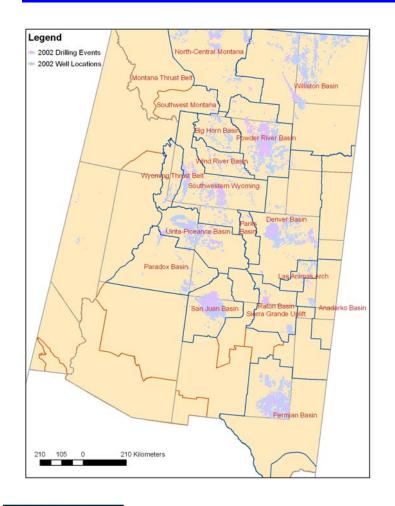
A Comprehensive Oil and Gas Emissions Inventory for the Denver-Julesburg Basin in Colorado

Amnon Bar-Ilan, Ron Friesen, John Grant, Alison Pollack ENVIRON International Corporation

Doug Henderer, Daniel Pring Buys & Associates

Kathleen Sgamma
Independent Petroleum Association of Mountain States (IPAMS)


Tom Moore
Western Regional Air Partnership (WRAP)

Overview

- History of oil and gas El development
- Current effort
- Temporal and geographic scope
- Source categories
- Methodology
- Results

Oil and Gas Production in the Rocky Mountains

- Boom in oil and gas production in this region over the last ten years driven by record prices for crude oil and natural gas
 - Colorado gas production in 1996:
 572 billion cubic feet
 - Colorado gas production in 2006:
 1.2 trillion cubic feet
- Activity supported by large fleet of equipment at thousands of individual well sites
- Partial inventory of this equipment through state permitting databases
- Wide state-to-state variation in permitting thresholds and source categories permitted

History of Oil and Gas El's - WRAP Phase I

- Represented the first regional inventory for the western U.S. to address oil and gas <u>area</u> sources not previously inventoried
- Regionally consistent inventory methodology for oil and gas area sources for all of the western states
- Activity and emissions data obtained primarily through limited participation of industry, other regionally-specific studies and literature
- Base year of 2002 with future year projection for 2018
- Focused primarily on NOx and SOx emissions for regional haze issues

History of Oil and Gas El's – WRAP Phase II

- Focused on improving the methodology from the Phase I work for two specific major NOx source categories: compressors and drill rigs
- Utilized direct industry survey to obtain detailed information from the oil and gas companies on this equipment <u>by basin</u>
- Applied regionally consistent methodology for entire WRAP domain, and updated baseline year from 2002 to 2005.

History of Oil and Gas El's - Other Regional Studies

- Ozone precursors study for San Juan and Rio Arriba counties in northwest New Mexico
 - Direct survey data from oil and gas producers
 - Considered major NOx and VOC source categories
- Wyoming state-wide inventory of oil and gas sources
- WRAP Phase I and II, and regional studies limited in scope
 - Did not cover all source categories
 - Did not apply consistent methodology to a broad region (NMED, WY studies)
- Previous studies demonstrated the need for high quality equipment, activity, emissions data directly from the major oil and gas companies

Current Phase III Effort

- Considers every major oil and gas production basin in the Rocky Mountain states, including New Mexico, Utah, Colorado, Wyoming, Montana and North Dakota
- Considers all major oil and gas source categories and all major criteria pollutants: NOx, VOC, CO, PM, SOx
- Updated, regionally consistent methodology which combines state permitted sources databases with direct industry survey for unpermitted and exempt sources
- Makes use of latest oil and gas production and well statistics from commercially available IHS database
- Most detailed oil and gas emissions inventory to date

Phase III – Source Categories

- Large Point Sources (Gas plants, compressor stations)
- Drill Rigs
- Wellhead Compressor Engines
- CBM Pump Engines
- Heaters
- Pneumatic Devices
- Condensate and Oil Tanks
- Dehydrators
- Completion Venting

