MEMORANDUM

- SUBJECT: Review of a Fish Full Life-Cycle Test (72-5, sheepshead minnow) from exposure to azinphos-methyl (Guthion). (Shaughnessey No. 058001)
- FROM: Douglas J. Urban, Acting Chief Ecological Effects Branch Environmental Fate and Effects Division (H7507C)
- TO: Larry Schnaubelt Reregistration Branch Special Review and Reregistration Division (H7508W)

The Ecological Effects Branch (EEB) has reviewed a sheepshead minnow full life-cycle study which was required for the reregistration of azinphos-methyl (Guthion).

The study was found to be scientifically sound but does not meet guideline requirements for a life-cycle chronic test using sheepshead minnows. Raw water quality and fish growth data were not included in the report. Offspring data for the control group are also missing. Based on the significant effect on minnow survival and hatching success of second generation embroyos at 0.41 μ g/l, the maximum acceptable toxicant concentration was >0.2 and <0.41 μ g/l (geometric mean MATC = 0.29 μ /l). The registrant should submit the raw water quality and the missing biological data for review. Please see enclosed data evaluat

Should you have any questions concerning this review, please contact Art Roybal at 305-5659.

DATA EVALUATION RECORD

- 1. <u>CHEMICAL</u>: Azinphos-methyl (Guthion). Shaughnessey No. 058001.
- <u>TEST MATERIAL</u>: 1) Guthion; Ref No. 9-04-0200; 92.5% active ingredient; tan flakes.
 2) radiolabeled (C¹⁴) Guthion; Vial No. C-107; 1.04 mCi, 46.9 mCi/mmole; a clear crystal.
- 3. <u>STUDY TYPE</u>: Fish Life-Cycle Toxicity Test. Species Tested: Sheepshead Minnow (Cyprinodon variegatus).
- 4. <u>CITATION</u>: Dionne, E. 1991. Guthion[®] The Chronic Toxicity to the Sheepshead Minnow (*Cyprinodon variegatus*). Report No. 101297. Prepared by Springborn Laboratories, Inc., Wareham, MA. Submitted by Mobay Corporation, Kansas City, MO. EPA MRID No. 420216-01.
- 5. <u>REVIEWED BY</u>:

Louis M. Rifici, M.S. Associate Scientist KBN Engineering and Applied Sciences, Inc.

Bignature: Jouis m. Rifu Date: 12/20/91 Att Roybal 1/8/92

6. <u>APPROVED BY</u>:

Pim Kosalwat, Ph.D. Senior Scientist KBN Engineering and Applied Sciences, Inc.

Henry T. Craven, M.S. Supervisor, EEB/EFED USEPA

Signature: P. Kosalwa Date: 12/20/91 Signature: and Atavola Date: 1/ 1992

- 7. <u>CONCLUSIONS</u>: This study is scientifically sound but does not meet the guideline requirements for a life-cycle chronic toxicity test using sheepshead minnows. Raw water quality and fish growth data were not included in the report. Offspring data for the control group are also missing. Based on the significant effect on minnow survival and hatching success of second generation embryos at 0.41 μ g/l, the maximum acceptable toxicant concentration was >0.2 and <0.41 μ g/l (geometric mean MATC = 0.29 μ g/l).
- 8. <u>RECOMMENDATIONS</u>: The registrant should submit the raw water quality and the missing biological data for review.

- 9. BACKGROUND:
- 10. DISCUSSION OF INDIVIDUAL TESTS: N/A.
- 11. MATERIALS AND METHODS:
 - A. <u>Test Animals</u>: Sheepshead minnow (Cyprinodon variegatus) embryos (≤24 hours old) were obtained from in-house cultures. Adult minnows were maintained in filtered natural seawater for approximately 4 months prior to spawning. The broodstock had been divided into 14 groups (5 females and 2 males each). Eggs from these groups were pooled and fertilization was determined to be 76%.
 - **B.** <u>Test System</u>: An intermittent flow proportional diluter (Mount and Brungs, 1967) with a dilution factor of 50% was used to deliver test solution to the individual test aquaria. The glass aquaria (60 x 30 x 30 cm) were arranged in upper and lower tiers, 14 tanks per tier. The upper tier was used for egg through adult exposure and the lower tier was used to hold spawning groups. Each tier was serviced by a temperature-controlled water bath set to maintain 30 $\pm 2^{\circ}$ C. The position of each aquarium in the water bath was assigned randomly. Each aquarium was equipped with a 15-cm high end-drain to maintain approximately 27 1 of test solution.

The diluter was operated continuously for 2 months prior to test initiation. An analysis of concentrations in the test aquaria prior to test initiation indicated that the diluter was functioning properly. The system was maintained on a 12-hour light/12-hour dark photoperiod.

A Guthion stock solution was prepared in acetone using appropriate quantities of radiolabeled and unlabeled solid material. The stock was injected into the dilutor's mixing chamber using a calibrated mechanical injector. The concentration in the mixing chamber was equal to the highest nominal concentration tested (0.50 μ g a.i./l) and was diluted further to give the lower concentrations. Flow-splitting chambers were used to distribute the test solutions to the aquaria. "During this study, the turnover rate was 6.1 when only the upper level was in use and 4.4 when both the upper and lower levels were in use."

Embryos were held in incubation cups. The cups were 5cm diameter glass jars with 40-mesh Nitex screen bottoms. Larval fish incubation chambers (16 x 7.5 x 7.5 cm) were attached at the inflow end of each upper level aquarium.

The test dilution water was filtered natural seawater collected from Cape Cod Canal, Bourne, MA. The water was recirculated in an epoxy-coated reservoir prior to being delivered to the diluter system. The salinity and pH of the water were 29-32 ppt (parts per thousand) and 7.7-8.1, respectively. The dilution water was warmed to approximately 28°C before delivery to the diluter.

- C. <u>Dosage</u>: One-hundred and thirteen-day, flow-through, life-cycle toxicity test. Based on a preliminary embryo exposure, five nominal concentrations (0.031, 0.063, 0.13, 0.25, and 0.50 μ g a.i./l), a solvent control, and a dilution water control were tested.
- D. <u>Design</u>: Fifty sheepshead minnow embryos were indiscriminately distributed in groups of five to each of two cups per aquarium. Two replicate aquaria were used per concentration. Embryos were counted daily and dead embryos were discarded. Percent hatching success was calculated for each replicate aquarium. When hatching was complete (day 5), 25 newly-hatched larvae in each cup were impartially selected and placed into their respective growth chambers.

Following the post-hatch exposure (day 28 post-hatch), juvenile fish from the two growth chambers within each replicate aquarium were combined. From each combined group, 25 fish per replicate were randomly selected and released into the aquaria to continue the chronic exposure. The fish were photographed for length measurements. The fish remaining after thinning were euthanized, measured (mm), and weighed (mg).

On day 45 post-hatch, the fish were again photographed and survival determined. Upon maturation (days 52-55 post-hatch), spawning trials were initiated in the lower tier of test aquaria. Three spawning groups were used per aquaria. Each spawning group consisted of 2 males and 5 females. Spawns were removed and counted daily. "Females killed as a results of male aggression during spawning were not replaced in the group, however, (dead) males were replaced in order to maximize egg fertilization success." The mean reproductive success (number of eggs/female/spawning day) for each spawning group represents the mean of 14 consecutive daily egg production ratios. Hatching success of the spawned embryos was determined for the eggs used to initiate the second embryo-larvae exposure. Hatching success for several other spawning events was also determined.

Exposure of the first generation fish was terminated 108 days post-hatch. Each fish was measured, weighed (blotted dry), and internally examined to verify sex and gonadal condition.

The second embryo-larvae exposure was similar to the first. Twenty-eight days after hatch, percent survival was determined and the fish were measured and weighed.

During testing, larvae were fed live brine shrimp nauplii three times daily until 28 days post hatch. Juvenile and adult fish were fed a commercially available flake food and frozen brine shrimp twice daily

The dissolved oxygen concentration (DO), salinity, temperature, and pH were measured in each aquarium at test initiation. Temperature and DO were measured daily and pH and salinity were measured weekly in each aquarium. Temperature in one aquarium of each tier was also measured continuously using a minimum/maximum thermometer.

Water samples were collected from each replicate on days 0, 1, 5, and weekly thereafter until test termination for determination of C¹⁴-Guthion by radiometric analysis (liquid scintillation counting). When the lower tier of exposure aquaria were in use, water samples from these aquaria were also analyzed. Samples from the highest test concentration were also analyzed using HPLC.

E. <u>Statistics</u>: Percent survival and percent hatch data were arcsine square-root transformed prior to analysis. For the survival, hatch, length, and weight data, differences between control and exposure groups were determined using William's test. Reproductive success (# eggs/female/day) was analyzed using two-factor factorial analyses of variance. For all data (except second generation hatch, survival, and growth data), the responses of dilution water control and solvent control data were pooled prior to means comparisons. The solvent control responses were used for comparison in analyses involving second generation biological

parameters. In all tests, significant differences were concluded when $P \leq 0.05$.

12. <u>**REPORTED RESULTS:**</u> All exposure solutions were continuously aerated from day 28 until test termination. The mean measured concentrations were 0.031, 0.046, 0.092, 0.20, and 0.41 μ g/l (Table 2, attached). These values represent 100, 73, 71, 80, and 82% of nominal concentrations, respectively. Guthion was found in detectable quantities (0.0057-0.02 μ g/l) in the dilution water control on days 0, 5, 103, and 110, and in the solvent control on days 0 and 12.

On day 61, the concentration of Guthion in upper level replicate B of test level 5 (0.50 μ g/l, nominal), was 2.08 μ g/l. The concentration in lower level replicate B of test level 5 was 0.38 μ g/l. The author explained that the concentration in all replicates of level 5 were near nominal on day 62, the diluter was functioning normally during the period when the anomaly occurred, and that the reason for the anomaly was unclear.

The hatching success of parental generation embryos was unaffected by exposure to Guthion (Table 5, attached). After 28 and 45 days post-hatch, the survival of larvae in the highest test concentration was significantly lower than the pooled control data. Length and weight of parental generation larvae when measured at 28 days were unaffected by exposure to all test concentrations. After 45 days, the length of the fish was significantly lower than the pooled controls.

At termination of the adult exposure, the survival of parental generation sheepshead minnows was significantly lower in the highest test concentration than in the pooled controls (Table 6, attached). The lengths and weights of surviving male minnows and lengths of surviving female minnows exposed to Guthion were not significantly different from those of the pooled control. The weights of female minnows in the solvent and dilution water controls were significantly different. The weights of exposed females were statistically comparable to solvent control weights.

The results of the spawning portion of the test are presented in Table 7 (attached). Temporal differences between spawning trials were not significant, therefore spawning from the three groups per replicate were pooled prior to further analysis. The reproduction (number of eggs per female per day) of Guthion-exposed sheepshead minnows was not significantly different from that of the pooled controls.

MRID No. 420216-01

The second generation embryo-larvae exposure was initiated using 1-2 groups of 50 eggs per replicate except in replicate B of 0.41 μ g/l where no eggs were incubated (Table 8, attached). Hatching success was determined using 1-11 groups of 50 eggs per replicate except at 0.41 μ g/l. Hatching success of offspring generation embryos in the highest test concentration (39%) was visually determined to be different from that of the solvent control (76%). Larval survival, length, and weight at 28 days post-hatch in the exposure concentrations were statistically comparable to those of the solvent control.

Average water quality and ranges for each replicate are presented in Table 1 (attached).

13. STUDY AUTHOR'S CONCLUSIONS/QUALITY ASSURANCE MEASURES:

The LOEC value for parental generation survival after 28 and 45 days and at test termination was 0.41 μ g/l. Hatching success of offspring generation was adversely affected at 0.41 μ g/l, however, there was no effect noted in hatching at the same concentration for the parental generation. The author attributes this difference to the water hardening of the offspring generation embryos in the test solution (i.e., being dosed immediately) compared to the hardening of parental generation embryos in dilution water.

The maximum acceptable toxicant concentration (MATC) was >0.2 μ g a.i./l and <0.41 μ g a.i./l giving a geometric mean MATC of 0.29 μ g a.i./l.

Quality Assurance and Good Laboratory Practice Compliance Statements were included in the report, indicating that the study was conducted in accordance with FIFRA Good Laboratory Practice Standards set forth in 40 CFR Part 160.

