

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

PREVENTION, PESTICIDES, AND TOXIC SUBSTANCES

MEMORANDUM

DATE:

March 27, 2001

SUBJECT:

Mesotrione (ZA 1296). Tyrosine-mediated toxicity in mice and rats.

DP Barcode: D272633, D271361 Submission: S541375, S589882

FROM:

David Nixon, Toxicologist

Registration Action Branch 1

Health Effects Division (7509C)

THROUGH: George Herndon, Branch Senior Scientist

Registration Action Branch 1 Health Effects Division (7509C)

AND

Pauline Wagner, Co-chair

Karl Baetcke, Co-chair

Mechanism of Toxicity Science Assessment Review Committee

Health Effects Division (7509C)

TO:

Jess Rowland, Co-chair

Elizabeth Doyle, Co-chair

Hazard Identification Assessment Review Committee

Health Effects Division (7509C)

The Health Effects Division (HED) Mechanism of Toxicity Science Assessment Review Committee convened on January 31, 2001 to evaluate the mechanism of toxicity of mesotrione in rats and mice in regards to tyrosine-mediated effects and assess the relevance of the two animal models to human health. An analysis of the data and the conclusions drawn at this meeting are presented in this report.

Conclusions

The Mechanism of Toxicity Committee determined that the petitioner has adequately demonstrated that for tyrosine-mediated toxicological effects, the mouse is a more appropriate model for assessing human risk than is the rat. This decision is based on comparative data on the activity of TAT in the rat, mouse and human, and the similarities of the response to elevated plasma tyrosine levels in humans and the mouse.

cc: Anna Lowit (RRB2), William Hazel (RAB1), James Stone (RD)

Committee Members in Attendance

Members who were present and gave electronic concurrence to this report were: Karl Baetcke, Mike Ioannou, Anna Lowit, Ghazi Dannan, Esther Rinde, Vicki Delarco, Karen Hamernik, Elizabeth Doyle, Alberto Protzel, Ayaad Assaad, and Pauline Wagner

Data evaluation prepared by:

David Nixon, Registration Action Branch I

Also in attendance were:

Joanne Miller and Jim Stone of RD

Data Evaluation / Report Presentation David Nixon Toxicologist Structure:

