.

(4) All periods when the collection system was not operating in excess of 5 days.

(5) The location of each exceedance of the 500 parts per million methane concentration as provided in §60.753(d) and the concentration recorded at each location for which an exceedance was recorded in the previous month.

(6) The date of installation and the location of each well or collection system expansion added pursuant to paragraphs (a)(3), (b), and (c)(4) of §60.755.

(g) Each owner or operator seeking to comply with §60.752(b)(2)(iii) shall include the following information with the initial performance test report required under §60.8:

(1) A diagram of the collection system showing collection system positioning including all wells, horizontal collectors, surface collectors, or other gas extraction devices, including the locations of any areas excluded from collection and the proposed sites for the future collection system expansion;

(2) The data upon which the sufficient density of wells, horizontal collectors, surface collectors, or other gas extraction devices and the gas mover equipment sizing are based;

(3) The documentation of the presence of asbestos or nondegradable material for each area from which collection wells have been excluded based on the presence of asbestos or nondegradable material;

(4) The sum of the gas generation flow rates for all areas from which collection wells have been excluded based on nonproductivity and the calculations of gas generation flow rate for each excluded area; and

(5) The provisions for increasing gas mover equipment capacity with increased gas generation flow rate, if the present gas mover equipment is inadequate to move the maximum flow rate expected over the life of the landfill; and

(6) The provisions for the control of off-site migration.
Recordkeeping Requirements

§60.753(b)(1)

(b) Operate the collection system with negative pressure at each wellhead except under the following conditions:

(1) A fire or increased well temperature. The owner or operator shall record instances when positive pressure occurs in efforts to avoid a fire. These records shall be submitted with the annual reports as provided in §60.757(f)(1);

§60.755(c)(4)(i)

(c) The following procedures shall be used for compliance with the surface methane operational standard as provided in §60.753(d).

(4) Any reading of 500 parts per million or more above background at any location shall be recorded as a monitored exceedance and the actions specified in paragraphs (c)(4) (i) through (v) of this section shall be taken. As long as the specified actions are taken, the exceedance is not a violation of the operational requirements of §60.753(d).

(i) The location of each monitored exceedance shall be marked and the location recorded.

§60.756(c)(2)(i)

(c) Each owner or operator seeking to comply with §60.752(b)(2)(iii) using an open flare shall install, calibrate, maintain, and operate according to the manufacturer's specifications the following equipment:

(2) A device that records flow to or bypass of the flare. The owner or operator shall either:

(i) Install, calibrate, and maintain a gas flow rate measuring device that shall record the flow to the control device at least every 15 minutes;

§60.758(b)(1), (c)(1) & (2), (d), (e)

(b) Except as provided in §60.752(b)(2)(i)(B), each owner or operator of a controlled landfill shall keep up-to-date, readily accessible records for the life of the control equipment of the data listed in paragraphs (b)(1) through (b)(4) of this section as measured during the initial performance test or compliance determination. Records of subsequent tests or monitoring shall be maintained for a minimum of 5 years. Records of the control device vendor specifications shall be maintained until removal.

(1) Where an owner or operator subject to the provisions of this subpart seeks to demonstrate compliance with §60.752(b)(2)(ii):
(i) The maximum expected gas generation flow rate as calculated in §60.755(a)(1). The owner or operator may use another method to determine the maximum gas generation flow rate, if the method has been approved by the Administrator.

(ii) The density of wells, horizontal collectors, surface collectors, or other gas extraction devices determined using the procedures specified in §60.759(a)(1).

(c) Except as provided in §60.752(b)(2)(i)(B), each owner or operator of a controlled landfill subject to the provisions of this subpart shall keep for 5 years up-to-date, readily accessible continuous records of the equipment operating parameters specified to be monitored in §60.756 as well as up-to-date, readily accessible records for periods of operation during which the parameter boundaries established during the most recent performance test are exceeded.

(1) The following constitute exceedances that shall be recorded and reported under §60.757(f):

(i) For enclosed combustors except for boilers and process heaters with design heat input capacity of 44 megawatts (150 million British thermal unit per hour) or greater, all 3-hour periods of operation during which the average combustion temperature was more than 28 oC below the average combustion temperature during the most recent performance test at which compliance with §60.752(b)(2)(iii) was determined.

(ii) For boilers or process heaters, whenever there is a change in the location at which the vent stream is introduced into the flame zone as required under paragraph (b)(3) of this section.

(2) Each owner or operator subject to the provisions of this subpart shall keep up-to-date, readily accessible continuous records of the indication of flow to the control device or the indication of bypass flow or records of monthly inspections of car-seals or lock-and-key configurations used to seal bypass lines, specified under §60.756.

(d) Except as provided in §60.752(b)(2)(i)(B), each owner or operator subject to the provisions of this subpart shall keep for the life of the collection system an up-to-date, readily accessible plot map showing each existing and planned collector in the system and providing a unique identification location label for each collector.

(1) Each owner or operator subject to the provisions of this subpart shall keep up-to-date, readily accessible records of the installation date and location of all newly installed collectors as specified under §60.755(b).

(2) Each owner or operator subject to the provisions of this subpart shall keep readily accessible documentation of the nature, date of deposition, amount, and location of asbestos-containing or nondegradable waste excluded from collection as provided in §60.759(a)(3)(i) as well as any nonproductive areas excluded from collection as provided in §60.759(a)(3)(ii).