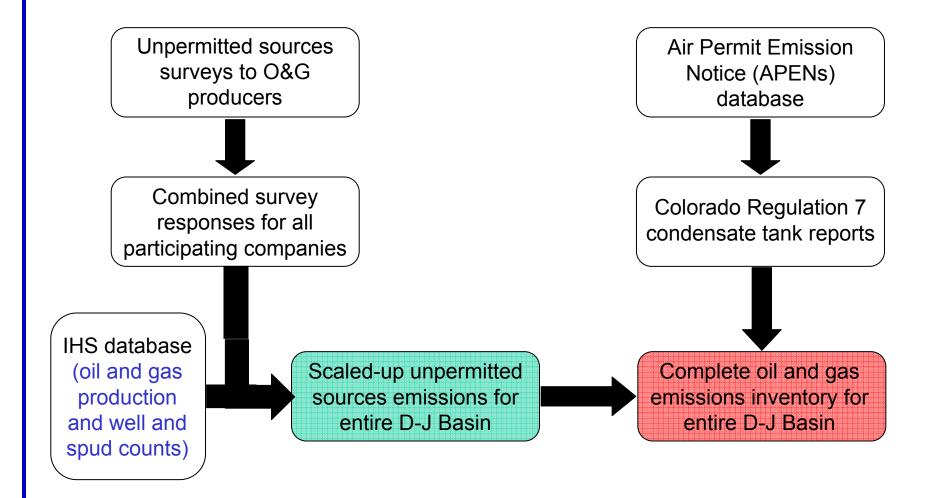
- Lateral compressor engines
- Workover Rigs
- Salt-Water Disposal Engines
- Artificial Lift Engines (Pumpjacks)
- Vapor Recovery Units (VRU's)
- Miscellaneous or Exempt Engines
- Flaring
- Fugitive Emissions
- Well Blowdowns
- Truck Loading
- Amine Units
- Water Tanks

Geographic and Temporal Scope

D-J Basin

- Work presented here focuses on Denver-Julesburg (D-J) Basin in Colorado
- **Includes major O&G** developments in Weld and **Larimer Counties around** metropolitan Denver area
- Includes dry gas operations in **Yuma County**
- Baseline year of 2006 considered, with mid-term and far future year emissions projections

Legend


2006 Well Locations

D-J Basin Oil and Gas Statistics

County	Well Count	Spud Count	Gas Production [MCF]	Oil Production [bbl]	Water Production [bbl]
Adams	889	7	6,738,398	406,823	628,171
Arapahoe	103	3	376,623	56,018	179,392
Boulder	232	9	2,373,186	132,523	62,787
Broomfield	14	0	635,433	31,798	14,664
Crowley	0	0	0	0	0
Denver	34	7	242,598	14,674	1,189
Elbert	60	1	196,974	38,296	155,302
Fremont	37	2	0	50,074	0
Jefferson	0	0	0	0	0
Kit Carson	12	2	344,013	21,227	201,133
Larimer	135	0	212,406	116,755	3,854,032
Lincoln	12	1	27,203	78,112	729,088
Logan	112	9	260,466	207,829	6,081,895
Morgan	66	1	290,210	92,186	2,821,974
Phillips	19	3	555,029	0	127,347
Sedgwick	3	0	50,202	1,295	48,177
Washington	457	23	2,220,766	660,357	21,455,978
Weld	11,861	877	182,996,149	12,334,121	7,022,304
Yuma	2,684	555	37,111,123	0	3,375,324
Totals	16,774	1,500	234,630,779	14,242,088	46,758,757

Phase III Methodology Diagram for D-J Basin

Sample Unpermitted Source Survey – Completion Venting

3a. 2006 Recompletions											
Total Recompletions Conducted in 2006											
		Conducted in 200	10								
2b. Recompletion Details if provided for a representative well(s).											
	Completions						Controls				
										Green	
							Volume of Gas		Type of Control	Completion	
		Representative	No. Wells				Vented (MCF)	Controls Used	(Flaring / Green	Control	Volume Flared
Survey ID	Representative Well	Well ID	Represented	Count(ies)	Field	Basin	uncontrolled	(Y/N)	Completion)	Efficiency	(MCF)
Ex. Well 1	representative	abc-1		Logan		Denver-Julesburg					
Well 1	representative					Denver-Julesburg					
Well 2	representative					Denver-Julesburg					
Well 3	representative					Denver-Julesburg					

