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August 28, 2002

MEMORANDUM

To: William Maxwell, EPA/OAQPS/ESD/CG

From: Jeffrey Cole, RTI

Subject: Statistical Analysis of Mercury Test Data Variability in Support of a Determination of
the MACT Floor for the Regulation of Mercury Air Emissions from Coal-Fired Electric
Utility Plants

Background

In 1999, the U.S. Environmental Protection Agency (EPA) conducted the Electric Utility Steam
Generating Unit Mercury Emissions Information Collection Effort (EU/ICE) to gather information about
mercury emissions from the coal-fired electric utility industry.  This effort led to the collection of stack
test reports on 80 furnace/boiler units.  The EPA is currently using the results of these tests to determine
the maximum achievable control technology (MACT) floor for the regulation of mercury emissions. 
The EPA is now seeking to quantify the uncertainty component that should be added to the mean
values of the best 12 percent of the units chosen for MACT floor.

Objective

The objective of this analysis is to evaluate the variability in the determination of the average
performance of the best 12 percent of 80 units that were tested under the 1999 EU/ICE (Scenario 1). 
After this, RTI will apply the statistical method used in Scenario 1 to the best units in two
subcategorization scenarios:  Scenario 2 - subcategorization by coal type with fluidized-bed combustors
(FBC) included, and Scenario 3 - subcategorization by coal type without FBC.  Note: this is only one
method of addressing the variability or uncertainty associated with emission performance testing. 
Future memoranda may discuss other possible methods.



a Three of the 80 units had only 2 usable data points because of apparent errors in transporting samples or in
laboratory sample analysis.  However none, of these 3 units are in the Scenario 1,  top 12 percent (top 10 units).
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PROCEDURE

Basis for MACT Floor (Scenario 1)

In the determination of the MACT floor for the existing coal-fired power plant units, RTI used
the results of the emissions tests for a set of 80 power plant units (Scenario 1).  The air emissions of
mercury (lb Hg/trillion Btu, derived using F-factors) were evaluated for each of the 80 tests, and the
best 10 units (i.e., top 12 percent of 80 units) were identified.  The best ten units are identified in Table
1, together with their average (mean) air emissions of mercury.

Types of Uncertainty

In Scenario 1, the top 12 percent of the data are the best units.  When we identify the top units
in MACT floor analysis, the average of those best 12 percent of the units is the first estimate of the
MACT floor.  In Table 1, this average mercury emission rate is 0.175 lb Hg/TBtu.  This average
number has two elements of uncertainty associated with the value of the number.  One uncertainty is the
actual value of the long-term average of the best units, since there are only a few tests available that
represent the best 12 percent of the units and there is measurement uncertainty associated with each
test set of 3a measurements.

The second uncertainty is the variability of emissions for these best units under the worst
foreseeable circumstances under normal operating conditions.  This second uncertainty includes
operational variability.  There is no direct measurement of operational variability, although there was
some operational variability included in the measurement uncertainty associated with each test set of
three measurements.

Evaluating Uncertainty

RTI was required to identify and use a method to demonstrate a reasonable characterization of
the top 12 percent of sources that the Act defines as the basis of the MACT floor.  One key
component of this methodology is the use of conventional statistical analysis of the two uncertainties that
are identified here. 

RTI has used a statistical model to evaluate the uncertainty in the data base and two
components of the uncertainty have been evaluated:

1. the uncertainty due to measurement error (includes very limited operational variability), and 
2. the uncertainty due to the evaluation of the air emissions at different locations.
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The uncertainty due to measurement error (component 1 above) is presented in Table A-1 for each of
the 10 best tests.
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Table 1.  Mercury Test Unit Emission Means for Top 10 Performing Plants (Scenario 1, Top
12 percent of 80 Units Tested) *

Rank Test unit Coal Controls
ICR plant mercury

emissions (lb/TBtu, based
on F-factor) 

1 Kline Waste Bituminous FF 0.0816

2 Scrubgrass Waste Bituminous FF 0.0936

3 Mecklenburg Bituminous SDA/FF 0.1062

4
Dwayne Collier Battle
Cogeneration Facility Bituminous SDA/FF 0.1074

5 Valmont Bituminous FF 0.1268

6 Stockton Bituminous - PetCoke FF 0.1316

7 SEI - Birchwood Bituminous SDA/FF 0.2379

8 Intermountain Bituminous FF/FGD 0.2466

9 Logan Bituminous SDA/FF 0.2801

10 Salem Bituminous ESP-CS 0.3348

Average 0.175

*  Three of the 80 units had only 2 usable data points because of apparent errors in transporting samples or in
laboratory sample analysis.  However, none of these 3 units are in the top 12 percent (top 10 units).  Two of the 80
stack tests were done on the same unit at different times (Gibson Generating Station).

