

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460

OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

PC Code: 028201 DP Barcode: D387605 Date: October 20, 2011

Min Ruelty 16/20111

MEMORANDUM

SUBJECT: Transmittal of a Data Evaluation Record for an Avian Reproduction Test

of Propanil on Mallard Duck (Anas platyrhynchos)

TO: Joel Wolf, Chemical Review Manager

Cathryn Britton, Risk Manager

Risk Management and Implementation Branch II Pesticide Re-Evaluation Division (7508P)

Office of Pesticide Programs

FROM: Meghan Radtke, Ph.D., Biologist

Environmental Risk Branch 1

Environmental Fate and Effects Division (7507P)

Office of Pesticide Programs

APPROVED

BY: Sujatha Sankula, Ph.D., Lead Biologist

Nancy Andrews, Ph.D., Branch Chief

Environmental Risk Branch I

Environmental Fate and Effects Division (7507P)

Office of Pesticide Programs

The Environmental Fate and Effects Division (EFED) has completed the review of MRID 48327201, a study of the reproductive effects of propanil on the mallard duck (*Anas platyrynchos*). Details of the study's findings are provided in Table 1.

TABLE 1. Details for the Propanil Study

Study Type	Organism	MRID	Study Citation	Study Classification	Summary
Avian Reproduction Test 850.2300 Propanil (98.5%)	Anas platyrynchos	48327201	Stafford, J. M. 2005. Propanil: reproductive toxicity test with the mallard duck (<i>Anas platyrynchos</i>). Unpublished study performed by Springborn Smithers Laboratories, Snow Camp, NC and ENCAS Analytical Laboratories, Winston-Salem, NC. Laboratory Study Number 12177.4100. Study sponsored by Propanil Task Force II, c/o Edward M. Ruckert, McDermott, Will & Emery, Washington, DC. Study completed May 4, 2005.	Supplemental	NOAEC = 46 mg ai/kg-diet LOAEC = 116 mg ai/kg-diet Most sensitive endpoint: adult male and female weight gain No other effects were observed, including effects to offspring. Rationale: Birds were fed an antibiotic supplement in their feed during the application period and basal diets were switched midexperiment for all adult birds. These deviations add uncertainty to the study's results.

TEXT SEARCHABLE DOCUMENT 2011

Data Evaluation Record on the Reproductive Effects of Propanil on Mallard Duck (Anas platyrhynchos) PMRA Submission Number () EPA MRID Number 48327201

LIMINA SUDIIII221	on Number {			LI A WINID Mullion 40327201
Data Requireme	ent:	PMRA Data Code EPA DP Barcode OECD Data Point EPA MRID EPA Guideline	{} 387605 {} 48327201 OPPTS 850.2300	
	Propanil Techn Propanil IUPAC: CAS: CAS No.: Synonyms:	ical	Purity: 98.5%	
•	ver: Moncie Wri Oynamac Corpor	-	Date: 6/8/11	ncie V Wright
•	ewer: Teri S. My , Cambridge Env		Signature: Oate: 9/30/11	Mysen Red H
Primary Review EPA	ver: Meghan Ra	dtke	Date: 10/19/11	My han Kird the
Secondary Revi {EPA/OECD/PI		}	Date: {}	
Reference/Subm	nission No.: {	}		
	{} {	[For PMRA] [For PMRA] [For PMRA]		

Date Evaluation Completed: 19-10-2011

<u>CITATION</u>: Stafford, J.M. 2005. Propanil: Reproductive Toxicity Test with the Mallard Duck (*Anas platyrhynchos*). Unpublished study performed by Springborn Smithers Laboratories, Snow Camp, NC and ENCAS Analytical Laboratories, Winston-Salem, NC. Laboratory Study No. 12177.4100. Study sponsored by Propanil Task Force II, c/o Edward M. Ruckert, McDermott, Will & Emery, Washington, DC. Study completed May 4, 2005.

DISCLAIMER: This document provides guidance for EPA and PMRA reviewers on how to complete a data evaluation record after reviewing a scientific study concerning the reproductive effects of a pesticide on avian species. It is not intended to prescribe conditions to any external party for conducting this study nor to establish absolute criteria regarding the assessment of whether the study is scientifically sound and whether the study satisfies any applicable data requirements. Reviewers are expected to review and to determine for each study, on a case-by-case basis, whether it is scientifically sound and provides sufficient information to satisfy applicable data requirements. Studies that fail to meet any of the conditions may be accepted, if appropriate; similarly, studies that meet all of the conditions may be rejected, if appropriate. In sum, the reviewer is to take into account the totality of factors related to the test methodology and results in determining the acceptability of the study.

