EPA Technical Analysis for Philadelphia-Wilmington Area

Pursuant to section 107(d) of the Clean Air Act, EPA must designate as nonattainment those areas that violate the NAAQS and those areas that contribute to violations. This technical analysis for the Philadelphia-Wilmington area identifies the counties with monitors that violate the 2006 24-hour $PM_{2.5}$ standard and evaluates the counties that potentially contribute to fine particle concentrations in the area. EPA has evaluated these counties based on the weight of evidence of the following nine factors recommended in EPA guidance and any other relevant information:

- pollutant emissions
- air quality data
- population density and degree of urbanization
- traffic and commuting patterns
- growth
- meteorology
- geography and topography
- jurisdictional boundaries
- level of control of emissions sources

Figure 1.0 is a map which identifies the counties in the Philadelphia-Wilmington area and provides other relevant information such as the locations and design values of air quality monitors, the metropolitan area boundary, and counties recommended as nonattainment by the States.

Figure 1.0. The Philadelphia-Wilmington Area

Philadelphia-Wilmington Area

For this area, EPA previously established $PM_{2.5}$ nonattainment boundaries for the 1997 $PM_{2.5}$ NAAQS that included nine full counties, with five counties in Pennsylvania, one county in Delaware, and three counties in New Jersey.

In December 2007, the Commonwealth of Pennsylvania recommended that Bucks, Chester, Delaware, Montgomery, and Philadelphia Counties be designated as "nonattainment" for the 2006 24-hour PM_{2.5} standard based on air quality data from 2004-2006. In addition, the State of New Jersey recommended that Burlington, Camden, and Gloucester Counties be designated as "nonattainment" and included in the Philadelphia-Wilmington area for the 2006 24-hour PM_{2.5} standard. Pennsylvania and New Jersey's recommended boundaries are the same as the previously established nonattainment boundaries for the 1997 PM_{2.5} NAAQS. These data are from Federal Reference Method (FRM) and Federal Equivalent Method (FEM) monitors located in Pennsylvania and New Jersey. (See the December 28, 2007 letter from the Pennsylvania Department of Environmental Protection to EPA, received on January 3, 2008 and the December 18, 2007 letter from the New Jersey Department of Environmental Protection to EPA.)

In December 2007, the State of Delaware recommended that New Castle County be designated as "nonattainment" for the 2006 24-hour $PM_{2.5}$ standard based on air quality data from 2004-2006. However, the State of Delaware requested that New Castle County be a separate nonattainment area, and not included in the Philadelphia-Wilmington area. This recommendation deviates from the previously established nonattainment boundaries for the 1997 $PM_{2.5}$ NAAQS. These data are from FRM and FEM monitors located in the state. (See the December 18, 2007 letter from Ruth Ann Minner, Governor of Delaware to EPA, received on December 19, 2008.)

Air quality monitoring data on the composition of fine particle mass are available from the EPA Chemical Speciation Network and the IMPROVE monitoring network. Analysis of these data indicates that the days with the highest fine particle concentrations occur in both the cold and warm seasons, but more often in the warm season. Figure 1.1 illustrates average concentrations of $PM_{2.5}$ components for both warm and cold season high $PM_{2.5}$ days.

Figure 1.1. PM_{2.5} Composition Data for the Philadelphia-Wilmington Area

Based on EPA's 9-factor analysis described below, EPA proposes that the same counties as previously designated nonattainment for the 1997 $PM_{2.5}$ NAAQS should be designated nonattainment for the 2006 24-hour $PM_{2.5}$ air-quality standard as part of the Philadelphia-Wilmington nonattainment area, based upon currently available information. These counties are listed in the table below.

Philadelphia-Wilmington	State-Recommended EPA-Recommended			
Area	Nonattainment Counties Nonattainment Counties			
Pennsylvania	Bucks County	Bucks County		
	Chester County	Chester County		
	Delaware County	Delaware County		
	Montgomery County	Montgomery County		
	Philadelphia County	Philadelphia County		
Delaware	None – see note	New Castle County		

Note: The State of Delaware recommended that New Castle County be designated nonattainment as a separate single-county nonattainment area, rather than as part of the Philadelphia nonattainment area.

The following is a summary of the 9-factor analysis for the EPA Region III portion of the Philadelphia-Wilmington area.

Bucks, Chester, Delaware, Montgomery, and Philadelphia Counties in Pennsylvania; and New Castle County in Delaware were included in the Philadelphia-Wilmington nonattainment area for the 1997 PM_{2.5} NAAQS, along with Camden, Burlington, and Gloucester Counties in New Jersey. These counties (plus additional counties in Delaware, Maryland, and New Jersey) are also included in the Philadelphia-Wilmington-Atlantic City 8-hour ozone nonattainment area. Bucks, Chester, Delaware, Montgomery, Philadelphia, and New Castle Counties were also included in the Philadelphia-Wilmington-Trenton severe 1-hour ozone nonattainment area, which is no longer subject to the 1-hour ozone standard.

Air quality monitors in Philadelphia, Chester, Delaware, and New Castle Counties show violations of the 2006 24-hour $PM_{2.5}$ NAAQS, based on 2005-2007 data. In addition, an air quality monitor in Camden County, NJ shows a violation of the 2006 24-hour $PM_{2.5}$ NAAQS, based on 2005-2007 data. Meteorological data shows that the predominant wind direction in the Philadelphia-Wilmington nonattainment area is from the southwest. This means that pollution from New Castle County, DE; Delaware County, PA; and Chester County, PA, as well as other areas further southwest, contribute to violations at the Philadelphia County, PA and Camden County, NJ air quality monitors, which are downwind, to their northeast.

Bucks, Chester, Delaware, Montgomery, Philadelphia, and New Castle Counties have higher emissions than most other nearby counties. One notable exception is York County, which is part of the York nonattainment area for the 1997 PM_{2.5} NAAQS, and has been recommended for inclusion in that nonattainment area for the 2006 PM_{2.5} NAAQS. Bucks, Chester, Delaware, Montgomery, Philadelphia, and New Castle Counties also contribute to the particulate matter concentrations in the Philadelphia-Wilmington nonattainment area through population-based emissions (e.g., vehicle emissions and other small area sources). These counties (as well as the New Jersey counties that are part of the Philadelphia-Wilmington nonattainment area for the 1997 $PM_{2.5}$ NAAQS) have higher populations, population densities, and vehicle miles traveled (VMT) than the other nearby counties. Some exceptions are several counties that are included in other nonattainment areas for the 1997 $PM_{2.5}$ NAAQS and have been recommended for inclusion in those same nonattainment areas for the 2006 $PM_{2.5}$ NAAQS. Bucks, Chester, Delaware, Montgomery, Philadelphia, and New Castle Counties also have considerably more commuters into and within the Philadelphia area than other nearby counties.

In her December 18, 2007 designation recommendation letter, Governor Minner of Delaware recommended that New Castle County be a separate nonattainment area, and not be included in the Philadelphia-Wilmington area. Governor Minner made numerous arguments to justify excluding New Castle County from the Philadelphia-Wilmington area. EPA addresses these arguments in detail in the 9-factor analysis. The following is a brief summary of Delaware's main arguments and EPA's response.

Delaware: Only one of the three monitors in New Castle County shows a violation of the standard, and monitors in Pennsylvania, Maryland, and New Jersey near New Castle County are not monitoring violations.

EPA: Using 2004-2006 data, the monitors near New Castle County did meet the standard. However, considering 2005-2007 data, monitors in Chester and Delaware Counties in Pennsylvania, which border New Castle County, are violating the standard.

Delaware: The nonattainment problem in New Castle County is due to local emissions and long-range transport of pollutants. Furthermore, emissions from New Castle County do not contribute to nonattainment in other parts of the Philadelphia-Wilmington area.

EPA: There is a local component to the nonattainment problem in New Castle County. However, meteorological data indicates that emissions from New Castle County are transported by the prevailing southwesterly winds to the rest of the Philadelphia-Wilmington nonattainment area. Therefore, New Castle County is contributing to the nonattainment problem in the Philadelphia-Wilmington area.

Delaware: By 2012, New Castle County will achieve a 75% reduction in sulfur dioxide (SO_2) emissions and a 62% reduction in nitrogen oxides (NOx) emissions due to state and federal programs. In 2012, the county will have the second highest emissions in the Philadelphia-Wilmington area.

EPA: EPA used 2005 emissions data in this analysis. In 2005, Delaware had the highest emissions of all the counties in the Philadelphia-Wilmington nonattainment area for the 1997 $PM_{2.5}$ NAAQS. In this designation process, EPA is only considering emission controls in place and federally enforceable at the time of designation, i.e., by December 2008. Therefore, planned controls are not being considered in this analysis. However, emissions at the former Motiva facility in New Castle County have been greatly reduced since 2005. Even with this reduction, New Castle County's SO₂ emissions are still the

highest of all the counties in the Philadelphia-Wilmington nonattainment area for the 1997 PM_{2.5} NAAQS.

Delaware: Delaware did not develop a joint air quality plan for the 1997 $PM_{2.5}$ standard, and does not anticipate the need to do so for the 2006 $PM_{2.5}$ standard. The regional planning organizations (RPOs) which include Delaware, Pennsylvania, and New Jersey are already working together regarding visibility planning, and joint efforts among the states would increase the administrative burden.

EPA: New Castle County has historically been part of the Philadelphia nonattainment area for ozone and $PM_{2.5}$. Delaware, Pennsylvania, and New Jersey have a long history of working cooperatively with ozone and PM attainment planning. EPA believes that including New Castle County as part of the Philadelphia-Wilmington nonattainment area for the 2006 $PM_{2.5}$ NAAQS will not be an undue burden on Delaware.

For the above stated reasons, EPA Region III has determined that Bucks, Chester, Delaware, Montgomery, and Philadelphia Counties in Pennsylvania; and New Castle County in Delaware should be included in the Philadelphia-Wilmington nonattainment area for the 2006 PM_{2.5} NAAQS. Details of EPA's technical 9-factor analysis follow.

This technical analysis will focus on the existing Philadelphia-Wilmington nonattainment area for the 1997 $PM_{2.5}$ NAAQS and a ring of counties surrounding that area. Therefore, counties that are beyond that ring of counties surrounding the Philadelphia-Wilmington area will be excluded from further analysis. In addition, if a county is part of another existing nonattainment area for the 1997 $PM_{2.5}$ NAAQS and the state has recommended including it in that other nonattainment area for the 2006 $PM_{2.5}$ NAAQS, that county will not be included in this analysis. Accordingly, the following counties will be excluded from further consideration for inclusion in the Philadelphia-Wilmington nonattainment area.

Counties, State	Reasons for Exclusion from Further Analysis
York, PA	York County is part of the York nonattainment area for the 1997 PM _{2.5}
	NAAQS and has been recommended for inclusion in the York nonattainment
GARN	area for the 2006 PM _{2.5} NAAQS. In addition, York County is not part of the
	contiguous ring of counties surrounding the existing Philadelphia-
	Wilmington nonattainment area.
Lancaster, PA	Lancaster County is part of the Lancaster nonattainment area for the 1997
	PM _{2.5} NAAQS and has been recommended for inclusion in the Lancaster
	nonattainment area for the 2006 PM _{2.5} NAAQS.
Berks, PA	Berks County is part of the Reading nonattainment area for the 1997 PM _{2.5}
20 - C	NAAQS and has been recommended for inclusion in the Reading
	nonattainment area for the 2006 PM _{2.5} NAAQS.
Harford, MD	Harford County is part of the Baltimore nonattainment area for the 1997
	PM _{2.5} NAAQS and has been recommended for inclusion in the Baltimore
	nonattainment area for the 2006 PM _{2.5} NAAQS. In addition, Harford County
	is not part of the contiguous ring of counties surrounding the existing
	Philadelphia-Wilmington nonattainment area.

Mercer, NJ Middlesex, NJ Monmouth, NJ Somerset, NJ	Mercer, Middlesex, Monmouth, and Somerset Counties in New Jersey are part of the New York-New Jersey-Long Island nonattainment area for the 2006 $PM_{2.5}$ NAAQS and have been recommended for inclusion in that nonattainment area for the 2006 $PM_{2.5}$ NAAQS. Furthermore, Middlesex and Somerset Counties are not part of the contiguous ring of counties surrounding the existing Philadelphia-Wilmington nonattainment area
---	---

Data for these counties will be included in the tables for the remaining factors. However, no analysis will be conducted regarding that data.

Factor 1: Emissions Data

For this factor, EPA evaluated county level emission data for the following PM_{2.5} components and precursor pollutants: "PM_{2.5} emissions total," "PM_{2.5} emissions carbon," "PM_{2.5} emissions other," "SO₂," "NO_x," "VOCs," and "NH₃." "PM_{2.5} emissions total" represents direct emissions of PM_{2.5} and includes: "PM_{2.5} emissions carbon," "PM_{2.5} emissions other," primary sulfate (SO₄), and primary nitrate. (Although primary sulfate and primary nitrate, which are emitted directly from stacks rather than forming in atmospheric reactions with SO₂ and NO_x, are part of "PM_{2.5} emissions total," they are not shown in Table 1.0 as separate items). "PM_{2.5} emissions, and "PM_{2.5} emissions other" represents other inorganic particles (crustal). Emissions of SO₂ and NO_x, which are precursors of the secondary PM_{2.5} components sulfate and nitrate, are also considered. VOCs (volatile organic compounds) and NH₃ (ammonia) are also potential PM_{2.5} precursors and are included for consideration.

Emissions data were derived from the 2005 National Emissions Inventory (NEI), version 1. See http://www.epa.gov/ttn/naaqs/pm/pm25_2006_techinfo.html.

EPA also considered the Contributing Emissions Score (CES) for each county. The CES is a metric that takes into consideration emissions data, meteorological data, and air quality monitoring information to provide a relative ranking of counties in and near an area. Note that this metric is not the exclusive way for consideration of data for these factors. A summary of the CES is included in Enclosure 2, and a more detailed description can be found at: http://www.epa.gov/ttn/naaqs/pm/pm25_2006_techinfo.html.

Table 1.0 shows emissions of $PM_{2.5}$ and precursor pollutants components (given in tons per year) and the CESs for violating and potentially contributing counties in the Philadelphia-Wilmington area. Counties that are part of the Philadelphia-Wilmington nonattainment area for the 1997 $PM_{2.5}$ NAAQS are shown in boldface. Counties are listed in descending order by CES. Figure 1.2 is a graphic representation of the higher CES values set forth in Table 1.0.

County	State	CES	PM ₂ c	PM ₂ =	PM _{2.5}	SO	NOx	VOCs	NH ₂
	Recommended		emissions	emissions	emissions	(tnv)	(tny)	(tnv)	(tnv)
	Nonattainment?		total	carbon	other	(4))	(49)	((19))	(49)
			(tpv)	(tpv)	(tpy)				
New Castle, DE	Yes - other area	100	2,394	891	1,504	50,955	28,291	19,269	1,699
Philadelphia, PA	Yes	100	2,506	1,248	1,258	11,293	38,733	35,230	1,299
Delaware, PA	Yes	89	2,454	865	1,589	20,356	32,904	20,250	956
Gloucester, NJ	Yes	85	1,607	677	930	7,116	12,711	14,140	813
Camden, NJ	Yes	68	971	597	374	1,839	13,852	14,126	780
Burlington, NJ	Yes	32	1,960	1,137	822	3,368	15,570	20,312	980
Chester, PA	Yes	26	2,124	799	1,325	7,990	16,507	19,666	2,563
Montgomery, PA	Yes	24	2,597	1,118	1,477	5,411	23,306	37,216	1,535
Bucks, PA	Yes	11	2,022	876	1,146	3,951	16,792	26,241	1,834
York, PA	Yes - other area	33	7,614	1,217	6,396	118,621	32,214	18,478	3,913
Salem, NJ	No	28	1,233	314	919	5,947	7,241	4,062	828
Atlantic, NJ	No	14	1,664	1,045	619	752	7,310	19,538	564
Cecil. MD	No	13	870	446	425	1,298	3,962	5,853	749
Cumberland, NJ	No	12	952	440	513	3,196	6,526	6,758	483
Lancaster. PA	Yes - other area	11	3,258	1,159	2,099	4,017	16,396	26,407	16,486
Mercer, NJ	Yes - other area	10	1,658	579	1,079	17,891	17,640	9,278	475
Berks, PA	Yes - other area	9	3,378	922	2,456	18,874	18,086	19,117	4,653
Harford, MD	Yes - other area	9	1,769	879	890	2,307	7,310	10,512	967
Kent, DE	No	7	1,014	435	580	4,478	9,088	6,301	1,803
Ocean, NJ	No	5	1,540	993	547	1,060	9,578	25,720	569
Northampton, PA	Yes - other area	4	5,222	665	4,556	60,396	24,620	10,960	807
Middlesex, NJ	Yes - other area	3	1,549	951	598	3,129	29,172	28,056	1,257
Kent, MD	No •	2	443	162	282	471	1,002	2,225	1,050
Lehigh, PA	Yes - other area	2	1,328	501	828	3,749	11,503	13,369	904
Monmouth, NJ	Yes - other area	2	1,506	989	517	1,789	16,771	20,744	1,345
Queen Anne's, MD	No	2	659	261	398	479	2,076	3,290	1,365
Hunterdon, NJ	No	1	769	454	316	556	3,882	5,053	395
Somerset, NJ	Yes - other area	1	801	451	349	577	7,886	9,823	532
Warren, NJ	Yes - other area	0	1,105	588	517	563	5,088	5,468	747

Table 1.0. PM_{2.5} Related Emissions and Contributing Emissions Score

Figure 1.2. CES Values for the Philadelphia-Wilmington Area (Including Non-Contiguous Counties)

As shown above in Table 1.0 and Figure 1.2, both New Castle County, DE and Philadelphia County, PA haves CES values of 100. While in 2005 these counties had similar $PM_{2.5}$ emissions, New Castle had much higher SO₂ emissions. Note that York County, PA has the highest SO₂ emissions, but a moderate CES of 33. In addition, York County is part of the York nonattainment area for the 1997 $PM_{2.5}$ NAAQS and Pennsylvania has recommended that it be included in the York nonattainment area for the 2006 $PM_{2.5}$ NAAQS. Northampton County, PA also has relatively high SO₂ emissions, but a low CES of four. This low CES is due partly to the fact that the prevailing winds in this part of Pennsylvania are from the southwest, and Northampton County is north of the Philadelphia-Wilmington area.

Delaware County, PA and Gloucester County, NJ have the next highest CESs, at eighty-nine and eighty-five, respectively. Delaware County's emissions are considerably higher than Gloucester Counties. However, as shown in Figure 1.0, large point sources are located in Gloucester County, directly upwind of the violating monitors in Camden and Philadelphia Counties.

Camden County has a CES of sixty-eight. Of the counties in the Philadelphia-Wilmington nonattainment area for the 1997 $PM_{2.5}$ NAAQS, Camden County has the lowest emissions. However, it has a violating monitor.

Burlington and Salem Counties in New Jersey and Chester and Montgomery Counties in Pennsylvania have CES values between twenty and thirty-two. Of those four counties, Salem County has the second highest SO₂ emissions, but the lowest PM_{2.5-total}, PM_{2.5-carbon}, NOx, VOC, and NH₃ emissions. Burlington, Chester, and Montgomery Counties are in the Philadelphia-Wilmington nonattainment areas for the 1997 PM_{2.5} NAAQS, and New Jersey and Pennsylvania have recommended that those counties be included in the Philadelphia-Wilmington nonattainment areas for the 2006 PM_{2.5} NAAQS.

Of the remaining counties with CESs greater than ten, Lancaster County, PA and Mercer County, NJ are part of exiting nonattainment areas for the 1997 $PM_{2.5}$ NAAQS, the Lancaster and New York areas, respectively. New Jersey and Pennsylvania have recommended that those counties be included in the same nonattainment areas for the 2006 $PM_{2.5}$ NAAQS.

Cecil County, MD (CES = 13) has lower total $PM_{2.5}$, carbon $PM_{2.5}$, SO₂, NOx, VOC, and NH₃ emissions than the counties in the Philadelphia-Wilmington nonattainment area for the 1997 $PM_{2.5}$ NAAQS. Atlantic County, NJ (CES = 14) has lower SO₂, NOx, and NH₃ emissions than the counties in the 1997 $PM_{2.5}$ NAAQS Philadelphia-Wilmington nonattainment area, but midrange total $PM_{2.5}$ and VOC emissions, and high carbon $PM_{2.5}$ emissions.

Factor 2: Air Quality Data

This factor considers the 24-hour $PM_{2.5}$ design values (in $\mu g/m^3$) for air quality monitors in counties in the Philadelphia-Wilmington area based on data for the 2005-2007 period. A monitor's design value indicates whether that monitor attains a specified air quality standard. The 24-hour $PM_{2.5}$ standard is met when the 3-year average of a monitor's 98th percentile values is 35 $\mu g/m^3$ or less. A design value is only valid if minimum data completeness criteria are met.

The 24-hour $PM_{2.5}$ design values for violating monitors and potentially contributing counties in the Philadelphia-Wilmington area are shown in Table 2.0. Counties that are part of the Philadelphia-Wilmington nonattainment area for the 1997 $PM_{2.5}$ NAAQS are shown in boldface.

	/					
County	State	24-hr PM _{2.5}	24-hr PM _{2.5}	24-hr PM _{2.5} Des		
	Recommended	Design Values,	Design Values,	Values,		
	Nonattainment?	2003-2005	2004-2006	2005-2007		
		$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$		
New Castle, DE	Yes - other area	37	37	37		
Philadelphia, PA	Yes	38	36	38		
Delaware, PA	Yes	35	35	36		
Gloucester, NJ	Yes	32				
Camden, NJ	Yes		37	38		
Burlington , NJ	Yes	· ·	No monitor			
Chester, PA	Yes			37		
Montgomery, PA	Yes		Incomplete data			
Bucks, PA	Yes		33	35		
York, PA	Yes - other area	41	37	37		
Salem, NJ	No	No monitor				
Atlantic, NJ	No	No monitor				
Cecil. MD	No	33	30	30		
Cumberland, NJ	No		No monitor			
Lancaster. PA	Yes - other area	44	39	40		
Mercer, NJ	Yes - other area	36	34 .			
Berks, PA	Yes - other area	39	.37	38		
Harford, MD	Yes - other area	34	31	31		
Kent, DE	No	32	32	32		
Ocean, NJ	No	34	31			
Northampton, PA	Yes - other area	36	37	37		
Middlesex, NJ	Yes - other area	38	~ 34			
Kent, MD	No		No monitor			
Lehigh, PA	Yes - other area	-36				
Monmouth, NJ	Yes - other area		No monitor			
Queen Anne's, MD	No		No monitor			
Hunterdon, NJ	No		No monitor			
Somerset, NJ	Yes - other area	No monitor				
Warren, NJ	Yes - other area		34			

TT 11.	A A	A * 1	0 14	
Iable	2.0	Alr	Ouality	Data

Note: Design values shown in red represent violations of the standard

Note: Eligible monitors for providing design value data generally include State and Local Air Monitoring Stations (SLAMS) at population-oriented locations with a FRM or FEM monitor. All data from Special Purpose Monitors (SPM) using an FRM, FEM, or Alternative Reference Method (ARM) which has operated for more than 24 months is eligible for comparison to the relevant NAAQS, subject to the requirements given in the October 17, 2006 Revision to Ambient Air Monitoring Regulations (71 FR 61236). All monitors used to provide data must meet the monitor siting and eligibility requirements given in 71 FR 61236 to 61328 in order to be acceptable for comparison to the 2006 24-hr PM_{2.5} NAAQS for designation purposes.

The data above in Table 2.0 shows that, of the counties already in existing nonattainment areas for the 1997 $PM_{2.5}$ NAAQS and recommended for inclusion in these same nonattainment areas for the 2006 $PM_{2.5}$ NAAQS in EPA Region III, New Castle County in Delaware and

Philadelphia, Chester and Northampton Counties in Pennsylvania show violations of the 2006 24-hour $PM_{2.5}$ standard. Therefore, these counties are candidates for inclusion in the Philadelphia-Wilmington nonattainment area. However, Pennsylvania has recommended that Northampton County be included in the Allentown nonattainment area for the 2006 $PM_{2.5}$ NAAQS. (See Table 2.0.)

The absence of a violating monitor alone is not a sufficient reason to eliminate counties as candidates for nonattainment status. Each county has been evaluated based on the weight of evidence of the nine factors and other relevant information.

The State of Delaware has recommended that New Castle County, which was included in the Philadelphia-Wilmington nonattainment area for the 1997 PM_{2.5} NAAQS, not be included in the Philadelphia-Wilmington nonattainment area for the 2006 PM_{2.5} NAAQS. Delaware's recommendation is based, in part, on monitoring data from counties surrounding New Castle County. In her December 18, 2007 recommendation letter, Governor Minner states that only one of the three monitors in New Castle County, the downtown Wilmington monitor known as the MLK monitor (located on Martin Luther King Boulevard in downtown Wilmington), shows a violation of the standard, and that monitors in Pennsylvania, Maryland, and New Jersey near New Castle County are not monitoring violations. "These other monitors are placed in areas which represent most of the compass, thereby "encircling" the MLK monitor with "clean" ones. Moreover, the closest monitor above the standard is in Center City Philadelphia (Broad Street), which is about 30 miles away from the MLK monitor."

Using 2004-2006 data, the monitors near New Castle County did meet the standard. However, considering 2005-2007 data, monitors in Chester and Delaware Counties in Pennsylvania, which border New Castle County, are violating the standard. Table 2.1 shows the 2004-2006 and 20052007 design values and locations for the air quality monitors in New Castle, Chester, Philadelphia, Gloucester, and Camden Counties. Figure 2.2 maps out the locations of those air quality monitors.

County, State	Monitor AQS ID	Location	2004 – 2006 Design Value μg/m ³	2005 - 2007 Design Value $\mu g/m^3$
	100031003	River Road Park, Bellefonte	33	33
New Castle, DE	100031007	Lums Pond State Park, Lums Pond	32	32
~	100031012	Univ. De North Campus, Newark	32	32
	100032004	Mlk Blvd And Justison St., Wilmington	36	36
Chester, PA	420290100	New Garden Airport, Toughkenamon	35	37
Delaware, PA	420450002	Front St & Norris St, Chester		36
Philadelphia,	421010004	1501 E Lycoming Ave, Philadelphia	36	36
PA	421010024	Grant Ave & Ashton Rd, Philadelphia	35	35
	421010047	500 South Broad Street, Philadelphia	37 🐇	38
_	421010136	5917 Elmwood Avenue, Philadelphia	33	34
Camden, NJ	340070003	Copewood & E. Davis Sts, Camden	36	35
	340071007	Morris-Delair Water Treatment Plant, Pennsauken	37	37

Table 2.1. Design Values in New Castle, Chester, Philadelphia, Gloucester & Camden Counties

Gloucester, NJ	340155001	Gibbstown Municipal Bldg, 5, Gibbstown	29	29		
Note: Design values shown in red represent violations of the standard						

Figure 2.0. Air Quality Monitors and 2005-2007 Design Values in New Castle, Chester, Philadelphia, Gloucester, and Camden Counties (Google Earth 2008)

Factor 3: Population Density and Degree of Urbanization (Including Commercial Development)

Table 3.0 shows the 2005 population for each county being evaluated, as well as the population densities for those counties. Population data gives an indication of whether it is likely that population-based emissions might contribute to violations of the 2006 24-hour $PM_{2.5}$ standard.

