Text Searchable File

DATA EVALUATION RECORD

STUDY 9

CHEM 129034 Flumioxazin CAS No. 103361-09-7 FORMULATION--90--FORMULATION NOT IDENTIFIED

STUDY ID 44295047

Lightle, S. and P. N. Coody. 1997. Soil dissipation of [phenyl-¹⁴C]flumioxazin under actual field conditions in soybeans in Indiana. PTRL East, Inc. Project No.: 964. PTRL East, Inc. Report No.: 1926. Unpublished study performed by PTRL East, Inc., Richmond, KY (in-life and analytical phases); and PTRL West, Inc., Richmond, CA (analytical phase); and submitted by Valent U.S.A. Corporation, Walnut Creek, CA.

DIRECT REVIEW T	$\Gamma IME = 62$ Hours	······		
REVIEWED BY:	T. L. Bludis, B.S.		Signature:	
TITLE:	Scientist		Date:	
EDITED BY:	D. H. Hunt, B.A.		Signature:	
TITLE:	Scientist		Date:	
	Deletitist		Duit.	
APPROVED BY:	P. H. Howard, Ph.D.		Signature:	
TITLE:	Project Manager		Date:	
ORG:	Syracuse Research Corp.			
	Arlington, VA 22202			· .
T	702/412 02/0			
TEL:	703/413-9369			
APPROVED BY:	Larry Liu		· · · · · · · · · · · · · · · · · · ·	
TITLE:	Environmental Scientist		A	n1 x Lt
ORG:	ERB IV/EFED/OPP		$\sim X$	())))))))))))))))))))))))))))))))))))
TEL:	703/305-5372		TAU.	12/27)
				C C

1

SIGNATURE:

§164-1

CONCLUSIONS

Field Dissipation - Terrestrial

- 1. This study is scientifically valid and provides supplemental information on the terrestrial field dissipation of flumioxazin in lysimeter-enclosed soybean plots of loam soil in Indiana.
- 2. Uniformly phenyl ring-labeled [¹⁴C]flumioxazin, applied as a pre-emergent at a nominal application rate of 45 g a.i./A (0.361 mg/lysimeter) to lysimeter-enclosed soybean plots of loam soil in Charlestown, IN, dissipated with a registrant-calculated half-life of 4.8 days (0-16 day data; $r^2 = 0.86$); the half-life was determined only from the parent compound detected in the 0- to 3-inch depth. Dissipation was observed to be biphasic with the more rapid phase occurring through 16 days. The observed first half-life occurred between 0 and 2 days posttreatment. Residue data were reported as means of two replicates; concentration data were reported as parent equivalents. The parent compound was initially present in the 0- to 3-inch depth at 88.5% (0.13 ppm) of the applied radioactivity, was 50.2% (0.060 ppm) at 2 days and 28.0-33.5% (0.032-0.045 ppm) from 5 to 9 days posttreatment, and was 0.9% (0.001 ppm) at 106 days. The minor degradates APF and 482-HA were detected at maximums of 8.2% (0.010 ppm, day 2) and 2.6% (0.004 ppm, day 0) of the applied radioactivity, respectively. The minor degradates 482-CA and IMOXA were present at $\leq 1.9\%$ (≤ 0.002 ppm, days 2 to 72) and $\leq 1.3\%$ (≤ 0.001 ppm, days 2 to 106) of the applied radioactivity, respectively. Total $[^{14}C]$ residues were not detected above 0.01 μ g/g (designated as the level of analysis) below the 3-inch depth. Nonextractable [¹⁴C]residues were initially 7.5% of the applied radioactivity, were 28.6% at 2 days posttreatment, increased to 51.7% by 5 days, and were a maximum of 93.1% at 316 days.

Total [¹⁴C]residues detected in the leachate samples were 0.33% of the applied radioactivity throughout the study period. Characterization data for the leachate samples were reported only for samples containing $\geq 0.001 \ \mu g/mL$ total [¹⁴C]residues. The parent compound was detected at 0.01-0.08% (0.03-0.48 ppb) at 5, 16, 37, and 44 days posttreatment. The minor degradates APF and 482-HA were detected at 0.0-0.19% (0.07-1.6 ppb) and 0.0-0.31% (0.09-12.3 ppb) from 5 to 72 days posttreatment, respectively. Total [¹⁴C]residues detected in the run-off samples were 0.55% of the applied radioactivity throughout the study period. Characterization data for the run-off samples were reported only for samples containing $\geq 0.001 \ \mu g/mL$ total [¹⁴C]residues. The parent compound was detected at $\leq 0.01\%$ (≤ 0.76 ppb) at 16, 37, and 44 days posttreatment. The minor degradate APF was detected at $\leq 0.05\%$ (≤ 1.5 ppb) from 16 to 58 days posttreatment.

METHODOLOGY

Uniformly phenyl ring-labeled [¹⁴C]flumioxazin (formulation not reported; V-53482; radiochemical purity \ge 99%, specific activity 348 μ Ci/mg; Figure 1, p. 57), dissolved in dimethyl sulfoxide, was applied once (as a pre-emergent) at a nominal rate of 45 g a.i./A (0.361 mg/lysimeter) to 8-inch diameter steel lysimeter-enclosed soybean plots of loam soil (0-3 inches: 47.6% sand, 35.1% silt, 17.3% clay, 2.2% organic carbon, pH 7.0, CEC 9.7 meq M+/100 g; Table I, p. 48) in Charlestown, IN (pp. 15, 16). Prior to treatment, the test plot was treated twice with Roundup[®] (glyphosate, formulation not reported; see Comment #15) to destroy vegetation, and 40 steel lysimeters (38-inch length; 8-inch i.d.) were inserted vertically into the soil to a target depth of 36 inches (leaving the rim two inches above the soil surface; p. 17). The lysimeters were inserted on both sides of an access trench (5 feet deep x 5 feet wide x 35 feet long; Appendix 11, Figure 1, p. 248). The lower end of the soil column was fitted with a wire mesh and the lysimeter was equipped with a leachate collection apparatus consisting of a glass funnel inserted into a glass collection jar (p. 17). An overflow collection apparatus, consisting of Teflon tubing inserted through a hole in the lysimeter (0.25 inches above the soil surface) and connected to a glass jar, was used to collect water that pooled on the top of the soil surface. The lysimeters remained untreated for 16 days prior to the initiation of the study; lysimeterenclosed plots received one inch of water (via irrigation) prior to treatment. Three soybean seeds (var. FFR 398) were planted (one-inch depth) in each lysimeter immediately prior to treatment (p. 18); following germination, the two smallest plants were cut at ground level and removed. The soil surfaces within 29 lysimeters were individually treated drop-wise around the inner six-inch area with the test solution using a glass Pasteur pipette (p. 20); each lysimeter was immediately irrigated with 100 mL of well water following treatment. Of the remaining lysimeters, three were utilized as controls and four were treated with KBr to monitor the wetting front associated with the pesticide treatment (p. 18). The test plot containing the lysimeters was not treated with pesticides for at least twelve years prior to treatment with flumioxazin (p. 16). The depth to the water table was not reported. Environmental data were collected on-site (p. 19) with the exception of pan evaporation data (Appendix 5, pp. 184-189). Precipitation was supplemented with irrigation; total water input (58.8 inches) during the study period was approximately 155% of the 12-year mean annual precipitation (Table III, pp. 50-51; Figure 5, p. 62). Through 97 days posttreatment, pan evaporation was 14.9 inches (reviewer-calculated) and total water input was 13.1 inches (Appendix 5, pp. 184-189; see Comment #2).

Duplicate treated lysimeters were removed at 0, 2, 5, 9, 16, 27, 48, 72, 106, and 316 days posttreatment; single control lysimeters were removed at 0, 72, and 316 days posttreatment; and KBr-treated lysimeters were removed at 106 days (one lysimeter) and 316 days posttreatment (three lysimeters; Table II, p. 49). Samples were collected by removing the entire lysimeter from the plot (p. 21). The top three inches of soil were transferred to sample bags, and the steel lysimeters (0-106 day samples) were cut open with a reciprocating saw. The soil columns within the lysimeters were sectioned into 3-inch (0- to 12-inch depth) and 6-inch (12- to 36-inch depth) increments, and shipped

frozen (on dry ice) to the PTRL East analytical lab; lysimeters removed at 316 days posttreatment were processed at the analytical lab. At the PTRL East analytical lab, the soil was homogenized and triplicate subsamples were analyzed for total radioactivity by LSC following combustion; the limit of quantitation (56 dpm/g) was twice background. Soil samples containing $\geq 0.01 \ \mu g/g$ [¹⁴C]residues were shipped to PTRL West, Inc., and extracted and analyzed (p. 24). Soil samples were stored frozen at PTRL West, Inc. for less than one week prior to analysis (Appendix 3, p. 98). Control lysimeters (days 72 and 316) were removed and used to quantify background radioactivity, and to determine gravimetric moisture in each soil layer (p. 22). Leachate and run-off water samples were monitored approximately once per week (p. 23). When leachate/run-off was present in the collection jars, samples were placed into collection vials and stored frozen, or immediately shipped frozen to the PTRL East analytical lab.

At PTRL West, Inc., soil samples were analyzed for the parent and the following potential degradates: N-[7-fluoro-3-oxo-4-(2-propynyl)-2H-1,4-benzoxazin-6-yl]-3,4,5,6tetrahydrophthalamic acid (482-HA); 2-[7-fluoro-3-oxo-6-(3,4,5,6tetrahydrophthalimido)-2H-1,4-benzoxazin-4-yl]propionic acid (482-CA); 7-fluoro-6-(3,4,5,6-tetrahydrophthalimido)-2H-1,4-benzoxazin-3(4H)-one (IMOXA); 6-amino-7fluoro-4-(2-propynyl)-2H-1,4-benzoxazin-3(4H)-one (APF); 7-fluoro-6-nitro-4-(2propynyl)-2H-1,4-benzoxazin-3(4H)-one (PNF); SAT-482; and 482PHO (Appendix 3, Figure B1, p. 119). Soil samples were extracted three times by sonicating and shaking with acetone:0.1 N HCl (4:1, v:v) and centrifuged, and the supernatants were decanted (Appendix 3, p. 98; Figure B3, p. 123). The extracts were combined and triplicate aliquots were analyzed for total radioactivity by LSC; the limit of detection was 35 dpm above background. Aliquots of the extracts were concentrated under nitrogen or by rotary evaporation, and redissolved in methanol:water (2:3, v:v). The redissolved extracts were centrifuged (to remove particulates), and triplicate aliquots of the supernatant were analyzed for total radioactivity by LSC. Aliquots of the supernatant were also analyzed by reverse-phase HPLC (Supelcosil LC-DP column) using a mobile phase gradient of water: methanol (both with 0.05% H₃PO₄; 60:40 to 0:100, v:v) with UV (254 nm) and radioactive flow detection (Appendix 3, pp. 95, 96). Samples were co-chromatographed with nonradiolabeled reference standards; the limit of quantitation was not reported. Eluent fractions were collected at one-minute intervals and analyzed for total radioactivity by LSC. To confirm compound identities, selected extracts (2, 9, 27, 48, and 72 days) were concentrated, redissolved in acetonitrile or methanol, and analyzed by twodimensional TLC using silica gel plates developed in the first dimension with benzene:ethyl acetate (4:1, v:v), and in the second dimension with ethyl acetate:ethanol (4:1, v:v; days 9, 27, and 48), ethyl acetate:ethanol:glacial acetic acid (80:20:0.4, v:v:v; day 72), or 100% ethyl acetate (day 2; Appendix 3, pp. 97, 99; Figure B6, pp. 132-141). Areas of radioactivity were detected by radioimage scanning. Samples were co-chromatographed with nonradiolabeled reference standards which were visualized with UV (254 nm) light and/or iodine staining. Post-extracted soil samples were analyzed for total radioactivity by LSC following combustion.

4

Triplicate aliquots of the leachate and run-off samples were analyzed for total radioactivity by LSC at the PTRL East analytical lab; the limit of quantitation (70 dpm/mL) was twice the background (p. 25). Samples containing $\geq 0.001 \ \mu g/mL$ [¹⁴C]residues were shipped to PTRL West, Inc., for characterization of [¹⁴C]residues. At PTRL West, Inc., samples were centrifuged (to remove particulates) and triplicate aliquots of the supernatant were analyzed for total radioactivity by LSC (Appendix 3, p. 99). Samples were analyzed by HPLC as previously described for the soil samples. Selected samples (day 16) were concentrated by a nitrogen stream or rotary evaporation, dissolved in acetonitrile or methanol, and analyzed by two-dimensional TLC developed in the first dimension with benzene:ethyl acetate (4:1, v:v), and in the second dimension with ethyl acetate:ethanol (4:1, v:v) or ethyl acetate:ethanol:acetic acid (80:20:0.4, v:v; Appendix 3, Figures B8, B11; pp. 148-151, 165-166).

In a method validation study, duplicate soil samples were fortified with flumioxazin (fortification not specified) and extracted (method not specified); the extracts were combusted, dried, redissolved in methanol:water (2:3, v:v), and analyzed by HPLC as previously described (Appendix 3, p. 102). Recovery of the parent was 91.3% of the applied radioactivity (Appendix 3, Table B1, p. 108).

DATA SUMMARY

Uniformly phenyl ring-labeled [¹⁴C]flumioxazin (V-53482; radiochemical purity \geq 99%), applied as a pre-emergent at a nominal application rate of 45 g a.i./A (0.361 mg/lysimeter) to lysimeter-enclosed soybean plots of loam soil in Charlestown, IN, dissipated with a registrant-calculated half-life of 4.8 days (0-16 day data; $r^2 = 0.86$; Appendix 3, Figure B13, p. 169); the half-life was determined only from the parent compound detected in the 0- to 3-inch depth (see Comment #7). Dissipation was observed to be biphasic with the more rapid phase occurring through 16 days. The observed first half-life occurred between 0 and 2 days posttreatment. Residue data were reported as means of two replicates; concentration data were reported as parent equivalents. The parent compound was initially present in the 0- to 3-inch depth at 88.5% (0.13 ppm) of the applied radioactivity, was 50.2% (0.060 ppm) at 2 days and 28.0-33.5% (0.032-0.045 ppm) of the applied from 5 to 9 days posttreatment, decreased to 6.0-13.2% (0.007-0.015 ppm) by 16-48 days posttreatment, and was 0.9% (0.001 ppm) of the applied at 106 days posttreatment (Appendix 3, Tables BV, BVI, pp. 113, 114). The minor degradate 6amino-7-fluoro-4-(2-propynyl)-2H-1,4-benzoxazin-3(4H)-one (APF) was initially present (day 0) at 5.4% (0.008 ppm) of the applied radioactivity, was a maximum of 8.2% (0.010 ppm) of the applied at 2 days posttreatment, and was last detected at 2.3% (0.003 ppm) at 9 days posttreatment. The minor degradate N-[7-fluoro-3-oxo-4-(2-propynyl)-2H-1,4benzoxazin-6-yl]-3,4,5,6-tetrahydrophthalamic acid (482-HA) was detected once, at 2.6% (0.004 ppm) of the applied at day 0. The minor degradate 2-[7-fluoro-3-oxo-6-(3,4,5,6tetrahydrophthalimido)-2H-1,4-benzoxazin-4-yl]propionic acid (482-CA) was present at

 \leq 1.9% (\leq 0.002 ppm) of the applied radioactivity from 2 to 72 days posttreatment. The minor degradate 7-fluoro-6-(3,4,5,6-tetrahydrophthalimido)-2H-1,4-benzoxazin-3(4H)one (IMOXA) was present at $\leq 1.3\%$ (≤ 0.001 ppm) of the applied radioactivity from 2 to 106 days posttreatment. An unidentified minor degradate (designated as "D3") was initially present (day 2) at 5.3% (0.006 ppm) of the applied radioactivity, was 3.1% (0.004 ppm) of the applied at 5 days posttreatment, was a maximum of 5.5% (0.007 ppm) of the applied at 9 days posttreatment, and was last detected at 0.8% (0.001 ppm) at 48 days posttreatment. Unidentified radioactivity (designated as "All Others") was present at 1.5-6.3% (0.002-0.007 ppm) of the applied radioactivity from 0 to 106 days posttreatment; unidentified radioactivity consisted of multiple components, each of which was ≤ 0.002 ppm. Total [¹⁴C]residues were not detected above 0.01 μ g/g (designated as the level of analysis) below the 3-inch depth (Table V, p. 54). Nonextractable [¹⁴C]residues were initially 7.5% of the applied radioactivity, were 28.6% of the applied at 2 days posttreatment, increased to 51.7% of the applied by 5 days posttreatment, and were a maximum of 93.1% of the applied at 316 days posttreatment (Table BIV, pp. 111, 112; see Comment #1).

Total [¹⁴C]residues detected in the leachate samples were 0.33% of the applied radioactivity throughout the study period (Table VI, p. 55). Characterization data for the leachate samples were reported only for samples containing $\geq 0.001 \ \mu g/mL$ total [¹⁴C]residues (5, 16, 37, 44, and 72 days). The parent compound was detected at 0.01-0.08% (0.03-0.48 ppb) of the applied at 5, 16, 37, and 44 days posttreatment (Appendix 3, Table BVIII, p. 116). The minor degradates APF and 482-HA were detected at 0.0-0.19% (0.07-1.6 ppb) and 0.0-0.31% (0.09-12.3 ppb) of the applied from 5 to 72 days posttreatment, respectively. Three unidentified minor degradates (designated as "D1, D3, and D4") were detected at $\leq 0.32\%$ (≤ 2.7 ppb) of the applied radioactivity. Unidentified radioactivity (designated as "All Others") was detected at 0.0-0.85% (0.37-5.3 ppb) of the applied radioactivity consisted of multiple components, each of which was ≤ 1.6 ppb.

Total [¹⁴C]residues detected in the run-off samples were 0.55% of the applied radioactivity throughout the study period (Table VI, p. 55). Characterization data for the run-off samples were reported only for samples containing $\geq 0.001 \ \mu$ g/mL total [¹⁴C]residues (16, 37, 44, and 58 days). The parent compound was detected at $\leq 0.01\%$ (≤ 0.76 ppb) at 16, 37, and 44 days posttreatment (Appendix 3, Table BX, p. 118). The minor degradate APF was detected at $\leq 0.05\%$ (≤ 1.5 ppb) from 16 to 58 days posttreatment. Three unidentified minor degradates (designated as "D1, D2, D3, and D4") were detected at $\leq 0.33\%$ (≤ 9.6 ppb) of the applied radioactivity from 16 to 58 days posttreatment. Unidentified radioactivity (designated as "All Others") was detected at 0.18% (0.42-3.8 ppb) from 16 to 58 days posttreatment; unidentified radioactivity consisted of multiple components, each of which was ≤ 1.6 ppb.

Material balances (based on LSC analysis) were 96.4-106.1% of the applied radioactivity from 0 to 9 days posttreatment, were 64.9% of the applied at 16 days posttreatment, and were 72.9-81.1% of the applied from 27 to 316 days posttreatment with the exception of 56.4% at 106 days (Table V, p. 54; see Comment #10; also see Table BIII, p. 110).

COMMENTS

- 1. Nonextractable [¹⁴C]residues were considerably high following 2 days posttreatment (Table BIV, pp. 111-112). Nonextractable [¹⁴C]residues were 28.6% of the applied radioactivity at 2 days posttreatment, were 51.7% of the applied at 5 days posttreatment, and generally increased to a maximum of 93.1% of the applied by 316 days posttreatment (also see Comment #10). The study author stated that soil samples were extracted three times by sonicating and shaking with acetone:0.1 *N* HCl (4:1, v:v; p. 98). The reviewer noted that the observed first half-life occurred between 0 and 2 days before the nonextractable residues became unreasonably high. Additionally, the reviewer noted that the all residues detected in the soil (above the limit of analysis) remained in the top layer of the soil (0-3 inches). However, water balance data were inconclusive and it could not be confirmed that conditions were favorable for leaching (also see Comment #2).
- 2. Pan evaporation data were incomplete; data were only reported through 97 days posttreatment. Through 16 days posttreatment, pan evaporation was 3.4 inches and total water input was 3.9 inches (Appendix 5, p. 184), which may have created somewhat favorable conditions for leaching. However, the study authors reported that 2.52 inches of rain fell on the site from 9 to 16 days posttreatment as a result of Hurricane Erin; it is unclear whether preferential flow occurred following the rain (also see Comment #5). Additionally, the reviewer notes that 303 mL of run-off water was collected and removed from the lysimeters through 16 days posttreatment, which might have created a negative water balance by decreasing the actual water input value (Table IV, p. 52). Also, the study authors reported that the recovery of the bromide tracers in the leachate samples were highly variable (see Comment #6). The reviewer notes that the registrant-calculated half-life of the parent was 4.8 days, and that >90% of the parent detected in the 0- to 3inch soil depth had dissipated by 16 days posttreatment. Based on reported water balance data, however, the reviewer was unable to confirm that conditions were favorable for leaching.
- 3. The study was not conducted under typical use conditions. The lysimeters (8-inch inner diameter) were too small to be representative of actual use conditions, the method of application was atypical (glass Pasteur pipette), and only limited areas of the plot (the inner six inches of the lysimeter) were treated (p. 20).
- 4. Storage stability data were not reported. The study authors stated that the degradate 482-HA was stable in a leachate sample which was re-analyzed after 26 days of frozen storage

7

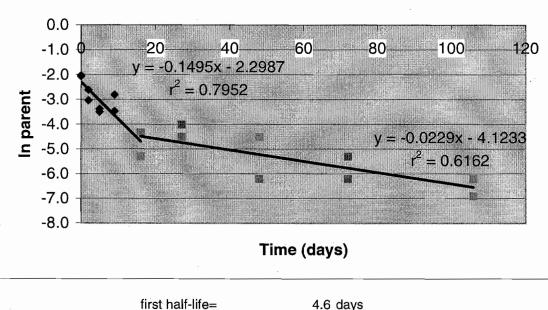
(p. 101). If leachate samples were stored for >30 days, a valid stability study must be included to demonstrate stability of the parent and degradates in the leachate. The study authors reported that soil samples were extracted and analyzed within one week of arrival at the analytical lab (p. 98).

- 5. The study authors reported that the most significant leaching occurred at the day 16 sampling interval (pp. 37, 38, Table VI, p. 55). The study authors stated that the radioactivity found in the leachate could have been caused by "preferential flow" occurring in the lysimeters, or by "edge effects" transporting the test substance down the edge of the soil column due to heavy rainfall. The study authors reported that 2.52 inches of rain fell on the site from 9 to 16 days posttreatment as a result of Hurricane Erin (p. 38).
- 6. The study authors stated that the recovery of the bromide tracer in leachate samples from the lysimeters treated with KBr was highly variable (p. 12). Cumulative recoveries of bromide in leachate samples were 0.7%, 10.8%, and 14.6% of the applied radioactivity from lysimeters treated with KBr and sampled at 246, 285, and 285 days posttreatment, respectively (p. 40; Figure 7, p. 64; Appendix 9, pp. 226, 227); recoveries in run-off samples were ≤0.8% of the applied radioactivity. The study authors stated that recovery of bromide in leachate samples from the lysimeter sampled through 240 days posttreatment indicated that the lysimeter "was relatively poorly drained and not representative of the general leaching potential at the site" (p. 40).
- 7. The registrant-calculated half-life was based on data from the 0- to 3-inch depth, rather than the 0- to 6-inch depth. However, the study authors reported that [¹⁴C]residues detected below the 0- to 3-inch depth were not detected above the "limit of analysis" (<0.01 ppm; p. 36).</p>
- 8. The residue data for the parent and degradates were reported as units of concentration and as percentages of the nominal ("dose") radioactivity (Appendix 3, Table BV, p. 113); the reviewer noted, however, that the dose rate (mg parent/g soil) varied between soil columns because the same amount of parent was applied to each column, but each column weighed a different amount thereby resulting in different initial concentrations (Appendix 8, pp. 209-225).
- 9. The limits of detection and quantitation were not reported for HPLC or TLC analyses. Both limits of detection and quantitation should be reported to allow the reviewer to evaluate the adequacy of the method of the determination of the test compound and its degradates.
- 10. Material balances are generally not required for terrestrial field dissipation studies and are generally not reported since nonradiolabeled compounds are usually used. Because this study was conducted with radiolabeled test compounds applied in lysimeters, material balances were reported. A general pattern of decline over time was observed in the

material balances which were 72.9-106.1% of the applied radioactivity from 0 to 316 days posttreatment (Table V, p. 54); however, data were variable over time. The study authors stated that the decrease in the material balances over time was likely due to "co-distillation" during a three-day drying period following the first heavy rainfall at the day-16 sampling interval (p. 39). However, the reviewer questions how the values in Table V were determined since data in Table BIV (p. 111) indicate that nonextractable residues were present at a higher percentage of the applied than would be theoretically possible based on the reported material balances. Based on data in Table BIII (p. 110), material balances were higher than those reported in Table V. The reviewer notes that the terms "% of dose" and "percent accountability" should be clearly defined in terms of the nominal or actual application rate and that it is preferable that the same terms be used consistently throughout the study. Clarification by the registrant is necessary.

- 11. The study authors stated that, following treatment, the vials used to deliver the test material were analyzed for total radioactivity by LSC to confirm the transfer of the test material to the soil columns (p. 34). Mean radioactivity remaining in the vials was 0.14% of the applied radioactivity.
- 12. The study was conducted at one site (Indiana). Additional terrestrial field dissipation studies conducted in North Carolina (MRID 44295043), Illinois (MRID 44295044), Mississippi (MRID 44295045), and Iowa (MRID 44295046) were also submitted.
- 13. The study author reported that the soil at the test site was a Wheeling silt loam soil (pp. 13, 16); however, the study authors stated that "the soil texture was classified as a loam for the entire lysimeter" (p. 32). Based on soil characterization data reported, the reviewer reported the soil as a loam soil.
- 14. The proposed degradation pathway for flumioxazin is presented in Figure B12 (Appendix 3, p. 167).
- 15. The study authors stated that cicada-killer wasps (*Sphecius speciosus spp.*) were found nesting in the soil around the lysimeters (August 1995, p. 33). The study authors stated that the eggs were deposited at a shallow depth and did not cause significant damage to the soil profile. Additionally, ants were observed in the lysimeters (August 1995). To control the insect infestation, the soybeans and soil surfaces were treated with malathion (formulation not reported) and diazinon (5% granules) on August 11, 1995 (16 days posttreatment).
- 16. The study authors reported that the formulation of flumioxazin was prepared with 0.5 mL of a formulation blank (containing 500 mL HPLC-grade water, Morwet D-425, Morwet EFW, and ASP-400P) plus 10 mL of HPLC-grade water in a vial containing [¹⁴C]flumioxazin dissolved in dimethyl sulfoxide (p. 20). The reviewer assumes the

formulation is in the form of a wettable powder; however, the exact formulation was not specified. Clarification by the registrant is necessary.


17. The parent was applied at an exaggerated rate (45 g a.i./A); the reviewer noted in an additional lysimeter study the proposed maximum use rate for flumioxazin is 36.1 g a.i./A for soybeans and 43.4 g a.i./A for peanuts (MRID 44295043, p. 10).