PMRA Submission Number {.....}

EPA MRID Number 48327201

EXECUTIVE SUMMARY

The one-generation reproductive toxicity of **Propanil technical** to 17 pairs per level of *ca.* 20-week old mallard duck (*Anas platyrhynchos*) was assessed over 23 weeks. Propanil was administered to the birds in the diet at nominal concentrations of 0 (negative control), 20, 50, and 125 mg ai/kg diet. Mean-measured concentrations were <10 (<LOQ, control), 17, 46, and 116 mg ai/kg diet, respectively.

There were no mortalities in the control or any of the treatment groups, and gross necropsies revealed scattered effects that were likely not treatment-related.

Statistically significant reductions were observed in male weight gain at the 116 mg ai/kg diet level compared to the control (84% lower than control; p=0.003). Additionally, statistically significant reductions were observed in female weight gain at the 116 mg ai/kg diet level compared to the control (39% lower than control; p=0.002). There were no further significant reductions in any other adult parameter.

No statistically-significant differences were indicated for any reproductive or offspring parameter at any of the diet levels tested.

This study is scientifically sound and is classified as supplemental. Bird diets were supplemented with tylosin phosphate, a preventative antibiotic, prior to the start of the experiment. During the experiment, adult birds were initially fed Purina Game Bird Flight Conditioner, but then they were switched to Purina Layena Game Bird Ration beginning one week before photo-stimulation until the end of the experiment. The change in feeds during the experiment combined with the exposure to antibiotics during the acclimation period introduces additional unnecessary variation into the study. Endpoints should be used with caution.

Results Synopsis

Test Organism Size/Age (mean Weight): 20 weeks old; 929 to 1294 g (combined sexes)

NOAEC: 46 mg ai/kg diet (mean-measured) LOAEC: 116 mg ai/kg diet (mean-measured)

Endpoint(s) Affected: adult male and female weight gain

PMRA Submission Number {.....}

EPA MRID Number 48327201

I. MATERIALS AND METHODS

GUIDELINE(S) FOLLOWED:

This study was conducted according to methods based on both U.S. EPA and OECD, and are reported as fulfilling the data requirements for U.S. EPA 40 CFR 158.145, Series 71-4, "Avian Reproduction Test" (1982); U.S. EPA OPPTS 850.2300, "Avian Reproduction Test" (1996); and OECD Test Guideline 206, "Avian Reproduction Test" (1984). The study methods and results were evaluated according to both U.S. EPA OPPTS and OECD guidelines, and differences and/or similarities were described. The following deviations from OPPTS 850.2300 and OECD 206 were noted:

- 1. The area of the adult bird cages was 6308 cm² and there were 2 birds (1 female and 1 male) per pen, allowing only 3154 cm² per bird; OPPTS guidelines suggest allocating 5000 cm² of pen space per bird and also recommend providing documentation that this is appropriate if allocating less space. However, OECD guidelines only suggest 100 cm² of floor space per pair.
- 2. The physico-chemical properties of the test material were not reported; both OPPTS and OECD guidelines suggest this information be provided.
- 3. The mallards were younger than recommended at 20 weeks old (*ca.* 5 months old) at test initiation; OECD guidelines suggest that birds be 9-12 months old at test initiation, and OPPTS guidelines suggest that birds be at least 7 months old.
- 4. Birds were fed feed mixed with antibiotics during acclimation and bird diet was changed mid-experiment from Purina Game Bird Flight Conditioner to Purina Layena Game Bird Ration.

Deviations 1-3 do not affect the scientific soundess of this study; however, deviation 4 does.

COMPLIANCE:

Signed and dated GLP, Quality Assurance and Data Confidentiality statements were provided. This study was conducted in compliance with all pertinent U.S. EPA (40 CFR, Part 160) and OECD (1997) Good Laboratory Practice Regulations with the following exceptions: routine water and food contaminant screening analyses were conducted using standard U.S. EPA procedures.

A. MATERIALS:

1. Test Material

Propanil Technical

Description:

Not reported

Lot No./Batch No.:

02 (batch no.)

Purity:

98.5% (estimated prior to study initiation by the sponsor; was actually 98.7%)

Stability of compound under test conditions:

Stability in the treated feed was verified under frozen storage conditions for

up to 7 days and under ambient test conditions for up to 14 days (see

Page 3 of 47

PMRA Submission Number {.....}

EPA MRID Number 48327201

Reviewer's Comments section).