- Participating companies are able to present responses either for a single representative well completion, or for a group of completions, or for all completions conducted in 2006.
- Companies are able to provide activity data directly (e.g. vented volume) or an average response will be assigned
- Controls (such as green completions or flaring) can be indicated

Estimation Methodology – Drilling/Workover Rigs

$$E_{drilling,rig} = \sum \frac{EF_i \times HP \times LF \times t_{drilling}}{907.185}$$

- Drilling rig engine emissions factors assumed to be Tier 0 and fully deteriorated
- Engine-specific average load factor used throughout drilling event
- Typical rig composed of 3-6 engines, each with horsepower ranging from 300-1500 HP
- Average drilling time/depth provided by each survey respondent

$$E_{\textit{drilling}, \textit{TOTAL}} = E_{\textit{drilling}} \times \frac{S_{\textit{TOTAL}}}{S}$$

 Combined drilling rig emissions from all survey responses scaled to basin-wide emissions by ratio of total spuds in the basin to total spuds by all participating companies

Estimation Methodology – Condensate Tanks

Tank size and configuration pressure, temperature, NG composition

E&P Tanks 4.0

Condensate Tank EF [lb/barrel-liquid]

Typical small condensate tank EF

derived by defining average tank

characteristics

- Large condensate tanks (>730 barrel/yr) already permitted by CDPHE
- Average tanks characteristics fed into E&P Tanks 4.0 to obtain flashing emissions factor [lb-VOC/barrel-liquid]

$$E_{exempt, \tan ks, outside} = \frac{P_{exempt, \tan ks} \times EF_{exempt, \tan ks}}{2000}$$

 Combined small condensate tank emissions from all survey responses scaled to basin-wide emissions by multiplying derived emissions factor by total production from unpermitted tanks

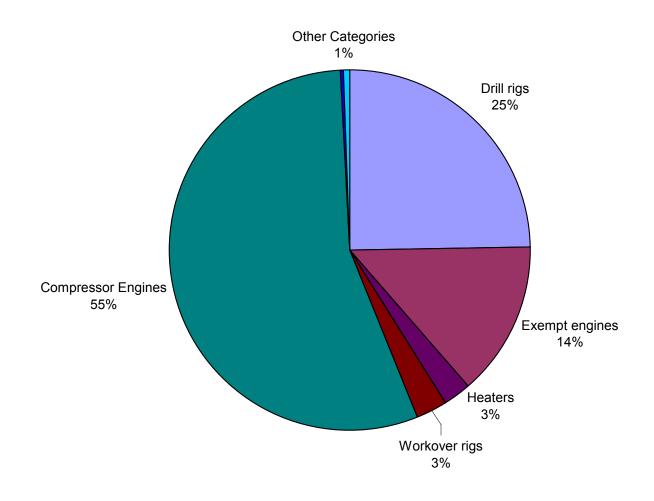
Estimation Methodology – Vented Sources

$$E_{\textit{venting}} = V_{\textit{vented}, \textit{TOTAL}} \times 1000 \times MW_{\textit{VOC}} \times R \times Y_{\textit{VOC}}$$

- Applies to venting source categories such as pneumatic devices, fugitive emissions, and blowdowns/completions
- Total device or event counts summed from all survey responses