Table 5.0. Popula	lion		
County	State	2005	2005
5 · · · ·	Recommended	Population	Population
	Nonattainment?	-	Density
			(pop/sq mi)
New Castle, DE	Yes - other area	522,094	1077
Philadelphia, PA	Yes	1,456,350	10220
Delaware, PA	Yes	554,393	2910
Gloucester, NJ	Yes	277,037	823
Camden, NJ	Yes	515,381	2272
Burlington , NJ	Yes	449,148	548
Chester, PA	Yes	473,723	624
Montgomery, PA	Yes	774.666	1591

Table 3.0. Population

Bucks, PA	Yes	619,772	998
York, PA	Yes - other area	408,182	449
Salem, NJ	No	66,054	190
Atlantic, NJ	No	270,318	444
Cecil. MD	No	97,474	257
Cumberland, NJ	No	152,905	304
Lancaster. PA	Yes - other area	489,936	499
Mercer, NJ	Yes - other area	366,070	1601
Berks, PA	Yes - other area	396,236	458
Harford, MD	Yes - other area	238,850	519
Kent, DE	No	143,462	240
Ocean, NJ	No	558,170	738
Northampton, PA	Yes - other area	287,334	762
Middlesex, NJ	Yes - other area	789,283	2487
Kent, MD	No	19,908	67
Lehigh, PA	Yes - other area	330,168	948
Monmouth, NJ	Yes - other area	634,841	1308
Queen Anne's, MD	No	45,469	115
Hunterdon, NJ	No	130,042	-297
Somerset, NJ	Yes - other area	319,830	1049
Warren, NJ	Yes - other area	110,317	305

In general, the data above in Table 3.0 shows that the counties in the Philadelphia-Wilmington nonattainment area for the 1997 PM_{2.5} NAAQS have higher populations and population densities than the other counties in this analysis. Some exceptions are several counties that were included in other nonattainment areas for the 1997 PM_{2.5} NAAQS and have been recommended for inclusion in those same nonattainment areas for the 2006 PM_{2.5} NAAQS. Other counties with populations comparable to the counties in the existing Philadelphia-Wilmington PM_{2.5} nonattainment area are Lehigh and Northampton Counties in Pennsylvania and Ocean County in New Jersey. Pennsylvania has recommended that Lehigh and Northampton Counties be included in the Allentown-Bethlehem-Easton nonattainment area for the 2006 PM_{2.5} NAAQS.

In the December 18, 2007 recommendation letter, Governor Minner states that in 2006, Philadelphia's population density, 10,729, is almost nine times that of New Castle County, 1,234, and that population density does not necessarily reflect ambient concentrations of PM_{2.5}. Governor Minner goes on to compare population density in New Castle County with that of Philadelphia, Delaware, and Montgomery counties where, considering 2004-2006 data, certain monitors were showing attainment. Delaware believes that based on this, population and population density data should not be given much weight in determining nonattainment area boundaries. It is important to note that EPA uses population data as one indicator of populationbased emissions (i.e. area sources) that might contribute to nonattainment, including downwind nonattainment. As is clearly demonstrated in Factor 6, below, New Castle County is upwind of monitors in the Philadelphia area that have recorded violations of the 24-hour PM_{2.5} NAAQS.

Factor 4: Traffic and Commuting Patterns

This factor considers the number of commuters in each county who drive to another county within the Philadelphia-Wilmington area the percent of total commuters in each county who commute to other counties within the Philadelphia-Wilmington area, as well as the total Vehicle

Miles Traveled (VMT) for each county in millions of miles (see Table 4.0). A county with numerous commuters is generally an integral part of an urban area and is likely contributing to fine particle concentrations in the area.

The listing of counties on Table 4.0 reflects the number of people commuting to other counties. The counties that are in the Philadelphia-Wilmington nonattainment area for the 1997 $PM_{2.5}$ NAAQS are shown in boldface.

County	State	2005 VMT	Number	Percent	Number	Percent
	Recommended	(millions)	Commuting to	Commuting to	Commuting	Commuting
	Nonattainment?	·/	any violating	any violating	into & within	into & within
			counties	counties	statistical area	statistical area
New Castle, DE	Yes - other area	5,674	228,630	93	237,010	97
Philadelphia, PA	Yes	6,499	469,300	82	558,270	98
Delaware, PA	Yes	4,011	216,560	85	249,130	98
Gloucester, NJ	Yes	2,621	42,160	35	111,620	92
Camden, NJ	Yes	4,669	162,290	- 71	215,780	94
Burlington, NJ	Yes	4,902	46,850	23	174,000	84
Chester, PA	Yes	4,414	184,920	85	207,990	96
Montgomery, PA	Yes	7,527	101,460	27	365,750	96
Bucks, PA	Yes	5,250	44,390	15	261,390	86
York, PA	Yes - other area	3,333	148,290	- 77	730	0
Salem, NJ	No	1,013	5,450	19	24,900	87
Atlantic, NJ	No	3,234	4,700	4	8,310	7
Cecil. MD	No	1,193	15,970	38	. 34,590	83
Cumberland, NJ	No	1,264	2,020	4	6,820	12
Lancaster. PA	Yes - other area	4,392	217,820	94	9,110	.4
Mercer, NJ	Yes - other area	2,668	2,700	2	11,100	7
Berks, PA	Yes - other area	3,320	159,000	90	20,450	· 12
Harford, MD	Yes - other area	2,068	1,920	2	3,030	3
Kent, DE	No	1,435	6,370	11	6,710	11
Ocean, NJ	No	3,367	1,460	1	5,520	3
Northampton, PA	Yes - other area	2,399	99,860	80	3,730	3
Middlesex, NJ	Yes - other area	8,014	970	0	2,250	1
Kent, MD	No	219	680	8	970	11
Lehigh, PA	Yes - other area	3,374	133,030	90	10,210	7
Monmouth, NJ	Yes - other area	6,230	1,190	0	2,410	. 1
Queen Anne's, MD	No	758	230	1	260	1
Hunterdon, NJ	No	929	840	1	1,710	3
Somerset, NJ	Yes - other area	2,702	450	0	1,050	1
Warren, NJ	Yes - other area	1,342	2,450	5	230	1

Table 4.0. Traffic and Commuting Patterns

Note: The 2005 VMT data used for Tables 4.0 and 5.0 of the 9-factor analysis has been derived using methodology similar to that described in "Documentation for the final 2002 Mobile National Emissions Inventory," Version 3, September 2007, prepared for the Emission Inventory Group, U.S. EPA. This document may be found at:

ftp://ftp.epa.gov/EmisInventory/2002finalnei/documentation/mobile/2002_mobile_nei_version_3_report_092807.pdf. The 2005 VMT data were taken from documentation which is still draft, but which should be released in 2008. The United States 2000 Census County-to-County Worker Flow Files can be found at: http://www.cencus.gov/population/www/cen2000/commuting/index.html.

The above data in Table 4.0 indicates that the counties in the Philadelphia-Wilmington nonattainment area for the 1997 PM_{2.5} NAAQS have considerably more commuters into and within the Philadelphia-Wilmington area than all other counties in this analysis. For the most part, those counties also have higher VMT. Some exceptions are several counties that were included in other nonattainment areas for the 1997 PM_{2.5} NAAQS and have been recommended for inclusion in those same nonattainment areas for the 2006 PM_{2.5} NAAQS. Other counties with VMT comparable to the counties in the existing Philadelphia-Wilmington PM_{2.5} nonattainment area are Lehigh and Northampton Counties in Pennsylvania and Atlantic and Ocean Counties in New Jersey. Pennsylvania has recommended that Lehigh and Northampton Counties be included in the Allentown-Bethlehem-Easton nonattainment area for the 2006 PM_{2.5} NAAQS. Atlantic and Ocean Counties have very few commuters into the Philadelphia-Camden-Wilmington MSA. (See Table 4.0)

In her December 18, 2007 recommendation letter, Governor Minner states that in less than one percent of the commuters into Philadelphia-Wilmington area from New Castle County, and that many of these commuters are likely to use public transportation. The Southeastern Pennsylvania Transportation Authority (SEPTA) serves commuters from the Bucks, Chester, Delaware, Montgomery, Philadelphia and New Castle Counties, and brings many of them into Center City Philadelphia. The Port Authority Transit Corporation (PATCO) brings commuters from southern New Jersey into Center City Philadelphia. EPA believes that, as a general matter, it is likely that commuters from most counties in the Philadelphia-Wilmington nonattainment area for the 1997 PM_{2.5} NAAQS rely heavily on public transportation. However, currently available data does not clearly indicate the percentage of commuters from New Castle County to Pennsylvania which commute via SEPTA or other public transportation versus non-public transportation (such as private automobiles).

Governor Minner goes on to compare VMT in New Castle County with that of Philadelphia, stating that VMT are similar, yet New Castle County has three of its four monitors showing attainment. As with population data, EPA considers VMT as one indicator of emissions that might contribute to nonattainment, including downwind nonattainment. As shown in Factor 6, below, New Castle County is directly upwind of monitors in the Philadelphia area that have recorded violations of the 2006 24-hour $PM_{2.5}$ NAAQS.

Factor 5: Growth Rates and Patterns

This factor considers population growth for 2000-2005 and growth in vehicle miles traveled for 1996-2005 for counties in Philadelphia-Wilmington area, as well as patterns of population and VMT growth. A county with rapid population or VMT growth is generally an integral part of an urban area and is likely to be contributing to fine particle concentrations in the area.

Table 5.0 below shows population, population growth, VMT, and VMT growth for counties that are included in the Philadelphia-Wilmington area.

Location	Population	Population %	2005 VMT	VMT
	(2005)	change	(1000s mi)	% change
		(2000 - 2005)		(1996 - 2005)
New Castle, DE	522,094	4	5,674	25
Philadelphia, PA	1,456,350	(4)	6,499	(31)
Delaware, PA	554,393	1	4,011	24
Gloucester, NJ	277,037	. 8	2,621	26
Camden, NJ	515,381	2	4,669	.17
Burlington , NJ	449,148	6	4,902	43
Chester, PA	473,723	9	4,414	54
Montgomery, PA	774,666	3	7,527	73
Bucks, PA	619,772	3	5,250	49
York, PA	408,182	7	3,333	6
Salem, NJ	66,054	3	1,013	50
Atlantic, NJ	270,318	7	3,234	54
Cecil. MD	97,474	13	1,193	10
Cumberland, NJ	152,905	4	1,264	24
Lancaster. PA	489,936	4	4,392	21
Mercer, NJ	366,070	4	2,668	(22)
Berks, PA	396,236	6	3,320	11
Harford, MD	238,850	9	2,068	0
Kent, DE	143,462	13	1,435	5
Ocean, NJ	558,170	9	3,367	.5
Northampton, PA	287,334	7	2,399	21
Middlesex, NJ	789,283	5	8,014	56
Kent, MD	19,908	3	219	42
Lehigh, PA	330,168	6	3,374	34
Monmouth, NJ	634,841	3	6,230	37
Queen Anne's, MD	45,469	11	758	81
Hunterdon, NJ	130,042	6	929	(42)
Somerset, NJ	319,830	7	2,702	39
Warren, NJ	110,317	7	1,342	2

Table 5.0. Population and VMT Values and Percent Change.

The data above in Table 5.0 show that while most counties in this analysis have experienced modest increases in population from 2000 to 2005, only Philadelphia has lost population in that same time period. Philadelphia's population is still much higher than any other county in this analysis. Similarly, most counties saw increased VMT from 1996 to 2005. VMT decreased in only three counties, Philadelphia, Mercer County, NJ and Hunterdon County, NJ. Philadelphia's VMT is still higher than most counties in this analysis.

In Delaware's December 18, 2007 designation recommendation letter, Governor Minner states that New Castle County has a "moderate" population growth rate, and compares that rate to counties such as Gloucester which are monitoring attainment. Governor Minner also compares New Castle County's VMT growth to that of Gloucester County, which is monitoring attainment. While population in Gloucester County has increased at a similar rate to New Castle County from 2002 to 2006, the 2005 population in New Castle County is nearly twice that of Gloucester County. From 2002 to 2005, VMT increased in Gloucester County has by a greater percentage than in New Castle County. However, in 2005, New Castle County's VMT is more than twice that of Gloucester County. (See Tables 5.2 and 5.3, below.)

County	2 <u>006 pop</u>	Pop 02-06 (% change) ¹⁴	Design Value
Chester	482,112	11.2	35
Gloucester	282,031	10.3	28
Burlington	450,627	6.4	Na
New Castle	525,587	5.4	36
Bucks	623,205	4.3	33
Montgomery	775,688	3.6	32
Camden	517,001	1.8	36
Delaware	555,996	0.7	35
Philadelphia	1,448,394	-4.6	- 38

Table 5.2. Population Growth 2002-2006, from Delaware's 12/18/2007 recommendation letter

Table 5.3. VMT Growth 2002-2005, from Delaware's 12/18/2007 recommendation letter

County	2005	2002	02-'05 % Increase
Gloucester	7,431	6,956	6.4%
Burlington	13,365	12,582	5.9%
New Castle	15,286	14,626	4.3%
Delaware	10,181	9,746	4.3%
Philadelphia	16,316	15,775	3.3%
Camden	10,855	10,543	2.9%
Montgomery	19,110	18,675	2.3%
Bucks	13,696	13,487	1.5%
Chester	11,832	11,653	1.5%

Factor 6: Meteorology (Weather/Transport Patterns)

For this factor, EPA considered data from National Weather Service instruments in the area. Wind direction and wind speed data for 2004-2006 were analyzed, with an emphasis on "high $PM_{2.5}$ days" for each of two seasons (an October-April "cold" season and a May-September "warm" season). These high $PM_{2.5}$ days are defined as days where any FRM or FEM air quality monitors had 24-hour $PM_{2.5}$ concentrations above 95% on a frequency distribution curve of $PM_{2.5}$ 24-hour values.

Meteorology data is also considered in each county's Contributing Emissions Score (CES) because the method for deriving the CES included an analysis of trajectories of air masses for high PM_{2.5} days. See Factor 1 (Emissions data), above.

For each air quality monitoring site, EPA developed a pollution trajectory plot (or "pollution rose") to understand the prevailing wind direction and wind speed on the days with highest fine particle concentrations. Figures 6.1 - 6.7 identify 24-hour PM_{2.5} values by colored icons and days exceeding 35 µg/m³ are denoted with a red or black icon. These icons are either dots or triangles. A dot indicates the day occurred in the warm season and a triangle indicates the day

occurred in the cool season. The center of the figures indicate the location of the air quality monitoring site, and the location of each icon in relation to the center indicates the direction from which the wind was blowing on that day. An icon that is close to the center indicates a low average wind speed on that day. Higher wind speeds are indicated when the icon is further away from the center.

In Delaware's December 18, 2007 designation recommendation letter, Governor Minner stated that wind roses show Philadelphia's upwind sources come from southern New Castle County, where one significant source (the former Motiva refinery) has been controlled. (See Factor 9) Governor Minner also stated that the Delaware Department of Natural Resources and Environmental Protection (DNREC) believes that the monitored nonattainment at the New Castle, Camden, and Philadelphia monitors is due to long range transport and local sources, and not transport within the Philadelphia MSA. In other words, it is the State of Delaware's position that emissions from New Castle County do not contribute to nonattainment in other parts of the Philadelphia-Wilmington area.

Figure 6.0 shows the six violating monitors in the Philadelphia-Wilmington area, and includes two sources of SO_2 and NOx in New Castle County: the former Motiva refinery in Delaware City and the Edge Moor power plant in Wilmington. As shown in Factor 9, emissions from the former Motiva refinery have been greatly reduced since 2005, but in 2007 the facility still emitted close to 3000 tons of SO_2 and 3000 tons NO_2 . The Edge Moor power plant had nearly 8000 tons of SO_2 emissions and over 2,200 tons of NOx emissions in 2006.

Figure 6.0. Violating Monitors in the Philadelphia-Wilmington Area and the Edge Moor Power Plant and the Former Motiva Refinery (Google Earth 2008)

The pollution roses below for Delaware, Chester, Camden, and Philadelphia Counties show that, on high $PM_{2.5}$ days (days with monitored $PM_{2.5}$ values greater than 35 μ g/m³), winds are generally from the southwest. These pollution roses indicate that violating monitors in the Philadelphia-Wilmington area are downwind of both northern and southern New Castle County. (See Figures 6.1 through 6.7)

The pollution rose below for the Delaware County monitor, Figure 6.1, indicates that for most high $PM_{2.5}$ days, winds are from the southwest, demonstrating an influence from northern New Castle County and other areas further southwest. Occasional high days show winds from the east and northeast.

Figure 6.1. Pollution Trajectory Plot for Delaware County, PA (Site 42-045-0002)

High $PM_{2.5}$ days at the Chester County monitor are from the south and south-southwest and occasionally from the east-southeast. Winds from the east-southeast would pass through New Castle County. (See Figure 6.2.)

Figure 6.2. Pollution Trajectory Plot for Chester County, PA (Site 42-029-0100)

The following pollution rose, Figure 6.3, shows that high $PM_{2.5}$ days at the Camden County monitor are from the predominantly from the southwest, indicating that Philadelphia, Delaware, and New Castle Counties and other areas further southwest are impacting this monitor. Occasional high days show winds from the east.

Figure 6.3. Pollution Trajectory Plot for Camden County, NJ (Site 34-007-1007)

The two Philadelphia monitors below show winds from the southwest on most high $PM_{2.5}$ days. However, the Center City Philadelphia monitor (421010047, 500 South Broad Street) shows occasional high days from the east. The monitor further north in Philadelphia (421010004, 1501 E Lycoming Ave.) shows occasional high days with winds from the west. (See Figures 6.4 and 6.5.)

Figure 6.4. Pollution Trajectory Plot for Philadelphia County, PA (Site 42-101-0047)

Figure 6.5. Pollution Trajectory Plot for Philadelphia County, PA (Site 42-101-0004)

In her December 18, 2007 designation recommendation letter, Governor Minner of Delaware stated that nonattainment in New Castle County is a localized issue, within the county itself. Local mobile source emissions near the downtown Wilmington monitor (the MLK monitor), including traffic on MLK Boulevard and Interstate I-95, a large bus depot, and the CSX/Norfolk Southern Railroad, are cited the cause of the nonattainment problem. (See Figure 6.6.) A local component is evident in the pollution rose for the downtown Wilmington monitor, which shows some high $PM_{2.5}$ days with low to moderate speed winds from all points of the compass. (See Figure 6.7.)

However, the similar local emission sources can be cited for the violating monitors in Philadelphia, Chester, and Camden Counties, which are also located near interstate highways. The Philadelphia monitors are located in highly urbanized areas, with traffic congestion. Furthermore, Figure 6.7 also shows prevailing southwesterly winds, which are typical in the Philadelphia-Wilmington area and also imply that this air quality monitor is also affected by regional transport.

Figure 6.6. Photo of the Downtown Wilmington Monitor from Delaware's December 18, 2007 designation recommendation letter

Aerial Photograph (2006) of MLK Monitor in Wilmington

Philadelphia-Wilmington Area

Figure 6.7. Pollution Trajectory Plot for Wilmington, New Castle County, DE (Site 10-003-2004)

In her recommendation letter, Governor Minner also stated that studies indicate that long range interstate transport of power plants sulfate emissions is the most significant contributor to $PM_{2.5}$ concentrations in Delaware and the Philadelphia MSA, and that emissions from the entire state of Delaware contribute little to concentrations in the Philadelphia area. EPA agrees that power plant emissions are a major contributor. In fact, there is a large power plant in New Castle County. In 2006, the Edge Moor facility in New Castle County had SO₂ emissions of nearly 8,000 tons and NOx emissions of over 2,200 tons.

Considering all the information set out above, EPA has determined that New Castle County contributes to the nonattainment problem at downwind monitors in the Philadelphia-Wilmington area.

Factor 7: Geography/Topography (Mountain Ranges or Other Air Basin Boundaries)

The geography/topography analysis looks at physical features of the land that might have an effect on the air shed and, therefore, on the distribution of $PM_{2.5}$ over the Philadelphia-Wilmington area.

The Philadelphia-Wilmington area does not have any geographical or topographical barriers significantly limiting air-pollution transport within its air shed. Therefore, this factor did not play a significant role in the decision-making process.

Factor 8: Jurisdictional Boundaries (e.g., Existing PM and Ozone Areas)

In evaluating the jurisdictional boundary factor, consideration is being given to existing boundaries and organizations that may facilitate air quality planning and the implementation of control measures to attain the standard. Areas designated as nonattainment (e.g., for $PM_{2.5}$ or 8-hour ozone standard) represent important boundaries for state air quality planning.

From an EPA Region III perspective, the major jurisdictional boundaries in the Philadelphia-Wilmington area are the state lines between Pennsylvania, Delaware, and New Jersey. Airquality monitors that violate the 2006 PM_{2.5} NAAQS in the Philadelphia-Wilmington area are located in Pennsylvania, Delaware, and New Jersey. However, the Delaware Valley Regional Planning Commission (DVRPC), the metropolitan planning organization (MPO) in the Philadelphia area, serves Bucks, Chester, Delaware, Montgomery, and Philadelphia Counties in Pennsylvania, and Burlington, Camden, Gloucester, and Mercer Counties in New Jersey. New Castle County, DE is in a separate MPO, the Wilmington Area Planning Council (WILMAPCO). WILMAPCO is the Metropolitan Planning Organization for New Castle County, Delaware and Cecil County, Maryland.

On the other hand, areas designated as 8-hour ozone nonattainment areas are also important boundaries for state air quality planning. Bucks, Chester, Delaware, Montgomery, and Philadelphia Counties in Pennsylvania; New Castle, Kent, and Sussex Counties in Delaware; Cecil County, Maryland; and Atlantic, Burlington, Camden, Cape May, Cumberland, Gloucester, Mercer, Ocean, and Salem Counties in New Jersey were included in the Philadelphia-Wilmington-Atlantic City 8-hour ozone nonattainment area. Furthermore, Bucks, Chester, Delaware, Montgomery, Philadelphia, and New Castle Counties (plus additional counties in Delaware, Maryland, and New Jersey) were also included in the Philadelphia-Wilmington-Trenton severe 1-hour ozone nonattainment area, which is no longer subject to the 1-hour ozone standard. Other counties included in this 9-factor analysis are also designated as 8-hour and 1hour ozone nonattainment areas, but are not associated with the Philadelphia-Wilmington area. A goal in designating PM_{2.5} nonattainment areas is to achieve a degree of consistency with ozone nonattainment areas. In EPA Region III, comparison of ozone areas with potential PM_{2.5} nonattainment areas, therefore, gives added weight to inclusion of New Castle County, DE in the Philadelphia-Wilmington nonattainment area.

In her December 18, 2007 designation recommendation letter, Governor Minner of Delaware states that New Castle County should be a nonattainment area separate from the Philadelphia area because Delaware did not develop a joint air quality plan for the 1997 PM_{2.5} standard, and does not anticipate the need to do so for the 2006 PM_{2.5} standard. Furthermore, Governor Minner states the regional planning organizations (RPOs) which include Delaware, Pennsylvania, and New Jersey are already working together regarding visibility planning (regional haze) to reduce SO₂, NOx, and PM, and that joint efforts among the states would increase the administrative burden. Finally, Governor Minner states that Delaware will continue to actively interact with EPA and its RPOs, the Ozone Transport Commission (OTC), and the Mid-Atlantic/Northeast Visibility Union (MANE-VU).

New Castle County has historically been part of the Philadelphia nonattainment area for ozone (1-hour and 8-hour) and $PM_{2.5}$. Delaware, Pennsylvania, and New Jersey have a long history of working cooperatively through the OTC and with ozone attainment planning. Therefore, EPA does not anticipate that including New Castle County as part of the Philadelphia nonattainment area for the 2006 $PM_{2.5}$ NAAQS will be an undue burden on Delaware.

Factor 9: Level of Control of Emission Sources

This factor considers emission controls currently implemented for major sources in the Philadelphia-Wilmington area.

The emission estimates on Table 1.0 (under Factor 1) reflect implementation of control strategies implemented by the states in the Philadelphia-Wilmington area before or during 2005 that may influence emissions of any component of $PM_{2.5}$ emissions (i.e., total carbon, SO₂, NOx, and crustal $PM_{2.5}$).

In her December 18, 2007 recommendation letter, Governor Minner of Delaware stated that between 2000 and 2012, New Castle County will achieve a 75% reduction in SO_2 emissions and a 62% reduction in NOx emissions due to state and federal programs, and projects that in 2012 the county will have the second highest emissions in the Philadelphia-Wilmington area. However, EPA is only considering controls in place and federally enforceable at the time of designation, i.e., by 2008. Therefore, these planned controls are not being considered in this analysis.

In New Castle County, DE, the former Motiva Enterprises' Delaware City Refinery has reduced its emissions since 2005. (See Table 9.0.) Under a 2001 consent decree (CD), Motiva Enterprises' Delaware City Refinery was required to install emission controls on two if its processes, a fluid catalytic cracking unit, which breaks apart petroleum molecules so they can be refined into fuels, and the fluid coker unit, which then captures dirty, heavier materials for secondary processing into products like asphalt. Scrubbers were required on both units to reduce SO₂ emissions. The CD required Motiva to have the controls in place by 2006. Regenerative wet gas scrubbers are currently operating on the fluid catalytic cracking unit and fluid coker unit.

Note: In 2004, Premcor Inc. purchased the Delaware City refining complex from Motiva Enterprises LLC. In 2005, Valero Energy Corporation purchased Premcor, Inc.

I HOIC /	.o. i offici		mery Limss.	10113, 2002 (0 2007			
Year	SO ₂	NO ₂	PM-Con	PM _{2.5} -Fil	PM ₁₀ -Fil	CO	VOC	NH ₃
2002	34,096.5	3,534.8	89.9	1,218.2	1,291.3	3,857.9	829.9	43.0
2003	34,149.7	3,403.8	94.7	1,008.3	1,037.5	6,448.1	596.3	19.9
2004	27,533.8	3,459.6	417.3	5.6	1,187.1	9,692.6	698.1	102.4
2005	26,476.1	2,954.3	430.2	32.9	640.4	4,021.4	662.9	28.1
2006	25,988.6	2,921.6	91.2	0.4	849.6	3,048.2	334.5	7.8
2007	2,937.9	2,838.9	98.7	-	399.5	2,612.4	266.8	17.4

Table 9.0. Former Motiva Refinery Emissions, 2002 to 2007

Note: Data was rounded to the nearest tenth

Source: This data was obtained from the following letters, which DNREC supplied to EPA.