Storage conditions of

test chemicals:

The test material was stored in the original container at room temperature in a dark cabinet.

Physicochemical properties of propanil.

Parameter	Values	Comments
Water solubility at 20°C	Not reported	
Vapor pressure	Not reported	
UV absorption	Not reported	
pKa	Not reported	
Kow	Not reported	

(OECD recommends water solubility, stability in water and light, pKa, Pow, and vapor pressure of test compound)

2. Test organism:

Table 1: Test organism.

Parameter	Details	Remarks Criteria
Species (common and scientific names):	Mallard duck (Anas platyrhynchos)	The population was assigned SSL Colony No. 056.
		Recommended species include a wild waterfowl species, preferably the mallard (Anas platyrhynchos) or an upland game species, preferably the northern bobwhite (Colinus virginianus)
Age at Study Initiation:	20 weeks + 3 days old	
		Birds approaching their first breeding season should be used.

PMRA Submission Number {.....}

EPA MRID Number 48327201

Parameter	Details	Remarks Criteria
Body Weight: (mean and range)	Overall (combined sexes) range of 929 to 1294 g at study initiation, with group means of 1148.8 to 1185.7 g for males and 1026 to 1072.8 g for females.	Body weights were recorded at Weeks 0 (study initiation), 2, 4, 6, 8, 10 (at photo-stimulation), and 25 (study termination). Following randomization, body weights were tested for normality and homogeneity followed by ANOVA to assure similar weights among treatment groups, by gender.
		Body weights should be recorded at test initiation and at biweekly intervals up to week eight or up to the onset of egg laying and at termination.
Source:	Whistling Wings, Inc. Hanover, Illinois	Birds were from the same source and were phenotypically indistinguishable from wild stock.
		All birds should be from the same source.

B. STUDY DESIGN:

1. Experimental Conditions

a. Range-finding study: A range-finding study was conducted with 5 male: female pairs per level of 30-week old mallard duck (Whistling Wings, Inc., Hanover, Illinois) at nominal dietary concentrations of 0 (control), 62.5, 625, 1250, and 2500 mg ai/kg diet. Birds were acclimated to test conditions for 19 days, and then offered treated diet for *ca.* 5 weeks prior to egg collection (last week with photo-stimulation), and for an additional *ca.* 4 weeks during egg collection. Endpoints included adult mortality, clinical signs of toxicity, body weight (weeks 0, 2, 5, and final), food consumption, and gross necropsy; egg production; embryo fertility and viability; eggshell thickness and egg weights; and hatchling and survivor weights. Results obtained were visually assessed and used to select exposure levels for the definitive study.

Two mortalities occurred during the range-finding study: females in the 2500 mg ai/kg diet group. The male cage mates of the two birds were also euthanized on the same day. Both birds had dry skin with feathers that came out easily, were emaciated with brittle bones, and all internal organs were small. Additionally, their hearts were round and flaccid. One female had a firm tissue-like substance in its ceca. One male cage mate showed evidence of dry skin and a flaccid right ventricle. The other male cage mate was normal. One control bird had porous kidneys.

From Weeks 0 to 5, the proportional change in male body weight was notably less than the control level (81.2 g) at the 1250 (17.2g), and 2500 (-17.8 g) mg ai/kg diet levels, and comparable to the control at the

PMRA Submission Number {.....}

EPA MRID Number 48327201

62.5 and 625 mg ai/kg diet levels (54 and 64g, respectively). In females from weeks 0 to 5, the proportional change in body weight was notably less than the control level (156 g) at the 62.5 (54.2 g), 625 (48.2 g), 1250, (24.9 g), and 2500 (-16.1 g) mg ai/kg diet levels.

Adult feed consumption increased across all treatment groups similarly to the control group.

Average hatchling and survivor weights in the treatment groups were similar to those measured in the negative control. The sum of eggs set, sum of viable embryos, and the sum of fertile eggs were reduced in all test levels as compared to the control; the most significant reductions were observed in the 1250 and 2500 mg ai/kg diet levels. Average egg weights were only noticeably reduced at the 2500 mg ai/kg diet level. Average egg shell thickness was only slightly reduced in the 625 and 1250 mg ai/kg diet levels.

b. Definitive Study

Table 2: Experimental Parameters.