14. REVIEWER'S DISCUSSION AND INTERPRETATION OF STUDY RESULTS:

A. <u>Test Procedure</u>: At the present time, no ASTM Standard Guide is available for life-cycle tests with fish. Since a portion of the life-cycle test is essentially the same as an early life-stage test, adherence to the early life-stage protocol (ASTM, 1987) was considered in addition to the SEP. The test procedures were generally in accordance with the SEP or ASTM (1987), but deviated as follows:

No raw fish growth data were included in the report. This data should have been provided to allow independent statistical analysis by the reviewer.

MRID No. 420216-01

No raw water chemistry data were included in the report. Time-weighted average temperature and DO for the test containers could not be determined.

Dilution water control data for the offspring generation were not included in the report (Table 8, attached). The author did not state whether a dilution water control was used or why no results were reported. A valid test should include a dilution water control and a solvent control, if solvent was used.

Chemical analysis of the flake fish food used during the test found detectable quantities of mercury (0.11 ppm), lead (0.5 ppm), cadmium (0.12 ppm), and arsenic (1.5 ppm).

Guthion was found in detectable quantities $(0.0057-0.02 \mu g/l)$ in the dilution water control on days 0, 5, 103, and 110, and in the solvent control on days 0 and 12.

The SEP states that the second generation larval exposure period should be 8 weeks post-hatch. The exposure in this test was 28 days post-hatch.

The concentration of acetone used in the solvent control was not given in the report. The concentration of solvent should not exceed 0.1 ml/l.

The egg incubation cups were attached to the aquarium side. The SEP suggests that the cups be suspended in the aquaria and oscillated to facilitate solution renewal.

The test solutions were aerated beginning on day 28 until test termination. The SEP states that the test solutions should not be aerated.

A 12-hour light/12-hour dark photoperiod was used in the test. A 16-hour light/8-hour dark photoperiod is recommended in the SEP.

The report does not state if the accuracy of the flow splitting mechanism used to deliver the test solutions was checked regularly.

The light intensity used during the test was not given in the report. The SEP recommends a light intensity of 10-100 lux. The SEP states that the dilution water used should be sterilized, preferably by UV light exposure, before use. The report does not indicate that sterilization was used.

ASTM recommends determining the dry weight of the surviving fishes after the exposure period. Only the wet weight of the fish was determined.

Statistical Analysis: No raw growth data were included в. in the report. This data should have been included in order to estimate the overall experimental error and allow the reviewer to use two-way analysis of variance (ANOVA). In the absence of raw data, the reviewer used methods similar to that of the author to analyze embryo hatching success, juvenile survival and weight (28 days post-hatch), adult survival and length 45 days posthatch, adult survival and growth at termination, offspring hatching success, and offspring survival 28 days post-hatch. Adult length after 28 days and offspring growth after 28 days were not analyzed statistically because of obvious similarity between control and exposure groups (Tables 5 and 8, respectively). All data (except growth) were arcsine square root transformed and treatment means compared using an appropriate (parametric or non-parametric) procedure (see attached printouts 1-22). If data for one of the two replicates per concentration were missing, that concentration was not included in the analysis.

Adult fertility data were analyzed using two-way ANOVA. Only spawning trials where eggs were produced were included in the analysis. In general, the reviewer's independent analyses were in agreement with the author's.

C. <u>Discussion/Results</u>: Several points about the study should be noted. The egg incubation cups were not oscillated in the test solution. Whether the solutions in the egg cups were adequately renewed cannot be determined.

The embryo hatching in the controls (54-73%) was fairly low. The reviewer believes these values reflect the actual numbers with no adjustment for average egg viability in the population.

On several occasions, the test material was detected in the controls. The values were low compared to the mean measured concentrations for the test and the detected concentrations were found fairly early (days 0, 5, and 12) and again fairly late (days 103 and 110) in the test. Taking into account the length of the exposure (113 days) and the infrequency of detection in the controls, the reviewer does not believe the results of the test were compromised.

According to the SEP, the offspring generation larval exposure was too short. Since the exposure used (28 days) was similar to that used in early life-stage tests, the length of exposure in this test probably did not affect the results of the test.

The summarized second generation larval growth data (Table 8, attached) did not include standard deviations for the replicate means. Since no raw data were included, the reviewer could not calculate the relative standard deviations to determine compliance with the guidelines. In addition, no dilution water control data were given in this table or in the text and the exposure groups were compared to the solvent control This laboratory usually performs a t-test data only. and pools control data when no difference is found between solvent and dilution water controls. It is unclear why no dilution water control data are present and may indicate a problem with the dilution water control data.

This study is scientifically sound but does not meet the guideline requirements for a life-cycle chronic toxicity test using sheepshead minnows. Raw water quality and fish growth data were not included in the report. Offspring data for the control group are also missing. Based on the significant effect on minnow survival and hatching success of second generation embryos at 0.41 μ g/l, the maximum acceptable toxicant concentration was >0.2 and <0.41 μ g/l (geometric mean MATC = 0.29 μ g/l).

D. Adequacy of the Study:

- (1) Classification: Supplemental.
- (2) Rationale: Raw water quality, fish growth data, and offspring data for the control group were not included in the report.
- (3) **Repairability:** This study may be upgraded to "core" upon satisfactory review of the DO,

temperature, fish growth data, and control offspring data.

15. COMPLETION OF ONE-LINER FOR STUDY: Yes, 12-11-91.

Report No. 90-8-3456

Page 33 of 212

Results of water quality parameters measured during the chronic Table 1. exposure of sheepshead minnow (Cyprinodon variegatus) to Guthion.

Nominal Concentration (μg Α.Ι./L)	Salinity ^a (°/oo)	Dissolved Oxygen ^{ab} (mg/L)	Temperatureª (°C)	рН
0.50	30 ± 1 (29 - 31)	5.8 ± 0.4 (4.3 - 7.1)	30 ± 1 (28 - 31)	7.6 - 8.1
0.25	30 ± 1 (29 - 32)	5.9 ± 0.5 (4.4 - 7.3)	30 ± 1 (28 - 31)	7.6 - 8.2
0.13	30 ± 1 (29 - 31)	5.9 ± 0.6 (3.9 - 7.3)	30 ± 1 (28 - 31)	7.6 - 8.2
0.063	30 ± 1 (29 - 31)	5.9 ± 0.5 (3.9 - 7.4)	30 ± 1 (28 - 31)	7.6 - 8.1
0.031	30 ± 1 (29 - 32)	5.9 ± 0.5 (3.9 - 7.5)	30 ± 1 (28 - 31)	7.6 - 8.2
Solvent Control	30 ± 1 (29 - 32)	5.8 ± 0.4 (4.4 - 7.2)	30 ± 1 (28 - 31)	7.6 - 8.1
Control	30 ± 1 (29 - 32)	6.0 ± 0.5 (4.3 - 7.5)	30 ± 1 (28 - 31)	7.7 - 8.1

4 ð

Measurement presented as mean \pm standard deviation with the range in parentheses. At a temperature of 30 °C and a salinity of 30 °/oo, a dissolved oxygen concentration of 6.4 mg/L is equal to 100% of saturation. The extremes of the reported range represent a single data point only.

Report No. 90-8-3456

Page 34 of 212

Table 2.

14

21

Concentrations of Guthion measured (radiometric analysis) during the full life cycle exposure of sheepshead minnow (Cyprinodon variegatus).

			Nominal Co	oncentration	η (μg A.I./L))	
Day	0.50	0.25	0.13	0.063	0.031	Solvent Control	Contro
			Measured C	oncentratio	n (μg Α.Ι./l	_)	
0 A	0.45	0.19	0.084	0.048	0.050 [×]	< 0.0050	< 0.0050
۱ ^В	0.35	0.18	0.090	0.046	0.035	0.0077	0.020
7 1 A	0.46	0.24	<^ 0.11 [×]	0.045	0.037	< 0.0050	< 0.0051
. В	0.46	0.23	0.093	0.060 [×]	0.033	< 0.0051	< 0.005
5 A	0.47	0.19	0.083	0.039	0.029	< 0.0050	< 0.0050
7 B	0.48	0.20	0.083	0.044	0.033	< 0.0049	0.011
12 A	0.39	0.21	0.11 [×]	∕∴0.056	0.042 [×]	0.0057	< 0.005
., B	0.40	0.21	0.11	0.054	0.033	< 0.0051	< 0.005
19 A	0.46	0.20	0.092	0.042	0.031	< 0.0049	< 0.0049
. В	0.43	0.22	0.088	0.056	0.028	< 0.0049	< 0.004
26 A	0.39	0.22	0.082	0.036	0.027	< 0.0049	< 0.0049
, В	0.40	0.16	0.078	0.042	0.030	< 0.0049	< 0.0049
33 A	0.40	0.21	0.076	0.046	0.030	<0.0049	< 0.0049
В	0.34	0.18	0.092	0.046	0.029	< 0.0049	< 0.0049
40 A	0.41	0.20	0.095	0.049	0.030	<0.0049	< 0.004
В	0.42	0.21	0.093	0.046	0.028	< 0.0049	< 0.0049
47 A	0.37	0.18	0.089	0.045	0.028	< 0.0049	< 0.0049
В	0.38	0.19	0.091	0.045	0.026	< 0.0049	< 0.0049
54 UA ^a	0.43	0.23	0.090	0.050	0.039×	< 0.0049	< 0.0049
LA	0.40	0.20	0.11	0.057 [×]	0.035	0.0066	< 0.0049
61 UB	b	0.22	0.094	0.048	0.029	<0.0040	~0.0040
LB	0.38	0.22	0.094	0.048	0.029 0.036 [×]	<0.0049 <0.0049	<0.0049 <0.0049

Springborn Laboratories, Inc.

X = More than 30% higher from the Twit concentration

101297

Report No. 90-8-3456

Page 35 of 212

1

Table 2. Continued

	Č,		1	Nominal Co	ncentration	n (μg Α.ί./L)		
Day	·	0.50	0.25	0.13	0.063	0.031	Solvent Control	Control
68	UA	0.59 *	0.31 [×]	0.13 [×]	0.080 [×]	0.040 [¥]	<0.0049	<0.0049
	LA	0.54 *	0.24	0.14 [×]	0.070 [×]	0.049 [≭]	<0.0049	<0.0048
75	UB	0.46	0.27 ×	0.096	0.049	0.029	<0.0049	<0.0049
	LB	0.43	0.20	0.11	0.045	0.035	<0.0049	<0.0049
82	UA	0.43	0.24	0.10	0.052	0.035	<0.0049	<0.0049
	LA	0.45	0.20 ()	0.084	0.038	0.029	<0.0049	<0.0049
89	UB	0.40	0.23	0.083	0.039	0.019	<0.0049	<0.0049
	LB	0.39	0.14	0.066	0.025	0.021	<0.0049	<0.0049
96	A	0.33	0.15	0.078	0.038	0.034	<0.0049	<0.0049
	B	0.39	0.19	0.078	0.039	0.024	<0.0049	<0.0049
103	A	0.36	0.19	0.086	0.047	0.030	<0.0049	0.0079
	B	0.38	0.19	0.086	0.041	0.027	<0.0049	<0.0049
110	A	0.35	0.18	0.078	0.043	0.026	<0.0049	<0.0048
	B	0.36	0.19	0.082	0.045	0.025	<0.0048	0.0085
113	A	0.33	0.14	0.073	0.038	0.024	<0.0049	<0.0049
	B	0.33	0.15	0.070	0.035	0.021	<0.0049	<0.0049
Mean		0.41	0.20	0.002	0.046	<u>^</u>	<u></u>	
minal		(0.055) 82	0.20 (0.034) <i>80</i>	0.092 (0.015) 7/	0.046 (0.0097) 7 <i>3</i>	0.031 (0.0067) / 00		

U = upper level of test system; L = lower level of test system

^b Results rejected using Chauvenet's Criterion (see section 5.2.2).

Mean measured concentrations are presented with the standard deviation in parentheses and were calculated using the actual analytical (unrounded) values and not the rounded (two significant figures) values presented in this table.

TWA concen-	4	.37	.19	. 084	. 044	. 029	
TRATION	В	,38	19	.084	.043	.027	

X denotes values 30% greater than the time weighted Average concentration.

Springborn Laboratories, Inc.

101297

Report No. 90-8-3456

Page 39 of 212

Table 5.

Embryo hatching success, larval survival and growth of the F_0 sheepshead minnow (Cyprinodon variegatus) after 28 and 45 days post-hatch exposure to Guthion.

