TEXT SEARCHABLE DOCUMENT - 2010

DATA EVALUATION RECORD FRESHWATER SEDIMENT Chironomus riparius EMERGENCE TEST

1. CHEMICAL: Trifluralin

PC Code: 036101

2. <u>TEST MATERIAL</u>: Trifluralin Technical

<u>Purity</u>: 96.3%

3. CITATION:

<u>Authors</u> :	Knoch, M.
<u>Title</u> :	Assessment of Side Effects of Trifluralin Technical on the Larvae of
	the Midge, Chironomus riparius with the Laboratory Test Method.
Study Completion Date:	November 11, 1996
Laboratory:	Arbeitsgemeinschaft
	GAB Biotechnologie GmbH & IFU Umweltanalytik GmbH
	D-75223 Niefern-Öschelbronn, Germany
Sponsor:	Dow Agrosciences LLC
	9330 Zionsville Road
	Indianapolis, IN 46268
Laboratory Report ID:	96015/01-ASCr
MRID No.:	478070-13

4. **<u>REVIEWED BY</u>**: Christie E. Padova, Staff Scientist, Dynamac Corporation

Signature: Christie E. Padora

Date: 11/04/09

APPROVED BY: Teri S. Myers, Senior Scientist, Cambridge Environmental Inc.

Signature: Signature:

Date: 12/08/09

5. <u>APPROVED BY</u>: Christine Hartless, OPP/EFED/ERB 1

5-7-10 Date: 5/7/10 Signature: --

6. STUDY PARAMETERS

Scientific Name of Test Organism: Age of Test Organism: Definitive Test Duration: Study Method: Type of Concentrations: Chironomus riparius 1st instar larvae, 2 days post-hatch 28 days Static with aeration Nominal overlying water (associated TWAs were not applicable)

2085209

7. <u>CONCLUSIONS</u>:

Results Synopsis: This study is classified as Supplemental and can be used in risk characterization. It should not be used in risk estimation as there were concerns regarding the actual exposure concentrations. Some reasons this study should not be used for risk estimation:

- concentration in pore water was not measured
- concentrations in sediment were reported as mg/vessel and it was not possible to convert those values to mg/kg-dry wt of sediment
- trifluralin was detected on the film over the vessels, indicating material volatilized out of the water
- measured concentrations in overlying water did not increase consistently as nominal concentrations increased (*e.g.*, in the nominal concentrations of 1.0 and 2.0 mg/L, the measured concentrations were 0.107 and 0.058 mg/L, respectively). There was uncertainty regarding the actual exposure concentrations in the study vessels.

Emergence Percentage (nominal concentrations)

NOAEC: 2.0 mg ai/L LOAEC: 4.0 mg ai/L EC₅₀: 6.9 mg ai/L

95% C.I.: (4.6 to 10 mg ai/L)

Development Rate (nominal concentrations)

NOAEC: 0.25 mg ai/L LOAEC: 0.5 mg ai/L IC_{50} : >8.0 mg ai/L

Assessment endpoints: emergence rate and development rate (combined genders) Most sensitive endpoint based on NOAEC: development rate

8. ADEQUACY OF THE STUDY:

A. Classification: Supplemental

B. Rationale: It was reported that the study followed the BBA Guideline: Effects of plant protection products on the development of sediment-dwelling larvae of Chironomus riparius in a water sediment system (Streloke and Köpp, 1995) and OECD Guideline No. 207: Earthworm, Acute Toxicity Test, and does not fulfill any current U.S. EPA data requirement.

C. Reparability: N/A

9. MAJOR GUIDELINE DEVIATIONS (from OECD Guideline 219):

- 1. The environmental conditions maintained during culturing and the health of the in-house culture was not reported.
- 2. The TOC and moisture content of the artificial sediment were not reported.
- 3. The sediment to overlying water depth ratio was *ca.* 1:9, exceeded the maximum recommended ratio of 1:4.
- 4. Water hardness and ammonia levels were not monitored during the study.
- 5. Analysis of pore water for trifluralin concentrations was not performed.

10. <u>SUBMISSION PURPOSE</u>: Litigation/Endangered Species

11. MATERIALS AND METHODS

Stability of Compound Under Test Conditions: To assess the behavior of trifluralin in the test system, samples of overlying water collected from the 1.0 and 8.0 mg/L levels (biological test systems) were analyzed on Days 0, 3, 7, 28, and samples of sediment collected from the 1.0 and 8.0 mg/L levels (surrogate test systems) were analyzed on Days 0, 7, and 28. Data reported for the overlying water from surrogate test systems were not included in this discussion (see Reviewer's Comments section).

Trifluralin dissipates from the water phase rapidly. At Day 0 (2 hours following application), maximum concentrations in overlying water were 41 and 3.4% of nominal levels at the 1.0 and 8.0 mg/L levels, respectively. The lower recovery at the 8.0 mg/L level was an effect of the low aqueous solubility of trifluralin and its tendency to aggregate at concentrations above its solubility. By Day 7, trifluralin was undetectable in overlying water at both concentration levels.

In sediment, concentrations of trifluralin were 19.8 and 58.9% of nominal levels on Day 0 at the 1.0 and 8.0 mg/L levels, respectively, indicating that at concentrations above the solubility, nearly 60% of the applied is transferred to the sediment. It could not be determined whether transfer to the sediment or volatilization from solution was responsible for the loss. It was noted that the color of the parafilm cage (not further described) turned to yellow during the test, and apparently an analysis of the cage was performed (methods not reported). At the 1.0 and 8.0 mg/L levels on Day 7, concentrations of trifluralin in sediment were 15.6 and 62.7% of the nominally applied, respectively, and concentrations in/on the cage were 19.0 and 2.9% of the nominally applied, respectively. On Day 28, trifluralin was not detected in sediment and accounted for 2.1% of the applied at the 1.0 mg/L level, and accounted for 41.5 and 2.8% of the nominally applied in the sediment and cage, respectively, at the 8.0 mg/L level.

MRID No.: 478070-13

Parameter	Values	Comments
Water solubility at 20°C	<1.0 mg/L	Temp. not reported
Vapor pressure	Not reported	
UV adsorption	Not reported	
рКа	Not reported	
Kow	Not reported	

Physicochemical properties of trifluralin.

OECD requires water solubility, stability in water and light, pK_{a} , P_{ow} , and vapor pressure of the test compound.