• 5/6/2003 letter from Franklin R. Wheeler, Refinery Manager, Motiva Enterprises LLC to the DNREC

Air Quality Management Section, transmitting the Annual Emissions Inventory for 2002 summarizing emissions from the Motiva Enterprises' Delaware City Refinery, modified by letter dated 1/8/2004 from E.M, Piovoso, Motiva Enterprises LLC

- 10/26/2004 letter from Berta Molina, Manager, Regulatory Affairs, Motiva Enterprises LLC to the DNREC Air Quality Management Section, transmitting the Annual Emissions Inventory for 2003 summarizing emissions from the former Motiva Enterprises' Delaware City Refinery
- 4/27/2005 letter from Cathe Kalisz, Environmental Manager, Premcor Refining Group, Inc., to the DNREC Air Quality Management Section, transmitting the 2004 Annual Air Emissions Inventory and Emissions Statement Report for the Premcor Refining Group Inc. – Delaware City Refinery and modified by hand on 9/8/2005 per "Data Base"
- 5/31/2006 letter from Cathe Kalisz, Staff Environmental Engineer, Valero Delaware City Refinery, to the DNREC Air Quality Management Section, transmitting the 2005 Annual Air Emissions Inventory and Emissions Statement Report for the Premcor Refining Group Inc. Delaware City Refinery
- 4/30/2007 letter from Scott Mesavitz, Associate Environmental Engineer, Valero Delaware City Refinery, to the DNREC Air Quality Management Section, transmitting the 2006 Annual Air Emissions Inventory and Emissions Statement Report for the Premcor Refining Group Inc. – Delaware City Refinery
- 4/29/2008 letter from Cathe Kalisz, Staff Environmental Engineer, Valero Delaware City Refinery, to the DNREC Air Quality Management Section, transmitting the 2007 Annual Air Emissions Inventory and Emissions Statement Report for the Premcor Refining Group Inc. Delaware City Refinery

As shown above in Table 9.0, SO_2 emissions at the former Motiva refinery were reduced from 26,476.1 tons in 2005 to 2,937.9 tons in 2007. This 23,538.2 ton reduction brings the New Castle County emissions in Table 1.0 (Factor 1) from 50,955 tons to 27,417 tons. Thus, even with this reduction, New Castle County's SO_2 emissions are still the highest of all the counties in the Philadelphia-Wilmington nonattainment area for the 1997 $PM_{2.5}$ NAAQS. Furthermore, in 2007, the former Motiva refinery still emitted had 2,937.9 tons of SO_2 emissions (more than all of Camden County) and 2,838.9 tons of NO_2 .

Table 9.1, below, shows emissions and controls (current and projected) for EGUs with SO_2 plus NO_x emissions greater than 5000 tons. Data was obtained from the 2006 National Electric Energy Data System (NEEDS) database. With the exception of the Brunner Island facility in York County, which has a projected date of 2008 for a scrubber on one of its three units, none of the EGUs in the counties in the Philadelphia-Wilmington nonattainment area for the 1997 $PM_{2.5}$ NAAQS put control in place between 2005 and 2008. Therefore, the level of control of EGUs is not a major factor in this analysis.

ualabase									
County	Plant Name	Plant	Unique ID Final	2006	2006	Scrubber	Scrubber	SCR	Capacity
	1	Туре		SO ₂	NOx	Online	Efficiency	Online	MW
						Year		Year	
New Castle, DE	Edge Moor	Coal	593_B_4	5,671	1,485				174.0
	×	Steam	593_B_3	2,072	600				86.0
			593_B_5	239	179				445.0
Philadelphia, PA	Schuylkill	Oil/Gas	3169_B_1	95	43				166.0
	Generating Station	Steam							
Delaware, PA	Chester Operations	Coal	50410_B_10						
	_	Steam							20.
	Eddystone	Coal	3161_B_2	2,811	2,519		91.6		36.0

Table 9.1. EGUs with SO₂ plus NO_x emissions > 5000 tons, from the 2006 NEEDS EGU database

County	Plant Name	Plant Type	Unique ID Final	2006 SO ₂	2006 NOx	Scrubber Online	Scrubber Efficiency	SCR Online	Capacity MW
	Generating Station	Steam	3161 B 1	3.240	2.701	1983	93.2	rear	309.0
			3161 B 3	217	101	1982	93.2		279.0
	e .		3161 B 4	186	88	1702	75.2		380.0
Gloucester NI	Logan Generating	Coal	10043 B B01	100	1 160	100/	03.0	2000	210.0
	Plant	Steam			1,107	1994	95.0	2000	219.0
Chester, PA	Cromby	Coal	3159_B_1	3,435	1,581	1982	93.8		48.0
	Generating Station	Steam	3159_B_2	178	112				201.0
11 - 11 - 11 - 11 - 11 - 11 - 11 - 11			3159_B_FB1	3,435	1,581		89.0		48.0
			3159_B_FB2	3,435	1,581		89.0		48.0
York, PA	P H Glatfelter	Coal Steam	50397_B_5PB036		7		91.6		36.1
	PPL Brunner	Coal	3140_B_3	45,447	6,288	2008	95.0		749.0
	Island	Steam	3140_B_2	26,606	3,600	2009	95.0		378.0
	×		3140_B_1	21,492	2,866	2009	95.0		321.0
Salem, NJ	Chambers	Coal	10566_B_BOIL2	0	771	1994	87.6	1994	131.0
	Cogeneration LP	Steam	10566_B_BOIL1	0	758	1994	93.0	1994	131.0
	Deepwater	Coal Steam	2384_B_8	1,503	732				80.0
		Oil/Gas Steam	2384_B_1	0	18				86.0
Mercer, NJ	PSEG Mercer	Coal	2408_B_1	7,520	1,695	2010	90.0	2004	315.3
	Generating Station	Steam	2408_B_2	6,997	2,196	2010	90.0	2004	309.9
Berks, PA	Titus	Coal	3115_B_3	4,718	708				81.0
		Steam	3115_B_1	4,666	699				81.0
			3115_B_2	3,954	589				81.0
Kent, DE	McKee Run	Oil/Gas Steam	599_B_3	51	40				103.0
Northampton, PA	Northampton Generating Company	Coal Steam	50888_B_BLR1	0	422		91.6		112.0
	Portland	Coal	3113_B_2	18,187	2,207				243.0
		Steam	3113_B_1	12,497	1,144				157.0
	PPL Martins Creek		3148_B_3	502	434				850.0
		Oil/Gas Steam	3148_B_4	351	261				820.0
	Foster Wheeler Mt Carmel Cogen	Coal Steam	10343_B_SG-101	492	246	1990	88.0		43.0
Middlesex, NJ	PSEG Sewaren	Oil/Gas	2411_B_4	29	66				116.0
	Generating Station	Steam	2411_B_3	26	33				105.0
			2411_B_2	13	17				101.0
			2411_B_1	12	9				95.0

In considering county-level emissions, EPA considered 2005 emissions data from the National Emissions Inventory. EPA recognizes that certain power plants or large sources of emissions in this potential nonattainment area may have installed emission controls or otherwise significantly reduced emissions since 2005 and that this information may not be reflected in this analysis. EPA will consider additional information on emission controls in making final designation decisions. In cases where specific plants already have installed emission controls subsequent to 2005 or plan to install such controls in the near future, EPA requests additional information on:

- the plant name, city, county, and township/tax district,
- identification of emission units at the plant, fuel use, and megawatt capacity,
- identification of emission units on which controls will be installed, and units on which controls will not be installed,
- identification of the type of emission control that has been or will be installed on each unit, the date on which the control device became / will become operational, and the emission reduction efficiency of the control device,
- the estimated pollutant emissions for each unit before and after implementation of emission controls, and
- whether the requirement to operate the emission control device will be federally enforceable by December 2008, and the instrument by which federal enforceability will be ensured (e.g. through source-specific SIP revision, operating permit requirement, consent decree).

Attachments to the EPA Technical Analysis for the Philadelphia-Wilmington Area

- 5/6/2003 letter from Franklin R. Wheeler, Refinery Manager, Motiva Enterprises LLC to the DNREC Air Quality Management Section, transmitting the Annual Emissions Inventory for 2002 summarizing emissions from the Motiva Enterprises' Delaware City Refinery, modified by letter dated 1/8/2004 from E.M. Piovoso, Motiva Enterprises LLC
- 10/26/2004 letter from Berta Molina, Manager, Regulatory Affairs, Motiva Enterprises LLC to the DNREC Air Quality Management Section, transmitting the Annual Emissions Inventory for 2003 summarizing emissions from the former Motiva Enterprises' Delaware City Refinery
- 4/27/2005 letter from Cathe Kalisz, Environmental Manager, Premcor Refining Group, Inc., to the DNREC Air Quality Management Section, transmitting the 2004 Annual Air Emissions Inventory and Emissions Statement Report for the Premcor Refining Group Inc. – Delaware City Refinery and modified by hand on 9/8/2005 per "Data Base"
- 5/31/2006 letter from Cathe Kalisz, Staff Environmental Engineer, Valero Delaware City Refinery, to the DNREC Air Quality Management Section, transmitting the 2005 Annual Air Emissions Inventory and Emissions Statement Report for the Premcor Refining Group Inc. – Delaware City Refinery
- 4/30/2007 letter from Scott Mesavitz, Associate Environmental Engineer, Valero Delaware City Refinery, to the DNREC Air Quality Management Section, transmitting the 2006 Annual Air Emissions Inventory and Emissions Statement Report for the Premcor Refining Group Inc. – Delaware City Refinery
- 4/29/2008 letter from Cathe Kalisz, Staff Environmental Engineer, Valero Delaware City Refinery, to the DNREC Air Quality Management Section, transmitting the 2007 Annual Air Emissions Inventory and Emissions Statement Report for the Premcor Refining Group Inc. – Delaware City Refinery

Franklin R. Wheeler Refinery Manager

MAY 0 9 2003 1463

May 6, 2003 CMRRR# 7000 0600 0029 2933 6645

The Air Quality Management Section, DNREC Attn: Emission Inventory Department 156 S. State St. Dover, Delaware 19901

Dear Sirs/Madams:

This submittal represents the Annual Emission Inventory for 2002 summarizing emissions from Motiva Enterprises' Delaware City Refinery. Included, as part of the submittal, is one disk labeled as follows:

Motiva Enterprises - Delaware City Refinery - Emission Inventory 2002, Tanks and Water8

Attachment 1 is a summary of the facility emissions including the signed certification statement.

Starting in 1999, the Department requested that HAP emissions be included as part of the Annual Emission Inventory. This type of information is reported as part of the TRI submittal for the Delaware City refinery. The TRI must be submitted by July 1, 2003 for the year 2002. When the HAP emissions estimates are completed for TRI reporting this information will also be supplied to you.

The following comments are offered regarding the 2002 submittal;

Flaring emissions – The refinery flare gas system is equipped with two flare gas recovery compressors. Gases that are vented to the flare system are recovered and returned to the refinery fuel gas system. When the amount of material vented to the flare system exceeds the capacity of the flare gas recovery compressors, a flaring event occurs. Emissions from the pilot gases on the flares are included under the process "Flare". Emissions associated with the gases flared are included under the process "Accidental Releases"

NO_x Controls on the Repowering Combustion Turbines (CTs) - The method of controlling NO_x on the CTs is dependent on the type of fuel combusted. Steam injection is used for NO_x control for operation on low sulfur diesel. Nitrogen guench is used for NO_x control for syn gas operation.

Ammonia Emissions – The major sources of ammonia emissions are the Fluid Coker and the Fluid Catalytic Cracker. Although these emissions have been reported in the TRI for previous years, ammonia emissions are included for the first time in the 2002 emission inventory.

2000 Wrangle Hill Road

Fax: (302) 834-6498

Several additional potential sources of ammonia emissions were reviewed and were not included because they are relatively insignificant. The Precombustor combusts waste gas ammonia. It is equipped with SNCR controls. The exhaust from the Precombustor goes to process heater 21-H-701. Based on in-house technical guidance for combustion equipment, a combustion efficiency of 99% is applied to this process heater. Potential ammonia emissions are estimated to be approximately 25 pounds per year.

Evaporative ammonia emissions at the Waste Water Treatment Plant (WWTP) were also evaluated. These emissions are estimated to be approximately 18 pounds per year. Due to the low level of these ammonia emissions, neither source was included in the emission inventory.

Ammonia is injected into Crude Unit distillation column 21-C-2, and into various heat exchangers for pH control. The condensate containing ammonia is treated in the foul water system. There are no air emissions associated with this process.

Emission Factors - It appears that the emission factors used by the i-Steps software for the automatic calculation of pollutants for certain sources have changed from those used in past years. For VOC, PT, and CO emissions, these updated factors are 2 to 3 times greater than past factors. Motiva is concerned that the use of these revised factors may result in perceived non-compliances with annual permit limits for some sources due purely to a change in the method of calculation. Until this matter can be fully evaluated, Motiva will continue to use emission factors consistent with past emission inventory submittals.

Constant Information in i-Steps - Most information is erased by the Department each year prior to releasing the i-Steps software to reporting facilities. Some information such as tank capacities does not change from year to year. If this information were left intact, it would result in a substantial time saving.

If you have any questions regarding this information, please contact Ms. Betty Piovoso at (302) 834-6305.

Sincerely,

mthe R Which

Franklin R. Wheeler **Refinery Manager**

EMP/ Attachments

January 8, 2004 CMRRR# 7003 0500 0000 8487 0330

The Air Quality Management Section, DNREC Attn: Emission Inventory Department 156 S. State St. Dover, Delaware 19901

Dear Sirs/Madams:

Motiva Enterprises submitted the Annual Emission Inventory for 2002 in a letter to you dated May 6, 2003. Based on a review of emissions associated with the power plant boilers 1, 2, 3 and 4, revised SO₂ emissions are provided as follows;

	Boiler 1	Boiler 2	Boiler 3	Boiler 4
SO ₂ Emissions, tons				
Gas	0.9 234.7	0.9	0.9	0.8
Oil	641.2	0	621.2	972.0
Fuel Usage	646			
Gas, MMSCF	2140	2150	2035	1933
Oil, Mgallons	9014	0	8706	13726
Fuel Wt % Sulfur				
Gas	0.0009	0.0009	0.0009	0.0009
Oil	0.89	0.89	0.89	0.89
Emission Factors				
Gas	950*Wt % Su	lfur		
Oil	159.3*Wt % S	Sulfur		

If you have any questions regarding this information, please contact me at (302) 834-6305.

Sincerely,

E. M. Piovoso

EMP/

Delaware City Refinery 2000 Wrangle Hill Road Delaware City, DE 19706 Phone: (302) 834-6000 Fax: (302) 834-6498

Attachment 1

05/05/2003

2002 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page

Facility Name: MOTIVA

me: _____MOTIVA ENTERPRISES, LLC - DELAWARE CITY

Facility Id:

TT II

00016

Group ID#	Group Description		VOC	NO2	CO	SO2	PM	PM10	PM25	NH3
<u>_001</u>	COKER W/O COB W/ INCINRTR		5.4	13.7	65.9	1133.3	69.2	69.2		
002	FLUID COKER CO BOLER 22H3		91.4368	610.1	1142.96	18327.6	236.8	111.1		3.3
003	HEATER 22-H-2		0.1442	7.21	1.8025	0.04892	0.1545	0.1545		
004	COKE HANDLING EQUIPMENT			1977			37.5			
005	CRUDE UNIT							ε.,		
006	HEATER #1 FOR UNIT 21-H-1		17-1	1000		i da ta s	16.5	22.7		
007	HEATER #2 FOR UNIT 21-H-2		2.1224	87.6	0.9	0.7201	2.274	2.274		
008	FOUL WATER TREATMENT SYS.									
009	2 SOLUTIZER PLANTS									
010	COKER GASOLINE MEROX PLT	1	13	1.	0.0	13.1				
011	CRACKER W/O CO BOILER	_	190.5							
012	CRACKER CO BOILER		121.886	738.8	1523.58	11420.4	1019.42	765.022	_	4.2
013	TETRA HEATER 32-H-101		0.3682	15.2	4.6025	0.12492	0.3945	0.3945		
014	TETRA HEATER 32-H-102	_								
015	TETRA HEATER 32-H-103	_	3.2676		14.	1 1026	3 664	1.601		
016	ALKYLATION FEED MEROX PLT	1.				113.9				
012	POLYMERIZATION MEROX PLT	_	.01.34	6.65	1.6629	74.5	0.1454			
010	ALKY & POLY UNITS	_	0.2055	10.29	3.6336	0.0608	19.3.3.03	0.53126		
019	REFORMER, HEATER 25-H-1A	_	0.3682	18 41	4.6024	0.12490	0.30%	0.5675		
020	REFORMER, HEATER 25-H-1B	_	YOC -	NOT	00	602	15/1	6/160	1.3125	-N83
021	CATALYTIC REFORMER UNIT	_					•			
022	EMERGENCY TAIL GAS TREATR	group 1	Level Labia	signs Sur	HID MAL					
023	NAPHTHALENE PLANT	_								
024	NAPTHALENE PLT HTR 33-H-1	DEF	AWARE C	A.L.K					-	
025	NAPTHALENE PLT HTR 33-H-2	_								
027	SULFUR RECOVERY UNIT 1	- in is she	0.1	4.5	1.1	20.9864	0.6	0.6		
020	SULFUR RECOVERY UNIT 2	NA INI	0.1	4.8	1.2	26.8106	0.7	0.7		1,250, 5
029	HYDROCRACKER									

2002 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT

A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name: MOTIVA ENTERPRISES, LLC - DELAWARE CITY

Facility Id:

00016

Group ID#	Group Description		VOC	NO2	CO	SO2	PM	PM10	PM25	NH3
030	HYDROCRACKER HTR 36-H-1	0 100 - 1	0.3682	18.41	4.6025	0.12492	0.3945	0.3945		
031	HYDROCRACKER HTR 36-H-3		0.2058	10.29	2.5725	0.06982	0.2205	0.2205		
032	HYDROCRACKER HTR 36-H-2		0.133	6.65	1.6625	0.04512	0.1425	0.1425		
033	HYDROCRACKER HYDROGEN PLT									
034_	HYDROCRACKER H2 HTR 37-H1		3.2676	79.3	13.7	1.10865	3.501	3.501		
040	TOLUENE FACILITY	84								
043	BENZENE EXTRACTION FAC.									
044	AROMATICS FACT. FACILITY									
050_	CPI&API SEPARATOR, TANKS		199.5							
051	WASTEWATER TREATMNT PLANT	820.1	4.2	3.7	0.9					
052	OIL RECOVERY SYSTEM								-	
066	TRASH INCINERATOR									
067_	BOILER 4		6.61512	418.9	46.9	973.792	82.2943	61.5299		
068	BOILER 1		0.1	369.8	7.5	1147.3	48.2	65.8		
069	BOILER 2		3	204,9	MO1	1.4	3.8	8.2		
070	BOILER 3				0.5	1108.1	55.5	61.3		
071	METHANOL PLANT									
/ 072_	METHANOL PLT HTR 41-H-1		0.4	M.C. 115	4.5	0.12207	0.4	0.3855		
073	NEW CCR REFORMER #1									
<u>v074</u>	NEW CCR REF. HTR 42-H-1		1.6394	82.2	0.4	0.55622	1.7565	1.7565		
V 075	NEW CCR REF. HTR 42-H-2		1.5792	79.2	0.4	0.5358	1.692	1.692		
V076	NEW CCR REF. HTR 42-H-3		0.6846	34.3	0.2	0.23227	0.7335	0.7335		
077_	NEW CCR REF. HTR 42-H-7		0.6216	25.6	0.3	0,2109	0.666	0.666		
078	OLEFINS PLANT									
080	FLARE SYSTEM		0.3	2.6	18.9					
081	BARGE LOADING		9.0715	5.2	13.2					
082_	LAND TREATMENT (TSDF)			'						
083	VALVE MAINTENANCE		41.1							

2002 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name: MOTIVA ENTERPRISES, LLC - DELAWARE CITY

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM	PM10	PM25	NH3
084	HYDROD TRAIN HTR 29-H-101	0.4	23.5	6	0.13775	0.4	0.435		
085	HYDRODS. TRAIN HTR 29-H-8	0.6	24.5	1.5	0.20045	0.6	0.633		
086	HYDRODS. TRAIN HTR 29-H-1								
088	HYDRODESULFURIZER TRAIN 1		-						
089	HYDRODESULFURIZER TRAIN 2								
090	HYDRODS, TRAIN HTR 29-H-2	0.4242	21.21	5.3025	0.14392	0.4545	0.4545		
091	HYDRODS. TRAIN HTR 29-H-3	0.0728	3.64	0.91	0.0247	0.078	0.078		
092	HYDRODS. TRAIN HTR 29-H-9	0.2212	11.06	2.765	0.07505	0.237	0.237		
093	HYDRODESULFURIZER TRAIN 3								
094	HYDRODESULFURIZER TRAIN 4	<u> </u>							
095	HYDRODS. TRAIN HTR 29-H-4	0.1834	11.8	0.3	0.06222	0.1965	0.1965		
096	HYDRODS. TRAIN HTR 29-H-7	0.2002	10.01	2.5025	0.06792	0.2145	0.2145		
097	HYDRODESULFURIZER TRAIN 5								
098	HYDRODS. TRAIN HTR 29-H-5	0.35	22.1	1.5	0.11875	0.375	0.375		
099	HYDRODS. TRAIN HTR 29-H-6	0.3598	10.7	45.4	0.12207	0.3855	0.3855		
100	STACK GAS SCRUBBER								
101	H2 CARBON DRUM VENT								
102	NAPHTHA TREATER	5.32			201.5				
105	CRUDE UNIT HEATR 21-H-701	0.9	73.1		23,2189	18.4	18.4		
106	HTR FOR COKER SHU UNIT	0.4606	23,03	5.7575	0.15627	0.4935	0.4935	11133	NH3
110	CRACKER REGEN BYPASS							-	
125	CNHTU HEATR 25-H-401	- <u>6.41, 233</u>	1.97	0,052	0.06555	0.315	0.315		
126	<u>CNHTU HTR 25-H-402</u>	0.01	3.24		0.14012	0.56	0.56		
130	ACID PLANT								
135	PROD TANK #135	2.24							
136	PROD TANK #136	2.38	is court	1.04.00		<u></u>			
137	PROD TANK #137	2.28		<u></u>					alle d
139	PROD TANK #139	1.64							

2002 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

-

Facility Name: MOTIVA ENTERPRISES, LLC - DELAWARE CITY

Facility Id:

00016

Group Level Emissions Summary

Group ID#	Group Description	VOC	NO2	CO	SO2	PM	PM10	PM25	NH3
145	PROD TANK #145	2.16		-					
146	PROD TANK #146	2.36							
147	PROD TANK #147	2.72		-					
149	PROD TANK #149	1.22							
150_	PROD TANK #150	2.7			_				
161	PROD TANK #161	2.85			-				
162	PROD TANK #162	2.84							
163	PROD TANK #163	3.03							
165	PROD TANK #165	1.89							
166	PROD TANK #166	2.95							
167	PROD TANK #167	1.38							
181	PROD TANK #181	2.65							
182	PROD TANK #182	2.73							
183	PROD TANK #183	3.85			-				
185	PROD TANK #185	1.88							
186	PROD TANK #186	0.51					-		
187	PROD TANK #187	1.5		-					
201	PROD TANK #203	2.15							
202	PROD TANK #202	0.12							
203	PROD TANK #203								
204	PROD TANK #204	1.2							
205	PROD TANK #205	0.17							
206	PROD TANK #206	0.49							
223	PROD TANK #223	2.21						· · · · · · · · · · · · · · · · · · ·	
224	PROD TANK #224	1.77							
225	PROD TANK #225	0.42							
227	PROD TANK #227	0.1							
241	PROD TANK #241	0.38						-	

Page 4

2002 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 5

Facility Name:

MOTIVA ENTERPRISES, LLC - DELAWARE CITY

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM	PM10	PM25	NH3
242	PROD TANK #242	0.35							
243	PROD TANK #243	0.24							
244	PROD TANK #244	3.27							
245	PROD TANK #245	1.67							
246	PROD TANK #246	4.61							
248	PROD TANK #248	0.13					-		
250	HYDROGEN PLANT VENT	22.4			181	1.2	5.1		
261	PROD TANK #261	0.29							
262	PROD TANK #262						2.5		
263	PROD TANK #263								
264	PROD TANK #264	2.75							
265	PROD TANK #265	1.78							
266	PROD TANK #266	0.67							
268	PROD TANK #268	0.15							
281	PROD TANK #281	0.03							
282	PROD TANK #282	0.04							
283	PROD TANK #283	0,22							
284	PROD TANK #284	0.25							
285	PROD TANK #285	0.16							
286_	PROD TANK #286	0.16	2417			1.24	<u> </u>	1.71	2143
331	BENZENE TANK T 331								
332	BENZENE TANK T 332	STREET PROVIDENTS	1000000	NOTION A					
401	TOLUENE TANK #401								
402	TOLUENE TANK #402	State Constants					-		
405	TANK #405	0.01							
406	TANK #406	0.01	<u></u>	1.000		TRACE			
407	TANK #407	0.2							10 0
408_	TANK #408								

2002 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT 05/05/2003 A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name: MOTIVA ENTERPRISES, LLC - DELAWARE CITY

Facility Id:

00016

Group Level Emissions Summary

Group ID#	Group Description	VOC	NO2	CO	SO2	PM	PM10	PM25	NH3
470	TANK #470								
471	TANK #471								
481	TANK #481								
500	TANK #500								
502	<u>TANK #502</u>								
503	TANK #503								
504	TANK #504								
505	TANK #505								
520	PROPANE PIT FLARE	0.2	0.2	1.6					
521	RFG COOLING TOWER	0.1				2.8	2.8		
523	REPOWERING COOLING TOW					2.23	2.23		
527	REPOWERING CT1	4.31	63.2	5.7	46.2	5.82	5.82		
528	REPOWERING CT2	1.79	34	1.3	15.1	2.38	2.38		
530	REPOWER - RAW GAS FLARE		2.1	112.4	222.5				
532_	REPOWER - CLEAN GAS FLARE		20,2	198.3	15.5				
550	TANK #550								
551_	TANK #551								
552	TANK #552								
553	TANK #553								
560	TANK #560	1.72							
561	TANK #561								
562	TANK #562								
563	TANK #563	0.08							-
564	TANK #564								
565_	TANK #565								
566	TANK #566	0.04							
570_	BENZENE TANK T 570								
571	AROMATICS TANK T 571						-		-

Page 6
05/05/2003

2002 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page

7

Facility Name: MOTIVA ENTERPRISES, LLC - DELAWARE CITY

Facility Id:

00016

Group ID#	Group Description	VOC NO	2 CO	SO2	PM	PM10	PM25	NH3
572	AROMATICS TANK T 572							
580	TANK #580	0.57						
581	TANK #581				0.05561.1			- inquin
582	TANK #582	0.1						p p sps
583	TANK #583	0.09						
584	TANK #584	0.42						
901	CRUDE TANK #1 F-SS	1.07						
902	CRUDE TANK #2 F-SS	1.85	1					10 8
903	CRUDE TANK #3 F-SS							
904_	CRUDE TANK #4 F-SS	1.58						
905	CRUDE TANK #5 F-SS	1.7						
906_	CRUDE TANK #6 F-SS	1.96						
907	CRUDE TANK #7 F-SS	1.69						
908	CRUDE TANK #8 F-SS	1.39						
909	CRUDE TANK #9 F-DS	1.56						
910	CRUDE TANK #10 F-SS	2.25						
911	CRUDE TANK #11	2.11						
912	CRUDE TANK #12	2.36						
944	INTER. TANK #44	0.87						
945	INTER. TANK #45	8.73					1.00	14530
947	INTER. TANK # 47	0.21						
948	INTER. TANK #48	0.47						
950	INTER. TANK #50	0.5						
951	INTER. TANK #51	0.39						-
960	INTER, TANK #60	0.02						
961	INTER. TANK #61	and the second s						
962	INTER, TANK #62	0.01						
965	INTER, TANK #65	0.02			90.2013	53 (51 284).		