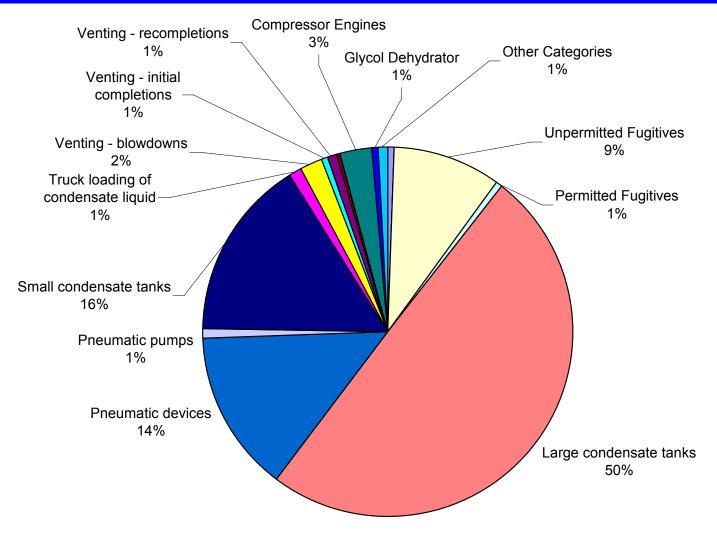
$$E_{venting, BASIN} = E_{venting, TOTAL} \frac{W_{TOTAL}}{W}$$

- Total vented volume derived by summing total device count and vent rate per device, or total event count and vent rate per event
- Average VOC mass fraction of produced gas derived from natural gas composition survey request

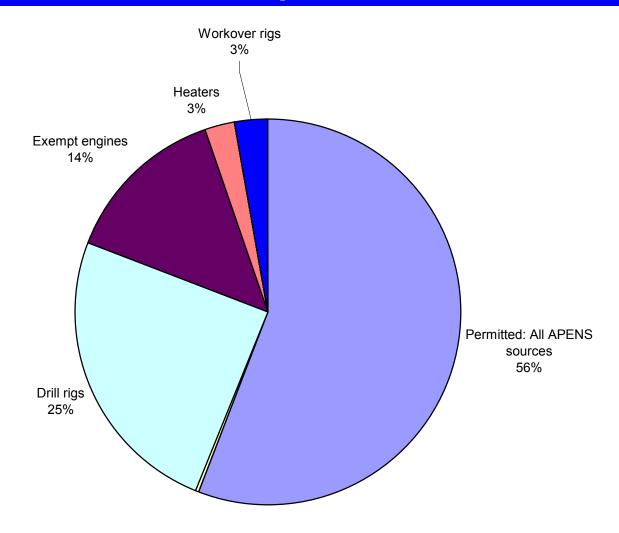

 Combined venting emissions from all survey responses scaled to basin-wide emissions by ratio of total wells in the basin to total wells owned by all participating companies (fugitives/pneumatics), or total gas production in the basin to total gas production owned by all participating companies (well blowdowns)

Results – Criteria Pollutant Emissions

- Oil and gas production a significant source of NOx, VOC, CO emissions
- SOx and PM emissions minor and primarily driven by drill/workover rig engines
- Emissions dominated by oil and gas activity in Weld County
- Limited dry gas activity in Yuma County also contributing significantly to basin total

