Date: 3/30/99

DATA EVALUATION RECORD AQUATIC PLANT EC 50 TEST GUIDELINE 123-2 (TIER II)

CHEMICAL: Cloransulam-methyl (DE-565) PC Code No.: 129116

5-hydroxy-DE-565 Purity: >95% TEST MATERIAL:

(A metabolite of DE-565)

3. CITATION:

> H.D. Kirk, M.M. Gilles, D.L. Rick, and Authors:

> > L.G. McFadden

Phytotoxicological Evaluation of 5-Title:

Hydroxy-DE-565 Exposed Aquatic Plant,

Duckweed, Lemna gibba L. G-3

August 20, 1998 Study Completion Date:

The Dow Chemical Company, Midland, MI Laboratory:

Dow AgroSciences, LLC, Indianapolis, IN Sponsor:

Laboratory Report ID: 981106

DP Barcode: D252903 MRID No.: 447445-05

Mark A. Mossler, M.S., Toxicologist, REVIEWED BY:

Golder Associates Inc.

Pim Kosalwat, Ph.D., Senior Scientist, APPROVED BY:

Golder Associates Inc.

signature:

APPROVED BY:

Signature:

Date: 3/30/99

Date: 4//3/94 Signature:

STUDY PARAMETERS:

Definitive Test Duration: 14 days

Type of Concentrations: Initial measured

CONCLUSIONS: This study is scientifically sound and fulfills 7. the guideline requirements for an aquatic plant toxicity test.

Results Synopsis:

95% C.I.: could not be determined EC₅₀: 116 ppm

NOEC: 58.3 ppm Probit Slope: N/A

8. ADEQUACY OF THE STUDY:

A. Classification: Core.

B. Rationale: N/A.

C. Repairability: N/A.

9. <u>GUIDELINE DEVIATIONS</u>: The growth medium pH (7.9-8.5) was higher than recommended (5.0).

10. SUBMISSION PURPOSE:

11. MATERIALS AND METHODS:

A. Test Organisms

Guideline Criteria	Reported Information	
<u>Species</u> Lemna gibba	Lemna gibba	
Number of Plants/Fronds 5 plants, 3 fronds each	4 plants/16 fronds per replicate	
<u>Nutrients</u> Standard formula, e.g. 20XAAP	20X AAM	

B. Test System

Guideline Criteria	Reported Information
<u>Solvent</u>	DMF
Temperature 25°C	23.4-23.9°C
Light Intensity 5.0 KLux (±15%)	4.3-6.5 KLux
<u>Photoperiod</u> Continuous	Continuous
<u>Test System</u> Static or Renewal	Static
pH Approx. 5.0	Initial: 7.9-8.5 Final: 8.5-9.0

C. Test Design

Guideline Criteria	Reported Information	
Dose range 2X or 3X progression	2X	
<u>Doses</u> at least 5	6: 3.1, 6.3, 12.5, 25, 50, and 100 ppm	
<u>Controls</u> negative and/or solvent	Negative and solvent (453 μ L DMF/L) control groups	
Replicates per dose 3 or more	3	
<u>Duration of test</u> 7 or 14 days	14 days	
Daily observations were made?	Counts and observations made on days 2, 5, 8, and 14	
Method of Observations	Number of fronds	
Maximum Labeled Rate	Test material is a metabolite	

12. REPORTED RESULTS:

Guideline Criteria	Reported Information
Initial and 7/14 day frond numbers were measured?	Yes
Control frond at $7/14$ days $\ge 2X$ initial count?	Yes
Initial chemical concentrations measured? (Optional)	Samples analyzed by HPLC
Percent of nominal, Procedural recovery, Limit of quantitation (LOQ)	66-120%, Procedural recovery not reported, LOQ = 1 ppm
Raw data included?	Yes