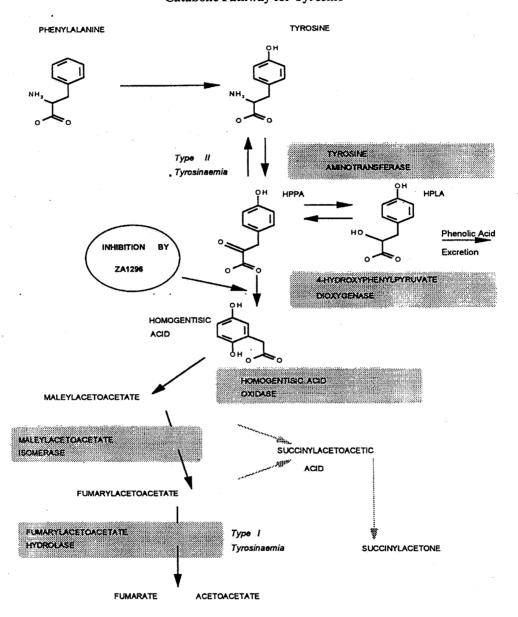
CAS #: 104206-82-8

Chemical Name: 2-[4-(methylsulfonyl)-2-nitrobenzoyl]-1,3-cyclohexanedione

Common Name: Mesotrione

I. INTRODUCTION

Mesotrione (ZA 1296) is one of a new class of triketone chemicals. It is an herbicide that acts by inhibiting the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) in plants. This enzyme is also present in mammals, primarily in the liver, and its inhibition may result in accumulation of high levels of tyrosine in the blood. Mesotrione has been noted to adversely affect body weight, pup survival, and litter size and produce effects in the eye, kidney, and liver in the rat. The petitioner of mesotrione has attempted to demonstrate that tyrosine is the mediator of the toxic effects observed in rats and that the species (rat vs. mouse) and sex differences in the toxicology of the compound are due to the excess levels of tyrosine that occur uniquely in the rat. The petitioner believes the mouse is a better model for assessing mesotrione toxicity in humans than the rat since the enzymes involved in tyrosine metabolism and the pathological process have similar activities in mice and humans and the severe tyrosinemia associated with rats does not develop in mice or humans. Some of the questions that need to be addressed include: 1) Is the toxicity associated with the administration of mesotrione in rats mediated by tyrosine? 2) Are the sex and species differences in the toxic response to mesotrione predominantly a result of different HPPD and TAT (tyrosine aminotransferase) activities? 3) Is the mouse a better model than the rat for assessing mesotrione toxicity in humans and the disposition of tyrosine during a compound-induced tyrosinemia?


II. PROPOSED MECHANISM OF ACTION

A. Tyrosine Metabolism

Tyrosine metabolism occurs primarily in the liver. Tyrosine is converted to 4-hydroxyphenylpyruvic acid (HPPA) by tyrosine aminotransferase and then to homogentisic acid by HPPD. It then goes on to ultimately form fumarate and acetoacetate. If HPPD is inhibited, HPPA will not be converted to homogentisic acid, but can be converted to phenolic acids and excreted in the urine. If HPPD inhibition is severe, tyrosine levels may increase dramatically depending on the activity of TAT. If the activity of TAT is low, as in the rat, tyrosine cannot be converted quickly to HPPA and excreted so that levels in the blood rise and result in toxicity to the rat. The petitioner points out that the TAT activity in the mouse is much higher in the rat so that tyrosine concentrations do not reach high enough levels in the blood that result in toxicity. Hence, the basis for the claim that the mouse is a better model for assessing tyrosine-mediated mesotrione toxicity in humans than the rat, is that humans and mice have similar TAT activities and are not likely to have the adverse effects associated with toxicity in the rat.

Figure 1

Catabolic Pathway for Tyrosine

B. Comparison of rat, mice and human data

Petitioner's Assessment

1. Mesotrione toxicity in rats

Signs of toxicity observed in adult rats administered mesotrione include ocular effects such as corneal opacity, increased kidney and liver weights, and decreased body weight and body weight gain. The ocular and organ weight effects are reversible after the compound is no longer administered to the rat (MRIDs 44537103, 44537104). In multi-generation rat studies, decreased litter size and pup weights, reduced pup survival and an increased incidence of hydronephrosis have been noted.

In summary, as dietary levels of mesotrione increase, plasma levels of the compound increase linearly while plasma tyrosine levels reach a threshold which is maintained even though mesotrione plasma levels continue to increase. Liver and kidney weight changes appear as tyrosine plasma levels reach around 800 to 1000 nmol/ml while ocular effects appear around 1000 nmol/ml. Body weight changes appear at higher plasma tyrosine levels. Reduced litter size occur at 1000 nmol/ml and bilateral hydronephrosis and reduced pup survival appear after tyrosine plasma levels reached 1300 nmol/ml.

In male rats, plasma levels of mesotrione increase linearly with increasing dietary concentrations up to 5000 ppm, but tyrosine plasma levels reach a threshold and are maintained at about the same plasma concentration with dietary concentrations of 40 ppm up to 5000 ppm (MRID 44505113). The steady state plasma tyrosine concentrations increase rapidly at dietary doses ranging from 1 to 10 ppm. Above 10 ppm of dietary mesotrione, there is little effect on plasma tyrosine concentrations or on the toxic effect response in the animal. Also, HPPD activity is completely inhibited at 10 ppm even though plasma levels of mesotrione continue to increase as dietary levels increase. In female rats, steady state plasma tyrosine concentrations occur at higher doses. Excess tyrosine in the blood is metabolized to phenolic acids and excreted in the urine. The shape of the dose-response curve for the excretion of phenolic acids in the urine is similar to the shapes of the dose-response curves for tyrosinemia, HPPD inhibition and liver and kidney weight changes (MRIDs 44537106, 44537107).