(e) Except as provided in §60.752(b)(2)(i)(B), each owner or operator subject to the provisions of this subpart shall keep for at least 5 years up-to-date, readily accessible records of all collection and control system exceedances of the operational standards in §60.753, the reading in the subsequent month whether or not the second reading is an exceedance, and the location of each exceedance.
§60.758(b)(4), (c)(4)

(b) Except as provided in §60.752(b)(2)(i)(B), each owner or operator of a controlled landfill shall keep up-to-date, readily accessible records for the life of the control equipment of the data listed in paragraphs (b)(1) through (b)(4) of this section as measured during the initial performance test or compliance determination. Records of subsequent tests or monitoring shall be maintained for a minimum of 5 years. Records of the control device vendor specifications shall be maintained until removal.

(4) Where an owner or operator subject to the provisions of this subpart seeks to demonstrate compliance with §60.752(b)(2)(iii)(A) through use of an open flare, the flare type (i.e., steam-assisted, air-assisted, or nonassisted), all visible emission readings, heat content determination, flow rate or bypass flow rate measurements, and exit velocity determinations made during the performance test as specified in §60.18; continuous records of the flare pilot flame or flare flame monitoring and records of all periods of operations during which the pilot flame of the flare flame is absent.

(c) Except as provided in §60.752(b)(2)(i)(B), each owner or operator of a controlled landfill subject to the provisions of this subpart shall keep for 5 years up-to-date, readily accessible continuous records of the equipment operating parameters specified to be monitored in §60.756 as well as up-to-date, readily accessible records for periods of operation during which the parameter boundaries established during the most recent performance test are exceeded.

(4) Each owner or operator seeking to comply with the provisions of this subpart by use of an open flare shall keep up-to-date, readily accessible continuous records of the flame or flare pilot flame monitoring specified under §60.756(c), and up-to-date, readily accessible records of all periods of operation in which the flame or flare pilot flame is absent.

Monitoring/Testing

§60.753(c)(1) & (2)

(c) Operate each interior wellhead in the collection system with a landfill gas temperature less than 55 °C and with either a nitrogen level less than 20 percent or an oxygen level less than 5 percent. The owner or operator may establish a higher operating temperature, nitrogen, or oxygen value at a particular well. A higher operating value demonstration shall show supporting data that the elevated parameter does not cause fires or significantly inhibit anaerobic decomposition by killing methanogens.

(1) The nitrogen level shall be determined using Method 3C, unless an alternative test method is established as allowed by §60.752(b)(2)(i) of this subpart.

(2) Unless an alternative test method is established as allowed by §60.752(b)(2)(i) of this subpart, the oxygen shall be determined by an oxygen meter using Method 3A or 3C except that:

(i) The span shall be set so that the regulatory limit is between 20 and 50 percent of the span;

(ii) A data recorder is not required;
(iii) Only two calibration gases are required, a zero and span, and ambient air may be used as the span;

(iv) A calibration error check is not required;

(v) The allowable sample bias, zero drift, and calibration drift are ±10 percent.

§60.754(a)(1)

(a)(1) The landfill owner or operator shall calculate the NMOC emission rate using either the equation provided in paragraph (a)(1)(i) of this section or the equation provided in paragraph (a)(1)(ii) of this section. Both equations may be used if the actual year-to-year solid waste acceptance rate is known, as specified in paragraph (a)(1)(i), for part of the life of the landfill and the actual year-to-year solid waste acceptance rate is unknown, as specified in paragraph (a)(1)(ii), for part of the life of the landfill. The values to be used in both equations are 0.05 per year for k, 170 cubic meters per megagram for \(L_0 \), and 4,000 parts per million by volume as hexane for the \(C_{NMOC} \). For landfills located in geographical areas with a thirty year annual average precipitation of less than 25 inches, as measured at the nearest representative official meteorologic site, the k value to be used is 0.02 per year.

(i) The following equation shall be used if the actual year-to-year solid waste acceptance rate is known.

\[
M_{NMOC} = \sum_{i=1}^{n} 2k L_0 M_i e^{-kt_i} C_{NMOC} (3.6 \times 10^{-9})
\]

where,

\(M_{NMOC} \) = Total NMOC emission rate from the landfill, megagrams per year

\(k \) = methane generation rate constant, year\(^{-1}\)

\(L_0 \) = methane generation potential, cubic meters per megagram solid waste

\(M_i \) = mass of solid waste in the i\(^{th} \) section, megagrams

\(t_i \) = age of the i\(^{th} \) section, years

\(C_{NMOC} \) = concentration of NMOC, parts per million by volume as hexane

3.6 \times 10^{-9} = conversion factor

The mass of nondegradable solid waste may be subtracted from the total mass of solid waste in a particular section of the landfill when calculating the value for \(M_i \) if documentation of the nature and amount of such wastes is maintained.
(ii) The following equation shall be used if the actual year-to-year solid waste acceptance rate is unknown.

\[M_{\text{NMOC}} = 2L_o R (e^{-kt} - e^{-kc}) C_{\text{NMOC}} \times (3.6 \times 10^{-9}) \]

Where:

- \(M_{\text{NMOC}} \) = mass emission rate of NMOC, megagrams per year
- \(L_o \) = methane generation potential, cubic meters per megagram solid waste
- \(R \) = average annual acceptance rate, megagrams per year
- \(k \) = methane generation rate constant, year\(^{-1}\)
- \(t \) = age of landfill, years
- \(C_{\text{NMOC}} \) = concentration of NMOC, parts per million by volume as hexane
- \(c \) = time since closure, years; for active landfill \(c = 0 \) and \(e^{-kc} \)
- \(3.6 \times 10^{-9} \) = conversion factor

The mass of nondegradable solid waste may be subtracted from the total mass of solid waste in a particular section of the landfill when calculating the value of \(R \), if documentation of the nature and amount of such wastes is maintained.