A. Test Organisms/Acclimation

Guideline Criteria	Reported Information
Species	
Chironomus riparius	Chironomus riparius
Source	In-house cultures.
<u>Culture Conditions</u> A reproduction and oviposit chamber should consist of an adult area, sufficiently large to allow swarming (minimum 30 x 30 x 30 cm), and an oviposit area. Crystallizing dishes or larger containers with a thin layer of quartz sand (5 to 10 mm) or Kieselgur (thin layer to a few mm) spread over the bottom and containing suitable water to a depth of several cm are suitable as an oviposit area. Environmental conditions: temperature $20\pm2^{\circ}$ C; 16:8 hours light:dark (intensity ca. 1000 lux); air humidity	Chironomid larvae were reared in glass dishes containing a thin layer of fine quartz sand and 7- to 8-cm of Elendt medium M4 (dilution water). The larval rearing vessels were maintained within a suitable cage to maintain emerged adults. Environmental conditions were not reported.

MRID No.: 478070-13

Guideline Criteria	Reported Information
Egg Mass Acclimation Period Four to five days before test initiation freshly laid egg masses should be taken from cultures and maintained separately in culture medium, temperature change should not exceed 2°C per day.	Four days before test initiation, freshly-laid eggs masses were collected from the cultures and deposited into small vessels in culture medium (temperature not reported).
<u>Age of Test Larvae</u> First instar (1 to 4 days post-hatch with confirmation)	1 st instar, 2 days post-hatch
Food Green algae (e.g., <i>Scenedesmus subspicatus,</i> <i>Chlorella vulgaris</i>) or flaked fish food as a ground powder, suspension, or filtrate	Chironomus larvae were fed every second or third day (<i>ad libitum</i>) with ground Tetra Min® fish flake food at <i>ca</i> . 25 mg per vessel per day.
Health of parent culture stock Were parent chironomids in good health during the culture period?	Not reported

B. Test System

Guideline Criteria	Reported Information
<u>Type of Test System</u> Static (static-renewal or flow-through of overlying water is evaluated on a chemical-specific basis). Distilled or deionized water may be added to overlying water once daily as needed to maintain volume.	Static with aeration. The water level was marked (presumably so that evaporative losses could be replaced).
<u>Test Materials</u>	Identity: trifluralin, technical Common name: trifluralin Physical description: orange solid Lot No.: RMM 1915 Purity: 96.3% (w:w); analyzed Storage: room temperature in the dark

DP Barcode: 367525

Guideline Criteria	Reported Information
Stock Solutions	A primary stock solution was prepared in acetone, and dosing solutions were prepared from the primary stock.
	Dosing stock solutions were applied just below the water surface using a Hamilton pipette, and were gently stirred with a glass rod after addition.
<u>Test Water</u> Soft reconstituted water or water from a natural source is preferred. Dechlorinated tap water may be used if the test organism will survive in it for the duration of the culturing and testing without showing signs of stress.	Elendt M4 Medium was prepared using analytical-grade salts and de-ionized water. A detailed composition was provided. The artificial medium had a Ca ²⁺ /Mg ²⁺ proportion of 4/1, a Na ⁺ /K ⁺ proportion of 10/1, an acid capacity of 0.8 mmol/L, a total hardness of 14.5°dH, and a pH of 7.5 \pm 0.3.
Test SedimentFormulated (reconstituted, artificial, orsynthetic) sediment is recommended. Contentof sediment by dry weight: 5% peat (dry) (pH5.5-6.0) or alpha-cellulose, 75% quartz sand(>50% in size range of 50-200 microns), 20%kaolinite clay (kaolinite content ca. 30%),CaCO ₃ 0.05-0.1%). Moisture content 30-50%,TOC 2% ($\pm 0.5\%$) and pH 6.5 - 7.5. Naturalsediment can be used if it is fullycharacterized, unpolluted, and free oforganisms that might compete with orconsume chironomids. (If solvent other thanwater will be used, sand content of artificialsediment is adjusted accordingly.)	 Formulated (artificial) sediment was prepared (according to OECD Guideline No. 207; 1984) as follows (dry weight basis): 70% industrial sand (>50% between 50 and 200 μm), 20% kaolin clay (kaolinite content >30%), and 10% sphagnum peat (pH 5.5 to 6.0, with no visible plant remains, air-dried and finely ground). The final pH was adjusted by the addition of <i>ca.</i> 1% calcium carbonate. The dry constituents were mixed thoroughly using an electric mixer. De-ionized water was added to moisten the sediment prior to use.
	TOC: not reported Moisture content: not reported pH: 6.0 ± 0.5

DP Barcode: 367525

Sediment Conditioning	
<u>Artificial sediment</u> : 7 days in flowing dilution water prior to test initiation, chambers may be aerated	Test vessels (sediment:water) were prepared 5 to 7 days prior to study initiation (Day 0) and acclimated under test conditions.
Introduction of Test Organisms Twenty-four hours prior to test initiation aeration of chambers is stopped and organisms are added to the chambers. Aeration should not resume for at least 24 hours. At test initiation, the test substance is spiked into the overlying water column.	One day prior to test initiation (i.e., Day -1), midge larvae were impartially added to each replicate test vessel. Aeration was stopped while the animals were added and for the following 24 hours.
Solvents If used, minimal (i.e., ≤ 0.1 ml/l) and same concentration in all treatments. Suitable solvents are acetone, ethanol, methanol, elthylene glycol monoethyl ether, ethylene glycol dimethyl ether, dimethylformamide or triethylene glycol. (OECD guidelines also allows use of dispersants: Cremophor RH40, Tween 80, methycellulose 0.01%, and HCO-40)	Acetone 0.1 mg/L test solution
Water Temperature $20^{\circ}C \pm 2^{\circ}C$ (Should not deviate between vessels by more than 1°C.)	19.4 to 21.5°C
pH <u>Sediment</u> : 7.0 ± 0.5 <u>Interstitial Water</u> : <u>Overlying Water</u> : 6.0 to 9.0 (Should not vary by more than 1 unit during test)	<u>Sediment</u> : 6.0 ± 0.5 (at preparation) <u>Interstitial Water</u> : Not determined <u>Overlying Water</u> : overall range of 7.48 to 10.58, with daily averages increasing from 7.93 on Day -1 to 9.99 on Day 27
TOC Sediment: 2 ± 0.5% Overlying Water: 2 mg/L	Sediment: Not determined Overlying Water: Not determined