				Day 28		Day	45
Mean Measured Concentratic (μg A.I./L)	n	Embryo Hatching ^a (%)	Larval Survival (%)	Total Length ^b (mm)	Wet Weight ^b (mg)	Larval Survival ^c (%)	Total Length ^b (mm)
0.41	A	64	46 ^d	26 ± 5	e	84 ^d	32 ± 5
	B	65	64 ^d	24 ± 5	402 ± 232	92 ^d	30 ± 7
0.20	A	68	98	25 ± 2	319 ± 94	100	33 ± 4
	B	63	100	25 ± 2	319 ± 82	100	33 ± 3
0.092	A	68	98	∞ 26 ± 3	307 ± 92	100	34 ± 3
	B	81	94	∞ 24 ± 2	312 ± 97	96	33 ± 3
0.046	A	75	98	25 ± 2	285 ± 75	96	33 ± 3
	B	69	94	26 ± 2	332 ± 83	100	33 ± 4
0.031	A	63	100	25 ± 2	303 ± 52	100	34 ± 4
	B	72	96	25 ± 3	306 ± 112	100	33 ± 4
Solvent	A	54	98	25 ± 3	338 ± 114		34 ± 4
Control	B	70	98	25 ± 3	321 ± 87 4		34 ± 4
Control	A B	61 73	96 98	25 ± 2 25 ± 2	333 ± 83 ₄ 327 ± 73 ↓		35 ± 4 33 ± 2

Percentage is based on the total number of eggs incubated in each replicate aquarium. A sub-sample viability determination indicated approximately 76% of these eggs were viable.

Measurement presented as mean \pm standard deviation.

 Percentage is based on the survival among larval groups of 25 which were established at day 28 posthatch thinning of larvae.

Significantly different (p \leq 0.05) as compared to the pooled control data.

Reduced survival eliminated the availability of larval fish for weight determination.

Springborn Laboratories, Inc.

Report No. 90-8-3456

Page 40 of 212

Table 6.

Survival and growth of F_0 sheepshead minnow (Cyprinodon variegatus) at the termination (113 days) of the chronic exposure to Guthion.

Mean Measured Concentration		Percent Survival ^a	Mean Total Leng (mm)	gth ^b	Mean Wet Weight ^b (grams)			
(μg A.I./L))		Male Rep?	Female $\zeta^{\mu\nu}$	Male (21)	Female (2)		
0.41	A	81 [°]	43 (9)	41 (5)	1.85 (0.87)	1.55 (0.64)		
	B	78 [°]	47 (7)	41 (5)	2.42 (0.98)	1.42 (0.52)		
0.20	A	92	48 (3)	41 (3)	2.64 (0.56)	1.40 (0.36)		
	B	100	45 (3)	41 (4)	1.94 (0.39)	1.37 (0.39)		
0.092	A	100	46 (2)	42 (4)	2.12 (0.31)	1.53 (0.36)		
	B	100	47 (6)	42 (5)	2.35 (0.44)	1.56 (0.51)		
0.046	A	96	45 (2)	42 (3)	2.21 (0.30)	1.58 (0.31)		
	B	100	46 (2)	43 (3)	2.27 (0.41)	1.67 (0.48)		
0.031	A	96	45 (4)	39 (3)	2.15 (0.54)	1.32 (0.39)		
	B	100	48 (4)	42 (3)	2.55 (0.62)	1.63 (0.46)		
Solvent Control	A B	100 100	46 (3) 65 47 (5) 71.6			ン1.56 (0.45) ジョン い1.57 (0.44) ジング		
Control	A B	100 100	45 (4)	40 (4) 10 40 (3) 7.5		$\frac{3}{5}$ 1.35 (0.38) $\frac{28}{1.42}$ (0.28) $\frac{19}{1.7}$		

Percent survival of organisms between days 45 post-hatch and test termination. Mortalities occurring in active spawning groups were considered to be non-toxicant related and were not included in the determination of survival of F₀ adults during this period.

Standard deviation is presented in parentheses.

Significantly different ($p \le 0.05$) as compared to the pooled control data.

101297

Report No. 90-8-3456

Page 41 of 212

Table 7.

Number of eggs produced (total and # per female per day) during the full life cycle toxicity test exposing sheepshead minnow (Cyprinodon variegatus) to Guthion.

lean Measu	ired	Total #	Mean # Eggs	s/Female/Day ^b		
Concentration (µg A.I./L)		Eggs Produced ^a	Replicate	Treatment ^c		
0.41	A	613	4.4	2.7 (5.0)		
	В	48	0.5			
0.20	А	1169	5.6	3.2 (5.0)		
	В	170	0.8			
0.092	А	1275	6.1	5.1 (5.2)		
	Β.	865	4.1			
0.046	A	2570	12.2	9.7 (10.2)		
	В	950	6.6			
0.031	А	1039	5.1	8.6 (9.1)		
	В	2091	12.6 y			
Solvent	A	683	3.3	2.6 (4.1)		
Control	В	415	2.0			
Control	А	38	0.2	0.6 (1.6)		
	В	179	1.0			

Based on the production of 3 spawning groups for 14 days each.

b # eggs/female/day was calculated with the number of females alive on each day of spawning. Mean presented with the standard deviation in parentheses.

 \odot

C

Report No. 90-8-3456

Page 42 of 212

Table 8. Survival and growth (total length and wet weight) of F_1 sheepshead minnow (*Cyprinodon variegatus*) exposed for 32 days (28 days post-hatch) to Guthion.

				28	B Day Post-	hatch Larva	9
ean Measu Concentrati (μg A.I./L)	on	Hatc Suco (%)	-	Survival (%)	Length (mm)	Weight (g)	N ^b
0.41	A B	39 ^c	4	100	20	0.18	1
0.20	А	84	8	100	23	0.26	1
	В	70	<u>े</u> 1 रू	96	21	0.19	1
0.092	А	78	10	84	21	0.21	1
	В	80	2	96	20	0.17	2
0.046	А	77	11	92	22	0.21	2
	В	84	6	88	24	0.26	2
0.031	А	96	10	100	22	0.21	2
	В	68	11	100	21	0.17	2
Solvent	А	77	5	98	22	0.19	2
Control	В	74	1	96	21	0.19	1

N = N Number of egg groups (50 eggs/group) incubated and evaluated for percentage hatch.

N = Number of larval groups (25 larvae/group) reared and evaluated for percentage survival and growth.

Empirically estimated to be reduced compared to the solvent control.
 No opposite state solvent control.

No spawns of > 50 eggs.

	LE: 420216-01	, GUTH	ION, PARENTAL EMB	RYO HATCHING	
F114 T	E: A:4202160 GFORM: ARC SINE(ROOT(Y))	NUMBER OF GR	OUPS: 7
- GRP	IDENTIFICATION	REP	VALUE	TRANS VALUE	
1	SOLVENT CONTROL	1	0.5400	0.8254	
1	SOLVENT CONTROL	2	0.7000	0.9912	
2	CONTROL	1	0.6100	0.8963	
2	CONTROL	2	0.7300		
3	0.031	1	0.6300	0.9169	
3	0.031	2	0.7200	1.0132	
4	0.046	1	0.7500	1.0472	
4	0.046	2	0.6900	0.9803	
5	0.092	1	0.8100	1.1198	
5	0.092	2	0.6800		
6	0.092	1	0.6800		
6	0.2	2	0.6300		
7	0.2	2 1	0.6400		
7	0.41	1			
/	0.41	2	0.6500	0.9377	
Char	nime Wilks tost f				
Snap	piro Wilks test f	or nor		lentinue enclusia	
Data	a PASS normality	test a	L P=0.01 level. L	continue analysis.	
	tletts test for h				
Data	a PASS homogeneit	y test	at 0.01 level. C	continue analysis.	
			ANOVA TABLE		
_					
-					
		F	SS	MS	F
 Beti	 ween	 6	0.027	0.004	
 Beti		 6	0.027		
Betr	ween hin (Error)	 6	0.027	0.004	
Betw With Tota	ween hin (Error) al 1	6 7 3	0.027 0.042 0.068	0.004	
Betw With Tota	ween hin (Error) al 1 ritical F value =	6 7 3 3.8	0.027 0.042 0.068 7 (0.05,6,7)	0.004	
Betw With Tota	ween hin (Error) al 1 ritical F value = ince F < Critica	6 7 3 3.8 1 F F	0.027 0.042 0.068 7 (0.05,6,7)	0.004 0.006	0.756
Betw With Tota	ween hin (Error) al 1 ritical F value = ince F < Critica	6 7 3 3.8 1 F F	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2	0.004 0.006 o:All groups equal Ho:Control <tr< td=""><td>0.756</td></tr<>	0.756
Betw With Tota C: S:	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST	6 7 3 3.8 1 F F	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED	0.004 0.006 •:All groups equal Ho:Control <tr MEAN CALCULATED IN</tr 	0.756
Betw With Tota C: S:	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST UP IDENTIFICAT	6 7 3 1 F F - ION	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED MEAN	0.004 0.006 •:All groups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS</tr 	0.756
Betw With Tota C: S: GROU	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST UP IDENTIFICAT	6 7 3 1 F F - ION	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED MEAN	0.004 0.006 •:All groups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS</tr 	0.756
Betw With Tota C: S: GROU	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST UP IDENTIFICAT SOLVENT C	6 7 3 1 F F 	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED MEAN 0.908	0.004 0.006 D:All groups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 0.620</tr 	0.756 reatment T STAT SIG
Betw With Tota C: S: GROU	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST UP IDENTIFICAT SOLVENT C	6 7 3 1 F F ION ONTROL	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED MEAN 	0.004 0.006 o:All groups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 0.620 0.670</tr 	0.756 reatment T STAT SIG
Betw With Tota C: S: GROU	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST UP IDENTIFICAT SOLVENT C	6 7 3 1 F F 1 ON ONTROL 0.031	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED MEAN 0.908 0.960 0.965	0.004 0.006 0:All groups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 0.620 0.670 0.675</tr 	0.756 ceatment T STAT SIG -0.676 -0.737
Betw With Tota C: S: GROU	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST UP IDENTIFICAT SOLVENT C	6 7 3 3 1 F F - 1 ON ONTROL 0.031 0.046	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED MEAN 0.908 0.960 0.965 1.014	0.004 0.006 0:All groups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 0.620 0.670 0.675 0.720</tr 	0.756 reatment T STAT SIG -0.676 -0.737 -1.369
Betw With Tota C: S: GROU	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST UP IDENTIFICAT SOLVENT C	6 7 3 3 1 F F - 1 ON ONTROL 0.031 0.046 0.092	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED MEAN 0.908 0.960 0.965 1.014 1.045	0.004 0.006 D:All groups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 0.620 0.670 0.675 0.720 0.745</tr 	0.756 reatment T STAT SIG -0.676 -0.737 -1.369 -1.770
Betw With Tota C: S: GROU	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST UP IDENTIFICAT SOLVENT C	6 7 3 3.8 1 F F - ION ONTROL 0.031 0.046 0.092 0.2	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED MEAN 0.908 0.960 0.965 1.014 1.045 0.943	0.004 0.006 0:All groups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 0.620 0.670 0.675 0.720</tr 	0.756 reatment T STAT SIG -0.676 -0.737 -1.369 -1.770
Betw With Tota C: S: GROU 1 2 3 4 5	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST UP IDENTIFICAT SOLVENT C	6 7 3 3.8 1 F F - ION ONTROL 0.031 0.046 0.092 0.2	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED MEAN 0.908 0.960 0.965 1.014 1.045	0.004 0.006 D:All groups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 0.620 0.670 0.675 0.720 0.745</tr 	0.756 Teatment T STAT SIG -0.676 -0.737 -1.369 -1.770 -0.453
Betw With Tota C: S: GROU 1 2 3 4 5 6 7 7	ween hin (Error) al 1 ritical F value = ince F < Critica DUNNETTS TEST UP IDENTIFICAT SOLVENT C C	6 7 3 3 1 F F 7 10N 0.01 0.031 0.046 0.092 0.2 0.2 0.41	0.027 0.042 0.068 7 (0.05,6,7) AIL TO REJECT HO TABLE 1 OF 2 TRANSFORMED MEAN 0.908 0.960 0.965 1.014 1.045 0.943 0.933	0.004 0.006 0:All groups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 0.620 0.670 0.675 0.675 0.720 0.745 0.655 0.645</tr 	0.756 Teatment T STAT SIG -0.676 -0.737 -1.369 -1.770 -0.453 -0.314

2

420216-01, GUTHION, PARENTAL EMBRYO HATCHING File: A:42021601.DT1 Transform: ARC SINE(SQUARE ROOT(Y))