Document produced by Syracuse Research Corporation Flumioxazin : #9 MRID 44295047

164-1

0- to 3-inch soil of	depth			
Time (days) par	rent (ppm)	Ave. parent (ppm)	Time (days) In p	arent
0	0.132		0	-2.0
0	0.127	0.130	0	-2.1
2	0.048		2	-3.0
2	0.073	0.061	. 2	-2.6
5	0.030		5	-3.5
5	0.034	0.032	5	-3.4
9	0.060		9	-2.8
9	0.031	0.046	9	-3.5
16	0.005		16	-5.3
16	0.013	0.009	16	-4.3
27	0.018		27	-4.0
27	0.011	0.015	27	-4.5
48	0.002		48	-6.2
48	0.011	0.007	48	-4.5
72	0.002		72	-6.2
72	0.005	0.004	72	-5.3
106	0.001		106	-6.9
106	0.002	0.002	106	-6.2

Dissipation of flumioxazin in lysimeterenclosed plots

second half-life=

4.6 days 30.3 days

 Table I.
 Physiochemical Characteristics of the Wheeling Silt Loam Collected from Three Locations and Eight Depths within the Study Area.

Soil Donth	Lunimotor	pH (Std. Units)	Cation Exchange Capacity (meq M+/100g)	Water Holding Capacity at: 0.33 Bar %(w/w)	Organic Carbon %(w/w)	Bulk Density (g/cm ³)	Texture Classification	Sand %(w/w)	Silt %(w/w)	Clay %(w/w
Depth 0-3"	Lysiniciei	7.1	10.75	18.75	2.58	<u>(g/cm)</u> 1.16	Loam	48.8	34.4	16.8
0-5	18	6.9	9.68	20.17	2.14	1.16	Loam	46.0	36.4	17.6
	2	7.0	8.60	19.99	1.80	1.10	Loam	48.0	34.4	17.6
	Average	7.0	9.68	19.99	2.17	1.19	Loam	47.6	35.1	17.3
3-6"	Average	7.4	6.76	19.04	0.68	1.19	Loam	46.8	34.4	18.8
3-0	18	7.2	6.60	15.03	1.11	1.23	Loam	46.0	36.4	17.6
	2	7.2	8.24	20.10	1.05	1.28	Sandy Loam	54.0	28.4	17.6
	Average	7.2	7.20	17.07	0.95	1.26	Loam	48.9	33.1	18.0
6-9"	1	7.2	6.16	15.41	0.50	1.39	Loam	46.8	36.4	16.8
0-7	18	7.0	5.96	14.45	0.62	1.32	Loam	46.0	36.4	17.6
	2	7.2	9.40	17.55	0.62	1.29	Loam	52.0	30.4	17.6
	Average	7.1	7.17	15.80	0.58	1.33	Loam	48.3	34.4	17.3
9-12"	1	7.1	7.11	18.10	0.30	1.36	Loam	42.8	38.4	18.8
12	18	6.9	7.52	14.31	0.50	1.30	Loam	46.0	36.4	17.6
	2	7.2	10.44	17.86	0.34	1.32	Loam	52.0	30.4	17.6
	Average	7.1	8.36	16.76	0.38	1.33	Loam	46.9	35.1	18.0
12-18"	1	6.9	7.63	18.62	0.19	1.36	Loam	42.8	38.4	18.8
12 10	18	6.9	7.24	15.06	0.22	1.26	Loam	52.0	28.4	19.6
	2	6.4	18.00	16.04	0.03	1.34	Loam	52.0	30.4	17.6
	Average	6.7	10.96	16,57	0.15	1.32	Loam	48.9	32.4	18.7
18-24"	1	6.4	5.67	15.39	0.16	1.41	Loam	48.8	36.4	14.8
	18	6.9	7.32	15.81	0.15	1.29	Loam	50.0	30.4	19.6
	2	5.6	6.36	14.52	0.12	1.32	Sandy Loam	62.0	20.4	17.6
	Average	6.3	6.45	15.24	0.14	1.34	Loam	53.6	29.1	17.3
24-30"	1	5.2	7.32	16.07	0.16	1.34	Loam	44.8	36.4	18.8
	18	7.0	2.76	7.29	0.15	1.46	Sandy Loam	74.0	18.4	7.6
	2	5.1	7.92	14.76	0.12	1.30	Loam	52.0	28.4	19.6
	Average	5.8	6.00	12.71	0.14	1.37	Loam	56.9	27.7	15.3
30-36"	1	5.0	7.91	17.09	0.16	1.30	Loam	44.8	36.4	18.8
	18	6.8	5.28	11.24	0.03	1.32	Sandy Loam	78.0	8.4	13.6
	2	5.1	8.92	19.29	0.19	1.36	Loam	40.0	40.4	19.6
	Average	5.6	7.37	15.87	0.13	1.33	Loam	54.3	28.4	17.3

PTRL Project No. 964 Page 48

Lysimeter Number	Treatment	Days After Treatment (DAT)
1	Control	0
3	¹⁴ C	0
31	¹⁴ C	0
10	¹⁴ C	2
11	¹⁴ C	2
12	¹⁴ C	2 5
25	¹⁴ C	5
4	¹⁴ C	9
5	¹⁴ C	9
6	¹⁴ C	16
33	14C	16
16	¹⁴ C	27
17	14 _C	27
8	¹⁴ C	48
23	¹⁴ C	48
13	14C	72
24	- 14 _C	72
18	Control	72
9	¹⁴ C	106
27	¹⁴ C	106
7 [a]	¹⁴ C	106
26 [a]	KBr	106
2	Control	316
14	KBr	316
15	¹⁴ C	316
19	14 _C	316
20	KBr	316
21	¹⁴ C	316
22	¹⁴ C	316
28	KBr	316
29	¹⁴ C	316
30	¹⁴ C	316
32	¹⁴ C	316

Table II.Sampling Order and Treatment for Lysimeters Used to Study
[Phenyl-14C]Flumioxazin.

[a] Lysimeters used for soil hydraulic conductivity testing.

Table III.

Twelve-Year Cumulative Rainfall Data for the Test Site and Cumulative Rainfall and Irrigation Received by Lysimeters.

	Study Dat	le	12-Year A Rainfall (i	•	Water Input i	in Inches	Water Input as % of 12-Year Average
Calendar	DAT	Julian Date	Weekly Cu	umulative ^a	Weekly Cu	mulative ^b	
05/00/05		••••	1.10	0.40	0.54		110
07/28/95	2	209	1.15	0.49	0.54	0.54	40
08/04/95	9	216	0.85	1.34	0.00	0.54	
08/11/95	16	223	0.79	2.13	3.32	3.86	181
08/18/95	23	230	0.36	2.49	0.26	4.12	165
08/25/95	30	237	0.69	3.18	1.12	5.24	165 150
09/01/95	37 44	244 251	1.21 0.21	4.39 4.60	1.33 0.26	6.57 6.83	148
09/08/95 09/15/95	44 51	251	0.21	4.60 5,53	0.28	7.82	140
09/13/93	58	238 265	0.93	6,44		7.82 8.98	139
09/22/93	58 65	263	0.91	6.97	1.16 0.43	8.98 9.41	135
10/06/95	72	279	0.50	7.47	2.24	11.65	156
10/13/95	79	286	0.54	8.01	0.14	11.79	147
10/20/95	86	293	0.77	8.78	0.52	12.31	140
10/27/95	93	300	0.79	9.57	0.79	13.10	137
11/03/95	100	307	0.44	10.01	0.38	13.48	135
11/10/95	107	314	1.02	11.03	0.29	13.77	125
11/17/95	114	321	0.49	11.52	1.46	15.23	132
11/24/95	121	328	1.35	12.87	0.67	15.90	124
12/01/95	128	335	1.17	14.04	1.23	17.13	122
12/08/95	135	342	0.35	14.39	0.61	17.74	123
12/15/95	142	349	0.70	15.09	1.44	19.18	127
12/22/95	149	356	1.11	16.20	1.82	21.00	130
12/29/95	156	363	1.17	17.37	0.00	21.00	121
01/05/96 01/12/96	163 170	5 12	0.53 0.28	17.90	0.78	21.78	122
01/12/96	170	12		18.18	0.96	22.74	125
01/19/96	177	26	0.86 0.43	19.04 19.47	1. 16 1. 72	23.90	126 132
01/20/90	184	33	1.35	20.82		25.62	132
					0.00	25.62	
02/09/96	198	40	0.61	21.43	0.13	25.75	120
02/16/96	205	47	1.12	22.55	0.92	26.67	118
02/23/96	212	54	0.56	23.11	1.02	27.69	120
03/01/96	219	61	0.64	23.75	0.91	28.60	120
03/08/96	226	68 75	0.52	24.27	0.47	29.07	120
03/15/96 03/22/96	233	75	0.85	25.12	0.37	29.44	117
03/22/90	240	82	0,79	25.91	2.43	31.87	123

^a Cumulative rainfall for the first week is adjusted for a 3 day period to allow scheduled irrigation on subsequent fridays.

^b These water input values are cumulative from Day 0.

Calendar I 03/29/96 04/05/96 04/12/96 04/19/96 04/26/96 05/03/96 05/10/96 05/17/96 05/24/96 05/31/96 06/05/96	Study Da	ate		nr Average II (inches)	Water Ing	out in Inches	Water Input as % of 12-Year Average		
Calendar	DAT	Julian Date	Weekly	Cumulative ^a	Weekly	Cumulative ^b			
03/29/96	247	89	1.28	27.19	0.67	32.54	120		
04/05/96	254	96	1.39	28.58	2.49	35.03	123		
04/12/96	261	103	0.85	29.43	0.04	35.07	119		
04/19/96	268	110	0.67	30.10	1.16	36.23	120		
04/26/96	275	117	0.61	30.71	1.94	38.17	124		
05/03/96	282	124	1.36	32.07	3.40	41.57	130		
05/10/96	289	131	0.78	32.85	4.56	46.13	140 ^c		
05/17/96	296	138	1.40	34.25	7.49	53.62	157		
05/24/96	303	145	1.26	35.51	2.10	55.72	157		
05/31/96	310	152	1.09	36.60	2.44	58,16	159		
06/05/96	315	157	1.29	37.89	0.61	58.77	155		

Table III (Continued). Twelve-Year Cumulative Rainfall Data for the Test Site and Cumulative Rainfall and Irrigation Received by Lysimeters.

^a Cumulative rainfall for the first week is adjusted for a 3 day period to allow scheduled irrigation on subsequent fridays.

14

^b These water input values are cumulative from Day 0.

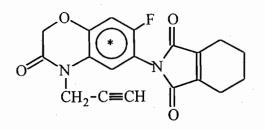
^c Water input increase to 150% of the 12-year average.

Table V. Recovery of Radiocarbon by Soil Depth at Each Sampling Time.

							Averag	Average Radioactive Recovery [a]	ive Reco	wery [a]							
	6	0-3 inch	3-6	3-6 inch	6-9	6-9 inch	9-12	9-12 inch	12-18	12-18 inch	18-24 inch	inch	24-30 inch	inch	30-36 inch	inch	Total
	% of		% of		% of		% of		% of		₩ of		}₀ of	: : :	% of		% of
DAT	C Dose	g/gµ	Dose	β/gri	Dose	g/gri	Dose	g/gri	Dose	8/8ri	Dose	g/gu	Dose	g/gri	Dose	g/g11	Dose
0	106.0	0.156	0.1	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	106.1
2	96.1		0.2		0.1	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	96.4
s	93.5		1.7		1.1	<0,010	0.7	<0.010	0.3	<0.010	0.1	<0.010	0.0	<0.010	0.2	<0.010	97.6
6	97.2		1.5		0.5	<0.010	0.3	<0.010	0.7	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	100.2
16	61.0		3.3		0.6	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	0.0	<0.010	64.9
27	77.1		1.1		0.8	<0.010	0.4	<0.010	0.2	<0.010	0.3	<0.010	0.3	<0.010	0.9	<0.010	81.1
\$ 5	73.0		1.9		1.2	<0.010	0.9	<0.010	0.7	<0.010	0.4	<0.010	0.2	<0.010	0.2	<0.010	78.5
72			2.8		1.1	<0.010	0.7	<0.010	0.9	<0.010	0.5	<0.010	0.4	<0.010	0.2	<0.010	74.6
106			5.4		1.7	<0.010	1.0	<0.010	0.4	<0.010	0.7	<0.010	0.0	<0.010	0.0	< 0.010	56.4
316			7.7		2.3	<0.010	1.8	<0.010	1.6	<0.010	0.7	<0.010	0.4	<0.010	0.2	<0.010	72.9

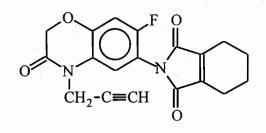
[a] Data are averages of values presented as Appendix 8 for all lysimeters taken at the specified sampling time.

Table VI.


Average Recovery of Radiocarbon in Water Samples at each Collection Time.

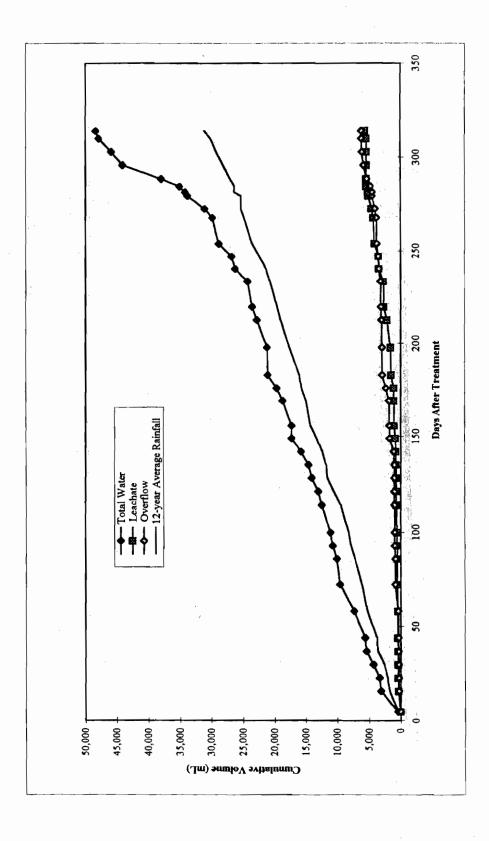
1 1			f Radioactivi	•	9/ Applia	d Doonvoru per	veimeter
Leachate/		all Lysime	ters Yielding	Water	% Applied	d Recovery per l	Lysinicier
Runoff Sampling DAT	# of Lysimeters	Leachate	Runoff of Applied	Total	Leachate (%)	Runoff (%)	Total (%)
	Lystatetors						
5	28	0.49	0.00	0.49	0.02	0.00	0.0
16	24	5.99	11.00	16.99	0.25	0.46	0.7
23	22	0.00	NA [a]	0.00	0.00	NA	0.0
30	20	NA	0.04	0.04	NA	0.00	0.0
37	20	0.12	0.64	0.76	0.01	0.03	0.0
44	20	0.60	0,24	0.84	0.03	0.01	0.0
58	18	0.00	0.20	0.20	0.00	0.01	0.0
72	18	0.16	0.18	0.34	0.01	0.01	0.0
86	15	0.00	0.00	0.00	0.00	0.00	0.0
93	15	0.08	0.02	0.10	0.01	0.00	0.0
100	15	0.00	0.00	0.00	0.00	0.00	0.0
114	11	0.01	0.00	0.01	0.00	0.00	0.0
121	11	0.00	NA	0.00	0.00	NA	0.0
128	11	0.00	0.01	0.01	0.00	0.00	0.0
135	11	0.00	NA	0.00	0.00	NA	0.0
142	11	0.01	0.02	0.03	0.00	0.00	0.0
149	11	0.01	0.18	0.19	0.00	0.02	0.0
156	11	0.01	0.00	0.01	0.00	0.00	0.0
170	11	0.00	0.01	0.01	0.00	0.00	0.0
177	11	NA	0.07	0.07	NA	0.01	0.0
184	11	0.03	0.05	0.08	0.00	0.00	0.0
198	11	0.00	0.00	0.00	0.00	0.00	0.0
212	11	0.00	0.00	0.00	0.00	0.00	0.0
219	11	0.01	0.01	0.02	0.00	0.00	0.0
233	11	0.00	0.00	0.00	0.00	0.00	0.0
240	Ì	0.02	0.00	0.02	0.00	0.00	0.0
247	11	0.00	0.02	0.02	0.00	0.00	0.0
254	11	0.03	0.00	0.03	0.00	0.00	0.0
268	11	0.00	0.01	0.01	0.00	0.00	0.0
273	11	0.01	0.01	0.02	0.00	0.00	0.0
280	11	0.03	0.01	0.04	0.00	0.00	0.0
282	11	0.00	NA	0.00	0.00	NA	0.0
285	11	0.01	0.00	0.01	0.00	0.00	0.0
289	11	NA	0.02	0.02	NA	0.00	0.0
296	11	NA	0.01	0.01	NA	0.00	0.0
303	11	NA	0.00	0.00	NA	0.00	0.0
310	11	NA	0.00	0.00	NA	0.00	0.0
314	11	0.00	NA	0.00	0.00	NA	0.0
		0.00			otals 0.33	0.55	0.8

[a] NA=Not Applicable. Sampling for leachate and overflow did not always occur on same dates;


therefore, NA in a space indicates that no sample was taken at that time.

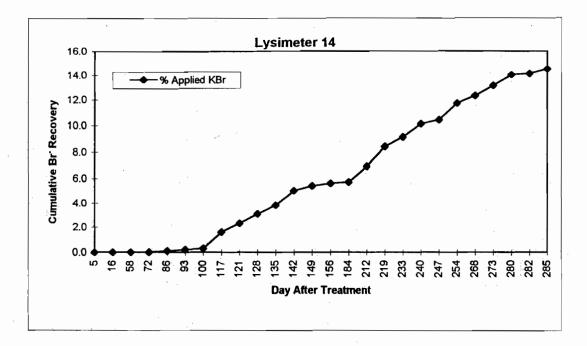
16

* denotes ¹⁴C-label position.


Flumioxazin (also referred to as S-1855) PTRL East, Inc. No.: 964-534 Lot No.: RIS 93013 Specific Activity: 348 μCi/mg Radiochemical Purity: >99% Chemical Purity: not given Date Received: 7/14/95

Flumioxazin Code Numbers V-53482 and S-53482 PTRL East, Inc. No.: 964-533 Lot No.: AS 1663 g Chemical Purity: 99.8% Date Received: 7/14/95

Figure 1.


Chemical Structures and Receipt Data for Radiolabeled Flumioxazin Test Material and Reference Substance.

18

Figure 5.

Water Balance for Lysimeters.

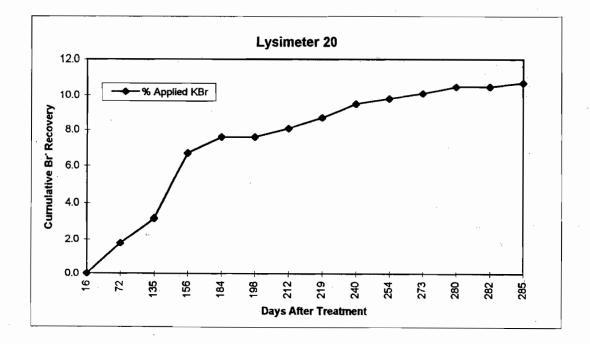


Figure 7. Bromide Concentration in Leachate Collected Below Lysimeters Treated with KBr and Maintained in the Field for 316 Days.

			Percent Distr	ibution			1	
		% of	in Extract (by	HPLC)		% of Ap	plied Dose	
		Dose in	2 T	All		All	Soil Bound	Radiocarbon
Sample	Rep	Extract	Flumioxazine	Others	Flumioxazine	Others	Residues	Recovery
Spiked	1	93.0					1.4	94.4
Control Soil ^a	2	95.0					1.3	96.3
	Avg	94.0	97.1	3.0	91.3	2.8	1.4	95.4

Table BI.	Validation of Extraction and Analysis Procedures - Distribution and Recovery of
	Applied Radiocarbon.

^a For HPLC analysis, the extracts of Replicates 1 and 2 were combined prior to analysis.

PTRL Project No. 964 Page 108 겨

PTRL West		TLC M	obility		HPLC
Number	R _f	R _f ^b	R_{f}^{c}	R_{f}^{d}	RT (min) ^e
P964E-1	0.67	0.88	0.91	0.97	25
P964E-2	0.00	0.38	0.91	0.00	14-17
P964E-3	0.00	0.39	0.68	0.07	23
P964E-4	0.20	0.84	0.87	0.84	21
P964E-5	0.41	0.87	0.88	0.95	7-10
P964E-6	0.70	0.88	0.91	0.97	11-14
P964E-7	0.40	0.87	0.89	0.92	22-23
P964E-8	0.00	0.16	0.59	0.00	15-18
	Number P964E-1 P964E-2 P964E-3 P964E-4 P964E-5 P964E-6 P964E-7	Number R_f^a P964E-10.67P964E-20.00P964E-30.00P964E-40.20P964E-50.41P964E-60.70P964E-70.40	Number R_f^a R_f^b P964E-10.670.88P964E-20.000.38P964E-30.000.39P964E-40.200.84P964E-50.410.87P964E-60.700.88P964E-70.400.87	Number R_f^a R_f^b R_f^c P964E-10.670.880.91P964E-20.000.380.91P964E-30.000.390.68P964E-40.200.840.87P964E-50.410.870.88P964E-60.700.880.91P964E-70.400.870.89	Number R_f^a R_f^b R_f^c R_f^d P964E-10.670.880.910.97P964E-20.000.380.910.00P964E-30.000.390.680.07P964E-40.200.840.870.84P964E-50.410.870.880.95P964E-60.700.880.910.97P964E-70.400.870.890.92

 Table BII.
 Chromatographic Characteristics of Analytical Reference Standards.

^a TLC solvent system A was Benzene:Ethyl Acetate (4:1, v:v)

^b TLC solvent system B was Ethyl Acetate:Ethanol (4:1, v:v)

^c TLC solvent system C was Ethyl Acetate:Ethanol:Glacial Acetic Acid (80:20:0.4, v:v:v)

^d TLC solvent system D was Ethyl Ether (100%)

Note, two-dimensional TLC employed solvent system A in the first dimension followed by either B, C, or D in the second dimension.

^e HPLC retention time values were subject to variation between runs. The size of injection loop used (1 mL for soil extracts and 5 mL for leachate and runoff) had a direct and predictable effect on the observed retention time. Standards were always co-injected with samples and clear separation of standards was achieved.

		Percent of Recovered ¹⁴ C	Percent of Recovered ¹⁴ C	Percent of Ap In Sc	plied Radio oil Section ^c	oactivity	ppm ¹⁴ C as Fli In S	imioxazin E Soil Section ^c	quivalents
/	Sample	Extracted ^a	Bound ^b	(PTRL East)	Extracted	Bound	(PTRL East)	Extracted	Bound
(0-3" Layer Soil:	÷			. : .:.				
	964-3-9-1-0 DAT	91.9%	8.1%	106.2%	97.6%	8.6%	0.164	0.1507	0.013
	964-31-17-1-0 DAT	93.0%	7.0%	105.8%	98.4%	7.4%	0.147	0.1367	0.010
	Average	92.5%	7.5%	106.0%	98.0%	8.0%	0.156	0.1437	0.012
`	964-10-25-1-2 DAT	66.5%	33.5%	91.8%	61.1%	30.7%	0.103	0.0685	0.035
	964-11-33-1-2 DAT	76.3%	23.7%	100.3%	76.6%	23.7%	0.127	0.0969	0.030
	Average	71.4%	28.6%	96.1%	68.8%	27.2%	0.115	0.0827	0.032
1	964-12-41-1-5 DAT	50.2%	49.8%	90.1%	45.3%	44.8%	0.102	0.0512	0.051
	964-25-49-1-5 DAT	46.4%	53.6%	96.8%	44.9%	51.9%	0.110	0.0510	0.059
9	Average	48.3%	51.7%	93.5%	45.1%	48.4%	0.106	0.0511	0.055
	964-4-57-1-9 DAT	57.4%	42.6%	95.2%	54.7%	40.5%	0.143	0.0821	0.061
	964-5-65-1-9 DAT	43.1%	56.9%	99.1%	42.7%	56.4%	0.111	0.0478	0.063
	Average	50.2%	49.8%	97.2%	48.7%	48.5%	0.127	0.0650	0.062
	964-6-73-1-16 DAT	25.2%	74.8%	42.2%	10.7%	31.5%	0.049	0.0123	0.037
	964-33-81-1-16 DAT	28.7%	71.3%	79.7%	22.8%	56.9%	0.089	0.0255	0.063
	Average	27.0%	73.0%	61.0%	16.7%	44.2%	0.069	0.0189	0.050
	964-16-89-1-27 DAT	34.5%	65.5%	79.3%	27.4%	51.9%	0.089	0.0307	0.058
	964-17-97-1-27 DAT	26.3%	73.7%	74.8%	19.7%	55.1%	0.083	0.0218	0.061
Ą	Average	30.4%	69.6%	77.1%	23.5%	53.5%	0.086	0.0263	0.060

 Table BIV. Extractability and Concentration of ¹⁴C-Flumioxazin Residues in Soil at Various Days after Herbicide

 Treatment. Values are Presented as Percent of Applied Radioactivity and in ppm as Flumioxazin Equivalents.

. .

^a Equals extracted DPM / total DPM recovered. DPM data are shown in Table BIII.

^b Equals unextracted DPM / total DPM recovered. DPM data are shown in Table BIII.

^c See Appendix B3 for Calculations.

PTRL Project No. 964 Page 111 26

z

•	Percent of Recovered ¹⁴ C	Percent of Recovered ¹⁴ C	Percent of Ap In Sc	oplied Radio oil Section ^c	oactivity	ppm ¹⁴ C as Flumioxazin Equivalents In Soil Section ^c			
Sample	Extracted ^a	Bound ^b	(PTRL East)	Extracted	Bound	(PTRL East)	Extracted	Bound	
0-3" Layer Soil:				- Sector Control Control Control Sector Sector Control Co		an a			
964-8-105-1-48 DAT	12.3%	87.7%	59.2%	7.3%	51.9%	0.060	0.0074	0.053	
964-23-113-1-48 DAT	21.5%	78.5%	86.7%	18.6%	68.1%	0.097	0.0209	0.076	
Average	16.9%	83.1%	73.0%	13.0%	60.0%	0.079	0.0141	0.064	
964-13-121-1-72 DAT	11.8%	88.2%	55.8%	6.6%	49.2%	0.066	0.0078	0.058	
964-24-129-1-72 DAT	13.0%	87.0%	80.1%	10.4%	69.7%	0.110	0.0143	0.096	
Average	12.4%	87.6%	68.0%	8.5%	59.5%	0.088	0.0110	0.077	
964-9-145-1-106 DAT	9.3%	90.7%	36.4%	3.4%	33.0%	0.046	0.0043	0.042	
964-27-153-1-106 DAT	8.6%	91.4%	57.9%	5.0%	52.9%	0.085	0.0073	0.078	
Average	9.0%	91.0%	47.2%	4.2%	43.0%	0.066	0.0058	0.060	
964-15-161-1-316 DAT	7.7%	92.3%	58.7%	4.5%	54.2%	0.085	0.0065	0.078	
, 964-19-169-1-316 DAT	6.8%	93.2%	64.3%	4.4%	59.9%	0.072	0.0050	0.067	
964-21-177-1-316 DAT	6.4%	93.6%	57.2%	3.6%	53.6%	0.092	0.0059	0.086	
964-22-185-1-316 DAT	5.5%	94.5%	60.7%	3.4%	57.3%	0.118	0.0065	0.112	
964- <u>2</u> 9-193-1-316 DAT	6.9%	93.1%	51.9%	3.6%	48.3%	0.053	0.0037	0.049	
964-30-201-1-316 DAT	6.8%	93.2%	58.6%	4.0%	54.6%	0.079	0.0053	0.074	
964-32-209-1-316 DAT	8.2%	91.8%	55.8%	4.6%	51.2%	0.056	0.0046	0.051	
Average	6.9%	93.1%	58.2%	4.0%	54.2%	0.079	0.0054	0.074	
3-6" Layer Soil:									
964-15-162-2-316 DAT	10.9%	89.1%	9.2%	1.0%	8.2%	0.010	0.0011	0.009	

 Table BIV (cont.). Extractability and Concentration of ¹⁴C-Flumioxazin Residues in Soil at Various Days after Herbicide

 Treatment. Values are Presented as Percent of Applied Radioactivity and in ppm as Flumioxazin Equivalents.