05/05/2003

Facility Name:

Facility Id:

Group ID#

966

971

972

973

974

975

976

977

978

999

2002 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

MOTIVA ENTERPRISES, LLC - DELAWARE CITY 00016 **Group Level Emissions Summary Group Description** VOC NO2 CO SO₂ PM **PM10 PM25** NH3 12.1 **INTER. TANK #66 INTER. TANK #71** 1.15 **INTER. TANK #72** 0.48 **INTER. TANK #73 INTER. TANK #74** 0.02 INTER. TANK #75 0.01 **INTER. TANK #76** 0.06 **INTER. TANK #77 INTER. TANK #78** 0.08 18.7 ACCIDENTAL RELEASES +910,4 Spo 530+532 GROUP LEVEL AIR EMISSION INVENTORY SUMMARY Page 8 VOC NO2 CO SO2 PT **PM10 PM25** NH3 3511.02 2918 870 7.5 651.7758 34909.12 1602.283 1191.774 **Total Emissions** 2533,32* 3849. 579*

Pursuant to Regulation No. 30, I, the undersigned, am a Responsible Official and I have personally examined and am familiar with the information submitted in this document and all of its attachments certify, based on information and belief formed after reasonable inquiry the statements and information in the document are true, accurate and complete.

F.R. WHEELER **Responsible Official:** (Please Print) REFINERY MANAGER Title: Date 516193 Signature: Data Roce Final * See Joculity letter 4/9/03 PM-CON NO2 SO2 VOC CO 829.909 3534.82 3857.94 89.917 3409/0,48 (+178,212-) PM25-FIL NH3 PM10-FIL 1218.249 43.017 1291.343

Page 8

Bert Molina Manager - Regulatory Affairs

Certified Mail 7002 3150 0004 6783 4547 Return Receipt Requested

October 26, 2004

Air Quality Management Section, DNREC 156 S. State St. Dover, Delaware 19901

Attn: Emission Inventory Department

This submittal represents the Annual Emission Inventory for 2003 summarizing emissions from the former Motiva Enterprises LLC Delaware City Refinery.

Included as part of the submittal are:

- □ I-Steps summary report of the facility emissions including the signed certification statement
- Disk labeled Motiva Enterprises LLC- Delaware City Refinery Emission Inventory 2003 Tanks
- HAP emissions summary. Table 1 summarizes speciation data for emissions from non-combustion sources. Table 2 summarizes all TRI air emissions.
- Summary of emission factors and calculation methodologies

Please note the following:

<u>Flaring emissions</u> – The refinery flare gas system is equipped with two flare gas recovery compressors. Gases that are vented to the flare system are recovered and returned to the refinery fuel gas system. When the amount of material vented to the flare system exceeds the capacity of the flare gas recovery compressors, a flaring event occurs. Emissions from the pilot gases on the flares are included under the process group "Flare". Emissions associated with the gases flared are included under the process group "Accidental Releases"

<u>Particulate Emissions</u> – The condensable and filterable portions of PM-10 emissions were reported where data was available from stack testing. No data is available on PM2.5 emissions. SCC factors used for estimating particulate emissions from combustion sources were assumed to be PM-10 filterable material.

If you have any guestions regarding this information, please contact me at (713) 546-8485.

Bert Molina

Enclosures

2003 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year Page 2

Facility Name:

MOTIVA ENTERPRISES LLC

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON	PM10-FIL	PM25-FIL	NH3
031	HYDROCRACKER HTR 36-H-3	0.17	8.72	2.18	0.04		0.1875		
032	HYDROCRACKER HTR 36-H-2	0.09849	4.9245	1.23112	0.02		0.10552		
033	HYDROCRACKER HYDROGEN PLT								
034	HYDROCRACKER H2 HTR 37-H1	2.44606	70.57	10.46	0.51		2.62078		
<u>040</u>	TOLUENE FACILITY								
<u>043</u>	BENZENE EXTRACTION FAC.					·			
044	AROMATICS FACT. FACILITY								
050	CPI&API SEPARATOR, TANKS	209.1							0.01
051	WASTEWATER TREATMNT PLANT	4.14	3.66	0.91					
052	OIL RECOVERY SYSTEM	0.21							
066	TRASH INCINERATOR								
067	BOILER 4	2.97858	208.03	31.71	293.01		20.4346		
<u>068</u>	BOILER 1	0.14	269	7.86	234.84	19.33	12.98		
069	BOILER 2	3.69	220.33	0.02	0.76	6.7	3.45		
070	BOILER 3	0.04	249.18	0.27	294.84	24.38	10.88		
071	METHANOL PLANT								
<u>072</u>	METHANOL PLT HTR 41-H-1								
073	NEW CCR REFORMER #1								
074	NEW CCR REF. HTR 42-H-1	1.45759	69.99	0.37	0.3		1.56171		
075	NEW CCR REF. HTR 42-H-2	1.39478	66.97	0.36	0.29		1.49441		
<u>076</u>	NEW CCR REF. HTR 42-H-3	0.6524	31.36	0.17	0.14		0.699		
077	NEW CCR REF. HTR 42-H-7	0.52635	22.05	0.22	0.11		0.56394		
078	OLEFINS PLANT								
080	FLARE SYSTEM	0.31	2.66	19.18					
<u>081</u>	BARGE LOADING	7.72989	3.92	9.89					
082	LAND TREATMENT (TSDF)								
083	VALVE MAINTENANCE	31.29							
084	HYDROD TRAIN HTR 29-H-101	0.29	16.83	4.27	0.0612	<u> </u>	0.31		

2003 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 3

Facility Name:

MOTIVA ENTERPRISES LLC

Facility Id:

00016

Group Description	VOC	NO2	CO	SO2	PM-CON PM10-FIL PM25-FIL NH3
HYDRODS. TRAIN HTR 29-H-8	0.57	24.09	1.46	0.12198	0.61
HYDRODS. TRAIN HTR 29-H-1					
HYDRODESULFURIZER TRAIN 1					
HYDRODESULFURIZER TRAIN 2					
HYDRODS. TRAIN HTR 29-H-2	0.43815	21.9079	5.47699	0.09	0.46945
HYDRODS. TRAIN HTR 29-H-3	0.077	3.86	0.9625	0.02	0.0825
HYDRODS. TRAIN HTR 29-H-9	0.2114	10.55	2.6425	0.04	0.2265
HYDRODESULFURIZER TRAIN 3					
HYDRODESULFURIZER TRAIN 4					
HYDRODS. TRAIN HTR 29-H-4	0.02948	1.93	0.05	0.01000	0.03158
HYDRODS. TRAIN HTR 29-H-7	0.0392	1.93	0.48	0.01	0.042
HYDRODESULFURIZER TRAIN 5					
HYDRODS. TRAIN HTR 29-H-5	0.4298	27.74	1.84	0.09	0.4605
HYDRODS. TRAIN HTR 29-H-6	0.36182	10.98	46.55	0.08	0.38767
STACK GAS SCRUBBER					
H2 CARBON DRUM VENT					
NAPHTHA TREATER				201.48	
CRUDE UNIT HEATR 21-H-701	0.83	75.48		17.97	0.0
HTR FOR COKER SHU UNIT	0.3584	17.92	4.48	0.07	0.384
CRACKER REGEN BYPASS					
CNHTU HEATR 25-H-401		2.39	0.05	0.04	
CNHTU HTR 25-H-402	0.01	4.17		0.05	<u> </u>
ACID PLANT					
PROD TANK #135	2.2				
PROD TANK #136	2.6				
PROD TANK #137	2.5				
PROD TANK #139	1				
PROD TANK #145	2.3				
	Group DescriptionHYDRODS. TRAIN HTR 29-H-8HYDRODS. TRAIN HTR 29-H-1HYDRODESULFURIZER TRAIN 1HYDRODESULFURIZER TRAIN 1HYDRODESULFURIZER TRAIN 2HYDRODS. TRAIN HTR 29-H-2HYDRODS. TRAIN HTR 29-H-3HYDRODS. TRAIN HTR 29-H-3HYDRODS. TRAIN HTR 29-H-3HYDRODESULFURIZER TRAIN 3HYDRODESULFURIZER TRAIN 4HYDRODESULFURIZER TRAIN 4HYDRODS. TRAIN HTR 29-H-4HYDRODS. TRAIN HTR 29-H-7HYDRODS. TRAIN HTR 29-H-6STACK GAS SCRUBBERH2 CARBON DRUM VENTNAPHTHA TREATERCRUDE UNIT HEATR 21-H-701HTR FOR COKER SHU UNITCRACKER REGEN BYPASSCNHTU HEATR 25-H-401CNHTU HTR 25-H-402ACID PLANTPROD TANK #136PROD TANK #137PROD TANK #139PROD TANK #145	Group DescriptionVOCHYDRODS. TRAIN HTR 29-H-80.57HYDRODS. TRAIN HTR 29-H-1HYDRODESULFURIZER TRAIN 1HYDRODESULFURIZER TRAIN 2HYDRODS. TRAIN HTR 29-H-20.43815HYDRODS. TRAIN HTR 29-H-30.077HYDRODS. TRAIN HTR 29-H-30.077HYDRODS. TRAIN HTR 29-H-90.2114HYDRODESULFURIZER TRAIN 3HYDRODESULFURIZER TRAIN 4HYDRODESULFURIZER TRAIN 4HYDRODS. TRAIN HTR 29-H-40.02948HYDRODS. TRAIN HTR 29-H-70.0392HYDRODS. TRAIN HTR 29-H-70.0392HYDRODS. TRAIN HTR 29-H-60.36182STACK GAS SCRUBBERH2 CARBON DRUM VENTNAPHTHA TREATERCRUDE UNIT HEATR 21-H-7010.833HTR FOR COKER SHU UNIT0.3584CRACKER REGEN BYPASSCNHTU HEATR 25-H-401CNHTU HEATR 25-H-401CNHTU HTR 25-H-4020.01ACID PLANTPROD TANK #1352.2PROD TANK #136PROD TANK #137PROD TANK #1391PROD TANK #145	Group DescriptionVOCNO2HYDRODS. TRAIN HTR 29-H-80.5724.09HYDRODS. TRAIN HTR 29-H-1	Group Description VOC NO2 CO HYDRODS. TRAIN HTR 29-H-8 0.57 24.09 1.46 HYDRODS. TRAIN HTR 29-H-1	Group Description VOC NO2 CO SO2 HYDRODS. TRAIN HTR 29-H-8 0.57 24.09 1.46 0.12198 HYDRODS. TRAIN HTR 29-H-1

2003 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year Page 4

Facility Name:

MOTIVA ENTERPRISES LLC

Facility Id:

00016

Group ID#	Group Description	VOC NO2	CO	SO2 PI	M-CON PM10-FIL	PM25-FIL NH3
146	PROD TANK #146	2.4				
147	PROD TANK #147	2.3				
149	PROD TANK #149	1.2				
150	PROD TANK #150	2.5				
161	PROD TANK #161	2.45				
162	PROD TANK #162	3				
163	PROD TANK #163	3.79				
165	PROD TANK #165	1.8				
166	PROD TANK #166	2.8				
167	PROD TANK #167	1.6				
181	PROD TANK #181	3.4				
182	PROD TANK #182	2.5				
183	PROD TANK #183	3.3				
185	PROD TANK #185	2.58				
186	PROD TANK #186	0.5				
187	PROD TANK #187	1.3				
201	PROD TANK #203					
202	PROD TANK #202	0.1				
203	PROD TANK #203					
204	PROD TANK #204	1				
205	PROD TANK #205	0.2				
206	PROD TANK #206	0.4				
223	PROD TANK #223	2.19				
224	PROD TANK #224	2.03				
225	PROD TANK #225	0.5				
227	PROD TANK #227					
241	PROD TANK #241	0.9				
242	PROD TANK #242	0.3				

2003 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 5

Facility Name:

MOTIVA ENTERPRISES LLC

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON PM10-FI	LPM25-FIL	NH3
243	PROD TANK #243	0.22						
244	PROD TANK #244	2.13						
245	PROD TANK #245	2.24						
246	PROD TANK #246	2.5						
248	PROD TANK #248	0.2						
250	HYDROGEN PLANT VENT	14.57						
261	PROD TANK #261	0.3						
262	PROD TANK #262							
263	PROD TANK #263	0.1						
264	PROD TANK #264	2.5						
265	PROD TANK #265	1.5						
266	PROD TANK #266	0.7						
268_	PROD TANK #268	0.17						
281	PROD TANK #281							
282	PROD TANK #282	0.1						
283	PROD TANK #283	0.2						
284	PROD TANK #284	0.2						
285	PROD TANK #285	0.2						
286	PROD TANK #286	0.2						
331	BENZENE TANK T 331							
332	BENZENE TANK T 332							
401	TOLUENE TANK #401							
402	TOLUENE TANK #402							
405	TANK #405							
406	TANK #406							
407	TANK #407	0.2						
408	TANK #408							
470	TANK #470	0.023						

Facility Id:

2003 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page

7

A Summary of Facility Emissions metuding Group Lever Emissions in T

Facility Name: MOTIVA ENTERPRISES LLC

00016

Group ID#	Group Description	VOC NO2	CO	SO2	PM-CON PM10-FII	PM25-FIL NH3
580	TANK #580	0.6				
581	TANK #581	1.2				
582	TANK #582	0.1				
583	TANK #583	0.1				
584	TANK #584	0.4				
<u>901</u>	CRUDE TANK #1 F-SS	1.75				
902	CRUDE TANK #2 F-SS	1.9				
903	CRUDE TANK #3 F-SS	1.73				
904	CRUDE TANK #4 F-SS	1.4				
905	CRUDE TANK #5 F-SS	2				
906_	CRUDE TANK #6 F-SS	1.9				
907	CRUDE TANK #7 F-SS	1.7				
908	CRUDE TANK #8 F-SS	1.3				
<u>909</u>	CRUDE TANK #9 F-DS					
<u>910</u>	CRUDE TANK #10 F-SS	1.9				
911	CRUDE TANK #11	1.5				
912	CRUDE TANK #12	1.8				
<u>944</u>	INTER. TANK #44	0.7				
945	INTER. TANK #45	7.4		_		
<u>947</u>	INTER. TANK # 47	0.2				
948	INTER. TANK #48	0.4				
<u>950</u>	INTER. TANK #50	0.8				
951	INTER. TANK #51	0.3				
960	INTER. TANK #60					
961	INTER. TANK #61					
<u>962</u>	INTER. TANK #62					
965	INTER. TANK #65			_		
966	INTER. TANK #66	10.9				

2003 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 6

Facility Name:

MOTIVA ENTERPRISES LLC

Facility Id: 0

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON I	PM10-FIL	PM25-FIL	NH3
471	TANK #471	0.005							
481	TANK #481								
500	TANK #500								
502	TANK #502								
503	TANK #503								
504	TANK #504								
505	TANK #505								
520	PROPANE PIT FLARE	1.09	1.06	7.64					
521	RFG COOLING TOWER	4.15					1.12		
523	REPOWERING COOLING TOW						0.55		
527	REPOWERING CT1	0.38	52	5	65	<u>; </u>			
528	REPOWERING CT2	0.5	80	6	81				
530	REPOWER - RAW GAS FLARE		1.03	40.7	282.6	<u> </u>			
532	REPOWER - CLEAN GAS FLARE		12.7	501.8	26.9				
550	TANK #550								
551	TANK #551								
552	TANK #552								
553	TANK #553								
560	TANK #560	1.7							
561	TANK #561								
562	TANK #562								
563	TANK #563	0.1							
564	TANK #564								
565	TANK #565								
566	TANK #566								
570	BENZENE TANK T 570								
571	AROMATICS TANK T 571								
572	AROMATICS TANK T 572								

2003 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 8

Facility Name:	MOTIVA ENT	ERPRISES I	LLC		_				
Facility Id:	_00016	Group I	Level Emis	sions Su	nmary				
Group ID#	Group Description		VOC	NO2	CO	SO2 PM	I-CON PM10-FIL	PM25-FIL	NH3
<u>971</u>	INTER. TANK #71								
972	INTER. TANK #72		1.2						
973	INTER. TANK #73		0.36						
<u>974</u>	INTER. TANK #74								
975_	INTER. TANK #75								
976	INTER. TANK #76								
977	INTER. TANK #77		0.06						
<u>978</u>	INTER. TANK #78		0.1						
<u>998</u>	TANK FUGITIVE								
999	ACCIDENTAL RELEASES		0.25	0.36	2842.58	155.17			2.44
	GROUP LEVEL AIR	R EMISSION	INVENTO	DRY SUN	IMARY			Pag	e 8
	v	OC NO	02 C	0	SO2	PM-CON	PM10-FIL PM2	5-FIL N	H3
	Total Emissions5	96.251340	3.77 _644	48.084	34149.66	71.67	948.5885 0-1037.51 100	18.32	19.87

Pursuant to Regulation No. 30, I, the undersigned, am a Responsible Official and I have personally examined and am familiar with the information submitted in this document and all of its attachments certify, based on information and belief formed after reasonable inquiry the statements and information in the document are true, accurate and complete.

Responsible Official: Humberto Moling 31. (Please Print) Title: Manager Regulatory Affairer Motiva Date 10 126 104 Signature:

The Premcor Refining Group, Inc. Delaware City Refinery P.O. Box 7000 Delaware City, DE 19706-7000 302/834-6000

CMRRR# 7003 3110 0002 6805 5661

April 27, 2005

Attn: Emission Inventory Department Air Quality Management Section DNREC 156 S. State St. Dover, Delaware 19901

	02.03	1.1.1		
A	PR 2	9	2007	
	1391	16		

RE: 2004 Annual Air Emission Inventory and Emissions Statement Report The Premcor Refining Group Inc. – Delaware City Refinery

Dear Sir or Madam:

Enclosed is the 2004 Annual Air Emission Inventory and Emissions Statement Report for The Premcor Refining Group Inc.'s (Premcor) Delaware City Refinery. Because Premcor purchased the facility from Motiva Enterprises LLC (Motiva) on May 1, 2004, the I-STEPS Summary Report includes separate certification statements for the Motiva and Premcor periods of operation. Emissions data were filed online using the Satellite I-STEPS software through the DNREC Air Quality Management Emissions Inventory Development Terminal Server.

As requested by the Emissions Inventory Department, this submittal also includes the following:

- A disk containing 2004 storage tank emissions information in TANKS 4.0 output format.
- A document summarizing emission factors and calculation methodologies. The condensable and filterable portions of PM-10 emissions were reported where data was available from stack testing. No data is available on PM2.5 emissions. SCC factors used for estimating particulate emissions from combustion sources were assumed to be PM-10 filterable material

If you have any questions regarding this submittal, please contact me at (302) 834-6408.

Sincerely,

Cathe Kalisay

Cathe Kalisz Environmental Engineer

Enclosures

2004 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 1

Facility Name:

THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON	PM10-FIL	PM25-FIL	NH3
001	COKER W/O COB W/ INCINRTR	8.49	55.79	106.16	1315.11	WC V	114.28		0.5
002	FLUID COKER CO BOLER 22H3	90.13	616.59	1126.72	15693.8	×_1	106.56		5.96
003	HEATER 22-H-2	0.13	6.34	1.59	0.05		0.14		
004	COKE HANDLING EQUIPMENT								
005	CRUDE UNIT								
006	HEATER #1 FOR UNIT 21-H-1								
007	HEATER #2 FOR UNIT 21-H-2	1.83	88.56	0.78	0.73		1.96		
008	FOUL WATER TREATMENT SYS.								
009	2 SOLUTIZER PLANTS								
010	COKER GASOLINE MEROX PLT				13.1				
011	CRACKER W/O CO BOILER - DOWN	10.25	89.84	33.5	974.75	35.68	100.83		0.91
012	CRACKER CO BOILER	92.59	903.93	966.99	8152.24	298.34	822.22		8.92
013	TETRA HEATER 32-H-101	0.36	13.93	4.47	0.14		0.38		
014	TETRA HEATER 32-H-102								
015	TETRA HEATER 32-H-103								
016	ALKYLATION FEED MEROX PLT				109.06	110-11			
017	POLYMERIZATION MEROX PLT				63.38				
018	ALKY & POLY UNITS								
019	REFORMER, HEATER 25-H-1A								
<u>020</u>	REFORMER, HEATER 25-H-1B								
021	CATALYTIC REFORMER UNIT								
022	EMERGENCY TAIL GAS TREATR								
023	NAPHTHALENE PLANT								
024	NAPTHALENE PLT HTR 33-H-1								
025	NAPTHALENE PLT HTR 33-H-2								
027	SULFUR RECOVERY UNIT 1	0.12	2.6	0.12	111.25	6.62	2.48		
028	SULFUR RECOVERY UNIT 2	0.13	2.79	0.13	80.45	7.1	2.65		
029	HYDROCRACKER								

2004 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 2

Facility Name:

THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON PM10-FIL PM25-FIL NH3
030	HYDROCRACKER HTR 36-H-1	0.41	20.71	5.18	0.16	0.44
031	HYDROCRACKER HTR 36-H-3	0.23	11.38	2.84	0.09	0.24
032	HYDROCRACKER HTR 36-H-2	0.16	8.07	2.02	0.06	0.17
033	HYDROCRACKER HYDROGEN PLT					
034	HYDROCRACKER H2 HTR 37-H1	3.51	102.36	14.84	1.4	3.76
040	TOLUENE FACILITY					
043	BENZENE EXTRACTION FAC.					
044	AROMATICS FACT. FACILITY					
050	CPI&API SEPARATOR, TANKS	245.97				0.16
051	WASTEWATER TREATMNT PLANT	4.19	6.14	1.54		
052	OIL RECOVERY SYSTEM	0.21				
066	TRASH INCINERATOR					
067	BOILER 4	3.71	211.82	31.45	36.09	<u> </u>
068	BOILER 1	0.13	201.95	7.89	31.89	<u> </u>
069	BOILER 2	1.42	96.23	5.92	12.72	<u></u>
070	BOILER 3	0.05	193.69		63.63	<u> </u>
071	METHANOL PLANT					
072	METHANOL PLT HTR 41-H-1					
073	NEW CCR REFORMER #1					
<u>074</u>	NEW CCR REF. HTR 42-H-1	1.59	66.46	0.4	0.63	<u> </u>
075	NEW CCR REF. HTR 42-H-2	1.66	69.6	0.42	0.66	<u> </u>
076	NEW CCR REF. HTR 42-H-3	0.61	25.66	0.16	0.24	0.66
077	NEW CCR REF. HTR 42-H-7	0.62	25.59	0.26	0.25	<u> </u>
078	OLEFINS PLANT					
080	FLARE SYSTEM	0.31	2.66	19.23	0.06	<u> </u>
081	BARGE LOADING	7.71	3.27	8.73		
082	LAND TREATMENT (TSDF)					
083	VALVE MAINTENANCE	32.68				

2004 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 3

Facility Name: THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON PM10-FIL PM25-FIL NH3	3
084	HYDROD TRAIN HTR 29-H-101	0.25	14.83	3.76	0.1	0.27	
085	HYDRODS. TRAIN HTR 29-H-8	0.71	29.8	1.81	0.28	0.76	
086	HYDRODS. TRAIN HTR 29-H-1						
088	HYDRODESULFURIZER TRAIN 1						
089	HYDRODESULFURIZER TRAIN 2						
<u>090</u>	HYDRODS. TRAIN HTR 29-H-2	0.42	21.02	5.26	0.17	0.45	
<u>091</u>	HYDRODS. TRAIN HTR 29-H-3	0.09	4.31	1.08	0.03	0.09	
092	HYDRODS. TRAIN HTR 29-H-9	0.21	10.26	2.57	0.08	0.22	
093	HYDRODESULFURIZER TRAIN 3						
094	HYDRODESULFURIZER TRAIN 4						
095	HYDRODS. TRAIN HTR 29-H-4	0.03	1.64	0.04	0.01	0.03	
096	HYDRODS. TRAIN HTR 29-H-7	0.04	2.09	0.52	0.02	0.04	
097	HYDRODESULFURIZER TRAIN 5						
098	HYDRODS. TRAIN HTR 29-H-5	0.44	28.41	1.88	0.18	0.48	
099_	HYDRODS. TRAIN HTR 29-H-6	0.39	11.84	50.18	0.16	0.42	
<u>100</u>	STACK GAS SCRUBBER						
101	H2 CARBON DRUM VENT					·	
102	NAPHTHA TREATER				173.41		
105	CRUDE UNIT HEATR 21-H-701	0.85	81.58	1.7	38.28	<u> 19.26 2.83 </u>	.02
106	HTR FOR COKER SHU UNIT	0.48	23.76	5.94	0.19	0.51	
110	CRACKER REGEN BYPASS						
125	CNHTU HEATR 25-H-401		0.28	0.03	0.05	<u> </u>	
126	CNHTU HTR 25-H-402	0.01	1.27		0.11		
130	ACID PLANT						
135	PROD TANK #135	2.28					
136	PROD TANK #136	2.71					
137	PROD TANK #137	2.8					
139	PROD TANK #139	1.67					

2004 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page

4

Facility Name:

THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group ID#	Group Description	VOC NO2	CO	SO2	PM-CON PM10-FIL	PM25-FIL NH3
145	PROD TANK #145	1.67				
146	PROD TANK #146	2.78				
147	PROD TANK #147	2.9				
149	PROD TANK #149	1.52				
150	PROD TANK #150	2.79				
161	PROD TANK #161					
162	PROD TANK #162	3.35				
163	PROD TANK #163	4.12				
165	PROD TANK #165	1.4				
166	PROD TANK #166	1.51				
167	PROD TANK #167	1.08				
181	PROD TANK #181	2.23				
182	PROD TANK #182	3.18		_		
183	PROD TANK #183	4.09				
185	PROD TANK #185	1.63				
186	PROD TANK #186	0.16				
187	PROD TANK #187	1.23				
201	PROD TANK #203					
202	PROD TANK #202	0.1				
203	PROD TANK #203	2.22				
204	PROD TANK #204	1.07				
205	PROD TANK #205	0.35				
206	PROD TANK #206	0.53				
223	PROD TANK #223	2				
224	PROD TANK #224	1.57				
225	PROD TANK #225	0.28				
227	PROD TANK #227	0.14				
241	PROD TANK #241	0.17				

2004 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 5

THE PREMCOR REFINING GROUP INC **Facility Name:**

Facility Id:

00016

Group ID#	Group Description	VOC NO	2 CO	SO2	PM-CON PM10-FIL	PM25-FIL NH3
242	PROD TANK #242	0.32				
243	PROD TANK #243	0.23				
244	PROD TANK #244	3.94				
245	PROD TANK #245	2.08				
246	PROD TANK #246	4.06				
248	PROD TANK #248	0.14				
250	HYDROGEN PLANT VENT					
261	PROD TANK #261	0.15				
262	PROD TANK #262					
263	PROD TANK #263	0.05				
264	PROD TANK #264	2.97				
265	PROD TANK #265	2.06				
266	PROD TANK #266	0.61				
268	PROD TANK #268	0.14				
281	PROD TANK #281	0.09				
282	PROD TANK #282	0.16				
283	PROD TANK #283	0.25				
284	PROD TANK #284	0.16				
285	PROD TANK #285	0.16				
286	PROD TANK #286	0.09				
331	BENZENE TANK T 331					
332	BENZENE TANK T 332					
401	TOLUENE TANK #401					
402	TOLUENE TANK #402					
405	TANK #405	0.18				
406	TANK #406	0.24				
407	TANK #407	0.39				
408	TANK #408					

2004 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 6

is summary of racinty Emissions menuting Group Level Emissions m

Facility Name: THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON PM10-	FILPM25-FIL N	H3
470	TANK #470	0.026			-			
471	TANK #471	0.013						
481	TANK #481							
500	TANK #500							-
502	TANK #502							
503	TANK #503							
504	TANK #504							
505	TANK #505							
520	PROPANE PIT FLARE	1.08	1.05	7.53				
521	RFG COOLING TOWER	0.37				0.	72	
523	REPOWERING COOLING TOW					0.	55	
527	REPOWERING CT1	0.63	76.39	15.65	142.87	<u> </u>		
528	REPOWERING CT2	0.41	50.61	3	63.41			
530	REPOWER - RAW GAS FLARE		1.28	54.18	257.39	<u> </u>		
532	REPOWER - CLEAN GAS FLARE		10.01	422.21	8.94	<u> </u>		
550	TANK #550							
551	TANK #551							
552	TANK #552							
553	TANK #553							
560	TANK #560							
561	TANK #561							
562	TANK #562							
563	TANK #563							
564	TANK #564							
565	TANK #565							
566	TANK #566	0.04						
570	BENZENE TANK T 570							
571	AROMATICS TANK T 571							

2004 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page

7

Facility Name: THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group ID#	Group Description	VOC NO2	CO	SO2	PM-CON P	M10-FIL PM	25-FIL NH3
572	AROMATICS TANK T 572			_			
580	TANK #580	0.57					
581	TANK #581	1.71					
582	TANK #582	0.07					
583	TANK #583	0.07					
584	TANK #584	0.44					
901	CRUDE TANK #1 F-SS	1.51					
902	CRUDE TANK #2 F-SS	1.48					
903	CRUDE TANK #3 F-SS	1.4					
904	CRUDE TANK #4 F-SS	1.38					
905	CRUDE TANK #5 F-SS						
906	CRUDE TANK #6 F-SS	1.43					
907	CRUDE TANK #7 F-SS	0.08	2				
908	CRUDE TANK #8 F-SS	0.85					
909	CRUDE TANK #9 F-DS	1.77					
910_	CRUDE TANK #10 F-SS	1.46					
911	CRUDE TANK #11	1.49					
912	CRUDE TANK #12	1.38					
944	INTER. TANK #44	1.03					
945	INTER. TANK #45	8.5					
947	INTER. TANK # 47	0.42			· · · · · · · · · · · · · · · · · · ·		
948	INTER. TANK #48	0.41					
950	INTER. TANK #50	0.65					
951	INTER. TANK #51	0.29					
960	INTER. TANK #60	0.04					
961	INTER. TANK #61						
962	INTER. TANK #62	0.01					
965	INTER. TANK #65	0.01					

2004 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page

8

Facility Name: THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group Level Emissions Summary

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON PM10-FIL PM25-FIL NH3	_
966	INTER. TANK #66	11.01					
<u>971</u>	INTER. TANK #71	0.01					_
972	INTER. TANK #72	0.97					_
973	INTER. TANK #73	0.9					_
974	INTER. TANK #74						_
<u>975</u>	INTER. TANK #75	0.04					_
976_	INTER. TANK #76	0.03					
977	INTER. TANK #77	0.06					_
978_	INTER. TANK #78	0.09					_
998	TANK FUGITIVE						_
999	ACCIDENTAL RELEASES	58.42	0.38	6706.6	206.13	85.9	3

GROUP LEVEL AIR EMISSION INVENTORY SUMMARY

Page 8

	VOC	NO2	CO	SO2	PM-CON	PM10-FIL	PM25-FIL	NH3
Total Emissions	694.499	3196.77	9625.28	27553.75	367	1168.28		102.4
9/8/05 Data Base	498.085	3459.55	9692,55	27553.81	417.299	1187.11	5.63	102.4

Pursuant to Regulation No. 30, I, the undersigned, am a Responsible Official and I have personally examined and am familiar with the information submitted in this document and all of its attachments certify, based on information and belief formed after reasonable inquiry the statements and information in the document are true, accurate and complete.

