と

DATA EVALUATION RECORD – SUPPLEMENT

XDE-570 (FLORASULAM)

Study Type: OPPTS 870.3100 [§82-1a]; Subchronic (90-day) Oral Toxicity Study in Rats

Work Assignment No. 4-1-128 B (MRID 46808219)

Prepared for Health Effects Division Office of Pesticide Programs U.S. Environmental Protection Agency 2777 South Crystal Drive Arlington, VA 22202

Prepared by Pesticides Health Effects Group Sciences Division Dynamac Corporation 1910 Sedwick Road, Bldg 100, Ste B. Durham, NC 27713

Primary Reviewer

Michael E. Viana, Ph.D., D.A.B.T.	Signature:	· · · · · · · · · · · · · · · · · · ·
	Date:	
Secondary Reviewer		
Ronnie J. Bever, Jr., Ph.D.	Signature:	
	Date:	
Program Manager:		
Michael E. Viana, Ph.D., D.A.B.T.	Signature:	
	Date:	
Quality Assurance:		
Mary L. Menetrez, Ph.D.	Signature:	<u> </u>
	Date:	

Disclaimer

This Data Evaluation Record my have been altered by the Health Effects Division subsequent to signing by Dynamac Corporation personnel

Subabassia (00 day) Anal Taviaity Study in Pata (1006) / Page 1 of ?

XDE-570 (FLORASULAM)/129108	OPPTS 870.3100/ DACO 4.3.1/ OECD 408
EPA Reviewer: Karlyn J. Bailey	y Signature:
Registration Action Branch 2, He	ealth Effects Division (7509P) Date:
Work Assignment Manager: <u>N</u>	Ayron Ottley, Ph.D. Signature:
Registration Action Branch 3, He	ealth Effects Division (7509P) Date:
-	Template version 02/06
	····

DATA EVALUATION RECORD – SUPPLEMENT

See TXR # 0054348 for previous DER

This supplement contains:

- New cover page
- New executive summary

STUDY TYPE: 90-Day Oral Toxicity [feeding]-[rat]; OPPTS 870.3100 ['82-1a] (rodent); OECD 408.

<u>PC CODE</u>: 129108 **<u>TXR#</u>**: 0054348

DP BARCODE: D331116

TEST MATERIAL (PURITY): XDE-570 (Florasulam; 99.2% a.i.)

SYNONYMS: N-(2,6-Difluorophenyl)-8-fluoro-5-methoxy(1,2,4)triazolo(1,5-c)pyrimidine-2sulfonamide; XR-570; XRD-570; DE-570

<u>CITATION</u>: Redmond, J. M., and K. A. Johnson (1996) XDE-570: 13-week dietary toxicity and 4-week recovery in F344 rats. The Toxicology Research Laboratory, Health and Environmental Sciences, The Dow Chemical Company, Midland, MI. Laboratory Project Study ID: DR-0312-6565-011, January 31, 1996. MRID 46808219. Unpublished.

SPONSOR: Dow AgroSciences Canada, Inc., 2100- 450 1 St. SW, Calgary, AB, Canada

EXECUTIVE SUMMARY: In a subchronic oral toxicity study (MRID 46808219), XDE-570 (Florasulam; 99.2% a.i.; Lot No. 930910) was administered in the diet to ten Fischer 344 rats/sex/dose at dose levels of 0, 20, 100, 500, or 1000/800 (males/females) mg/kg/day (time-weighted intake was 0/0, 22/21, 112/106, 550/528, and 1111/843 mg/kg/day [males/females]) for 13 weeks. An additional ten rats/sex/dose were fed test diets containing 0 or 1000/800 (males/females) mg/kg/day for 13 weeks, followed by a 4-week recovery period, during which time all rats were fed control diet.

No adverse treatment-related effects were observed on mortality, clinical signs, food consumption, food efficiency, ophthalmoscopic examinations, hematology, clinical chemistry, or gross pathology.

XDE-570 (FLORASULAM)/129108

At 500 mg/kg/day, body weights were decreased ($p \le 0.05$) in the females by 5-8% during Weeks 6-13, contributing to a 21% decrease ($p \le 0.05$) in overall (Weeks 0-13) body weight gains. At 1000 mg/kg/day, body weights were decreased ($p \le 0.05$) in both sexes by 7-17% throughout treatment, resulting in decreased ($p \le 0.05$) overall body weights gains (decr. 23-30%). Body weights and body weight gains remained decreased ($p \le 0.05$) in the 1000 mg/kg/day males following recovery (decr. 11% and 17% at Week 17, respectively).