^a Equals extracted DPM / total DPM recovered. DPM data are shown in Table BIII.

^b Equals unextracted DPM / total DPM recovered. DPM data are shown in Table BIII.

^c See Appendix B3 for Calculations.

^d This was the only 3-6" layer soil sample received by PTRL West, Inc.

			Percent of Applied Radioactivity as:								
		% of		1.1		Degrad	lates:	1			
•		Dose in	\bigcap					All	Flumio-		
Sample	Rep	Extract	APE	482-HA	D3 ^b	IMOXA	482-CA	Others ^c	xazin		
964-3-9-1-0 DAT	Α	97.6	7.2	4.0	0.0	0.0	0.0	0.8	85.6		
964-31-17-1-0 DAT	В	98.4	3.5	1.3	0.0	0.0	0.0	2.2	91.4		
Average		98.0	5.4	2.6	0.0	0.0	0.0	1.5	88.5		
964-10-25-1-2 DAT	Α	61.1	8.6	0.0	4.8	0.6	1.2	3.2	42.7		
964-11-33-1-2 DAT	B	76.6	7.7	0.0	5.7	0.5	1.1	4.0	57.6		
Average		68.8	8.2	0.0	5.3	0.5	1.1	3.6	50.2		
964-12-41-1-5 DAT	Α	45.3	6.6	0.0	3.2	0.8	1.4	7.0	26.4		
964-25-49-1-5 DAT	В	44.9	4.1	0.0	3.1	1.1	1.5	5.5	29.6		
Average		45.1	5.3	0.0	3.1	0.9	1.4	6.3	28.0		
964-4-57-1-9 DAT	Α	54.7	2.1	0.0	5.7	1.0	1.8	4.5	39.7		
964-5-65-1-9 DAT	B	42.7	2.5	0.0	5.4	0.9	2.0	4.6	27.3		
Average		48.7	2.3	0.0	5.5	1.0	1.9	4.5	33.5		
964-6-73-1-16 DAT	Α	10.7	0,0	0.0	1.2	1.0	0.5	3.4	4.6		
964-33-81-1-16 DAT	В	22.8	0.0	0.0	3.1	1.3	1.2	5.2	11.9		
Average		16.7	0.0	0.0	2.2	1.1	0.9	4.3	8.3		
964-16-89-1-27 DAT	Ä	27.4	0.0	0.0	1.8	1.5	1.7	6.4	16.1		
964-17-97-1-27 DAT	B	19.7	0.0	0.0	2.0	1.2	1.2	4.9	10.3		
Average		23.5	0.0	0.0	1.9	1.3	1.4	5.7	13.2		
964-8-105-1-48 DAT	Α	7.3	0.0	0.0	0.4	0.7	0.3	3.9	2.0		
964-23-113-1-48 DAT	В	18.6	0.0	0.0	1.3	1.2	0.9	5.2	9.9		
Average		13.0	0.0	0.0	0.8	1.0	0.6	4.6	6.0		
964-13-121-1-72 DAT	Α	6.6	0.0	0.0	0.0	0.8	0.6	3.3	1.9		
9624-129-1-72 DAT	В	10.4	0.0	0.0	0.0	0.9	0.9	5.2	3.4		
Average		8.5	0.0	0.0	0.0	0.9	0.7	4.3	2.6		
964-9-145-1-106 DAT	A	3.4	0.0	0.0	0.4	0.3	0.2	1.9	0.7		
964-27-153-1-106 DAT	В	5.0	0.0	0.0	0.3	0.4	0.2	2.9	1.2		
Average		4.2	0.0	0.0	0.3	0.3	0.2	2.4	0.9		

Table BV.Distribution of Soil Extractable 14C-Flumioxazin Residues at Various Days
after Herbicide Treatment. Values are Percent of Applied Radioactivity.^a

^a All of the 316 DAT extracts contained less than 0.01 ppm radioactive equivalents and were not analyzed.

^b Degradate D3 was a chromatographicaly characterized degradate (HPLC and TLC) with an

HPLC retention time of 13-15 minutes using a 1 mL injection loop.

^c All "others" consist of many minor peaks, none of which was > 2.1% of the applied dose.

PTRL Project No. 964 Page 113

0-3"

2

				Degradates:							
		ppm in						All	Flumio-		
Sample	Rep	Extract ^b	APF	482-HA	D3	IMOXA	482-CA	Others	xazin		
964-3-9-1-0 DAT	Α	0.1507	0.011	0.006	0.000	0.000	0.000	0.001	0.132		
964-31-17-1-0 DAT	B	0.1367	0.005	0.002	0.000	0.000	0.000	0.003	0.127		
Average		0.1437	0.008	0.004	0.000	0.000	0.000	0.002	0.130		
964-10-25-1-2 DAT	Α	0.0685	0.010	0.000	0.005	0.001	0.001	0.004	0.048		
964-11-33-1-2 DAT	B -	0.0969	0.010	0.000	0.007	0.001	0.001	0.005	0.073		
Average		0.0827	0.010	0.000	0.006	0.001	0.001	0.004	0.060		
964-12-41-1-5 DAT	Α	0.0512	0.007	0.000	0.004	0.001	0.002	0.008	0.030		
964-25-49-1-5 DAT	В	0.0510	0.005	0.000	0.004	0.001	0.002	0.006	0.034		
Average		0.0511	0.006	0.000	0.004	0.001	0.002	0.007	0.032		
964-4-57-1-9 DAT	Α	0.0821	0.003	0.000	0.009	0.001	0.003	0.007	0.060		
964-5-65-1-9 DAT	В	0.0478	0.003	0.000	0.006	0.001	0.002	0.005	0.031		
Average		0.0650	0.003	0.000	0.007	0.001	0.002	0.006	0.045		
964-6-73-1-16 DAT	Α	0.0123	0.000	0.000	0.001	0.001	0.001	0.004	0.005		
964-33-81-1-16 DAT	В	0.0255	0.000	0.000	0.004	0.001	0.001	0.006	0.013		
Average		0.0189	0.000	0.000	0.002	0.001	0.001	0.005	0.009		
964-16-89-1-27 DAT	Α	0.0307	0.000	0.000	0.002	0.002	0.002	0.007	0.018		
964-17-97-1-27 DAT	B	0.0218	0.000	0.000	0.002	0.001	0.001	0.005	0.011		
Average		0.0263	0.000	0.000	0.002	0.001	0.002	0.006	0.015		
964-8-105-1-48 DAT	Α	0.0074	0.000	0.000	0.000	0.001	0.000	0.004	0.002		
964-23-113-1-48 DAT	В	0.0209	0.000	0.000	0.001	0.001	0.001	0.006	0.011		
Average		0.0141	0.000	0.000	0.001	0.001	0.001	0.005	0.007		
964-13-121-1-72 DAT	Α	0.0078	0.000	0.000	0.000	0.001	0.001	0.004	0.002		
964-24-129-1-72 DAT	B	0.0143	0.000	0.000	0.000	0.001	0.001	0.007	0.005		
Average		0.0110	0.000	0.000	0.000	0.001	0.001	0.006	0.003		
964-9-145-1-106 DAT	Α	0.0043	0.000	0.000	0.000	0.000	0.000	0.002	0.001		
964-27-153-1-106 DAT	B	0.0073	0.000	0.000	0.000	0.001	0.000	0.004	0.002		
Average		0.0058	0.000	0.000	0.000	0.000	0.000	0.003	0.001		

 Table BVI.
 Distribution of Soil Extractable ¹⁴C-Flumioxazin Residues at Various Days after Herbicide Treatment. Values are in ppm as Flumioxazin Equivalents.^a

^a All of the 316 DAT extracts represented less than 0.01 ppm radioactive equivalents and were not analyzed.

^b From Table BIV, equals (% of recovered ¹⁴C in extract / 100) x total ppm in soil (dry weight basis).

^c All "others" consist of many minor peaks, none of which individually represent greater than 0.002 ppm.

	Percent of Applied Dose in Leachates as:								
	% of _			Degradates:					
	Dose in						Ali	Flumio-	
Sample	Sample	D1	APF	482-HA	D3	D4	Others	xazin	
		an star T	$\left(\right)$				(\frown	
964-16-1008-5 DAT	0.49	0.03	0.04	0.31	0.00	0.00	0.11	0.01	
964-7-1014-16 DAT	0.33	0.07	0.04	0.08	0.03	0.01	0.09	0.02	
964-13-1017-16 DAT	0.40	0.10	0.06	0.09	0.04	0.02	0.08	0.01	
964-15-1019-16 DAT	0.12	0.02	0.02	0.02	0.01	0.00	0.04	0.00	
964-16-1020-16 DAT	2.27	0.24	0.18	0.72	0.21	0.07	0.85	0.00	
964-19-1021-16 DAT	0.96	0.11	0.12	0.35	0.06	0.02	0.23	0.08	
964-23-1025-16 DAT	1.80	0.32	0.19	0.60	0.17	0.06	0.46	0.00	
964-29-1030-16 DAT	0.02	0.00	0.00	0.01	0.00	0.00	0.01	0.00	
964-30-1031-16 DAT	0.09	0.01	0.01	0.02	0.01	0.00	0.03	0.00	
964-23-1035-37 DAT	0.12	0.04	0.01	0.01	0.01	0.00	0.05	0.00	
964-7-1036-44 DAT	1.01	0.56	0.06	0.06	0.05	0.00	0.26	0.01	
964-24-1042-72 DAT	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	

Table BVII. Distribution of ¹⁴C-Flumioxazin Residues in Leachate at Various Days after Herbicide Treatment. Values are Percent of Applied Radioactivity.

			.			ppb as:			1.0011 1
Sample	DPM/mL ^a	Total ppb	 D1	APF	Degradate 482-HA	5: D3	 D4	All Others ^b	Flumio- xazin
	• <u></u>	PPD							
964-16-1008-5 DAT	15,000	19.40	1.18	1.40	12.28	0.00	0.12	4.21	0.21
964-7-1014-16 DAT	7,050	9.13	1.97	1.01	2.28	0.73	0.35	2.35	0.43
964-13-1017-16 DAT	1,370	1.77	0.45	0.25	0.41	0.19	0.07	0.37	0.04
964-15-1019-16 DAT	1,490	1.92	0.40	0.31	0.34	0.22	0.00	0.58	0.08
964-16-1020-16 DAT	11,000	14.20	1.51	1.14	4.50	1.31	0.44	5.34	0.00
964-19-1021-16 DAT	4,440	5.75	0.63	0.71	2.08	0.34	0.13	1.38	0.48
964-23-1025-16 DAT	11,500	14.90	2.67	1.58	4.94	1.42	0.48	3.83	0.00
964-29-1030-16 DAT	935	1.21	0.17	0.09	0.36	0.11	0.00	1.03	0.00
964-30-1031-16 DAT	5,010	6.49	0.91	0.94	1.49	0.60	0.21	2.13	0.20
964-23-1035-37 DAT	1,370	1.77	0.56	0.12	0.16	0.12	0.03	0.74	0.04
964-7-1036-44 DAT	2,490	3.22	1.79	0.19	0.20	0.17	0.00	0.84	0.03
964-24-1042-72 DAT	1,160	1.50	0.90	0.07	0.09	0.07	0.00	0.37	0.00

Distribution of ¹⁴C-Flumioxazin Residues in Leachate at Various Days after Herbicide Treatment. Table BVIII. Values are in ppb as Flumioxazin Equivalents.

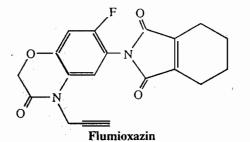
^a DPM/mL (nonclarified solution) based on LSC of 3 aliquots (PTRL East, Inc.).

^b All "others" consist of many minor peaks, none of which individually represent greater than 1.63 ppb.

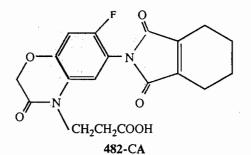
. 964

						ppb as:		1. 	<u></u>	
			Total						All	Flumio-
	Sample ID	DPM/mL ^a	ppb	D1	APF	D2	D3	D4	Others ^b	xazin
	964-6-5005-16 DAT	9,900	12.80	3.83	0.70	3.51	0.88	0.18	3.70	0.00
	964-7-5006-16 DAT	8,460	11.00	2.87	1.24	1.68	0.94	0.38	3.09	0.76
	964-8-5007-16 DAT	8,180	10.60	2.43	1.13	3.34	0.71	0.15	2.84	0.00
	964-9-5008-16 DAT	6,670	8.63	1.71	1.23	2.22	0.91	0.22	2.35	0.00
	964-17-5009-16 DAT	10,400	13.50	2.35	1.11	4.60	1.26	0.28	3.67	0.23
	964-19-5011-16 DAT	13,000	16.80	2.91	1.48	9.60	0.00	0.37	2.46	0.00
	964-27-5013-16 DAT	3,720	4.82	0.95	0.90	1.13	0.66	0.18	0.86	0.13
1	964-28-5014-16 DAT	3,260	4.22	0.54	0.33	1.80	0.00	0.00	1.50	0.05
3	964-29-5015-16 DAT	901	1.17	0.15	0.08	0.47	0.00	0.00	0.42	0.05
	964-33-5016-16 DAT	4,730	6.12	1.01	0.62	1.60	0.77	0.14	1.53	0.45
	964-19-5018-37 DAT	6,960	9.01	2.69	0.00	1.81	0.43	0.00	3.82	0.25
	964-27-5019-37 DAT	1,815	2.35	0.80	0.13	0.14	0.21	0.00	1.08	0.00
	964-29-5020-37 DAT	2,715	3.51	1.85	0.31	0.19	0.11	0.00	1.06	0.00
	964-9-5022-44 DAT	1,530	1.98	0.61	0.10	0.13	0.10	0.00	1.01	0.03
	964-29-5023-44 DAT	2,620	3.39	1.43	0.23	0.22	0.16	0.12	1.24	0.00
DTDI	964-27-5027-58 DAT	1,720	2.23	0.68	0.13	0.07	0.08	0.04	1.24	0.00

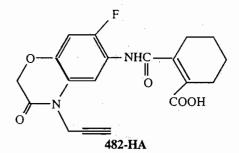
Table BX.Distribution of ¹⁴C-Flumioxazin Residues in Runoff at Various Days after Herbicide Treatment.Values are in ppb as Flumioxazin Equivalents.

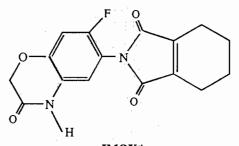

PTRL Project No. 964 Page 118

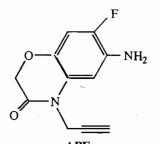
^a DPM/mL (nonclarified solution) based on LSC of 3 aliquots (PTRL East, Inc.).

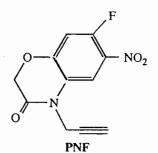

^b All "others" consist of many minor peaks, none of which individually represent greater than 1.63 ppb.

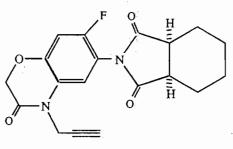
33

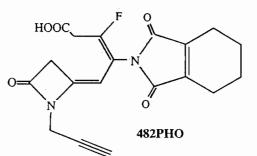

Figure B1. Structures and Chemical Names of Analytical Reference Standards and [¹⁴C]Flumioxazin (Used During the Analysis Portion of the Study).


7-fluoro-6-(3,4,5,6-tetrahydrophthalimido) -4-(2-propynyl)-1,4-benzoxazin-3(2<u>H</u>)-one


2-[7-Fluoro-3-oxo-6-(3,4,5,6-tetrahydrophthalimido) -2<u>H</u>-1.4-benzoxazin-4-yl]propionic acid


<u>N-[7-Fluoro-3-oxo-4-(2-propynyl)-2H-1,4-</u> benzoxazin-6-yl]-3,4,5,6-tetrahydrophthalamic acid


IMOXA 7-Fluoro-6-(3.4,5,6-tetrahydrophthalimido) -2<u>H</u>-1,4-benzoxazin-3(4<u>H</u>)-one


APF 6-Amino-7-fluoro-4-(2-propynyl) -2<u>H</u>-1.4-benzoxazin-3(4<u>H</u>)-one

7-Fluoro-6-nitro-4-(2-propynyl) -2<u>H</u>-1.4-benzoxazin-3(4<u>H</u>)-one

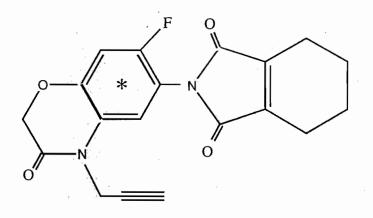

SAT-482

Figure B1 (cont.).

Structures of Analytical Reference Standards and [¹⁴C]Flumioxazin (Used During the Analysis Portion of the Study).

* Indicates position of ¹⁴C

[phenyl-¹⁴C]Flumioxazin 7-Fluoro-6-(3,4,5,6-tetrahydrophthalimido)-

4-(2-propynyl)-1,4-benzoxazin-3(2H)-one

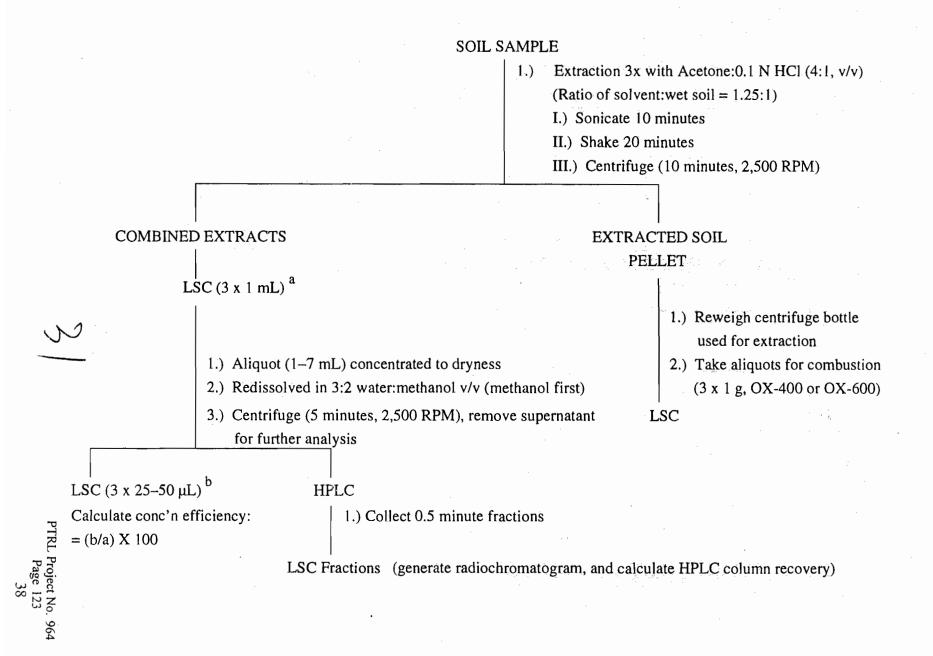
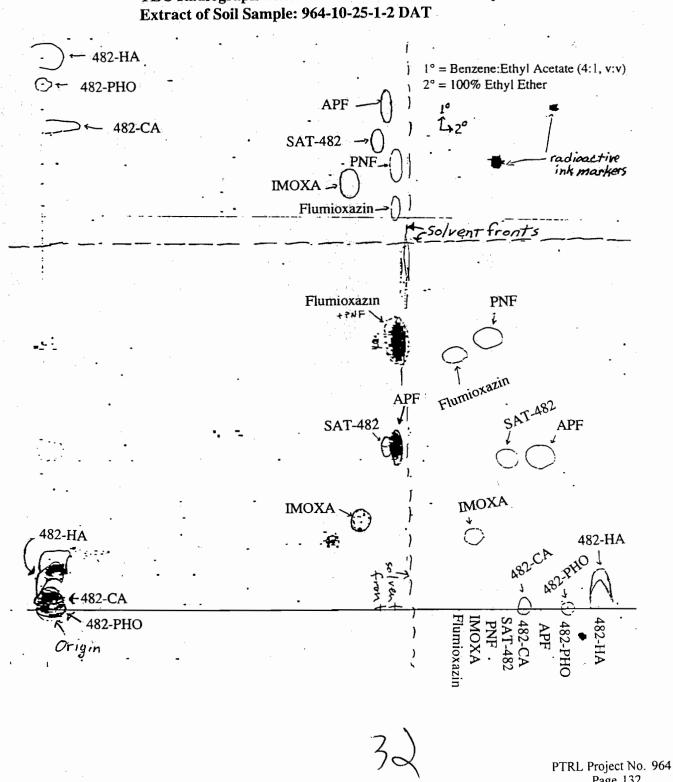
CAS No.: 103361-09-7

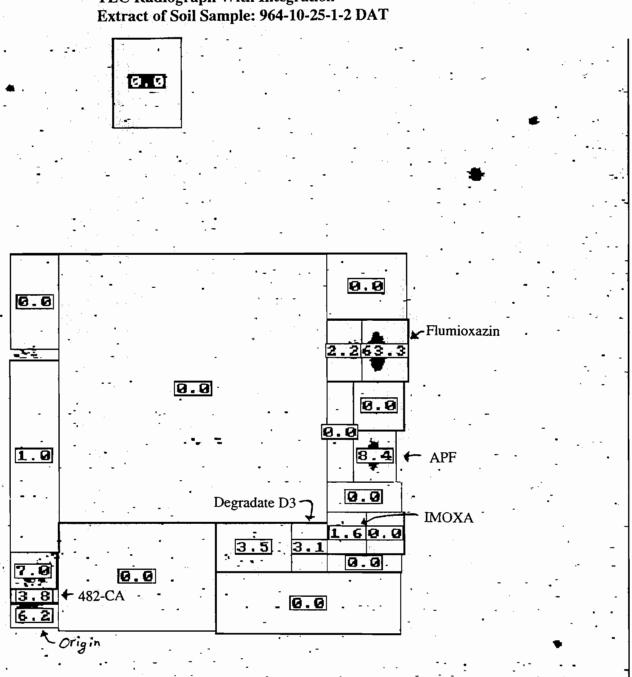
Supplier: Sumitomo Chemical Company

Lot No.: R1S93013

Specific Activity: 123 mCi/mmol (348 µCi/mg)

Radiochemical Purity: 99.4% as determined by PTRL West, Inc.


Figure B6. TLC Radiographs of Soil Extracts.

TLC Radiograph with Visualized Standards Overlay ---

Page 132

Figure B6 (cont.). TLC Radiographs of Soil Extracts.

TLC Radiograph With Integration -

33

TLC Radiograph with Visualized Standards Overlay — Extract of Soil Sample: 964-4-57-1-9 DAT

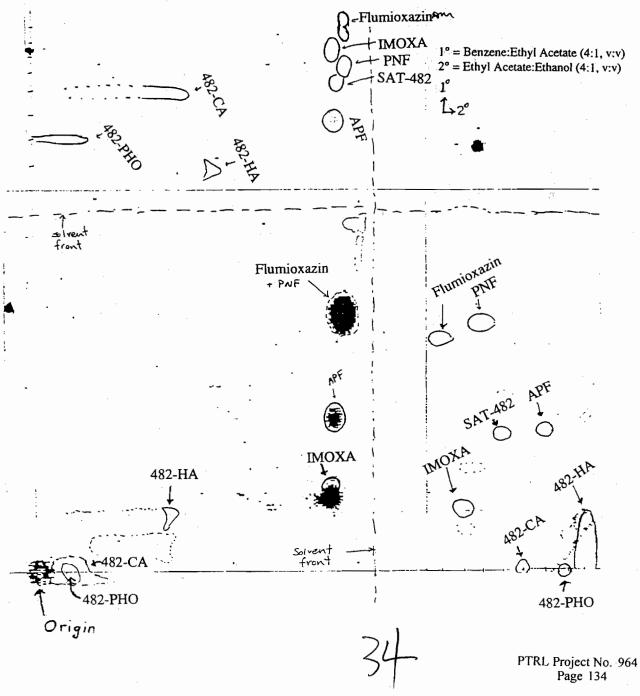
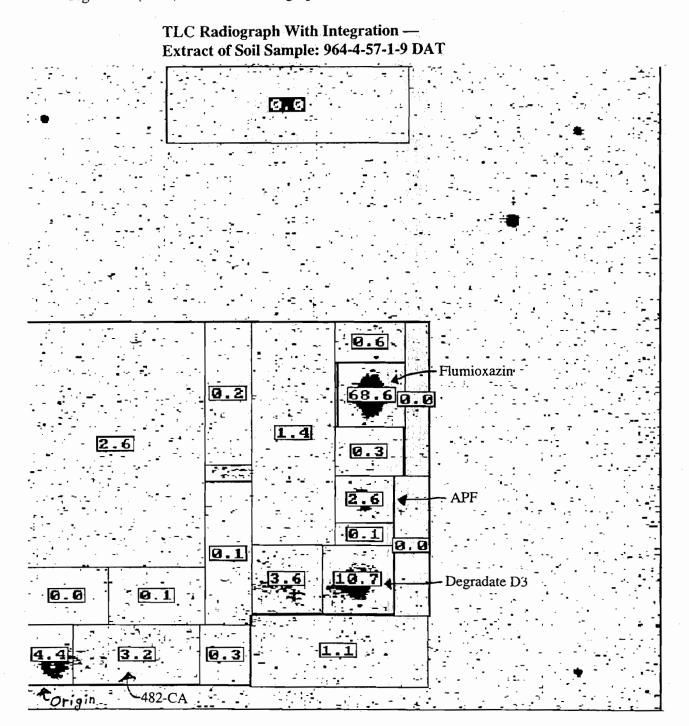



Figure B6 (cont.). TLC Radiographs of Soil Extracts.