Responsible Official:	(Please I	Print)

Title:

Signature: _____

Date / /____

see attachments

FACILITY ID NO. 00016 DELWARE CITY REFINERY

EMISSIONS FOR THE OPERATING PERIOD 1/1/04 – 4/30/04 MOTIVA ENTERPRISES LLC

Pursuant to Regulation No. 30, I, the undersigned, am a Responsible Official and I have personally examined and am familiar with the information submitted in this document and all of its attachments. I certify, based on information and belief formed after reasonable inquiry, that the statements and information in the document are true, accurate, and complete.

Responsible Official: _	Bert Molina		(Please Print)
Title:Regulatory Signature:	Affairs Manager	Date: _	4 / 27 / 05

FACILITY ID NO. 00016 DELWARE CITY REFINERY

EMISSIONS FOR THE OPERATING PERIOD 5/1/04 – 12/31/04 THE PREMCOR REFINING GROUP INC.

Pursuant to Regulation No. 30, I, the undersigned, am a Responsible Official and I have personally examined and am familiar with the information submitted in this document and all of its attachments. I certify, based on information and belief formed after reasonable inquiry, that the statements and information in the document are true, accurate, and complete.

Responsible Official: Michael J. Pollaut	(Please Print)
Title: Refinery Manager	
Signature: and All	Date: 04/27/05

WALERO DELAWARE CITY REFINERY

4550 Wrangle Hill Road • Delaware City, Delaware 19706-7000

CMRRR# 7005 1160 0004 2622 2255

HAND DELIVERED

May 31, 2006

Attn: Emission Inventory Department Air Quality Management Section DNREC 156 S. State St. Dover, Delaware 19901

RE: 2005 Annual Air Emission Inventory and Emissions Statement Report The Premcor Refining Group Inc. – Delaware City Refinery

Dear Sir or Madam:

Enclosed is the 2005 Annual Air Emission Inventory and Emissions Statement Report for The Premcor Refining Group Inc.'s (Premcor) Delaware City Refinery. Emissions data were filed online using the DNREC I-STEPS software. The electronic data submitted included carbon dioxide, nitrous oxide, and methane greenhouse gas emissions.

As requested by the Emissions Inventory Department, this submittal also includes the following:

- □ A disk containing 2005 storage tank emissions information in TANKS 4.09 output format.
- Tanks 4.09 printouts for a refinery fixed roof, internal floating roof and external floating roof tank. This is to document that the in the refinery's OpsEnvironmental software, which uses AP-42, Chapter 7 tank emissions equations, provides results consistent with Tank 4.09 software.
- A document summarizing emission factors and calculation methodologies. The condensible and filterable portions of PM-10 emissions were reported where data was available from stack testing. SCC factors used for estimating particulate emissions from refinery heaters were assumed to be PM-10 and PM-2.5 filterable material, in accordance with the draft proposed revisions to AP-42 emission factors for estimating PM2.5 emissions from gas-fired combustion units. The draft revisions indicate that all PM emissions from gas-fired combustion units are assumed to be PM2.5 and that condensible PM from gas-fired combustion units is negligible.

If you have any questions regarding this submittal, please contact me at (302) 834-6408.

Sincerely,

Cathe Kaling

Cathe Kalisz Staff Environmental Engineer

Enclosures

bcc: Andrew Kenner Gerry Forstell Pat Covert Heather Chelpaty Mary Jen Beach

FILE: 110(k)-1-R-5

V:\env\Emission Inventory\2005\DNREC Submittal\2005 El Transmittal Letter.doc

2005 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 1

 Facility Name:
 THE PREMCOR REFINING GROUP INC

Facility Id:

1

į

 00016

<u>Group ID#</u>	Group Description	<u> </u>	<u>NO2</u>	<u> </u>	<u>SO2</u>	PM-CON	<u>PM10-FIL</u>	<u>PM25-FIL</u>	<u>NH3</u>
<u>001</u>	COKER INCINERATOR STACK	2.63	<u>36.94</u>	<u> </u>	<u>_346.16</u>		22.22	•	<u>0.16</u>
<u>002</u>	FLUID COKER CO BOLER 22H3	<u> </u>	<u> </u>	<u>613.91</u>	<u>14671.9</u>		<u> </u>		4.89
<u>003</u>	HEATER 22-H-2	<u>0.1</u>	6	1.5	0.1		<u> </u>	<u> </u>	<u> </u>
<u>004</u>	COKE HANDLING EQUIPMENT				<u></u>		<u> </u>		·····
<u>005_</u>	CRUDE UNIT						<u></u>		; -
<u>007</u>	HEATER #2 FOR UNIT 21-H-2	2.1	<u> 101.1</u>	0.9	2	_ <u></u>	<u>2.2</u>	2.2	
<u>008</u>	<u>FOUL WATER TREATMENT SYS.</u>		_ <u></u>	<u> </u>		. <u> </u>			
<u>010</u>	COKER GASOLINE MEROX PLT				13.14	·	<u> </u>		
<u>011</u>	CRACKER BYPASS STACK	4.57	<u> </u>	<u> 15.01 </u>	<u>_394.18</u>	<u> 14.43 </u>	<u> 19.33 </u>		0.46
012	CRACKER CO BOILER MAIN ST	<u> 107.59</u>	<u>900.18</u>	<u>_716.74</u>	<u>9683.19</u>	354.4	<u>446.01</u>	_ 	<u>11.19</u>
<u>013</u>	TETRA HEATER 32-H-101	0.3	<u> </u>	<u> </u>	0.3	·	<u> </u>	<u> </u>	
<u>014</u>	TETRA HEATER 32-H-102					<u> </u>			
<u>015</u>	TETRA HEATER 32-H-103	<u> </u>		<u> </u>					
<u>016</u>	ALKYLATION FEED MEROX PLT			_	<u>_113.88</u>		. <u> </u>		
<u>017</u>	POLYMERIZATION MEROX PLT	_ <u></u>		<u></u>	<u> </u>	- <u></u>			
<u>018</u>	ALKY & POLY UNITS		<u>.</u>			. <u> </u>	<u> </u>		<u></u>
<u>020</u>	REFORMER, HEATER 25-H-1B				<u> </u>	<u> </u>		<u> </u>	
<u>021</u>	CATALYTIC REFORMER UNIT	<u>_</u>		<u> </u>		. <u> </u>			
<u>024</u>	NAPTHALENE PLT HTR 33-H-1			<u> </u>		. <u>.</u>			
<u>025</u>	NAPTHALENE PLT HTR 33-H-2		<u></u>		<u> </u>			<u> </u>	
<u>027</u>	SULFUR RECOVERY UNIT 1	0.2	<u> </u>	.	33	<u> </u>	<u> </u>	<u> </u>	
<u>028</u>	SULFUR RECOVERY UNIT 2	0.2	<u> </u>	0.1	<u>119.4</u>	<u> </u>	<u> </u>	3.1	
<u>029</u>	HYDROCRACKER	<u>_</u>						<u> </u>	
<u>030</u>	HYDROCRACKER HTR 36-H-1	<u> </u>	<u> </u>	<u> </u>	0.2	· <u> </u>	<u> </u>	<u> </u>	<u> </u>
<u>031</u>	HYDROCRACKER HTR 36-H-3	0.2	<u> </u>	2.1	0.1		0.2	0.2	
<u>032</u>	HYDROCRACKER HTR 36-H-2	0.1	<u> </u>	1.3			<u>0.1</u>	<u>0.1</u> _	
<u>033</u>	HYDROCRACKER HYDROGEN PLT	<u> </u>			_	<u>,</u>	<u>-</u>	<u> </u>	
<u>034</u>	HYDROCRACKER H2 HTR 37-H1	2.6	<u>72.2</u>	11	0.9		2.8	2.8	
	<u>IIIDKUUKAUKEN IIZ IIIK 57-III</u>	<u><u></u></u>						2.0	<u> </u>

;

i T

2005 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 2

Facility Name:

THE PREMCOR REFINING GROUP INC

Facility Id: 0

00016

Group ID#	Group Description	<u>VOC</u>	<u>NO2</u>	<u>_CO</u>	SO2	PM-CON F	<u>M10-FIL</u>	PM25-FIL	<u>NH3</u>
<u>040</u>	CLOSED TOLUENE FACILITY								
<u>043</u>	BENZENE EXTRACTION FAC.								
<u>044</u>	AROMATICS FACT. FACILITY			<u> </u>	<u> </u>			<u></u>	
<u>050</u>	CPI&API SEPARATOR, TANKS	<u>243.74</u>	_				<u> </u>		
<u>051</u>	WASTEWATER TREATMNT PLANT	4.2	<u>6.35</u>	<u> </u>					0.15
<u>052</u>	OIL RECOVERY SYSTEM					- <u> </u>			
<u>Q66</u>	CLOSED TRASH INCINERATOR								<u>,</u>
<u>067</u>	BOILER 4	1.63	<u>174.85</u>	<u>25,18</u>	<u> 46.31</u>	<u>2.63</u>	0.87		
<u>068</u>	BOILER 1	<u> </u>	<u>189.11</u>	7.66	25.14	<u> 10.54</u>	<u>3,5</u>	·	
<u>069</u>	BOILER 2	0.5		1.02	<u> </u>	2.88	<u> </u>		<u> </u>
<u>070</u> _	BOILER 3	<u>0.04</u>	<u>186.81</u>		<u> 56,75</u>	5.65	<u>1.87</u>		
<u>071</u>	CLOSED METHANOL PLANT			_			<u> </u>	<u> </u>	<u></u>
<u>072</u>	CLOSED METHANOL PLT HTR 4						<u> </u>		
<u>073</u>	NEW CCR REFORMER #1				<u> </u>				
<u>074</u>	NEW CCR REF. HTR 42-H-1	<u> </u>	74.5	0.4	<u>1.6</u>	i	<u> </u>	<u>1.7</u>	
<u>075</u>	NEW CCR REF. HTR 42-H-2	<u>1.7</u>	<u>76.9</u> .	0.4	1.7	<u> </u>	<u> </u>	<u> </u>	
<u>076</u>	NEW CCR REF. HTR 42-H-3	0.8	37.7	0.2	0.8	<u> </u>	<u> </u>	<u> </u>	
<u>077</u>	NEW CCR REF. HTR 42-H-7	0.6	<u>23.8</u> .	0.2	0.6	i	<u> </u>	<u> </u>	
<u>078</u>	OLEFINS PLANT						<u> </u>		
<u>080_</u>	FLARE SYSTEM	<u> </u>	4.32	<u>23.52</u>	<u> </u>			<u> </u>	
<u>081</u>	BARGE LOADING	<u> </u>	<u> </u>	<u>7.84</u>					
<u>082</u>	CLOSED LAND TREATMENT (TS	<u>.</u>						- <u></u>	
<u>083</u>	VALVE MAINTENANCE	32.3					<u> </u>		
<u>084</u>	HYDROD TRAIN HTR 29-H-101	0.4	<u> </u>	<u>6,1</u>	0.6	i	<u> </u>	0.5	
<u>085</u>	HYDRODS. TRAIN HTR 29-H-8	0.6	23.9	1.4	0.5		<u> </u>	0.6	
<u>086_</u>	HYDRODS, TRAIN HTR 29-H-1	<u> </u>			·				
<u>088</u>	HYDRODESULFURIZER TRAIN 1	_		<u> </u>	<u> </u>	_ <u></u>			
<u>089</u>	HYDRODESULFURIZER TRAIN 2				<u>_</u>				

2005 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 3

Facility Name: THE PREMCOR REFINING GROUP INC

Facility Id:

1

ī.

i

00016

<u>Group ID#</u>	Group Description	VOC	<u>NO2</u>	<u>_CO</u>	<u>SO2</u>	PM-CON P	<u>M10-FILP</u>	<u>M25-FIL</u>	<u>NH3</u>
<u>090</u>	HYDRODS. TRAIN HTR 29-H-2	0.5	23.7	<u> </u>	0.4	<u> </u>	0.5	0.5	
<u>091</u>	HYDRODS, TRAIN HTR 29-H-3	0.1	5.1	1.3	0.1		<u> </u>	0.1	
<u>092</u>	HYDRODS. TRAIN HTR 29-H-9	0.2	<u> 10.9</u>	<u>2.7</u>	0.2	<u> </u>	0.2	0.2	
<u>093</u>	HYDRODESULFURIZER TRAIN 3								
<u>094</u>	HYDRODESULFURIZER TRAIN 4	<u> </u>	<u> </u>				_ <u></u>	<u> </u>	
<u>095</u>	HYDRODS. TRAIN HTR 29-H-4	<u> </u>	1.6				<u> </u>		
<u>096</u>	HYDRODS, TRAIN HTR 29-H-7		2.2	0.5			<u>_</u>		
<u>097</u>	HYDRODESULFURIZER TRAIN 5		<u> </u>			- <u></u>		·	
<u>098</u>	HYDRODS. TRAIN HTR 29-H-5	0,3	<u> </u>	<u> </u>	0.1		0.3	0.3 _	
<u>099</u>	HYDRODS, TRAIN HTR 29-H-6	0.3	<u>9.9</u>	<u> </u>	0.2		0.3	0.3	
<u>100 </u>	CLOSED STACK GAS SCRUBBER					- <u></u> .		<u></u>	
<u>101</u>	H2 CARBON DRUM VENT								
<u>102</u>	NAPHTHA TREATER	_			<u>191.54</u>				
<u>105</u>	CRUDE UNIT HEATR 21-H-701	<u>0.1</u>	<u> </u>	<u>1,8</u>		<u> </u>	0.61		<u> </u>
<u>106</u>	HTR FOR COKER SHU UNIT	<u> </u>	<u> </u>	5.4	0.2		0.5	0.5	
<u>125</u>	<u>CNHTU HEATR 25-H-401</u>		2.8	0.1	0,1		0.4	0.4	
<u>126</u>	<u>CNHTU HTR 25-H-402</u>	_	4.3		0.1		0.5	0.5	
<u>130</u>	CLOSED ACID PLANT					· <u> </u>			_ <u>.</u>
<u>135_</u>	PROD TANK #135	<u> </u>							
<u>136</u>	PROD TANK #136	2.45				. <u> </u>			
<u>137</u>	PROD TANK #137	<u> </u>	 .	<u></u>		. <u> </u>			
<u>139</u>	PROD TANK #139	<u> </u>				· <u></u> ·			
<u>145</u>	PROD TANK #145	2.17			<u> </u>				
<u>146</u>	PROD TANK #146	2.63	<u> </u>						
<u>147</u>	PROD TANK #147	2.39				· ·			
<u>149</u>	PROD TANK #149	<u> 1.33 </u>			<u> </u>	. <u> </u>			
<u>150</u>	PROD TANK #150	2.9	<u> </u>	<u> </u>		- <u> </u>			
<u>161</u>	PROD TANK #161	2				. <u> </u>	<u> </u>		

2005 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT Page A Summary of Facility Emissions including Group Level Emissions in Tons /Year Page

Facility Name: THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group Level Emissions Summary

Group ID#	Group Description	<u> </u>	<u>NO2</u>	<u>CO</u>	<u>SO2</u>	PM-CON PM10-FIL PM25-FIL NH3
<u>162</u>	PROD TANK #162	3.27				
<u>163</u>	PROD TANK #163	4.3				
165	PROD TANK #165	<u> </u>		<u>_</u>		
<u>166</u>	PROD TANK #166	4.54		<u></u>	·	
<u>167</u>	PROD TANK #167	<u> </u>	<u>. </u>			
<u>181</u>	PROD TANK #181	<u>2.59</u>	<u> </u>			
<u>182</u>	PROD TANK #182	3				
<u>183</u>	PROD TANK #183	<u> </u>				
<u>185</u>	PROD TANK #185	<u> </u>		-		<u> </u>
<u>186</u>	PROD TANK #186	<u>0.18</u>		<u> </u>	<u>_</u> .	
<u>187</u>	PROD TANK #187	<u> </u>				
<u>201</u>	PROD TANK #203					
<u>202</u>	PROD TANK #202	<u> </u>				
<u>203</u>	PROD TANK #203	2.24				
<u>204</u>	PROD TANK #204	<u>0,59</u>				
<u>205</u>	PROD TANK #205	<u> </u>		<u> </u>		
<u>206</u>	PROD TANK #206	<u> </u>		<u></u>		
<u>223</u>	PROD TANK #223	2.2				
<u>224</u>	PROD TANK #224	<u> </u>		<u></u>		
225	PROD TANK #225	<u> </u>			-	
<u>227</u>	PROD TANK #227	0.21		<u> </u>		
<u>241</u>	PROD TANK #241	<u> </u>				
<u>242</u>	PROD TANK #242	0.39				
<u>243</u>	PROD TANK #243	0.26				
<u>244</u>	PROD TANK #244	3,44				
<u>245</u>	PROD TANK #245	2.06				
<u>246</u>	PROD TANK #246	1.55			_	
<u>248</u>	PROD TANK #248	0.12				· · · · · · · · · · · · · · · · · · ·

age 4

05/30/20062005ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORTPageA Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name:THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group Level Emissions Summary

Group Description	VOC	NO2	<u>CO</u>	<u>SO2</u>	PM-CON PM10-FIL PM25-FIL NH3
HYDROGEN PLANT VENT			<u></u>		
PROD_TANK #261	0.24				
PROD TANK #262		<u> </u>	<u></u>		
PROD TANK #263	<u> </u>		<u>-</u>		
PROD TANK #264	2.63		<u></u>	<u> </u>	
PROD TANK #265	2.15				
PROD TANK #266	<u>1.01</u>				<u> </u>
PROD TANK #268	<u>0,18</u>		<u> </u>		
PROD TANK #281	0.33				
PROD TANK #282	0.18				<u> </u>
PROD TANK #283	0.18		<u> </u>		
PROD TANK #284	0.1			. <u> </u>	
PROD TANK #285	0,17		<u> </u>	. .	<u></u>
PROD TANK #286	0.13				
BENZENE TANK T 331					
BENZENE TANK T 332				·	
TOLUENE TANK #401					
TOLUENE TANK #402					
TANK #405	0.06			. <u>.</u>	
TANK #406	0.06				
TANK #407	<u> </u>	·		<u></u>	
TANK #408	<u> </u>				
TANK #470	0.02			. <u> </u>	
TANK #471	<u> </u>		•···		
TANK #481			<u> </u>	. <u>.</u>	
TANK #500	<u> </u>		<u> </u>		
TANK #502		<u></u>	<u> </u>	. <u>. </u>	
TANK #503				. <u>-</u>	
	Group DescriptionHYDROGEN PLANT VENTPROD TANK #261PROD TANK #262PROD TANK #263PROD TANK #263PROD TANK #265PROD TANK #266PROD TANK #268PROD TANK #281PROD TANK #282PROD TANK #283PROD TANK #284PROD TANK #285PROD TANK #286BENZENE TANK T 331BENZENE TANK T 332TOLUENE TANK #401TOLUENE TANK #402TANK #405TANK #406TANK #407TANK #408TANK #470TANK #481TANK #481TANK #500TANK #503	Group Description VOC HYDROGEN PLANT VENT	Group Description VOC NO2 HYDROGEN PLANT VENT	Group Description VOC NO2 CO HYDROGEN PLANT VENT	Group Description VOC NO2 CO SO2 HYDROGEN PLANT VENT

age 5

2005 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT Page A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name: THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group Level Emissions Summary

<u>Group ID#</u>	Group Description	<u>VOC</u>	<u>NO2</u>	<u></u>	_SO2_	PM-CON I	PM10-FIL I	PM25-FIL	NH3
<u>504</u>	TANK #504	<u> </u>			<u> </u>	<u> </u>	<u> </u>		
<u>505</u>	TANK #505				<u></u> ii			<u>,</u>	
<u>520</u>	PROPANE PIT FLARE	1.08	<u> 1.04 </u>	7.51		- <u></u>			
<u>521</u>	RFG COOLING TOWER				<u> </u>			<u> </u>	
<u>523</u>	REPOWERING COOLING TOW	<u> </u>			<u> </u>	- <u>-</u>	<u>1.77</u>	·	
<u>527</u>	REPOWERING CT1	1.25	<u> </u>	<u> 14.87 </u>	155.97	<u> </u>	2.87		
<u>528</u>	REPOWERING CT2	<u>1.19</u>	<u>69.09</u>	10.92	<u> 45.88</u>	<u>11.76</u>	<u> </u>		
<u>530</u>	REPOWER - RAW GAS FLARE	<u></u>				·		. <u> </u>	
<u>532</u>	REPOWER SYNGAS FLARE		<u> 14.39</u>	<u>613.68</u>	435,5		<u> </u>		
<u>550</u>	TANK #550					- <u></u>			
<u>551</u>	TANK #551	<u> </u>	<u> </u>					<u></u>	
<u>552</u>	TANK #552			<u></u>			<u> </u>		
<u>553</u>	TANK #553					·			
<u>560</u>	TANK #560				- <u> </u>	,			
<u>561</u>	TANK #561		_			. <u></u>	<u>_</u>		
<u>562</u>	TANK #562					- <u></u>			
<u>563</u>	TANK #563					· · · · · · · · · · · · · · · · · · ·	·		
<u>564</u>	<u>TANK #564</u>	- <u></u>					_ <u>.</u>		
<u>565</u>	TANK #565					. <u></u>			
<u>566</u>	<u>TANK #566</u>	<u> </u>		_ 			<u></u>		
<u>570</u>	BENZENE TANK T 570	<u></u>	<u> </u>				_		
<u>571</u>	AROMATICS TANK T 571		<u>_</u>			. <u>.</u>			
<u>572</u>	AROMATICS TANK T 572							<u> </u>	<u> </u>
<u>580</u>	TANK #580						<u>,.</u>	<u> </u>	
<u>581</u>	TANK #581	<u> </u>				·			
<u>582</u>	TANK #582	<u> </u>		<u></u>			<u> </u>	<u> </u>	
<u>583</u>	TANK #583	<u> </u>							
<u>584</u>	TANK #584	_ <u></u>							

T

1

2005 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name: THE PREMCOR REFINING GROUP INC

Facility Id:

00016

Group Level Emissions Summary

<u>Group ID#</u>	Group Description	VOC	<u>NO2</u>	<u><u> </u></u>	<u>SO2</u>	PM-CON PM10-FIL PM25-FIL NH3
<u>901</u>	CRUDE TANK #1 F-SS	<u> </u>	<u></u> _	<u></u> -	· •	
<u>902</u>	CRUDE TANK #2 F-SS	1.57			<i>p</i>	
<u>903</u>	CRUDE TANK #3 F-SS	1.5		 -	<u> </u>	
<u>904</u>	CRUDE TANK #4 F-SS	1.51				<u> </u>
<u>905 </u>	CRUDE TANK #5 F-SS	<u> </u>			_ <u>_</u>	
<u>906</u>	CRUDE TANK #6 F-SS	1.47		<u> </u>	·	
<u>907</u>	CRUDE TANK #7 F-SS	<u> </u>	<u>_</u>	. <u> </u>	<u> </u>	
<u>908</u>	CRUDE TANK #8 F-SS	<u> </u>		_ <u></u>	- <u></u>	
<u>909</u>	CRUDE TANK #9 F-DS	<u> 1.87 </u>				
<u>910 </u>	CRUDE TANK #10 F-SS	<u> </u>		<u>_</u> _	<u> </u>	
<u>911</u>	CRUDE TANK #11	<u> </u>			<u> </u>	
<u>912_</u>	CRUDE TANK #12	1.52		<u> </u>	<u>-</u>	
<u>944</u>	INTER. TANK #44	<u> </u>				
<u>945 </u>	INTER. TANK #45	7.68		<u> </u>	<u> </u>	
<u>947</u>	INTER, TANK # 47	0.53			<i>;</i>	
<u>948</u>	INTER. TANK #48	0.15		_ <u>_</u>		
<u>950_</u>	INTER. TANK #50	0.53		·		
<u>951</u>	INTER. TANK #51	0.38	<u> </u>			
<u>960_</u>	INTER, TANK #60	0.05		<u>-</u>		
<u>961</u>	INTER. TANK #61	<u> </u>		<u></u>	<u></u>	
<u>962</u>	INTER. TANK #62	<u> </u>				
<u>965</u>	INTER. TANK #65	<u>0.89</u>		<u> </u>		
<u>966</u>	INTER. TANK #66	11.85		<u> </u>		
<u>971</u>	INTER. TANK #71	0.06		<u> </u>		
<u>972</u>	INTER, TANK #72	1.27		·		
<u>973</u>	INTER. TANK #73	0.63	·		<u> </u>	
<u>974 </u>	INTER. TANK #74	<u> </u>			<u> </u>	
<u>975_</u>	INTER. TANK #75	0.08				

Page 7

05/30/20062005ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORTPage8A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name:THE PREMCOR REFINING GROUP INC

Facility Id:	0001
--------------	------

6

Group Level Emissions Summary

Group ID#	Group Description	VOC	<u>NO2</u>	<u> </u>	<u>SO2</u>	PM-CON I	<u>PM10-FIL P</u>	<u>M25-FIL</u>	<u>NH3</u>
<u>976</u>	INTER. TANK #76	0.02							
<u>977</u>	INTER. TANK #77	<u> </u>			·			<u></u>	
<u>978</u>	INTER. TANK #78	<u>0.07</u>					·		
<u>998</u>	TANK FUGITIVE	<u> </u>		·	·	<u></u>		<u> </u>	
<u>999_</u>	ACCIDENTAL RELEASES	<u> </u>	0.27	<u>1834.39</u>	23.4	<u>6 </u>			<u>11.19</u>

GROUP LEVEL AIR EMISSION INVENTORY SUMMARY

Page 8

	VOC	NO2	СО	SO2	PM-CON	PM10-FIL	PM25-FIL	NH3
Total Emissions	<u> </u>	2954.3	4021.36	<u>26476.09</u>	430.15	640.43	32.9	28.06

Pursuant to Regulation No. 30, I, the undersigned, am a Responsible Official and I have personally examined and am familiar with the information submitted in this document and all of its attachments certify, based on information and belief formed after reasonable inquiry the statements and information in the document are true, accurate and complete.