FF = Baghouse (fabric filter)
SDA = Dry lime/spray dryer adsorber
FGD = A flue gas desulfurization wet scrubber (lime or limestone)
ESP-CS = Electrostatic precipitator (cold-side, meaning this ESP is installed at a location downstream of the air
preheater)

Estimating Measurement Uncertainty

When only a few test sets are available in the entire data pool for the evaluation of the
performance of the best 12 percent of the units due to industry subcategorization or other factors, it is
not possible to evaluate the uncertainty accurately using only the smaller data pool.  As it appears that
the measurement uncertainty is a function of the mercury level and the entire data set exhibits a wide
variation in mercury levels, the entire data set rather than only 12 percent of the data base will provide a
more reasonable estimate of the measurement uncertainty of the best 12 percent of the units. 
Consideration of a larger data base tends to reduce the statistical uncertainty.  Equation 1 describes the
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ó ' &0.00066 % 0.0239x 1.4302Equation (1)                    

statistical model that was obtained to characterize the measurement uncertainty for any test set of three
measurements:

where ó is the standard deviation of a normal distribution that describes the uncertainty that is
associated with the measurement error, and x is the average of the mercury air emissions that were
measured in the three tests.

The variability of emissions for these best units under the worst foreseeable circumstances
(component 2 above) is estimated by an analysis of the entire data set.  The uncertainty is found for all
data, then is added as a portion of the uncertainty for the best 12 percent of units.  The combined
uncertainty components (measurement error and long-term operation) are added to the averages
(means) of the best 12 percent and used to establish upper values for the 90 percent, 95 percent, and
99 percent confidence limits for the distribution of the best 12 percent of units.

Estimating Operational Uncertainty

In this statistical analysis, it is assumed that the long-term performance of the MACT unit will be
better than or equal to the performance of the average of the best 12 percent of the tested 80 units that
the Act defines as the basis of the MACT floor, and confidence limits due to unit performance
variability will be added to this average through conventional statistical techniques.  The operational
uncertainty for the same plant operating at the average performance of the best units is assumed to be
less than the unit-to-unit uncertainty of the entire set of best units.  If the emissions of a unit are
measured at a value greater than the upper 95 percent value, then there is less than 5 percent
confidence that the unit is achieving the performance of the MACT unit.  Application of the two
uncertainty components to subcategorization scenarios are described below.

Results for Scenario 1

In the first scenario, RTI analyzed the MACT floor for all the existing coal fired power plant
units (no subcategorization).  In this analysis, the results from all EU/ICE emissions tests (80 emissions
test reports) were used.  Two of the 80 stack tests were done on the same unit at different times
(Gibson Generating Station).  The air emissions of mercury (lb Hg/trillion Btu, derived using F-factors)
are evaluated for each of the 80 tests, and the best 10 units are identified.  The best 10 units (top 12
percent) are identified in Table 1, together with their average (mean) air emissions of mercury.

The estimates of the upper limits for the average value of the performance of the top 10 units
(upper 12 percent of 80 tests) are listed in Table 2.  The values of these emission limits are based upon
an average of 0.175 lb Hg/TBtu.  Because of the measurement uncertainty in the average of the
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emission factors, these upper limits are somewhat greater than the average value, and depend on the
confidence limit.
Results for Scenario 2 and 3

RTI then applied the same emissions variability methodology to two subcategorization
scenarios:  Scenario 2 - subcategorization by coal type with FBC included; and Scenario 3 -
subcategorization by coal type without FBC.

In the second scenario, the MACT floors for the existing coal-fired power plant units
subcategorized by fuel type, RTI used the results of the emissions tests for a set of 78 power plant units
(34 bituminous-fired, 32 subbituminous-fired, and 12 lignite-fired).  The two waste fuel-fired units are
not included in this scenario.  The air emissions of mercury (lb Hg/TBtu, derived using F-factors) are
evaluated for each of the 34, 32, or 12 tests, respectively, and the average of the best units in each
subcategory is identified.  This averaging is done in one of two ways.  If there are 30 or more units in
the industry that match the subcategory, the average of the top 12 percent of the data sets available are
used.  If there are 29 or fewer units in the industry that match the subcategory, the average of the top 5
sets of available data is used.  There are well over 30 bituminous- and subbituminous-fired units in the
electric utility industry (1999), respectively.  Thus, the bituminous (34 x 0.12 = 4.08 or 4 sets) and the
subbituminous (32 x 0.12 = 3.84 or 4 sets) subcategories are based on 4 sets of 3 data points each. 
There are only 29 lignite-fired units in the electric utility industry (1999); therefore, the lignite
subcategory is based on 5 sets of 3 data points (except Leland Olds with 2 data points, 14 data points
total).

When the top 12 percent of the units in MACT floor analysis are identified (by subcategory),
the average of the best 12 percent of the units is the first estimate of the MACT floor.  In Table 3, the
average mercury emission rates for bituminous-, subbituminous-, and lignite-fired (with FBCs) are
0.118, 0.764, 5.032 lb Hg/TBtu, respectively.

