UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, DEC. 20460

MEMORANDUM

SUBJECT: Monitoring Data for Isoxaflutole: Quarterly Report for Samples Analyzed April 1 to June 30, 2002 (Dated 9/9/02)

FROM: William P. Eckel, PhD. Environmental Risk Branch II
 Environmental Fate and Effects Division (7507C)

TO: Joanne Miller, PM23

THRU:
TO: Joanne Miller, PM23
Registration Division (7505C)

Environmental Risk Branch II / EFED (7507C)
Elf

DATE: November 1, 2002

This memorandum interprets data submitted through the registrant-funded sampling and analysis program under the conditional registration for isoxaflutole. The current data package includes sampling from Iowa (112 pond/lake and 69 creek/river), Kansas (1 pond/lake and 4 creek/river), Minnesota (1 pond/lake), Missouri (32 reservoirs), and Nebraska (76 creek/river and 93 wells).

The data for the Missouri reservoirs has already been examined in a previous memo (Sept. 5,2002) that covers results through March, 2002.

Of the 93 Nebraska wells, only one had a detectable amount of the metabolite RPA202248, at 6 parts-per-trillion. The data for creeks and rivers appear to be in line with previous years' results (2000 and 2001). We expect the state of Nebraska to issue a monitoring summary for 2002, as they have in the past. That report will be forwarded to you when we receive it.

Iowa Ponds and Lakes

In response to EFED's concerns about contamination of reservoirs in Missouri, the registrant (now Bayer CropScience) has started a monitoring program. This program was outlined in a meeting with EFED and RD on October 8, 2002.

In the Sept. 9, 2002 quarterly report, Bayer reports results for 112 Iowa ponds and lakes in 65 counties (Iowa has 99 counties). All lakes were sampled once in May or June, 2002. So, roughly two-thirds of lowa counties were sampled. Counties from all parts of the state were included, except that counties in the east-central part of the state were poorly represented.

Of the 112 lakes, 63 had detectable residues of the isoxaflutole metabolites RPA-202248 or RPA-203328. This is 56% of the lakes tested. The concentration of the active metabolite RPA202248 (or diketonitrile, DKN) was below 10 parts-per-trillion (ppt) in 14 lakes (13%), between 11 and 100 ppt in 42 lakes (38%) and above 100 ppt in 4 lakes (3.6%). The highest concentration of DKN, 396 ppt, was reported in East Lake (Osceola) in Clarke county.

Forty-nine of the 65 counties sampled had at least one contaminated lake. This is 75% of all tested counties (65) and 50% of all counties in Iowa (99).

Only 8 of the 65 lakes were identified as potable water. Six of the eight were contaminated. The contaminated lakes include West Lake (Osceola) in Clarke county (120 ppt DKN), Red Haw Lake in Lucas county (183 ppt DKN), Lake Icaria in Adams county (12 ppt DKN), Little River Lake in Decatur county (39 ppt DKN), and Twelve Mile Creek Lake (37 ppt) and Three Mile Lake (24 ppt) in Union county.

These results are a "snapshot" of the 112 lakes in May and June, 2002. Compared to the 32 Missouri reservoirs, the rate of contamination in Iowa is higher (over half versus about onethird). The maximum concentration observed is also higher (396 ppt versus 259 ppt in LaBelle Lake \#l in Missouri). The number of lakes above 100 ppt DKN (4) is greater in Iowa than in Missouri (2) although the percentage is lower (3.6% versus 6.3%).

Overall, these results show that lakes and ponds in Iowa are contaminated at a higher rate than in Missouri, and at higher maximum concentrations, although the rate of lakes above 100 ppt is slightly lower. No statements about trends over time can be made, because only one sampling has been done so far.

Isoxaflutole and metabolites in lowa ponds, lakes MRID D286410
Lake

State
lowa


```
zz>zzzzzzzzzzzzzzzzzzzzzzz>zzzzzzzzzz
```

Dickinson	L Minnewashta
Dickinson	Upper Gar
Dickinson	Big Spirit
Dickinson	Center
Emmet	Ingham
Emmet	Tuttle
Franklin	Beeds
Greene	Spring
Guthrie	Springbrook
Hamilton	Briggs Woods
Hancock	Crystal
Hancock	Eldred Sherwood
Hardin	Lower Pine
Hardin	Upper Pine
Harrison	DeSoto Bend
Harrison	Willow
Henry	L Geode
Howard	L Hendricks
Ida	Moorehead
Ida	Crawford Creek Impoundment
lowa	L lowa
Jasper	Mariposa L (Ken Wolfe L)
Jasper	Rock Creek
Kossuth	L Smith
Lee	Pollmiller Park
Lucas	Williamson Pond
Lucas	Red Haw
Lyon	L Pahoja
Madison	Badger Creek
Madison	Dale Maffitt
Mahaska	Hawthorn
Mahaska	L. Keomah
Mahaska	White Oak
Marion	Roberts Creek
Marion	Red Rock
Marshall	Green Castle
Monona	Blue


```
zzzzzzzzzzzzzzzzzzzzzzzzzzz>>zzzzzzzz
```

Oldham
L Miami
Monona
Monroe
Montgomery
O'Brien
O'Brien
Page
Palo Alto
Palo Alto
Palo Alto
Polk
Polk
Polk
Pottawattamie
Pottawattamie
Pottawattamie
Poweshiek
Poweshiek
Ringgold
Sac
Sac
Shelby
Shelby
Story
Taylor
Taylor
Taylor
Union
Union
Union
Union
Van Buren
Wapello
Warren
Warren
Washington
Wayne
Webster

Sol

$$
\begin{gathered}
\frac{0}{V} \circ \frac{ㅇ}{v} \\
\infty \\
\infty
\end{gathered}
$$

은은은 은

$z z z z z z$