§60.754(b), (c)

(b) After the installation of a collection and control system in compliance with §60.755, the owner or operator shall calculate the NMOC emission rate for purposes of determining when the system can be removed as provided in §60.752(b)(2)(v), using the following equation:

\[M_{\text{NMOC}} = 1.89 \times 10^{-3} Q_{\text{LFG}} C_{\text{NMOC}} \]

where,

- \(M_{\text{NMOC}} \) = mass emission rate of NMOC, megagrams per year
- \(Q_{\text{LFG}} \) = flow rate of landfill gas, cubic meters per minute
- \(C_{\text{NMOC}} \) = NMOC concentration, parts per million by volume as hexane

(1) The flow rate of landfill gas, \(Q_{\text{LFG}} \), shall be determined by measuring the total landfill gas flow rate at the common header pipe that leads to the control device using a gas flow measuring device calibrated according to the provisions of section 4 of Method 2E of appendix A of this part.

(2) The average NMOC concentration, \(C_{\text{NMOC}} \), shall be determined by collecting and analyzing landfill gas sampled from the common header pipe before the gas moving or condensate removal equipment using the procedures in Method 25C or Method 18 of appendix A of this part. If using
Method 18 of appendix A of this part, the minimum list of compounds to be tested shall be those published in the most recent Compilation of Air Pollutant Emission Factors (AP-42). The sample location on the common header pipe shall be before any condensate removal or other gas refining units. The landfill owner or operator shall divide the NMOC concentration from Method 25C of appendix A of this part by six to convert from \(C_{\text{NMOC}} \) as carbon to \(C_{\text{NMOC}} \) as hexane.

(3) The owner or operator may use another method to determine landfill gas flow rate and NMOC concentration if the method has been approved by the Administrator.

(c) When calculating emissions for PSD purposes, the owner or operator of each MSW landfill subject to the provisions of this subpart shall estimate the NMOC emission rate for comparison to the PSD major source and significance levels in §§51.166 or 52.21 of this chapter using AP-42 or other approved measurement procedures.

§60.754(e)

(e) For the performance test required in §60.752(b)(2)(iii)(A), the net heating value of the combusted landfill gas as determined in §60.18(f)(3) is calculated from the concentration of methane in the landfill gas as measured by Method 3C. A minimum of three 30-minute Method 3C samples are determined. The measurement of other organic components, hydrogen, and carbon monoxide is not applicable. Method 3C may be used to determine the landfill gas molecular weight for calculating the flare gas exit velocity under §60.18(f)(4).

§60.755(a)(1), (a)(3), (a)(5)

(a) Except as provided in §60.752(b)(2)(i)(B), the specified methods in paragraphs (a)(1) through (a)(6) of this section shall be used to determine whether the gas collection system is in compliance with §60.752(b)(2)(ii).

(1) For the purposes of calculating the maximum expected gas generation flow rate from the landfill to determine compliance with §60.752(b)(2)(ii)(A)(1), one of the following equations shall be used. The \(k \) and \(L_o \) kinetic factors should be those published in the most recent Compilation of Air Pollutant Emission Factors (AP-42) or other site specific values demonstrated to be appropriate and approved by the Administrator. If \(k \) has been determined as specified in §60.754(a)(4), the value of \(k \) determined from the test shall be used. A value of no more than 15 years shall be used for the intended use period of the gas mover equipment. The active life of the landfill is the age of the landfill plus the estimated number of years until closure.

(i) For sites with unknown year-to-year solid waste acceptance rate:

\[
Q_m = 2L_o \cdot R \cdot (e^{-kc} - e^{-ct})
\]

where,

\(Q_m \) = maximum expected gas generation flow rate, cubic meters per year

\(L_o \) = methane generation potential, cubic meters per megagram solid waste
R = average annual acceptance rate, megagrams per year

k = methane generation rate constant, year$^{-1}$

t = age of the landfill at equipment installation plus the time the owner or operator intends to use the gas mover equipment or active life of the landfill, whichever is less. If the equipment is installed after closure, t is the age of the landfill at installation, years

c = time since closure, years (for an active landfill c = 0 and e$^{-kc} = 1$)

(ii) For sites with known year-to-year solid waste acceptance rate:

$$Q_{M} = \sum_{i=1}^{n} 2kL_{0}M_{i}(e^{-kt_{i}})$$

where,

Q_{M} = maximum expected gas generation flow rate, cubic meters per year

k = methane generation rate constant, year$^{-1}$

L_{0} = methane generation potential, cubic meters per megagram solid waste

M_{i} = mass of solid waste in the i^{th} section, megagrams

t_{i} = age of the i^{th} section, years

(iii) If a collection and control system has been installed, actual flow data may be used to project the maximum expected gas generation flow rate instead of, or in conjunction with, the equations in paragraphs (a)(1)(i) and (ii) of this section. If the landfill is still accepting waste, the actual measured flow data will not equal the maximum expected gas generation rate, so calculations using the equations in paragraphs (a)(1)(i) or (ii) or other methods shall be used to predict the maximum expected gas generation rate over the intended period of use of the gas control system equipment.

(3) For the purpose of demonstrating whether the gas collection system flow rate is sufficient to determine compliance with §60.752(b)(2)(ii)(A)(3), the owner or operator shall measure gauge pressure in the gas collection header at each individual well, monthly. If a positive pressure exists, action shall be initiated to correct the exceedance within 5 calendar days, except for the three conditions allowed under §60.753(b). If negative pressure cannot be achieved without excess air infiltration within 15 calendar days of the first measurement, the gas collection system shall be expanded to correct the exceedance within 120 days of the initial measurement of positive pressure. Any attempted corrective measure shall not cause exceedances of other operational or performance standards. An alternative timeline for correcting the exceedance may be submitted to the Administrator for approval.