In the third scenario, the MACT floors for the existing coal-fired power plant units
subcategorized by fuel type (without FBCs), the results of the emissions tests for a set of 74 power
plant units (33 bituminous-fired, 31 subbituminous-fired, and 10 lignite-fired) were used.  The air
emissions of mercury (lb Hg/TBtu, derived using F-factors) are evaluated for each of the 33, 31, or
10 tests, respectively, and the average of the best units in each subcategory is identified.  This averaging
is done one of two ways.  If there are 30 or more units in the industry that match the subcategory, the
average of the top 12 percent of the data sets available are used.  If there are 29 or fewer units in the
industry that match the subcategory, the average of the top 5 sets of the data available is used.  There
are well over 30 bituminous- and subbituminous-fired units in the electric utility industry (1999),
respectively.  Thus, the bituminous (33 x 0.12 = 3.72 or 4 sets) and the subbituminous (31 x 0.12 =
3.84 or 4 sets) subcategories are based on 4 sets of 3 data points each.  There are only 29 lignite-fired
units in the electric utility industry (1999), therefore, the lignite subcategory is based on 5 sets of 3 data
points (except Leland Olds with 2 data points, 14 data points total).
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Table 2.  Resulting potential MACT floor levels for all data that incorporate variability at
various confidence limits (lb/TBtu) *

Mean of the best 12% 90% limit 95% limit 99% limit

0.175 0.232 0.251 0.292

*  Based on 238 data points.

When the top 12 percent of the units in MACT floor analysis are identified (by subcategory),
the average of the best 12 percent of the units is the first estimate of the MACT floor.  In Table 4, the
average mercury emission rates for bituminous-, subbituminous-, and lignite-fired (without FBCs) are
0.145, 1.048, 6.403 lb Hg/TBtu, respectively.

The estimates of the upper limits for the average value of performance for the top best
performing units (upper 12 percent or equivalent of appropriate tests) in scenarios 2 and 3 are shown in
Table 5 and 6.  Because of the combined measurement and operational uncertainty in the averages of
the emission factors, these upper limits range from about 12 percent to 146 percent greater than their
average values, depending on the confidence limit and scenario.

The details of the associated calculations are presented in the attachment to this technical
memorandum and the results for Scenario 1 are presented in Table A-5 of that attachment.  This
methodology is described as Concept A, Approach 2, and Model 2.  Scenarios 2 and 3 are also based
on the same methodology (equations) but were calculated by spreadsheet.

Possible Future Actions

If the EPA elects to provide emission-averaging procedures, statistical techniques may be used
to further adjust the upper values of 90 percent, 95 percent, and 99 percent confidence limits on the
distribution of the best 12 percent of units to reflect the effect of emission averaging on the upper
values.  Other approaches to establish MACT floors may include technical analyses of emissions
reduction performance based on elements such as feed composition, operational characteristics of
single or combined control systems, combustion effects, and data transformation.
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Table 3.  Mercury Test Unit Emission Means of Top Performing Plants for Subcategorization
by Coal Type, Including FBC

Rank Test unit Air pollution control(s)
and/or furnace type

ICR Plant mercury emissions
means (lb/TBtu, based on F-factor)

Bituminous-fired Units

1 Mecklenburg SDA/FF 0.1062

2 Dwayne Collier Battle
Cogeneration Facility

SDA/FF 0.1074

3 Valmont FF 0.1268

4 Stockton FBC/FF 0.1316

Average 0.118

Subbituminous-fired Units

1 AES Hawaii FBC/FF 0.4606

2 Clay Boswell 2 FF 0.6633

3 Craig 3 SDA/FF 0.7248

4 Cholla 3 ESP-HS 1.2066

Average 0.764

Lignite-fired Units

1 R.M. Heskett FBC/ESP-CS 3.9768

2 Antelope Valley SDA/FF 4.0042

3 Leland Olds ESP-CS 4.0233

4 Stanton Station 10 SDA/FF 6.2517

5 Stanton Station 1 ESP-CS 6.9024

Average 5.032

FF = Baghouse (fabric filter)
SDA = Dry lime/spray dryer adsorber
FGD = A flue gas desulfurization wet scrubber (lime or limestone)
ESP-CS = Electrostatic precipitator (cold-side, meaning this ESP is installed at a location downstream of the air
preheater)
ESP-HS = Electrostatic precipitator (hot-side, meaning this ESP is installed at a location upstream of the air preheater)
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Table 4.  Mercury Test Unit Emission Means of Top Performing Plants for Subcategorization
by Coal Type, Excluding FBC

Rank Test unit Air pollution control(s) and/or
furnace type

ICR Plant mercury emissions
(lb/TBtu, based on F-factor)

