UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

TXR# 0053566 Date: May 30, 2006

MORANDUM

SUBJECT:

Fosthiazate [PC 129022] Request for a waiver of a DNT study for registration

[MRID# 48784301]. Decision# 366357, DP Barcode: 328202.

FROM:

David G Anderson, PhD

Re-registration Branch-2

Health Effects Division (7509P)

To:

Diana Locke, PhD

and

Daniel Kenny and Rita Kumar,

Duris Munder 5/20/06

Risk Assessor

Product Registration, RD (7505P)

Re-registration Branch-2

Health Effects Division (7509P)

THROUGH: Alan Nielsen, Branch Senior Scientist

Re-registration Branch-2

Health Effects Division (7509C)

ac Miels - 5/30/06

The sponsor has requested a waiver of a Developmental Study of Neurotoxicity [DNT] required as a condition for the re-registration of fosthiazate, technical. The request is denied.

A complete summary of the relevant toxicity data with fosthiazate was submitted to the Agency and is appreciated. However, none of the studies cited are able to show potential neurotoxic or behavioral effects resulting from in utero exposure. Possible neurotoxic developmental effects require special studies designed to detect these effects, which may depend on timing of exposure and developmental stage of the test species. Of the studies required, only the DNT study is designed to detect potential neurotoxic/behavioral effects resulting from exposure during stages of fetal development.

Although no residential exposure is anticipated, residues are expected on foods consumed by infants, children and potentially pregnant females. Residues can be expected on bananas, potatoes, tomatoes, peanuts and coffee as acknowledged.

Data submitted in support of the waiver.

- 1. Acute cholinesterase inhibition in rats
- 2. Acute neurotoxicity in rats
- 3. Acute delayed neurotoxicity in hens.

4. Four week range-finding study in rats

AUG 18 2006

- 5. Four week range-finding study in mice
- 6. 90-Day feeding study in rats
- 7. 90-Day feeding study in dogs
- 8. Review of adrenal pathology in the dog
- 9. Reevaluation of cholinesterase inhibition in the dog
- 10. 90-Day neurotoxicity study in the rat
- 11. Chronic/Oncogenicity study in the rat
- 12. Statistical analysis of cholinesterase values in the chronic rat study
- 13. Chronic Oral dog study
- 14. Developmental Study in the rat
- 15. Preliminary, range-finding and definitive developmental toxicity in the rabbit
- 16. Two-generation reproduction study in the rat
- 17. Comparative cholinesterase inhibition in dams and fetuses, adults, 11-day old pups and
- 21 day old pups from acute dosing and multiple-doses.

The relationship of neurotoxicity and cholinesterase inhibition appears to vary with the study. It is noted that the acute neurotoxicity study [MRID# 44269907] showed decreased grip strength and decreased plasma, erythrocyte and brain cholinesterase at the same LOAEL, while another acute cholinesterase study [MRID# 43534502] showed only plasma cholinesterase inhibition at similar dose levels to the former study. The subchronic neurotoxicity study shows decreased grip strength at higher doses than cholinesterase inhibition. However, until a developmental neurotoxicity study is conducted, it is unknown whether cholinesterase inhibition occurs at the lower doses than behavioral/neurotoxic effects from dosing during development. Potential effects during development are not adequately detected in standard developmental toxicity or reproduction studies. Most of the above studies may detect severe neurotoxicity and slight neurotoxicity in adults, however all of the above studies are inadequate and otherwise not designed to detect more subtle neurotoxic/behavioral effects resulting from exposure of the fetus during stages of development. A developmental neurotoxicity study is required.

In addition, fosthiazate is part of the cumulative assessment of the organophosphates and is needed for comparative purposes.

R131989

Chemical: S-sec-Butyl O-ethyl (2-oxo-3-thiazolidinyl)phosphonothioate

PC Code: 129022

HED File Code: 11000 Chemistry Reviews

Memo Date: 5/30/2006 File ID: DPD328202 Accession #: 000-00-0108

HED Records Reference Center 8/24/2006