35

PTRL Project No. 964 Page 135

50

TLC Radiograph with Visualized Standards Overlay — Extract of Soil Sample: 964-17-97-1-27 DAT

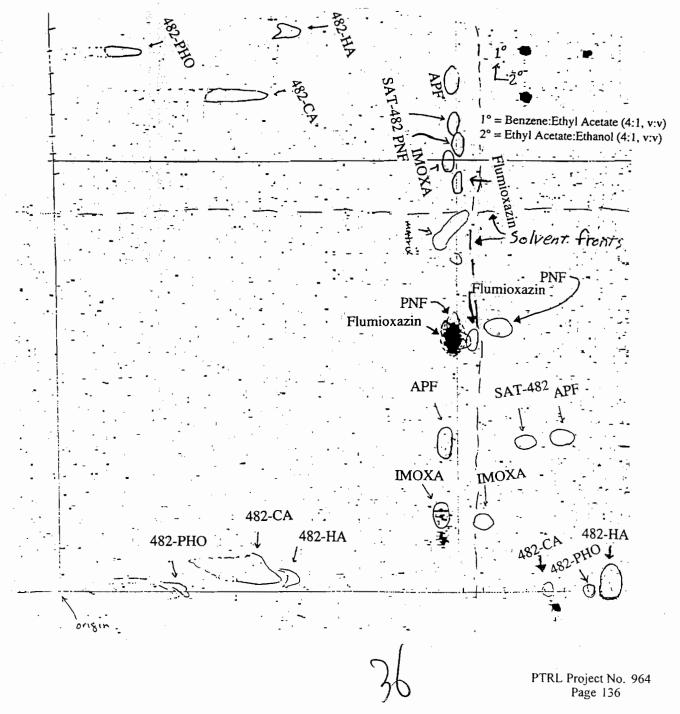
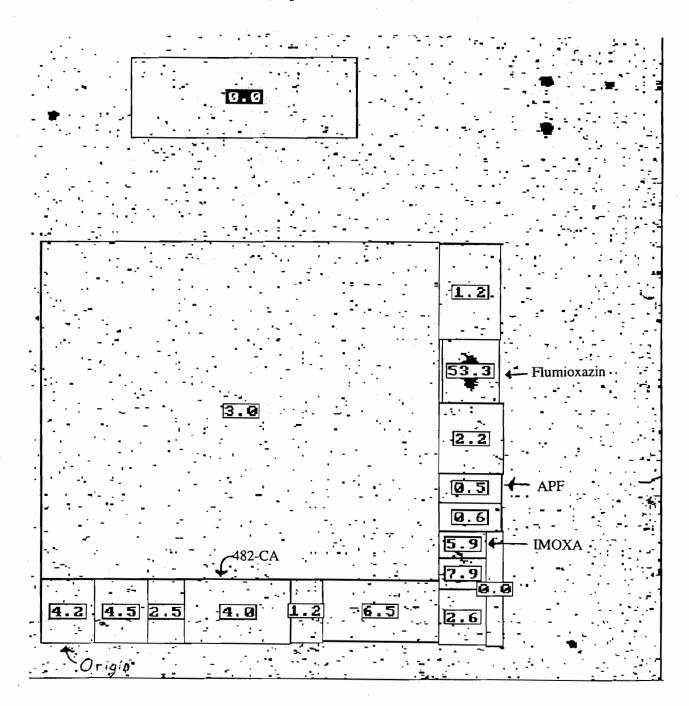
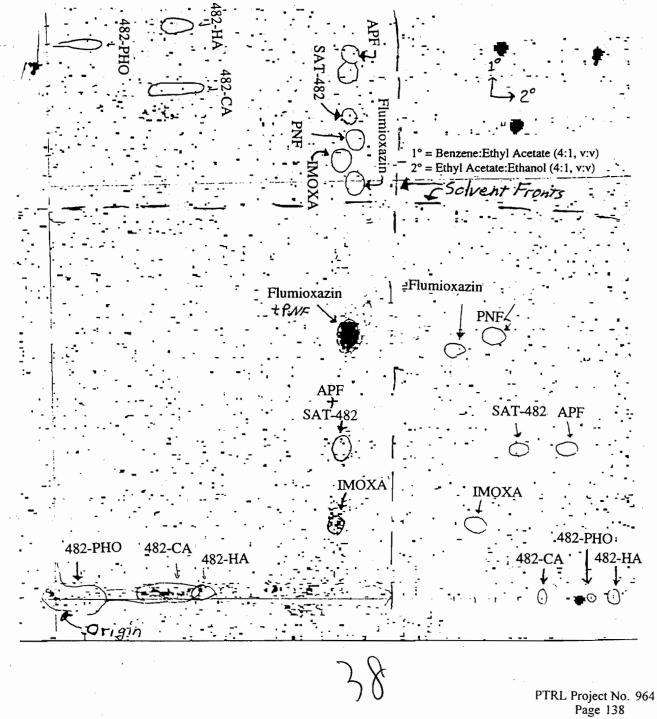



Figure B6 (cont.).

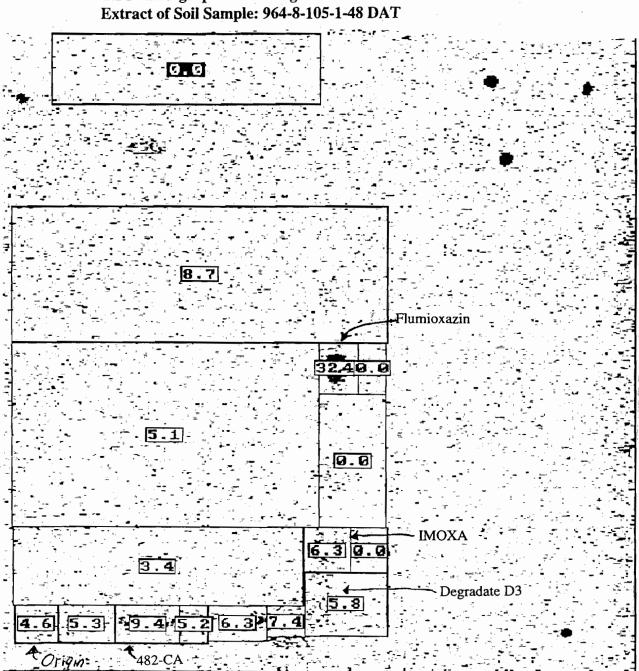
TLC Radiographs of Soil Extracts.

TLC Radiograph With Integration — Extract of Soil Sample: 964-17-97-1-27 DAT



57

Figure B6 (cont.).


TLC Radiographs of Soil Extracts.

TLC Radiograph with Visualized Standards Overlay — Extract of Soil Sample: 964-8-105-1-48 DAT

53

Figure B6 (cont.). TLC Radiographs of Soil Extracts.

TLC Radiograph With Integration -

PTRL Project No. 964 Page 139

54

Figure B6 (cont.).

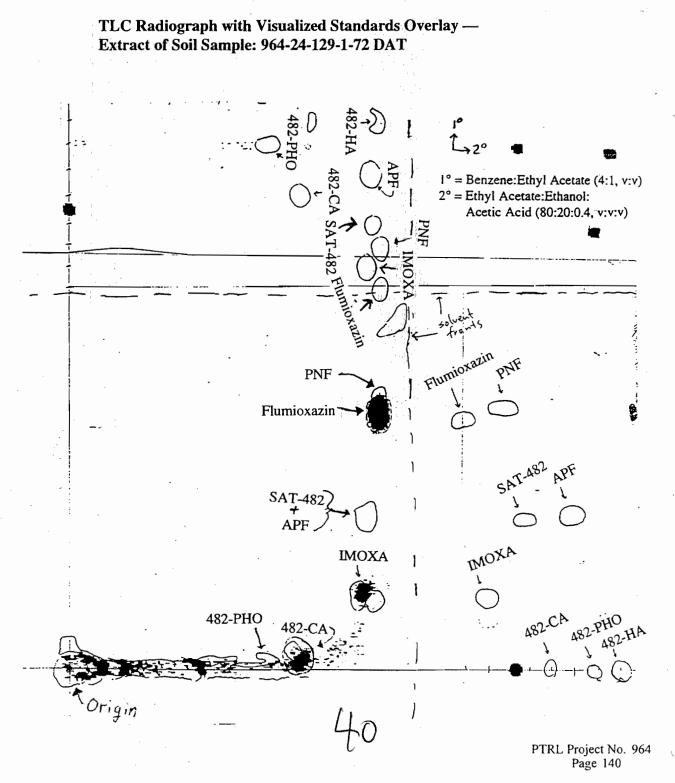


Figure B6 (cont.).

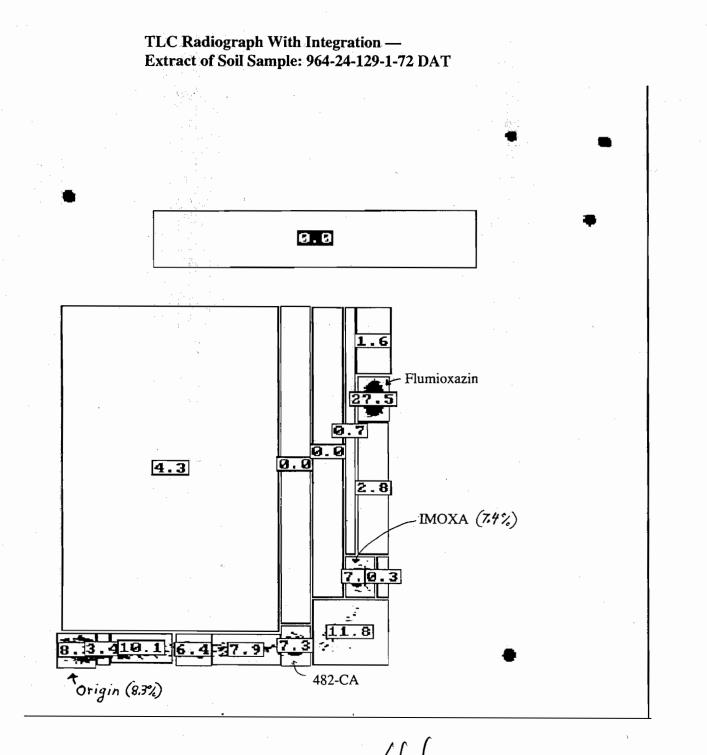
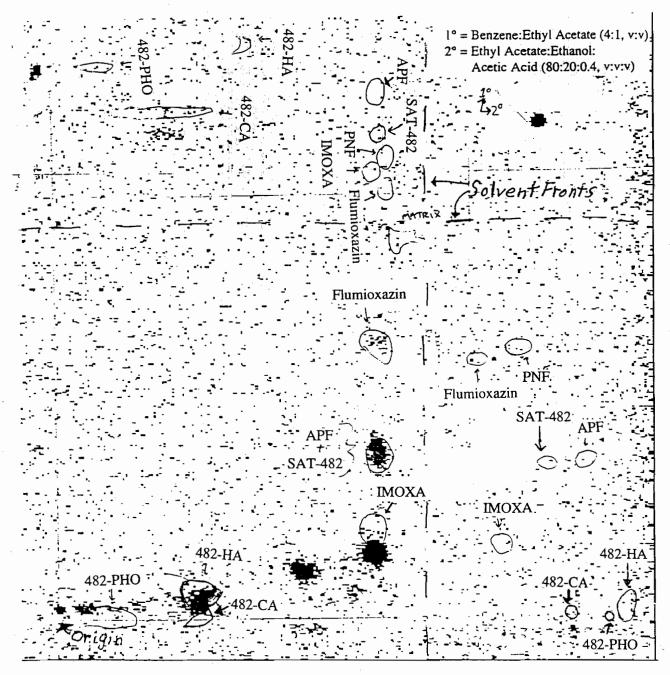



Figure B8. TLC Radiographs of Leachate.

TLC Radiograph with Visualized Standards Overlay — Leachate Sample: 964-7-1014-16 DAT

Figure B8 (cont.). TLC Radiographs of Leachate.

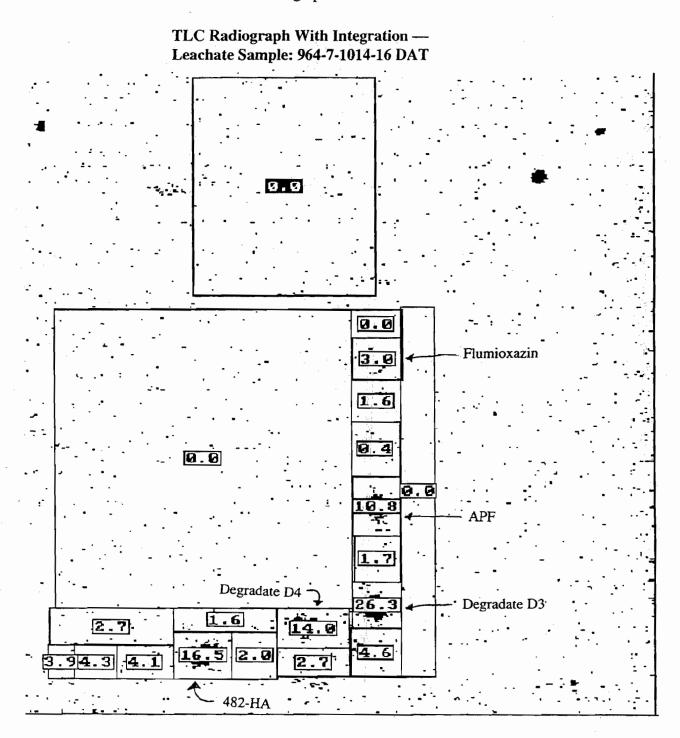


Figure B8 (cont.). TLC Radiographs of Leachate.

TLC Radiograph with Visualized Standards Overlay — Leachate Sample: 964-19-1021-16 DAT

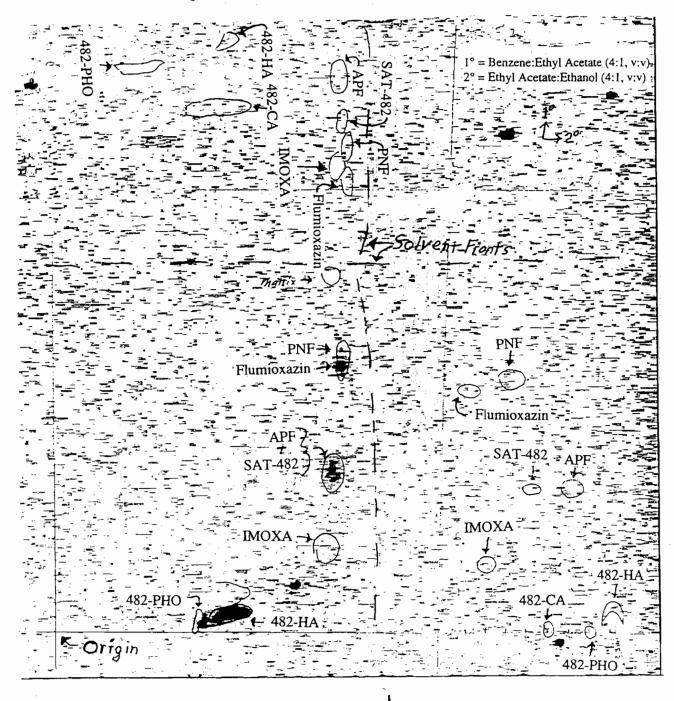
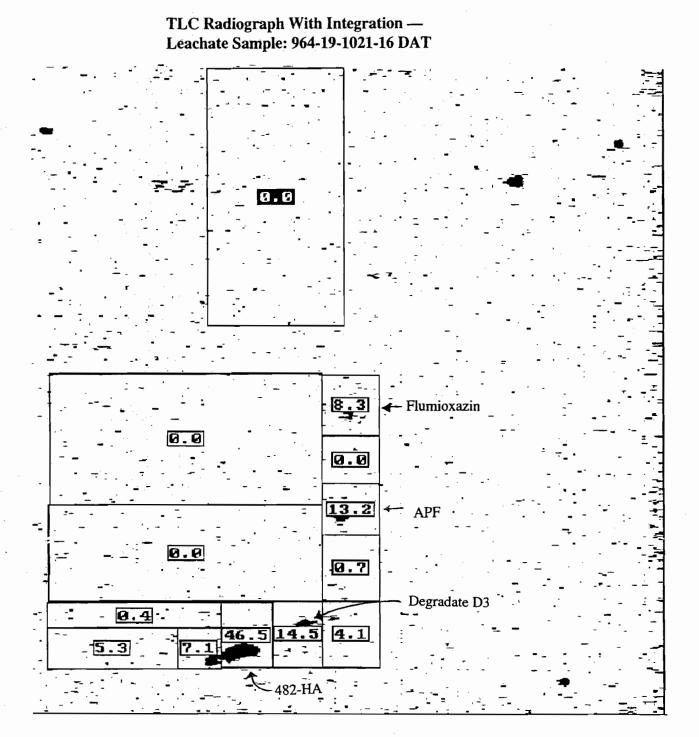
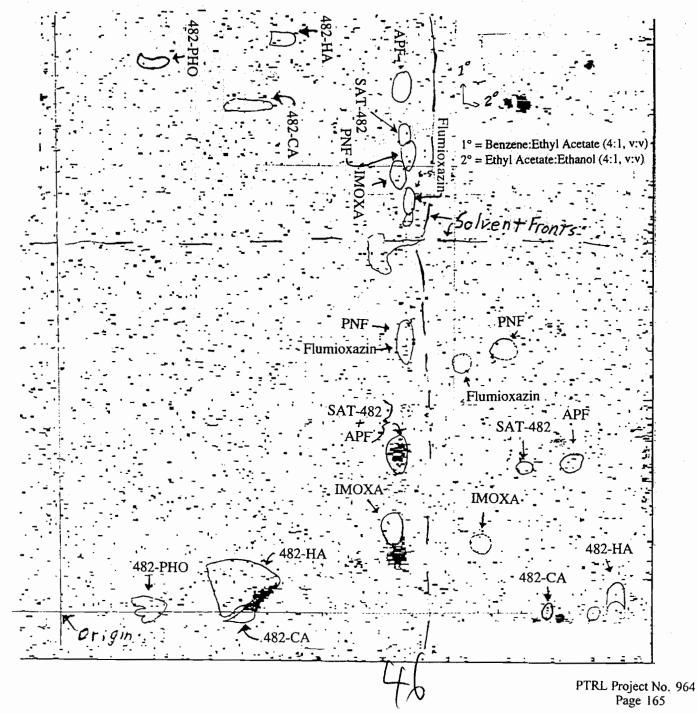
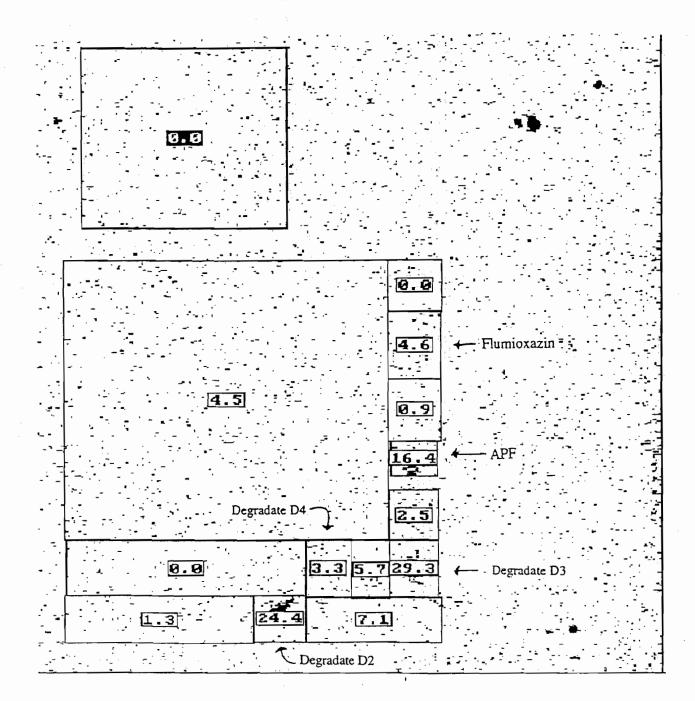



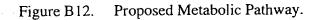
Figure B8 (cont.). TLC Radiographs of Leachate.



PTRL Project No. 964 Page 151

66


Figure B11. TLC Radiographs of Runoff.


TLC Radiograph with Visualized Standards Overlay — Runoff Sample: 964-33-5016-16 DAT

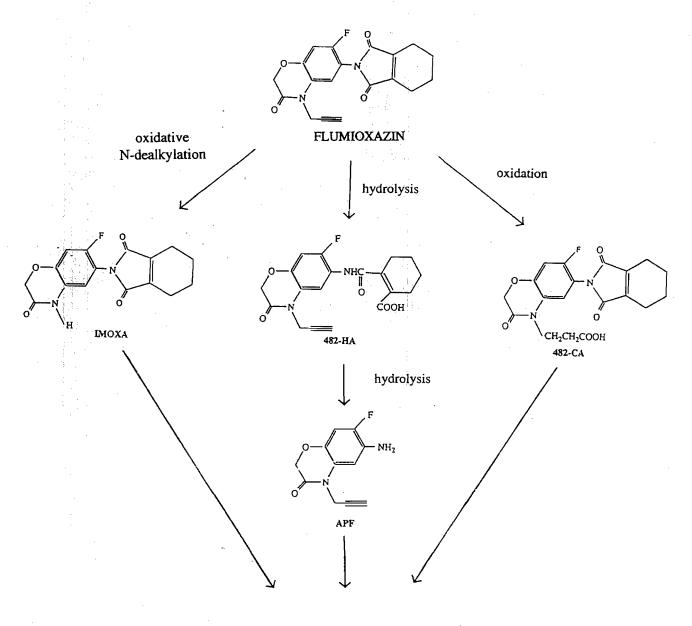


Figure B11 (cont.). TLC Radiographs of Runoff.

TLC Radiograph With Integration — Runoff Sample: 964-33-5016-16 DAT

[CO₂]

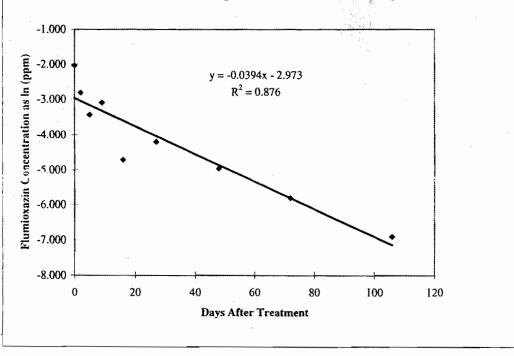
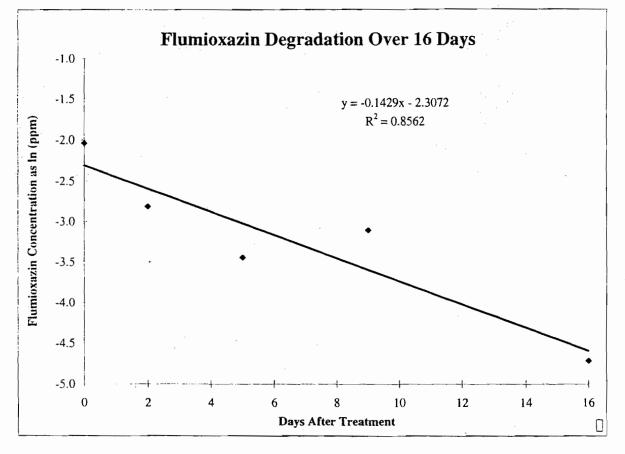

Bound Residues

Figure B13.

-	Days After Treatment	Flumioxazine Residues in Soil (ppm)	Natural Log of Flumioxazine Residues in Soil (ppm)
	0	0.130	-2.040
	2	0.060	-2.813
	5	0.032	-3.442
	9	0.045	-3.101
	16	0.009	-4.711
	27	0.015	-4.200
	48	0.007	-4.962
	72	0.003	-5.809
	106	0.001	-6.908


Calculated Half-Life = 0.693/0.0394 = 17.6 Days Note, the y-intercept correponds to only ~ 0.05 ppm and the actual Time 0 concentration was 0.13 ppm.

This Regression Analysis Was Not Used To Obtain The Definitive Half-Life

Figure B13 (cont.).

Flumioxazin Degradation Kinetics.

DAT	Flumioxazine Residues in Soil (ppm)	Natural Log of Flumioxazine Residues in Soil (ppm)
0	0.130	-2.040
2	0.060	-2.813
5	0.032	-3.442
9	0.045	-3.101
16	0.009	-4.711

Half-Life = 0.693/0.1429 = 4.8 Days

Project	964		Daily Rainfall	Cumulative Rainfall	Instantion	Cumulative Water Reaching	Average Air	Average Soil	Average	Pan
			Reaching	Reaching	•				Relative	Evaporation [a]
	Julian	D 4 T	Lysimeters	Lysimeters	Added	•	Temperature	(degrees C)	Humidity	(0.01 inches)
Year	Day	DAT	(inches)	(inches)	(inches)	(inches)	(degrees C)	(degrees C)	number	(0.01 menes)
1005	200	-	0.00				30.57	32.82	49.49	NA [b]
1995 1995	200 201	-7 -6	0.00 0.00				26.03	30.60	69.83	24
1995	201	-5	0.00				25.98	30.13	73.80	23
1995	202	-4	0.74				24.71	29.24	84.40	19
1995	204	-3	1.14				24.50	27.42	89.10	NA
1995	205	-2	0.04				25.18	26.97	85.80	80
1995	206	1	0.03				25.04	26.96	82.30	19
1995	207	0	0.00	0.00 [c]	0.54	0.54	27.21	27.71	76.30	22
1995	208	1	0.00	0.00		0.54	27.29	28.57	75.90	19
1995	209	2	0.00	0.00		0.54	26.61	28.53	78.30	23
1995	210	3	0.00	0.00		0.54	28.69	30.24	73.80	17
1995	211	4	0.00	0.00		0.54	28.47	31.44	72.50	25
1995	212	5	0.00	0.00		0.54	28.59	31.66	73.00	24
1995	213	6	0.00	0.00		0.54	28.57	32.42	72.50	24
1995	214	7	0.00	0.00		0.54	28.29	32.23	72.70	21
1995	215	8	0.00	0.00		0.54	29.31	32.81	67.23	25
1995	216	9	0.00	0.00		0.54	28.09	32.18	72.60	27
1995	217	10	1.74 [d]	1.74		2.28	23.57	28.23	93.80	15
1995	218	11	[b] 00.0	1.74		2.28	24.68	26.96	86.60	10
1995	219	12	0.73	2.47	0.80	3.81	24.74	27.07	88.60	20
1995	220	13	0.00	2.47		3.81	25.03	26.69	87.90	18
1995	221	14	0.05	2.52		3.86	25.33	27.16	84.60	15
1995	222	15	0.00	2.52		3.86	26.29	27.70	80.00	16
1995	223	16	0.00	2.52		3.86	28.51	29.15	78.90	18
1995	224	17	0.00	2.52	0.22	4.08	28.96	29.89	78.70	20
1995	225	18	0.00	2.52		4.08	29.35	30.84	77.40	25
1995	226	19	0.00	2.52		4.08	29.17	31.42	77.10	25
1995	227	20	0.00	2.52		4.08	28.44	31.19	82.00	20
1995	228	21	0.00	2.52		4.08	29.25	31.08	80.70	. 17
1995	229	22	0.00	2.52		4.08	28.99	31.50	79.30	20
1995	230	23	0.00	2.52	0.04	4.12	28.11	31.23	80.40	29
1995	231	24	0.00	2.52		4.12	28.08	30.77	77.80	23
1995	232	25	0.00	2.52		4.12	27.33	29.88	81.40	27
1995	233	26	0.00	2.52		4.12	27.95	29.65	80.60	22
1995	234		0.00	2.52		4.12	24.88	28.56	70.60	21
1995 1995	235 236		0.00	2.52 2.52		4.12 4.12	23,37 25.27	27:08 27:46	71.60 73.40	25 22
1995	230		0.00	2.52	1.12	5.24	25.99	28.76	75.50	22
1995	238		0.00	2.52	1.14	5.24	25.48	28.54	70.40	20
1995	239		0.00	2.52		5.24		29.05	73.80	23
1995	240		0.00	2.52		5.24		29.64	73.50	24
1995	241		0.00	2.52		5.24	27.25	29.76	77.00	33
1995	242		0.00	2.52		5.24		30.32	73.90	20
1995	243		0.00	2.52		5.24		30.48	73.70	20
1995	243		0.00	2.52	1.33	6.57		28.66	75.10	NA
1995	244		0.00	2.52	1.33	6.57		27.27	70.60	19
1995	246		0.00	2.52		6.57		27.22	68.27	16
1995	240		0.00	2.52		6.57		27.19	67.97	16
1995	248		0.00	2.52		6.57		27.22	68.99	21
1995	249		0.00	2.52		6.57		27.21	69.95	19
1995	250		0.00	2.52		6.57			78.80	18
1995	251	44	0.12	2.64	0.14	6.83		24.46	84.60	14
1995	252	45	0.00	2.64		6.83			90.40	10

[a] Data obtained from NOAA stations located at Dubois South Indiana Forage Farm, and Nolin River Lake, Kentucky.