Bituminous-fired Units

1 Mecklenburg SDA/FF 0.1062

2
Dwayne Collier Battle
Cogeneration Facility SDA/FF 0.1074

3 Valmont FF 0.1268

4 SEI-Birchwood SDA/FF 0.2379

Average 0.145

Subbituminous-fired Units

1 Clay Boswell 2 FF 0.6633

2 Craig 3 SDA/FF 0.7248

3 Cholla 3 ESP-HS 1.2066

4 Craig 1 ESP-HS/FGD 1.5955

Average 1.048

Lignite-fired Units

1 Antelope Valley SDA/FF 4.0042

2 Leland Olds ESP-CS 4.0233

3 Stanton Station 10 SDA/FF 6.2517

4 Stanton Station 1 ESP-CS 6.9024

5 Lewis & Clark Particulate Scrubber (not FGD, no
lime or limestone)

10.8315

Average 6.403

FF = Baghouse (fabric filter)
SDA = Dry lime/spray dryer adsorber
FGD = A flue gas desulfurization wet scrubber (lime or limestone)
ESP-CS = Electrostatic precipitator (cold-side, meaning this ESP is installed at a location downstream of the air
preheater)
ESP-HS = Electrostatic precipitator (hot-side, meaning this ESP is installed at a location upstream of the air preheater)
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Table 5.  Resulting potential MACT floor levels by fuel that incorporate variability at various
confidence limits w/FBC (lb/TBtu)

Fuel Mean of the best 12% 90% limit 95% limit 99% limit

Bituminous * 0.118 0.132 0.138 0.157

Subbituminous * 0.764 1.102 1.250 1.703

Lignite ** 5.032 6.379 6.905 8.324

*    Based on 4 sets of 3 data points.
**  Based on 5 sets of 3 data points (except Leland Olds with 2 data points, 14 data points total).

Table 6.  Resulting potential MACT floor levels by fuel that incorporate variability at various
confidence limits w/o FBC (lb/TBtu)

Fuel Mean of the best 12% 90% limit 95% limit 99% limit

Bituminous * 0.145 0.221 0.255 0.357

Subbituminous * 1.048 1.459 1.638 2.188

Lignite ** 6.403 8.528 9.358 11.597

*    Based on 4 sets of 3 data points.
**  Based on 5 sets of 3 data points (except Leland Olds with 2 data points, 14 data points total).
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ATTACHMENT:  Accounting for Variability in MACT-based Limits

C. Andrew Clayton, RTI
G. Gordon Brown, RTI

OBJECTIVE AND OVERVIEW

The objective of the work described in this document is to develop statistically-based threshold
values that can serve as MACT-based limits.  Several statistical approaches are considered and
compared.  In addition, three potential concepts for defining limits are considered.  These three
concepts relate to alternative ways of accounting for uncertainty: 

Concept A: Define a limit as the mean emission of the top 12 percent of the units plus a term that
accounts for the uncertainty in the estimate of that mean.

Concept B: Define the limit as in A, but also add a component that accounts for the variation in a
three-run mean for a (hypothetical) unit that is operating at the mean of the top 12
percent.

Concept C: Define the limit as an upper percentile of the distribution of units within the top 12
percent.  

Concept A is the most conservative in that it will produce the smallest limits while Concept C is the
least conservative and will produce the largest limits.

The statistical approaches considered are as follows:

Approach 1: Using only the emissions data for the units within the top 12 percent, estimate variance
components for between-unit and within-unit sources of variation.  Use these estimates
to account for uncertainty, using each of the concepts above (A, B, and C).  This
approach assumes that within-unit variation, for the top performing units, is constant. 
Limits are based on normality assumptions for both between-unit and within-unit
distributions.

Approach 2: Using all emissions data, estimate a relationship between within-unit (i.e., run-to-run)
variances and unit means.  (We estimated parameters for three different models.) 
Apply this relationship to estimate within-unit variances for the top 12 percent of the
units and to derive the estimated variance component associated with  between-unit
variation.  Use these variance estimates to account for uncertainty, using each of the
concepts above (A, B, and C).  This approach assumes that within-unit variation
depends only on the performance level of the unit and that the chosen model adequately
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approximates the relationship between within-unit variance and the performance level. 
Limits are based on normality assumptions for both between-unit and within-unit
distributions..

Approach 3: Using all emissions data, estimate a relationship between within-unit variances and unit
means, as for Approach 2.  Apply this relationship to estimate within-unit variances for
the top 12 percent of the units; to account for uncertainty in each of these unit means,
add the estimated amount of within-unit variation to produce a series of unit-specific
limits.  Select an upper percentile of these limits as the overall limit.  This approach is
appropriate for Concept C.  It relies on normality of the within-unit distribution, but
makes no assumption about the form of the between-unit distribution.  

In this document, the approaches are applied to the top performing units without regard to unit
subcategorizations; however, the approaches could also be applied to subcategories of units. 

DATA 

The data consisted of stack emission factor measurements (lb Hg/TBtu of fuel burnt, calculated
via the F-factor method) from 80 units.  In general, three replicate runs were performed at each unit. 
For 3 of the units, only 2 of the runs yielded usable data; hence, there were 237 runs overall.  The top-
performing 12 percent of the units consisted of those 10 units with the smallest means.  The means and
the observed within-unit variances for these units are listed in Table A-1.  Figure A-1 shows a plot of
the within-unit variances versus the unit means for all 80 units.

It should be noted that the within-unit variances represent measurement errors and short-term
variation in a unit’s performance, since this component is based on run-to-run variation within a unit. 
On the other hand, a between-unit variance component, among some group of units, encompasses both
unit differences and longer-term temporal variability resulting from temporal variation in feed stock,
operating conditions, etc. within a unit.  This occurs because each unit is observed only over a short
period of time and, thus, these effects cannot be separated from one another.  