Guideline Criteria	Reported Information
<u>Ammonia</u> <u>Interstitial Water</u> : <u>Overlying Water</u> :	Interstitial Water: Not determined Overlying Water: Not determined
Total Water Hardness 200 mg/L as CaCO ₃ (prefer 160 to 180 mg/L as CaCO ₃)	Not determined
Dissolved Oxygen 60% air saturation value throughout test	8.0 to 12.9 mg/L (>60% saturation)
Aeration Aeration (ca. one bubble/sec) is allowed except for when larvae are being added and for at least 24 hours after introduction of test organisms to a test chamber. If one test chamber is aerated all test chambers must be treated the same.	Continuously at a rate of 1-2 bubbles/sec, except for during and approximately 24 hours following the addition of the larvae.
Test Vessels or Compartments 1. <u>Material</u> : Glass, No. 316 stainless steel, teflon or perfluorocarbon plastics 2. <u>Size</u> : Sediment depth of 1.5- 3 cm and the depth ratio of sediment to water should be ca. 1:4, must not be >1:4; 600 ml beaker with 8 cm diameter	<u>Material</u> : glass beakers <u>Size</u> : 2 L (13-cm diameter), containing a 2.0-cm layer of sediment (270 g wet weight) and a 15- to 20-cm layer of overlying water (1600 mL). The height ratio was <i>ca</i> . 1:9 sediment to overlying water.
Covers Test vessels should be covered with a glass plate.	Test vessels were covered with a plastic film which had an opening for aeration.
Photoperiod 16 hours light, 8 hours dark (Light intensity 500 to 1000 lux)	16 hours light, 8 hours dark Light intensity 800 to 1200 lux
Food Green algae (e.g., <i>Scenedesmus subspicatus</i> , <i>Chlorella vulgaris</i>) or flaked fish food as a ground powder, suspension, or filtrate	Tetra Min® suspension, 1 g/40 mL

MRID No.: 478070-13

Guideline Criteria	Reported Information
Food Concentration and Frequency	
Preferably feed daily but at least 3 times per	Every 1 to 2 days
week.	
day 1 to 10: 0.25-0.5 mg per larvae per day	Days -1 to 17: 0.5 to 2 mL per vessel
remainder of test: 0.5-1 mg per larvae per day	
(keep to a minimum, should not accumulate	After Day 17, no further feeding was
on sediment surface, cause overlying water to	performed due to algae growth.
be cloudy or cause drop in DO)	

C. Test Design

Guideline Criteria	Reported Information
Duration <u>Chironomus riparius</u> : 28 days (if midges emerge early the test can be terminated after a minimum of 5 days after emergence of the last adult in the control).	28 days
Nominal Concentrations Negative control, solvent control (if a solvent was used) and at least 5 test concentrations. (Note exception to dilution factors described below can be made for shallow slope responses but minimum number of test concentrations may need to be increased)	Negative control, solvent control, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0 mg/L
<u>ECx endpoint</u> : test concentrations should bracket ECx and span the environmental concentration range. Dilution factor should not be greater than two between exposure concentrations.	<u>ECx endpoint</u> : test concentrations were expected to bracket the EC ₀ to EC ₁₀₀ range. The dilution factor was 2.
<u>NOEC/LOEC endpoint</u> : factor between concentrations must not be greater than 3.	NOAEC/LOAEC endpoint: (same)

Guideline Criteria	Reported Information
Number of Test Organisms** <u>ECx endpoint</u> : 60 larvae per treatment level; 3 replicates per treatment level	ECx endpoint: 75 larvae per treatment level; 3 replicates per treatment level, with 25 larvae per replicate
<u>NOAEC/LOAEC endpoint</u> : at least 80 larvae per treatment level with at least 4 replicates per treatment level (adequate power to detect a 20% difference, Type I error rate 5%)	NOAEC/LOAEC endpoint: (same)
*(Optional) If data on 10-day growth and survival are needed additional replicates (number based on ECx or NOEC/LOEC endpoint determination) should be included at test initiation	*(Optional) 10-day growth data were not collected.
Test organisms randomly or impartially assigned to test vessels?	Yes
 Overlying Water Parameter Measurements 1. Dissolved oxygen should be measured daily in all test chambers. 2. Temperature and pH should be measured in all test chambers at the start and end of the test and at least once a week during the test. 	1. – 3. Temperature, pH, and dissolved oxygen were measured in each vessel on Days -1, 6, 14, 20, and 27.
 Temperature should be monitored at least hourly throughout the test in one test chamber. 	
4. Hardness and ammonia should be measured in the controls and one test chamber at the highest concentration at the start and end of the test.	4. Not determined

Guideline Criteria	Reported Information
Chemical Analysis-Overlying Water At a minimum must be analyzed at test initiation (i.e., one hour after introduction of test substance into the test chamber) and at the end of the test in at least the highest concentration and one lower concentration.	Overlying water was sampled from the biological test vessels prepared at 1 and 8 mg/L on Days 0 (2 hours after application) and 28. Overlying water was sampled from biological vessels prepared at all levels on Day 3. All aqueous samples were analyzed for trifluralin by direct injection into an HPLC
Interstitial Water and Sediment Isolation <u>Method</u> Centrifugation (e.g., 10,000 g and 4 EC for 30 min) is recommended. If test substance is demonstrated not to adsorb to filters, filtration may be acceptable.	Sediment and pore water were isolated using vacuum filtration.
Chemical Analysis-Interstitial Water At a minimum must be analyzed at the end of the test in at least the highest concentration and one lower concentration.	Not assessed.
Chemical Analysis-Bulk Sediment At a minimum must be analyzed at the end of the test in at least the highest concentration and one lower concentration.	The sediment of surrogate vessels prepared at 1 and 8 mg/L were collected for analysis on Days 0, 7, and 28. Sediment was extracted with acetone, and extracts were analyzed for trifluralin using HPLC with UV (275 nm) detection.

12. <u>REPORTED RESULTS</u>

A. General Results

Guideline Criteria	Reported Information
Quality assurance and GLP compliance statements were included in the report?	Yes. This study was conducted in compliance with the GLP standards of the OECD and U.S. EPA.
Control Mortality <30%	Yes
Did chironomids emerge in controls between day 12 and 23?	Negative control – days 11 to 21 Solvent control – days 11 to 17
Control Emergence Mean emergence between 50-70%	Negative control – 97.3% emergence Solvent control – 94.9% emergence
Data EndpointsEmergence Test (28 day)- Number alive- Time to emergence- Number of emerged male and female midges- Number of visible pupae that have failed toemerge- Number of egg masses deposited- Observations of other effects, abnormalbehavior, or appearance or clinical signs (e.g.,leaving sediment, unusual swimming)Growth and Survival (10-day) (Optional)- Number alive- Instar level of surviving larvae- Dry weight (ash free) per test chamber of	Emergence Test (28 days) - Number alive - Time to emergence - Number of emerged male and female midges <u>Growth and Survival (10-day) (Optional)</u> N/A
Raw data included?	Yes