[b] Datum is not available.

[c] Cumulative rainfall reaching lysimeters was not calculated until 0 DAT.

[d] Lysimeters were covered during severe weather, therefore daily rainfall reaching lysimeters

was less than the actual rainfall (2.27 inches) recorded at the test site,

Pro	oject 9	64		Daily Rainfall Reaching	Cumulative Rainfall Reaching	Irrigation	Cumulative Water Reaching	Average Air	Average Soil	Average Percent	Pan
	. Iı	ulian		Lysimeters	Lysimeters	Added	0	Temperature		Relative	Evaporation [a]
Ye			DAT	(inches)	(inches)	(inches)	(inches)	(degrees C)	(degrees C)	Humidity	(0.01 inches)
19	05	253	46	0.00	2.64		6.83	19.77	22.53	71.00	NA
19		255 254	40	0.00	2.64		6.83	20.00	22.41	66.27	20
19		254 255	47	0.00	2.04		6.98	20.00	23,38	84.90	16
19		255 256	40 49	0.13	2.79		7.00	24.30	24.19	83.70	10
19		250	50	0.02	2.81		7.00	23.73	24.80	76.80	20
19		258	51	0.00	2.81	0.82	7.82	19.65	22.64	76.70	
19		259	52	0.51	3.32	010	8.33	18.72	21.28	92.10	10
19		260		0.00	3.32		8.33	19.49	21.48	90.90	0
19		261	54	0.00	3.32		8.33	16.00	20.23	76.60	10
19		262	- 55	0.00	3.32		8.33	18.74	20.43	77.90	16
19		263	56	0.60	3.92		8.93	19.29	21.23	92.90	12
19		264	57	0.00	3.92		8.93	19.30	21.24	83.20	7
19		265	58	0.05	3.97		8.98	12.43	19.51	74.30	9
19		266	59	0.00	3.97		8.98	10.76	16.57	69.14	9
19		267	60	0.00	3.97		8.98	12.66	16.60	74.40	14
19		268	61	0.00	3.97		8.98	13.69	16.56	83.50	15
19		269	62	0.00	3.97		8.98	16.20	17.95	76.20	5
19	95	270	63	0.00	3.97		8.98	16.81	18.70	75.60	12
19	95	271	64	0.00	3.97		8.98	17.77	19.43	74.90	13
19		272	65	0.00	3.97	0.43	9.41	18.60	19.98	75.40	. 14
19	95	273	66	0.00	3.97		9.41	19.64	20.47	70.60	18
19	95	274	67	0.00	3.97		9.41	19.55	20.15	78.80	18
19	95	275	68	0.00	3.97		9.41	19.31	20.42	77.80	17
19	95	276	69	0.64	4.61		10.05	18.54	19.98	92.90	. 1
19	95	277	70	0.01	4.62		10.06	16.31	18.68	88.00	NA [b]
19	95	278	71	1.59 [c]	6.21		11.65	17.36	18.28	95.70	2
19		279	72	0.00	6.21		11.65	19.05	19.53	75.60	NA
19	95	280	73	0.00	6.21		11.65	14.71	18.23	73.70	NA
19	95	281	74	0.00	6.21		11.65	13.53	17.25	79.50	12
19	95	282	75	0.00	6.21		11.65	15.04	17.64	79.60	11
19	95	283	76	0.00	6.21		11.65	16.43	17.85	80.70	. 14
19	95	284	77	0.00	6.21		11.65	17.79	18.59	79.70	11
19	95	285	78	0.00	6.21		11.65	18.08	18.76	76.40	13
19	95	286	79	0.14	6.35		11.79	17.91	18.39	83.60	13
19	95	287	80	0.01	6.36		11.80	14.35	17.85	77.00	11
19	95	288	81	0.00	6.36		11.80	10.66	14.93	64.60	11
19	95	289	82	0.00	6.36		11.80	9.90	14.31	71.90	6
19		290	83	0.00	6.36		11.80	11.91	14.12	67.05	13
19		291	84	0.00	6.36		11.80	15.33	15.07	70.40	12
19	95	292	85	0.00	6.36		11.80	16.45	16.03	75.50	13
19		293	86	0.51	6.87		12.31	11.59	14.97	84,10	12
19		294	87	0.00	6.87		12.31	7.10	12.08	78.40	14
19		295	88	0.00	6.87		. 12:31	11.76	12.00	67.33	8
19		296	89	0.00	6.87		12.31	15.47	13.51	58.67	5
19		297	90	0.13	7.00		12.44	12.33	14.20	71.80	19
19		298	91	0.00	7.00		12.44	8.62	12.47	77.30	14
19	95	299	92	0.00	7.00		12.44	11.53	12.17	76.60	9
19	95	300	93	0.66	7.66		13.10	13.87	13.06	8 4.9 0	12
19	95	301	94	0.01	7.67		13.11	9.61	11.85	80.40	11
19		302	95	0.00	7.67		13.11	10.04	11.78	68.89	7
19		303	96	0.00	7.67		13.11	10.19	11.19	72.80	10
19		304	97	0.00	7.67		13.11	13.98	12.72	74.10	2
19	95	305	9 8	0.16	7.83		13.27	16.83	14.37	85.30	No evap.
	95	306	99	0.21	8.04		13.48	17.60	16.10	90.40	

[a] Data obtained from NOAA stations located at Dubois South Indiana Forage Farm, and Nolin River Lake, Kentucky.

[b] Datum is not available.

[c] Lysimeters were covered during severe weather, therefore daily rainfall reaching lysimeters was less than the

actual rainfall (2.17 inches) recorded at the test site.

Projec			Daily Rainfall Reaching	Cumulative Rainfall Reaching	Irrigation Added	Cumulative Water Reaching Lysimeters	Average Air Temperature	Average Soil	Average Percent Relative	Pan Evaporation [a]
Year	Julian Day	DAT	Lysimeters (inches)	Lysimeters (inches)	(inches)	(inches)	(degrees C)	(degrees C)	Humidity	(0.01 inches)
1995	307	100	0.00	8.04		13.48	4.48	12.46	70.20	No evap.
1995	308	101	0.00	8.04		13.48	1.05	8.82	73.10	No evap.
1995	309	102	0.00	8.04		13.48	-1.03	5.99	78.70	No evap.
1995	310	103	0.05	8.09		13.53	4.53	5.97	79.20	No evap.
1995	311	104	0.18	8.27		13.71	8.96	8.70	89.60	No evap.
1995	312	105	0.00	8.27		13.71	1.82	6.73	65.00	No evap.
1995	313	106	0.00	8.27		13.71	2.27	5.24	66.26	No evap.
1995	314	107	0.06	8.33		13.77	10.77	6.49	55.71	No evap.
1995	315	108	0.54	8.87		14.31	5.20 -0.95	7.75 4.02	83.00 66.14	No evap. No evap.
1995	316	109	0.00	8.87 9.19		14.31 14.63	3.54	4.68	91.60	No evap.
1995	317	110	0.32 0.00	9.19		14.63	1.79	4.62	79.40	No evap.
1995 1995	318 319		0.00	9.19		14.63	0.72	3.75	72.50	No evap.
1995	.320		0.00	9.20		14.64	2.79	3.71	79.50	No evap.
1995	321	113	0.01	9.28	0.51	15.23	6.96	5.25	76.70	No evap.
1995	321		0.08	9.28	0.51	15.23	6.81	6.34	85.40	No evap.
1995	323		0.00	9.28		15.23	5.86	6.61	77.20	No evap.
1995	323		0.00	9.28 9.28		15.23	6.89	6.81	77.10	No evap.
1995	325		0.00	9.28		15.23	3.69	5.76	62.02	No evap.
1995	326		0.09	9.28		15.32	1.35	4.03	66.39	No evap.
1995	327		0.24	9.61		15.56	3.74	5.08	88.70	No evap.
1995	328		0.00	9.61	0.34	15.90	-0.45		79.70	No evap.
1995	329		0.00	9.61		15.90	2.63	3.68	75.60	No evap.
1995	330	123	0.00	9.61		15.90	9.12	5.18	68.77	No evap.
1995	331	124	0.05	9.66		15.95	13.09	7.79	69.28	No evap.
1995	332	125	0.00	9.66		15.95	2.75	6.11	75.50	No evap.
1995	333	126	0.00	9.66		15.95	1.64	4.86	75.60	No evap.
1995	334	127	0.00	9.66		15.95	2.89	4.02	72.20	No evap.
1995	335	128	0.00	9.66	1.18	17.13	9.85	5.90	56.64	No evap.
1995	336	129	0.00	9.66		17.13	6.72	5.94	78.10	No evap.
1995	337	130	0.00	9.66		17.13	11.12	7.67	78.10	No evap.
1995	338		0.00	9.66		17.13	3.82	6.25	75.80	No evap.
1995	339		0.00	9.66		17.13	6.85	5.94	60.92	No evap.
1995	340		0.00	9.66		17.13	0.03	3.98	58.06	No evap.
1995	341		0.07	9.73	0.54	17.20	-1.93	3.74	75.70	No evap.
1995	342		0.00	9.73	0.54	17.74	-2.33	1.95	81.00	No evap.
1995 1995	343 344		0.00 0.00	9.73		17.74 17.74	-8.76	1.81	71.50	No evap.
1995	344			9.73			-11.33	1.16	60.10	No evap.
1995	345		0.00 0.05	9.73 9.78		17.74	-5.08	0.81	61.67	No evap.
1995	340					17.79	-0.44	0.70	67.71	No evap.
1995	347		0.17 0.00	9.95 9.95		17.96	2.59	1.13	90.90	No evap.
1995	340		0.60	10.57	0.60	17.96 19.18	12.90 7.26	5.52 6.52	76.70 96.50	No evap.
1995	350		0.02	10.61	0.00	19.13	4.20	5.89	900	No evap. No evap.
1995	351		0.00	10.61		19.22	2.81	4.07	79.50	No evap.
1995	352		1.13	11.74		20.35	4.07	4.34	97.00	No evap.
1995	353	146	0.57	12.31		20.92	1.06	3.92	94.90	
1995	354	147	0.08	12.39		21.00		2.14	86.60	No evap.
1995	355	148	0.00	12.39		21.00	-3.23	1.28	84.30	
1995	356	149	0.00	12.39		21.00		0.97	83.00	No evap.
1995	357		0.00	12.39		21.00		0.83	85.30	No evap.
1995	358		0.00	12.39		21.00		0.74	81.90	No evap.
1995	359		0.00	12.39		21.00		0.63	83.20	•
1995	360		0.00	12.39		21.00		0.51	81.90	
1995	361		0.00	12.39		21.00		0.47	80.00	No evap.
1995	362		0.00	12.39		21.00		0.37	82.90	
1995	363		0.00	12.39		21.00		0.25	.85.30	
lai Da	ua obtai	ned tro	m N() A A stati	ions located at De	above South I	ndiana Lora	on Lorm and M	Jolin Diver Int	a Kantualar	

[a] Data obtained from NOAA stations located at Dubois South Indiana Forage Farm, and Nolin River Lake. Kentucky.

Project	1964		Daily Rainfall	Cumulative Rainfall		Cumulative Water			Average	
			Reaching	Reaching	Irrigation	Reaching	Average Air	Average Soil	Percent	Pan
	Julian		Lysimeters	Lysimeters	Added	Lysimeters	Temperature	Temperature	Relative	Evaporation [a]
Year	Day	DAT	(inches)	(inches)	(inches)	(inches)	(degrees C)	(degrees C)	Humidity	(0.01 inches)
_							0.61		81 70	N
1995	364	157	0.01	12.4		21.01	0.01 4.39	0.19 0.80	81.70 89.60	No evap. No evap.
1995	365	158	0.26	12.66		21.27 21.27	4.39 5.78	3.33	95.80	No evap.
1996	1	159 160	0.00	12.66 13.16		21.27	2.35	3.46	95.60	No evap.
1996	23	160	0.00	13.16		21.77	5.95	1.40	86.50	No evap.
1996		162	0.00	13.10		21.77	-3.73	0.95	85.60	No evap.
1996	4			13.17		21.78	-3.01	0.84	87.50	No evap.
1996			0.00			21.78	-6.18	0.64	86.00	No evap.
1996	6		0.00	13.17			-7.50	0.56	89.80	No evap.
1996	7	3	0.00	13.17		21.78	-10.22	0.55	81.20	No evap.
1996 1996	8 9	166 167	0.00 0.00	13.17 13.17		21.78 21.78	-2.45	0.53	74.80	No evap.
1996	10		0.00	13.38		21.78	-2.75	0.51	75.60	No evap.
1996	11		0.01	13.39		22.00	-2.25	0.52	82.40	No evap.
1996	12	· ·	0.00	13.39	0.74	22.74	-2.69	0.50	86.10	No evap.
1996		171	0.12	13.51	011	22.86	-0.26	0.48	89.80	No evap.
1996	14		0.01	13.52		22.87	0.43	0.43	88.20	No evap.
1996	15		0.00	13.52		22.87	-0.55	0.39	90.90	No evap.
1996		174	0.00	13.52		22.87	4.55	0.46	91.40	No evap.
1996	17		0.00	13.52		22.87	13.47	5.94	79,50	No evap.
1996	18		1.03	14.55		23.90	12.89	8,67	83.60	No evap.
1996	-	177	0.00	14.55		23.90	-8.72	3.28	76.00	No evap.
1996	-20		0.00	14.55		23.90	-6.03	0.61	74.90	No evap.
1990 1996	20	179	0.00	14.55		23.90	-0.82	0.31	77.40	No evap.
1996	22		0.00	14.55		23.90	2.13	0.26	80.80	No evap.
1996	.23		1.53	16.08		25.43	4.88	2.10	95.30	No evap.
1996	24		0.12	16.20		25.55	-0.28	2.65	88.50	No evap.
1996	25		0.01	16.21		25.56	-2.41	0.75	80.60	No evap.
1996	26		0.06	16.27		25.62	3.88	1.01	79.40	No evap.
1996	27	185	0.00	16.27		25.62	-0.65	1.99	65.72	No evap.
1996	28		0.00	16.27		25.62	-2.09	0.55	66.17	No evap.
1996	29		0.00	16.27		25.62	4.21	1.43	59.31	No evap.
1996	30		0.00	16.27		25.62	-3.55	0.91	70.90	No evap.
1996	31		0.00	16.27		25.62	-8.47	0.29	67.23	No evap.
1996	32		0.00	16.27		25.62	-8.84	-0.07	66.51	No evap.
1996	33		0.00	16.27		25.62	-11.35	-0.20	63.23	No evap.
1996	34		0.00	16.27		25.62	-14.84	-0.55	64.53	No evap.
1996	35	193	0.00	16.27		25.62	-16.41	-1.36	64.03	No evap.
1996	36	194	0.01	16.28		25.63	-9.90	-1.74	64.40	No evap.
1996	37	195	0.00	16.28		25.63	-4.31	-1.45	68.75	No evap.
1996	38	196	0.00	16.28		25.63	2.56	-0.54	84.60	No evap.
1996	39	197	0.11	16.39		25.74	7.11	-0.26	93.20	No evap.
1996	40		0.01	16.40		25.75		0.05	89.10	No evap.
1996	41		0.00	16.40		25.75	7.83	1.44	84.40	No evap.
1996	42		0.03	16.43		25.78	2.91	1.00	73.90	No evap.
1996	43		0.06	16.49		25.84	-1.13	0.14	77.20	No evap.
1996	44	202	0.00	16.49		25.84	0.71	0.53	72:70	No evap.
1996	45	203	0.02	16.51	1	25.86	4.48	1.70	69.71	No evap.
1996	46		0.00	16.51	`	25.86	0.46	1.86	79.20	No evap.
1996	47		0.00	16.51	0.81	26.67	-2.68	0.85	73.60	No evap.
1996	48		0.00	16.51		26.67	-2.23	0.30	67.77	No evap.
1996	49		0.00	16.51		26.67	-1.83	0.11	66.97	No evap.
1996	50		0.58	17.09		27.25	3.21	0.60	80.70	No evap.
1996	51		0.16	17.25		27.41	8.65	4.65	96.20	No evap.
1996	52		0.00	17.25		27.41	8.46	6.29		No evap.
1996	53		0.25	17.50		27.66	9.68	7.93	92.60	No evap.
1996	54		0.03	17.53		27.69	14.93	10.06	82.50	
1996	55		0.00	17.53		27.69	9.03	9.28	64.17	No evap.
al Da	ta obtai	ned fro	m NOAA stat	ions located at Du	iboic South 1	ndiana Fora	as Farm and N	Iolin Divor Lak	Vantuala	

[a] Data obtained from NOAA stations located at Dubois South Indiana Forage Farm, and Nolin River Lake, Kentucky.

Projec	t 964		Daily Rainfall Reaching	Cumulative Rainfall Reaching	Irrigation	Cumulative Water Reaching	Average Air	Average Soil	Average Percent	Pan
	Julian		Lysimeters	Lysimeters	Added		Temperature		Relative	Evaporation [a]
Year		DAT	(inches)	(inches)	(inches)	(inches)	(degrees C)	(degrees C)	Humidity	(0.01 inches)
1996	56	214	0.00	17.53		27.69	7.13	7.28	77.50	No evap.
1996	57		0.18	17.71		27.87	11.83	9.18	93.40	No evap.
1996	58		0.51	18.22		28.38	15.36	11.98	94.90	No evap.
1996	59	217	0.00	18.22		28.38	1.89	9.45	76.50	No evap.
1996	60	218	0.00	18.22		28.38	-3.22	4.48	66.62	No evap.
1996	61		0.00	18.22	0.22	28.60	-1.01	3.81	63.44	No evap.
1996	62		0.00	18.22		28.60	1.99	3.44	68.26	No evap.
1996	63		0.00	18.22		28.60	-4.32	2.20	49.69	No evap.
1996	64		0.00	18.22		28.60	2.60	2.65	56.63	No evap.
1996	65		0.34	18.56		28.94	12.12	5.78	72.10	No evap.
1996	66		0.11	18.67		29.05	6.96	7.53	97.50	No evap.
1996	67		0.02	18.69		29.07	-3.66	3.59	83.80	No evap.
1996	68		0.00	18.69		29:07	-8.15	1.69	70.80 70.70	No evap.
1996	69		0.00	18.69		29.07	-5.31	0.74 0.63	73.60	No evap.
1996	70 71		0.01	18.70 18.70		29.08 29.08	-2.24 1.31	2.39	73.10	No evap. No evap.
1996 1996	72		0.00	18.70		29.08	4.04	4.22	68.48	No evap.
1996	73		0.00	18.70		29.08	8.23	5.92	64,49	No evap.
1996	74		0.00	18.70		29.08	13.97	9.09	73.80	No evap.
1996	75		0.36	19.06		29.44	12.75	11.00	84.20	No evap.
1996	76		0.08	19.14		29.52	6.38	8.10	86.20	No evap.
1996	77		0.01	19.14		29.53	9.76	9.75	81.10	No evap.
1996	78		0.00	19.15		29.53	6.88	9.02	71.30	•
1996	.79		1.67	20.82		31.20	2.48	5.74	91.10	No evap.
1996	80		0.62	20.82		31.82	0.09	2.57	95.40	No evap.
1996	81		0.05	21.49		31.87	-1.71	2.13	88.10	•
1996	82		0.00	21.49		31.87	-0.11	3.12	75.90	No evap.
1996	83		0.00	21.49		31.87	3.87	4.82	71.80	No evap.
1996	84		0.00	21.49		31.87		7.89	51.52	No evap.
1996	85	243	0.20	21.69		32.07	10.11	9.69	69 .04	No evap.
1996	86	244	0.00	21.69		32.07	0.37	6.31	62.24	No evap.
1 99 6	87	245	0.00	21.69		32.07	3.18	5.28	56.90	No evap.
1996	88	246	0.46	22.15		32.53	5.41	6.01	84.20	No evap.
1996	89	247	0.01	22.16		32.54	7.55	7.30	95.10	No evap.
1996	9 0	248	0.00	22.16		32.54	10.99	9.26	87.30	No evap.
1996	91	249	0.93	23.09		33.47	11.39	10.20	92.00	No evap.
1996	92	250	0.73	23.82		. 34.20	6.32	9.54	79.6 0	No evap.
1996	93	251	0.00	23.82	Ν.	34.20	7.42	8.86	68.94	No evap.
1996	94		0.00	23.82		34.20	13.21	10.36	58.28	No evap.
1996	95		0.17	23.99		34.37	11.06	10.83	69.01	No evap.
1996	9 6		0.00	23.99	0.66	35.03	2.78	7.47	80.60	No evap.
1996	97		0.00	23.99		35.03	4.06	7.16	69.86	No evap.
1996	98		0.00	23.99		35.03	4.01	6.71	67.86	No evap.
1996	99		0.04	24.03		35.07	3.93	6.78	76.30	•
1996	100		0.00	24.03		35.07	1.90	5.25	70.40	
1996	101		0.00	24.03		35.07	6.36	6.88	63.42	
1996	102		0.00	24.03		35.07	12.46	9.70	56.23	No evap.
1996	103		0.00	24.03		35.07	19.45	13.84	53.71	No evap.
1996	104		0.41	24.44		35.48	14.33	13.93	80.80	
1996	105		0.00	24.44		35.48	9.27	11.53	81.60	•
1996	106		0.55	24.99		36.03	10.65	11.38	85.20	•
1996	107		0.04	25.03		36.07	7.34	9.77	75.20	•
1996	108		0.00	25.03		36.07	10:33	10.63	69.42	
1996 1996	109 110		0.00	25.03		36.07	16.70	13.11	60.95	
1996	111		0.16	25.19		36.23	19.74	16.16	80.10	
1996	112		0.84	26.03		37.07	18.28	17.08	79.10	
				26.03		37.07	16.82	16.93 Jolin River Lak	74.20	

[a] Data obtained from NOAA stations located at Dubois South Indiana Forage Farm, and Nolin River Lake, Kentucky.

Projec	t 964		Daily Rainfall Reaching	Cumulative Rainfall Reaching	<u> </u>	Cumulative Water Reaching	Average Air	Average Soil	Average Percent	Pan
	Julian		Lysimeters	Lysimeters	Added	Lysimeters	Temperature		Relative	Evaporation [a]
Year	Day	DAT	(inches)	(inches)	(inches)	(inches)	(degrees C)	(degrees C)	Humidity	(0.01 inches)
1996	113	271	0.00	26.03		37.07	19.15	17.56	74.80	No evap.
1996	114	272	0.72	26.75		37.79	11.37	15.47	90.80	No evap.
1996	115	273	0.00	26.75		37.79	11.02	13.64	73.60	No evap.
1996	116	274	0.10	26.85		37.89	18.40	15.12	50.06	No evap.
1996	117	275	0.28	27.13		38.17	11.37	14.83	78.40	No evap.
1996	118	276	0.00	27.13		38.17	10.49	13.35	67.94	No evap.
1996	119	277	1.08	28.21		39.25	11.07	12.96	86.90	No evap.
1996	120	278	1.63	29.84		40.88	14.56	13.85	95.70	No evap.
1996	121	279	0.02	29.86		40.90	9.18	13.69	75.20	No evap.
1996	122		0.14	30.00		41.04	13.47	13.99	69.40	No evap.
1996	123	281	0.00	30.00		41.04	14.85	15.23	74.10	No evap.
1 9 96	124	282	0.53	30.53		41.57	19.15	17.67	82.90	15
1996	125	283	0.09	30.62		41.66	19.20	18.94	87.80	24
1996	126	284	1.00	31.62		42.66	19.32	19.09	87.50	NA [b]
1996	127		0.00	31.62		42.66	16.9 8	18.72	84.10	23
1996	128	286	0.00	31.62		42.66	18.31	17.99	82.60	12
1996	129	287	1.69	33.31		44.35	18.88	18.75	96.60	17
1996	130		0.00	33.31		44.35	21.90	20.45	81.20	18
1996	131	289	0.78	34.09	1.00	46.13	21.06	21.62	85.00	26
1996	132		1.76	35.85		47.89	13.64	19.17	96.50	NA
1996	133 134	291	0.00	35.85	1.50	49.39	11.16	17.14	72.00	1
1996	•	292 293	0.00	35.85	2.12	49.39	9.81	15.17	63.16	15
1996	135		0.00	35.85	2.13	51.52	12.21	14.90	67.63	12
1996	136	294	0.97	36.82		52.49	16.50	15.68	94.00	NA
1996	137	295	0.00	36.82		52.49	21.92	17.95	87.20	11
1996	138	296	0.00	36.82	1.13	53.62	23.82	20.36	79.10	15
1996	139	297	0.00	36.82		53.62	25.13	22.46	74.90	NA
1996	140	298	0.00	36.82		53.62	25.42	23.70	75.70	32
1996 1996	141 142	299	0.00	36.82		53.62	25.22	24.35	75.10	36
1996	142	301	0.00 0.00	36.82 36.82		53.62 53.62	22.83 20.70	23.14 22.11	73.30 70.10	33 28
1996	144		0.00	36.82		53.62	20.70	21.98	69.88	28
1996	145	302	0.21	37.03	1.89	55.72	24.99	23.52	76.20	18
1996	145	303	0.00	37.03	1.09	55.72	20.77	23.52	84.60	NA
1996	147	305	0.76	37.79		56.48	21.30	22:42	92.50	25
1996	148	306	1.54	39.33		58.02	18.46	22.42	97.90	NA
1996	149	307	0.10							
1996				39.43		58.12	21.30	21.55	8 9 .80	NA
	150		0.04	39.47		58.16	16.35	20.76	91.90	22
1996 1996	151 152	309 310	0.00 0.00	39.47		58.16	16.66	19.64	67.12	8
1996	152	310	0.00	39.47 39.47		58.16	18.41	20.01	73.90	19
1996	155	311	0.00	39.47 39.72		58.16	20.07	20.48	72.50	22
1996	154		0.25	39.72 40.08		58.41	19.00	19.98	87.70	13
1996	155	313	0.30	40.08	· .	58.77 58.77	20.51 16.96	21.15 20.36	83.50	NA
1990	150	315	0.00	40.08		58.77	19.54	20.36	82.80	23
1370	157		0.00	40.00		.10.77	19.34		73.20	18

[a] Data obtained from NOAA stations located at Dubois South Indiana Forage Farm, and Nolin River Lake, Kentucky. [b] Datum is not available.