DETAILS OF STATISTICAL APPROACHES

Notation

M = the number of units
m = the number of top-performing units
ni = the number of measurements for the ith unit
n = the total number of measurements among the top-performing units 
Xij = the jth-run measurement of the emission factor at the ith unit (j=1,2,3)
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= mean for unit iX i

Table A-1.  Means and Within-Unit Variances for Top Performing Units

Rank Unit Unit mean Observed within-unit variance

1 Kline  0.08164 0.000007

2 Scrubgrass  0.09360 0.000125

3 Mecklenburg  0.10619 0.000263

4 Collier  0.10742 0.000110

5 Valmont  0.12683 0.001968

6 Stockton  0.13165 0.000100

7 SEI  0.23791 0.022967

8 Intermountain  0.24664 0.009698

9 Logan  0.28015 0.075198

10 Salem  0.33482 0.025756

= overall mean of top performing unitsX
 si = the within-unit standard deviation for unit i.
 
Approach 1.

One approach to the problem is the following.  It uses only the data for the top performing
units; it assumes that the within-unit variability among these units is the same.  The steps are outlined
below.

Step 1.  For the top-performing units, compute the unit means, , the overall mean, , and si, theX i X
within-unit standard deviations.

Step 2.  Perform an analysis of variance (ANOVA) to determine estimates of the between-unit

component of variance, , and the within-unit component of variance, .  The ANOVA table isσ P
2 σW

2

as follows:
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Source of
variation

Degrees
of

freedom
Sum of squares Mean squares

Expected values
of mean squares

Between units m-1
PSS n X Xi

i

m

i= −
=

∑
1

2( )
PMS PSS m= −/ ( )1 σ σW PK2 2+

Within units m-n WSS n si i
i

m

= −
=

∑ ( )1 2

1

WMS WSS n m= −/ ( ) σ W
2

Total n-1 TSS X Xij
j

n

i

m i

= −
==

∑∑ ( ) 2
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In the above, .  K will have the value 3 if all units have 3K n n n mi i
i

m

= − −
=
∑ 2

1

1 1 1[( / ) ( / )] / ( )

replicate measurements.  The variance components are estimated as 

(1) $σW WMS2 =
(2) $ ( $ ) / [( ( ) ) / ( ) ] /σ σP WPMS K TSS n m WMS m WMS K2 2 1= − = − − − −

Step 3.  Determine V, the estimated variance of 3-run means as

(3) V TSS n m WMS m WMSP W= + = − − − +$ $ / ( ( ) ) / ( ) /σ σ2 2 3 1 3

It should be noted that V=(1/3)PMS if K=3, and that there are d=m-1 degrees of freedom associated
with V.  (In this case it is not actually necessary to partition the V into components; it can be calculated
directly from the variance of the unit means.)  If K is different from 3, then the degrees of freedom can
be approximated by Satterthwaite’s formula.  

Step 4A.  For concept A, determine an upper 100á percent confidence limit (e.g., for á=0.95, a 95
percent confidence limit) for the overall mean of top performing units as , whereL X t V mA d= + , /α

td,á is the 100á percent percentage point of the t distribution with d degrees of freedom.  Use LA as the
MACT limit (Concept A).

Step 4B.  For concept B, determine an upper 100á percent confidence limit for a 3-run average for a

unit performing at the overall mean of the top performing units as  , whereL X t V mB f W= + +, ( / ) ( $ / )α σ2 3

tf,á is the 100á percent percentage point of the t distribution with f degrees of freedom.  Determine the
degrees of freedom, f, via the formula 
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.f
V m

V m
m n m

W

W

=
+

−
+

−

[( / ) ( $ / )]
( / ) ( $ / )

σ
σ

2 2

2 2 2

3

1
3

Use LB as the MACT limit (Concept B).

Step 4C.  For Concept C, determine an upper 100á percent confidence limit for 3-run means
as  .  Use LC as the MACT limit (Concept C).L X t VC d= + ,α

Approach 2.

As noted above, Approach 1 assumes there is a common within-unit variance, .  The dataσW
2

for the top 10 performers have observed variances ranging from 0.000007 to 0.075198, suggesting

that it is unlikely that such an assumption is valid.  A plot of the versus the unit means (for all units)si
2

also reveals that within-unit variances tend to increase with increasing level of unit emissions (see Figure
A-1).  Hence an alternative approach is to model the within-unit variances (or standard deviations) as a
function of the 3-run unit means and to use those modeled variances to derive threshold limits similar to
the L values above (Step 4).  This approach is expected to work well if the modeling can be applied to
a reasonably large data set that covers a fairly large range of variation.

The steps are as follows:

Step 1.  Select a class of models relating si to the unit means, and estimate the parameters of the model. 
(We used several models and applied them to all the data and to several subsets of the data; the models
and results are presented below.).  Let s[x] denote the estimated standard deviation when the level of
the unit mean is x.  