MRID No.: 478070-13

Effects Data

Toxicant Concentration					Mean Number Emerged			Mean Sex Ratio ^(b) (%)	
Nominal	Mea	n Measured TW	A ^(a)	Initial					
Overlying Water (mg ai/L)	Overlying Water (mg ai/L)	Sediment (mg ai/vessel)	Pore Water (mg ai/L)	No. 8	ð	£	Total	ER3	ERç
Negative control	Not calculable	Not assessed	Not assessed	75	33	40	. 73	45	55
Solvent control	Not assessed	Not assessed	Not assessed	78	31	43	74	42	. 58
0.25	Not calculable	Not assessed	Not assessed	75	33	37	70	47	53
0.5	Not calculable	Not assessed	Not assessed	76	31	42	73	42	58
1.0	0.0497		Not assessed	76	40	32	72	56	44
2.0	Not calculable	Not assessed	Not assessed	75	39	24	63	62	38
4.0	Not calculable	Not assessed	Not assessed	75	22	. 23	45	49	51
8.0	0.0495		Not assessed	75	14	16	30	47	53

Table 1	Summary of trifluralin	effects on Chironomy	s rinarius emergence s	nuccess and sev ratio
$1 a 0 0 1 \cdot 1$.	Dummary of umutation		s <i>inditions</i> efficience s	

^(a) Reviewer-calculated time-weighted averages (refer to associated Excel spreadsheet); results were rounded to three significant figures. For overlying water, the LOD and LOQ were 0.035 and 0.074 mg ai/L, respectively. For sediment samples, the LOD and LOQ were 0.153 and 0.230 mg/vessel, respectively.

(b) ER_{σ} = number of emerged males/number of emerged larvae x 100; ER_{ϕ} = number of emerged females/number of emerged larvae x 100; reviewer-calculated.

MRID No.: 478070-13

	1	Arc-sine	Mean				
Overlying	Water (mg ai/L)	M	ean Measured TW	A (a)	Transformed Emergence	Development Rate ^{(b)(c)}	
Nominal	Measured on day 3	Overlying Water (mg ai/L)	Sediment (mg ai/vessel)	Pore Water (mg ai/L)	Rate ^(b)	(1/day)	
Negative control	<lod< td=""><td>Not calculable^d</td><td>Not assessed</td><td>Not assessed</td><td>1.48</td><td>0.0837</td></lod<>	Not calculable ^d	Not assessed	Not assessed	1.48	0.0837	
Solvent control	Not assessed	Not assessed	Not assessed	Not assessed	1.43	0.0793	
0.25	0.042	Not calculable	Not assessed	Not assessed	1.36	0.0783	
0.5	0.047	Not calculable	Not assessed	Not assessed	1.41	0.0729*	
1.0	0.107	0.0497	0.1986 ^e	Not assessed	1.43	0.0738*	
2.0	0.058	Not calculable	Not assessed	Not assessed	1.18	0.0692*	
4.0	0.297	Not calculable	Not assessed	Not assessed	0.898*	0.0631*	
8.0	0.164	0.0495	7.1584 ^e	Not assessed	0.684*	0.0500*	

Table 2. Summary of trifluralin effects on Chironomus riparius development time and rate.

* Significantly difference compared to the solvent control at p<0.05.

^(a) Reviewer-calculated time-weighted averages (refer to associated Excel spreadsheet); results were rounded to three significant figures. For overlying water, the LOD and LOQ were 0.035 and 0.074 mg ai/L, respectively. For sediment samples, the LOD and LOQ were 0.153 and 0.230 mg/vessel, respectively.

^(b) Means were reviewer-calculated using replicate data provided in the study report (refer to associated Excel spreadsheet); results were rounded to three significant figures.

(c) Mean development rate =
$$\sum_{i=1}^{m} \frac{f_i x_i}{n_e}$$

where: i = index of inspection interval; m = maximum number of inspection intervals; $f_i =$ number of midges emerged in the inspection interval *i*; $n_e =$ total number of midges emerged; and $x_i = \sqrt{\binom{l_i}{day_i - \frac{l_i}{2}}}$ which is the development rate of the midges emerged in interval *i*; $day_i =$

inspection day (days since application); and $l_i =$ length of inspection interval *i* (days, 1 day in this study).

^d Vessels were only measured at one time point.

^e Nominal concentrations are 1.65 mg/vessel and 13.2 mg/vessel, respectively.

<u>Toxicity Observations (in terms of nominal concentrations)</u>: Reviewer-calculated emergence rates were 97.3, 94.9, 93.3, 96.0, 94.7, 84.0, 60.0, and 40.0% for the negative control, solvent control, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0 mg ai/L levels, respectively. Corresponding arcsine transformed emergence rates were 1.48, 1.43, 1.36, 1.41, 1.43, 1.18, 0.898, and 0.684, respectively. Differences were statistically different (p<0.05) compared to the solvent control at the 4.0 and 8.0 mg ai/L levels. The NOAEC for emergence was 2.0 mg ai/L. The following ECx values for emergence were calculated by the study author:

ECx	· · ·	Lower C.I.	Upper C.I.
EC ₁	0.17	0.09	0.33
EC ₅	0.51	0.33	0.77
EC ₁₀	0.89	0.65	1.23
EC ₁₅	1.31	1.00	1.71
EC ₂₀	1.77	1.40	2.25
EC ₅₀	6.60	4.82	9.06
EC ₈₀	24.59	14.01	43.14

Table 3	EC.	values	for a	midae	emergence	and	associated	95%	% confide	nce limits	mo/L
raole J.	$-1 - \sqrt{x}$	Yaraco	101 1	unugo	vinoi gonov	ana	associated	101		Tee munto	, III () / II ()

Development rate was the most sensitive endpoint, and averaged 0.0837, 0.0793, 0.0783, 0.0729, 0.0738, 0.0692, 0.0631, and 0.0500 days⁻¹ for the negative control, solvent control, 0.25, 0.50, 1.0, 2.0, 4.0, and 8.0 mg ai/L levels, respectively. Differences were statistically different (p<0.05) compared to the solvent control at the \geq 0.50 mg ai/L levels. The NOAEC for development rate was 0.25 mg ai/L.

B. Statistical Results (From Study Report)

 EC_x values with associated 95% confidence intervals were determined using probit analysis, or in case of failure, non-parametric methods such as moving averages or simple interpolation. Calculations were determined with the EASY ASSAY Critical Values computer program (Ver. 3.0).