(5) For the purpose of identifying whether excess air infiltration into the landfill is occurring, the owner or operator shall monitor each well monthly for temperature and nitrogen or oxygen as provided...
in §60.753(c). If a well exceeds one of these operating parameters, action shall be initiated to correct the exceedance within 5 calendar days. If correction of the exceedance cannot be achieved within 15 calendar days of the first measurement, the gas collection system shall be expanded to correct the exceedance within 120 days of the initial exceedance. Any attempted corrective measure shall not cause exceedances of other operational or performance standards. An alternative timeline for correcting the exceedance may be submitted to the Administrator for approval.

§60.755(c)(1)-(3), (c)(4)(ii)-(iv) (c)(5), (d)

(c) The following procedures shall be used for compliance with the surface methane operational standard as provided in §60.753(d).

(1) After installation of the collection system, the owner or operator shall monitor surface concentrations of methane along the entire perimeter of the collection area and along a pattern that traverses the landfill at 30 meter intervals (or a site-specific established spacing) for each collection area on a quarterly basis using an organic vapor analyzer, flame ionization detector, or other portable monitor meeting the specifications provided in paragraph (d) of this section.

(2) The background concentration shall be determined by moving the probe inlet upwind and downwind outside the boundary of the landfill at a distance of at least 30 meters from the perimeter wells.

(3) Surface emission monitoring shall be performed in accordance with section 4.3.1 of Method 21 of appendix A of this part, except that the probe inlet shall be placed within 5 to 10 centimeters of the ground. Monitoring shall be performed during typical meteorological conditions.

(4) Any reading of 500 parts per million or more above background at any location shall be recorded as a monitored exceedance and the actions specified in paragraphs (c)(4) (i) through (v) of this section shall be taken. As long as the specified actions are taken, the exceedance is not a violation of the operational requirements of §60.753(d).

(ii) Cover maintenance or adjustments to the vacuum of the adjacent wells to increase the gas collection in the vicinity of each exceedance shall be made and the location shall be re-monitored within 10 calendar days of detecting the exceedance.

(iii) If the re-monitoring of the location shows a second exceedance, additional corrective action shall be taken and the location shall be monitored again within 10 days of the second exceedance. If the re-monitoring shows a third exceedance for the same location, the action specified in paragraph (c)(4)(v) of this section shall be taken, and no further monitoring of that location is required until the action specified in paragraph (c)(4)(v) has been taken.

(iv) Any location that initially showed an exceedance but has a methane concentration less than 500 ppm methane above background at the 10-day re-monitoring specified in paragraph (c)(4) (ii) or (iii) of this section shall be re-monitored 1 month from the initial exceedance. If the 1-month remonitoring shows a concentration less than 500 parts per million above background, no further monitoring of that location is required until the next quarterly monitoring period. If the 1-month remonitoring shows an exceedance, the actions specified in paragraph (c)(4) (iii) or (v) shall be taken.
(5) The owner or operator shall implement a program to monitor for cover integrity and implement cover repairs as necessary on a monthly basis.

(d) Each owner or operator seeking to comply with the provisions in paragraph (c) of this section shall comply with the following instrumentation specifications and procedures for surface emission monitoring devices:

(1) The portable analyzer shall meet the instrument specifications provided in section 3 of Method 21 of appendix A of this part, except that “methane” shall replace all references to VOC.

(2) The calibration gas shall be methane, diluted to a nominal concentration of 500 parts per million in air.

(3) To meet the performance evaluation requirements in section 3.1.3 of Method 21 of appendix A of this part, the instrument evaluation procedures of section 4.4 of Method 21 of appendix A of this part shall be used.

(4) The calibration procedures provided in section 4.2 of Method 21 of appendix A of this part shall be followed immediately before commencing a surface monitoring survey.

§60.756(a), (e), (f)

Except as provided in §60.752(b)(2)(i)(B),

(a) Each owner or operator seeking to comply with §60.752(b)(2)(ii)(A) for an active gas collection system shall install a sampling port and a thermometer, other temperature measuring device, or an access port for temperature measurements at each wellhead and:

(1) Measure the gauge pressure in the gas collection header on a monthly basis as provided in §60.755(a)(3); and

(2) Monitor nitrogen or oxygen concentration in the landfill gas on a monthly basis as provided in §60.755(a)(5); and

(3) Monitor temperature of the landfill gas on a monthly basis as provided in §60.755(a)(5).

(e) Each owner or operator seeking to install a collection system that does not meet the specifications in §60.759 or seeking to monitor alternative parameters to those required by §§60.753 through 60.756 shall provide information satisfactory to the Administrator as provided in §60.752(b)(2)(i) (B) and (C) describing the design and operation of the collection system, the operating parameters that would indicate proper performance, and appropriate monitoring procedures. The Administrator may specify additional appropriate monitoring procedures.

(f) Each owner or operator seeking to demonstrate compliance with §60.755(c), shall monitor surface concentrations of methane according to the instrument specifications and procedures provided in §60.755(d). Any closed landfill that has no monitored exceedances of the operational standard in three consecutive quarterly monitoring periods may skip to annual monitoring. Any methane reading of
500 ppm or more above background detected during the annual monitoring returns the frequency for that landfill to quarterly monitoring.

§60.756(c), (c)(1), (c)(2)(i)-(ii)

(c) Each owner or operator seeking to comply with §60.752(b)(2)(iii) using an open flare shall install, calibrate, maintain, and operate according to the manufacturer's specifications the following equipment:

(1) A heat sensing device, such as an ultraviolet beam sensor or thermocouple, at the pilot light or the flame itself to indicate the continuous presence of a flame.