Step 2.  Calculate the estimated within-unit mean square (for the top-performing units) based on the
model as

(4) WMS n s X n mi i
i

m

= − −
=
∑ ( )( [ ]) / ( )1 2

1

Step 3.  Calculate estimates of the within-unit and between-unit variance components by substituting the
model-based WMS value for the WMS used in equations (1) and (2).   

Step 4.  Calculate

(5)  .V s XP= +$ ( [ ]) /σ 2 2 3
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Step 5A.  For Concept A, determine an upper 100á percent confidence limit for the overall mean of
top performing units as  , where V is from equation (5) and td,á is the 100áL X t V mB d= + , /α

percent percentage point of the t distribution with d degrees of freedom.  Use LA as the MACT limit
(Concept A).

Step 5B.  For concept B, determine an upper 100á percent confidence limit for a 3-run average for a
unit performing at the overall mean of the top performing units as

, L X t V m s XB d f= + +, ( / ) ( [ ]) /2 3

where V is from equation (5) and tf,á is the 100á percent percentage point of the t distribution with f
degrees of freedom.  Determine the degrees of freedom, f, via the formula 

f
V m s X

V m

m

s X

M q

=
+

−
+

−

[( / ) (( [ ]) / )]
( / ) (( [ ]) / )

2 2

2 2 2

3

1

3

where M is the total number of units (i.e., the number of units used in the modeling of the  variance-
versus-mean relationship) and q is the number of model parameters that were estimated.  Use LB as the
MACT limit (Concept B).

For Concept C, perform the following additional steps:

Step 5C.  Calculate an upper 95th percentile of the between-unit distribution as 

(6) U X Z P0 95 0 95. .
$= + σ

where Z0.95 denotes the 95th percentage point of a standard normal distribution.  (Note: Other
percentage points could be chosen; however, more extreme [i.e., higher] percentage points do not
seem warranted when m is small.) 

Step 6C.  Determine V, the estimated variance of 3-run means at that point of the between-unit
distribution as:

(7) V s UP= +$ ( [ ]) /.σ 2
0 95

2 3

Step 7C.  Calculate an upper 100á percent confidence limit for 3-run means as LC (as in Step 4C of
Approach 1) using the V from equation (7):  .  Use LC as the MACT limit (ConceptL X t VC d= + ,α
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C).  The appropriate degrees of freedom to associate with V is debatable.  We have chosen to be
conservative and have used d=m-1 as the degrees of freedom, as was done in Approach 1. 

Approach 3.

Approach 3 makes use of the same strategy of modeling the within-unit variances as was done
for Approach 2.  It uses the results of the modeling in a different way, however.  As noted above, the
resultant limit from this approach is compatible only with Concept C.

Step 1.  Use the same modeling approach as described in Step 1 of Approach 2.

Step 2.  Determine the upper 100á th percentile for a 3-run average for each of the top-performing
units, using the model-based estimate of variance:

(8)    U X Z s Xi i i= + α [ ] / 3

where Zá is the upper 100á th percentile of the standard normal distribution.  A normal-distribution
critical value is used, rather than a value from a t distribution, since the number of within-run variances
that are modeled is assumed to be large. 
 
Step 3.  Choose an upper percentile of the distribution of these U values (or the maximum Ui if the
number of the top performers is small) as the MACT limit LC.

RESULTS

Approach 1.

Step 1.  The overall mean for the 10 top performing units is 0.17468  lb/Trillion Btu.  Table A-1 shows
the estimated unit means and variances.

Step 2.  The ANOVA table is as follows:

Source of variation Degrees of freedom Sum of squares Mean squares

Between units 9 0.22359 0.02484

Within units 20 0.27238 0.01362

Total 29 0.49597
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Estimates of the within- and between-unit variance components are thus 0.01362 and 0.00374,
respectively (from equations (1) and (2)).

Step 3.  The estimate of V is 0.00828.  Its square root is 0.091.  (As noted above, for this data set, V
could be calculated directly from the variance of the unit means, since all of the top performing units
have 3 runs.)

Step 4.  The limits for three different confidence levels for each of the concepts are presented in Table
A-2 below.

Table A-2.  Limits Based on Approach 1 

Concept Limit
Degrees of

freedom for t

Confidence level

á = 0.90 á = 0.95 á = 0.99

A LA 9 0.214 0.227 0.256

B LB 26 0.271 0.300 0.356

C LC 9 0.301 0.341 0.431

Approach 2.