In addition, the number of emerged midges, emergence rate, and development rate (combined genders) were subjected to statistical analysis on a per vessel (or replicate) basis, and emergence rates were arcsine-transformed prior to analysis. Data were assessed for homogeneity of variance using the Kruskal-Wallis (emerged midges) or Bartlett's (emergence and development rates) test. In all cases, the homogeneity hypothesis was accepted, and that NOAEC/LOAEC values were determined using ANOVA and Dunnett and Williams multiple t-tests at the p=0.05 level.

Most sensitive endpoint: development rate

15

MRID No.: 478070-13

Endpoint	Methods	EC ₅₀ (95% CI) (mg/L)	NOAEC (mg/L)	LOAEC (mg/L)
28-d No. Emerged Midges	Dunnett Williams	6.60 (4.82 to 9.06)	2.0	4.0
28-d Emergence Rate	Dunnett Williams		2.0	4.0
28-d Development Rate	Dunnett Williams		0.25	0.50
10-d Survival (Optional)				
10-d Growth (Optional)				

13. VERIFICATION OF STATISTICAL RESULTS.

Analyses were performed using TOXSTAT 3.5 and Nuthatch statistical software with nominal overlying water concentrations. Endpoints that were statistically analyzed included emergence percentages and development rates.

Negative and solvent control data were compared using a t-test (alpha = 0.05); for emergence and development rates, no significant differences were observed. All comparisons of treatment groups were made to the negative control.

Data were tested for normality using the Shapiro-Wilk's test, and for homogeneity of variance using Bartlett's test. Percent emergence data were transformed using the arcsin-square root transformation to meet assumptions. After transformation, all data were both normal with homogenous variance; a parametric analysis was conducted using Williams' test (alpha = 0.05).

The EC₅₀ for emergence percentage was calculated using the Bruce and Versteeg approach in the Nuthatch software. IC₅₀ for development rate was not calculated as a 50% decrease from the control was not observed. IC₅₀ for development was visually determined at > 8.0 mg/L.

Endpoint	Solvent vs Dilu	tion Control	NOAEC	C/LOAEC
	Method	Diff ⁽¹⁾ (%)	Method	Diff ⁽²⁾ (%)
28-d Emergence Rate	Student's t-test	2.5	ANOVA Williams'	13.7
28-d Development Rate	Student's t-test	5.3	ANOVA Williams'	6.5
10-d Survival (Optional)				
10-day Dry Weight (Optional)				

Summary of Statistical Methods used for NOAEC/LOAEC Analyses.

⁽¹⁾ Difference between the mean dilution water and solvent control responses. ⁽²⁾ Difference between the dilution water and NOAEC concentration treatment.

Most sensitive endpoint: Development rate

Verification Statistical Endpoint Values^(a).

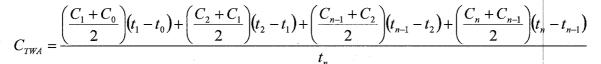
Statistical Endpoint	28-day Emergence	28-day Development Rate	10-d Survival	10-d Dry Weight
NOAEC	2 mg/L	0.25 mg/L		
LOAEC	4 mg/L	0.5 mg/L		
EC ₅₀ /IC ₅₀ (95% C.I.)	6.9 mg/L (4.6 to 10 mg/L)	>8.0 mg/L		
Slope (Standard Error)	1.71±0.535	N/A		

^(a) Results are based on nominal overlying water concentrations.

14. <u>REVIEWER'S COMMENTS</u>:

The reviewer's conclusions generally agreed with the study author's. The NOAEC values, calculated by the reviewer using the negative control as a comparison to treated groups, were identical to those calculated by the study authors (using the solvent control as a comparison to treated groups). Results calculated by the reviewer will be reported in the study conclusions.

This study does not fulfill any current U.S. EPA guideline. However, it closely followed methods provided in OECD Guideline 219 (April 2004), "Sediment-Water Chironomid Toxicity Test Using Spiked Water", with the primary objective being to determine the median effect concentrations (EC_x) associated with emergence (i.e., survival) of *Chironomus riparius*. In order for the test to be valid, OECD Guidance requires the following conditions: The emergence in the controls must be at least 70% at the end of the test; *C. riparius* emergence to adults should occur between 12 and 23 days after their insertion into the vessels; at the end of the test, pH and the dissolved oxygen concentration should be measured in each vessel (the oxygen concentration should be at least 60% of the air saturation value at the temperature used, the pH of overlying water should be in the 6-9 range in all test vessels); and the water temperature should not differ by more than $\pm 1.0^{\circ}$ C. In this study, the pH values increased from an average of 7.93 on Day -1 to 9.99 on Day 27, and exceeded the limits of the proposal guideline due to the algae growth (which was also indicated by the high oxygen concentrations). The study author reported that this did not negatively affect the organisms in the test. All other validity requirements were fulfilled.


Overlying water (volume not reported) was sampled directly from the biological vessels prepared on Day 3 (all levels) and Days 0, 7, and 28 (1.0 and 8.0 mg/L levels only). In addition, surrogate vessels were prepared and used for sediment analysis on Days 0, 7, and 28 (1.0 and 8.0 mg/L levels only). Although it was reported that overlying water was analyzed in surrogate test vessels collected on Days 0, 7, and 28, the data provided for Days 0 and 7 (once converted from mg/vessel to mg/L) were identical to data obtained from analysis of overlying water collected from biological samples for Days 0 and 3. Therefore, it was apparent that only sediment from the surrogate vessels was analyzed.

The volume of overlying water removed (directly from the biological samples) for trifluralin analysis was not reported; therefore, it is unknown what, if any, affect the change in volume had on the biological load or concentration of test substance in the system.

MRID No.: 478070-13

The study was conducted for 30 days, 9 days following emergence of the last adult and after 90% of the chironomids had emerged from the solvent control vessels. However, for evaluation of the study, data from only 28 days were taken into account.

When possible, TWA concentrations were calculated by the reviewer using the following equation (refer to associated Excel worksheet in Appendix II):

where:

C TWA is the time-weighted average concentration,

C j is the concentration measured at time interval j (j = 0, 1, 2,...n)

t j is the number of hours (or days or weeks, units used just need to be consistent in the equation) of the test at time interval j (e.g., t 0 = 0 hours (test initiation), t 1 = 24 hours, t 2 = 96 hours).

The definitive study was conducted from May 3 to June 2, 1996.