56

Specific Activity (from Sponsor):	348	μCi/mg
dpm to μ Ci Conversion:	2,220,000	dpm/µCi
Target Treatment/Column:	0.361	mg [Phenyl- ¹⁴ C]Flumioxazin
Calculated Nominal Input:	278,894,160	dpm
Measured Applied Activity:	281,107,125	dpm
Critical 0.01 µg/g dry weight is:	7.726	dpm/dry gram soil

								· · · · ·	5	oil Moisture	Determina	tion			
					Total		% of		· _ · .					Total	
Sample	Lysimeter	Study	Sampling	Average dpm/g	Moist Soil	Total ¹⁴ C Activity	Applied in Total	Tare	Total Wet	Net Wet	Total Dry	Net Dry	Fraction Dry	Dry Soil	Flumioxazin
Number	•	Date	Depth	moist wt.[a]	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964-x		(DAT)	(inches)		(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(µg/g dry)
1	1	0	0-3	<loq< td=""><td>3,572</td><td>0.000E+00</td><td>NA</td><td>0.990</td><td>32.398</td><td>31.408</td><td>25.823</td><td>24.833</td><td>0.791</td><td>2,824</td><td><loa [b]<="" td=""></loa></td></loq<>	3,572	0.000E+00	NA	0.990	32.398	31.408	25.823	24.833	0.791	2,824	<loa [b]<="" td=""></loa>
$(\gamma)^2$	Control		3-6	<loq< td=""><td>4,678</td><td>0.000E + 00</td><td>NA</td><td>0.992</td><td>28.579</td><td>27.587</td><td>24.722</td><td>23.730</td><td>0.860</td><td>4.024</td><td><loa< td=""></loa<></td></loq<>	4,678	0.000E + 00	NA	0.992	28.579	27.587	24.722	23.730	0.860	4.024	<loa< td=""></loa<>
			6-9	<loq< td=""><td>4,681</td><td>0.000E + 00</td><td>NA</td><td>0.987</td><td>30.877</td><td>29.890</td><td>26.852</td><td>25.865</td><td>0.865</td><td>4,051</td><td><loa< td=""></loa<></td></loq<>	4,681	0.000E + 00	NA	0.987	30.877	29.890	26.852	25.865	0.865	4,051	<loa< td=""></loa<>
			9-12	<loq< td=""><td>5,659</td><td>0.000E + 00</td><td>NA</td><td>0.990</td><td>33.111</td><td>32.121</td><td>27,999</td><td>27.009</td><td>0.841</td><td>4.758</td><td><loa< td=""></loa<></td></loq<>	5,659	0.000E + 00	NA	0.990	33.111	32.121	27,999	27.009	0.841	4.758	<loa< td=""></loa<>
5			12-18	<loq< td=""><td>8,053</td><td>0.000E+00</td><td>NA</td><td>0.990</td><td>31.033</td><td>30.043</td><td>25.783</td><td>24.793</td><td>0.825</td><td>6,646</td><td><loa< td=""></loa<></td></loq<>	8,053	0.000E+00	NA	0.990	31.033	30.043	25.783	24.793	0.825	6,646	<loa< td=""></loa<>
6			18-24	<loq< td=""><td>10,290</td><td>0.000E + 00</td><td>NA</td><td>0.999</td><td>35.535</td><td>34.536</td><td>29.414</td><td>28.415</td><td>0.823</td><td>8,466</td><td><loa< td=""></loa<></td></loq<>	10,290	0.000E + 00	NA	0.999	35.535	34.536	29.414	28.415	0.823	8,466	<loa< td=""></loa<>
7			24-30	<loq< td=""><td>9,038</td><td>0.000E+00</td><td>NA</td><td>0.992</td><td>38.015</td><td>37.023</td><td>31.387</td><td>30.395</td><td>0.821</td><td>7,420</td><td><loa< td=""></loa<></td></loq<>	9,038	0.000E+00	NA	0.992	38.015	37.023	31.387	30.395	0.821	7,420	<loa< td=""></loa<>
8			30-32	<loq< td=""><td>2,683</td><td>0.000E+00</td><td>NA</td><td>0.997</td><td>33.883</td><td>32.886</td><td>27.632</td><td>26.635</td><td>0.810</td><td>2,173</td><td><loa< td=""></loa<></td></loq<>	2,683	0.000E+00	NA	0.997	33.883	32.886	27.632	26.635	0.810	2,173	<loa< td=""></loa<>

ĥ

[a] Values presented are corrected for a background radioactivity of 28 dpm/g moist soil. Therefore, reported values greater than or equal to 28 dpm are above the

Limit of Quantitation (LOQ), which is 28 dpm/g moist soil.

[b] Level of Analysis (LOA) is $0.01 \mu g/g$ or 7726 dpm/g dry soil.

									5	Soil Moisture	Determina	tion			
Sample Number 964-x	Lysimeter Number	Study Date (DAT)	Sampling Depth (inches)	Average dpm/g moist wt. [a]	Total Moist Soil Weight (grams)	Total ¹⁴ C Activity Recovered (dpm)	% of Applied in Total Section	Tare Weight (grams)	Total Wet Weight (grams)	Net Wet Weight (grams)	Total Dry Weight (grams)	Net Dry Weight (grams)	Fraction Dry Solids	Total Dry Soil Weight (grams)	Flumioxazin Equivalents (µg/g dry)
9	3	0	0-3	100,780	2,961	2.984E+08	106.2	0.985	40.606	39.621	32.541	31.556	0.796	2,358	0.164
10			3-6	32	4,429	1.417E+05	0.1	0.986	42,392	41.406	36.771	35.785	0.864	3,828	<loa [b]<="" td=""></loa>
11			6-9	<loq< td=""><td>4,704</td><td>0.000E+00</td><td>0.0</td><td>0.994</td><td>33.232</td><td>32.238</td><td>29.017</td><td>28.023</td><td>0.869</td><td>4,089</td><td><loa< td=""></loa<></td></loq<>	4,704	0.000E+00	0.0	0.994	33.232	32.238	29.017	28.023	0.869	4,089	<loa< td=""></loa<>
12			9-12	<loq< td=""><td>5,334</td><td>0.000E+00</td><td>0.0</td><td>0.997</td><td>29.085</td><td>28.088</td><td>24.682</td><td>23.685</td><td>0.843</td><td>4,498</td><td><loa< td=""></loa<></td></loq<>	5,334	0.000E+00	0.0	0.997	29.085	28.088	24.682	23.685	0.843	4,498	<loa< td=""></loa<>
13			12-18	<loq.< td=""><td>9,727</td><td>0.000E+00</td><td>. 0.0</td><td>0.993</td><td>29.871</td><td>28.878</td><td>24.968</td><td>23.975</td><td>0.830</td><td>8.076</td><td><loa< td=""></loa<></td></loq.<>	9,727	0.000E+00	. 0.0	0.993	29.871	28.878	24.968	23.975	0.830	8.076	<loa< td=""></loa<>
14			18-24	<loq< td=""><td>10,200</td><td>0.000E+00</td><td>0.0</td><td>0.991</td><td>34.664</td><td>33.673</td><td>28.915</td><td>27.924</td><td>0.829</td><td>8,459</td><td><loa< td=""></loa<></td></loq<>	10,200	0.000E+00	0.0	0.991	34.664	33.673	28.915	27.924	0.829	8,459	<loa< td=""></loa<>
15			24-30	<loq< td=""><td>9,945</td><td>0.000E+00</td><td>0.0</td><td>0.991</td><td>32.206</td><td>31.215</td><td>26.673</td><td>25.682</td><td>0.823</td><td>8,182</td><td><loa< td=""></loa<></td></loq<>	9,945	0.000E+00	0.0	0.991	32.206	31.215	26.673	25.682	0.823	8,182	<loa< td=""></loa<>
16			30-34	<loq< td=""><td>5,474</td><td>0.000E+00</td><td>0.0</td><td>0.994</td><td>36.875</td><td>35.881</td><td>30.207</td><td>29.213</td><td>0.814</td><td>4,457</td><td><loa< td=""></loa<></td></loq<>	5,474	0.000E+00	0.0	0.994	36.875	35.881	30.207	29.213	0.814	4,457	<loa< td=""></loa<>
57							106.3	lotal ¹⁴ C Re	covery						
∞															
17	31	0	0-3	89,178	3,336	2.975E+08	105.8	0.991	45.402	44.411	35.775	34.784	0.783	2,613	0.147
18			3-6	<loq< td=""><td>4,719</td><td>0.000E + 00</td><td>0.0</td><td>0.989</td><td>43.080</td><td>42.091</td><td>36.774</td><td>35.785</td><td>0.850</td><td>4,012</td><td><loa< td=""></loa<></td></loq<>	4,719	0.000E + 00	0.0	0.989	43.080	42.091	36.774	35.785	0.850	4,012	<loa< td=""></loa<>
19			6-9	<loq< td=""><td>5,033</td><td>0.000E + 00</td><td>0.0</td><td>0.998</td><td>29.308</td><td>28.310</td><td>25.509</td><td>24.511</td><td>0.866</td><td>4,358</td><td><loa< td=""></loa<></td></loq<>	5,033	0.000E + 00	0.0	0.998	29.308	28.310	25.509	24.511	0.866	4,358	<loa< td=""></loa<>
20			9-12	<loq< td=""><td>4,053</td><td>0.000E + 00</td><td>0.0</td><td>0.989</td><td>31.687</td><td>30.698</td><td>27.910</td><td>26,921</td><td>0.877</td><td>3,554</td><td><loa< td=""></loa<></td></loq<>	4,053	0.000E + 00	0.0	0.989	31.687	30.698	27.910	26,921	0.877	3,554	<loa< td=""></loa<>
21			12-18	<loq< td=""><td>9,853</td><td>0.000E + 00</td><td>0.0</td><td>0.998</td><td>27.885</td><td>26.887</td><td>24.466</td><td>23.468</td><td>0.873</td><td>8,600</td><td><loa< td=""></loa<></td></loq<>	9,853	0.000E + 00	0.0	0.998	27.885	26.887	24.466	23.468	0.873	8,600	<loa< td=""></loa<>
22			18-24	<1.0Q	9,860	0.000E+00	0.0	0.993	31.243	30.250	26.613	25.620	0.847	8,351	<loa< td=""></loa<>
23			24-30	<loq< td=""><td>9,099</td><td>0.000E+00</td><td>0.0</td><td>0.991</td><td>29.352</td><td>28.361</td><td>24.486</td><td>23.495</td><td>0.828</td><td>7,538</td><td><loa< td=""></loa<></td></loq<>	9,099	0.000E+00	0.0	0.991	29.352	28.361	24.486	23.495	0.828	7,538	<loa< td=""></loa<>
24			30-33	<loq< td=""><td>4,134</td><td>0.000E+00</td><td>0.0</td><td>0.994</td><td>24.744</td><td>23.750</td><td>20.620</td><td>19.626</td><td>0.826</td><td>3,416</td><td><loa< td=""></loa<></td></loq<>	4,134	0.000E+00	0.0	0.994	24.744	23.750	20.620	19.626	0.826	3,416	<loa< td=""></loa<>
PTR							105.8	Total ¹⁴ C Re	covery						

										Soil Moisture	Determina	tion	. <u></u>		
				Average	Total Moist	Total	% of Applied in		Total	Net	Total	Net	Fraction	Total Dry	
Sample	Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Tare	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazin
Number	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964-x		(DAT)	(inches)		(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(μg/g dry)
25	10	2	0-3	65,081	3,964	2.580E+08	91.8	0.994	41.412	40.418	33.898	32.904	0.814	3,227	0.103
26			3-6	40	4,707	1.883E+05	0.1	0.996	43.550	42.554	38.053	37.057	0.871	4,099	<loa< td=""></loa<>
27			6~9	<loq< td=""><td>4,752</td><td>0.000E+00</td><td>0.0</td><td>0.997</td><td>38.173</td><td>37.176</td><td>33.237</td><td>32.240</td><td>0.867</td><td>4,121</td><td><loa< td=""></loa<></td></loq<>	4,752	0.000E+00	0.0	0.997	38.173	37.176	33.237	32.240	0.867	4,121	<loa< td=""></loa<>
28			9-12	<loq< td=""><td>4,953</td><td>0.000E+00</td><td>0.0</td><td>0.992</td><td>32.599</td><td>31.607</td><td>28.029</td><td>27.037</td><td>0.855</td><td>4,237</td><td><loa< td=""></loa<></td></loq<>	4,953	0.000E+00	0.0	0.992	32.599	31.607	28.029	27.037	0.855	4,237	<loa< td=""></loa<>
29			12-18	<loq< td=""><td>9,118</td><td>0.000E+00</td><td>0.0</td><td>0.997</td><td>32.760</td><td>31.763</td><td>27.845</td><td>26.848</td><td>0.845</td><td>7,707</td><td><loa< td=""></loa<></td></loq<>	9,118	0.000E+00	0.0	0.997	32.760	31.763	27.845	26.848	0.845	7,707	<loa< td=""></loa<>
30			18-24	<loq< td=""><td>9,486</td><td>0.000E+00</td><td>0.0</td><td>1.001</td><td>28.377</td><td>27.376</td><td>24.158</td><td>23.157</td><td>0.846</td><td>8,024</td><td><loa< td=""></loa<></td></loq<>	9,486	0.000E+00	0.0	1.001	28.377	27.376	24.158	23.157	0.846	8,024	<loa< td=""></loa<>
31			24-30	<loq< td=""><td>9,181</td><td>0.000E+00</td><td>0.0</td><td>0.994</td><td>28.765</td><td>27.771</td><td>24.150</td><td>23.156</td><td>0.834</td><td>7.655</td><td><loa< td=""></loa<></td></loq<>	9,181	0.000E+00	0.0	0.994	28.765	27.771	24.150	23.156	0.834	7.655	<loa< td=""></loa<>
32			30-35	<loq< td=""><td>8,228</td><td>0.000E+00</td><td>0.0</td><td>0.997</td><td>33.525</td><td>32.528</td><td>27.659</td><td>26.662</td><td>0.820</td><td>6,744</td><td><loa< td=""></loa<></td></loq<>	8,228	0.000E+00	0.0	0.997	33.525	32.528	27.659	26.662	0.820	6,744	<loa< td=""></loa<>
							91.9 1	otal ¹⁴ C Re	соvегу						×
J_ 33	11	2	0-3	78,412	3,597	2.820E+08	100.3	0.000	44.777	43.778	26.005	25 006	0.800	2.876	0.127
$-\!$	11	2	0 <i>−3</i> 3∸6	/8,412	5,452	2.820E+08 8.287E+05	0.3	0.999 0.996	44.777	43.778	36.005 39.189	35.006 38.193	0.800 0.871	2.876 4,749	<loa< td=""></loa<>
35			5-0 6-9	50	4,839	2.420E + 0.5	0.1	0.998	26.451	25.452	23.147	22.148	0.871	4,749	<loa< td=""></loa<>
36			9-12	<loq< td=""><td>4,518</td><td>0.000E+00</td><td>0.0</td><td>0.999</td><td>28.268</td><td>27.271</td><td>24.372</td><td>23.375</td><td>0.857</td><td>3,873</td><td><loa <loa< td=""></loa<></loa </td></loq<>	4,518	0.000E+00	0.0	0.999	28.268	27.271	24.372	23.375	0.857	3,873	<loa <loa< td=""></loa<></loa
37			12-18	<loq< td=""><td>9,668</td><td>0.000E+00</td><td>0.0</td><td>1.002</td><td>26.594</td><td>25.592</td><td>22.772</td><td>23.37.3</td><td>0.851</td><td>8,224</td><td><loa <loa< td=""></loa<></loa </td></loq<>	9,668	0.000E+00	0.0	1.002	26.594	25.592	22.772	23.37.3	0.851	8,224	<loa <loa< td=""></loa<></loa
38			18-24	<loq< td=""><td>9,314</td><td>0.000E+00</td><td>0.0</td><td>0.996</td><td>24.823</td><td>23.827</td><td>21.477</td><td>20.481</td><td>0.860</td><td>8,006</td><td><loa< td=""></loa<></td></loq<>	9,314	0.000E+00	0.0	0.996	24.823	23.827	21.477	20.481	0.860	8,006	<loa< td=""></loa<>
39			24-30	<l00< td=""><td>9,497</td><td>0.000E+00</td><td>0.0</td><td>1.006</td><td>28.296</td><td>27.290</td><td>24.011</td><td>23.005</td><td>0.843</td><td>8.006</td><td><loa< td=""></loa<></td></l00<>	9,497	0.000E+00	0.0	1.006	28.296	27.290	24.011	23.005	0.843	8.006	<loa< td=""></loa<>
40			30~35.5	<l0q< td=""><td>7,900</td><td>0.000E+00</td><td>0.0</td><td>0.997</td><td>27.126</td><td>26.129</td><td>24.011</td><td>21.502</td><td>0.843</td><td>6.501</td><td><loa <loa< td=""></loa<></loa </td></l0q<>	7,900	0.000E+00	0.0	0.997	27.126	26.129	24.011	21.502	0.843	6.501	<loa <loa< td=""></loa<></loa
PTR					.,, 50			otal ¹⁴ C Re		20112/			0.020	51.01	

ς.

							-		5	Soil Moisture	Determina	tion			
				Average	Total Moist	Total	% of Applied in		Total	Net	Total	Net	Fraction	Total Dry	
Sample	Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Tare	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazin
Number	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964-x		(DAT)	(inches)	7	(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(µg/g dry)
41	12	5	0-3	65,401	3,873	2.533E+08	90.1	0.995	43.301	42.306	35.979	34.984	0.827	3,203	0.102
42			3-6	918	4,329	3.974E+06	1.4	0.995	47.289	46.294	41.395	40.400	0.873	3,778	<loa< td=""></loa<>
43			6-9	843	4,903	4.133E+06	1.5	0.997	30.942	29.945	26.883	25.886	0.864	4,238	<loa< td=""></loa<>
44			9-12	764	4,931	3.767E+06	1.3	1.000	31.808	30.808	27.403	26.403	0.857	4,226	<loa< td=""></loa<>
45			12-18	175	10,033	1.756E+06	0.6	1.000	29.801	28.801	25.324	24.324	0.845	8,473	<loa< td=""></loa<>
46			18-24	54	9,451	5.104E+05	0.2	1.005	26.747	25.742	22.257	21.252	0.826	7,803	<loa< td=""></loa<>
47			24-30	<loq< td=""><td>9,925</td><td>0.000E+00</td><td>0.0</td><td>1.005</td><td>26.129</td><td>25.124</td><td>21.855</td><td>20.850</td><td>0.830</td><td>8,237</td><td><loa< td=""></loa<></td></loq<>	9,925	0.000E+00	0.0	1.005	26.129	25.124	21.855	20.850	0.830	8,237	<loa< td=""></loa<>
48			30-36	138	8,886	1.226E+06	0.4	0.994	24.625	23.631	20.757	19.763	0.836	7,432	<loa< td=""></loa<>
0					•	[95.5 T	otal ¹⁴ C Re	covery						
49	25	5	0-3	68,665	3,961	2.720E+08	96.8	0.990	46.768	45.778	38.092	37.102	0.810	3,210	0.110
50			3-6	993	5,636	5.597E+06	2.0	0.998	49.667	48.669	43.525	42.527	0.874	4,925	<loa< td=""></loa<>
51			6-9	386	4,072	1.572E+06	0.6	1.004	28.590	27.586	25.037	24.033	0.871	3.548	<loa< td=""></loa<>
52			9-12	54	5,494	2.967E+05	0.1	1.000	30.872	29.872	26.771	25.771	0.863	4,740	<loa< td=""></loa<>
53			12-18	<loq< td=""><td>9,513</td><td>0.000E+00</td><td>0.0</td><td>1.002</td><td>31.710</td><td>30.708</td><td>27.333</td><td>26.331</td><td>0.857</td><td>8.157</td><td><loa< td=""></loa<></td></loq<>	9,513	0.000E+00	0.0	1.002	31.710	30.708	27.333	26.331	0.857	8.157	<loa< td=""></loa<>
54			18-24	<loq< td=""><td>9,159</td><td>0.000E+00</td><td>0.0</td><td>1.004</td><td>33.531</td><td>32.527</td><td>28.708</td><td>27.704</td><td>0.852</td><td>7,801</td><td><loa< td=""></loa<></td></loq<>	9,159	0.000E+00	0.0	1.004	33.531	32.527	28.708	27.704	0.852	7,801	<loa< td=""></loa<>
55			24-30	<1.0Q	9,933	0.000E+00	0.0	0.999	38.235	37.236	32.371	31.372	0.843	8,369	<loa< td=""></loa<>
PTRL 56			30-35.5	<loq< td=""><td>8,593</td><td>0.000E+00</td><td>0.0</td><td>1.001</td><td>32.215</td><td>31.214</td><td>27.147</td><td>26.146</td><td>0.838</td><td>7,198</td><td><loa< td=""></loa<></td></loq<>	8,593	0.000E+00	0.0	1.001	32.215	31.214	27.147	26.146	0.838	7,198	<loa< td=""></loa<>
F P							99.5 T	otal ¹⁴ C Re	covery						

, Project No. 964 Page 213

									5	Soil Moisture	Determina	tion			
Sample Number 964-x	Lysimeter Number	Study Date (DAT)	Sampling Depth (inches)	Average dpm/g moist wt.	Total Moist Soil Weight (grams)	Total ¹⁴ C Activity Recovered (dpm)	% of Applied in Total Section	Tare Weight (grams)	Total Wet Weight (grams)	Net Wet Weight (grams)	Total Dry Weight (grams)	Net Dry Weight (grams)	Fraction Dry Solids	Total Dry Soil Weight (grams)	Flumioxazin Equivalents (µg/g dry)
57	4	9	0-3	91,069	2,938	2.676E+08	95.2	1.004	21.607	20.603	18.016	17.012	0.826	2,426	0.143
58			3-6	765	4,766	3.646E+06	1.3	0.996	20.352	19.356	17.982	16.986	0.878	4,182	<loa< td=""></loa<>
59			6-9	336	5,148	1.730E+06	0.6	1.004	23.165	22.161	20.350	19.346	0.873	4,494	<loa< td=""></loa<>
60			9-12	320	4,728	1.513E+06	0.5	1.005	31.790	30.785	27.593	26.588	0.864	4,083	<loa< td=""></loa<>
61			12-18	418	9,194	3.843E+06	1.4	1.004	27.738	26.734	23.615	22.611	0.846	7,776	<loa< td=""></loa<>
62			18-24	<1.0Q	8,628	0.000E+00	0.0	1.002	32.089	31.087	26.452	25.450	0.819	7,063	<loa< td=""></loa<>
63			24-30	<loq< td=""><td>8,725</td><td>0.000E+00</td><td>0.0</td><td>1.004</td><td>28.975</td><td>27.971</td><td>23.588</td><td>22.584</td><td>0.807</td><td>7,045</td><td><loa.< td=""></loa.<></td></loq<>	8,725	0.000E+00	0.0	1.004	28.975	27.971	23.588	22.584	0.807	7,045	<loa.< td=""></loa.<>
5				· ·			99.0 1	lotal ¹⁴ C Re	сочегу						
65	5	9	0-3	72,123	3,864	2.787E+08	99.1	1.000	26.035	25.035	22.117	21.117	0.843	3,259	0.111
66			3-6	952	4,586	4.366E+06	1.6	1.003	29.906	28,903	26.458	25.455	0.881	4,039	<loa< td=""></loa<>
67			6-9	175	5,007	8.762E+05	0.3	1.004	23.480	22.476	20.811	19.807	0.881	4,412	<loa< td=""></loa<>
68			9-12	<loq< td=""><td>4,926</td><td>0.000E+00</td><td>0.0</td><td>1.006</td><td>27.508</td><td>26.502</td><td>23.982</td><td>22.976</td><td>0.867</td><td>4,271</td><td><loa< td=""></loa<></td></loq<>	4,926	0.000E+00	0.0	1.006	27.508	26.502	23.982	22.976	0.867	4,271	<loa< td=""></loa<>
69			12-18	<loq< td=""><td>9,931</td><td>0.000E+00</td><td>0.0</td><td>1.006</td><td>29.391</td><td>28.385</td><td>25.366</td><td>24.360</td><td>0.858</td><td>8,523</td><td><loa< td=""></loa<></td></loq<>	9,931	0.000E+00	0.0	1.006	29.391	28.385	25.366	24.360	0.858	8,523	<loa< td=""></loa<>
70			18-24	<loq< td=""><td>9,833</td><td>0.000E+00</td><td>0.0</td><td>1.006</td><td>29.955</td><td>28.949</td><td>25.495</td><td>24.489</td><td>0.846</td><td>8,318</td><td><loa< td=""></loa<></td></loq<>	9,833	0.000E+00	0.0	1.006	29.955	28.949	25.495	24.489	0.846	8,318	<loa< td=""></loa<>
71			24-30	<loq< td=""><td>9,384</td><td>0.000E+00</td><td>0.0</td><td>1.005</td><td>32.254</td><td>31.249</td><td>26.990</td><td>25.985</td><td>0.832</td><td>7,803</td><td><loa< td=""></loa<></td></loq<>	9,384	0.000E+00	0.0	1.005	32.254	31.249	26.990	25.985	0.832	7,803	<loa< td=""></loa<>
PTRL 71			30-30.5	<loq< td=""><td>706</td><td>0.000E+00</td><td>0.0</td><td>1.006</td><td>27.704</td><td>26.698</td><td>23.304</td><td>22.298</td><td>0.835</td><td>590</td><td><loa< td=""></loa<></td></loq<>	706	0.000E+00	0.0	1.006	27.704	26.698	23.304	22.298	0.835	590	<loa< td=""></loa<>
, Proj Pag							101.0 7	lotal ¹⁴ C Re	covery						