D4	Details	Remarks	
Parameter		Criteria	
Acclimation period: Conditions (same as test or not):	14 days Same as test	The photoperiod during acclimation was 7 hrs light: 17 hrs dark. Temperatures ranged from 15 to 24°C, and relative humidity	
Feeding: Health (any mortality observed):	All birds were fed Purina Game Bird Flight Conditioner mixed with Tylan 10 (Tylosin phosphate, Type B medicated feed) during acclimation, Purina Game Bird Flight Conditioner from the beginning of the experiment until one week before photo-stimulation, and then Purina Layena Game Bird Ration beginning one week before photostimulation until the end of the experiment. Birds were provided with well water ad libitum No signs of illness, disease, or mortality were observed during the 72 hours immediately preceding the study.	ranged from 67 to 94%. Recommended observation period includes a 2-3 week health observation period prior to selection of birds for treatment. Generally, birds should be healthy without excess mortality. Feeding should be ad libitum, and sickness, injuries or mortality should be noted.	
Test duration			

Data Evaluation Record on the Reproductive Effects of Propanil on Mallard Duck (Anas platyrhynchos) PMRA Submission Number {.....}

		Remarks
Parameter	Details	Criteria
pre-laying exposure: egg-laying exposure: withdrawal period, if used:	Ca. 14 weeks 11 weeks N/A	Recommended pre-laying exposure duration: At least 10 weeks prior to the onset of egg-laying. Recommended exposure duration with egg-laying: At least 10 weeks. Recommended withdrawal period: If reduced reproduction is evident, a withdrawal period of up to 3 weeks should be added to the test phase.
Pen (for parental and offspring) size:	Parents (one pair) were housed in cages measuring 76 cm deep x 83 cm wide x 44 cm high, with slanted floors for egg collection. Offspring cages measured 61 cm x 91 cm x 61 cm.	Pens Pens should have adequate room and be arranged to prevent cross-contamination. Materials Recommended materials include
construction materials: number:	Parental pens and brooding batteries were constructed of polycarbonate-coated galvanized welded-wire mesh. 17 parental pens/treatment level. Hatchlings were group-housed according to the appropriate parental pen of origin.	nontoxic material and nonbinding material, such as galvanized steel. Number At least 5 replicate pens should be used for mallards housed in groups of 7. For other arrangements, at least 12 pens should be used, but considerably more may be used if birds are kept in pairs. Chicks should be housed according to parental grouping.
Number of birds per pen (male:female)	2 birds/pen (1 male:1 female)	One male and one female per pen should be used. For quail, one male and two females should be used. For ducks, two males and five females should be used.
Number of pens per group/treatment negative control: solvent control: treated:	N/A 17 pens 17 pens/treatment	At least 12-16 pens should be used, but considerably more if birds are kept in pairs.

PMRA Submission Number {.....}

		Remarks
Parameter	Details	Criteria
Test concentrations (mg ai/kg diet) nominal:	0 (control), 20, 50, and 125 mg ai/kg diet	Mean-measured concentrations were reviewer-calculated (see Reviewer's Comments section).
measured:	<10 (<loq, 116="" 17,="" 46,="" ai="" and="" control),="" diet<="" kg="" mg="" td=""><td>Recommended test concentrations include at least two concentrations other than the control: three or more will provide a better statistical analysis. The highest test concentrations should show a significant effect or be at or above the actual or expected field residue level.</td></loq,>	Recommended test concentrations include at least two concentrations other than the control: three or more will provide a better statistical analysis. The highest test concentrations should show a significant effect or be at or above the actual or expected field residue level.
Maximum labeled field residue anticipated and source of information:	Not specified	The highest test concentrations should show a significant effect or be at or above the actual or expected field residue level. The source (i.e., maximum label rate in lb ai/A and ppm), label registration no., label date, and site should be cited]
Solvent/vehicle, if used type: amount:	Acetone 20 mL acetone per 22 kg feed	It was reported that the acetone was allowed to completely evaporate during the preparation procedure.
		Recommended solvents include corn oil or other appropriate vehicle not more than 2% of diet by weight
Was detailed description and nutrient analysis of the basal diet provided? (Yes/No)	Yes. The basal diet provided during acclimation and until 1 week prior to photostimulation contained a minimum of 19.0% crude protein and 2.0% crude fat, a maximum of 12.0% crude fiber, and a maximum of 1.35% calcium. The basal diet provided 1 week prior to photostimulation contained a minimum of 20.0% crude protein and 2.5% crude fat, a maximum of 7.0% crude fiber, and a maximum of 3.5% calcium.	Offspring were fed Purina Gamebird Startena® without the addition of test substance. A commercial breeder feed or an equivalent that is appropriate for the test species is recommended.