Andrew Kennes **Responsible Official:** (Please Print) Title: Vice President & General Manager Date 5,31,06 Signature:

Group ID		SULFUR	NITROGEN		Voc	189 (PM10	
105	21-H-701 FUEL GAS	1/1-9/30/05: SCC Factor: 950 x Wt % S Lb. SOx /MMSCF fuel, Wt % S data from H2S CEMS, Starting 10/1 - material balance using TRS from fuel gas CEMS.	NOX CEMS	0.001 lb/MMBTU 4/26 -4/27/05 stack test	0.0001 Ho/MMBTU 4/26 -4/27/05 stack test	0.00597 lb/MMBTU PM10-PRi PM10 primary from 4/26-27/05 stack test.	
L	21-H-701 AMMONIA	SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel. Wt.% S in ammonia stream from sour water stripper design data.					Precombustor design efficiency and estimated NH3 combustion efficiency of 21-H-701
7	21-H-2 GAS	1/1-9/30/05: SCC Factor: 950 x Wt % S Lb. SOx /MMSCF fuel, Wt % S data from H2S CEMS, Starting 10/1 - material balance using TRS from fuel gas CEMS.		0.001 Ib/MMBTU 1993 source test	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
2	COKER COB FUEL GAS	SO2 CEMS and stack flow monitor	NOx CEMS and stack flow monitor	SCC Factor: 35 lb. CO /MMSCF through 4/30/05; CO CEMS 5/1/05 forward	SCC Factor: 2.8 lb. VOC/MMSCF	Use of 1992 stack test factor, ratioed for actual feed rate to stack test factor, ratioed for actual emissions. 46.8% of TSP is PM-10.	
 	COKER COB PROCESS GAS			SCC Factor: 35 lb. CO /MMSCF through 4/30/05; CO CEMS 5/1/05 forward	SCC Factor: 2.8 lb. VOC/MMSCF		Based on 4/04 process data
	COKER INCINERATOR - FURL GAS	1/1-9/30/05: SCC Factor: 950 x Wt % S Lb, SOx /MMSCF fuel, Wt % S data from H2S CEMS, Starting 10/1 - material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 (b. CO /MMSCF	SCC Factor: 2,8 lb. VOC/MMSCF	SCC Factor: 3 to PM-10/MMSCF	
	COKER INCINERATOR - PROCESS GAS	Total SO2 emissions (presumed at monthly average for COB operation) less SO2 emissions from fuel gas	Total NOx emissions presumed at monthly average rate for COB operation	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	6/5/95 test data 0.0074 lb/hr per BPD FF	
3	COKER SEALAS	1/1-9/30/05: SCC Factor: 950 x Wt % S Lb. SOx /MMSCF fuel, Wt % S data from H2S CEMS, Starting 10/1 - material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
12	FCCU COB MAIN STACK - GAS	SO2 CEMS and stack flow monitor	NOx CEMS and stack flow monitor	CO CEMS and stack flow monitor	SCC Factor: 2,8 lb. VOC/MMSCF		
	FCCU COB MAIN STACK - PROCESS GAS	·····			SCC Factor: 2,8 lb. VOC/MMSCF	February and March 2005 stack test results for filterable fraction; SO3 and H2SO4 condensibles estimated from SO2 emissions.	Based on 4/04 process data
11	FCCU BYPASS STACK - PROCESS GAS	Total SO2 emissions presumed at monthly average rate for COB operation	Total NOx emissions presumed at monthly average rate for COB operation	Total CO emissions presumed at monthly average rate for COB operation	SCC Factor: 2.8 lb. VOC/MMSCF	February and March 2005 stack test results for filterable fraction; SO3 and H2SO4 condensibles estimated from SO2 emissions.	
. 84	29-H-101	1/1-9/30/05. SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel, Wt % S data from H2S CEMS, Starting 10/1 - material balance using TRS from fuel gas CEMS.	0.138 lb/ MMBTU 1993 stack test factor	0.035 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
85	29-H-8	1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel. Wt.% S data from H2S CEMS. Starting 10/1 - material balance using TRS from fuel gas CEMS.	0.099 lb/ MMBTU 1993 stack test factor	0.006 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
13	32-H-101	1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel, Wt.% S data from H2S CEMS, Starting 10/1 - material balance using TRS from fuel pas CEMS.	0.087 lb/ MMBTU 8/31/05 stack test factor	SCC Factor, 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
	29.11.2	1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel. Wt.% S data from H2S CEMS. Starting 10/1 - material balance using TRS from fuel race CEMS	SCC Factor 140 lb NOVBANSCE	SCC Factor 35 In CO /MMSCF	SCC Eactor: 2.8 lb. VOCAMUSCE	SCC Factor 3 th DM 10/MMSCF	

- --

ł

1

i

i

1

		SULFUR	NITROGEN	CARBON			
Group ID		DIOXIDE	OXIDE	MONOXIDE	VOC	ISP/PM10	
1		1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel. Wt.% S data from H2S					
91	29-H-3	CEMS. Starting 10/1 - material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
		1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel. Wt.% S data from H2S					
		CEMS. Starting 10/1 - material balance using					ļ Į
92	29-11-9	TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOX/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb, VOC/MMSCF	SCC Factor: 3 Ib PM-10/MMSCF	
		1/1-9/30/05: SCC Factor: 950 x Wt % S Lb. SOx /MMSCF fuel. Wt % S data from H2S					
95	29-H-4	TRS from fuel oas CEMS.	1993 stack test factor	1993 stack test factor	SCC Factor: 2.8 lb VOC/MMSCF	SCC Factor 3 lb PM-10/MMSCF	
		1/1-9/30/05: SCC Factor: 950 x Wt % S Lb. SOx /MMSCF fuel: Wt % S data from H2S CEMS. Starting 10/1 - material balance using					
96	29-H-7	TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
08	20.4.5	1/1-9/30/05: SCC Factor: 950 x Wt % S Lb. SOx /MMSCF fuel. Wt % S data from H2S CEMS. Starting 10/1 - material balance using TPS from fuel case CEMS.	0.15 lb/ MMBTU 1993 stock forst factor	0.01 lb/ MMBTU		SCC Faster 4 % DM 40%MSCF	
90	2011-0			1993 Stack lest factor	SCC Factor: 2.8 lb. VOC/MMSCF	SEC Factor: 3 ID PM-10/MMSEF	
		1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel: Wt.% S data from H2S ICEMS. Starting 10/1 - material balance using	0.07 Ib/ MMBTU	0.301 lb/ MMBTU			
99	29-H-6	TRS from fuel gas CEMS.	1993 stack test factor	1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 Ib PM-10/MMSCF	
		1/1-9/30/05: SCC Factor: 950 x Wt % S Lb. SOx /MMSCF fuel. Wt % S data from H2S CEMS. Starting 10/1 - material balance using		0.01 /b/ MMBTU			
34	H2 PLANT 37-H-1	TRS from fuel gas CEMS.	NOX CEMS	1994 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 Ib PM-10/MMSCF	
30	36-H-1	1/1-9/30/05: SCC Factor: 950 x Wt % S Lb. SOx /MMSCF fuel: Wt % S data from H2S CEMS. Starting 10/1 - material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOX/MMSCF	SCC Factor: 35 fb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 (b PM-10/MMSCF	
32	36-H-2	1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel. Wt.% S data from H2S CEMS. Starting 10/1 - material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
31	36-H-3	1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel. Wt.% S data from H2S CEMS. Starting 10/1 - material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
27	\$RU I	SO2 CERMS	0.015 lb/ MMBTU 8/1-2/05 testing	0.0004 lb/ MMBTU 8/1-2/05 testing	0.002 lb/ MMBTU 8/1-2/05 testing	0.0430 lb/MMBTU PM-10 8/1-2/05 testing 93% of PM-PRI is condensable	
29		SO2 CERUS	0.0240 lb/ MMBTU 8/1-2/05 testing	0.0005 lb/ MMBTU	0.001 Ib/ MMBTU	0.018 lb/MMBTU PM-10 8/1-2/05 testing 6% of PM BPL is condeasable	
<u> </u>			In Introduction	er rando resting	or r-z/up teaung	NO NO FIMIERA IS CONCENSIONE	
74	42-H-1	SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel. Wt.% S data from H2S CEMS.	NOX CEMS	0.0006 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
75	42-H-2	SCC Factor: 950 × Wt.% S Lb. SOx /MMSCF fuel: Wt.% S data from H2S CEMS.	NOX CEMS	0.0006 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
		SCC Factor: 950 x Wt % S_Lb. SOx /MMSCF		0.0006 lb/ MMBTU			
76	42-H-3	fuel. Wt.% S data from H2S CEMS.	NOx CEMS	1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 Ib PM-10/MMSCF	

÷

÷

ł

A		SULFUR	NITROGEN	CARBON			
Group IU				MUNUAIUE	YUC.	15P7Pm10	AMMUTIA
		SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF	0.10 іб/ ММВТЦ	0.001 Ib/ MMBTU			
77	42-H-7	fuel, Wt.% S data from H2S CEMS.	2001 stack test factor	1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
		1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb.					
		SOx /MMSCF fuel. Wt.% S data from H2S CEMS Starting 10/1 - material balance using	0.068 Ib/MMBTH AR-42 Eactor for Industrial	0.37 Ib/MMRTLL AR-42 Enctor for Industrial	0 14 Ib/MMBTUL AP-42 Factor for Industrial		
80	FLARE PILOT/PURGE GAS	TRS from fuel gas CEMS.	Flares	Flares	Flares	N/A	
68	DCPP 1 GAS	SO2 CEMS		0.006 lb/MMBTU October 2001 stack test factor	0.0001 lb/MMBTU October 2001 stack test factor	0.011 lb/MMBTU July and Sent. 2004 stack tests	
	- 055 0 010				0.0003 Ib/MMBTU	0.0023 Ib/MMBTU	
- 69	DUPP 2 GAS	SO2 CEMS	NOX CEMS		6/15/04 stack test	6/15/04 stack test	
				0.000 Ib/MMBTU	0.00003 lb/MMBTU	0.0056 ІЫ/ММВТ-	
70	DCPP 3 GAS	SO2 CEMS	NOX CEMS	October 2001 stack test factor	October 2001 stack test factor	October 2001 stack test factor	
				0.02 /b/MMBTU			
67	DCPP 4 GAS	SO2 CEMS	NOx CEMS	1993 stack test factor	SCC Factor: 1.4 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
		1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb.					
		SOx /MMSCF fuel. Wt.% S data from H2S					
106	COKER SHU HTR	CEMS. Starting 10/1 - material balance using TRS from fuel cas CEMS.	SCC Factor: 140 lb_NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb VOC/MMSCF	SCC Factor: 3 Ib PM-10/MMSCF	
		SOx /MMSCF fuel. Wt.% S data from H2S					
405	25 1 401	CEMS. Starting 10/1 - material balance using	0.0028 lb/ MMBTU	0.075 lb/ MMSCF	0.0 lb/ MMSCF	4.56 lb/ MMSCF	
125	23-11-401	TRS IIdin fuergas CEMS.	S/SU/US STACK TEST TACIO	2701 Stack test factor	2/01 stack test factor	2/01 Stack test factor	
		1/1-9/30/05: SCC Factor: 950 x Wt.% S Lb. SOx /MMSCE fuel_ Wt.% S data from H2S					
		CEMS. Starting 10/1 - material balance using	0.027 lb/ MMBTU	0.0 lb/ MMSCF	0.07 lb/ MMSCF	3.82 lb/ MMSCF	
126	25-H-402	TRS from fuel gas CEMS.	3/29/05 stack test factor	2/01 stack test factor	2/01 stack test factor	2/01 stack test factor	
						Emission Factor 0.2 Grains/SCF. Design flow of	
4	COKER BAG HOUSE	N/A	N/A	N/A	N/A	5000 SCF/MIN, TSP not PM-10.	
					1992 optimate of VOC optioning fallendar		Estimate - emount outported from
51	WWTP	N/A	N/A	N/A	NESHAPS controls	N/A	wastewater
51					· · · · · · · · · · · · · · · · · · ·		
	WWTP VCU	N/A	Permit Factor: 12.8 lb NOv /M Gel	Permit Factor: 3.2 tb. CO / Moal	Permit Factor: 0.26 lb VOC /Mnsi	N/A	
				r signi i down o'r llo. Co's llegol			
	WWTP DOWNSTREAM (CPI @ API						
50	SEP. TANKS)	N/A	N/A	<u>N/A</u>	WATER 9 model	N/A	
			4.089 lb/M Gal - TNRCC guidance document	29.5 lb/M Gai - TNRCC guidance document	4.23 Ib/M Gal - TNRCC guidance document for flares and 99.9% flare		
520	PROPANE PIT FLARE PILOT	N/A	for flares and 99.9% flare efficiency	for flares and 99.9% flare efficiency	efficiency	N/A	
				20.6 Jb/M Col. TNDCC - sidenes der sind	4.23 Ib/M Gal - TNRCC guidance		
	PROPANE PIT FLARE PRODUCT	N/A	for flares and 99.9% flare efficiency	for flares and 99.9% flare efficiency	efficiency	N/A	

2005 EMISSION FACTOR SUMMARY

Group (D		SULFUR	NITROGEN	CARBON	Voc		
			- ONDE	MONOADE			
52	OIL RECOVERY SYS	N/A	N/A	N/A	Permit limit	N/A	
17	POLY MEROX	17 łb/hr timit from air permit	N/A	N/A	N/A	N/A	
16	ALKY MEROX	26 lb/h/ limit from air permit	N/A	N/A	N/A	N/A	
10	COKER MEROX	3 lb/br limit from oir pomit	N/A	N/A	N/A	N/A	
		s to in this roll all permit		194 <u>-</u>	INA		
102	NAPHTHA TREATER	46 lb/hr limit from air permit	N/A	N/A	N/A	N/A	
	F						
	FUGITIVES (VALVE		1		Use of FPA correlation equations and		
. 83	MAINTENANCE)	N/A	N/A	N/A	monitoring data	N/A	
			0.000581 lb/BBL	0.00156 lb/BBL	0.000646 lb/BBL		
81	BARGE LOADING GASOLINE	N/A	10/24/04 source testing	10/24/04 source testing	10/24/04 source testing	N/A	<u> </u>
91	BARGE LOADING METHANOL	N/A	2002 course tection		2002 course teating	N/A	
	Bratte contrainte methante		2002 source testing	2002 Source resurg	2002 Source testing		
81	BARGE LOADING DISTILLATE	N/A	N/A	N/A	AP-42 factor: 0.012 lb/1000 Gal. Loaded	N/A	
ļ							
999	ACCIDENTAL RELEASES	Varies depending on type of release.	Varies depending on type of release.	Varies depending on type of release.			
Various			N/A	N/A	EPA AP-42 Equations	0.0	
521	REG COOLING TOWER	N/A	N/A	N/A	Periodic sampling of VOC concentrations in influent/recycle/effluent streams	Periodic complian of TOS in influent	
<u></u>					ninoonerocyclareniuent sueanis	n enoure sampling or noo in innuent	<u> </u>
					0.0002 lb/MMBTU - w/out duct firing	0.0094 lb/MMBTU - w/out duct firing	
527	REPOWERING CT 1 SYNGAS	SO2 CEMS	NOx CEMS	CO CEMS	0.0031 lb/MMBTU with duct firing 2003 stack testing	0.0125 lb/MMBTU with duct firing 2003 stack testing	
527							
			1	1	0.0002 lb/MMBTU - w/out duct firing 0.0036 lb/MMBTU with duct firing	0.0176 (b/MMBTU - w/out duct firing 0.0165 (b/MMBTU with duct firing	
	REPOWERING CT 1 LSDF	SO2 CEMS	NOX CEMS	CO CEMS	2003 stack testing	2003 stack testing	

	1	SULFUR	NITROGEN	CARBON			
Group ID	UNIT	DIOXIDE	OXIDE	MONOXIDE	VOC	TSP / PM10	AMMONIA
528	REPOWERING CT 2 SYNGAS	SO2 CEMS	NOX CEMS	CO CEMS	0.0002 Ib/MMBTU - wout duct firing 0.0031 Ib/MMBTU with duct firing 2003 stack testing	0.0094 lb/MMBTU - w/out duct firing 0.0125 lb/MMBTU with duct firing 2003 stack testing	
	REPOWERING CT 2 LSDF	SO2 CEMS	NOX CEMS	CO CEMS	0.0002 lb/MMBTU - wout duct firing 0.0036 lb/MMBTU with duct firing 2003 stack testing	0.0065 lb/MMBTU - w/out duct firing 0.0165 lb/MMBTU with duct firing 2003 stack testing	
523	REPOWERING COOLING TOWER	N/A	N/A	N/A	N/A	Calculated from flow and TSS concentration	
530	REPOWERING RAW GAS FLARE	Material balance based on sulfur content	Prorated emissions from design feed rate and AP-42 emission factor - 0.068 lb/MMBTU	Prorated emissions from design feed rate and design CO destruction effciency of 98%.	N/A	N/Å	
532	REPOWERING CLEAN GAS FLARE	Material balance based on sulfur content	Proneted emissions from design feed rate and AP-42 emission factor - 0.068 lb/MMBTU	Prorated emissions from design feed rate and design CO destruction efficiency of 98%.	N/A	N/A	
250	HYDROGEN PLANT VENT - DEAERATOR	N/A	N/A	N/A	6/3/04 source test	N/A	
250	HYDROGEN PLANT VENT - CO2 VENTED) N/A	N/A	N/A	6/3/04 source test	N/A	

-

i I
WALERO DELAWARE CITY REFINERY

4550 Wrangle Hill Road • Delaware City, Delaware 19706-7000

April 30, 2007 CMRRR# 7006 3450 0003 6308 4582

MAY 0 1 2007

Attn: Emission Inventory Department Air Quality Management Section DNREC 156 S. State St. Dover, DE 19901

RE: 2006 Annual Air Emission Inventory and Emissions Statement Report The Premcor Refining Group, Inc. – Delaware City Refinery

Dear Sir or Madam:

Enclosed is the 2006 Annual Air Emission Inventory and Emissions Statement Report for The Premcor Refining Group Inc.'s (Premcor) Delaware City Refinery. Emissions data were filed online using the DNREC i-STEPS software. The electronic data submitted included greenhouse gas emissions calculated using SANGEA software and hazardous air pollutants (HAPs) of interest by the Department.

Also enclosed is a summary of emission factors and calculation methodologies for criteria pollutants (including criteria pollutant precursors). Please note that Premcor has not conducted any stack testing for source-specific PM2.5 factors. PM10 condensibles have been reported as PM2.5-PRI where PM10 breakdowns were available from actual stack testing data.

Should you have any questions, please call me at (302) 836-6652.

Sincerely,

Scott Mesavitz Associate Environmental Engineer

\Enclosures

2006 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page

1

Facility Name:

PREMCOR DELAWARE CITY REFINERY

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON	PM10-FIL	PM25-FIL NH3
<u>001</u>	COKER INCINERATOR STACK	3.4	131.6	41.9	2817.5		143.22	0.049
002	FLUID COKER CO BOLER 22H3	13.1	501.5	426.6	13348.5		81.21	0.546
003	HEATER 22-H-2	0.1	7.3	1.8	0.7		0.2	0.0181
004	COKE HANDLING EQUIPMENT						37.5	
005_	CRUDE UNIT							
007	HEATER #2 FOR UNIT 21-H-2	2.3	115.8	0.9	11.1		2.5	0.287
008	FOUL WATER TREATMENT SYS.							
<u>010</u>	COKER GASOLINE MEROX PLT							
011	CRACKER BYPASS STACK	6.7	28.7	21.5	593.3	1.24	25.67	0.078
012	CRACKER CO BOILER MAIN ST	104.7	740.3	466.6	7993.7	25.34	517.65	1.1169
013	TETRA HEATER 32-H-101	0.3	6.5	4.3	1.6	i	0.4	0.0427
014	TETRA HEATER 32-H-102							
015	TETRA HEATER 32-H-103							
016	ALKYLATION FEED MEROX PLT							
017	POLYMERIZATION MEROX PLT					<u>.</u> 977 <u></u> -		
<u>018</u>	ALKY & POLY UNITS							
020	REFORMER, HEATER 25-H-1B				<u> </u>			
021	CATALYTIC REFORMER UNIT							· · · · · · · · · · · · · · · · · · ·
024	NAPTHALENE PLT HTR 33-H-1							
025	NAPTHALENE PLT HTR 33-H-2							
027	SULFUR RECOVERY UNIT 1	0.1	4.6	1.1	66.3	1.27	4	0.0478
028	SULFUR RECOVERY UNIT 2		2.4	0.7	89.5	0.87	0.43	0.0379
029	HYDROCRACKER							
<u>030</u>	HYDROCRACKER HTR 36-H-1	0.4	17.7	4.4	1.7	<u> </u>	0.4	0.0437
031	HYDROCRACKER HTR 36-H-3	0.2	12	3	1.1		0.3	0.0296
032	HYDROCRACKER HTR 36-H-2	0.1	4.9	1.2	0.5	<u> </u>	0.1	0.012
033	HYDROCRACKER HYDROGEN PLT							
<u>034</u>	HYDROCRACKER H2 HTR 37-H1	3.1	96.7	12.1	14.9)	3.3	0.383

2006 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT

Page 2

A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name:	PREMCOR DELAWARE CITY REFINERY

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON	PM10-FIL	PM25-FIL	NH3
<u>040</u>	CLOSED TOLUENE FACILITY								
<u>043</u>	BENZENE EXTRACTION FAC.								
044	AROMATICS FACT. FACILITY								
<u>050</u>	CPI&API SEPARATOR, TANKS	2.64							2.59
051	WASTEWATER TREATMNT PLANT	4.3	6.3	1.6					
052	OIL RECOVERY SYSTEM								
066	CLOSED TRASH INCINERATOR								
067	BOILER 4	1.7	185.6	26	54.5	2.72	0.9		
068	BOILER 1	0.1	178.7	7.4	39	10.25	3.4		
069	BOILER 2	0.5	29.2	2.6	5.6	2.63	0.87		
<u>070</u>	BOILER 3		157.7		46.7	5	1.66		
<u>071</u>	CLOSED METHANOL PLANT								
072	CLOSED METHANOL PLT HTR 4								
073	NEW CCR REFORMER #1								
074	NEW CCR REF. HTR 42-H-1	1.8	71.2	0.4	8.4	ļ	1.9		0.218
075	NEW CCR REF. HTR 42-H-2	2	78.9	0.5	9.3	<u> </u>	2.1		0.242
076	NEW CCR REF. HTR 42-H-3	0.9	37.1	0.2	4.4	<u> </u>	1		0.114
077	NEW CCR REF. HTR 42-H-7	0.6	22.6	0.2	2.8	<u> </u>	0.6		0.0729
078	OLEFINS PLANT								
080	FLARE SYSTEM	8.4	4.1	22.2	0.7	<u> </u>			
081	BARGE LOADING	6.2	2.1	2.7					
082	CLOSED LAND TREATMENT (TS								
083	VALVE MAINTENANCE	25.3							
084	HYDROD TRAIN HTR 29-H-101	0.5	27	6.8	2.4	<u> </u>	0.5		0.0616
085	HYDRODS. TRAIN HTR 29-H-8	0.6	22	1.3	2.7	1	0.6		0.0705
086	HYDRODS. TRAIN HTR 29-H-1								
088	HYDRODESULFURIZER TRAIN 1				-				
089	HYDRODESULFURIZER TRAIN 2								

2006 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 3

Facility Name: PREMCOR DELAWARE CITY REFINERY

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON	PM10-FII	PM25-FII	NH3
<u>090</u>	HYDRODS. TRAIN HTR 29-H-2	0.5	25.7	6.4	2.5		0.6		0.0635
<u>091</u>	HYDRODS. TRAIN HTR 29-H-3	0.1	6.6	1.7	0.7		0.1		0.0163
092	HYDRODS. TRAIN HTR 29-H-9	0.2	11.3	2.8	1.1		0.2		0.028
<u>093</u>	HYDRODESULFURIZER TRAIN 3								
094	HYDRODESULFURIZER TRAIN 4								
095	HYDRODS. TRAIN HTR 29-H-4		1.9		0.2				0.00392
096	HYDRODS. TRAIN HTR 29-H-7		1.8	0.4	0.2				0.00433
097	HYDRODESULFURIZER TRAIN 5								
098	HYDRODS. TRAIN HTR 29-H-5	0.4	21.7	1.4	1.7		0.4		0.046
099	HYDRODS. TRAIN HTR 29-H-6	0.4	12.2	51.6	2.1		0.5		0.0541
<u>100</u>	CLOSED STACK GAS SCRUBBER								
101	H2 CARBON DRUM VENT								
102	NAPHTHA TREATER								
105	CRUDE UNIT HEATR 21-H-701		74.3		18.9	5.05	4.51	0.3987	0.013
<u>106</u>	HTR FOR COKER SHU UNIT	0.5	24.6	6.2	2.4		0.5		0.0608
125	CNHTU HEATR 25-H-401		2.5		1.3				0.0349
126	CNHTU HTR 25-H-402		6		2.7		0.1		0.0704
<u>130</u>	CLOSED ACID PLANT								
<u>135</u>	PROD TANK #135	1.89							
136	PROD TANK #136	1.9							
137	PROD TANK #137	1.7							
<u>139</u>	PROD TANK #139	1.68							
145	PROD TANK #145	1.75							
146	PROD TANK #146	1.92							
147	PROD TANK #147	1.82							
<u>149</u>	PROD TANK #149	1.27							
150	PROD TANK #150	3.19							
161	PROD TANK #161	2.04							

Facility Id:

2006 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 4

Facility Name: PREMCOR DELAWARE CITY REFINERY

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON PM10-FIL PM25-FIL NI	H3
162	PROD TANK #162	2.46					
163	PROD TANK #163	2.83					
165	PROD TANK #165	1.31					
166	PROD TANK #166	3.28					
167	PROD TANK #167	1.07					
<u>181</u>	PROD TANK #181	2.03					
<u>182</u>	PROD TANK #182	1.77					
183	PROD TANK #183	2.99					
185	PROD TANK #185	2.48					
186	PROD TANK #186	0.33					
187	PROD TANK #187	1.35					
201	PROD TANK #203	2.09					
202	PROD TANK #202	0.1					
203	PROD TANK #203						
204	PROD TANK #204	1.77					
205	PROD TANK #205	1.73					
206	PROD TANK #206	0.42					
223	PROD TANK #223	1.59					
224	PROD TANK #224	1.67					
225	PROD TANK #225	1.22					
227	PROD TANK #227	0.21					
241	PROD TANK #241	2.58					
242	PROD TANK #242	0.38					
243	PROD TANK #243	0.14					
244	PROD TANK #244	3.26					
245	PROD TANK #245	1.85					
246	PROD TANK #246	2.27					
248	PROD TANK #248	0.06					

2006 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT

Page 5

A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name: PREMCOR DELAWARE CITY REFINERY

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON PM10-FII	PM25-FIL NH3
250	HYDROGEN PLANT VENT	0.6					
261	PROD TANK #261	1.25					
262	PROD TANK #262						
263	PROD TANK #263	0.14					
264	PROD TANK #264	2.1					
265	PROD TANK #265	2.18					
266	PROD TANK #266	0.61					
268	PROD TANK #268	0.18					
281	PROD TANK #281	0.05					
282	PROD TANK #282	0.18					
283	PROD TANK #283	0.26					
284	PROD TANK #284	0.2					
285	PROD TANK #285	0.23					
286	PROD TANK #286	0.12					
331	BENZENE TANK T 331						
332	BENZENE TANK T 332						
<u>401</u>	TOLUENE TANK #401						
402	TOLUENE TANK #402						
405	TANK #405						
406	TANK #406						
<u>407</u>	TANK #407	0.13					
408	TANK #408						
470	TANK #470						
471	TANK #471						
<u>481</u>	TANK #481						
500	TANK #500						
502	TANK #502						
<u>503</u>	TANK #503						

2006 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 6

Facility Name:	PREMCOR DEI	AWARE	CITY REFINERY
			CAA A ASSALA AL IAJASA

r actinty r taine.