Male rats achieve a maximal level of plasma tyrosine concentration approaching 3,500 nmol/ml while female rats achieve a maximal level of around 1,800 nmol/ml. In female rats, HPPD activity is completely inhibited at 1000 ppm, which is two orders of magnitude greater than males. Also, signs of toxicity occur at higher dietary levels of mesotrione in the female than in the male. Females have similar shaped dose-response curves for HPPD inhibition, tyrosinemia, signs of toxicity and excretion of phenolic acids in the urine like male rats, but over a different dose range. The petitioner claims that this difference in dose levels between the sexes where toxicity occurs is due to a higher basal HPPD activity, a higher Vmax for TAT, and a lower Km for TAT in females as compared to males. As mesotrione levels increase in the blood, HPPD in female rats will be able to metabolize HPPA more efficiently to homogentisic acid than males because the enzyme activity is greater. Also, due to the kinetics of TAT in females, any tyrosine buildup can be effectively metabolized to phenolic acids and excreted in the urine, thus,

preventing presentation of clinical signs at lower doses as observed in males (MRIDs 44537106, 44537107).

The petitioner has demonstrated a threshold tyrosine concentration after which adverse effects begin to appear. Liver weight changes appear in both sexes of the rat when plasma tyrosine levels reach about 800 - 1,000 nmol/ml. In male rats, this level is reached at about 5 ppm of mesotrione in the diet, while in females the same effect does not appear until around 100 ppm. Ocular effects begin to occur at 1,000 nmol/ml of plasma tyrosine which is reached at about 7.5 ppm in males and 1,000 ppm in females (MRIDs 44537106, 44537107).

Other evidence in rats that tyrosine is the mediator of mesotrione toxic effects.

Feeding high concentrations of tyrosine alone to rats results in a tyrosinemia that can elicit the same toxic signs as administration of mesotrione such as increased liver and kidney weights, decreased body weight gain, and ocular effects. When mesotrione is added to the tyrosine-enriched diet, the effects are exacerbated (MRID 44505111).

A more potent triketone, NTBC, affects HPPD like mesotrione and will produce the same adverse ocular effects in rats as mesotrione but at lower doses (Robinson 1995).

2. Mesotrione toxicity in mice

Ci.

The petitioner states that the only effect seen in adult mice when administered mesotrione up to 7,000 ppm is increased liver weight. Decreased pup weights were seen in the reproduction study. The petitioner alleges that the mouse reaches a steady state plasma tyrosine concentration around 800 nmol/ml in both sexes which is below the threshold where ocular, kidney weight, body weight, and litter effects appear, but liver weight increases are noted (MRIDs 44505116, 44505022). This difference between rats and mice is attributed to the higher activity of TAT in mice which results in the ability to excrete tyrosine more effectively as phenolic acids than the rat (MRID 44505116). Since both sexes of the mouse can maintain tyrosine plasma levels at about 800 nmol/ml, ocular effects do not occur even at high dietary dosages of mesotrione. Since mesotrione is excreted unchanged at low and high doses in rats and mice, the petitioner alleges that it is highly unlikely that differences in disposition of mesotrione between rats and mice will account for their difference in susceptibility to adverse effects associated with the administration of the compound.

3. Human data

Cytosolic TAT activity in the human liver has been reported to be 4.5 - 7.3 nmol HPPA/mg cytosolic protein/min. This value is similar to the TAT activity in mice and 3 - 4 times the activity in male rats (Furukawa *et al* 1984, Giardini *et al* 1983, MRIDs 44537103, 44505116).

Steady state plasma tyrosine levels have been demonstrated in humans in which HPPD activity was deficient (Endo *et al* 1982, Giardini *et al* 1983). Humans with a low TAT activity (type II tyrosinemia) have been reported to have severe tyrosinemia with associated ocular effects. If the tyrosine plasma levels fall to about 800 nmol/ml, ocular effects resolve, thus, providing

evidence that humans have a threshold plasma tyrosine level above which toxic signs develop. Human volunteer studies with mesotrione revealed that doses up to 4 mg/kg produced only a mild, transient tyrosinemia (MRID 44505114).

Sex differences (MRID 44901720)

There are no differences in the incidence or effects between male and female humans affected by the condition of hereditary tyrosinemia.