(2) A device that records flow to or bypass of the flare. The owner or operator shall either:

(i) Install, calibrate, and maintain a gas flow rate measuring device that shall record the flow to the control device at least every 15 minutes; or

(ii) Secure the bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. A visual inspection of the seal or closure mechanism shall be performed at least once every month to ensure that the valve is maintained in the closed position and that the gas flow is not diverted through the bypass line.

Alternatives to §60.759 will be based on application plan per §60.752(b)(2)(i)(D):

(2) If the calculated NMOC emission rate is equal to or greater than 50 megagrams per year, the owner or operator shall:

(i) Submit a collection and control system design plan prepared by a professional engineer to the Administrator within 1 year:

(A) The collection and control system as described in the plan shall meet the design requirements of paragraph (b)(2)(ii) of this section.

(B) The collection and control system design plan shall include any alternatives to the operational standards, test methods, procedures, compliance measures, monitoring, recordkeeping or reporting provisions of §§60.753 through 60.758 proposed by the owner or operator.

(C) The collection and control system design plan shall either conform with specifications for active collection systems in §60.759 or include a demonstration to the Administrator's satisfaction of the sufficiency of the alternative provisions to §60.759.

(D) The Administrator shall review the information submitted under paragraphs (b)(2)(i) (A),(B) and (C) of this section and either approve it, disapprove it, or request that additional information be submitted. Because of the many site-specific factors involved with landfill gas system design, alternative systems may be necessary. A wide variety of system designs are possible, such as vertical wells, combination horizontal and vertical collection systems, or horizontal trenches only, leachate collection components, and passive systems.
§60.18(a)(1), (b)-(f)

(a) *Introduction.* (1) This section contains requirements for control devices used to comply with applicable subparts of 40 CFR parts 60 and 61. The requirements are placed here for administrative convenience and apply only to facilities covered by subparts referring to this section.

(b) *Flares.* Paragraphs (c) through (f) apply to flares.

(c)(1) Flares shall be designed for and operated with no visible emissions as determined by the methods specified in paragraph (f), except for periods not to exceed a total of 5 minutes during any 2 consecutive hours.

(2) Flares shall be operated with a flame present at all times, as determined by the methods specified in paragraph (f).

(3) An owner/operator has the choice of adhering to either the heat content specifications in paragraph (c)(3)(ii) of this section and the maximum tip velocity specifications in paragraph (c)(4) of this section, or adhering to the requirements in paragraph (c)(3)(i) of this section.

(i)(A) Flares shall be used that have a diameter of 3 inches or greater, are nonassisted, have a hydrogen content of 8.0 percent (by volume), or greater, and are designed for and operated with an exit velocity less than 37.2 m/sec (122 ft/sec) and less than the velocity, V_{max}, as determined by the following equation:

$$V_{\text{max}} = (X_{\text{H}_2} - K_1) \times K_2$$

Where:

V_{max} = Maximum permitted velocity, m/sec.

K_1 = Constant, 6.0 volume-percent hydrogen.

K_2 = Constant, 3.9(m/sec)/volume-percent hydrogen.

X_{H_2} = The volume-percent of hydrogen, on a wet basis, as calculated by using the American Society for Testing and Materials (ASTM) Method D1946-77. (Incorporated by reference as specified in §60.17).

(B) The actual exit velocity of a flare shall be determined by the method specified in paragraph (f)(4) of this section.

(ii) Flares shall be used only with the net heating value of the gas being combusted being 11.2 MJ/scm (300 Btu/scf) or greater if the flare is steam-assisted or air-assisted; or with the net heating value of the gas being combusted being 7.45 MJ/scm (200 Btu/scf) or greater if the flare is nonassisted. The net heating value of the gas being combusted shall be determined by the methods specified in paragraph (f)(3) of this section.
(4)(i) Steam-assisted and nonassisted flares shall be designed for and operated with an exit velocity, as determined by the methods specified in paragraph (f)(4) of this section, less than 18.3 m/sec (60 ft/sec), except as provided in paragraphs (c)(4) (ii) and (iii) of this section.

(ii) Steam-assisted and nonassisted flares designed for and operated with an exit velocity, as determined by the methods specified in paragraph (f)(4), equal to or greater than 18.3 m/sec (60 ft/sec) but less than 122 m/sec (400 ft/sec) are allowed if the net heating value of the gas being combusted is greater than 37.3 MJ/scm (1,000 Btu/scf).

(iii) Steam-assisted and nonassisted flares designed for and operated with an exit velocity, as determined by the methods specified in paragraph (f)(4), less than the velocity, \(V_{\text{max}} \), as determined by the method specified in paragraph (f)(5), and less than 122 m/sec (400 ft/sec) are allowed.

(5) Air-assisted flares shall be designed and operated with an exit velocity less than the velocity, \(V_{\text{max}} \), as determined by the method specified in paragraph (f)(6).

(6) Flares used to comply with this section shall be steam-assisted, air-assisted, or nonassisted.

(d) Owners or operators of flares used to comply with the provisions of this subpart shall monitor these control devices to ensure that they are operated and maintained in conformance with their designs. Applicable subparts will provide provisions stating how owners or operators of flares shall monitor these control devices.

(e) Flares used to comply with provisions of this subpart shall be operated at all times when emissions may be vented to them.

(f)(1) Method 22 of appendix A to this part shall be used to determine the compliance of flares with the visible emission provisions of this subpart. The observation period is 2 hours and shall be used according to Method 22.

(2) The presence of a flare pilot flame shall be monitored using a thermocouple or any other equivalent device to detect the presence of a flame.