15. <u>REFERENCES:</u>

- OECD. 2002. Proposal for a New Guideline 219: Sediment-Water Chironomid Toxicity Test Using Spiked Water. December 2002 Draft. Paris.
- OECD. 1998. OECD Series on Principles of Good Laboratory Practice and Compliance Monitoring, Number 1. OECD Principles on Good Laboratory Practice (as revised in 1997) ENV/MC/CHEM(98)17.
- European Community (EC). 1999. EC Directive 99/11/EC of 8 March 1999 (OJ No. L 77/8-21, 23/3/1999).
- U.S. EPA. FIFRA GLPS; Title 40 CFR Part 160 Federal Insecticide, Fungicide and rodenticide Act (FIFRA); Good Laboratory Practice Standards, Final Rule.
- Dow AgroSciences LLC. 2003. Certificate of Analysis for Radioactive Compounds Used as Test/Reference/Control Substances. FA&PC Number 034007. 15 May, 2003.
- Dow AgroSciences LLC. 2003. Certificate of Analysis for Test/Reference/Control Substances. FA&PC Number 033116. 2 May, 2003.
- Dow AgroSciences LLc. 2003. Test Substance Distribution Certificate. TSN104126. Dow AgroSciences LLC, Indianapolis, IN. 02 May, 2003.
- Shapiro, S.S., and M.B. Wilk. 1965. An Analysis of Variance Test for Normality (complete samples). *Biometrika*, 52:591-611.
- Winer, B.J. 1971. Statistical Methods in Experimental Design (2nd Ed.) McGraw-Hill. New York.
- Steel, R.G.D. 1959. A Multiple Comparison Rank Sum Test: Treatments versus Control. *Biometrics*, 15:560-572.
- Hollander, M., and D.A. Wolfe. 1973. Nonparametric Statistical Methods. John Wiley, New York.
- Gulley, D.D., A.M. Boetler, and H.L. Bergman. 1989. Toxstat Release 3.2. University of Wyoming, Laramie, Wyoming.
- U.S. EPA. 1993. Probit Software Program Version 1.5.

MRID No.: 478070-13

APPENDIX I. OUTPUT OF REVIEWER'S STATISTICAL ANALYSIS: arcsin-transformed emergence rate File: 7013e Transform: NO TRANSFORMATION Chi-square test for normality: actual and expected frequencies _____ INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 _____ 1.407 5.082 8.022 5.082 1.407 EXPECTED 10 OBSERVED 0 7 4 0 _____ Calculated Chi-Square goodness of fit test statistic = 10.3137 Table Chi-Square value (alpha = 0.01) = 13.277 Data PASS normality test. Continue analysis. arcsin-transformed emergence rate File: 7013e Transform: NO TRANSFORMATION Shapiro Wilks test for normality 0.655 D = W = 0.961 Critical W (P = 0.05) (n = 21) = 0.908 Critical W (P = 0.01) (n = 21) = 0.873 Data PASS normality test at P=0.01 level. Continue analysis. arcsin-transformed emergence rate File: 7013e Transform: NO TRANSFORMATION Hartley test for homogeneity of variance Calculated H statistic (max Var/min Var) = 90.89 Closest, conservative, Table H statistic = 1705.0 (alpha = 0.01) Used for Table H ==> R (# groups) = 7, df (# reps-1) = Actual values ==> R (# groups) = 7, df (# avg reps-1) = 2 2.00 Data PASS homogeneity test. Continue analysis. NOTE: This test requires equal replicate sizes. If they are unequal

MRID No.: 478070-13

but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

arcsin-transformed emergence rate File: 7013e Transform: NO TRANSFORMATION Bartletts test for homogeneity of variance _____ Calculated B statistic = 6.55 Table Chi-square value = 16.81 (alpha = 0.01) Table Chi-square value = 12.59 (alpha = 0.05) Average df used in calculation ==> df (avg n - 1) = 2.00 Used for Chi-square table value ==> df (#groups-1) = 6 _____ Data PASS homogeneity test at 0.01 level. Continue analysis. NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above). arcsin-transformed emergence rate File: 7013e Transform: NO TRANSFORM t-test of Solvent and Blank Controls Ho:GRP1 MEAN = GRP2 MEAN _____ GRP1 (SOLVENT CRTL) MEAN =1.4752CALCULATED t VALUE =0.2487GRP2 (BLANK CRTL) MEAN =1.4336DEGREES OF FREEDOM =4DIFFERENCE IN MEANS =0.0416 _____ TABLE t VALUE (0.05 (2), 4) = 2.776NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 4) = 4.604 NO significant difference at alpha=0.01 arcsin-transformed emergence rate Transform: NO TRANSFORMATION File: 7013e ANOVA TABLE ------______ SOURCE DF SS MS \mathbf{F} _____ 6 0.278 5.915 Between 1.667 Within (Error) 14 0.655 0.047

MRID No.: 478070-13

30.4

0.448 30.4

0.577

0.791

0.448

DP Barcode: 367525

5

6

7

20 2.321 Total _____ _____ ----------

Critical F value = 2.85 (0.05,6,14) Since F > Critical F REJECT Ho:All groups equal

arcsin-transformed emergence rate File: 7013e Transform: NO TRANSFORMATION

	DUNNETTS TEST - TA	Ho:Control <tr< th=""><th></th></tr<>			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1	neg control	1.475	1.475		
2	0.25	1.357	1.357	0.666	
3	0.5	1.408	1.408	0.379	
4	1	1.434	1.434	0.235	
5	2	1.179	1.179	1.672	
6	4	0.898	0.898	3.261	*
7	8	0.684	0.684	4.467	*
Dunne	tt table value = 2.53	(1 Tailed Va	alue, P=0.05, df=14,	6)	

arcsin-transformed emergence rate File: 7013e Transform: NO TRANSFORMATION

DUNNETTS TEST - TABLE 2 OF 2 Ho:Control<Treatment ______ NUM OF Minimum Sig Diff % of DIFFERENCE GROUP IDENTIFICATION REPS (IN ORIG. UNITS) CONTROL FROM CONTROL ...crol 3 0.25 3 0.5 3 1 3 2 3 4 neg control 1 0.44830.40.44830.40.44830.4 0.118 2 0.067 3 0.042 4 30.4 0.448 0.296

arcsin-transformed emergence rate File: 7013e Transform: NO TRANSFORMATION

4

8 3

	WILLIAMS TEST (I	Isotonic	regression	model) TABLE 1	OF 2
GROUP	IDENTIFICATION	N	ORIGINAI MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
 1	neg cont	trol 3	1.475	1.475	1.475