Slight nephrotoxicity was observed at 500 mg/kg/day and above. Absolute and relative (to body weight) kidney weights were increased ($p \le 0.05$) by 9-37% in both sexes. Urinary pH was decreased in both the males (5.90-6.85 vs. 7.55 in controls) and females (6.65-7.10 vs. 8.20 in controls). Very slight to slight hypertrophy of the epithelial cells of the collecting ducts were observed in the males (10/10 at each dose vs. 0/10 controls) and females (8-9/10 vs. 0/10 controls); and degeneration/regeneration and inflammation (with or without necrosis) of the descending portion of the proximal tubules was noted in the females (3/10 at each dose vs. 0/10 controls). Additionally, the specific gravity of the urine was decreased ($p \le 0.05$) in the 1000 mg/kg/day males (1.035 vs. 1.051 in controls), and very slight multifocal mineralization of the kidney papilla was observed in the 800 mg/kg/day females (9/10 vs. 0/10 controls) and very slight degeneration/regeneration of the cortical tubules of the papilla (9/10 vs. 0/10 controls) and very slight degeneration/regeneration of the cortical tubules (5/10 vs. 0.10 controls) were noted in the kidney of the 800 mg/kg/day females.

The LOAEL is 500 mg/kg/day, based on decreased body weights and body weight gains in the females, and evidence of slight nephrotoxicity (described above) in both sexes. The NOAEL is 100 mg/kg/day.

This study is classified as **acceptable/guideline** and satisfies the guideline requirements (OPPTS 870.3100; OECD 408) for a subchronic oral toxicity study in the rat.

<u>COMPLIANCE</u>: Signed and dated GLP Compliance, Quality Assurance, and Data Confidentiality statements were provided.

	onic, Chronic, and Other	
Guideline No./Study	MRID No. (year)	Results
Туре	Classification/Doses	
870.3100	46808219 (1996)	NOAEL = 100 mg/kg/day
90-Day oral toxicity	Acceptable/guideline	LOAEL = 500 mg/kg/day based on decreased body weights
(rat)	0, 20, 100, 500,	and body weight gains in the females and evidence of slight
	1000/800 mg/kg/day	nephrotoxicity in both sexes
870.3100	46808222 (1996)	NOAEL = 1000 mg/kg/day (limit dose)
90-Day oral toxicity	Acceptable/guideline	LOAEL = Not observed
(mouse)	0, 20, 100, 500, 1000	
()	mg/kg/day	
870.3150	46808223 (1995)	NOAEL = 50 mg/kg/day
90-Day oral toxicity	Acceptable/guideline	LOAEL = 100 mg/kg/day based on increased alkaline
(dog)	0, 5, 50, 100 mg/kg/day	phosphatase activity and absolute and relative (to body)
(uog)	0, 5, 50, 100 mg/kg/day	
		liver weights, and increased incidence/severity of hepatic
870 2200	4(0000005 (1007)	vacuolation in both sexes
870.3200	46808225 (1997)	NOAEL = 1000 mg/kg/day (limit dose)
21/28-Day dermal	Acceptable/guideline	LOAEL = Not observed
toxicity (rat)	0, 100, 500, 1000	
	mg/kg/day, 6 h/day, 7	
	days/week for 28 days	
870.3250		
90-Day dermal toxicity		
(species)		
870.3465		
90-Day inhalation	}	
toxicity (species)		
870.3700a	46808234 (1997)	Maternal NOAEL = 250 mg/kg/day
Prenatal developmental	46808231 (1996)	LOAEL = 750 mg/kg/day based on decreased body
toxicity (rat)	Acceptable/guideline	weights, body weight gains, and food consumption, and
	0, 50, 250, 750	increased kidney weights
	mg/kg/day (GD 6-15)	Developmental NOAEL = 750 mg/kg/day
	mg/kg/day (GD 0-15)	LOAEL = Not observed
870.3700b	46808233 (1997)	Maternal NOAEL = 500 mg/kg/day
Prenatal developmental	46808232 (1997)	LOAEL = Not observed
toxicity (rabbit)	Acceptable/guideline	Developmental NOAEL = 500 mg/kg/day
	0, 50, 250, 500	LOAEL = Not observed
	mg/kg/day (GD 7-19)	Study was found acceptable due to findings of preliminary
		developmental toxicity study at 600 mg/kg/day
870.3800	46808235 (1997)	Parental/Systemic NOAEL = 100 mg/kg/day
Reproduction and	Acceptable/guideline	LOAEL = 500 mg/kg/day based on decreased body
fertility effects (rat)	0, 10, 100, 500	weights, body weight gains, and food consumption,
	mg/kg/day	increased relative kidney weights, and increased incidence
	1	of multi-focal hypertrophy of the collecting duct in both
		sexes
		Offspring NOAEL = 500 mg/kg/day
·		LOAEL = Not observed
		Reproductive NOAEL = 500 mg/kg/day
		LOAEL = Not observed
870.4100a		
Chronic toxicity		
(species)		