(3) The net heating value of the gas being combusted in a flare shall be calculated using the following equation:

\[
H_T = K \sum_{i=1}^{n} C_i H_i
\]

where:

\(H_T \) = Net heating value of the sample, MJ/scm; where the net enthalpy per mole of offgas is based on combustion at 25 °C and 760 mm Hg, but the standard temperature for determining the volume corresponding to one mole is 20 °C;
$K = \frac{\text{Constant}}{1.740 \times 10^{-7} \text{ ppm} \cdot \text{g mole} \cdot \text{MJ} \cdot \text{kcal}}$

where the standard temperature for $\text{g mole} \cdot \text{scm}$ is 20°C.

$C_i = \text{Concentration of sample component } i \text{ in ppm on a wet basis, as measured for organics by Reference Method 18 and measured for hydrogen and carbon monoxide by ASTM D1946-77 or 90 (Reapproved 1994) (Incorporated by reference as specified in §60.17); and}$

$H_i = \text{Net heat of combustion of sample component } i, \text{ kcal/g mole at } 25^\circ\text{C and 760 mm Hg. The heats of combustion may be determined using ASTM D2382-76 or 88 or D4809-95 (incorporated by reference as specified in §60.17) if published values are not available or cannot be calculated.}$

(4) The actual exit velocity of a flare shall be determined by dividing the volumetric flowrate (in units of standard temperature and pressure), as determined by Reference Methods 2, 2A, 2C, or 2D as appropriate; by the unobstructed (free) cross sectional area of the flare tip.

(5) The maximum permitted velocity, V_{max}, for flares complying with paragraph (c)(4)(iii) shall be determined by the following equation.

$\log_{10} (V_{\text{max}}) = \frac{(H_T + 28.8)}{31.7}$

$V_{\text{max}} = \text{Maximum permitted velocity, M/sec}$

28.8 = Constant

31.7 = Constant

$H_T = \text{The net heating value as determined in paragraph (f)(3).}$

(6) The maximum permitted velocity, V_{max}, for air-assisted flares shall be determined by the following equation.

$V_{\text{max}} = 8.706 + 0.7084 \times H_T$

$V_{\text{max}} = \text{Maximum permitted velocity, m/sec}$

8.706 = Constant

0.7084 = Constant

$H_T = \text{The net heating value as determined in paragraph (f)(3).}$

§60.752(b)(2)(ii)(A) & (B)

(b) Each owner or operator of an MSW landfill having a design capacity equal to or greater than 2.5 million megagrams and 2.5 million cubic meters, shall either comply with paragraph (b)(2) of this section or calculate an NMOC emission rate for the landfill using the procedures specified in §60.754. The
NMOC emission rate shall be recalculated annually, except as provided in §60.757(b)(1)(ii) of this subpart. The owner or operator of an MSW landfill subject to this subpart with a design capacity greater than or equal to 2.5 million megagrams and 2.5 million cubic meters is subject to part 70 or 71 permitting requirements.

(2) If the calculated NMOC emission rate is equal to or greater than 50 megagrams per year, the owner or operator shall:

(ii) Install a collection and control system that captures the gas generated within the landfill as required by paragraphs (b)(2)(ii)(A) or (B) and (b)(2)(iii) of this section within 30 months after the first annual report in which the emission rate equals or exceeds 50 megagrams per year, unless Tier 2 or Tier 3 sampling demonstrates that the emission rate is less than 50 megagrams per year, as specified in §60.757(c)(1) or (2).

(A) If the NMOC emission rate, upon recalculation required in paragraph (b)(1)(ii) of this section, is equal to or greater than 50 megagrams per year, the owner or operator shall install a collection and control system in compliance with paragraph (b)(2) of this section.

(B) A passive collection system shall:

(1) Comply with the provisions specified in paragraphs (b)(2)(ii)(A)(1), (2), and (2)(ii)(A)(4) of this section.

(2) Be installed with liners on the bottom and all sides in all areas in which gas is to be collected. The liners shall be installed as required under §258.40.

§60.752(b)(2)(iii)-(v)

(b) Each owner or operator of an MSW landfill having a design capacity equal to or greater than 2.5 million megagrams and 2.5 million cubic meters, shall either comply with paragraph (b)(2) of this section or calculate an NMOC emission rate for the landfill using the procedures specified in §60.754. The NMOC emission rate shall be recalculated annually, except as provided in §60.757(b)(1)(ii) of this subpart. The owner or operator of an MSW landfill subject to this subpart with a design capacity greater than or equal to 2.5 million megagrams and 2.5 million cubic meters is subject to part 70 or 71 permitting requirements.

(2) If the calculated NMOC emission rate is equal to or greater than 50 megagrams per year, the owner or operator shall:

(iii) Route all the collected gas to a control system that complies with the requirements in either paragraph (b)(2)(iii) (A), (B) or (C) of this section.

(A) An open flare designed and operated in accordance with §60.18 except as noted in §60.754(e);

(b) Each owner or operator of an MSW landfill having a design capacity equal to or greater than 2.5 million megagrams and 2.5 million cubic meters, shall either comply with paragraph (b)(2) of this section or calculate an NMOC emission rate for the landfill using the procedures specified in §60.754. The
NMOC emission rate shall be recalculated annually, except as provided in §60.757(b)(1)(ii) of this subpart. The owner or operator of an MSW landfill subject to this subpart with a design capacity greater than or equal to 2.5 million megagrams and 2.5 million cubic meters is subject to part 70 or 71 permitting requirements.

(iii) Route all the collected gas to a control system that complies with the requirements in either paragraph (b)(2)(iii) (A), (B) or (C) of this section.