roject No. 964 Page 214

										Soil Moisture	Determina	tion			
•	Lysimeter Number	Study Date (DAT)	Sampling Depth (inches)	Average dpm/g moist wt.	Total Moist Soil Weight (grams)	Total ¹⁴ C Activity Recovered (dpm)	% of Applied in Total Section	Tare Weight (grams)	Total Wet Weight (grams)	Net Wet Weight (grams)	Total Dry Weight (grams)	Net Dry Weight (grams)	Fraction Dry Solids	Total Dry Soil Weight (grams)	Flumioxazin Equivalents (µg/g dry)
73	6	16	0-3	30,528 [c]	3,890	1.188E+08	42.2	1.000	28.053	27.053	22.896	21.896	0.809	3,148	0.049
74			3-6	1,956	5,223	1.022 E + 07	3.6	1.008	26.007	24.999	22,787	21.779	0.871	4,550	<loa< td=""></loa<>
75			6-9	386	4,803	1.854E+06	0.7	1.008	27.986	26.978	24.415	23.407	0.868	4,167	<loa< td=""></loa<>
76			9-12	<loq< td=""><td>5,106</td><td>0.000E+00</td><td>0.0</td><td>1.008</td><td>27.430</td><td>26.422</td><td>23.725</td><td>22.717</td><td>0.860</td><td>4,390</td><td><loa< td=""></loa<></td></loq<>	5,106	0.000E+00	0.0	1.008	27.430	26.422	23.725	22.717	0.860	4,390	<loa< td=""></loa<>
77			12-18	<loq< td=""><td>8,319</td><td>0.000E+00</td><td>0.0</td><td>1.011</td><td>24.032</td><td>23.021</td><td>20.871</td><td>19.860</td><td>0.863</td><td>7,177</td><td><loa< td=""></loa<></td></loq<>	8,319	0.000E+00	0.0	1.011	24.032	23.021	20.871	19.860	0.863	7,177	<loa< td=""></loa<>
78			18-24	<loq< td=""><td>10,525</td><td>0.000E+00</td><td>0.0</td><td>1.011</td><td>22.933</td><td>21.922</td><td>19.607</td><td>18.596</td><td>0.848</td><td>8,928</td><td><loa< td=""></loa<></td></loq<>	10,525	0.000E+00	0.0	1.011	22.933	21.922	19.607	18.596	0.848	8,928	<loa< td=""></loa<>
79			24-30	<loq< td=""><td>9,079</td><td>0.000E+00</td><td>0.0</td><td>1.001</td><td>25.601</td><td>24.600</td><td>21.315</td><td>20.314</td><td>0.826</td><td>7,497</td><td><loa< td=""></loa<></td></loq<>	9,079	0.000E+00	0.0	1.001	25.601	24.600	21.315	20.314	0.826	7,497	<loa< td=""></loa<>
80			30-33	<loq< td=""><td>3855</td><td>0.000E+00</td><td>0.0</td><td>1.006</td><td>23.541</td><td>22.535</td><td>19.319</td><td>18.313</td><td>-0.813</td><td>3,133</td><td><loa< td=""></loa<></td></loq<>	3855	0.000E+00	0.0	1.006	23.541	22.535	19.319	18.313	-0.813	3,133	<loa< td=""></loa<>
ນົ							46,5 7	lotal ¹⁴ C Re	covery				÷		
81	33	16	0-3	54,453	4,115	2.241 E + 08	79.7	1.008	27.104	26.096	21.746	20.738	0.795	3,270	0.089
82			3-6	1,728	4,855	8.389 E + 06	3.0	1.001	. 22.497	21.496	19.194	18.193	0.846	4,109	<loa< td=""></loa<>
83			6-9	263	4,503	1.184 E + 06	0.4	1.001	31.489	30.488	28.147	27.146	0.890	4.009	<loa< td=""></loa<>
84			9-12	<loq< td=""><td>5,530</td><td>0.000E+00</td><td>0.0</td><td>1.008</td><td>34.701</td><td>33.693</td><td>29.827</td><td>22.646</td><td>0.672</td><td>3.717</td><td><loa< td=""></loa<></td></loq<>	5,530	0.000E+00	0.0	1.008	34.701	33.693	29.827	22.646	0.672	3.717	<loa< td=""></loa<>
85			12-18	<1.0Q	9,925	0.000 E + 00	0.0	1.008	27.110	26.102	22.949	22.716	0.870	8,638	<loa< td=""></loa<>
86			18-24	<loq< td=""><td>9,521</td><td>0.000E + 00</td><td>0.0</td><td>1.003</td><td>26.426</td><td>25.423</td><td>22.039</td><td>21.036</td><td>0.827</td><td>7,878</td><td><loa< td=""></loa<></td></loq<>	9,521	0.000E + 00	0.0	1.003	26.426	25.423	22.039	21.036	0.827	7,878	<loa< td=""></loa<>
87			24-30	<loq< td=""><td>8,338</td><td>0.000E + 00</td><td>0.0</td><td>1.010</td><td>28.869</td><td>27.859</td><td>23.726</td><td>21.941</td><td>0.788</td><td>6.567</td><td><loa< td=""></loa<></td></loq<>	8,338	0.000E + 00	0.0	1.010	28.869	27.859	23.726	21.941	0.788	6.567	<loa< td=""></loa<>
88			30-33	<loq< td=""><td>4,643</td><td>0.000E+00</td><td>0.0</td><td>1.002</td><td>28.442</td><td>27.440</td><td>23.648</td><td>28.819</td><td>1.050</td><td>4.876</td><td><loa< td=""></loa<></td></loq<>	4,643	0.000E+00	0.0	1.002	28.442	27.440	23.648	28.819	1.050	4.876	<loa< td=""></loa<>
							83.1 1	otal ¹⁴ C Re	covery						
[c] All oxid	ation and m	ioisture o	lata for this sa	ample is an average	e of two data	i sets.							ì		
				<loq <loq ample is an average</loq </loq 											

										oil Moisture	Determina	tion	· · ·		
				Average	Total Moist	Total	% of Applied in		Total	Net	Total	Net	Fraction	Total Dry	
Sample	Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Tare	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazin
Number	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964-x		(DAT)	(inches)	† .	(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(µg/g dry)
89	16	27	0-3	58,506	3,811	2.230E+08	79.3	1.008	24.155	23.147	20.815	19.807	0.856	3,261	0.089
90			3-6	524	4,942	2.590E+06	0.9	1.008	32.037	31.029	28.359	27.351	0.881	4,356	<loa< td=""></loa<>
91			6-9	337	4,883	1.646E+06	0.6	1.001	32.810	31.809	28.837	27.836	0.875	4,273	<loa< td=""></loa<>
92			9-12	180	4,930	8.874E+05	0.3	1.002	32.544	31.542	28.128	27.126	0.860	4,240	<loa< td=""></loa<>
93			12~18	89	9,045	8.050E+05	0.3	1.006	30.845	29.839	26.153	25.147	0.843	7,623	<loa< td=""></loa<>
94			18-24	163	9,188	1.498E+06	0.5	1.002	32.212	31.210	27.231	26.229	0.840	7,722	<loa< td=""></loa<>
95			24-30	137	9.273	1.270E+06	0.5	1.001	33.008	32.007	28.043	27.042	0.845	7,835	<loa< td=""></loa<>
2-96			30-33	1,006	4,767	4.796E+06	1.7	1.003	32.387	31.384	26.716	25.713	0.819	3,906	<loa< td=""></loa<>
\sum							84.1	Total ¹⁴ C Re	covery						
\mathcal{S}									2 · · · ·						
97	17	27	0-3	56,336	3,731	2.102E+08	74.8	1.013	27.711	26.698	24.395	23.382	0.876	3,268	0.083
98			3-6	769	4,745	3.649E+06	- 1.3	1.004	26.376	25.372	23.568	22.564	0.889	4,220	<loa< td=""></loa<>
99			6-9	462	5,767	2.664E+06	0.9	1.006	33.424	32.418	29.692	28.686	0.885	5,103	<loa< td=""></loa<>
100			9-12	228	5.220	1.190E+06	0.4	1.001	33.599	32.598	29.149	28.148	0.863	4,507	<loa< td=""></loa<>
101			12-18	<loq< td=""><td>9,244</td><td>0.000E+00</td><td>. 0.0</td><td>1.005</td><td>32.587</td><td>31.582</td><td>27.759</td><td>26.754</td><td>0.847</td><td>7.831</td><td><loa< td=""></loa<></td></loq<>	9,244	0.000E+00	. 0.0	1.005	32.587	31.582	27.759	26.754	0.847	7.831	<loa< td=""></loa<>
102			18-24	<loq< td=""><td>9,364</td><td>0.000E+00</td><td>0.0</td><td>1.007</td><td>35.819</td><td>34.812</td><td>30.403</td><td>29.396</td><td>0.844</td><td>7.907</td><td><loa< td=""></loa<></td></loq<>	9,364	0.000 E +00	0.0	1.007	35.819	34.812	30.403	29.396	0.844	7.907	<loa< td=""></loa<>
103			24-30	<loq< td=""><td>8,993</td><td>0.000E+00</td><td>0.0</td><td>1.008</td><td>28.728</td><td>27.720</td><td>24.895</td><td>23.887</td><td>0.862</td><td>7,749</td><td><loa< td=""></loa<></td></loq<>	8,993	0.000E+00	0.0	1.008	28.728	27.720	24.895	23.887	0.862	7,749	<loa< td=""></loa<>
PTRL PTRL			30-34	<loq< td=""><td>7,396</td><td>0.000E+00</td><td>0.0</td><td>1.005</td><td>36.147</td><td>35.142</td><td>30.495</td><td>29.490</td><td>0.839</td><td>6.206</td><td><loa< td=""></loa<></td></loq<>	7,396	0.000E+00	0.0	1.005	36.147	35.142	30.495	29.490	0.839	6.206	<loa< td=""></loa<>
L Pr							77.4	Fotal ¹⁴ C Re	covery						

5

Project No. 964 Page 216

									5	Soil Moisture	Determina	tion			
Sample	Lysimeter	Study	Sampling	Average dpm/g	Total Moist Soil	lotal ¹⁴ C Activity	% of Applied in Total	Tare	l otal Wet	Net Wet	l'otal Dry	Net Dry	Fraction Dry	Total Dry Soil	Flumioxazin
Number	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964-x		(DAT)	(inches)	F	(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(µg/g dry)
105	8	48	0-3	39,811	4,179	1.664E+08	59.2	1.003	23.403	22.400	20.127	19.12.4	0.854	3,568	0.060
106			3-6	923	3,176	2.931E+06	1.0	1.008	24.220	23.212	21.401	20.393	0.879	2,790	<loa< td=""></loa<>
107			6-9	789	5,746	4.534E+06	1.6	1.010	33,974	32.964	29.596	28.586	0.867	4,983	<loa< td=""></loa<>
108			9-12	690	4,475	3.088E+06	1.1	1.010	25.495	24.485	22.001	20.991	0.857	3,836	<loa< td=""></loa<>
109			12-18	263	8,791	2.312E+06	0.8	0.992	31.585	30.593	27.250	26.258	0.858	7,545	<loa< td=""></loa<>
110			18-24	<loq< td=""><td>8,528</td><td>0.000E + 00</td><td>0.0</td><td>0.992</td><td>30.347</td><td>29.355</td><td>26.227</td><td>25.235</td><td>0.860</td><td>7,331</td><td><loa< td=""></loa<></td></loq<>	8,528	0.000E + 00	0.0	0.992	30.347	29.355	26.227	25.235	0.860	7,331	<loa< td=""></loa<>
111			24-30	<loq< td=""><td>9,764</td><td>0.000E+00</td><td>0.0</td><td>0.989</td><td>26.756</td><td>25.767</td><td>22.155</td><td>21.166</td><td>0.821</td><td>8,021</td><td><loa< td=""></loa<></td></loq<>	9,764	0.000E+00	0.0	0.989	26.756	25.767	22.155	21.166	0.821	8,021	<loa< td=""></loa<>
			30-34	<loq< td=""><td>6,475</td><td>0.000E+00</td><td>0.0</td><td>0.987</td><td>27.287</td><td>26.300</td><td>22.253</td><td>21.266</td><td>0.809</td><td>5,236</td><td><loa< td=""></loa<></td></loq<>	6,475	0.000E+00	0.0	0.987	27.287	26.300	22.253	21.266	0.809	5,236	<loa< td=""></loa<>
							63.7 1	Total ¹⁴ C Re	covery						
	•														
113	23	48	0-3	66,822	3,648	2.438E+08	86.7	1.007	24.894	23.887	22.362	21.355	0.894	3,261	0.097
114			3-6	2,010	3,876	7.791E+06	2.8	1.007	25.302	24.295	23.489	22.482	0.925	3,587	<loa< td=""></loa<>
115			6-9	479	4,772	2.286E+06	0.8	1.005	23.915	22.910	22.141	21.136	0.923	4,402	<loa< td=""></loa<>
116			9-12	436	4,535	1.977E+06	0.7	1.002	29.190	28.188	26.744	25.742	0.913	4,141	<loa< td=""></loa<>
117			12-18	150	9,212	1.382E+06	0.5	0.989	26.922	25.933	24.086	23.097	0.891	8,205	<loa< td=""></loa<>
118			18-24	221	8,764	1.937E+06	0.7	0.987	28.265	27.278	24.720	23.733	0.870	7,625	<loa< td=""></loa<>
1 19			24-30	121	9,963	1.206E+06	0.4	0.991	28.274	27.283	23.837	22.846	0.837	8.343	<loa< td=""></loa<>
R 120			30-35	150	6,855	1.028E+06	0.4	0.992	28.689	27.697	24.059	23.067	0.833	5,709	<loa< td=""></loa<>
- 2							93.0 T	otal ¹⁴ C Re	covery						
PTRL Project No. Page 217												· · ·			
964															

. .

									5	Soil Moisture	Determina	tion			-
.)					Total		% of							Total	
				Average	Moist	Total	Applied in		Total	Net	Total	Net	Fraction	Dry	
Samp	le Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Tare	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazin
Numb	er Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964-	ĸ	(DAT)	(inches)	:	(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(µg/g dry)
1	21 13	72	0-3	39,852	3,937	1.569E+08	55.8	0.992	23.183	22.191	18.264	17.272	0.778	3,064	0.066
1	22		3-6	1,758	4,652	8.178E+06	2.9	0.990	24.170	23.180	20.892	19.902	0.859	3,994	<loa< td=""></loa<>
1	23		6-9	852	5,410	4.609E+06	1.6	0.990	26.259	25.269	22.470	21.480	0.850	4,599	ິ <loa< td=""></loa<>
1	24		9-12	` 411	6,188	2.543E+06	0.9	0.988	27.186	26.198	23.054	22.066	0.842	5,212	<loa< td=""></loa<>
1	25		12-18	185	9,767	1.807E+06	0.6	0.990	27.884	26.894	23.478	22.488	0.836	8,167	<loa< td=""></loa<>
1	26		18-24	84	9,754	8.193E+05	0.3	0.992	27.369	26.377	22.947	21.955	0.832	8,119	<loa< td=""></loa<>
1	27		24-30	164	8,105	1.329E+06	0.5	0.990	27.364	26.374	22.819	21.829	0.828	6,708	<loa< td=""></loa<>
1	28		30-34	125	5,547	6.934E+05	0.2	0.992	27.390	26.398	22.766	21.774	0.825	4,575	<loa< td=""></loa<>
ð	~						62.8 7	Total ¹⁴ C Re	covery						
\mathcal{J}_{i}	2 24	72	0-3	64,393	3,497	2.252E+08	80.1	0.992	22.133	21.141	17.038	16.046	0.759	2,654	0.110
1	30		3-6	1,457	4,921	7.170E+06	2.6	0.994	24.788	23.794	21.420	20.426	0.858	4,224	<loa< td=""></loa<>
1	31		6-9	407	4,022	1.637E+06	0.6	0.997	26.761	25.764	23.325	22.328	0.867	3,486	<loa< td=""></loa<>
1	32		9-12	235	5,533	1.300E+06	0.5	0.991	26.012	25.021	22.625	21.634	0.865	4,784	<loa< td=""></loa<>
1	33		12-18	419	7.456	3.124E+06	1.1	0.988	27.121	26.133	23.272	22.284	0.853	6.358	<loa< td=""></loa<>
1	34		18-24	203	9,051	1.837E+06	0.7	0.997	26.938	25.941	23.879	22.882	0.882	7.984	<loa< td=""></loa<>
ı 1	35		24-30	60	8,672	5.203E+05	0.2	0.991	27.630	26.639	24.734	23,743	0.891	7,729	<loa< td=""></loa<>
PTRL	36		30-36	73	8,757	6.393E+05	0.2	0.992	27.819	26.827	24.600	23.608	0.880	7.706	<loa< td=""></loa<>
L Pr P						[86.0 1	lotal ¹⁴ C Re	covery						

·'

Project No. 964 Page 218

									:	Soil Moisture	Determina	tion			
					Total		% of					· · ·		Total	
				Average	Moist	Total	Applied in		Total	Net	Total	Net	Fraction	Dry	
Sample	Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Tare	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazin
Number	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964-x		(DAT)	(inches)		(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(µg/g dry)
				7											
137	18	72	0-3	<loq< td=""><td>3,196</td><td>0.000E+00</td><td>0.0</td><td>0.990</td><td>21.582</td><td>20.592</td><td>17.405</td><td>16.415</td><td>0.797</td><td>2,548</td><td>0.000</td></loq<>	3,196	0.000E+00	0.0	0.990	21.582	20.592	17.405	16.415	0.797	2,548	0.000
138		72	3-6	<loq< td=""><td>4,014</td><td>0.000E+00</td><td>0.0</td><td>0.989</td><td>27.405</td><td>26.416</td><td>23.673</td><td>22.684</td><td>0.859</td><td>3,447</td><td><loa< td=""></loa<></td></loq<>	4,014	0.000E+00	0.0	0.989	27.405	26.416	23.673	22.684	0.859	3,447	<loa< td=""></loa<>
139		72	6-9	<loq< td=""><td>4,869</td><td>0.000 E + 00</td><td>0.0</td><td>0.984</td><td>25.180</td><td>24.196</td><td>22.101</td><td>21.117</td><td>0.873</td><td>4,249</td><td><loa< td=""></loa<></td></loq<>	4,869	0.000 E + 00	0.0	0.984	25.180	24.196	22.101	21.117	0.873	4,249	<loa< td=""></loa<>
140		72	9-12	<loq< td=""><td>5352</td><td>0.000E + 00</td><td>0.0</td><td>0.987</td><td>26.707</td><td>25.720</td><td>23.538</td><td>22.551</td><td>0.877</td><td>4,693</td><td><loa< td=""></loa<></td></loq<>	5352	0.000E + 00	0.0	0.987	26.707	25.720	23.538	22.551	0.877	4,693	<loa< td=""></loa<>
141		72	12-18	<loq< td=""><td>9410</td><td>0.000E+00</td><td>0.0</td><td>0.990</td><td>27.162</td><td>26.172</td><td>23.735</td><td>22.745</td><td>0.869</td><td>8,178</td><td><loa< td=""></loa<></td></loq<>	9410	0.000E+00	0.0	0.990	27.162	26.172	23.735	22.745	0.869	8,178	<loa< td=""></loa<>
142		72	18-24	<loq< td=""><td>9657</td><td>0.000E+00</td><td>0.0</td><td>0.992</td><td>26.780</td><td>25.788</td><td>22.808</td><td>21.816</td><td>0.846</td><td>8,170</td><td><loa< td=""></loa<></td></loq<>	9657	0.000E+00	0.0	0.992	26.780	25.788	22.808	21.816	0.846	8,170	<loa< td=""></loa<>
143		72	24-30	<loq< td=""><td>8592</td><td>0.000E+00</td><td>0.0</td><td>0.990</td><td>26.501</td><td>25.511</td><td>22.406</td><td>21.416</td><td>0.839</td><td>7,213</td><td><loa< td=""></loa<></td></loq<>	8592	0.000E+00	0.0	0.990	26.501	25.511	22.406	21.416	0.839	7,213	<loa< td=""></loa<>
144		72	30-34.5	<loq< td=""><td>8,920</td><td>0.000E + 00</td><td>0.0</td><td>0.988</td><td>26.205</td><td>25.217</td><td>22.007</td><td>21.019</td><td>0.834</td><td>7,435</td><td><loa< td=""></loa<></td></loq<>	8,920	0.000E + 00	0.0	0.988	26.205	25.217	22.007	21.019	0.834	7,435	<loa< td=""></loa<>
							0.0 1	Total ¹⁴ C Re	covery						

										son moisture	Determina	lion			
					Total		% of							Total	
				Average	Moist	Total	Applied in		Total	Net	Total	Net	Fraction	Dry	
Sample	Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Таге	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazln
Number	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964 - x		(DAT)	(inches)		(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(µg/g dry)
145	. 9	106	0-3	28,304	3,614	1.023E+08	36.4	0.994	23.885	22.891	19.406	18.412	0.804	2,907	0.046
146			3-6	1,808	4,211	7.613E+06	2.7	0.986	23.017	22.031	19.826	18.840	0.855	3.601	<loa< td=""></loa<>
147			6-9	703	5,372	3.777E+06	1.3	0.992	24.415	23.423	21.088	20.096	0.858	4,609	<loa< td=""></loa<>
148			9 12	433	5,064	2.193E+06	0.8	0.993	26.594	25.601	22.799	21.806	0.852	4,313	<loa< td=""></loa<>
149			12-18	156	9,560	1.491E+06	0.5	0.994	22.852	21.858	19.603	18.609	0.851	8,139	<loa< td=""></loa<>
150			18-24	506	7,801	3.947E+06	1.4	0.989	24.882	23.893	21.791	20.802	0.871	6,792	<loa< td=""></loa<>
151			24-30	<loq< td=""><td>8,915</td><td>0.000E+00</td><td>0.0</td><td>0.987</td><td>23.968</td><td>22.981</td><td>20.479</td><td>19.492</td><td>0.848</td><td>7,562</td><td><loa< td=""></loa<></td></loq<>	8,915	0.000E+00	0.0	0.987	23.968	22.981	20.479	19.492	0.848	7,562	<loa< td=""></loa<>
152			30-35	<loq< td=""><td>7,865</td><td>0.000E+00</td><td>0.0</td><td>0.994</td><td>24.462</td><td>23.468</td><td>20.348</td><td>19.354</td><td>0.825</td><td>6,486</td><td><loa< td=""></loa<></td></loq<>	7,865	0.000E+00	0.0	0.994	24.462	23.468	20.348	19.354	0.825	6,486	<loa< td=""></loa<>
0							43.1 7	otal ¹⁴ C Re	covery						
153	27	106	0-3	51,481	3,159	1.626E+08	57.9	0.987	23.335	22.348	18.502	17.515	0.784	2,476	0.085
154			3-6	4,774	4,779	2.281E+07	8.1	0.991	23.461	22.470	19.670	18.679	0.831	3,973	<loa< td=""></loa<>
155			6-9	1,203	4,914	5.912E+06	2.1	0.993	23.198	22.205	19.951	18.958	0.854	4,195	<loa< td=""></loa<>
156			9-12	627	4,947	3.102E+06	1.1	× 0.986	23.767	22.781	20.421	19.435	0.853	4,220	<loa< td=""></loa<>
157			12-18	51	10,396	5.302E+05	0.2	0.990	22.797	21.807	19.418	18.428	0.845	8,785	<loa< td=""></loa<>
158			18-24	<loq< td=""><td>8,804</td><td>0.000E+00</td><td>0.0</td><td>0.988</td><td>23.793</td><td>22.805</td><td>20.138</td><td>19.150</td><td>0.840</td><td>7,393</td><td><loa< td=""></loa<></td></loq<>	8,804	0.000E+00	0.0	0.988	23.793	22.805	20.138	19.150	0.840	7,393	<loa< td=""></loa<>
159			24-30	<loq< td=""><td>8,508</td><td>0.000E+00</td><td>0.0</td><td>0.989</td><td>22.926</td><td>21.937</td><td>19.206</td><td>18.217</td><td>0.830</td><td>7.065</td><td><loa< td=""></loa<></td></loq<>	8,508	0.000E+00	0.0	0.989	22.926	21.937	19.206	18.217	0.830	7.065	<loa< td=""></loa<>
H 160			30-32	<loq< td=""><td>3,561</td><td>0.000E+00</td><td>0.0</td><td>0.989</td><td>24.809</td><td>23.820</td><td>20.768</td><td>19.779</td><td>0.830</td><td>2,957</td><td><loa< td=""></loa<></td></loq<>	3,561	0.000E+00	0.0	0.989	24.809	23.820	20.768	19.779	0.830	2,957	<loa< td=""></loa<>
PTR							69.4 T	otal ¹⁴ C Re	covery						

Soil Moisture Determination

										Soil Moisture	Determina	tion			
					Total		% of							Total	• · · · ·
		,		Average	Moist	Total	Applied in		Total	Net	Total	Net	Fraction	Dry	
Sample	Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Tare	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazin
Number	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964-x		(DAT)	(inches)		(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(μg/g dry)
161	15	316	0-3	55,114	2,995	1.651E+08	58.7	1.877	25.780	23.903	21.885	20.008	0.837	2,507	0.085
162			3-6	6,493	3,986	2.588E+07	9.2	1.860	25.114	23.254	22.381	20.521	0.882	3,518	0.010
163			6-9	2,058	4,060	8.355E+06	3.0	1.881	27.355	25.474	24.463	22.582	0.886	3,599	<loa< td=""></loa<>
164			9-12	1,282	5,909	7.575E+06	2.7	1.865	27.658	25.793	24.527	22.662	0.879	5,192	<loa< td=""></loa<>
165			12-18	544	9,109	4.955E+06	1.8	3.754	30.635	26.881	26.838	23.084	0.859	7,822	<loa< td=""></loa<>
166			18-24	162	9,575	1.551E+06	0.6	3.752	31.133	27.381	27.242	23.490	0.858	8,214	<loa< td=""></loa<>
167			24-30	112	8,488	9.507E+05	0.3	3.756	30.022	26.266	26.529	22.773	0.867	7,359	<loa< td=""></loa<>
168			30-32	59	3,700	2.183E+05	0.1	3.754	29.936	26.182	25.546	21.792	0.832	3,080	<loa< td=""></loa<>
5]	76.4 1	Total ¹⁴ C Re	covery						
\sim									- <u>-</u>						
169	19	316	0-3	44,898	4,025	1.807E+08	64.3	1.864	25.466	23.602	21.023	19.159	0.812	3,267	0.072
170			3-6	4,138	3,841	1.589E+07	5.7	1.874	23.598	21.724	20.592	18.718	0.862	3,310	<loa< td=""></loa<>
171			6-9	1,599	4,223	6.753E+06	2.4	1.881	26.533	24.652	23.182	21.301	0.864	3,649	<loa< td=""></loa<>
172			9-12	830	5,139	4.265E+06	1.5	1.886	26.067	24.181	22.634	20.748	0.858	4,409	<loa< td=""></loa<>
173			12-18	345	10,210	3.522E+06	1.3	1.873	28.903	27.030	24.755	22.882	0.847	8,643	<loa< td=""></loa<>
174			18-24	178	9,024	1.606E+06	0.6	1.879	25.983	24.104	22.027	20.148	0.836	7,543	<loa< td=""></loa<>
175			24-30	184	9,404	1.730E+06	0.6	1.874	28.704	26.830	24.010	22.136	0.825	7,759	<loa< td=""></loa<>
_ 176			30-35	263	7,103	1.868E+06	0.7	1.877	35.076	33.199	29.421	27.544	0.830	5,893	<loa< td=""></loa<>
PTRL		,					77.1 7	Total ¹⁴ C Re	covery						
H		-					· · · · · · · · · · · · · · · · · · ·				· · · ·	1 28			