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON	PM10-FIL	PM25-FIL NH3
504	TANK #504							
505	TANK #505							
520	PROPANE PIT FLARE	1.1	1	7.5				
521	RFG COOLING TOWER						1.2	
523	REPOWERING COOLING TOW							
527	REPOWERING CT1	0.43	96.1	10	154	16.08	4.68	
528	REPOWERING CT2	0.57	130.65	7.33	229.24	20.81	6.39	
530	REPOWER - RAW GAS FLARE							
532	REPOWER SYNGAS FLARE	· · · · · · · · · · · · · · · · · · ·	12.6	545.1	374.4	L		
550	TANK #550	<u> </u>						
551	TANK #551							
552	TANK #552							
553	TANK #553							
560	TANK #560							
561	TANK #561							
562	TANK #562							
563	TANK #563	· · · · · · · · · · · · · · · · · · ·						
564	TANK #564							
565	TANK #565							
566	TANK #566							
570	BENZENE TANK T 570							
571	AROMATICS TANK T 571							
572	AROMATICS TANK T 572							
580	TANK #580							
581	TANK #581							
582	TANK #582							
583	TANK #583							
<u>584</u>	TANK #584							

white h

2006 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT

Page 7

A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name:	PREMCOR DELAWARE CITY REFINERY
-----------------------	--------------------------------

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON PM10-FIL	PM25-FIL NH3
<u>901</u>	CRUDE TANK #1 F-SS	1.33					
902	CRUDE TANK #2 F-SS	0.42					
903	CRUDE TANK #3 F-SS	1.31					
<u>904</u>	CRUDE TANK #4 F-SS	1.41					
<u>905</u>	CRUDE TANK #5 F-SS	1.38					
906	CRUDE TANK #6 F-SS	1.31					
907	CRUDE TANK #7 F-SS	1.44					
<u>908</u>	CRUDE TANK #8 F-SS	1.44					
<u>909</u>	CRUDE TANK #9 F-DS	1.74					
<u>910</u>	CRUDE TANK #10 F-SS	1.59					
911	CRUDE TANK #11	1.57					
<u>912</u>	CRUDE TANK #12	1.5					
<u>944</u>	INTER. TANK #44	0.88					
945	INTER. TANK #45	7.64					
947	INTER. TANK # 47	0.35					
<u>948</u>	INTER. TANK #48	0.53					
950	INTER. TANK #50	0.91					
951	INTER. TANK #51	0.36			-		
<u>960</u>	INTER. TANK #60	0.21					
<u>961</u>	INTER. TANK #61	0.03					
<u>962</u>	INTER. TANK #62	0.02					
965	INTER. TANK #65	1.03					
966	INTER. TANK #66	2.55					
<u>971</u>	INTER. TANK #71	0.07					
972	INTER. TANK #72	0.96					
973	INTER. TANK #73	0.63					
<u>974</u>	INTER. TANK #74						
<u>975</u>	INTER. TANK #75	0.09					

2006 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 8

Facility Name:	PREMCOR DELA	WARE C	ITY REFINE	RY						
Facility Id:	00016	G	Group Level Er	nissions Sı	ummary					
Group ID#	Group Description		VOC	NO2	СО	SO2 P	M-CON PM1	0-FIL PM25-	FIL NH	[3
976	INTER. TANK #76		0.0	L						
977	INTER. TANK #77		4.7	5						
978	INTER. TANK #78		8.84	1						
<u>998</u>	TANK FUGITIVE									
999	ACCIDENTAL RELEASES		23	<u> </u>	1349.8	80.3				1.3
	GROUP LEVEL	AIR EMIS	SION INVEN	TORY SU	MMARY				Page	8
		VOC	NO2	CO	SO2	PM-CON	M PM10-FIL	PM25-FIL	NH3	
	Total Emissions	334.47	2921.55	3048.23	25988.64	91.2	849.59	0.3987	7.755	95

Pursuant to Regulation No. 30, I, the undersigned, am a Responsible Official and I have personally examined and am familiar with the information submitted in this document and all of its attachments certify, based on information and belief formed after reasonable inquiry the statements and information in the document are true, accurate and complete.

Responsible Official:	Andrew Ken	Ner (Please Print)
Title: //:ce Ales	cident and General Man	ager
Signature:	en Denner	Date <u></u>

Page 1 of 5

Group ID	UNIT	SULFUR	NITROGEN	CARBON	VOC	TSP / PM10	AMMONIA
Stoup ID		DIGNIDE	UNIDE .	monoribe	100	TOFFENITO	ANNALOTINA
105	21-H-701 FUEL GAS	Material balance using TRS from fuel gas CEMS. SCC Factor: 950 x Wt.% S Lb. SOx /MMSCF fuel. Wt.% S in ammonia stream from sour	NOX CEMS	0.000 lb/MMBTU 3/06 stack test	0.000 lb/MMBTU 3/06 stack test	0.006 lb/MMBTU PM10-PRI PM10 primary from 3/06 stack test.	Precombustor design efficiency and estimated NH3 combustion
		water simpler design data.					emciency or 21-H-701
7	21-H-2 GAS	Material balance using TRS from fuel gas CEMS.	NOX CEMS	0.001 lb/MMBTU 1993 source test	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
. 2	COKER COB FUEL GAS	SO2 CEMS and stack flow monitor	NOx CEMS and stack flow monitor	CO CEMS and stack flow monitor	Pre-WGS: SCC Factor: 2.8 lb. VOC/MMSCF Post-WGS: 1/18/07 stack testing Pre-WGS: SCC Factor: 2.8 lb. VOC/MMSCF Post-WGS: 1/18/07 stack testing	Use of 1995 stack test factor, ratioed for actual feed rate to stack test feed rate, less fuel gas emissions. 48.8% of TSP is PM-10.	Pre-WGS: 5/25/06 stack testing Post-WGS: 1/18/07 stack testing
					in rolor black tooling		
1	COKER INCINERATOR - FUEL GAS	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
	COKER INCINERATOR - PROCESS GAS	Total SO2 emissions (presumed at monthly average for COB operation) less SO2 emissions from fuel gas	Total NOx emissions presumed at monthly average rate for COB operation	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	6/5/95 test data 0.0074 lb/hr per BPD FF	Based on 4/04 process data
3	COKER SEALAS	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
12	FCCU COB MAIN STACK - GAS FCCU COB MAIN STACK - PROCESS GAS	SO2 CEMS and stack flow monitor	NOx CEMS and stack flow monitor	CO CEMS and stack flow monitor	SCC Factor: 2.8 lb. VOC/MMSCF	Pre-WGS: 7/19-20/06 stack test Post-WGS: limit from air permit	Based on 4/04 process data
11	FCCU BYPASS STACK - PROCESS GAS	Total SO2 emissions presumed at monthly average rate for COB operation	Total NOx emissions presumed at monthly average rate for COB operation	SCC Factor: 13700 lb/MBBL FF with applied control efficiency of 99.7%	SCC Factor: 2.8 lb. VOC/MMSCF	February and March 2005 stack test results for filterable fraction; SO3 and H2SO4 condensibles estimated from SO2 emissions.	
84	29-H-101	Material balance using TRS from fuel gas CEMS.	0.138 lb/ MMBTU 1993 stack test factor	0.035 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
85	29-H-8	Material balance using TRS from fuel gas CEMS.	0.099 lb/ MMBTU 1993 stack test factor	0.006 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
13	32-H-101	Material balance using TRS from fuel gas CEMS.	0.048 lb/ MMBTU 10/16/06 stack test factor	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
90	29-H-2	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero

13

		SULFUR	NITROGEN	CARBON	100	TOD (DIMA	411101114
Group ID	UNIT	DIOXIDE	OXIDE	MONOXIDE	VOC	TSP/PM10	AMMONIA
		Material balance using TRS from fuel gas					0.000316 lb/MMBTU from Valero
91	29-H-3	CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	heater stack testing 8/31/06
		Netwish belongs using TDC from fuel and					0.000216 Ib/MARTI L from Molece
92	29-H-9	CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	heater stack testing 8/31/06
		Material balance using TRS from fuel gas	0.15 lb/ MMBTU	0.004 lb/ MMBTU			0.000316 lb/MMBTU from Valero
95	29-H-4	CEMS.	1993 stack test factor	1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	heater stack testing 8/31/06
		Material balance using TRS from fuel das					0 000316 lb/MMBTU from Valero
96	29-H-7	CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	heater stack testing 8/31/06
0.0	20 4 5	Material balance using TRS from fuel gas	0.15 lb/ MMBTU	0.01 lb/ MMBTU	SCC Factor 2.8 lb VOCAMISCE	SCC Factor 2 Ib DM 10/MMSCF	0.000316 lb/MMBTU from Valero
90	29-0-0	CEMS.			SCC Factor, 2.0 ID. VOCIMIMSCF	SCC Factor, S ID PM-TUMMISCP	neater stack testing 0/31/00
		Material balance using TRS from fuel gas	0.07 lb/ MMBTU	0.301 lb/ MMBTU			0.000316 lb/MMBTU from Valero
99	29-H-6	CEMS.	1993 stack test factor	1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	heater stack testing 8/31/06
		Network below when TDC from first one					0.000216 Ib/AMPTIL from Vision
34	H2 PLANT 37-H-1	CEMS.	NOX CEMS	1994 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	heater stack testing 8/31/06
	20.11.4	Material balance using TRS from fuel gas	000 5			COO Factor 2 In DM 1000000	0.000316 lb/MMBTU from Valero
30	36-H-1	CEMS.	SCC Factor: 140 lb. NOX/MMSCF	SCC Factor: 35 Ib. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MIMSCF	SCC Factor: 3 Ib PM-10/MMSCF	heater stack testing 6/31/06
		Material balance using TRS from fuel gas					0.000316 lb/MMBTU from Valero
32	36-H-2	CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	heater stack testing 8/31/06
		Network below when TOO from first and					0.000246 Ib/MMRTH from Valore
31	36-H-3	CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb, CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	heater stack testing 8/31/06
						1.33 lb/hr PM-10	
			0.03 lb/ MMBTU	0.0071 lb/ MMBTU	0.0005 lb/ MMBTU	10/17-19/06 testing	0.000316 lb/MMBTU from Valero
27	5KU I	SUZ CERMS	10/17-19/06 testing	TUTT-19/06 testing	Torr-19/06 testing	2470 of PM-PRI Is condensable	neater stack testing 8/31/06
						0.22 lb/br PM 10	
			0.02 lb/ MMBTU	0.006 lb/ MMBTU	0.0003 lb/ MMBTU	10/17-19/06 testing	0.000316 lb/MMBTU from Valero
28	SRU II	SO2 CERMS	10/17-19/06 testing	10/17-19/06 testing	10/17-19/06 testing	67% of PM-PRI is condensable	heater stack testing 8/31/06
							0.000010 10.0000000
74	42-H-1	CEMS.	NOX CEMS	1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor; 3 lb PM-10/MMSCF	heater stack testing 8/31/06
14							
		Material balance using TRS from fuel gas		0.0006 lb/ MMBTU			0.000316 lb/MMBTU from Valero
75	42-H-2	CEMS.	NOX CEMS	1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	heater stack testing 8/31/06
		Material balance using TRS from fuel cas		0.0006 lb/ MMBTU			0.000316 lb/MMBTU from Valero
76	42-H-3	CEMS.	NOx CEMS	1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	heater stack testing 8/31/06

Page 2 of 5

0		SULFUR	NITROGEN	CARBON			
Group ID	UNIT	DIOXIDE	OXIDE	MONOXIDE	VOC	TSP / PM10	AMMONIA
77	42-H-7	Material balance using TRS from fuel gas CEMS.	0.10 lb/ MMBTU 2001 stack test factor	0.001 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
80	FLARE PILOT/PURGE GAS	Material balance using TRS from fuel gas CEMS.	0.068 lb/MMBTU AP-42 Factor for Industrial Flares	0.37 lb/MMBTU AP-42 Factor for Industrial Flares	0.14 lb/MMBTU AP-42 Factor for Industrial Flares	N/A	
68	DCPP 1 GAS	SO2 CEMS	NOX CEMS	0.006 lb/MMBTU October 2001 stack test factor	0.0001 lb/MMBTU October 2001 stack test factor	0.011 lb/MMBTU July and Sept. 2004 stack tests	
69	DCPP 2 GAS	SO2 CEMS	NOX CEMS	CO CEMS	0.0003 lb/MMBTU 6/15/04 stack test	0.0023 lb/MMBTU 6/15/04 stack test	
70	DCPP 3 GAS	SO2 CEMS	NOx CEMS	0.000 lb/MMBTU October 2001 stack test factor	0.00003 lb/MMBTU October 2001 stack test factor	0.0056 lb/MMBTU October 2001 stack test factor	
67	DCPP 4 GAS	SO2 CEMS	NOX CEMS	0.02 lb/MMBTU 1993 stack test factor	SCC Factor: 1.4 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
106	COKER SHU HTR	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
125	25-H-401	Material balance using TRS from fuel gas CEMS.	0.023 lb/ MMBTU 3/14/06 stack test factor	0.0571 lb/ MMSCF 2/01 stack test factor	0.0 lb/ MMSCF 2/01 stack test factor	0.359 lb/ MMSCF 2/01 stack test factor	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
126	25-H-402	Material balance using TRS from fuel gas CEMS.	0.027 lb/ MMBTU 3/15/06 stack test factor	0.0 lb/ MMSCF 2/01 stack test factor	0.002 lb/ MMSCF 2/01 stack test factor	0.301 lb/ MMSCF 2/01 stack test factor	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
4	COKER BAG HOUSE	N/A	N/A	N/A	N/A	Emission Factor 0.2 Grains/SCF. Design flow of 5000 SCF/MIN. TSP not PM-10.	
51	WWTP	N/A	N/A	N/A	1992 estimate of VOC emissions following NESHAPS controls	N/A	Estimate - amount evaporated from wastewater
	WWTP VCU	N/A	Permit Factor: 12.8 lb NOx /M Gal	Permit Factor: 3.2 lb. CO / Mgal	Permit Factor: 0.26 lb VOC /Mgal	N/A	
50	WWTP DOWNSTREAM (CPI @ API SEP. TANKS)	N/A	N/A	N/A	WATER 9 model	N/A	WATER 9 model
520	PROPANE PIT FLARE PILOT	N/A	4.089 Ib/M Gal - TNRCC guidance document for flares and 99.9% flare efficiency	29.5 Ib/M Gal - TNRCC guidance document for flares and 99.9% flare efficiency	4.23 lb/M Gal - TNRCC guidance document for flares and 99.9% flare efficiency	N/A	WOLEN & ILIOURI
	PROPANE PIT FLARE PRODUCT	N/A	4.089 lb/M Gal - TNRCC guidance document for flares and 99.9% flare efficiency	29.5 Ib/M Gal - TNRCC guidance document for flares and 99.9% flare efficiency	4.23 lb/M Gal - TNRCC guidance document for flares and 99.9% flare efficiency	N/A	

Page 3 of 5

Crews ID	LINUT	SULFUR	NITROGEN	CARBON			
Group ID		DIOXIDE	OXIDE	MONOXIDE	VOC	TSP / PM10	AMMONIA
52	OIL RECOVERY SYS	N/A	N/A	N/A			
52	OIL RECOVERT STS	N/A	N/A	N/A	Permit limit	N/A	
17		Assumed some as Noohtha Treater	Assumed a me as Marktha Tarata				
	I OLT MEROX	Assumed same as Naphula Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	
16	ALKY MEROX	Assumed some as Noohtha Traater	Assumed some as Mashika Taralas	And the second sec			
10	ALC: MERCOX	Assumed same as Naphula Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	
10	COKER MEROX	61.9 ppmy from analytical data	SCC English 140 lb NOv/MMISCE				
10	CONLINE TOX		SCC Factor: 140 10. NOX/MIMSCF	SCC Factor: 35 Ib. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
102	NAPHTHA TREATER	0.026 lb/MMBTU - based on max. 162 ppmv	0.025 Ib NO-AMARTI	0.074 lb. CO /MMBTU - Current permit limit in	0.003 lb. VOC/MMBTU - Current permit		
102		1125	0.03510. NOX/MIMB10	APC-95/0570 - CON (Amend 2)	limit in APC-95/0570 - CON (Amend 2)	SCC Factor: 3 lb PM-10/MMSCF	
83	FUGITIVES (VALVE MAINTENANCE)	N/A	N/A	NIA	Use of EPA correlation equations and		
		N/A	DPA	N/A	monitoring data	N/A	
81	BARGE LOADING GASOLINE	N/A	0.000617 lb/BBL 10/31-11/2/06 source testing	0.000803 lb/BBL	0.00023 lb/BBL		
			Toron - Finz too aburde teating	10/31-11/2/06 source testing		N/A	
81	BARGE LOADING METHANOL	N/A	2002 source testion	2002 source testing			
			2002 source teating	2002 source testing	2002 source testing	N/A	
81	BARGE LOADING DISTILLATE	N/A	N/A	NIA	AD 42 feature 0.012 (5/1000 Cel 1 4-4		
			1023	D/A	AP-42 factor: 0.012 lb/1000 Gal. Loaded	N/A	
999	ACCIDENTAL RELEASES	Varies depending on type of release.	Varies depending on type of release	Varies depending on type of release	Varies depending on type of release	Varias dapagoing on time of release	Mada dan dia sa kaoné dia
			teres aspending en type en teresse.	varies depending on type of felebac.	valies depending on type of release.	varies depending on type of release.	varies depending on type of release
Various	TANK FARM	N/A	N/A	N/A	EPA AP 42 Equations		
				000	EPA AP-42 Equations	0.0	
521	RFG COOLING TOWER	N/A	N/A	N/A	Periodic sampling of VOC concentrations in		8
				0,00	innoentreeyolerennoent streams	renous sampling or TDS in influent	
					the star of a starter starter starter		
521	ETHER PLANT COOLING TOWER	N/A	N/A	51/6	Used same analytical data as RFG cooling	Underson and Kind days. BER. 1.	
		turs.	190	DVA.	lower	Used same analytical data as RFG cooling tower	
					0.0002 lb/MMBTU - w/out duct firing	0.0094 lb/MMBTU - w/out duct firing	
	REPOWERING CT 1 SYNGAS	SO2 CEMS	NOV CEMS	COCEME	0.0031 lb/MMBTU with duct firing	0.0125 lb/MMBTU with duct firing	
527	Strating of Formoro	UCL OLING	NOX CEMS	CUCEMS	2003 stack testing	2003 stack testing	
					0.0002 lb/MMBTU - w/out duct firing	0.0176 lb/MMBTU - w/out duct firing	
	REPOWERING CT 1 LSDF	SO2 CEMS	NOV CEMS	CO CEMP	0.0036 lb/MMBTU with duct firing	0.0165 lb/MMBTU with duct firing	
		COL OLINO	ITOA GEMIO	CO CEMS	LEUVU BLOCK LESUIN	LANDA SIRCK IPSUDD	

Page 4 of 5

		SULFUR	NITROGEN	CARBON			
Group ID	UNIT	DIOXIDE	OXIDE	MONOXIDE	VOC	TSP / PM10	AMMONIA
528	REPOWERING CT 2 SYNGAS	SO2 CEMS	NOx CEMS	CO CEMS	0.0002 lb/MMBTU - w/out duct firing 0.0031 lb/MMBTU with duct firing 2003 stack testing	0.0094 lb/MMBTU - w/out duct firing 0.0125 lb/MMBTU with duct firing 2003 stack testing	
	REPOWERING CT 2 LSDF	SO2 CEMS	NOX CEMS	CO CEMS	0.0002 lb/MMBTU - w/out duct firing 0.0036 lb/MMBTU with duct firing 2003 stack testing	0.0065 lb/MMBTU - w/out duct firing 0.0165 lb/MMBTU with duct firing 2003 stack testing	
523	REPOWERING COOLING TOWER	N/A	N/A	N/A	N/A	Calculated from flow and TSS concentration	
530	REPOWERING RAW GAS FLARE	Material balance based on sulfur content	Prorated emissions from design feed rate and AP-42 emission factor - 0.068 lb/MMBTU	Prorated emissions from design feed rate and design CO destruction effciency of 98%.	N/A	N/A	
532	REPOWERING CLEAN GAS FLARE	Material balance based on sulfur content	Prorated emissions from design feed rate and AP-42 emission factor - 0.068 lb/MMBTU	Prorated emissions from design feed rate and design CO destruction effciency of 98%.	N/A	N/A	
250	HYDROGEN PLANT VENT - DEAERATOR	N/A	N/A	N/A	1/24-25/06 source test	N/A	
250	HYDROGEN PLANT VENT - CO2 VENTED	N/A	N/A	N/A	1/24-25/06 source test	N/A	

Page 5 of 5

DELAWARE CITY REFINERY

4550 Wrangle Hill Road • Delaware City, Delaware 19706-7000

CMRRR# 7006 3450 0003 6313 4973

April 29, 2008

Air Quality Management Section, DNREC Emission Inventory Development Program 156 South State St. Dover, DE 19901

RE: 2007 Annual Air Emission Inventory and Emissions Statement Report The Premcor Refining Group, Inc. – Delaware City Refinery

Dear Sir or Madam:

Enclosed are the following documents for the Premcor Refining Group Inc.'s Delaware City Refinery:

- 2007 Annual Air Emission Inventory and Emissions Statement Summary Report
- CD containing a copy of the Detail Emissions Report and a signed Optical Media Certification Form
- A summary of emission factors and calculation methodologies for criteria pollutants

The electronic data submitted included greenhouse gas emissions and hazardous air pollutants (HAPs) of interest by the Department. If you have any questions or need additional information, please contact me at (302) 834-6408.