٦

	DUNNETTS	TESI	• <u> </u>	TABL	20	F 2		Но	Control	<trea< th=""><th>atment</th></trea<>	atment
GROUP	IDENT:	IFICA	TION	NUN REI	I OF PS			m Sig Dift IG. UNITS			IFFERENCE ROM CONTROL
1 2 3 4 5 6 7	SOL	VENT	CONTRO CONTRO 0.03 0.04 0.09 0. 0.4	L 1 6 2 2	2 2 2 2 2 2 2 2 2			0.215 0.215 0.215 0.215 0.215 0.215 0.215	34.7 34.7 34.7 34.7 34.7 34.7 34.7		-0.050 -0.055 -0.100 -0.125 -0.035 -0.025
	t-test d	of Sc	lvent	and B	lank	Cont	trols	5	Ho:GRP1	MEAN	= GRP2 MEAN
GRP2	(SOLVENT (BLANK C) ERENCE IN	RTL)	MEAN					CALCULATE DEGREES O			-0.4970 2
	t VALUE t VALUE	•	• • •	•							at alpha=0.05 at alpha=0.03

420216-01, GUTHION, PARENTAL SURVIVAL DAY 28 File: A:42021601.DT2 Transform: ARC SINE(SQUARE ROOT(Y))

- SRP	IDENTIFICATION	N	MIN	MAX	MEAN	
1	SOLVENT CONTROL	2	1.429	1.429	1.429	
2	0.031	2	1.369	1.500		
3	0.046	2	1.323	1.429		
4	0.092	2	1.323	1.429		
5	0.2	2	1.429	1.500		
6	0.41	2	0.745	0.927	0.836	
RP	IDENTIFICATION	VA	RIANCE	SD	SEM	
 1	SOLVENT CONTROL		0.000	0.000	0.000	
2	0.031		0.009		0.065	
3	0.046		0.006		0.053	
4	0.092		0.006		0.053	
5	0.2		0.003	0.050	0.036	
6	0.41		0.017	0.129	0.091	
Bart		omogene not be	ity of var: performed l	iance pecause at		has
art "	letts test for ho e two tests can r	omogene not be	ity of var performed l ty of varia	iance pecause at		has
Bart Daca	etts test for ho two tests can r variance.	omogene not be nogenei	ity of var performed l ty of varia	iance because at ance assum TABLE		has F
Daca	cletts test for ho e two tests can r variance. A FAIL to meet hom RCE DF	omogene not be nogenei	ity of var performed l ty of varia ANOVA SS	iance because at ance assum TABLE	ption.	
art Daca	cletts test for ho e two tests can r variance. A FAIL to meet hom RCE DF	nogenei	ity of var performed l ty of varia ANOVA SS	iance because at ance assum TABLE	ption. MS	F
Daca Sour	e two tests for ho e two tests can r variance. A FAIL to meet hom RCE DF Ween 5 hin (Error) 6	nogenei	ity of var performed l ty of varia ANOVA SS	iance because at ance assum TABLE .572 .039	ption. 	F
Jaca Jaca SOUF Jetv Vith Cota	cletts test for homegan e two tests can reverse. variance. a FAIL to meet homegan RCE DF veen 5 hin (Error) 6 al 11 ritical F value = 11 ince F > Critical	anogenei hogenei 4.39 F RE	ity of var performed b ty of varia ANOVA SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iance because at ance assum TABLE .572 .039 .611 .611 .611	ption. MS 0.114 0.006	F 17.720
act our our our our our our cota	cletts test for homegan e two tests can reverse. variance. a FAIL to meet homegan RCE DF veen 5 hin (Error) 6 al 11 ritical F value = 11 ince F > Critical	omogene nogenei 	ity of var performed I ty of varia ANOVA SS 0 0 0 (0.05,5,6 JECT Ho:A CABLE 1 OF	iance because at ance assum TABLE .572 .039 .611 .6) 11 groups 2	MS 0.114 0.006 equal Ho:Control <t< td=""><td>F 17.720 reatment</td></t<>	F 17.720 reatment
our our our our our our our our our our	cletts test for homegan e two tests can reverse can reverse can reverse can reverse can be addressed on the second can be	nogenei 4.39 F RF	ity of varian performed b ty of varian ANOVA SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iance because at ance assum TABLE .572 .039 .611 .039 .611 .1 groups 2 RMED ME	MS 0.114 0.006 equal Ho:Control <t: AN CALCULATED IN</t: 	F 17.720 reatment
our our our our our our our our setw ith our Setw Setw Setwood	Iletts test for homestade e two tests can revariance. a FAIL to meet homestade a FAIL to meet homestade RCE DF veen 5 hin (Error) 6 al 11 ritical F value = 11 ince F > Critical DUNNETTS TEST JP IDENTIFICATI	nogenei nogenei 4.39 F RE - 1 ION	ity of varian performed b ty of varian ANOVA SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iance because at ance assum TABLE .572 .039 .611 .611 .1 groups 2 RMED ME	MS 0.114 0.006 equal Ho:Control <t AN CALCULATED IN ORIGINAL UNITS</t 	F 17.720 reatment
our our our our our our our our setw ith our setw ith our setw ith our setw ith our setw ith our setw ith our setw ith our setw ith our setwo ith our our our our our our our our our our	etts test for homestical for homestical for meet homestical for the second s	omogene nogenei 4.39 F RE - 1 ION	ity of varian performed b ty of varian ANOVA SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iance because at ance assum TABLE .572 .039 .611 .611 .611 .572 .039 .611 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .611 .572 .039 .039 .039 .039 .039 .039 .039 .039	MS 0.114 0.006 equal Ho:Control <t: AN CALCULATED IN ORIGINAL UNITS 0.980</t: 	F 17.720 reatment T STAT SI
Conta Conta	etts test for homestical for homestical for meet homestical for the second s	omogene nogenei 4.39 F RE - 1 CON 0.031	ity of varian performed b ty of varian ANOVA SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iance because at ance assum TABLE .572 .039 .611 6) 11 groups 2 RMED ME 9 5	ms 0.114 0.006 equal Ho:Control <t AN CALCULATED IN ORIGINAL UNITS 0.980 0.980</t 	F 17.720 reatment <u>T STAT SI</u> -0.073
Sart Jaca GOUF Setv Vith Cota Signot	etts test for homestical for homestical for meet homestical for the second s	omogene nogenei 	ity of varian performed b ty of varian ANOVA SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iance because at ance assum TABLE .572 .039 .611 .611 .6) 11 groups 2 RMED ME 	ms 0.114 0.006 equal Ho:Control <t AN CALCULATED IN ORIGINAL UNITS 0.980 0.980 0.960</t 	F 17.720 reatment T STAT SI
Bart Daca GOUF Betv Vith Cota Signot SROU	etts test for homestical for homestical for meet homestical for the second s	omogene nogenei 4.39 F RF - 1 CON DNTROL 0.031 0.046 0.092	ity of varian performed b ty of varian ANOVA SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iance because at ance assum TABLE .572 .039 .611 .039 .611 .1 groups 2 RMED ME 	ms 0.114 0.006 equal Ho:Control <t AN CALCULATED IN ORIGINAL UNITS 0.980 0.980</t 	F 17.720 reatment T STAT SI

Dunnett table value = 2.83 (1 Tailed Value, P=0.05, df=6,5)

420216-01, GUTHION, PARENTAL SURVIVAL DAY 28 File: A:42021601.DT2 Transform: ARC SINE(SQUARE ROOT(Y))

BLE 2 OF	2 Ho:0	Control <t< th=""><th>reatment</th></t<>	reatment
NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
2			
2	0.110	11.3	-0.000
2	0.110	11.3	0.020
2	0.110	11.3	0.020
2	0.110	11.3	-0.010
2	0.110	11.3	0.430
•	NUM OF REPS 2 2 2 2 2 2 2 2 2 2	NUM OF REPS Minimum Sig Diff (IN ORIG. UNITS) 2 0.110 2 0.110 2 0.110 2 0.110 2 0.110 2 0.110 2 0.110 2 0.110	NUM OF REPS Minimum Sig Diff % of (IN ORIG. UNITS) CONTROL 2 0.110 11.3 2 0.110 11.3 2 0.110 11.3 2 0.110 11.3 2 0.110 11.3 2 0.110 11.3 2 0.110 11.3

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2 (p=0.05)

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	SOLVENT CONTROL	1.429	0.980	16.000
2	0.031	1.435	0.980	16.500
3	0.046	1.376	0.960	11.500
4	0.092	1.376	0.960	11.500
5	0.2	1.464	0.990	19.500
6	0.41	0.836	0.550	3.000

lculated H Value = 7.000 Critical H Value Table = 11.070
nce Calc H < Crit H FAIL TO REJECT Ho:All groups are equal.</pre>

DUNNS	5 MULTIPLE COMPA	RISON - KRUS	KAL-WALLIS	- TABLE 2 OF 2 (p=0.05)
GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	GROUP 0 0 0 0 0 6 4 3 1 2 5
6 4 3 1 2 5	0.41 0.092 0.046 SOLVENT CONTROL 0.031 0.2	0.836 1.376 1.376 1.429 1.435 1.464	0.550 0.960 0.960 0.980 0.980 0.990	$ \begin{array}{c} \\ \cdot \\ $
	ignificant diffe q value (0.05,6		5)	<pre>. = no significant difference SE = 3.464</pre>

TITI	LE:	420216-01,	GUTHION,	PARENTAL 28-DAY	Y WET WEIGHT
FIL	E:	A:42021601	.DT3		
т	;FORM:	NO TRANSFO	RM	NUMBE	R OF GROUPS: 5
-					
GRP	IDENTI	FICATION	REP	VALUE	TRANS VALUE
1	SOLVENT	CONTROL	1	338.0000	338.0000
1	SOLVENT	CONTROL	2	321.0000	321.0000
2		0.031	1	303.0000	303.0000
2		0.031	2	306.0000	306.0000
3		0.046	1	285.0000	285.0000
3		0.046	2	332.0000	332.0000
4		0.092	1	307.0000	307.0000
4		0.092	2	312.0000	312.0000
5		0.2	1	319.0000	319.0000
5		0.2	2	319.0000	319.0000

Shapiro Wilks test for normality Data PASS normality test at P=0.01 level. Continue analysis.

Hartley test for homogeneity of variance Bartletts test for homogeneity of variance

These two tests can not be performed because at least one group has zero variance.

Data FAIL to meet homogeneity of variance assumption. A tional transformations are useless.

		ANOVA TABLE		
SOURCE	DF	SS	MS	F
Between	4	811.600	202.900	0.801
Within (Error)	5	1266.000	253.200	
Total	9	2077.600		

Critical F value = 5.19 (0.05,4,5) Since F < Critical F FAIL TO REJECT Ho:All groups equal

420216-01, GUTHION, PARENTAL 28-DAY WET WEIGHT File: A:42021601.DT3 Transform: NO TRANSFORMATION

I	DUNNETTS TEST - T.	ABLE 1 OF 2	Ho:Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	MEAN	MEAN CALCULATED IN ORIGINAL UNITS	
1 2 3 4 5	0.092	329.500 304.500 308.500 309.500 319.000	329.500 304.500 308.500 309.500 319.000	1.571 1.320 1.257
	t table value = 2.85 DUNNETTS TEST - T	·		
GROUP	IDENTIFICATION	REPS (IN OR	m Sig Diff % of IG. UNITS) CONTROL	FROM CONTROL
1 2 3 4 5	SOLVENT CONTROL	2	45.35013.845.35013.845.35013.845.35013.845.35013.8	
	KRUSKAL-WALLI		- TABLE 1 OF 2 (
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
	SOLVENT CONTROL 0.031 0.046		329.500 304.500 308.500 309.500	18.000
Sinc	ulated H Value = 5. e Calc H < Crit H FA MULTIPLE COMPARISON	IL TO REJECT HO:	All groups are equal	•
GROUP	TRANS		GROUP 0 0 0 0 0 2 3 4 5 1	
2 3 4 5 1	0.046 3 0.092 3 0.2 3	04.500 304.50 08.500 308.50 09.500 309.50 19.000 319.00 29.500 329.50	0 . \ 0 \ 0 \	
	gnificant difference q value (0.05,5) =		. = no significa SE = 3.018	nt difference

