Representative Meteorological Data for AERMOD: A Case Study of WRF-Extracted Data Versus Nearby Airport Data

January 25, 2018

Brian Holland
Tiffany Stefanescu
Qiguo Jing
Weiping Dai
The Typical Approach

- Typical met data for near-field air dispersion modeling:
 - Closest airport station to facility being modeled
 - Purpose-built “on-site” stations located at or near the facility
- Large error if distance from actual location is too great
- Large error if conditions change rapidly with distance (e.g. complex terrain)
The New Alternative

> New option: mesoscale meteorological data (WRF)
 > Long history in weather forecasting and regional AQ modeling (CALPUFF, CAMx, CMAQ)

> Potential to eliminate distance-based error

> Downside: forecast error is much greater than observational error

> In practice, which has less error?
 > Somewhat distant observed met station
 > Mesoscale model-derived met data
Objectives

> Evaluate model accuracy using:
 - Observed data that isn’t in the perfect spot (typical)
 - Model-derived data
 - On-site data (approximate “truth”)

> Consider differing regulatory guidance (land use, ADJ_U*, etc.)

> Two cases:
 - Simple terrain (Gulf Coast)
 - Complex terrain (Rocky Mountains)
Methods

> An on-site met station is used as “truth”
> Evaluate met data itself
 ◆ A moderately distant airport station
 ◆ The closest grid cell of a WRF model run
> Evaluate AERMOD model results using each data source (site specific “truth”, distant airport, and WRF)
Simple Terrain Case Study

- Source location/on-site “truth”: Wallisville Road air quality monitor location near Houston, TX (AQS: 48-201-0617)
- NWS airport met data taken from George Bush Intercontinental (KIAH)
- WRF dataset extracted from the nearest gridpoint of a 12 km resolution national WRF simulation obtained from US EPA
- Data from January-December 2007 was used
Methods
Complex Terrain Case Study

- Wamsutter, WY air quality monitor location (AQS: 56-037-0200) was used as source location
 - Onsite data from the monitor was used as “true” met conditions at the site
- NWS airport met data was taken from the Rock Springs, Wyoming Airport (KRKS)
- WRF dataset extracted from the nearest gridpoint of a 12 km resolution national WRF simulation obtained from US EPA
- Data from January-December 2008 was used
Methods
Meteorological Data Processing

- Data processed according to latest U.S. EPA regulations/guidance/recommendations
- All data processed using AERMET
- WRF: extracted to point data files using U.S. EPA’s MMIF tool, then processed through AERMET
- Airport data: uses 1-minute wind data (AERMINUTE)
- 0.5 m/s calm wind threshold for all datasets
- Land use:
 - 1992 NLCD (via AERSURFACE) used for airport and on-site data
 - Land use data from WRF (via MMIF) used for WRF data
Meteorological Data Processing: ADJ_U* Option in AERMET

- Intended to offset AERMOD’s tendency to over-predict concentrations from near-ground sources under stable, low wind conditions
 - Applied to the airport and WRF met datasets in accordance with US EPA guidance
 - Not applied to the “truth” datasets
 - The onsite stations used as “truth” include hourly σ_θ (standard deviation of horizontal wind direction) data
 - US EPA guidance on use of ADJ_U* recommends that it not be used if direct measurements of turbulence are available
AERMOD Simulations

> Two different sources were modeled
 ✷ Ground-level volume source
 ✷ 35-meter stack source

> Terrain data incorporated with AERMAP

> No building downwash

> AERMOD simulations were carried out for a one-year period

> Regulatory default settings were used

> Maximum 1-hr, 24-hr, and annual concentrations modeled
Results: Met Data Comparison
Simple Terrain Case

- Wind Direction:
 - Modest differences between all datasets
 - Increased frequency of prevailing SSE/SE wind pattern in WRF dataset

- Wind Speeds:
 - Low winds underestimated by both (moreso by Airport than WRF)
 - High winds overrepresented by Airport
 - Land use?
Results: Met Data Comparison
Complex Terrain Case

- Wind Direction:
 - Major differences between all datasets

- Wind speeds:
 - High winds overrepresented in Airport, underrepresented in WRF
 - Average Airport wind speeds were higher than average WRF or Truth wind speeds
 - Land use? (or just local variation...)