Sincerely,

Cathe Kalis

Cathe Kalisz Staff Environmental Engineer

\Enclosures

Owned by The Premcor Refining Group Inc., a Valero Company

A Summary of Facility Emissions including Group Level Emissions in Tons Year Facility Name: PREMCOR DELAWARE CITY REFINERY PREMCOR DELAWARE CITY REFINERY Facility Id: 00016 Group Level Emissions Summary APR 3 0 2008 Group ID# Group Description VOC NO2 CO SO2 PM-CON PM10-FIL PM	<u>M25-FIL NH3</u> 0.05 0.17 0.018
Facility Name: PREMCOR DELAWARE CITY REFINERY Facility Id: 00016 Group Level Emissions Summary Group ID# Group Description VOC NO2 CO SO2 PM-CON PM10-FIL PM	M25-FIL NH3 0.05 0.17 0.018
Facility Name: PREMCOR DELAWARE CITY REFINERY Facility Id: 00016 Group ID# Group Description VOC NO2 CO SO2 PM-CON PM10-FIL PM	M25-FIL NH3 0.05 0.17 0.018
Facility Id: 00016 Group Level Emissions Summary Group ID# Group Description VOC NO2 CO SO2 PM-CON PM10-FIL PM	M25-FIL NH3 0.05 0.17 0.018
Group ID# Group Description Group Level Emissions Summary VOC NO2 CO SO2 PM-CON PM10-FIL PM	M25-FIL NH3 0.05 0.17 0.018
Group ID# Group Description VOC NO2 CO SO2 PM-CON PM10-FIL PM	M25-FIL NH3 0.05 0.17 0.018
Group ID# Group Description VOC NO2 CO SO2 PM-CON PM10-FIL PM	M25-FIL NH3 0.05 0.17 0.018
	0.05 0.17 0.018
001 COKER INCINERATOR STACK 4.73 52.21 59.2 847.93 60.94	0.17 0.018
<u>002</u> <u>FLUID COKER CO BOLER 22H3</u> <u>3.06</u> <u>526.68</u> <u>121.45</u> <u>75.17</u> <u>10.51</u> <u>128.82</u>	0.018
<u>003</u> <u>HEATER 22-H-2</u> <u>0.14</u> <u>7.03</u> <u>1.76</u> <u>1.27</u> <u>0.15</u>	
<u>004</u> <u>COKE HANDLING EQUIPMENT</u> <u>37.54</u>	
<u>005</u> <u>CRUDE UNIT</u>	
<u>007</u> HEATER #2 FOR UNIT 21-H-2 <u>2.21</u> 97.37 <u>0.9</u> 20.7 <u>2.37</u>	0.283
008 FOUL WATER TREATMENT SYS.	
010 COKER GASOLINE MEROX PLT	
011 CRACKER BYPASS STACK 0.4 21.06 18.44 404.97 1.11 22.94	0.312
012 FCCU COB WGS STACK 10.02 629.31 375.8 101.25 10.67 62.68	7.8
013 TETRA HEATER 32-H-101 0.34 12.13 4.23 3.24 0.36	0.0434
014 TETRA HEATER 32-H-102	
015 TETRA HEATER 32-H-103	
016 ALKYLATION FEED MEROX PLT	
017 POLYMERIZATION MEROX PLT	
018 ALKY & POLY UNITS	
020 REFORMER, HEATER 25-H-1B	
021 CATALYTIC REFORMER UNIT	
024 NAPTHALENE PLT HTR 33-H-1	
025 NAPTHALENE PLT HTR 33-H-2	
027 SULFUR RECOVERY UNIT 1 0.07 4.46 1.05 71.09 1.39 4.38	0 0471
028 SULFUR RECOVERY UNIT 2 0.03 2.21 0.67 94.11 0.8 0.4	0.0348
029 HYDROCRACKER	0.0040
030 HYDROCRACKER HTR 36-H-1 0.33 16.41 4.1 3.42 0.35	0.0421
031 HYDROCRACKER HTR 36-H-3 0.21 10.26 2.57 2.1 0.22	0.0421
032 HVDROCRACKER HTR 36-H-2 01 509 127 106 011	0.0203
033 HVDROCRACKER HVDROGEN PLT	0.0131
034 HVDROCRACKER H2 HTR 37-H1 3.3 105.76 13.45 21.91 2.52	0.422
040 CLOSED TOLUENE FACILITY	0.423

2007 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT

A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 2

Facility Name: PREMCOR DELAWARE CITY REFINERY

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON	PM10-FIL PN	125-FIL NH3
043	BENZENE EXTRACTION FAC.							
044	AROMATICS FACT. FACILITY							
050	CPI&API SEPARATOR, TANKS	22.08						0.03
051	WASTEWATER TREATMNT PLANT	4.2	6.35	1.59				
052	OIL RECOVERY SYSTEM							
066	CLOSED TRASH INCINERATOR							
067	BOILER 4	1.42	176.91	23.87	65.65	5 2.29	0.76	0.36
068	BOILER 1	1.27	216.12	15.44	59.27	9.21	2.12	0.426
069	BOILER 2	0.6	38.38	2.01	25.63	9.01	6.06	0.455
<u>070</u>	BOILER 3	0.97	200.62	1.81	61.13	3 2.76	7.45	0.424
071	CLOSED METHANOL PLANT							
072	CLOSED METHANOL PLT HTR 4							
073	NEW CCR REFORMER #1							
<u>074</u>	NEW CCR REF. HTR 42-H-1	1.53	64.21	0.37	15.09)	1.64	0.196
075	NEW CCR REF. HTR 42-H-2	1.71	71.86	0.42	17.04	1	1.83	0.22
076	NEW CCR REF. HTR 42-H-3	0.87	36.57	0.21	8.55	5	0.93	0.112
077	NEW CCR REF. HTR 42-H-7	0.52	20.75	0.21	5.08	<u> </u>	0.56	0.0666
078	OLEFINS PLANT							
080	FLARE SYSTEM	8.74	4.24	23.09	1.45	5		
081	BARGE LOADING	10.23	1.15	1.5				
082	CLOSED LAND TREATMENT (TS							
083	VALVE MAINTENANCE	33.7						
084	HYDROD TRAIN HTR 29-H-101	0.36	20.32	5.15	4.13	3	0.38	0.0461
085	HYDRODS. TRAIN HTR 29-H-8	0.58	23.22	1.41	5.5	5	0.62	0.0738
086	HYDRODS. TRAIN HTR 29-H-1							
088	HYDRODESULFURIZER TRAIN 1							
089	HYDRODESULFURIZER TRAIN 2							
<u>090</u>	HYDRODS. TRAIN HTR 29-H-2	0.51	25.29	6.32	4.67	7	0.54	0.0649
<u>091</u>	HYDRODS. TRAIN HTR 29-H-3	0.12	5.84	1.46	1.21	L	0.13	0.015

2007 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT

A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name: PREMCOR DELAWARE CITY REFINERY

Facility Id: (

00016

Group Level Emissions Summary

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON I	PM10-FIL	PM25-FIL NH3
092	HYDRODS. TRAIN HTR 29-H-9	0.23	11.36	2.84	2.13		0.24	0.0292
093	HYDRODESULFURIZER TRAIN 3							
<u>094</u>	HYDRODESULFURIZER TRAIN 4							
095	HYDRODS. TRAIN HTR 29-H-4	0.04	2.6	0.07	0.39		0.05	0.00539
096	HYDRODS. TRAIN HTR 29-H-7	0.04	1.78	0.44	0.35		0.04	0.00457
<u>097</u>	HYDRODESULFURIZER TRAIN 5							
098	HYDRODS. TRAIN HTR 29-H-5	0.37	22.88	1.52	3.55		0.4	0.0477
099	HYDRODS. TRAIN HTR 29-H-6	0.38	11.02	46.7	3.62		0.41	0.0488
100	CLOSED STACK GAS SCRUBBER							
101	H2 CARBON DRUM VENT							
102	NAPHTHA TREATER			0.01				
105	CRUDE UNIT HEATR 21-H-701		55.23		35.24	4.89	4.36	0.486
106	HTR FOR COKER SHU UNIT	0.44	22.04	5.51	4.1		0.47	0.0566
125	CNHTU HEATR 25-H-401		2.41	0.01	2.88		0.04	0.0399
126	CNHTU HTR 25-H-402		6.01		5.05		0.06	0.0702
130	CLOSED ACID PLANT							
134	PROD TANK FARM HAPS							
135	PROD TANK #135	1.66						
136	PROD TANK #136	1.83						
137	PROD TANK #137	1.41						
139	PROD TANK #139	1.59						
145	PROD TANK #145	1.81						
146	PROD TANK #146	2						
147	PROD TANK #147	1.82						
149	PROD TANK #149	1.21						
150	PROD TANK #150	2.25						
161	PROD TANK #161	2.3						
162	PROD TANK #162	2.39						
163	PROD TANK #163	3.02						

Page

3

2007 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT

A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name: PREMCOR DELAWARE CITY REFINERY

Facility Id:

00016

Group Level Emissions Summary

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON PM10-FIL	PM25-FIL NH3
165	PROD TANK #165	0.89					
166	PROD TANK #166	1.12					
167	PROD TANK #167	1.39					
181	PROD TANK #181	2.35					
182	PROD TANK #182	2.44					
183	PROD TANK #183	3.11					
185	PROD TANK #185	0.83					
186	PROD TANK #186	0.32					
187	PROD TANK #187	1.29					
201	PROD TANK #203	2.47					
202	PROD TANK #202	0.1					
203	PROD TANK #203						
204	PROD TANK #204	1.82					
205	PROD TANK #205	1.62					
206	PROD TANK #206	0.38					
223	PROD TANK #223	2.17					
224	PROD TANK #224	1.68					
225	PROD TANK #225	0.93					
227	PROD TANK #227	0.17					
241	PROD TANK #241	0.96					
242	PROD TANK #242	0.39					
243	PROD TANK #243	0.19					
244	PROD TANK #244	2.41					
245	PROD TANK #245	2.11					
246	PROD TANK #246	2.2					
248	PROD TANK #248	0.08					
250	HYDROGEN PLANT VENT	1.98					
261	PROD TANK #261	0.98		<u></u>			
262	PROD TANK #262						

Δ

2007 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT

A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 5

Facility Name: PREMCOR DELAWARE CITY REFINERY

Facility Id:

00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON PM10-FIL PM25-FIL NH3	
263	PROD TANK #263	0.07					
264	PROD TANK #264	2.01					_
265	PROD TANK #265	1.89					_
266	PROD TANK #266	0.69					_
268	PROD TANK #268	0.17					_
<u>281</u>	PROD TANK #281	0.05					
282	PROD TANK #282	0.17					
283	PROD TANK #283	0.26					
284	PROD TANK #284	0.21					
285	PROD TANK #285	0.14					
286	PROD TANK #286	0.11					
331	BENZENE TANK T 331						_
332	BENZENE TANK T 332						
<u>401</u>	TOLUENE TANK #401						
402	TOLUENE TANK #402						
405	TANK #405						
<u>406</u>	TANK #406						_
<u>407</u>	TANK #407	0.17					-
<u>408</u>	TANK #408						_
<u>470</u>	TANK #470	0.02					_
<u>471</u>	TANK #471	0.01					
<u>481</u>	TANK #481						
500	TANK #500						
502	TANK #502						-
503	TANK #503						-
504	TANK #504						-
505	TANK #505						-
<u>520</u>	PROPANE PIT FLARE	0.17	0.17	1.21			-
<u>521</u>	RFG COOLING TOWER					2.5	-
							_

2007 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT

A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Page 6

Facility Name: PREMCOR DELAWARE CITY REFINERY

Facility Id: 00016

Group ID#	Group Description	VOC	NO2	CO	SO2	PM-CON	PM10-FIL	PM25-FIL NH3
523	REPOWERING COOLING TOW						2.17	
527	REPOWERING CT1	1.62	136.17	14.35	233.37	25.84	16.65	
528	REPOWERING CT2	2	157.01	10.66	309.7	20.23	24.31	
530	REPOWER - RAW GAS FLARE							
532	REPOWER SYNGAS FLARE		8.3	356.87	242.71			
550	TANK #550							
551	TANK #551							
552	TANK #552							
553	TANK #553							
560	TANK #560							
561	TANK #561							
562	TANK #562							
563	TANK #563							
564	TANK #564							
565	TANK #565							
566	TANK #566							
570	BENZENE TANK T 570							
571	AROMATICS TANK T 571							
572	AROMATICS TANK T 572							
<u>580</u>	TANK #580							
581	TANK #581							
582	TANK #582							
583	TANK #583							
<u>584</u>	TANK #584							
900	CRUDE TANK FARM HAPS							
901	CRUDE TANK #1 F-SS	1.52						
902	CRUDE TANK #2 F-SS	0.44						
903	CRUDE TANK #3 F-SS	1.48						
904	CRUDE TANK #4 F-SS	1.49						

2007 ANNUAL AIR EMISSION INVENTORY AND EMISSIONS STATEMENT REPORT

Page 7

A Summary of Facility Emissions including Group Level Emissions in Tons /Year

Facility Name: PREMCOR DELAWARE CITY REFINERY

Facility Id:

00016

Group ID#	Group Description	VOC NO2	CO	SO2	PM-CON PM10-FIL PM25-FIL NH3	<u>}</u>
905	CRUDE TANK #5 F-SS	1.44				
906	CRUDE TANK #6 F-SS	1.56				
907	CRUDE TANK #7 F-SS	1.38				
908	CRUDE TANK #8 F-SS	1.54				
909	CRUDE TANK #9 F-DS	1.56				
910	CRUDE TANK #10 F-SS	1.49				
911	CRUDE TANK #11	1.46				
912	CRUDE TANK #12	1.51				
943	INTER. TANK FARM HAPS					
944	INTER. TANK #44	0.77				
945	INTER. TANK #45	7.33				
947	INTER. TANK # 47	0.39				
948	INTER, TANK #48	0.45				
950	INTER, TANK #50	0.74				
<u>951</u>	INTER. TANK #51	0.35				
960	INTER. TANK #60	0.13				
961	INTER. TANK #61	0.02				
962	INTER. TANK #62	0.01				
965	INTER. TANK #65	1				
966	INTER. TANK #66	8.61				
971	INTER. TANK #71	0.07				
972	INTER. TANK #72	0.76				
973	INTER. TANK #73	0.62				
974_	INTER. TANK #74					
975	INTER. TANK #75	0.09				
976_	INTER. TANK #76	0.01				
977	INTER. TANK #77	4.91				
978	INTER. TANK #78	6.19				
998	TANK FUGITIVE					

04/28/2008	2007 ANNUAL AIR A Summary o	E EMISSION f Facility Emi	INVENTOR	RY AND El ding Group	MISSION D Level En	S STATEMENT REPORT nissions in Tons /Year	Page	8
Facility Name:	PREMCOR DELA	WARE CIT	Y REFINER	Y				
Facility Id:	00016	Gro	up Level Em	issions Su	mmary			
<u>Group ID#</u> 999	Group Description ACCIDENTAL RELEASES		<u>VOC</u> <u>32.21</u>	NO2 0.12	CO 1482.44	SO2 PM-CON PM10-FIL PM25- 162.29	FIL NH	<u>13</u> <u>4.87</u>
	GROUP LEVEL	AIR EMISSI	ON INVENT	ORY SUM	IMARY		Page	8
	Total Emissions	VOC 266.81	NO2 2838.91	CO 2612.38 _	SO2 2937.9	PM-CON PM10-FIL PM25-FIL 98.71 399.51	NH3 17.41(056

Pursuant to Regulation No. 30, I, the undersigned, am a Responsible Official and I have personally examined and am familiar with the information submitted in this document and all of its attachments certify, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate and complete.

Responsible Official: <u>Andrew Kenner</u> (Please Print) Title: <u>Vice President and General Manager</u> Signature: <u>Junhan General Manager</u> Date <u>4128708</u>

Department of Natural Resources and Environmental Control Division of Air and Waste Management Air Quality Management Section 156 South State Street Dover, DE 19901

2007 Annual Air Emission Inventory

Optical Media Certification Form

The requirement of EPA's Cross-Media Electronic Reporting Rule (CROMERR), applies to States that choose to receive reports and documents from facilities through the Internet. The requirements of the rule provide for electronic reporting under authorized state and local government programs, apply to the governmental entities administering the authorized programs, and to facilities that submit data through the Internet to those governmental entities. If on-line reporting is offered by the state, an EPA-approved electronic signature process must be in place. Alternatively, on-line reporting can be followed up by the submission of a certified document (on diskette, compact disk, or digital video disk, or by facsimile, or paper report) containing the same information that was submitted on-line.

Currently, the Air Quality Management Section's (AQMS) on-line reporting system does not have an approved electronic signature system. Therefore, we are required to receive from reporting facilities a certified document in addition to the data submitted on-line. AQMS has created a detailed report that can be easily created in pdf format for use by a facility as the certified document of their on-line submission. The pdf file can be burned to a CD or DVD and sent to AQMS to meet the CROMERR requirements.

AQMS continues to explore the option of developing an electronic signature for the on-line reporting system. In our judgment, however, the creation, administering and maintenance of that system will entail more work for both AQMS and reporting facilities, than submitting the detailed report on a CD/DVD. We would appreciate any feedback you may have on this issue.

By having to submit the detail report on CD or DVD, you can also submit your supporting documentation along with the detailed report. We hope you take advantage of this option.

Please sign the certification statement below and mail this form with the CD or DVD to:

Air Quality Management Section, DNREC Emission Inventory Development Program 156 South State Street Dover, Delaware 19901

Pursuant to Regulation No. 30, I, the undersigned, am the Responsible Official and that I have personally examined and am familiar with the information submitted in this document and all of its attachments. I certify, based on information and belief formed after reasonable inquiry, the statements and information in the attached optical media document are true, accurate, and complete.

Facility Name: Premcor Refining Group Ir	ne Delaware City Refinery
Responsible Official: Andrew Kenner	(Please Print)
Title: Vice President and General M.	anager
Signature: Indrew Kenn D.	ate <u>+ 28,0</u> 8

Blue Skies Delaware; Clean Air for Life

10 -

Group ID	UNIT	SULFUR DIOXIDE	NITROGEN OXIDE	CARBON MONOXIDE	VOC	TSP / PM10	AMMONIA
105	21-H-701	Material balance using TRS from fuel gas CEMS.	NOX CEMS	0.000 lb/MMBTU 3/06 stack test	0.000 lb/MMBTU 3/06 stack test	0.006 lb/MMBTU PM10-PRI 3/06 stack test.	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
7	21-H-2	Material balance using TRS from fuel gas CEMS.	NOX CEMS	0.001 lb/MMBTU 1993 source test	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
2	COKER COB WGS STACK	SO2 CEMS and stack flow monitor	NOx CEMS and stack flow monitor	CO CEMS and stack flow monitor	6.60 E-8 lb/dscf Average of 1/07 and 4/07 stack test results	3.0003E-6 lb/dscf PM10-PRI 1/07 stack test	3.7E-9 lb/dscf 1/07 stack test
4	COKER INCINERATOR - FUEL GAS	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
1	COKER INCINERATOR - PROCESS GAS	SO2 determined from algorithm using Coker fresh feed rate and feed sulfur concentration	Estimated based on historical data for COB NOx prior to SNCR installation	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	0.0074 lb/hr per BPD FF 6/5/95 test data	6.3661E-3 lb/M Lbs coke burn 5/06 stack testing pre-WGS installation
3	COKER SEALAS	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
12	FCCU COB MAIN STACK - GAS	SO2 CEMS and stack flow monitor	NOx CEMS and stack flow monitor	CO CEMS and stack flow monitor	0.043 lb/Mlbs coke burn 4/07 stack test	0.316 lb/Mibs coke burn - PM10-PRI 4/07 stack test	0.0336 lb/Mlbs coke burn 7/06 stack test
11	FCCU BYPASS STACK - PROCESS GAS	SO2 determined from algorithm using FCCU fresh feed rate and feed sulfur concentration	Estimated from COB NOx emissions at similar feed rates	SCC Factor: 13700 lb/MBBL FF with applied control efficiency of 99.7%	SCC Factor: 2.8 lb. VOC/MMSCF	2.594lb/Mlbs coke burn - PM10-PRI 7/06 stack test	0.0336 lb/Mlbs coke burn 7/06 stack test
84	29-H-101	Material balance using TRS from fuel gas CEMS.	0.138 lb/ MMBTU 1993 stack test factor	0.035 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
85	29-H-8	Material balance using TRS from fuel gas CEMS.	0.099 lb/ MMBTU 1993 stack test factor	0.006 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
13	32-H-101	Material balance using TRS from fuel gas CEMS.	0.088 lb/ MMBTU 11/6/07 stack test factor	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
90	29-H-2	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06

Page 1 of

Group ID	UNIT	SULFUR DIOXIDE	NITROGEN OXIDE	CARBON MONOXIDE	VOC	TSP / PM10	AMMONIA
91	29-H-3	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
92	29-H-9	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
95	29-H-4	Material balance using TRS from fuel gas CEMS.	0.153 lb/ MMBTU 1993 stack test factor	0.004 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
96	29-H-7	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
98	29-H-5	Material balance using TRS from fuel gas CEMS.	0.151 lb/ MMBTU 1993 stack test factor	0.01 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
99	29-H-6	Material balance using TRS from fuel gas CEMS.	0.07 lb/ MMBTU 1993 stack test factor	0.301 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
34	H2 PLANT 37-H-1	Material balance using TRS from fuel gas CEMS.	NOX CEMS	0.01 lb/ MMBTU 1994 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
30	36-H-1	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
32	36-H-2	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
31	36-H-3	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
27	SRU I	SO2 CERMS	0.03 lb/ MMBTU 10/17-19/06 testing	0.0071 lb/ MMBTU 10/17-19/06 testing	0.0005 lb/ MMBTU 10/17-19/06 testing	1.33 lb/hr PM-10 10/17-19/06 testing 24% of PM-PRI is condensable	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
28	SRU II	SO2 CERMS	0.02 lb/ MMBTU 10/17-19/06 testing	0.006 lb/ MMBTU 10/17-19/06 testing	0.0003 lb/ MMBTU 10/17-19/06 testing	0.32 lb/hr PM-10 10/17-19/06 testing 67% of PM-PRI is condensable	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06

Group ID	UNIT	SULFUR DIOXIDE	NITROGEN OXIDE	CARBON MONOXIDE	voc	TSP / PM10	AMMONIA
74	42-H-1	Material balance using TRS from fuel gas CEMS.	NOx CEMS	0.0006 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
75	42-H-2	Material balance using TRS from fuel gas CEMS.	NOx CEMS	0.0006 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
76	42-H-3	Material balance using TRS from fuel gas CEMS.	NOx CEMS	0.0006 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
77	42-H-7	Material balance using TRS from fuel gas CEMS.	0.10 lb/ MMBTU 2001 stack test factor	0.001 lb/ MMBTU 1993 stack test factor	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
80	FLARE PILOT/PURGE GAS	Material balance using TRS from fuel gas CEMS.	0.068 lb/MMBTU AP-42 Factor for Industrial Flares	0.37 lb/MMBTU AP-42 Factor for Industrial Flares	0.14 lb/MMBTU AP-42 Factor for Industrial Flares	N/A	
68	DCPP 1	SO2 CEMS	NOX CEMS	0.0109 lb/MMBTU 6/20/07 stack test factor	0.0009 lb/MMBTU 6/20/07 stack test factor	0.011 lb/MMBTU July and Sept. 2004 stack tests	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
69	DCPP 2	SO2 CEMS	NOX CEMS	CO CEMS	0.0004 lb/MMBTU 6/6/07 stack test	0.01005 lb/MMBTU PM10-PRI 6/5/07 stack test	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
70	DCPP 3	SO2 CEMS	NOX CEMS	0.0012 lb/MMBTU w/syngas 6/8/07 stack test factor	0.0005 lb/MMBTU w/syngas 6/8/07 stack test factor	0.001189 lb/MMBTU w/syngas PM10- PRI 1/10/08 stack test factor	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
67	DCPP 4	SO2 CEMS	NOX CEMS	0.02 lb/MMBTU 1993 stack test factor	SCC Factor: 1.4 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
106	COKER SHU HTR	Material balance using TRS from fuel gas CEMS.	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
125	25-H-401	Material balance using TRS from fuel gas CEMS.	0.019 lb/ MMBTU 4/25/07 stack test factor	0.0571 lb/ MMSCF 2/01 stack test factor	0.0 lb/ MMSCF 2/01 stack test factor	0.359 lb/ MMSCF 2/01 stack test factor	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06
126	25-H-402	Material balance using TRS from fuel gas CEMS.	0.027 lb/ MMBTU 4/25/07 stack test factor	0.0 lb/ MMSCF 2/01 stack test factor	0.002 lb/ MMSCF 2/01 stack test factor	0.301 lb/ MMSCF 2/01 stack test factor	0.000316 lb/MMBTU from Valero heater stack testing 8/31/06

Group ID	UNIT	SULFUR DIOXIDE	NITROGEN OXIDE	CARBON MONOXIDE	VOC	TSP / PM10	AMMONIA
4	COKER BAG HOUSE	N/A	N/A	N/A	N/A	Emission Factor 0.2 Grains/SCF. Design flow of 5000 SCF/MIN. TSP not PM-10.	
51	WWTP	N/A	N/A	N/A	1992 estimate of VOC emissions following NESHAPS controls	N/A	
51	WWTP VCU	N/A	Permit Factor: 12.8 lb NOx /M Gal	Permit Factor: 3.2 lb. CO / Mgal	Permit Factor: 0.26 lb VOC /Mgal	N/A	
50	WWTP DOWNSTREAM (CPI @ API SEP. TANKS)	N/A	N/A	N/A	WATER 9 model	N/A	WATER 9 model
520	PROPANE PIT FLARE	N/A	4.089 lb/M Gal - TNRCC guidance document for flares and 99.9% flare efficiency	29.5 lb/M Gal - TNRCC guidance document for flares and 99.9% flare efficiency	4.23 lb/M Gal - TNRCC guidance document for flares and 99.9% flare efficiency	N/A	
17	POLY MEROX	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	
16	ALKY MEROX	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	Assumed same as Naphtha Treater	
10	COKER (CRUDE) MEROX	61.9 ppmv from analytical data	SCC Factor: 140 lb. NOx/MMSCF	SCC Factor: 35 lb. CO /MMSCF	SCC Factor: 2.8 lb. VOC/MMSCF	SCC Factor: 3 lb PM-10/MMSCF	
102	NAPHTHA TREATER	0.026 lb/MMBTU - based on max. 162 ppmv H2S	0.035 lb. NOx/MMBTU	0.074 lb. CO /MMBTU - Current permit limit in APC-95/0570 - CON (Amend 2)	0.003 lb. VOC/MMBTU - Current permit limit in APC-95/0570 - CON (Amend 2)	SCC Factor: 3 lb PM-10/MMSCF	
83	FUGITIVES (VALVE MAINTENANCE)	N/A	N/A	N/A	Use of EPA correlation equations and monitoring data	N/A	
81	BARGE LOADING GASOLINE	N/A	0.000617 lb/BBL 10/31-11/2/06 source testing	0.000803 lb/BBL 10/31-11/2/06 source testing	0.00023 lb/BBL 10/31-11/2/06 source testing	N/A	
81	BARGE LOADING DISTILLATE and REFORMATE	N/A	N/A	N/A	Distillate AP-42 factor: 0.012 lb/1000 Gal <i>Reformate</i> - AP-42 5.2 (1/95) - Equation (1)	N/A	

Page 4 of

Group ID	UNIT	SULFUR DIOXIDE	NITROGEN OXIDE	CARBON MONOXIDE	VOC	TSP / PM10	AMMONIA
999	ACCIDENTAL RELEASES	Varies depending on type of release.	Varies depending on type of release.	Varies depending on type of release	Varies depending on type of release	Varies depending on type of release	Varies depending on type of release
Various	TANK FARM	N/A	N/A	N/A	EPA AP-42 Equations	0.0	
521	RFG COOLING TOWER	N/A	N/A	N/A	Periodic sampling of VOC concentrations in influent/recycle/effluent streams	Periodic sampling of TDS in influent	
	REPOWERING CT 1 SYNGAS	SO2 CEMS	NOX CEMS	CO CEMS	0.00094 lb/MMBTU - w/out duct firing 8/7/07 stack testing 0.00102 lb/MMBTU - w/duct firing 11/06 stack teseting	0.02588 lb/MMBTU - w/out duct firing 8/7/07 stack testing 0.01645 lb/MMBTU w/duct firing 11/06 stack tetsing	
527	REPOWERING CT 1 LSDF	SO2 CEMS	NOX CEMS	CO CEMS	0.00134 lb/MMBTU - w/duct firing 11/06 stack testing	0.00160 lb/MMBTU - w/duct firing 11/06 stack testing	
	REPOWERING CT 2 SYNGAS	SO2 CEMS	NOX CEMS	CO CEMS	0.0010 lb/MMBTU - w/out duct firing 6/27/07 stack testing 0.00098 lb/MMBTU w/duct firing 11/06 stack testing	0.02105 lb/MMBTU - w/out duct firing 6/27/07 stack testing 0.13848 lb/MMBTU w/duct firing 6/27/07 stack testing	
520	REPOWERING CT 2 LSDF	SO2 CEMS	NOX CEMS	CO CEMS	0.00087 lb/MMBTU - w/duct firing 11/06 stack testing	0.00457 lb/MMBTU - w/duct firing 11/06 stack testing	
523	REPOWERING COOLING TOWER	N/A	N/A	N/A	N/A	Calculated from flow and TSS concentration	
530	REPOWERING RAW GAS FLARE	Material balance based on sulfur content	Prorated emissions from design feed rate and AP-42 emission factor - 0.068 lb/MMBTU	Prorated emissions from design feed rate and design CO destruction effciency of 98%.	N/A	N/A	
532	REPOWERING CLEAN GAS FLARE	Material balance based on sulfur content	Prorated emissions from design feed rate and AP-42 emission factor - 0.068 lb/MMBTU	Prorated emissions from design feed rate and design CO destruction effciency of 98%.	N/A	N/A	
250	HYDROGEN PLANT VENT - DEAERATOR	N/A	N/A	N/A	0.288 lb/MMSCF H2 produced 3/8/07 stack test	N/A	
250	HYDROGEN PLANT VENT - CO2 VENTED	N/A	N/A	N/A	0.347 lb/MMSCF H2 produced 3/8/07 stack test	N/A	

Page 5 o