TITI	LE:	420216-01		ON, PARENTAL 45-1	DAI SURVIVAL	
		A:4202160 ARC SINE(ROOT(Y))	NUMBER OF GR	OUPS: 6
		IFICATION			TRANS VALUE	
1	SOLVEN	I CONTROL		1.0000	1.4706	
1	SOLVEN	F CONTROL F CONTROL 0.031 0.031 0.046 0.046 0.092 0.092 0.2 0.2 0.41	2	1.0000 1.0000 1.0000	1.4706	
2		0.031	1	1.0000	1.4706	
2		0.031	2	1.0000	1.4706	
3		0.046	1	0.9600	1.3694	
3		0.046	2	1.0000	1.4706	
4		0.092	1	1.0000 0.9600	1.4706	
4		0.092	2	0.9600	1.3694	
5		0.2	1	1.0000	1,4706	
5		0.2	2	1.0000	1.4706	
6		0.41	1	0.8400	1.1593	
6		0.41 0.41	2	0.9200	1.2840	
-		lks test f		-	ontinue analysis.	
TTo and				y of variance ity of variance		
Bart The	se two varia		not be	performed becaus	e at least one group	has
Bart Thes Z Data	varia a FAIL	nce. to meet ho	mogenei	ty of variance a		has
Bart Thes Z Data	varia a FAIL	nce. to meet ho	mogenei	-	ssumption.	has
Bart Thes Z Data	varia a FAIL itional	nce. to meet ho transform	mogenei ations	ty of variance a are useless.	ssumption.	has F
Bart Thes Z Data Add: SOUI	varia a FAIL itional	nce. to meet ho transform D	mogenei ations	ty of variance a are useless. ANOVA TABLE	ssumption. MS	F
Bart Thes Z Data Add: SOUI	varia a FAIL itional RCE ween	nce. to meet ho transform D	mogenei ations F 5	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018	MS 0.019 0.003	F 6.215
Bart Thes Z Data Add: SOUI Betw With	varia a FAIL itional RCE ween hin (Er	nce. to meet ho transform D	mogenei ations F 5 6	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018	ssumption. MS 0.019	F 6.215
Bart Thes Z Data Add: SOUI Bety With Tota	varia a FAIL itional RCE ween hin (Er al	nce. to meet ho transform D ror) 1	mogenei ations F 5 6 1	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018 0.111	MS 0.019 0.003	F 6.215
Bart Thes Z Data Add: SOUI Betw With Tota	varia a FAIL itional RCE ween hin (Er al ritical	nce. to meet ho transform D ror) 1 F value =	mogenei ations F 5 6 1 4.39	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018	MS 0.019 0.003	F 6.215
Bart Thes Z Data Add: SOUI Betw With Tota	varia a FAIL itional RCE ween hin (Er al ritical ince F	nce. to meet ho transform D ror) 1 F value = > Critica	mogenei ations F 5 6 1 4.39 1 F RE - T	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018 0.111 (0.05,5,6) JECT Ho:All gro ABLE 1 OF 2	MS 0.019 0.003	F 6.215 eatment
Bart Thes Z Data Add: SOUI Betw With Tota S:	varia a FAIL itional RCE ween hin (Er al ritical ince F DUNN	nce. to meet ho transform D ror) ror) 1 F value = > Critica ETTS TEST DENTIFICAT	mogenei ations F 5 6 1 4.39 1 F RE - T ION	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018 0.111 (0.05,5,6) JECT Ho:All gro ABLE 1 OF 2 TRANSFORMED MEAN	MS 0.019 0.003 ups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS</tr 	F 6.215 eatment
Bart Thes Z Data Add: SOUI Betw With Tota C: S: GROU	varia a FAIL itional RCE ween hin (Er al ritical ince F DUNN UP I	nce. to meet ho transform D Tor) F value = > Critica ETTS TEST DENTIFICAT	mogenei ations F 5 6 1 4.39 1 F RE - T ION	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018 0.111 (0.05,5,6) JECT Ho:All gro ABLE 1 OF 2 TRANSFORMED MEAN	MS 0.019 0.003 ups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS</tr 	F 6.215 eatment
Bart Thes Z Data Add: SOUI Betw With Tota GROU	varia a FAIL itional RCE ween hin (Er al ritical ince F DUNN	nce. to meet ho transform D Tor) F value = > Critica ETTS TEST DENTIFICAT	mogenei ations F 5 6 1 4.39 1 F RE - T ION ION	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018 0.111 (0.05,5,6) JECT HO:All gro ABLE 1 OF 2 TRANSFORMED MEAN 	MS 0.019 0.003 ups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 1.000</tr 	F 6.215 eatment T STAT SIG
Bart Thes Z Data Add: SOUI Betw With Tota GROU Cr S: Cr S: 1 2	varia a FAIL itional RCE ween hin (Er al ritical ince F DUNN	nce. to meet ho transform D Tor) F value = > Critica ETTS TEST DENTIFICAT	mogenei ations F 5 6 1 4.39 1 F RE - T ION ION 0NTROL 0.031	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018 0.111 (0.05,5,6) JECT Ho:All gro ABLE 1 OF 2 TRANSFORMED MEAN 	MS 0.019 0.003 ups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 1.000 1.000</tr 	F 6.215 eatment <u>T STAT SIG</u> 0.000
Bart Thes Z Data Add: SOUI Betw With Tota GROU GROU	varia a FAIL itional RCE ween hin (Er al ritical ince F DUNN	nce. to meet ho transform D Tor) F value = > Critica ETTS TEST DENTIFICAT	mogenei ations F 5 6 1 4.39 1 F RE 1 1 F RE ION ONTROL 0.031 0.046	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018 0.111 (0.05,5,6) JECT Ho:All gro ABLE 1 OF 2 TRANSFORMED MEAN 1.471 1.471 1.420	MS 0.019 0.003 ups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 1.000 1.000 0.980</tr 	F 6.215 eatment T STAT SIG 0.000 0.923
Bart Thes Z Data Add: SOUI Betw With Tota GROU Cr S: Cr S: 1 2	varia a FAIL itional RCE ween hin (Er al ritical ince F DUNN	nce. to meet ho transform D Tor) F value = > Critica ETTS TEST DENTIFICAT	mogenei ations F 5 6 1 4.39 1 F RE - T ION ONTROL 0.031 0.046 0.092	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018 0.111 (0.05,5,6) JECT Ho:All gro ABLE 1 OF 2 TRANSFORMED MEAN 	MS 0.019 0.003 ups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 1.000 1.000 0.980 0.980</tr 	F 6.215 eatment T STAT SIG 0.000 0.923 0.923
Bart Thes Z Data Add: SOUI Betw With Tota GROU Cr S: Cr S: 1 2	varia a FAIL itional RCE ween hin (Er al ritical ince F DUNN	nce. to meet ho transform D Tor) F value = > Critica ETTS TEST DENTIFICAT	mogenei ations F 5 6 1 4.39 1 F RE - T ION ONTROL 0.031 0.046 0.092 0.2	ty of variance a are useless. ANOVA TABLE SS 0.093 0.018 0.111 (0.05,5,6) JECT Ho:All gro ABLE 1 OF 2 TRANSFORMED MEAN 1.471 1.471 1.420	MS 0.019 0.003 ups equal Ho:Control <tr MEAN CALCULATED IN ORIGINAL UNITS 1.000 1.000 0.980</tr 	F 6.215 eatment T STAT SIG 0.000 0.923 0.923 0.923 0.000

8

420216-01, GUTHION, PARENTAL 45-DAY SURVIVAL File: A:42021601.DT4 Transform: ARC SINE(SQUARE ROOT(Y))

	DUNNETTS TEST - 7	TABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	SOLVENT CONTROL	2			
2	0.031	2	0.054	5.4	0.000
3	0.046	2	0.054	5.4	0.020
4	0.092	2	0.054	5.4	0.020
5	0.2	2	0.054	5.4	0.000
6	0.41	2	0.054	5.4	0.120

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2 (p=0.05)

GROUP	IDENTIFICATION	TRANSFOR MEAN	MED MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1 2 3 4 5 6	0.0 0.0 0	311.471461.420921.420	1.000 0.980 0.980 1.000	17.000 17.000 12.000 12.000 17.000 3.000
лCo	e Calc H < Crit H	FAIL TO REJEC	Critical H Value Table = T Ho:All groups are equa WALLIS - TABLE 2 OF 2	1.
GROUP			GROUP GINAL 0 0 0 0 0 0 EAN 6 4 3 2 5 1	
6 4	0.41 0.092		0.880 \ 0.980 . \	

					(GRO	วบเ	P			
		TRANSFORMED	ORIGINAL	0	0	0	0	0 (C		
GROUP	IDENTIFICATION	MEAN	MEAN	6	4	3	2	5 3	1		
				-	-	-	-		-		
6	0.41	1.222	0.880	\backslash							
4	0.092	1.420	0.980	•	1						
3	0.046	1.420	0.980	•	•	\backslash					
2	0.031	1.471	1.000	•	•	•	\backslash				
5	0.2	1.471	1.000	•	•	•	•	\mathbf{i}			
1	SOLVENT CONTROL	1.471	1.000	•	•	•	•	• `	Ν		
	ignificant diffe q value (0.05,6	• •)		• · • = E =		no		gnificant 023	differe	nce

FIL	Е:	420216-01, A:42021601 NO TRANSFO	.DT5		GTH AFTER 45 DAYS BER OF GROUPS: 6		
GкР		IFICATION	REP		TRANS VALUE		
 1 1				34.0000 34.0000	34.0000		
2			1		33.0000		
2			2	34.0000			
3			1				
3			2				
4				33.0000			
4				34.0000			
5				33.0000			
5				33.0000			
6		0.41	1	30.0000			
6		0.41	2	32.0000	32.0000		
Data Hari Bari The	a PASS tley te tletts	st for homo test for ho tests can n	cest at ogeneity omogenei	P=0.01 level. Co of variance ty of variance	ontinue analysis. e at least one group	has	
	FAIL	to meet hor		y of variance as re useless.	ssumption.		
				ANOVA TABLE			
SOU	RCE	DI		SS	MS	F	
	ween hin (Er	ror)	5 5	11.000 3.000	2.200 0.500	4.40	0
		1					
TOU	al	<u>ـ</u> ـ	L	14.000			
				(0.05,5,6) ECT Ho:All grow	ups equal		
		ETTS TEST	- та	BLE 1 OF 2	Ho:Control <tr< td=""><td>eatment</td><td></td></tr<>	eatment	
GRO		DENTIFICAT:			MEAN CALCULATED IN ORIGINAL UNITS		SIG
		SOLVENT C		34.000	34.000		
2				33.500		0.707	
3				33.000	33.000		
1				33.500	33.500	0.707	
			0.2	33.000	33.000		
			0.41	31.000			*
Dun	nett ta	ble value :			alue, P=0.05, df=6,5)	

420216-01, GUTHION, PARENTAL LENGTH AFTER 45 DAYS File: A:42021601.DT5 Transform: NO TRANSFORMATION

	DUNNETTS TEST -	TABLE 2 OF	2 Но:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	SOLVENT CONTROL	2			
2	0.031	2	2.001	5.9	0.500
3	0.046	2	2.001	5.9	1.000
4	0.092	2	2.001	5.9	0.500
5	0.2	2	2.001	5.9	1.000
6	0.41	2	2.001	5.9	3.000

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2 (p=0.05)

							••	•
GROUP	IDENTIFICATIO		ISFORMED IEAN					ANK SUM
1	SOLVENT CON	FROL 34	4.000		34.0	00	21	.000
2	0	.031 33	3.500		33.5	500	16	.000
3	0	.046 33	3.000		33.0	000	11	.000
4	0	.092 33	3.500		33.5	500	16	.000
5		0.2 33	3.000		33.0	000	11	.000
6	(0.41 31	1.000		31.0	00	3	.000
	e Calc H < Crit MULTIPLE COMPAR			-	-	-		5)
					GROUP			
		TRANSFORMED	ORIGINAL	0 0	000) ()		
GROUP	IDENTIFICATION	MEAN	MEAN	65	5324	1		
6	0.41	31.000	31.00	0 \				
5	0.2	33.000	33.00	0.`	\			
2	0.046	22 000	22 00	0	1			

						GR	ວບ	 Р	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	-	-	-	-	0 4	-
6	0.41	31.000	31.000	<u>,</u>	-	-	-	-	-
5	0.41	33.000	33.000	`.	Ν				
3	0.046	33.000	33.000	•		\			
2	0.031	33.500	33.500	•	•	•	\mathbf{N}		
4	0.092	33.500	33.500	•	•	٠	•	1	
1	SOLVENT CONTROL	34.000	34.000	•	•	•	•	•	\mathbf{N}
	ignificant diffe q value (0.05,6	· -	·		• • • • •		no		ignificant difference .310