The available literature shows no differences in hepatic TAT activity measurements between males and females.

The incidence pattern for neonatal tyrosinemia does not suggest that one sex is more vulnerable than the other.

Humans treated with NTBC, a triketone drug about 40 times more potent than mesotrione, for type I tyrosinemia have maintained tyrosine levels less than 1,000 nmol/ml. Treatment resulted in ocular irritation only. Infants administered NTBC for type I tyrosinemia have not had treatment withdrawn due to adverse effects (Lindstedt *et al* 1992).

4. Expert Panels

In 1998/1999 an independent panel of experts in comparative biology and in 2000, another independent expert panel that included scientists with developmental/reproductive toxicology expertise concluded the following (MRIDs 44901720, 45283102):

- There is sufficient evidence to conclude that the toxicity associated with administration of
 mesotrione to rats is mediated by tyrosine and that the species differences in toxic response
 are the result of different steady-state tyrosine levels, maintained by the differential activities
 of TAT.
- The higher steady-state activity of TAT in the mouse maintains a lower plasma level of tyrosine in the mouse, thus precluding the expression of toxicities seen in the rat.
- The mouse is more predictive of the human dose/effect profile of mesotrione than is the rat, since human TAT activity is similar to that in the mouse.
- High plasma levels of tyrosine mediate the changes seen in reproductive and developmental toxicity studies of mesotrione in the rat.
- The mouse is a more appropriate model than the rat for assessing the potential developmental toxicity of elevated plasma tyrosine levels in humans due to the similar TAT activity between the two species.

5. Petitioner's Conclusions

The data presented appears to show that the mouse is the best model for assessing mesotrione toxicity in humans due to similarities in steady state plasma tyrosine levels, threshold levels for adverse effects, TAT activity, and the response of both sexes to the compound.

Agency's Findings on Submitted Toxicity Studies of Mesotrione

1. Rat

Subchronic Studies

In two rat subchronic studies, a LOAEL/NOAEL of 11/0.09 mg/kg/day based upon corneal abnormalities and decreased body weight gain (MRID 44505019) and a LOAEL/NOAEL of 0.63/0.41 mg/kg/day based upon corneal lesions (MRID 44505020) were determined.

Chronic Study

In a rat combined chronic toxicity/ carcinogenicity study, a LOAEL/ NOAEL of 0.48/0.16 mg/kd/day based upon corneal lesions, increases in kidney and liver weights, and hepatocyte fat vacuolation was determined (MRID 44505035). However, the NOAEL only applies to the corneal lesions since the lower doses were part of a special study to ascertain ocular toxicity only and not other organ effects, including the kidney and liver.

Reproduction

In a rat reproduction study, a parental systemic LOAEL of 0.3 mg/kg/day based upon significantly increased plasma tyrosine levels and increased liver weights in F_2 males, and an offspring systemic LOAEL of 0.3 mg/kg/day based upon significantly increased plasma tyrosine levels in F_2 male pups was determined. No NOAEL was established for parental or offspring effects. At the next highest dose (1.1 mg/kg/day) increased ocular and renal lesions in both sexes and decreased food consumption in females were observed in the parents and increased ocular lesions in males and increased renal lesions in both sexes were observed in the offspring. A reproductive LOAEL/NOAEL of 1.1/0.3 mg/kg/day based on decreased mean F_2 litter size was determined (MRID 44505033).

2. Mouse

Subchronic Study

In a mouse subchronic study, a NOAEL of 1212 mg/kg/day was determined with no LOAEL due to no systemic effects observed at the highest dose tested (MRID 44505022).

Chronic Studies

In a mouse carcinogenicity study, a LOAEL/NOAEL of 898/49.7 mg/kg/day based upon decreases in body weight, body weight gain, and food efficiency was determined (MRID 44505028). In a mouse chronic toxicity study the LOAEL/NOAEL was 1114/56.2 mg/kg/day based upon decreases in body weight gain and food utilization (MRID 44505026).