(A) An open flare designed and operated in accordance with §60.18 except as noted in §60.754(e);

(B) A control system designed and operated to reduce NMOC by 98 weight-percent, or, when an enclosed combustion device is used for control, to either reduce NMOC by 98 weight percent or reduce the outlet NMOC concentration to less than 20 parts per million by volume, dry basis as hexane at 3 percent oxygen. The reduction efficiency or parts per million by volume shall be established by an initial performance test to be completed no later than 180 days after the initial startup of the approved control system using the test methods specified in §60.754(d).

(1) If a boiler or process heater is used as the control device, the landfill gas stream shall be introduced into the flame zone.

(2) The control device shall be operated within the parameter ranges established during the initial or most recent performance test. The operating parameters to be monitored are specified in §60.756;

(C) Route the collected gas to a treatment system that processes the collected gas for subsequent sale or use. All emissions from any atmospheric vent from the gas treatment system shall be subject to the requirements of paragraph (b)(2)(iii) (A) or (B) of this section.

(iv) Operate the collection and control device installed to comply with this subpart in accordance with the provisions of §§60.753, 60.755 and 60.756.

(v) The collection and control system may be capped or removed provided that all the conditions of paragraphs (b)(2)(v) (A), (B), and (C) of this section are met:

(A) The landfill shall be a closed landfill as defined in §60.751 of this subpart. A closure report shall be submitted to the Administrator as provided in §60.757(d);

(B) The collection and control system shall have been in operation a minimum of 15 years; and

(C) Following the procedures specified in §60.754(b) of this subpart, the calculated NMOC gas produced by the landfill shall be less than 50 megagrams per year on three successive test dates. The test dates shall be no less than 90 days apart, and no more than 180 days apart.

§60.752(c), (d)

(c) For purposes of obtaining an operating permit under title V of the Act, the owner or operator of a MSW landfill subject to this subpart with a design capacity less than 2.5 million megagrams or 2.5 million cubic meters is not subject to the requirement to obtain an operating permit for the landfill.
under part 70 or 71 of this chapter, unless the landfill is otherwise subject to either part 70 or 71. For purposes of submitting a timely application for an operating permit under part 70 or 71, the owner or operator of a MSW landfill subject to this subpart with a design capacity greater than or equal to 2.5 million megagrams and 2.5 million cubic meters, and not otherwise subject to either part 70 or 71, becomes subject to the requirements of §§70.5(a)(1)(i) or 71.5(a)(1)(i) of this chapter, regardless of when the design capacity report is actually submitted, no later than:

(1) June 10, 1996 for MSW landfills that commenced construction, modification, or reconstruction on or after May 30, 1991 but before March 12, 1996;

(2) Ninety days after the date of commenced construction, modification, or reconstruction for MSW landfills that commence construction, modification, or reconstruction on or after March 12, 1996.

(d) When a MSW landfill subject to this subpart is closed, the owner or operator is no longer subject to the requirement to maintain an operating permit under part 70 or 71 of this chapter for the landfill if the landfill is not otherwise subject to the requirements of either part 70 or 71 and if either of the following conditions are met:

(1) The landfill was never subject to the requirement for a control system under paragraph (b)(2) of this section; or

(2) The owner or operator meets the conditions for control system removal specified in paragraph (b)(2)(v) of this section.

§60.753(a)-(g)

Each owner or operator of an MSW landfill with a gas collection and control system used to comply with the provisions of §60.752(b)(2)(ii) of this subpart shall:

(a) Operate the collection system such that gas is collected from each area, cell, or group of cells in the MSW landfill in which solid waste has been in place for:

(b) Operate the collection system with negative pressure at each wellhead except under the following conditions:

(1) A fire or increased well temperature. The owner or operator shall record instances when positive pressure occurs in efforts to avoid a fire. These records shall be submitted with the annual reports as provided in §60.757(f)(1);

(2) Use of a geomembrane or synthetic cover. The owner or operator shall develop acceptable pressure limits in the design plan;

(3) A decommissioned well. A well may experience a static positive pressure after shut down to accommodate for declining flows. All design changes shall be approved by the Administrator;

(c) Operate each interior wellhead in the collection system with a landfill gas temperature less than 55 °C and with either a nitrogen level less than 20 percent or an oxygen level less than 5 percent. The
owner or operator may establish a higher operating temperature, nitrogen, or oxygen value at a particular well. A higher operating value demonstration shall show supporting data that the elevated parameter does not cause fires or significantly inhibit anaerobic decomposition by killing methanogens.

(1) The nitrogen level shall be determined using Method 3C, unless an alternative test method is established as allowed by §60.752(b)(2)(i) of this subpart.

(2) Unless an alternative test method is established as allowed by §60.752(b)(2)(i) of this subpart, the oxygen shall be determined by an oxygen meter using Method 3A or 3C except that:

(i) The span shall be set so that the regulatory limit is between 20 and 50 percent of the span;

(ii) A data recorder is not required;

(iii) Only two calibration gases are required, a zero and span, and ambient air may be used as the span;

(iv) A calibration error check is not required;

(v) The allowable sample bias, zero drift, and calibration drift are ±10 percent.

(d) Operate the collection system so that the methane concentration is less than 500 parts per million above background at the surface of the landfill. To determine if this level is exceeded, the owner or operator shall conduct surface testing around the perimeter of the collection area and along a pattern that traverses the landfill at 30 meter intervals and where visual observations indicate elevated concentrations of landfill gas, such as distressed vegetation and cracks or seeps in the cover. The owner or operator may establish an alternative traversing pattern that ensures equivalent coverage. A surface monitoring design plan shall be developed that includes a topographical map with the monitoring route and the rationale for any site-specific deviations from the 30 meter intervals. Areas with steep slopes or other dangerous areas may be excluded from the surface testing.