TITLI FILE: T	:	ARC SINE(SOUARE	ROOT(V))	NUMBER OF	GROUPS: 6	
					NUMBER OF TRANS VALUE		,
1 :	SOLVENI	CONTROL	1	1.0000 1.0000	1.4706 1.4706		
1 8	SOLVENI	CONTROL	2	1.0000			
2		0.031	1	0.9600	1.3694		
2		0.031		1.0000	1.4706		
3 3		0.046	1	0.9600 1.0000	1.3694 1.4706		
4		0.048	2 1	1.0000	1.4706		
4		0.092	2	1.0000	1.4706		
5		0.2	1	0.9200			
5		0.2	2	1.0000	1.4706		
6		0.41	1	0.8100	1.1198		
6		0.092 0.2 0.2 0.41 0.41	2	0.7800	1.0826		
-		lks test f normality		-	Continue analysis.		
				ty of variance	0		
Thes z	e two t variar	tests can nce.	not be	-	use at least one grou	up has	
Thes z L	e two t variar FAIL t	tests can nce. to meet ho	not be pmogene:	-	use at least one grou assumption.	up has	
Thes z L Addi [.]	e two t variar FAIL t	tests can nce. to meet ho transform	not be pmogene:	performed beca ity of variance are useless.	use at least one grou assumption.	-	
Thes z L Addi SOUR	e two t variar FAIL t tional CE	tests can nce. to meet ho transform	not be pmogene: mations	performed beca ity of variance are useless. ANOVA TAB	use at least one grou assumption. BLE MS		241
Thes z L Addi SOUR Betw	e two t variar FAIL t tional CE een	tests can nce. to meet ho transform	not be omogene: mations DF 5	performed beca ity of variance are useless. ANOVA TAB SS 0.195	use at least one grou assumption. BLE MS	F	241
These z L Addi SOUR Betw	e two t variar FAIL t tional CE een in (Ern	tests can nce. to meet ho transform p	not be omogene: mations DF 5	performed beca ity of variance are useless. ANOVA TAB SS 0.195	use at least one grou assumption. LE MS 0.039 0.005	F	241
Thes z L Addi SOUR Betw With Tota Cr	e two t variar FAIL t tional CE een in (Ern l itical	tests can nce. to meet ho transform ror) 1 F value =	not be pmogene: mations DF 5 6 11 = 4.3	performed beca ity of variance are useless. ANOVA TAB SS 0.195 0.028	use at least one grou assumption. LE MS 0.039 0.005	F	241
Thes Z L Addi SOUR Betw With Tota Cr	e two t variar FAIL t tional CE een in (Ern l itical nce F	tests can nce. to meet ho transform	not be pmogene: mations OF 5 6 11 = 4.39 al F R	performed beca ity of variance are useless. ANOVA TAB SS 0.195 0.028 0.223 9 (0.05,5,6) EJECT Ho:All g	use at least one grou assumption. LE MS 0.039 0.005	F 8.2	
Thes z L Addi SOUR Betw With Tota Cr Si	e two t variar FAIL t tional CE een in (Ern l itical nce F DUNNI	tests can nce. to meet ho transform	not be pmogene: mations DF 5 6 11 = 4.39 al F R al F R	performed beca ity of variance are useless. ANOVA TAB SS 0.195 0.028 0.223 9 (0.05,5,6) EJECT Ho:All g TABLE 1 OF 2	use at least one grou assumption. ULE MS 0.039 0.005 Groups equal Ho:Control ORIGINAL UNITS	F 8.2 <treatment IN T STAT</treatment 	
Thes Z L Addi SOUR Betw With Tota Cr Si GROU	e two t variar FAIL t tional CE een in (Ern l itical nce F DUNNI P II	tests can nce. to meet ho transform F value = > Critica ETTS TEST DENTIFICAT	not be pmogene: mations OF 5 6 11 = 4.39 al F R 5 al F R FION	performed beca ity of variance are useless. ANOVA TAB SS 0.195 0.028 0.223 9 (0.05,5,6) EJECT Ho:All g TABLE 1 OF 2 TRANSFORMED MEAN	use at least one grou assumption. LE MS 0.039 0.005 Groups equal Ho:Control MEAN CALCULATED TO ORIGINAL UNITS	F 8.2 <treatment IN T STAT</treatment 	
Thes L Addi SOUR Betw With Tota Cr Si GROU	e two t variar FAIL t tional CE een in (Ern l itical nce F DUNNI P II	tests can nce. to meet ho transform F value = > Critica ETTS TEST	not be pmogene: mations DF 5 6 11 = 4.39 al F R FION CONTROL	performed beca ity of variance are useless. ANOVA TAB SS 0.195 0.028 0.223 9 (0.05,5,6) EJECT Ho:All g TABLE 1 OF 2 TRANSFORMED MEAN 	use at least one grou assumption. LE MS 0.039 0.005 Groups equal Ho:Control MEAN CALCULATED ORIGINAL UNITS 1.000	F 8.2 <treatment IN T STAT</treatment 	
Thes L Addi SOUR Betw With Tota Cr Si GROU	e two t variar FAIL t tional CE een in (Ern l itical nce F DUNNI P II	tests can nce. to meet ho transform F value = > Critica ETTS TEST DENTIFICAT	not be pmogene: mations DF 5 6 11 = 4.39 al F R FION CONTROL 0.031	performed beca ity of variance are useless. ANOVA TAB SS 0.195 0.028 0.223 9 (0.05,5,6) EJECT HO:All 9 TABLE 1 OF 2 TRANSFORMED MEAN 1.471 1.420	use at least one grou assumption. LE MS 0.039 0.005 Groups equal Ho:Control MEAN CALCULATED TO ORIGINAL UNITS	F 8.2 <treatment IN T STAT</treatment 	5 SIG
Thes L Addi SOUR Betw With Tota Cr Si GROU	e two t variar FAIL t tional CE een in (Ern l itical nce F DUNNI P II	tests can nce. to meet ho transform F value = > Critica ETTS TEST DENTIFICAT	not be pmogene: mations DF 5 6 11 = 4.39 al F RI - 7 FION CONTROL 0.031 0.046	performed beca ity of variance are useless. ANOVA TAB SS 0.195 0.028 0.223 9 (0.05,5,6) EJECT HO:All G TABLE 1 OF 2 TRANSFORMED MEAN 1.471 1.420 1.420	use at least one grou assumption. LE MS 0.039 0.005	F 8.2 <treatment IN T STAT 0.736 0.736</treatment 	5 SIG
Thes L Addi SOUR Betw With Tota Cr Si GROU	e two t variar FAIL t tional CE een in (Ern l itical nce F DUNNI P II	tests can nce. to meet ho transform F value = > Critica ETTS TEST DENTIFICAT	not be mogene: mations DF 5 6 11 = 4.39 al F R FION CONTROL 0.031 0.046 0.092	performed beca ity of variance are useless. ANOVA TAB SS 0.195 0.028 0.223 9 (0.05,5,6) EJECT HO:All 9 TABLE 1 OF 2 TRANSFORMED MEAN 1.471 1.420	use at least one grou assumption. LE MS 0.039 0.005 Froups equal Ho:Control ORIGINAL UNITS 1.000 0.980 0.980	F 8.2 <treatment IN T STAT 0.736 0.736 0.000</treatment 	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

420216-01, GUTHION, PARENTAL SURVIVAL AT TERMINATION File: A:42021601.DT6 Transform: ARC SINE(SQUARE ROOT(Y))

	DUNNETTS TEST -	TABLE 2 OF	2 Но:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	SOLVENT CONTROL	2			
2	0.031	2	0.074	7.4	0.020
3	0.046	2	0.074	7.4	0.020
4	0.092	2	0.074	7.4	0.000
5	0.2	2	0.074	7.4	0.040
6	0.41	2	0.074	7.4	0.205

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2 (p=0.05)

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	SOLVENT CONTROL	1.471	1.000	18.000
2	0.031	1.420	0.980	13.500
3	0.046	1.420	0.980	13.500
4	0.092	1.471	1.000	18,000
5	0.2	1.377	0.960	12.000
6	0.41	1.101	0.795	3.000
າວເ ໂດນ .າວຄ	ulated H Value = 7.2 Calc H < Crit H FAI	•••••	tical H Value Table = All groups are equal:	

DUNNS MULTIPLE COMPARISON - KRUSKAL-WALLIS - TABLE 2 OF 2 (p=0.05)

					(GRO	JUE	2
		TRANSFORMED	ORIGINAL	0	0	0	0	0 0
GROUP	IDENTIFICATION	MEAN	MEAN	6	5	2	3	1 4
				-	-	-	-	
6	0.41	1.101	0.795	\backslash				
5	0.2	1.377	0.960	•	1			
2	0.031	1.420	0.980	•	•	\mathbf{X}		
3	0.046	1.420	0.980	•		•	1	
1	SOLVENT CONTROL	1.471	1.000	•	•	•	•	\backslash
4	0.092	1.471	1.000	•	•	•	•	• \
	ignificant diffe q value (0.05,6)	• -)		 - = E =		no	significant difference 3.226

		420216-01, A:42021601		I, OFFSPRING HATCH	IING SUCCESS
T T		ARC SINE(S		OOT(Y))	NUMBER OF GROUPS: 5
GRP	IDENTI	FICATION	REP	VALUE	TRANS VALUE
1	SOLVENT	CONTROL	1	0.7700	1.0706
1	SOLVENT	CONTROL	2	0.7400	1.0357
2		0.031	1	0.9600	1.3694
2		0.031	2	0.6800	0.9695
3		0.046	1	0.7700	1.0706
3		0.046	2	0.8400	1.1593
4		0.092	1	0.7800	1.0826
4		0.092	2	0.8000	1.1071
5		.2	1	0.8400	1.1593
5		.2	2	0.7000	0.9912
	piro Wil	.ks test fo	or normal		

Data PASS normality test at P=0.01 level. Continue analysis.

Bartletts test for homogeneity of variance

Data PASS homogeneity test at 0.01 level. Continue analysis.

		ANOVA TABLE		
s ce	DF	SS	MS	 F
Between Within (Error)		0.016 0.099	0.004 0.020	0.199
Total	9	0.115		

Critical F value = 5.19 (0.05,4,5) Since F < Critical F FAIL TO REJECT Ho:All groups equal

	DUNNETTS TEST - TAL	BLE 1 OF 2	Ho:Control <tr< th=""><th>eatment</th><th></th></tr<>	eatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1 2 3 4 5	SOLVENT CONTROL 0.031 0.046 0.092 .2	1.053 1.169 1.115 1.095 1.075	0.755 0.820 0.805 0.790 0.770	-0.827 -0.439 -0.296 -0.157	
Dunne	tt table value = 2.85	(1 Tailed V	Value, P=0.05, df=5,4)	

420216-01, GUTHION, OFFSPRING HATCHING SUCCESS File: A:42021601.DT7 Transform: ARC SINE(SQUARE ROOT(Y))

	DUNNETTS TEST - TA	BLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP		NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1 2 3 4 5	SOLVENT CONTROL 0.031 0.046 0.092 .2	2 2 2 2 2 2 2	0.387 0.387 0.387 0.387 0.387	51.2 51.2 51.2 51.2 51.2	-0.065 -0.050 -0.035 -0.015
	KRUSKAL-WALLIS	ANOVA BY	RANKS - TABLE	1 OF 2 (1	p=0.05)
GROUP	IDENTIFICATION	TRANSFO			RANK SUM
1 2 3	SOLVENT CONTROL 0.031 0.046	1.05 1.16 1.11	59 0.	755 820 805	7.500 11.000 13.000

4	0.092	1.095	0.790	13.000
5		1.075	0.770	10.500
Calculated H Value	e = 1.132	Critica	l H Value Table =	

Since Calc H < Crit H FAIL TO REJECT Ho:All groups are equal.

IS MULT	FIPLE COMPARIS	on – kru	USKAL-WALLIS	~	TABLE 2	OF	2	(p=0.05)

			GROUP	
GROUP IDENTIFICAT	TRANSFORMED	ORIGINAL MEAN	0 0 0 0 0 1 5 4 3	0
3 0.	PROL 1.053 .2 1.075 092 1.095 046 1.115 031 1.169	0.755 0.770 0.790 0.805 0.820	· \ · \ · · \	- \
* = significant di Table q value (0.0		;)	. = no SE =	significant difference 3.009

TITI FILI T		21601.DT8	·	SURVIVAL AFTER 28 NUMBER	DAYS OF GROUPS: 5
GRP	IDENTIFICAT	ION REP	VALUE	TRANS VALUE	
1	SOLVENT CONT		0.9800		
1	SOLVENT CONT	ROL 2	0.9600	1.3694	
2	0.	031 1	1.0000) 1.4706	
2	0.	031 2	1.0000) 1.4706	
3	0.	046 1	0.9200	1.2840	
3	0.	046 2	0.8800) 1.2171	
4	0.	092 1	0.8400	1.1593	
4	0.	092 2	0.9600	1.3694	
5		0.2 1	0,9600) 1.3694	
5		0.2 2	1.0000	1.4706	

Shapiro Wilks test for normality

Data PASS normality test at P=0.01 level. Continue analysis.