Step 1.  Three different models were used to relate the within-unit variances and means:

Model 1:  s a bx≈ +

Model 2:  s a bxp≈ +

Model 3:  s bx p≈

Note that the parameters have different meanings in the different models.  These models were fit on the
log scale (e.g., for Model 1, the log of s was modeled as a function of log(a+bx)) using non-linear least
squares (SAS PROC NLIN).  The log scale was used since standard deviations tend to have a
variance that increases with their magnitude.  Each of these models was applied to 4 data sets: the top
10 performing units (top 12 percent), the top 40 performing units (top 50 percent), all 80 units, all units
except for one (Colstrip) which appeared to be an outlier.  Results are summarized in Table A-3.  The
left hand part of the table shows the modeling results – namely, the estimated parameters, their
approximate standard errors, 95 percent confidence interval estimates, the correlation matrix of the
parameter estimates, and the mean square error (MSE) from the model.  For each data set, the most
general model, Model 2, appeared to perform best.  The parameters are poorly estimated if only the
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top 10 performers are used.  The results for the other three data sets are very similar.  This is
demonstrated by the results presented in the rightmost columns of Table A-3, which are described
below:

• the estimated WMS values (Step 2, equation (4)), 
• the estimated between-unit variance component (Step 3)
• the estimated value of the 95th percentile of the between-unit distribution of the top performing

units (Step 5C, equation (6)), and
• the estimated limit LC associated with Concept C (Step 7C).

Except for the cases where the variance estimation was based on only the top 10 performers, the limits
appear to be insensitive to both model specification and to the particular data set used.

The remaining steps of Approach 2 were carried out for each of the model forms but only the
model estimation results from the “all data” case are included.  The predicted within-unit variances for
the top performing units are shown in Table A-4.  The resulting limits are presented in Table A-5, by
Concept and model form.

Approach 3.

Table A-6 illustrates Approach 3.  It shows the estimated unit-specific U values, as defined in
equation (8), using á=0.95 and the estimated within-unit variances (see Table A-4).  These are given
for the three model forms, as applied to the 80-unit data set.  The maximum values (last row of Table
A-6) correspond approximately to the 95 percent percentile of the distribution of the Us; these values
(approximately 0.38 to 0.40) are somewhat smaller than the 95 percent limits derived for LC via
Approach 2 (~0.43, see Table A-5).  This is for two reasons.  First and probably foremost is the fact
that a conservative number of degrees of freedom was used in Approach 2 (t=1.833) as compared to
the Z value used in Approach 3 (Z=1.645).  Second, for Approach 3, the maximum U does not
necessarily correspond exactly to the 95th percentile of the distribution of top performing units
(depending on how one defines such a percentile) while Approach 2  produces an estimated limit for
the 95th percentile of the distribution under the assumption of approximate normality.  Both Approaches
2 and 3 yield limits greater than the corresponding LC limit from Approach 1 (equal to 0.341), which
assumed constant within-unit variances.  The reason for this is that the model-based within-unit
variances are smaller than the ANOVA-based estimate of Approach 1.  This yields a higher between-
unit component of variance for Approach 2 than for Approach 1.  The limits for Approach C for the
other á values are provided in Table A-7.
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Table A-3.  Summary of Results for Approach 2, for Three Models Applied to Four Data Sets

Data set Model Parm Estimate Approx
S.E.

Lower 95
percent
Limit

Upper 95
percent
Limit

Corr
with b

Corr
with p

MSE $σW
2 $σ P

2 U0.95 (s[U0.95])2 LC

Top 12
percent

1  a -0.0475 0.0112 -0.0734 -0.0216 -0.993 0.341
5

0.0063
0

0.0116
0

0.3518 0.07769 0.5297

 b 0.6114 0.1328 0.3051 0.9178

2  a -0.00007  0.000061 -0.00021 0.000078  0.748 0.878 0.299
9

0.0115
5

0.0059
6

0.3016 0.03732 0.4233

 b 11.1683 17.9833 -31.3557 53.6924  0.973

 p 4.7555 0.9109 2.6015 6.9094

3  b 39.5130 58.3655 -95.0793  174.1  0.968 0.345
8

0.0140
9

0.0032
4

0.2683 0.01354 0.3612

 p 5.6384 0.7668 3.8701 7.4067  

Top 50
percent

1  a 0.00454 0.00769 -0.0110 0.0201  -
0.548

  0.982
3

0.0008
0

0.0175
1

0.3923 0.00741 0.4338

 b 0.1242 0.0249 0.0738 0.1745  

2  a -0.00156 0.00136 -0.00431 0.00119  -
0.579

 0.
946

0.772
5

0.0021
4

0.0160
7

0.3832 0.00718 0.4238

 b 0.0254 0.00747 0.0103 0.0405  -
0.283

 p 1.1128 0.2946 0.5159 1.7098  

3  b 0.0178 0.00543 0.00684 0.0288 0.014 0.926
7

0.0012
1

0.0170
5

0.3896 0.00734 0.4308

 p 1.6076 0.2472 1.1073 2.1080

All 1  a 0.0126 0.00843 -0.00415 0.0294  -
0.396

 0.977
1

0.0009
2

0.0173
8

0.3915 0.00559 0.4290

 b 0.0952 0.0125 0.0703 0.1201  

2 a -0.00066  0.000440 -0.00153 0.000220  -
0.878

 0.946 0.895
2

0.0014
5

0.0168
0

0.3879 0.00551 0.4250

 b 0.0239 0.00693 0.0101 0.0377  -
0.678



Data set Model Parm Estimate Approx
S.E.