(e) Operate the system such that all collected gases are vented to a control system designed and operated in compliance with §60.752(b)(2)(iii). In the event the collection or control system is inoperable, the gas mover system shall be shut down and all valves in the collection and control system contributing to venting of the gas to the atmosphere shall be closed within 1 hour; and

(f) Operate the control or treatment system at all times when the collected gas is routed to the system.

(g) If monitoring demonstrates that the operational requirements in paragraphs (b), (c), or (d) of this section are not met, corrective action shall be taken as specified in §60.755(a)(3) through (5) or §60.755(c) of this subpart. If corrective actions are taken as specified in §60.755, the monitored exceedance is not a violation of the operational requirements in this section.
§60.755(a)(2) - (5), (b), (c)(4)(ii)-(v), (c)(5), (e)

(a) Except as provided in §60.752(b)(2)(i)(B), the specified methods in paragraphs (a)(1) through (a)(6) of this section shall be used to determine whether the gas collection system is in compliance with §60.752(b)(2)(ii).

(2) For the purposes of determining sufficient density of gas collectors for compliance with §60.752(b)(2)(ii)(A)(2), the owner or operator shall design a system of vertical wells, horizontal collectors, or other collection devices, satisfactory to the Administrator, capable of controlling and extracting gas from all portions of the landfill sufficient to meet all operational and performance standards.

(3) For the purpose of demonstrating whether the gas collection system flow rate is sufficient to determine compliance with §60.752(b)(2)(ii)(A)(3), the owner or operator shall measure gauge pressure in the gas collection header at each individual well, monthly. If a positive pressure exists, action shall be initiated to correct the exceedance within 5 calendar days, except for the three conditions allowed under §60.753(b). If negative pressure cannot be achieved without excess air infiltration within 15 calendar days of the first measurement, the gas collection system shall be expanded to correct the exceedance within 120 days of the initial measurement of positive pressure. Any attempted corrective measure shall not cause exceedances of other operational or performance standards. An alternative timeline for correcting the exceedance may be submitted to the Administrator for approval.

(4) Owners or operators are not required to expand the system as required in paragraph (a)(3) of this section during the first 180 days after gas collection system startup.

(5) For the purpose of identifying whether excess air infiltration into the landfill is occurring, the owner or operator shall monitor each well monthly for temperature and nitrogen or oxygen as provided in §60.753(c). If a well exceeds one of these operating parameters, action shall be initiated to correct the exceedance within 5 calendar days. If correction of the exceedance cannot be achieved within 15 calendar days of the first measurement, the gas collection system shall be expanded to correct the exceedance within 120 days of the initial exceedance. Any attempted corrective measure shall not cause exceedances of other operational or performance standards. An alternative timeline for correcting the exceedance may be submitted to the Administrator for approval.

(b) For purposes of compliance with §60.753(a), each owner or operator of a controlled landfill shall place each well or design component as specified in the approved design plan as provided in §60.752(b)(2)(i). Each well shall be installed no later than 60 days after the date on which the initial solid waste has been in place for a period of:

(1) 5 years or more if active; or

(2) 2 years or more if closed or at final grade.

(c) The following procedures shall be used for compliance with the surface methane operational standard as provided in §60.753(d).
(4) Any reading of 500 parts per million or more above background at any location shall be recorded as a monitored exceedance and the actions specified in paragraphs (c)(4) (i) through (v) of this section shall be taken. As long as the specified actions are taken, the exceedance is not a violation of the operational requirements of §60.753(d).

(ii) Cover maintenance or adjustments to the vacuum of the adjacent wells to increase the gas collection in the vicinity of each exceedance shall be made and the location shall be re-monitored within 10 calendar days of detecting the exceedance.

(iii) If the re-monitoring of the location shows a second exceedance, additional corrective action shall be taken and the location shall be monitored again within 10 days of the second exceedance. If the re-monitoring shows a third exceedance for the same location, the action specified in paragraph (c)(4)(v) of this section shall be taken, and no further monitoring of that location is required until the action specified in paragraph (c)(4)(v) has been taken.

(iv) Any location that initially showed an exceedance but has a methane concentration less than 500 ppm methane above background at the 10-day re-monitoring specified in paragraph (c)(4) (ii) or (iii) of this section shall be re-monitored 1 month from the initial exceedance. If the 1-month remonitoring shows a concentration less than 500 parts per million above background, no further monitoring of that location is required until the next quarterly monitoring period. If the 1-month remonitoring shows an exceedance, the actions specified in paragraph (c)(4) (iii) or (v) shall be taken.

(v) For any location where monitored methane concentration equals or exceeds 500 parts per million above background three times within a quarterly period, a new well or other collection device shall be installed within 120 calendar days of the initial exceedance. An alternative remedy to the exceedance, such as upgrading the blower, header pipes or control device, and a corresponding timeline for installation may be submitted to the Administrator for approval.

(5) The owner or operator shall implement a program to monitor for cover integrity and implement cover repairs as necessary on a monthly basis.

(e) The provisions of this subpart apply at all times, except during periods of start-up, shutdown, or malfunction, provided that the duration of start-up, shutdown, or malfunction shall not exceed 5 days for collection systems and shall not exceed 1 hour for treatment or control devices.

$60.755(e)$

(e) The provisions of this subpart apply at all times, except during periods of start-up, shutdown, or malfunction, provided that the duration of start-up, shutdown, or malfunction shall not exceed 5 days for collection systems and shall not exceed 1 hour for treatment or control devices.