Hartley test for homogeneity of variance Bartletts test for homogeneity of variance

These two tests can not be performed because at least one group has zero variance. Data FAIL to meet homogeneity of variance assumption. A tional transformations are useless.

		ANOVA TABLE			
SOURCE	DF	SS	MS	F	
Between Within	4 (Error) 5	0.077 0.031	0.019 0.006	3.084	
Total	9	0.108			
Critical F value = 5.19 (0.05,4,5) Since F < Critical F FAIL TO REJECT Ho:All groups equal DUNNETTS TEST - TABLE 1 OF 2 Ho:Control <treatment< td=""></treatment<>					
GROUP	IDENTIFICATION		MEAN CALCULATED IN ORIGINAL UNITS	T STAT SIG	
1 2 3 4 5	SOLVENT CONTROL 0.031 0.046 0.092 0.2	1.471 1.251 1.264	0.970 1.000 0.900 0.900 0.980	-0.904 1.881 1.706 -0.264	
D nett	table value = 2.85	(1 Tailed Va	 lue, P=0.05, df=5,4)	

420216-01, GUTHION, OFFSPRING SURVIVAL AFTER 28 DAYS File: A:42021601.DT8 Transform: ARC SINE(SQUARE ROOT(Y))

	DUNNETTS TEST -	TABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
	SOLVENT CONTROL	2			
2	0.031		0.120	12.4	-0.030
3	0.046	2	0.120	12.4	0.070
4	0.092	2	0.120	12.4	0.070
5	0.2	2	0.120	12.4	-0.010

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2 (p=0.05)

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM		
1 2 3 4 5		1.399 1.471 1.251 1.264 1.420	0.970 1.000 0.900 0.900 0.980	$ \begin{array}{r} 12.000\\ 18.000\\ 5.000\\ 6.000\\ 14.000 \end{array} $		
Sinc	Calculated H Value = 6.879 Critical H Value Table = 7.418 Since Calc H < Crit H FAIL TO REJECT Ho:All groups are equal. IS MULTIPLE COMPARISON - KRUSKAL-WALLIS - TABLE 2 OF 2 (p=0.05)					
GROUP		FORMED ORIGINA: AN MEAN	GROUP L 0 0 0 0 0 3 4 1 5 2			
3 4 1 5 2	0.046 0.092 SOLVENT CONTROL 0.2 0.031	1.251 0.90 1.264 0.90 1.399 0.90 1.420 0.93 1.471 1.00	00 · \ 70 · · \ 80 · · · \			
	ignificant difference q value (0.05,5) =		. = no significa SE = 2.953	nt difference		

,

P 17

Male lingth termonation

Analysis of Variance

File: guthlen Date: 12-11-1991

TER: Delete if SEX = 2

. . ., means and standard deviations based on dependent variable: LENGTH

* Indicates statistics are collapsed over this factor

Factors: C	N	Mean	S.D.
*	14	46.0000	1.3587
1	2	46.5000	0.7071
2	2	45.5000	0.7071
3	2	46.5000	2.1213
4	2	45.5000	0.7071
5	2	46.5000	0.7071
6	2	46.5000	2.1213
7	2	45.0000	2.8284
ááááááááááááááááááááááááááááááááá	a a a a a a a a a a a a a a a a a a a	áááááááááá	á a a a a a a a a a a a a a a a a a a a
Fmax for testing homogeneity Number of variances= 7 df p		s variance	es: 16.00
ádádádádádádádádádádádádádádádádádádád			ádádádádádádádádádádádá

Source	df	SS (H)	MSS	F	Р
Between Subjects	13	24.0000			
C (CONC)	6	5.0000	0.8333	0.307	0.9149
Subj w Groups	7	19.0000	2.7143		

Post-hoc tests for factor C (CONC)

vel	Mean	Level	Mean
1	46.500	6	46.500
2	45.500	7	45.000
3	46.500		
4	45.500		
5	46.500		

	Bon-	
Comparison	ferroni	Dunnett
1 > 2		
1 = 3		
1 > 4		
1 = 5		
1 = 6		
1 > 7		
2 < 3		N.A.
2 = 4		N.A.
2 < 5		N.A.
2 < 6		N.A.
2 > 7		N.A.
3 > 4		N.A.
3 = 5		N.A.
3 = 6		N.A.
3 > 7		N.A.
4 < 5		N.A.
4 < 6		N.A.
4 > 7		N.A.
5 = 6		N.A.
5 > 7		N.A.
6 > 7		N.A.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

P 18

male neight at termontion

File: quthlen Date: 12-11-1991 Analysis of Variance $F^{--}TER$: Delete if SEX = 2 , means and standard deviations based on dependent variable: WEIGHT Ъ. * Indicates statistics are collapsed over this factor Factors: C Ν Mean S.D. 14 2.2543 0.2191 * 1 2 2.3700 0.0283 2 2 2.1600 0.1131 3 2 2.3500 0.2828 4 2 2.2400 0.0424 5 2 2.2350 0.1626 6 2 2.2900 0.4950 7 2 2.1350 0.4031 Fmax for testing homogeneity of between subjects variances: 306.24 Number of variances= 7 df per variance= 1. Analysis of Variance Dependent variable: WEIGHT F Ρ SS (H) MSS Source df Between Subjects 13 0.6243 0.209 0.9626 0.0950 0.0158 C (CONC) 6 7 0.5293 0.0756 Subj w Groups Post-hoc tests for factor C (CONC) Level Mean Level Mean 2.370 2.290 1 6 2.160 7 2.135 1 3 2.350 4 2.240 5 2.235 Bon-Comparison ferroni Dunnett 1 > 21 > 3 1 > 41 > 5 > 1 6 1 > 7 2 < 3 N.A. 2 < 4 N.A. 2 < 5 N.A. 2 < 6 N.A. 2 > 7 N.A. 3 > 4 N.A. 3 > 5 N.A. 3 > 6 N.A. 3 > 7 N.A. 4 > 5 N.A. 4 < 6 N.A. 4 > 7 N.A. 5 < 6 N.A. 5 > 7 N.A. 6 > 7 N.A.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

P 17

female length it termination File: guthlen

Analysis of Variance

Date: 12-11-1991

TTER: Delete if SEX = 1

- ..., means and standard deviations based on dependent variable: LENGTH
 - * Indicates statistics are collapsed over this factor

Fmax for testing	homogene áááááááá	ity of betwe	en subjects ááááááááááá	s varianc iááááááá	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Source Between Subjects	df 13	SS (H) 14.3571	MSS	F	P
C (CONC) Subj w Groups	 6 7	8.8571 5.5000	1.4762 0.7857	1.879	0.2127
Post-hoc tests f	or factor	C (CONC)			
Level Mean 1 41.500 2 40.000 3 40.500 4 42.500 5 42.000		Mean 41.000 41.000			
Comparison 1 > 2 1 > 3 1 < 4 1 < 5 1 > 6 1 > 7	Bon- ferroni	Dunnett			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.			

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

p20

female weight at termination File: guthlen

Date: 12-11-1991

Analysis of Variance

TER: Delete if SEX = 1

N 3, means and standard deviations based on dependent variable: WEIGHT

* Indicates statistics are collapsed over this factor

	-				
homogene ces= 7 ááááááááá	ity of betwe df per varia áááááááááááá	en subjects nce= 1. lááááááááááá	varianc áááááááá	es: 961.00 áááááááááááááá	
df 12	SS (H)	MSS	F	Р	
6 7	0.0980 0.0639	0.0163 0.0091	1.788	0.2305	
or factor Level 6 7	C (CONC) Mean 1.385 1.485				
Bon- ferroni	Dunnett N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.				
	homogene ces= 7 ááááááááá ance df 13 6 7 or factor Level 6 7 Bon-	homogeneity of betwee ces= 7 df per varia áááááááááááááááááááááááá ance Depende df SS (H) 13 0.1619 6 0.0980 7 0.0639 or factor C (CONC) Level Mean 6 1.385 7 1.485 Bon- ferroni Dunnett N.A.	1422	14 1.4950 2 1.3850 2 1.3850 2 1.5450 2 1.5450 2 1.3850 2 1.3850 2 1.3850 2 1.3850 2 1.3850 2 1.3850 2 1.4850 adadadadadadadadadadadadadadadadadada	14 1.4950 0.1016 2 1.5650 0.0071 2 1.3850 0.0495 2 1.4750 0.2192 2 1.5450 0.0212 2 1.3850 0.0212 2 1.3850 0.0212 2 1.3850 0.0212 2 1.3850 0.0212 2 1.3850 0.0212 2 1.3850 0.0212 2 1.3850 0.0212 2 1.3850 0.0212 2 1.3850 0.0212 2 1.4850 0.0212 2 1.3850 0.0212 2 1.385 F P 13 0.1619 6 0.2305 6 0.0980 0.0163 1.788 0.2305 7 1.485 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

Analysis of Variance fish Reputation File: guthrepr

Date: 12-10-1991

R: None \mathbf{F}

N's, means and standard deviations based on dependent variable: REPROD

* Indicates statistics are collapsed over this factor

Factors: (CR	N	Mean	S.D.
3	* *	340	7.3774	7.6984
-	1 *	46	4.7739	4.6180
	2 *	26	1.9885	2.4513
-	3 *	62	10.7774	9.0461
4	4 *	68	10.8441	10.3046
t i	5 *	65	6.5846	5.0652
(6 *	45	5.9511	5.5150
-	7 *	28	4.8429	6.0300
3	* 1	167	8.2335	8.5152
:	* 2	173	6.5509	6.7402
	1 1	29	4.7103	5.1707
	12	17	4.8824	3.6291
:	2 1	10	0.9100	0.7279
:	2 2	16	2.6625	2.9047
	3 1	27	7.9593	8.5692
	3 2	35	12.9514	8.9157
	4 1	35	14.6857	11.9757
	4 2	33	6.7697	6.0565
!	51	26	9.8077	5.1844
ļ	52	39	4.4359	3.6989
(6 1	31	7.5419	5.6380
(62	14	2.4286	3.1922
•	71	9	1.2889	0.6528
•	72	19	6.5263	6.7115

Fmax for testing homogeneity of between subjects variances: 336.57 Number of variances= 14 df per variance= 19. Analysis of Variance Dependent variable: REPROD

Source	df	SS (H)	MSS	F	Р
Between Subjects	339	20091.0312			
C (CONC)	6	2913.0776	485.5129	10.662	0.0000
R (REP)	1	268.1166	268.1166	5.888	0.0158
CR	6	2065.1577	344.1930	7.559	0.0000
Subj w Groups	326	14844.6797	45.5358		

J = Solvent control $<math display="block">\mathcal{L} = Control$ 3 = Control $<math display="block">\mathcal{H} = Codl$ $\mathcal{H} = Codl$ 5 = 6.692 $c = c \cdot 2$ $7 = c \cdot 11$

P22

Analysis of Variance

File: guthrepr

Date: 12-10-1991

F TR: None

fall repredention

Post-hoc tests for factor C (CONC)

Level	Mean	Level	Mean
1	4.774	6	5.951
2	1.988	7	4.843
3	10.777		
4	10.844		
5	6.585		

	Bon-	
Comparison	ferroni	Dunnett
1 > 2		0 0100
1 < 3	0.0000	0.0100
1 < 4	0.0000	0.0100
1 < 5		
1 < 6 1 < 7		
2 < 3	0.0000	N.A.
2 < 3	0.0000	N.A.
2 < 5	0.0751	N.A.
2 < 6		N.A.
2 < 7		N.A.
3 < 4		N.A.
3 > 5	0.0115	N.A.
3 > 6	0.0067	N.A.
3 > 7	0.0031	N.A.
4 > 5	0.0070	N.A.
4 > 6	0.0043	N.A.
4 > 7	0.0021	N.A.
5 > 6		N.A.
5 > 7		N.A.
6 > 7		N.A.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