Lower 95
percent
Limit

Upper 95
percent
Limit

Corr
with b

Corr
with p

MSE $σW
2 $σ P

2 U0.95 (s[U0.95])2 LC
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 p 1.4302 0.1719 1.0880 1.7724

3  b 0.0166 0.00444 0.00773 0.0254  -
0.585

0.944
0

0.0010
5

0.0172
4

0.3907 0.00558 0.4280

 p 1.6496 0.1538 1.3435 1.9557  



Table A-3.  Summary of Results for Approach 2, for Three Models Applied to Four Data Sets (Cont’d)

Data set Model Parm Estimate Approx
S.E.

Lower 95
percent
Limit

Upper 95
percent
Limit

Corr
with b

Corr
with p

MSE $σW
2 $σ P

2 U0.95 (s[U0.95])2 LC
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All but
one

1  a 0.0137 0.00848 -0.00320 0.0306  -
0.398

 0.946
5

0.0009
5

0.0173
5

0.3914 0.00552 .42863

 b 0.0920 0.0121 0.0679 0.1160  

2  a -0.00067  0.000442 -0.00155 0.000209  -
0.877

 0.946 0.861
4

0.0014
5

0.0168
1

0.3880 0.00545 .42488

 b 0.0233 0.00664 0.0101 0.0365 -0.675

 p 1.4116 0.1692 1.0747 1.7485  

3  b 0.0161 0.00424 0.00764 0.0245  -
0.580

0.911
7

0.0010
5

0.0172
5

0.3907 0.00551 0.4279

 p 1.6326 0.1514 1.3312 1.9340
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Table A-4.  Observed and Model-Based Within-Unit Variances, for Three Models Applied to
All Data
 

Rank Unit Unit 
mean

Observed
within-unit
variance

Model 1
predicted
variance

Model 2
predicted
variance

Model 3
predicted
variance

1 Kline  0.08164 0.000007 .000416329 .000006628 .000265663

2 Scrubgrass  0.09360 0.000125 .000464095 .000150047 .000332867

3 Mecklenburg  0.10619 0.000263 .000517166 .000309742 .000409882

4 Collier  0.10742 0.000110 .000522506 .000325806 .000417743

5 Valmont  0.12683 0.001968 .000610424 .000589536 .000549449

6 Stockton  0.13165 0.000100 .000633312 .000657867 .000584317

7 SEI  0.23791 0.022967 .001244885 .002408714 .001550881

8 Intermountain  0.24664 0.009698 .001304231 .002570895 .001645871

9 Logan  0.28015 0.075198 .001544834 .003216053 .002030739

10 Salem  0.33482 0.025756 .001981107 .004341002 .002725007

Table A-5.  Limits Based on Approach 2 

Concept Limit

Model for
relating
variance

and mean *

Degrees of
freedom for t

Confidence level

á = 0.90 á = 0.95 á = 0.99

A LA 1
2
3

9
9
9

0.233
0.232
0.233

0.252
0.251
0.251

0.293
0.292
0.293

B LB 1
2
3

12
14
12

0.236
0.235
0.236

0.255
0.254
0.256

0.296
0.293
0.297

C LC 1
2
3

9
9
9

0.367
0.363
0.366

0.429
0.425
0.428

0.566
0.560
0.565

*  Model 1:  s a bx≈ +

Model 2: s a bxp≈ +
Model 3: s bx p≈

The results are based on model parameter estimates from the full data set of 80 units.
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Table A-6.  Model-Based Upper 95 Percent Limits, for Three Models Applied to All Data 

Rank Unit
Unit 
mean

Observed
within-unit

variance

Model 1 predicted
upper 95 percent

limit 

Model 2 predicted 
upper 95 percent

limit 

Model 3 predicted 
upper 95 percent

limit 

1 Kline
0.0816

4

0.000007 0.10102 0.08409 0.09712

2 Scrubgrass
0.0936

0

0.000125 0.11406 0.10523 0.11093

3 Mecklenburg
0.1061

9

0.000263 0.12778 0.12290 0.12541

4 Collier
0.1074

2

0.000110 0.12913 0.12456 0.12683

5 Valmont
0.1268

3

0.001968 0.15030 0.14989 0.14909

6 Stockton
0.1316

5

0.000100 0.15555 0.15601 0.15461

7 SEI
0.2379

1

0.022967 0.27142 0.28452 0.27531

8 Intermountai
n 0.2466

4

0.009698 0.28094 0.29480 0.28517

9 Logan
0.2801

5

0.075198 0.31748 0.33401 0.32295

10 Salem
0.3348

2

0.025756 0.37709 0.39739 0.38439

Table A-7.  Limits Based on Approach 3*

Model
Confidence Level

á = 0.90 á = 0.95 á = 0.99

1 0.368 0.378 0.396

2 0.384 0.398 0.425

3 0.374 0.385 0.406
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*  Limits are compatible with Concept C and are taken as the worst-case Ui (Salem) among the top
performing units (since there were 10 such units). 
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Figure A-1.  Plot of Within-Unit Variances Versus Unit Means