870.4100b	46808229 (1997)	NOAEL = 5 mg/kg/day
Chronic toxicity (dog)	Acceptable/guideline 0, 0.5, 5, 100/50	LOAEL = 100/50 mg/kg/day based on decreased body weights, body weight gains, and food consumption in the females
870.4200	mg/kg/day 46808230 (1997)	NOAEL = 1000 mg/kg/day (limit dose)
Carcinogenicity	Acceptable/guideline	LOAEL = Not observed
(mouse)	0, 50, 500, 1000	No evidence of carcinogenicity
(mouse)	mg/kg/day	No evidence of carcinogenenty
870.4300	46808236 (1997)	NOAEL = 125 mg/kg/day
Combined chronic	Acceptable/guideline	LOAEL = 250 mg/kg/day based on decreased body weights
toxicity/carcinogenicity	M: 0, 10, 250, 500	and body weight gains in the females
(rat)	mg/kg/day	No evidence of carcinogenicity
	F: 0, 10, 125, 250	
	_mg/kg/day	
870.5100	46808240 (1995)	No evidence of induced mutant colonies over background in
Bacterial gene	Acceptable/guideline	the presence or absence of S9-induced activation
mutation/mammalian	0, 0.333, 1, 3.33, 10,	
activation gene	33.3, 100 μg/plate (S.	
mutation assay	typhimurium)	
	0, 10, 33.3, 100, 333,	
	1000, 3330 g/plate (E.	
870.5300	<i>coli</i>)	
Gene mutation at the	46808238 (1995)	No evidence of induced mutant colonies over background in
HGPRT locus in	Acceptable/guideline 0, 187.5, 375, 750, 1500,	the presence or absence of S9-activation
Chinese hamster ovary	$3000 \mu\text{g/mL}$	
cells	5000 µg/mE	
870.5375	46808237 (1995)	No evidence of chromosome aberrations induced over
Chromosomal	Acceptable/guideline	background in the presence or absence of S9-activation
aberration assay in rat	0, 3, 10, 30, 100, 300,	
lymphocytes	1000, 3000 µg/mL	
870.5395	46808239 (1995)	No significant increase in the frequency of micronucleated
Mouse bone marrow	Acceptable/guideline	polychromatic erythrocytes in bone marrow
micronucleus assay	0, 1250, 2500, 5000	
	_mg/kg	
870.6200a	46808217 (1997)	Systemic NOAEL = 1000 mg/kg
Acute neurotoxicity	Acceptable/guideline	LOAEL = 2000 mg/kg based on decreased body weight
screening battery	0, 200, 1000, 2000	gains in the males
	mg/kg	Neurotoxicity NOAEL = 2000 mg/kg
A		LOAEL = Not observed
870.6200b	46808228 (1996)	Systemic NOAEL = 250 mg/kg/day
Subchronic	Acceptable/guideline	LOAEL = 500 mg/kg/day based on decreased body weights
neurotoxicity screening	0, 10, 125 (female only),	and body weight gains in the males
battery	250, 500 (male only)	Neurotoxicity NOAEL = 250 mg/kg (highest dose tested in females)
	mg/kg/day	LOAEL = Not observed
870.6300		
	1	• · · · · · · · · · · · · · · · · · · ·
Developmental		

		· · · · · · · · · · · · · · · · · · ·
870.7485 Metabolism and pharmacokinetics (rat)	46808301 (1996) 46808303 (1997) Acceptable/guideline 10 and 500 mg/kg	Absorption was rapid and extensive (\approx 90-93% at 10 mg/kg; \approx 82-86% at 500 mg/kg rats). Peak plasma concentrations (Cmax) were achieved within 0.5-1 hour. Cmax in the plasma did not increase proportionally with dose, possibly indicating a saturation of the absorption and/or excretion mechanisms at the high dose. The apparent volume of distribution was increased at the high dose, possibly indicative of increased tissue binding. Total recoveries at 168 hours post-dose were 95.9-100.2%. Elimination was rapid. The administered dose was mostly eliminated within 12 hours in the urine (>80% at 10 mg/kg; >60% at 500 mg/kg). Total radioactivity found in the urine was approximately 90-92% following single or repeated low- dose treatment, and 81-85% following treatment at 500 mg/kg. Radioactivity in the feces accounted for another 5-7% at 10 mg/kg and 14-17% at 500 mg/kg. Thus, compared to the low dose, excretion of the high dose was slightly slower, and more of the compound was excreted in the feces. At 24 hours, <0.5% of the dose was found in expired air. By 24 hours post-dose, plasma levels had declined to <0.1 µg eq/g plasma in both sexes at 10 mg/kg and <5.0 µg cq/g plasma in both sexes at 500 mg/kg. The highest residue levels were observed in the skin (single dose) and carcass (repeated dose), but the mean recovery of radioactivity in the tissues/carcass at sacrifice was <0.6% of the dose. Identified compounds accounted for 87.6-91.6% of the administered dose in each group. In each group, the following compounds were isolated: parent accounted for 77.7-85.0% dose, OH-phenyl-XR-570 accounted for 3.1- 9.0% dose, OH-phenyl-XR-570 sulfate conjugate accounted for <=0.32% dose. In the high dose, more of the parent was isolated in the feces and less in the urine compared to the low dose. There were no sex-related differences in the metabolism or pharmacokinetics of the test compound. Similarly, the number of doses or the position of the radiolabel generally made no difference in the meta
870.7600 Dermal penetration		
(species)	ļ	
Special studies	1	

L