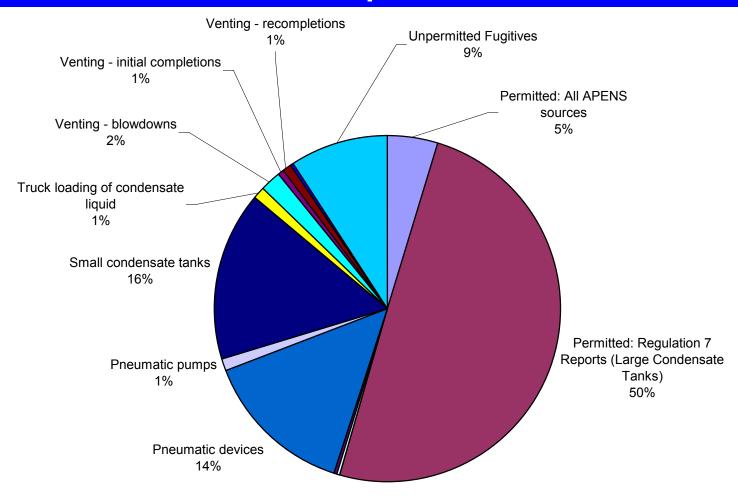

County	NOx [tons/yr]	VOC [tons/yr]	CO [tons/yr]	SOx [tons/yr]	PM [tons/yr]	
Adams	2,286	3,005	939	13	19	
Arapahoe	742	408	253	0	4	
Boulder	129	803	76	1	4	
Broomfield	14	193	10	0	0	
Crowley	63	1	85	0	1	
Denver	32	103	19	0	2	
Elbert	43	363	27	0	1	
Fremont	16	329	9	0	1	
Jefferson	6	0	10	0	0	
Kit Carson	10	139	6	0	1	
Larimer	37	651	23	0	1	
Lincoln	14	462	11	0	0	
Logan	491	1,382	183	2	9	
Morgan	672	883	672	132	4	
Phillips	40	47	26	0	1	
Sedgwick	1	11	0	0	0	
Washington	284	4,509	207	1	9	
Weld	12,310	64,111	8,393	51	421	
Yuma	3,592	4,359	1,993	24	158	
Totals	20,783	81,758	12,941	226	636	

Results – NOx Emissions By Source Category


• NOx emissions dominated by compressor engines (central and wellhead) and drill rigs € N V I R O N

Results – VOC Emissions By Source Category

• Top VOC source categories include condensate tanks, pneumatic devices and fugitives


Results – Permitted vs. Unpermitted NOx Emissions

44% of basin total NOx emissions from unpermitted sources

Results – Permitted vs. Unpermitted VOC Emissions

45% of basin total VOC emissions from previously uninventoried unpermitted sources

Conclusions and Next Steps

- Methodology of current Phase III built on previous WRAP Phase I and II regional studies – high quality regionally-specific data obtained from detailed survey outreach to all major oil and gas companies in the D-J Basin
- Resulting inventory is the most detailed oil and gas inventory for a single basin, including most major and minor NOx and VOC source categories
- Inventory results show that approximately 45% of NOx and VOC emissions are from unpermitted sources
- Next steps generation of mid-term (2010) and far-term (2018, 2020) emissions projections for D-J Basin

Acknowledgements

Kathleen Sgamma, IPAMS

Doug Henderer, Buys & Associates

Tom Moore, Lee Gribovicz, WRAP

Phil Schlagel, Anadarko Petroleum

Brian Lockard, Noble Energy

Scott Mason, Encana USA

Questions?

Estimation Methodology – Heaters and Boilers

$$E_{\textit{heater}} = EF_{\textit{heater}} \times Q_{\textit{heater}} \times \frac{HV_{\textit{local}}}{HV_{\textit{rated}}} \times t_{\textit{annual}} \times hc$$

- Heater emissions factors taken from AP-42 for natural-gas fired external combustion sources
- Heater firing rates corrected for local variations in heat content of gas
- Heater firing rate in [BTU/hr]
 provided for various heater types
 by survey respondents
- Annual heater usage concentrated in the winter months

$$E_{\textit{heater},\textit{TOTAL}} = E_{\textit{heater},\textit{companies}} \times \frac{W_{\textit{TOTAL}}}{W}$$

 Combined heater emissions from all survey responses scaled to basin-wide emissions by ratio of total wells in the basin to total wells owned by all participating companies

Estimation Methodology – Misc. Engines

$$E_{engine} = \frac{EF_i \times HP \times LF \times t_{annual}}{907,185}$$

- Considers various miscellaneous engines such as unpermitted wellhead compressors, pumps, VRU's
- All engines assumed to be operating 8760 hr/yr unless specific survey response data is provided

$$E_{\it engine,TOTAL} = E_{\it engine} \, rac{W_{\it TOTAL}}{W}$$

 Emissions factors and load factors either provided directly by survey respondents or use NONROAD defaults

- Combined engine emissions from all survey responses scaled to basin-wide emissions by ratio of total wells in the basin to total wells owned by all participating companies
- Similar methodology to that of WRAP Phase II