MRID No.: 478070-13

3 0.5 3 1.408 1 4 1 3 1.434 1 5 2 3 1.179 1 6 4 3 0.898 0	1.357 1.400 1.408 1.400 1.434 1.400 1.179 1.179 0.898 0.898 0.684 0.684
---	---

arcsin-transformed emergence rate File: 7013e Transform: NO TRANSFORMATION

EM	ILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 OF	7 2
IDENTIE	FICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
r	neg control	1.475				
	0.25	1.400	0.428		1.76	k = 1, v = 14
	0.5	1.400	0.428		1.85	k= 2, v=14
	1	1.400	0.428		1.88	k= 3, v=14
	2	1.179	1.677		1.89	k= 4, v=14
	4	0.898	3.269	*	1.90	k= 5, v=14
	8	0.684	4.479	*	1.91	k= 6, v=14
1701217	csin-transfo					
7013E : ar						
Williams T						
Williams T				.050000]		
Williams T [One-Sided	Test I Test for De	crease, alp T-bar P-	pha = 0 -value Sign	nificance		
Williams T [One-Sided Dose	Test I Test for De Isotone	crease, alp T-bar P-	oha = 0	nificance		
Williams T [One-Sidec Dose 0	Test I Test for De Isotone Means 1.48 1 4	T-bar P-	oha = 0 -value Sign	nificance		
Williams T [One-Sidec Dose 0 0.25	Test I Test for De Isotone Means 1.48 1 4	crease, alg T-bar P 0.4278	oha = 0 -value Sign N.S.	nificance		
Williams T [One-Sided Dose 0 0.25 0.5	Test Test for De Isotone Means 1.48	T-bar P-	oha = 0 -value Sign N.S.	nificance		
Williams T [One-Sided Dose 0 0.25 0.5 1	Test I Test for De Isotone Means 1.48 1.4 1.4	crease, alp T-bar P 0.4278 0.4278 0.4278 0.4278	oha = 0 -value Sign N.S. N.S. N.S. N.S.	nificance		
Williams T [One-Sided Dose 0 0.25 0.5 1 2	Test I Test for De Isotone Means 1.48 1.4 1.4 1.4	crease, alg T-bar P 0.4278 0.4278 0.4278 0.4278 1.676	oha = 0 -value Sign N.S. N.S. N.S. N.S. N.S.	nificance		
Williams T [One-Sided Dose 0 0.25 0.5 1 2 4	Test I Test for De Isotone Means 1.48 1.4 1.4 1.4 1.4 1.18	crease, alp T-bar P 0.4278 0.4278 0.4278 0.4278 1.676	oha = 0 -value Sign N.S. N.S. N.S. N.S. N.S. <0.005	nificance		
Williams T [One-Sided Dose 0.25 0.5 1 2 4 8	Test I Test for De Isotone Means 1.48 1.4 1.4 1.4 1.4 1.18 0.898	Crease, alg T-bar P 0.4278 0.4278 0.4278 0.4278 1.676 3.269 4.478	oha = 0 -value Sign N.S. N.S. N.S. N.S. <0.005 <0.005	nificance		
Williams T [One-Sided Dose 0 0.25 0.5 1 2 4 8 "*"=Signi	Test I Test for De Isotone Means 1.48 1.4 1.4 1.4 1.4 1.18 0.898 0.684 ficant; "N.S	Crease, alg T-bar P 0.4278 0.4278 0.4278 0.4278 1.676 3.269 4.478	oha = 0 -value Sign N.S. N.S. N.S. N.S. <0.005 <0.005	nificance		
Williams T [One-Sided Dose 0.25 0.5 1 2 4 8 "*"=Signi Estimates	Test I Test for De Isotone Means 1.48 1.4 1.4 1.4 1.4 1.18 0.898 0.684 ficant; "N.S of EC% Estimate	Crease, alp T-bar P 0.4278 0.4278 0.4278 1.676 3.269 4.478 5."=Not Sign 95% Bour	oha = 0 -value Sign N.S. N.S. N.S. <0.005 <0.005 nificant.	nificance * *	2	
Williams T [One-Sided Dose 0.25 0.5 1 2 4 8 "*"=Signi Estimates	Test I Test for De Isotone Means 1.48 1.4 1.4 1.4 1.4 1.18 0.898 0.684 ficant; "N.S of EC% Estimate	Crease, alp T-bar P 0.4278 0.4278 0.4278 1.676 3.269 4.478 5."=Not Sign 95% Bour Lower	oha = 0 -value Sign N.S. N.S. N.S. <0.005 <0.005 nificant.	* * Std.Err.	2	
Williams T [One-Sided Dose 0 0.25 0.5 1 2 4 8 "*"=Signi Estimates	Test I Test for De Isotone Means 1.48 1.4 1.4 1.4 1.4 1.18 0.898 0.684 ficant; "N.S of EC% Estimate	Crease, alg T-bar P- 0.4278 0.4278 0.4278 1.676 3.269 4.478 5."=Not Sign 95% Bour Lower	oha = 0 -value Sign N.S. N.S. N.S. <0.005 <0.005 nificant.	t * * Std.Err.	e Lower Bound	

EC25 EC50	2.8			0.15 0.084		-	
Slo	pe = 1	.71 Std.Er	r. =	0.535			·
Goodness of	fit: p =	0.88 b	ased on	DF=	4.0	14.	
7013E : arcs	in-transfo	rmed emerge	nce rate	e .			
Observed vs.	Predicted			eans		• •• •• •• •• •• •• •• •• ••	
Dose	#Reps.	Obs. Mean		Obs. -Pred.		%Change	
0.00 0.250 0.500 1.00	3.00	1.41 1.43	$\begin{array}{c} 1.41 \\ 1.34 \end{array}$	0.0274 -0.0805 -0.00240 0.0958	97.4 92.4	0.695 2.58 7.60	
2.00 4.00 8.00	3.00 3.00 3.00	1.18 0.898 0.684	1.19 0.952 0.661	-0.00941 -0.0538 0.0230	82.1 65.7 45.7	17.9 34.3 54.3	
development File: 7013d	Tran						
Chi-square t		rmality: ac				es 	
INTERVAL	<-1.5	-1.5 to <-	0.5	-0.5 to 0.	.5 >0.5	to 1.5	>1.5
EXPECTED OBSERVED	1.407 0	5.082 7		8.022 7	-	5.082 7	1.407 0
Calculated C Table Chi-Sq		goodness of	fit tes		c = 4.39	919	-
Data PASS no	rmality te	st. Continu	e analys	sis.	,		
development File: 7013d		sform: NO T	RANSFORM	IATION			
Shapiro Wilk	s test for	normality					·
D = 2.690	:		¥.1				•
W = 0.977							
Critical W (Critical W (