Reproduction

In a mouse reproduction study, a parental systemic LOAEL/NOAEL of 71.4/10.1 mg/kg/day based upon increased kidney weights and tyrosinemia in the F_0 males and F_1 males and females and an offspring systemic LOAEL/NOAEL of 2.1/<2.1 based upon tyrosinemia and ocular discharge in the F_1 and F_2 offspring were determined (MRID 44505034).

The data in the above studies show that the tyrosine-mediated effects as a result of mesotrione administration occur at lower doses in the rat than in the mouse and are consistent with the mechanism proposed by the petitioner.

III. DISCUSSION

The petitioner's postulated mechanism of action for mesotrione appears to be sound. Plasma levels of mesotrione increase linearly with increased dietary intake. However, the clinical signs associated with administration of this compound appear to be mediated by plasma tyrosine levels which ultimately reach a steady-state level and do not continue to rise as dietary concentration increases. Different organs are affected at various threshold levels, but most of the toxic effects are reversible once the tyrosine levels are reduced below the associated threshold level. The same toxic signs can be experimentally induced by feeding a high tyrosine diet alone or can be exasperated by adding tyrosine to a diet containing mesotrione.

Basically, ocular effects are the initial clinical manifestation in rats and appear at lower doses of mesotrione in males than in females. In the rat subchronic study, ocular effects and body weight changes were noted at the LOAEL. In the rat chronic study, no NOAEL was determined for liver and kidney effects in the male rat, but was probably close to the ocular toxicity NOAEL. In the mouse, the reviewer found that body weight decrements and decreased food efficiency appear before liver effects in the chronic toxicity and carcinogenicity studies which differs from the sequence laid out by the petitioner in which ocular effects and liver and kidney weight increases appear before body weight decrements. However, the body weight changes and decreased food efficiency occur in the mouse at much higher doses than in either sex of the rat. In the rat reproduction study, tyrosinemia and increased liver weights were observed in adults at the lowest dose tested, while in the mouse reproduction study, tyrosinemia and increased kidney weights were noted at the LOAEL (71.4 mg/kg/day) which was higher than the rat LOAEL (0.3 mg/kg/day). In the rat developmental study, maternal effects included body weight and body weight gain decrements with decreased food consumption at the LOAEL in the absence of any ocular effects. No maternal effects were noted in the mouse developmental study. From these data, it seems that the predictive sequence of adverse effects using threshold levels is not precise, but the proposed mechanisms in the rat and mouse appear to hold true in adult animals.

In the developmental studies, the rat appears to be more sensitive to developmental effects when administered mesotrione than the mouse due to the fact that no NOAEL was established for maternal or developmental effects (the lowest dose tested was 100 mg/kg/day) in the rat and the mouse had developmental effects at 600 mg/kg/day (the highest dose tested) in the absence of any maternal effects

Young animals appear to be more sensitive to the effects of mesotrione administration than adults. In the mouse reproduction study, parental effects seen at the mid-dose (71.4 mg/kg/day) included increased kidney weights and tyrosinemia while offspring effects of tyrosinemia and ocular discharge were noted at the lowest dose tested (2.1 mg/kg/day). In the rat reproduction study, both parental and offspring systemic LOAELs were observed at the lowest dose tested (0.3 mg/kg/day). The parental effects included tyrosinemia and increased liver weights, while the offspring effect was tyrosinemia alone; however, the tyrosinemia in the pups was 10X that of the adults at the same mesotrione dietary level. The effects at the next highest dose for both offspring and parents included increased ocular and renal lesions plus increased liver weights in the parents.

Some interesting observations to note are that exposure to mesotrione throughout the lifespan of the mouse appears to greatly affect the dose level at which adverse effects are seen. In the subchronic, chronic, and carcinogenicity mouse studies, effects were noted near the limit dose or not seen at all. In the reproduction study, the parental LOAEL/NOAEL was much lower (71.4/10.1 mg/kg/day). Apparently, a lifetime exposure to mesotrione from the womb to reproductive age can increase the sensitivity of the animal to the toxic effects of the compound. It is also noted that the gap in effect levels between the rat and mouse offspring is much smaller than between adult rats and mice in the reproduction study and the other oral studies. This may suggest that enzyme kinetics may differ in the young as compared to adults.