Analytical Results

Concentration (ppm)	Measured concentrations (ppm)		
	Day of	Study	
Nominal	0	14	
Control	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
Solvent Control	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
3.1	3.4	2.1	
6.3	7.3	4.8	
12.5	14.6	9.9	
25	29.1	22.4	
50	58.3	48.0	
100	120	102	

Dose Response

		The second secon	
Initial measured concentration (ppm)	Avg. Frond Number	% Inhibition*	14-day pH
Control	256	N/A	8.8
Solvent Control	211	N/A	8.8
3.4	239	-13	8.8-8.9
7.3	271	-28	8.9-9.0
14.6	264	-25	9.0
29.1	286	- 36	8.9-9.0
58.3	251	-19	8.9
120	97	54	8.7

^{*}Comparison to the solvent control and negative values indicate growth stimulation

Other Significant Results: No other results were presented.

Statistical Results:

Statistical Method: Dunnett's test were used to determine the NOEC. Regression analysis was used to estimate the EC value.

EC₅₀: 132 ppm 95% C.I.: 49.4 - 215 ppm

Probit Slope: N/A NOEC: 53.2 ppm

13. VERIFICATION OF STATISTICAL RESULTS:

Statistical Methods: Dunnett's test was used to determine the NOEC. The binomial probability test was used to estimate the EC value.

EC₅₀: 116 ppm 95% C.I.: could not be determined

Probit Slope: N/A NOEC: 58.3 ppm

14. REVIEWER'S COMMENTS: This study is scientifically sound and fulfills the guideline requirements for an aquatic plant toxicity test. The 14-day EC₅₀ and NOEC for *L. gibba* exposed to 5-hydroxy-DE-565 were 116 and 58.3 ppm, respectively. This study can be categorized as Core.

Lemna frond number

File: lem Transform: NO TRANSFORMATION

Ho:Control<Treatment DUNNETT'S TEST - TABLE 1 OF 2 TRANSFORMED MEAN CALCULATED IN GROUP IDENTIFICATION MEAN ORIGINAL UNITS T STAT SIG 211.333 211.333 Sol. Con. 238.667 271.333 264.333 238.667 3.4 ppm -3.163-6.944 3 7.3 ppm 271.333 264.333 -6.1344 14.6 ppm 29.1 ppm 286.000 58.3 ppm 250.667 120 ppm 96.667 286.000 5 -8.641250.667 -4.55296.667 13.270 *

Dunnett table value = 2.53 (1 Tailed Value, P=0.05, df=14,6)

Lemna frond number

File: lem Transform: NO TRANSFORMATION

	DUNNETT'S TEST -	TABLE 2	OF 2 Ho	:Control<	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	Sol. Con.	3			
2	3.4 ppm	3	21.862	10.3	-27.333
3	7.3 ppm		21.862	10.3	-60.000
4	14.6 ppm		21.862	10.3	-53.000
5	29.1 ppm	.3	21.862	10.3	-74.667
6	58.3 ppm	3	21.862	10.3	-39.333
7	120 ppm	3	21.862	10.3	114.667

NOEC = 58.3 ppm

mossler 5-hydroxy DE565 Lemna gibba 3-18-99

CONC.	NUMBER	NUMBER	PERCENT	BINOMIAL	
	EXPOSED	DEAD	DEAD	PROB. (PERCENT)	
120	100	54	54	0	
58.3	100	.0	0	0	

BECAUSE THE NUMBER OF ORGANISMS USED WAS SO LARGE, THE 95 PERCENT CONFIDENCE INTERVALS CALCULATED FROM THE BINOMIAL PROBABILITY ARE UNRELIABLE. USE THE INTERVALS CALCULATED BY THE OTHER TESTS.

AN APPROXIMATE LC50 FOR THIS SET OF DATA IS 115.6503

WHEN THERE ARE LESS THAN TWO CONCENTRATIONS AT WHICH THE PERCENT DEAD IS BETWEEN 0 AND 100, NEITHER THE MOVING AVERAGE NOR THE PROBIT METHOD CAN GIVE ANY STATISTICALLY SOUND RESULTS.