,

PTRL Project Nó. 964 Page 221 ·

۶

									:	Soil Moisture	Determina	tion			
				Average	Total Moist	Total	% of Applied in		Total	Net	Total	Net	Fraction	Total Dry	
Sample	Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Tare	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazin
Number	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964 - x		(DAT)	(inches)		(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(µg/g dry)
177	21	316	0-3	54,412	2,955	1.608E+08	57.2	3.733	20.513	16.780	16.645	12.912	0.769	2,274	0.092
178			3-6	4,825	5,065	2.444E+07	8.7	3.730	28.185	24.455	24.025	20.295	0.830	4,203	<loa< td=""></loa<>
179			6-9	2,403	4,163	1.000E+07	3.6	3.736	30.191	26.455	26.130	22.394	0.846	3,524	<loa< td=""></loa<>
180			9-12	1,110	5,333	5.920E+06	2.1	3.748	29.482	25.734	25,483	21.735	0.845	4,504	<loa< td=""></loa<>
181			12-18	559	9,404	5.257E+06	1.9	0.998	25.821	24.823	21.854	20.856	0.840	7,901	<loa< td=""></loa<>
182			18-24	334	8,991	3.003E+06	1.1	0.996	27.311	26.315	23.192	22.196	0.843	7,584	<loa< td=""></loa<>
183			24-30	124	8,253	1.023E+06	0.4	1.002	26.207	25.205	21.847	20.845	0.827	6,825	<loa< td=""></loa<>
184			30-32	132	1,294	1.708E+05	0.1	1.857	28.401	26.544	23.778	21.921	0.826	1,069	<loa< td=""></loa<>
5							75.1	Total ¹⁴ C Re	covery						
₁₈₅	22	316	0-3	70,649	2,417	1.708E+08	60.7	0.998	22.725	21.727	17.820	16.822	0.774	1,871	0.118
186			3-6	3,275	5,572	1.825E+07	6.5	0.995	25.330	24.335	21.701	20.706	0.851	4,741	<loa< td=""></loa<>
187			6-9	1,671	2,712	4.532E+06	1.6	0.994	27.297	26.303	23.543	22.549	0.857	2,325	<loa< td=""></loa<>
188			9-12	1,045	5,414	5.658E+06	2.0	1.001	26.058	25.057	22.517	21.516	0.859	4,649	<loa< td=""></loa<>
189			12-18	620	10,634	6.593E+06	2.3	1.005	26.362	25.357	22.486	21.481	0.847	9,009	<loa< td=""></loa<>
190	~		18-24	128	9,102	1.165E+06	0.4	1.001	27.630	26.629	23.778	22.777	0.855	7,785	<loa< td=""></loa<>
191			24-30	58	9,731	5.644E+05	0.2	1.000	27.034	26.034	23.180	22.180	0.852	8,290	<loa< td=""></loa<>
_ 192			30-34	38	5,215	1.982E+05	0.1	1.002	28.318	27.316	26.382	25.380	0.929	4,845	<loa< td=""></loa<>
PTR							73.9 1	Total ¹⁴ C Re	covery						

TRL Project No. 964 Page 222

7

						•	· · ·						t de la			
										·.	n, di ini Antonin katal					
					• .	Total		% of			Soil Moisture	Determina	tion		Total	
					Average	Moist	Total	Applied in		Total	Net	Total	Net	Fraction	Dry	
Sa	mple	Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Tare	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazin
Nu	mber	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
96	4-x		(DAT)	(inches)		(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(μg/g dry)
	193	29	316	0-3	34,292	4,258	1.460E+08	51.9	3.738	27.270	23.532	23.333	19.595	0.833	3,546	0.053
	194			3-6	6,801	4,334	2.948E+07	10.5	3.735	28.294	24.559	24.777	21.042	0.857	3,713	0.010
	195			6-9	1,477	3,883	5.735E+06	2.0	3.730	30.011	26.281	26.283	22.553	0.858	3,332	<loa< td=""></loa<>
	196			9-12	1,016	5,464	5.551E+06	2.0	3.729	33.112	29.383	29.002	25.273	0.860	4.700	<loa< td=""></loa<>
	197			12-18	274	8,871	2.431E+06	0.9	1.877	27.731	25.854	23.977	22.100	0.855	7,583	<loa< td=""></loa<>
	198			18-24	101	9,059	9.150E+05	0.3	1.890	28.826	26.936	24.700	22.810	0.847	7,671	<loa< td=""></loa<>
	199			24-30	64	7,919	5.068E+05	0.2	1.872	28.299	26.427	24.372	22.500	0.851	6,742	<loa< td=""></loa<>
	200			30-32	55	918	5.049E+04	· 0.0	1.873	28.468	26.595	23.740	21.867	0.822	755	<loa< td=""></loa<>
								67.8	Total ¹⁴ C Re	covery		narrar A Sharrar				
-7								· ·	2 .							
4	201	30	316	0-3	48,208	3,419	1.648E+08	58.6	1.002	24.682	23.680	19.822	18.820	0.795	2,717	0.079
\sim	202			3-6	4,377	5,208	2.280E+07	8.1	1.006	24.896	23.890	21.023	20.017	0.838	4,364	<loa< td=""></loa<>
	203			6-9	1,353	4,837	6.544E+06	2.3	1.004	26.409	25.405	22.651	21.647	0.852	4,121	<loa< td=""></loa<>
	204			9-12	821	4,757	3.905E+06	1.4	1.002	27.068	26.066	23.239	22.237	0.853	4,058	<loa< td=""></loa<>
	205			12-18	562	9,331	5.244E+06	1.9	1.001	26.172	25.171	22.756	21.755	0.864	8,065	<loa< td=""></loa<>
	206			18-24	316	8,624	2.725E+06	1.0	0.999	27.189	26.190	23.752	22.753	0.869	7,492	<loa< td=""></loa<>
	207			24-30	129	7,192	9.278E+05	. 0.3	1.009	25.943	24.934	21.680	20.671	0.829	5,962	<loa< td=""></loa<>
	208			30-33	199	2,661	5.295E+05	0.2	1.000	25.037	24.037	21.711	20.711	0.862	2,293	<loa< td=""></loa<>
PTR							ſ	73.8	Total ¹⁴ C Re	covery						

•

									:	Soil Moisture	Determina	tion			
					Total		% of		,					Total	
				Average	Moist	Total	Applied in		Total	Net	Total	Net	Fraction	Dry	
Sample	Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Tare	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazin
Number	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964 - x		(DAT)	(inches)		(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(μ g/g dry)
						.*									
209	32	316	0-3	35,594	4,410	1.570E+08	55.8	0.992	25.164	24.172	20.889	19.897	0.823	3,630	0.056
210			3-6	3,432	4,252	1.459E+07	5.2	1.000	23.466	22.466	20.331	19.331	0.860	3,659	<loa< td=""></loa<>
211			6-9	1,479	1,987	2.939E+06	1.0	0.992	27.467	26.475	23.742	22.750	0.859	1,707	<loa< td=""></loa<>
212			9-12	1,026	2,372	2.434E+06	0.9	0.991	26.386	25.395	22.477	21.486	0.846	2,007	<loa< td=""></loa<>
213			12-18	571	6,853	3.91 <i>3</i> E+06	1.4	0.995	27.246	26.251	23.391	22.396	0.853	5,847	<loa< td=""></loa<>
214			18-24	350	6,355	2.224E+06	0.8	0.988	27.080	26.092	23.169	22.181	0.850	5,402	<loa< td=""></loa<>
215			24-29	248	5,929	1.470E+06	0.5	0.988	27.004	26.016	23.113	22.125	0.850	5,042	<loa< td=""></loa<>
							65.6	Fotal ¹⁴ C Re	coverv						

- ,

1

			ę		-		Soil Moisture Determination								
					Total		% of							Total	
				Average	Moist	Total	Applied in		Total	Net	Total	Net	Fraction	Dry	
Sample	Lysimeter	Study	Sampling	dpm/g	Soil	¹⁴ C Activity	Total	Tare	Wet	Wet	Dry	Dry	Dry	Soil	Flumioxazin
Number	Number	Date	Depth	moist wt.	Weight	Recovered	Section	Weight	Weight	Weight	Weight	Weight	Solids	Weight	Equivalents
964 x		(DAT)	(inches)	e	(grams)	(dpm)		(grams)	(grams)	(grams)	(grams)	(grams)		(grams)	(µg/g dry)
217	· 2	316	0-3	<loq< td=""><td>3,898</td><td>0.000E+00</td><td>0.0</td><td>1.001</td><td>26.325</td><td>25.324</td><td>21.383</td><td>20.382</td><td>0.805</td><td>3,137</td><td><loa< td=""></loa<></td></loq<>	3,898	0.000E+00	0.0	1.001	26.325	25.324	21.383	20.382	0.805	3,137	<loa< td=""></loa<>
218			3-6	<loq< td=""><td>4,539</td><td>0.000E+00</td><td>0.0</td><td>0.996</td><td>21.714</td><td>20.718</td><td>18.649</td><td>17.653</td><td>0.852</td><td>3,868</td><td><loa< td=""></loa<></td></loq<>	4,539	0.000E+00	0.0	0.996	21.714	20.718	18.649	17.653	0.852	3,868	<loa< td=""></loa<>
219			6-9	<loq< td=""><td>4,928</td><td>0.000E+00</td><td>0.0</td><td>1.007</td><td>26.436</td><td>25.429</td><td>22.924</td><td>21.917</td><td>0.862</td><td>4,247</td><td><loa< td=""></loa<></td></loq<>	4,928	0.000E+00	0.0	1.007	26.436	25.429	22.924	21.917	0.862	4,247	<loa< td=""></loa<>
220			9-12	<loq< td=""><td>5,646</td><td>0.000E+00</td><td>0.0</td><td>0.999</td><td>28.408</td><td>27.409</td><td>24.167</td><td>23.168</td><td>0.845</td><td>4,772</td><td><loa< td=""></loa<></td></loq<>	5,646	0.000E+00	0.0	0.999	28.408	27.409	24.167	23.168	0.845	4,772	<loa< td=""></loa<>
221			12-18	<loq< td=""><td>8,582</td><td>0.000 E + 00</td><td>0.0</td><td>0.994</td><td>26.726</td><td>25.732</td><td>23.042</td><td>22.048</td><td>0.857</td><td>7,353</td><td><loa< td=""></loa<></td></loq<>	8,582	0.000 E + 00	0.0	0.994	26.726	25.732	23.042	22.048	0.857	7,353	<loa< td=""></loa<>
222			18-24	<loq< td=""><td>9,521</td><td>0.000E+00</td><td>0.0</td><td>0.995</td><td>24.044</td><td>23.049</td><td>20.584</td><td>19.589</td><td>0.850</td><td>8,092</td><td><loa< td=""></loa<></td></loq<>	9,521	0.000E+00	0.0	0.995	24.044	23.049	20.584	19.589	0.850	8,092	<loa< td=""></loa<>
223			24-30	<loq< td=""><td>8,747</td><td>0.000E+00</td><td>0.0</td><td>1.001</td><td>23.837</td><td>22.836</td><td>20.505</td><td>19.504</td><td>0.854</td><td>7,471</td><td><loa< td=""></loa<></td></loq<>	8,747	0.000E+00	0.0	1.001	23.837	22.836	20.505	19.504	0.854	7,471	<loa< td=""></loa<>
224			30-34	<loq< td=""><td>3740</td><td>0.000E+00</td><td>0.0</td><td>0.994</td><td>27.324</td><td>26.330</td><td>22.828</td><td>21.834</td><td>0.829</td><td>3,101</td><td><loa< td=""></loa<></td></loq<>	3740	0.000E+00	0.0	0.994	27.324	26.330	22.828	21.834	0.829	3,101	<loa< td=""></loa<>
						ſ	0.0	Fotal ¹⁴ C Re	coverv						

PTRL Project No. 964 Page 225

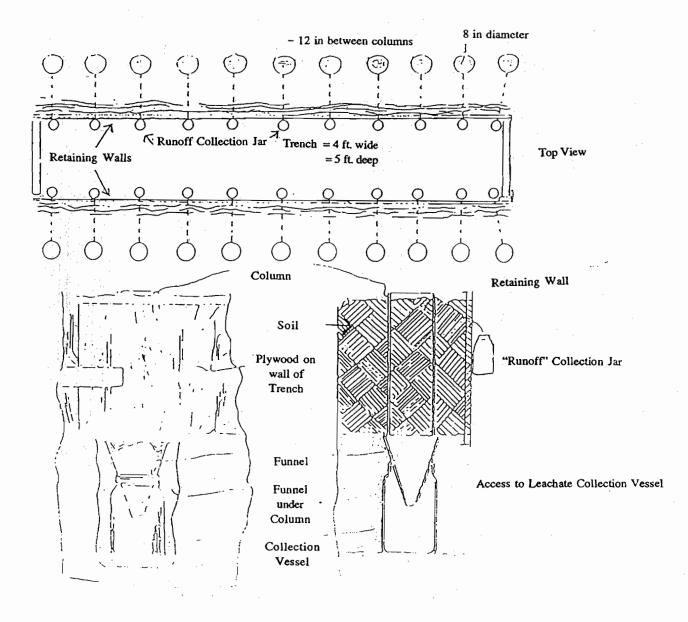
 η_{λ}

Appendix 9. Recovery of Bromide in Leachate and Runoff Samples.

1	mg / hysimeter mg / hysimeter							
Sample Identification	Lysimeter	DAT	Reported Br Conc. (ug/ml)	Sample Volume (ml)	Cumulative Leachate Volume (ml)	Br Recovery (mg)	Br ⁻ % Applied	Cumulative Br Recovery % Applied
964-02-1012-16DAT	2	16	0.13	590	590	0.1	0.0	0.0
964-02-1064-170DAT	2	170	<loq[a]< td=""><td>533</td><td>1123</td><td>0.0</td><td>0.0</td><td>0.0</td></loq[a]<>	533	1123	0.0	0.0	0.0
964-02-1067-184DAT	2	184	<loq< td=""><td>680</td><td>1803</td><td>0.0</td><td>0.0</td><td>0.0</td></loq<>	680	1803	0.0	0.0	0.0
964-02-1083-212DAT	2 2	212 219	<loq <loq< td=""><td>780 745</td><td>2583 3328</td><td>0.0 0.0</td><td>0.0 0.0</td><td>0.0</td></loq<></loq 	780 745	2583 3328	0.0 0.0	0.0 0.0	0.0
964-02-1093-219DAT 964-02-1108-240DAT	2	240	0.15	772	4100	0.0	0.0	0.0
964-02-1122-254DAT	2	254	0.11	640	4740	0.1	0.0	0.0
964-02-1132-268DAT	2	268	0.1	460	5200	0.0	0.0	0.0
964-02-1137-273DAT 964-02-1146-280DAT	2	273 280	0.33	106 796	5306 6102	0.0 0.2	0.0 0.0	0.0
964-02-1157-285DAT Control Lysimeter	2	285 g	0.31	163	6265	0.1	0.0	0.0
964-14-1006-5DAT	14	5	0.30	43	43	0.0	0.0	0.0
964-14-1018-16DAT	14	16	0.45	142	185	0.1	0.0	0.0
964-14-1037-58DAT	14	58	0.26	59	244	0.0 0.2	0.0 0.0	0.0
964-14-1039-72DAT 964-14-1044-86DAT	14 14	72 86	1.14 3.29	143 210	387 597	0.2	0.0	0.1
964-14-1046-93DAT	14	93	7.76	52	649	0.4	0.1	0.2
964-14-1047-100DAT	14	100	8.27	105	754	0.9	0.1	0.3
964-14-1048-117DAT	14	117	15.31	552	1306	8.5	1.3	1.6
964-14-1050-121DAT	14	121	22.47	185	1491	4.2	0.6 0.8	2.3 3.1
964-14-1051-128DAT 964-14-1052-135DAT	14 14	128 135	32.98 35.44	156 129	1647 1776	5.1 4.6	0.8	3.8
964-14-1054-142DAT	14	142	43.64	190	1966	8.3	1.3	5.1
964-14-1056-149DAT	14	149	3.35	698	2664	2.3	0.4	5.4
964-14-1058-156DAT 964-14-1068-184DAT	14 14	156 184	47.16 9.74	34 60	2698 2758	1.6 0.6	0.2 0.1	5.7 5.8
964-14-1084-212DAT	14	212	9.97	790	3548	7.9	1.2	7.0
964-14-1094-219DAT	14	219	12.51	770	4318	9.6	1.5	8.5
964-14-1104-233DAT	14	233	24.38	185	4503	4.5	0.7	9.2
964-14-1109-240DAT	14 14	240 247	8.48 10.37	781 200	5284 5484	6.6 2.1	1.0 0.3	10.2 10.5
964-14-1119-247DAT 964-14-1123-254DAT	14	254	11.29	755	6239	8.5	1.3	11.8
964-14-1133-268DAT	14	268	9.16	425	6664	3.9	0.6	12.4
964-14-1138-273DAT	14	273	6.83	700	7364	4.8	0.7	13.2
964-14-1147-280DAT	14	280	8.04	760	8124	6.1	0.9	14.1
964-14-1154-282DAT 964-14-1158-285DAT	14	282 285	4.85 4.41	209 510	8333 8843	1.0 2.2	0.2 0.3	14.3 14.6
KBr Lysimeter								
964-18-1040-72DAT Sampled as Control	18	72	0.33	22	22	0.0	0.0	0.0
964-20-1022-16DAT	20	16	0.46	350	350	0.2	0.0	0.0
964-20-1041-72DAT	20	72	14.01	835	1185	11.7	1.8	1.8
964-20-1053-135DAT 964-20-1061-156DAT	20 20	135 156	28.11 30.21	330 761	1515 2276	9.3 23.0	1.4 3.5	3.2 6.8
964-20-1070-184DAT	20	184	9.16	640	2916	5.9	0.9	7.7
964-20-1078-198DAT	20	198	0.88	125	3041	0.1	0.0	7.7
964-20-1087-212DAT	20	212	4.53	690	3731	3.1	0.5	8.2
964-20-1097-219DAT 964-20-1112-240DAT	20	219	10.82	330	4061	3.6	0.6	8.7
964-20-1126-254DAT	20 20	240 254	7.29 3.21	715 570	4776 5346	5.2 1.8	0.8 0.3	9.5 9.8
964-20-1141-273DAT	20	273	4.97	510	5856	2.5	0.4	10.2
964-20-1149-280DAT	20	280	3.24	645	6501	21	0.3	10.5
964-20-1156-282DAT 964-20-1160-285DAT	20 20	282 285	2.62 2.74	209 418	6710 7128	0.5 1.1	0.1	10.6 10.8
KBr Lysimeter	20	20.7	2.14	410	120	1.1	0.2	10.0
964-26-1027-16DAT 964-26-1043-72DAT	26 26	16 72	<loq 0.19</loq 	870 72	870 942	0.0 0.0	0.0 0.0	0.0 0.0
Sampled for Conductivity								
964-28-1029-16DAT	28	16	0.17	188	188	0.0	0.0	0.0
964-28-1073-184DAT	28	184	3.82	820	1008	3.1	0.5	0.5
964-28-1100-219DAT 964-28-1115-240DAT	28 28	219 240	3.02 3.76	170 222	1178 1400	0.5 0.8	0.1 0.1	0.6 0.7
	e: high runoff v		3,79		1100	0.0	0.1	0.7

[a] <LOQ=Less than the Limit of Quantitation

73


Appendix 9 (Continued).

Recovery of Bromide in Leachate and Runoff Samples.

Br application: 648	mg / lysimeter	- 1						
in application. Vio	шдлузынске	1			Cumulative			
			Reported	Sample	Runoff	Br		Cumulative
			Br ⁻ Conc.	Volume	Volume	Recovery	Br	Br Recovery
Sample Identification	Lysimeter	DAT	<u>(ug/mi)</u>	(<u>ml</u>)	(<u>m</u>)	(mg)	% Applied	% Applied
64-02-5004-16DAT	2	16	0.18	585	585	0.1	0.0	0.0
64-02-5021-44DAT	. 2	44	0.50	315	900	0.2	0.0	0.0
64-02-5029-72DAT	2	72	<loq [a]<="" td=""><td>250</td><td>1150</td><td>0.0</td><td>0.0</td><td>0.0</td></loq>	250	1150	0.0	0.0	0.0
64-02-5054-142DAT	. 2	142	0.38	198	1348	0.1	0.0	0.0
964-02-5066-156DAT	2	156	<loq< td=""><td>669</td><td>2017</td><td>0.0</td><td>0.0</td><td>0.0</td></loq<>	669	2017	0.0	0.0	0.0
64-02-5067-177DAT	2	177	<loq< td=""><td>950</td><td>2967</td><td>0.0</td><td>0.0</td><td>0.0</td></loq<>	950	2967	0.0	0.0	0.0
964-02-5075-184DAT	2	184	<loq< td=""><td>1105</td><td>4072</td><td>0.0</td><td>0.0</td><td>0.0</td></loq<>	1105	4072	0.0	0.0	0.0
064-02-5085-212DAT	. 2	212	<l00< td=""><td>125</td><td>4197</td><td>0.0</td><td>0.0</td><td>0.0</td></l00<>	125	4197	0.0	0.0	0.0
964-02-5088-219DAT	2	219	<1.00	322	4519	0.0	0.0	0.0
964-02-5090-233DAT	2	233	<l00< td=""><td>70</td><td>4589</td><td>0.0</td><td>0.0</td><td>0.0</td></l00<>	70	4589	0.0	0.0	0.0
964-02-5095-240DAT	2	240	<l00< td=""><td>1150</td><td>5739</td><td>0.0</td><td>0.0</td><td>0.0</td></l00<>	1150	5739	0.0	0.0	0.0
964-02-5100-254DAT	2	254	<loq< td=""><td>1010</td><td>6749</td><td>0.0</td><td>0.0</td><td>0.0</td></loq<>	1010	6749	0.0	0.0	0.0
964-02-5104-273DAT	2	273	<loq< td=""><td>82</td><td>6831</td><td>0.0</td><td>0.0</td><td>0.0</td></loq<>	82	6831	0.0	0.0	0.0
964-02-5114-280DAT	2	280	<l00< td=""><td>74</td><td>6905</td><td>0.0</td><td>0.0</td><td>0.0</td></l00<>	74	6905	0.0	0.0	0.0
964-02-5121-285DAT	2	285	<loq< td=""><td>895</td><td>7800</td><td>0.0</td><td>0.0</td><td>0.0</td></loq<>	895	7800	0.0	0.0	0.0
964-14-5001-5DAT	14	5	0.13	122	122	0.0	0.0	0.0
964-14-5025-58DAT	14	58	0.35	59	181	0.0	0.0	0.0
964-14-5032-72DAT	14	72	1.06	1153	1334	1.2	0.2	0.0
964-14-5046-93DAT	14	93	0.30	44	1378	0.0	0.2	0.2
964-14-5057-149DAT	14	149	0.30	1365	2743	1.0	0.2	
964-14-5064-170DAT	14	170	1.61	1365	2929	0.3	0.2	0.4
964~14~5068-177DAT								0.4
	-14	177	0.56	848	3777	0.5	0.1	0.5
964-14-5076-184DAT	14	184	0.87	1195	4972	1.0	0.2	0.7
964-14-5086-212DAT 964-14-5091-233DAT	14 14	212 233	1.19	250	5222	0.3 0.0	0.0	0.7
64~14-5096-240DAT	14	233	<loq <loq< td=""><td>150 960</td><td>5372 6332</td><td>0.0 0.0</td><td>0.0 0.0</td><td>0.7</td></loq<></loq 	150 960	5372 6332	0.0 0.0	0.0 0.0	0.7
64~14~5101-254DAT	14	254	<l00< td=""><td>920</td><td>7252</td><td>0.0</td><td>0.0</td><td>0.7 0.7</td></l00<>	920	7252	0.0	0.0	0.7 0.7
64~14-5105-273DAT	14	273	<100	605	7857	0.0	0.0	0.7
64-14-5115-280DAT	14	280	<l00< td=""><td>1775</td><td>9632</td><td>0.0</td><td>0.0</td><td>0.7</td></l00<>	1775	9632	0.0	0.0	0.7
64-14-5122-285DAT	14	285	0.12	965	10597	0.0	0.0	0.7
064-14-5125-289DAT	14	289	0.13	473	11070	0.1	0.0	0.7
64-14-5126-289DAT	14	289	0.14	845	11915	0.1	0.0	0.7
64-14-5138-296DAT	14	296	<loq< td=""><td>780</td><td>12695</td><td>0.0</td><td>0.0</td><td></td></loq<>	780	12695	0.0	0.0	
64-14-5139-296DAT	14	296	<l00< td=""><td>746</td><td>13441</td><td>0.0</td><td></td><td>0.7</td></l00<>	746	13441	0.0		0.7
64-14-5152-310DAT	•						0.0	0.7
04-14-3132-310DA1	14	310	0.43	856	14297	0.4	0.1	0.8
64-18-5010-16DAT	18	16	0.25	77	77	0.0	0.0	0.0
64-18-5034-72DAT	18	72	<loq< td=""><td>172</td><td>249</td><td>0.0</td><td>0.0</td><td>0.0</td></loq<>	172	249	0.0	0.0	0.0
964-20-5083-198DAT	20	198	0.66	135	135	0.1	0.0	0.0
64-26-5012-16DAT	26	16	33.68	223	223	7.5	1.2	1.2
64-26-5038-72DAT	26	72	0.47	835	1058	0.4	0.1	1.3
064-28-5014-16DAT	28	16	0,70	470	470	0.3	0.1	0.1
64-28-5041-72DAT	28	72	0.44	1188	1658	0.5	0.1	0.2
64-28-5061-149DAT	28	149	0.38	1620	3278	0.6	0.1	0.3
64-28-5071-177DAT	28	177	<loq< td=""><td>1310</td><td>4588</td><td>0.0</td><td>0.0</td><td>0.3</td></loq<>	1310	4588	0.0	0.0	0.3
64-28-5079-184DAT	28	184	<l00< td=""><td>680</td><td>5268</td><td>0.0</td><td>0.0</td><td>0.3</td></l00<>	680	5268	0.0	0.0	0.3
64-28-5093-233DAT	28	233	<l00< td=""><td>130</td><td>5398</td><td>0.0</td><td>0.0</td><td>0.3</td></l00<>	130	5398	0.0	0.0	0.3
64-28-5110-273DAT	28	273	<l00< td=""><td>328</td><td>5726</td><td>0.0</td><td>0.0</td><td></td></l00<>	328	5726	0.0	0.0	
64-28-5134-289DAT	28	289	<l00< td=""><td>238</td><td>5964</td><td>0.0</td><td>0.0</td><td>0.3</td></l00<>	238	5964	0.0	0.0	0.3
64-28-5146-296DAT	28	296	<1.00	510	6474	0.0	0.0	0.3
64-28-5147-296DAT	28	296	0.12	635	7109	0.0	0.0	0.3
64-28-5150-303DAT	28	303	<loo< td=""><td>645</td><td>7754</td><td>0.1</td><td></td><td>0.3</td></loo<>	645	7754	0.1		0.3
64-28-5153-310DAT	28	505	~100	04.5	/1,74	0.0	0.0	0.3

[a] <LOQ=Less than the Limit of Quantitation

174

Side View

PTRL Project No. 964

Figure 1.

Diagram of Field Column Study Set-Up.