MRID No.: 478070-13

_____ Data PASS normality test at P=0.01 level. Continue analysis. development rate Transform: NO TRANSFORMATION File: 7013d Hartley test for homogeneity of variance _____ Calculated H statistic (max Var/min Var) = 9.43 Closest, conservative, Table H statistic = 1705.0 (alpha = 0.01) Used for Table H ==> R (# groups) = 7, df (# reps-1) = 2 Actual values ==> R (# groups) = 7, df (# avg reps-1) = 2.00 _____ Data PASS homogeneity test. Continue analysis. NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used). development rate File: 7013d Transform: NO TRANSFORMATION Bartletts test for homogeneity of variance ______ Calculated B statistic = 3.24 Table Chi-square value =16.81(alpha = 0.01)Table Chi-square value =12.59(alpha = 0.05) Average df used in calculation => df (avg n - 1) = 2.00 Used for Chi-square table value => df (#groups-1) = 6 Data PASS homogeneity test at 0.01 level. Continue analysis. NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above). development rate File: 7013d Transform: NO TRANSFORM HO:GRP1 MEAN = GRP2 MEAN t-test of Solvent and Blank Controls _____ GRP1 (SOLVENT CRTL) MEAN = 8.3749 CALCULATED t VALUE = 1.2095

MRID No.: 478070-13

GRP2 (BLANK CRTL) MEAN = 7.9307 DEGREES OF FREEDOM = 4 DIFFERENCE IN MEANS = 0.4442 TABLE t VALUE (0.05 (2), 4) = 2.776NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 4) = 4.604 NO significant difference at alpha=0.01 development rate File: 7013d Transform: NO TRANSFORMATION ANOVA TABLE SOURCE DF SS MS F Between 6 21.846 3.641 18.964 Within (Error) 14 2.690 0.192 _ _ _ _ _ _ _ _ . 20 Total 24.536 Critical F value = 2.85 (0.05,6,14) Since F > Critical F REJECT Ho:All groups equal development rate File: 7013d Transform: NO TRANSFORMATION DUNNETTS TEST - TABLE 1 OF 2 Ho:Control<Treatment _____ TRANSFORMED MEAN CALCULATED IN MEAN ORIGINAL UNITS GROUP IDENTIFICATION T STAT SIG _____ _____ _ _ _ 1 neg control 8.375 8.375 7.829 2 0.25 7.829 1.526 7.287 3.041 7.287 3 0.5 * 7.382 2.775 4 7.382 1 * 6.925 5 4.054 2 6.925 * 6 5.786 6.305 4 6.305 * 8 5.003 5.003 9.425 * 7 Dunnett table value = 2.53 (1 Tailed Value, P=0.05, df=14,6) development rate File: 7013d Transform: NO TRANSFORMATION DUNNETTS TEST - TABLE 2 OF 2 Ho:Control<Treatment _____

MRID No.: 478070-13

GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	neg control	3			
2	0.25	3	0.905	10.8	0.546
3	0.5	3	0.905	10.8	1.088
4	1	3	0.905	10.8	0.993
5	2	3	0.905	10.8	1.450
6	4	3	0.905	10.8	2.070
7	8	3	0.905	10.8	3.372

development rate File: 7013d

e: 7013d Transform: NO TRANSFORMATION

	WILLIAMS TEST (Isoto	nic	regression model) TABLE 1 O	F 2
GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	neg control	3	8.375	8.375	8.375
2	0.25	3	7.829	7.829	7.829
3	0.5	3	7.287	7.287	7.335
4	1	3	7.382	7.382	7.335
5	2	3	6.925	6.925	6.925
6	4	3	6.305	6.305	6.305
7	8	3	5.003	5.003	5.003

development rate File: 7013d

Transform: NO TRANSFORMATION

IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES C FREEDOM
neg control	8.375				
0.25	7.829	1.525		1.76	k= 1, v=
0.5	7.335	2.907	*	1.85	k= 2, v=
1	7.335	2.907	*	1.88	k= 3, v=
2	6.925	4.052	*	1.89	k= 4, v=
4	6.305	5.784	*	1.90	k= 5, v=
8	5.003	9.422	*	1.91	k= 6, v=

Note: df used for table values are approximate when v > 20.

MRID No.: 478070-13

APPENDIX II: COPY OF REVIEWER'S TWA CALCULATIONS (USING EXCEL):

OVERLYING WATER

Nominal Conc. mg ai/L	Time (Day)	Measured Conc. (mg ai/L) Biological Vessels	TWA (mg ai/L)
1	0	0.409	
	3	0.107	
	7	0.0175	
	28	0.0175	
			0.04966
8	0	0.273	
-	3	0.164	
	7	0.0175	
	28	0.0175	
			0.04950

SEDIMENT

Nominal Conc.		Measured Conc. (mg ai/vessel)	TWA
mg ai/L	Time (Day)	Surrogate Vessels	(mg ai/vessel)
1	0	0.327	
=1.65 mg ai/vessel	7	0.258	
-	28	0.0765	
	х.		0.19856
8	0	7.771	
=13.2 mg ai/vessel	7	8.27	
Ū	28	5.472	
			7.15838

When necessary, half of the LOD was used for calculation purposes.

MRID No.: 478070-13

APPENDIX III: COPY OF REVIEWER'S MEAN EMERGENCE RATE AND DEVELOPMENT RATE CALCULATIONS (USING EXCEL):

MEAN EMERGENCE RATE

. _ . .

. ...

Nominal Conc.	ARCsin-transformed emergence rate						
mg/L	Rep. 1	Rep. 2	Rep. 3	Mean			
Neg. control	1.28404	1.5708	1.5708	1.48			
Sol. Control	1.5708	1.15928	1.5708	1.43			
0.25	1.5708	1.21705	1.28404	1.36			
0.5	1.28404	1.36944	1.5708	1.41			
1	1.15928	1.5708	1.5708	1.43			
2	0.96953	1.28404	1.28404	1.18			
4	1.0132	1.21705	0.46365	0.898			
8	0.72525	0.6435	0.68472	0.684			

MEAN DEVELOPMENT RATE

Nominal Conc. mg/L	Rep. 1	Rep. 2	Rep. 3	Mean
Neg. control	0.083182	0.086522	0.081544	0.0837
Sol. Control	0.081632	0.08362	0.072669	0.0793
0.25	0.078707	0.083128	0.073035	0.0783
0.5	0.068927	0.075501	0.074182	0.0729
1	0.066085	0.079777	0.075599	0.0738
2	0.065704	0.072292	0.069744	0.0692
4	0.064968	0.060521	0.063661	0.0631
. 8	0.055409	0.045562	0.049112	0.0500