<trinityconsultants>
Comparison of AERMOD Results

<table>
<thead>
<tr>
<th>Source Group</th>
<th>Simple Terrain</th>
<th>Complex Terrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport WRF</td>
<td></td>
<td>WRF</td>
</tr>
<tr>
<td>Tall Stack</td>
<td>1.34</td>
<td>1.67</td>
</tr>
<tr>
<td>Ground Level</td>
<td>0.52</td>
<td>0.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Group</th>
<th>Simple Terrain</th>
<th>Complex Terrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport WRF</td>
<td></td>
<td>WRF</td>
</tr>
<tr>
<td>Tall Stack</td>
<td>0.85</td>
<td>1.29</td>
</tr>
<tr>
<td>Ground Level</td>
<td>0.14</td>
<td>0.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Group</th>
<th>Simple Terrain</th>
<th>Complex Terrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport WRF</td>
<td></td>
<td>WRF</td>
</tr>
<tr>
<td>Tall Stack</td>
<td>1.37</td>
<td>1.70</td>
</tr>
<tr>
<td>Ground Level</td>
<td>0.37</td>
<td>0.42</td>
</tr>
</tbody>
</table>

- Ground-level source: large, consistent under-prediction (more on this later)
- Tall stack source: better performance
- Airport and WRF results broadly comparable
- WRF results more conservative in most cases
 - Exception: Annual maximum concentrations

Summary of max ground-level 1-hour, 24-hour, and annual average concentrations, normalized so “Truth” concentration is 1.00
Comparison of AERMOD Results

Broadly similar performance in most cases

Both the Airport and WRF datasets showed:
 - a consistent under-prediction bias for the ground level source
 - lower bias for the tall stack source

Normalized RMSE for the WRF dataset was lower than for the Airport dataset with the exception of the simple terrain, tall stack case.

<table>
<thead>
<tr>
<th>Source Group</th>
<th>Simple Terrain</th>
<th>Complex Terrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall Stack</td>
<td>-20%</td>
<td>2%</td>
</tr>
<tr>
<td>Ground Level</td>
<td>-81%</td>
<td>-45%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Group</th>
<th>Simple Terrain</th>
<th>Complex Terrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall Stack</td>
<td>34%</td>
<td>47%</td>
</tr>
<tr>
<td>Ground Level</td>
<td>124%</td>
<td>126%</td>
</tr>
</tbody>
</table>

Normalized Bias (1-Hour Concentrations)

<table>
<thead>
<tr>
<th>Source Group</th>
<th>Simple Terrain</th>
<th>Complex Terrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall Stack</td>
<td>-20%</td>
<td>2%</td>
</tr>
<tr>
<td>Ground Level</td>
<td>-81%</td>
<td>-45%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Group</th>
<th>Simple Terrain</th>
<th>Complex Terrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall Stack</td>
<td>34%</td>
<td>47%</td>
</tr>
<tr>
<td>Ground Level</td>
<td>124%</td>
<td>126%</td>
</tr>
</tbody>
</table>

Normalized RMSE (1-Hour Concentrations)

Bias and RMSE, normalized based on the average “Truth” concentration.
Comparison of AERMOD Results

Q-Q plots for 1-hour concentrations resulting from a tall stack and ground level source in the simple and complex terrain cases.
Conclusions: WRF-Derived Met Data vs Traditional Airport Data

- Wind speed and direction: broadly similar
 - Both struggle with wind patterns in complex terrain (12 km WRF resolution?)
 - Low wind speeds underweighted by Airport data (flat, open land use), better represented by WRF

- AERMOD model performance: broadly similar
 - Performance of Airport vs. WRF data varied among source, type, averaging period, and assessment metric
 - Broadly similar error, bias, etc. (more cases needed to draw a broader conclusion)
 - Findings support use of WRF in near-field dispersion modeling when no representative observation site is available. Similar conclusions to U.S. EPA evaluation of mesoscale models
 - https://www3.epa.gov/ttn/scram/appendix_w/2016/MMIF_Evaluation_TSD.pdf
Conclusions: Applicability of ADJ_U* to Onsite Met Datasets

- Ground-level source produced much lower concentrations with WRF and Airport data than with on-site “truth” data.
- WRF and Airport data used ADJ_U* AERMET option;
- On-site “truth” did not
Conclusions: Applicability of ADJ_U* to Onsite Met Datasets

> U.S. EPA ADJ_U* guidance:
 > Use for Airport data
 > Use for WRF data
 > Use for on-site stations with no direct turbulence measurement
 > Do NOT use for on-site stations with direct turbulence measurements (turbulence measurements should eliminate the need for a manual U* adjustment)

> This case: on-site station collects some turbulence data (σ_θ)

> Conclusion:
 > Either ADJ_U* should be used when σ_θ is only available turbulence data, or
 > Use of ADJ_U* with airport and WRF data is wrong
 ◆ Conclusion contrary to extensive ADJ_U* validation studies
Conclusions: Applicability of ADJ_U* to Onsite Met Datasets

- ADJ_U* should be applied to on-site met data if σ_θ is the only available turbulence data (very common)
- With this change, all three AERMOD met data options produce broadly consistent results

Q-Q plots for 1-hour concentrations resulting from a ground-level source in the simple terrain case, with ADJ_U* not applied to the onsite (“Truth”) meteorological dataset (left) and with ADJ_U* applied (right)
Questions?

bholland@trinityconsultants.com

Phone: +1 972 661-8881