IV. CONCLUSIONS

(~i...)

The Mechanism of Toxicity Committee determined that the petitioner has adequately demonstrated that for tyrosine-mediated toxicological effects, the mouse is a more appropriate model for assessing human risk than is the rat. This decision is based on comparative data on the activity of TAT in the rat, mouse and human, and the similarities of the response to elevated plasma tyrosine levels in humans and the mouse.

TOXICITY PROFILE FOR MESOTRIONE

DER #	STUDY TYPE - DOSE LEVELS	NOAEL (mg/kg/day)	LOAEL (mg/kg/day)
1 .	2-YR FEED/CARCINOGENIC RAT (1997, 1998) MRIDs 44505035, 44505036 Acceptable/guideline 0, [1, 2.5], 7.5, 100, 2500 ppm M/F: 0/0, [0.06/0.08, 0.16/0.19], 0.48/0.57, 6.48/7.68, 159.89/189.48 mg/kg/day	0.16/0.19 (M/F) [The NOAEL only applies to ocular lesions; a NOAEL was not determined for kidney and liver weights or hepatocyte fat vacuolation in males]	0.48/0.57 (M/F), based on ocular lesions, increases in kidney and liver weights, and hepatocyte fat vacuolation in males No evidence of carcinogenicity
2	12-MONTH CHRONIC TOXICITY MOUSE (1997) MRID 44505026 Acceptable/guideline 0, 10, 50, 350, 7000 ppm M/F: 0/0, 1.5/2.1, 7.8/10.3, 56.2/72.4, 1114/1494.5 mg/kg/day	56.2/72.4 (M/F)	1114/1494.5 (M/F), based on decreases in body weight gain and food utilization in males
3	80-WEEK CARCINOGENIC MOUSE (1997) MRID 44505028 Acceptable/guideline 0, 10, 350, 7000 ppm M/F: 0/0, 1.4/1.8, 49.7/63.5, 897.7/1102.9 mg/kg/day	49.7/63.5 (M/F)	897.7/1102.9, based on decreased body weight, body weight gain, and food efficiency in males No evidence of carcinogenicity
4	1-YR FEEDING DOG (1997) MRID 44505027 Acceptable/guideline 0, 10, 100, 600 mg/kg/day	Not determined	10, based on evidence of tyrosinemia in both sexes and increased incidence of erythrophagocytosis in the mesenteric lymph nodes of females

TOXICITY PROFILE FOR MESOTRIONE

DER #	STUDY TYPE - DOSE LEVELS	NOAEL (mg/kg/day)	LOAEL (mg/kg/day)
5	3-GEN REPRODUCTION RAT (1997) MRID 44505033 Acceptable/guideline 0, 2.5, 10, 100, 2500 ppm M/F: 0/0, 0.3/0.3, 1.1/1.2, 11.7/12.4, 287.7/311.4 mg/kg/day	Parental systemic: not established Offspring systemic: not established	Parental systemic: 0.3 (M/F), based on significantly increased plasma tyrosine levels and increased liver wts. in F ₂ males Offspring systemic: 0.3 (M/F), based on significantly increased plasma tyrosine levels
	-	Reproductive: 0.3 (M/F)	in F ₂ male pups <u>Reproductive</u> : 1.1/1.2 (M/F), based on decreased F ₂ mean litter size
6	2-GEN REPRODUCTION MOUSE (1997) MRID 44505034 Acceptable/guideline 0, 10, 50, 350, 1500, 7000 ppm M/F: 0/0, 2.1/2.4, 10.1/11.7, 71.4/82.5, 306.7/362.7, 1455.5/1652.3 mg/kg/day	Parental systemic: 10.1/11.7 (M/F) Offspring systemic: not established	Parental systemic: 71.4/82.5 (M/F), based on increased kidney weights and tyrosinemia in the F ₀ males and F ₁ males and females Offspring systemic: 2.1/2.4 (M/F), based on tyrosinemia and ocular discharge in the F ₁ and F ₂ offspring
7	DEVELOPMENTAL TOX RAT (1999) MRID 44920801 Acceptable/guideline 0, 100, 300, 1000 mg/kg/day	Maternal: 100 Developmental: not established	Maternal: 300, based on decreased body weight gains during treatment, and decreased food consumption Developmental: 100, based on delays in skeletal ossification and changes in manus/pes ossification assessments