Shaughnessey # 058001	Chemical Name Azınphos-Muthyl (Guthion) Chemical Class	Page t of 1
Study/Species/Lab/ Chemical MRID # x a.i. Life cycle Chronic Fish	Results Concentrations Tested $(pp \frac{b^*}{b}) = \frac{\partial_t \partial 3I}{\partial_t \partial 3I}$, 0.04L, 0.04L, 0.20, 0.4I	Reviewer/ Validation Date Status
92,5 Species: Lyprinodon variegatus Lab: Springborn Laboratories MRID # 420214-01	MATC - > 0.20 < 0.41 pp b. Effected Parameters - Survival, length (45 duyr post-length) Hatching success of Scandquestin andryes Adult Control Mortality (2) = /00 (13 duys post-lendt) Comments: * men measured contendations	LMR Suplementel 12/11/91 Suplementel
Chronic Invertebrate	Concentrations Tested (pp) =	
Species:	MATC = > < PP	
Lab:	Effected Parameters Control Mortality (1) - Solvent Control Mortality (1) -	
MRID #	Comments:	

l

ER: None

Fo Giruth by Kyp

File: guthlen

Date: 12-10-1991

Obs.	CONC	REP	SEX	LENGTH	WEIGHT
1	1	1	1	46	2.39
2	ī	2	ī	47	2.35
3	ī	า	2	41	2.35 1.56
4		2	2	42	1.57
2 3 4 5 6	2	้า	2 2 1	45	2.08
6	2	2	ĩ	46	2.24
7	2	้า	2	46 40	1.35
7 8	2	$\overline{2}$	$\overline{2}$	40	1.42
9	1 2 2 2 3 3 3 3 3 3	1	1	45	2.15
10	3	$\overline{2}$	ĩ	48	2.55
11	3	1	$\overline{2}$	39	1.32
11 12	3	2	$\overline{2}$	42	1.63
13	4	า	ĩ	45	2.21
13 14	4	$\overline{2}$	ĩ	46	2.27
15	4	1	1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1	42	1.57 2.08 2.24 1.35 1.42 2.15 2.55 1.63 2.21 2.27 1.58 1.67 2.12 2.35 1.53 1.56 2.64 1.94
15 16	4	$\overline{2}$	2	43	1.67
17	5	ī	1	46	2.12
17 18 19	5	2		47	2.35
19	5	ī	2	42	1.53
20	5	2	1 2 2 1	42	1.56
20 21 22 23	6	ī	ī	48	2.64
22	6	2	ī	45	1.94
23	6	1		41	1.40
24 25	6	2	2 2 1	41	1.37
25	7	1	1	41 43	1.85
-6	7	21212121212121212121212121212	ī	47	2.42
7	7	ĩ	$\overline{2}$	41	1.55
8	7	2	2 2	41	1.42

For Koppu File: guthrepr Date: 12-10-1991

LR: None F

Obs.CONCREPREPROD111.002113116.204117.60519.606111.007110.80814.40912.801011.401110.201210.401310.401410.401510.401610.401710.201811.002011.402118.602219.603111.60 i 15.002512.202614.802712.602811.202911.403012331234123512361237123821.6037123821.230441245124628.604721.3048214628.6047214628.6047214628.60<	וב ח	K: NOI	le	
	Obs. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 25 26 27 28 30 31 35 36 37 39 40 41 42 44 44 44 44 45 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 25 26 27 28 30 31 45 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 25 26 27 28 30 31 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 25 26 27 28 30 31 45 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 20 21 25 26 27 28 30 31 34 5 5 6 7 8 9 20 12 25 26 7 8 9 20 12 25 26 7 8 9 20 12 25 26 7 8 9 30 31 32 34 5 5 5 6 7 8 9 20 17 20 16 7 8 9 20 17 20 20 20 20 20 20 20 20 20 20	CONC 1 1 1 1 1 1 1 1 1 1 1 1 1	REP1111111111111111112222222222222222222	$\begin{array}{c} 1.00\\ 9.60\\ 16.20\\ 17.60\\ 9.60\\ 11.00\\ 10.80\\ 4.40\\ 2.80\\ 1.40\\ 0.20\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.20\\ 0.40\\ 1.00\\ 1.60\\ 9.60\\ 11.60\\ 2.20\\ 4.80\\ 2.60\\ 1.20\\ 1.40\\ 9.60\\ 1.40\\ 9.60\\ 1.60\\ 0.40\\ 0.20\\ 3.00\\ 4.80\\ 1.40\\ 1.60\\ 0.40\\ 0.20\\ 3.00\\ 0.80\\ 4.00\\ 0.20\\ 3.00\\ 8.40\\ 10.80\\ 7.20\\ 8.60\\ 1.30\\ 2.30\\ 1.50\\ 0.30\\ 0.80\\$

53	2	1	1.60
54	2	1	0.20
55	2	1	0.60

,

File: guthrepr Date: 12-10-1991

F _____ None

Obs.	CONC	REP	REPROD	
56 57	2 2	1 2	0.20 7.80	
58	2	2	0.30	
59 60	2 2	2 2	0.50 0.80	
61	2	2	0.60	
62 63	2 2	2 2	0.20 0.80	
64 65	2 2	2 2	2.50 0.80	
66	2	2	6.50	
67 68	2 2	2 2	5.30 8.30	
69	2	2 2	5.20 1.80	
70 71	2	2	0.60	
72 73	2 3	2 1	0.60 3.20	
74	3	1	14.00	
75 76	3 3	1 1	23.00 24.20	
77	3 3	1 1	25.60 19.40	
ر 8`	3	1	13.00	
80 81	3 3	1 1		
82	3	1	14.80	
83 84	3 3	1 1		
85	3 3	1 1	1.80	
86 87	3	1	0.20)
88 89	3 3	1 1		
90	3	1	0.80)
91 92	3 3	1	6.00)
93 94	3	1	2.00	
95	3	1	0.50)
96 97	3	: 1 : 1		
98	3 3 3 3 3 3 3 3 3 3 3	1	2.80)
99 100	3		1.80 2 12.60)
101 102			2 15.00 2 13.40	
1 N 3)
4 5ر	(*) (*)		2 30.00 2 12.00	
106			2 8.20 2 6.60)
107	-		2 0.00	

108	3	2	9.60
109	3	2	7.40
110	3	2	6.40

.

Oha	CONC	משמ	
Obs.	CONC	REP	REPROD
111	3	2	5.80
112	3	2	7.60
113 114	ა ი	2	6.80
114	3 3 3 3 3 3	2	27.30
115	3	2	4.00
116	3	2	19.00
117	3	2	11.50
118	נ ר	2	2.50
119	3 3	2	8.00
120	່ ວ	2	8.00 4.00
121 122	3 3 3 3 3 3 3 3 3 3	2	4.00
122	ა ი	2	0.20 1.00
123	נ ר	2	
124	נ ר	2	
125	د د	2	8.80 15.40
126 127	נ ר	2	15.40
127	د د	2	22.40 22.60
128	3	2	18.60
130	3	2	29.60
130	3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21.00
132	3	2	20.40
`3	3	2	28.60
4	3	2	28.40
135 135	4	1	6.20
136	4	1	26.20
137	4	ī	28.40
136 137 138	4 4 4 4	1	30.60
139	4	1	34.00
140	4	1	32.20 25.40 23.60
141	4	1	25.40
142	4	1	23.60
143	4	1	32.80
144	4	1	30.00
145	4	1	3.80
146	4	1	13.40
147	4	1	9.40
148	4	1	5.80
149	4	1	5.20
150	4	1	21.80
151	4	1	3.60
152	4	1	13.80
153	4	1	11.20
154	4	1	31.80
155	4	1	37.40
156	4	1	23.00
157	4	1	6.40
י 58 ס	4	1	15.00
9 60۔	4 4	1 1	3.80 4.80
161	4 4	1	4.80 6.40
161	4 4	1	6.00
102	4	+	0.00

163	4	1	1.00	
164	4	1	2.40	
165	4	1	4.80	

.

Obs.	CONC	REP	REPROD
166	4	1	9.00
167	4	1	1.80
168	4	1	2.20
169	4	1	0.80
170	4	2	7.00
	4	2 2	
171		2	
172	4	2	18.60
173	4	2	13.80
174	4	2	15.60
175	4	2	11.00
176	4	2	9.60
177	4	2	3.40
178	4	2	18.50
179	4	2	1.00
180	4	2	1.00
181	4	2	
182	4	2	3.20
102	4	2	3.20
183	4	2	7.40 3.20 3.40 1.60
184	4	2	1.60 2.20
185	4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.20 3.00
186	4	2	3.00
187	4	2	3.60
8 ר	4	2	3.40 1.80 1.20 1.60 1.80
9	4	2	1.80
1 90	4	2	1.20
191	4	2	1.60
192	4	2	1.80
193	4	2	7.60
194	4	2	7.60 0.80
		2	
195	4	2	7.00
196	4	2	5.70
197	4	2	13.30 22.30 14.70
198	4	2	22.30 14.70 5.00
199	4	2	14.70
199 200	4	2	5.00
201	4	2	3.00
202	4	2	0.50
203	5	1	11.80
204	5	1	18.60
205	5	1	15.00
205	5	1	15.60
	5	1	14.00
207) 5	1	
208	5	1	13.00
209	5	1	6.20
210	5	1	2.40
211	5	1	5.40
212	5	1	2.60
°13	5	1	4.40
4	5	1	0.40
. 15	5	1	6.00
216	5	1	6.00
217	5	1	12.40
2 - 1	5	-	12010

218	5	1	19.20
219	5	1	13.20
220	5	1	12.80

Obs.	CONC	REP	REPROD
221	5	1	16.80
222	5	1	11.60
223	5	ī	
224	5	1	5.80
225	5	1	
226	5	1	7.60
227	5	1	11.00
228	5	1	4.80 1.60
229	5	2	1.60
230	5	2	0.20 0.40
237	2 5	2	0.20 0.40 1.80
224 225 226 227 228 229 230 231 232 233 234	5	2	3.20
234	5	2	3.20 5.60 1.20 4.60 1.20
235	5	2	1.20
236	5	2	4.60
237	5	2	1.20
238	5	2	0.60
239	5	2	0.60
235 236 237 238 239 240 241	5	2	0.20
241	5 5	2	5.80 0.80
242 13	ភ	2	0.80 0.20
4	5	2	0.20 14.00
∠45	5	2	12.00
246	5	2	8.60
245 246 247 248 249 250 251 252 253 254 255 256	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.80
248	5	2	7.60
249	5	2	6.80
250	5	2	7.20
251	5	2	9.60 2.40 7.40 7.00
202	2 5	2	2.40
255	5	2	7.00
255	5	2	0.60
256	5	2	0.60
257			
258	5	2	2.60
259	5	2	2.60 1.80 9.80 8.80
260	5	2	9.80
261	5	2	8.80
262	5	2	7.00
263 264	2 5	2	5 20
264	5	2	6.80 5.20 5.20
266	5	2	1.40
267	5	2	5.20
°68	5 5 5 5 5 5 5 5 6 6	1	2.00 0.20
9	6	1	0.20
./0	6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.00 6.80 5.20 5.20 1.40 5.20 2.00 0.20 0.80 0.20 0.80
271 272	6	1	0.20
272	6	T	0.80

273	6	1	0.60
274	6	1	4.80
275	6	1	1.80

Oha	CONC	משמ	
Obs. 276	6	REP	REPROD 15.00
270	6	1 1	15.80
278	6	1	15.20
279	6	1	9.60
280	6	1	6.00
281	6	1	7.20
282	6	ī	6.60
283	6	1	6.00
284	6	1	5.80
285	6	1	0.20
286	6	1	6.00
287	6	1	1.20
288	6	1	7.00
289	6	1	7.80
290	6	1	19.80
291	6	1	15.20
292	6	1	13.40
293	6	1	12.80
294	6	1	8.40
295	6	1	14.00
296	6	1	12.80
297	6	1	7.80
8ר פ	6	1	9.00
و 00د	6 6	2	1.00 1.00
301	6	2	
302	6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.20 11.00
303	6	2	0.40
304	6	2	5.00
305	6	2	1.60
306	6	2	3.00
307	6	2	1.20
308	6	2	1.20
309	6	2	0.20
310	6	2	0.60
311	6	2	0.20
312	6	2	0.40
313	7	1	1.00
314	7	1	1.00 2.00
315	7	1	0.50 1.30
316	7	1	1.30
317	7	1	1.30
318	7	1	0.80
319	7	1	0.80
320 321	7	1	2.60
321	/ 7	2 1	1.30 6.00
322 23	ן ר	2 2	17.60
23 4	7	2	12.80
4 25	7	2	13.20
326	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 2 2 2 2 2 2 2 2 2	1.00
327	, 7	2	2.40
	•	-	

328	7	2	1.80	
329	7	2	0.60	
330	7	2	0.60	

Obs.	CONC	REP	REPROD
331	7	2	0.80
332	7	2	0.20
333	7	2	21.20
334	7	2	17.00
335	7	2	9.80
336	7	2	6.60
337	7	2	5.60
338	7	2	2.20
339	7	2	2.30
340	7	2	2.30