TOXICITY PROFILE FOR MESOTRIONE

	TOXICITY PROFILE FOR MESOTRIONE					
DER #	STUDY TYPE - DOSE LEVELS	NOAEL (mg/kg/day)	LOAEL (mg/kg/day)			
8	DEVELOPMENTAL TOX MOUSE (1997, 1999)	Maternal: 600	Maternal: > 600			
	MRIDs 44920802, 44901708 Acceptable 0, 10, 60, 150, 600 mg/kg/day	<u>Developmental</u> : 150	Developmental: 600, based on decreased ossification of the cervical vertebrae centra			
9	90-DAY FEEDING RAT (1997) MRID 44505020 Acceptable/guideline 0, 2.5, 5, 7.5, 150 ppm M/F: 0/0, 0.21/0.23, 0.41/0.47, 0.63/0.71, 12.46/14.48	0.41/0.47 (M/F)	0.63, based on corneal lesions in males			
10	90-DAY FEEDING RAT (1995) MRID 44505019 Acceptable/guideline 0, 1, 125, 1250, 12,500 ppm M/F: 0/0, 0.09/0.10, 11/13, 112/126, 1111/1213 mg/kg/day	0.09/0.10 (M/F)	11/13 (M/F), based on corneal abnormalities in both sexes and decreased body weight gain in males			
11	90-DAY FEEDING DOG (1997) MRID 44505023 Acceptable/guideline 0, 100, 600, 1000 mg/kg/day	1000	>1000 No effects noted			
12	13-WEEK FEEDING MOUSE (1997) MRID 44505022 Acceptable/guideline 0, 10, 50, 350, 7000 ppm M/F: 0/0, 1.7/2.4, 8.4/12.4, 61.5/80.1, 1212/1537 mg/kg/day	1212/1537	> 1212/1537 No effects noted			

LITERATURE REFERENCES

Ellis, M.K., Whitfield, A.C., Gowans, L.A., Auton, T.R., Provan, W.M., Lock, E.A. and Smith, L.L. (1995) Inhibition of 4-hydroxyphenylpyruvate dioxygenase by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione and 2(2-chloro-4-methanesulphonylbenzoyl)-cyclohexane-1,3-dione. Toxicol. App. Pharmacol. 133: 12-19.

Endo, F., Kitano, A., Uehara, I., Nagata, N., Matsuda, I., Shinka, T., Kuhara, T. and Matsumoto, I. (1982) A new variant form of hypertryosinaemia due to 4-hydroxyphenylpyruvic acid oxidase deficiency. J. Inher. Metab. Dis. 5: 237-238.

Furukawa, N., Kinugasa, A., Seo, T., Ishii, T., Ota, T., Machida, Y., Inoue, F., Imashuku, S., Kusunoki, T. and Takamatsu, T. (1984) Enzyme defect in a case of tyrosinemia type I, acute form. Pediatri. Res. 18(5): 463-466.

Giardini, O., Cantani, A., Kennaway, N.G. and D'Eufemia, P. (1983) Chronic tyrosinaemia associated with 4-hydroxyphenylpyruvate dioxygenase deficiency with acute intermittent ataxia and without visceral bone involvement. Pediatri. Res. 17: 25-29.

Lindstedt, S., Holme, E., Lock, E., Hjalmarson, O. and Strandvik, B. (1992) Treatment of hereditary tyrosinaemia type 1 by inhibition of 4-hydroxyphenylpyruvate dioxygenase. The Lancet 340: 813-817.

Robinson, M. (1995) The corneal effects of 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione (NTBC) in the rat. In Ocular Toxicology (I. Weisse, O. Hockwin, K. Green and R.C. Tripathi, Eds.), pp. 327-334, Plenum, New York/London.