Data Evaluation Record on the Reproductive Effects of Propanil on Mallard Duck (Anas platyrhynchos) PMRA Submission Number {.....}

Parameter	Details	Remarks
		Criteria
Preparation of test diet	For each level, the appropriate quantity of test substance was ground by mortar and pestle, then	Food was measured and replaced at least weekly throughout the study.
	ground in a mechanical grinder. A 20 mL volume of acetone was added to the test substance in a beaker and mixed to dissolve. Corn oil (30 mL) was added and stirred for 5 minutes. The mixture was sprinkled onto a feed aliquot. The rinsate from the beaker was added to the feed. Each 22 kg aliquot for each treatment level was mixed for 20 minutes with a Hobart mixer and then stored in a labeled feed bag. When all three 22 kg aliquots were complete, they were combined and mixed for 5 minutes. Acetone was evaporated during the mixing process.	A premixed diet containing the test substance should be mechanically mixed with basal diet. If an evaporative vehicle is used, it should be completely evaporated prior to feeding.
Indicate whether stability and homogeneity of test material in diet determined (Yes/No)	Yes	
Were concentrations in diet verified by chemical analysis?	Yes	See Reviewer's Comments section.
Did chemical analysis confirm that diet was stable?	Yes	See Reviewer's Comments section.
and homogeneous?	Yes	
Feeding and husbandry	Feeding and husbandry conditions appeared to be adequate, given guideline recommendations.	

PMRA Submission Number {.....}

	5.44	Remarks	
Parameter	Details	Criteria	
Test conditions (pre-laying) temperature: relative humidity: photoperiod:	12 to 27°C 34 to 98% 7 hr light/day through Week 10; 17 hr light/day starting at the beginning of Week 11	Temperature and humidity were for the adult room during the entire study. Prior to photo-stimulation, light intensity averaged 8 foot-candles at pen level. At the beginning of Week 11, the average light intensity was increased to 12 foot candles.	
		Recommended temperature: about 21°C (70°F) Recommended relative humidity: about 55% Recommended lighting First 8 weeks: 7 h per day. Thereafter: 16-17 h per day. At least 6 foot-candles are recommended at bird level.	
Egg Collection and Incubation			
Egg collection and storage collection interval: storage temperature: storage humidity:	Daily 16°C 65%	Eggs should be collected daily; recommended egg storage temperature is approximately 16°C (61°F); recommended humidity is approximately 65%. Recommended collection interval: daily	
Were eggs candled for cracks prior to setting for incubation?	Yes	Eggs should be candled on day ()	
Were eggs set weekly?	Yes		
When candling was done for fertility?	Eggs were candled again on days 14 (embryo viability) and 23 (embryo survival).	Quail: approx. day 11 Ducks: approx. day 14	
When the eggs were transferred to the hatcher?	Day 23	Bobwhite: usually day 21 Mallard: usually day 23	

PMRA Submission Number {.....}

D	Durile	Remarks	
Parameter	Details	Criteria	
Hatching conditions temperature: humidity: photoperiod:	36.8-37.1°C 64 to 76% 14-hr light/day (hatchlings)	Brooders: 19 to 37°C away from heat and from 26.8 to 39.7°C under the heaters	
		Recommended temperature is 39°C (102°F) Recommended humidity is 70%	
Day the hatched eggs were removed and counted	Day 27	Eggs for bobwhite should be removed on day 24; for mallard on day 27	
Were egg shells washed and dried for at least 48 hrs before measuring?	Could not be determined how long the eggs were dried		
Egg shell thickness no. of eggs used:	All eggs laid on one day	Newly hatched eggs should be	
intervals:	Once every 2 weeks	collected at least once every two weeks. Thickness of the shell plus membrane should be measured to th nearest 0.01 mm with 3 - 4 measurements per shell.	
mode of measurement:	Five points around the girth of the shell using a digital micrometer graduated to 0.001 mm.		
Reference chemical, if used	None used		

PMRA Submission Number {.....}

EPA MRID Number 48327201

2. Observations:

Table 3: Observations.

Parameter	Details	Remarks
Parameters measured		
Parental (mortality, body weight, mean feed consumption) Egg collection and subsequent development (no. of eggs laid, no. of eggs cracked, shell thickness, no. of eggs set, no. of viable embryos, no. of live 3 week embryos, no. hatched, no. of 14-day survivors, average weight of 14-d old survivors, mortality, gross pathology, others)	- mortality - body weight - food consumption - signs of toxicity - necropsy - eggs laid - eggs cracked - egg shell thickness - eggs set - viable embryos - live 3-week embryos - hatchlings - hatchlings - hatchling body weight - 14-day-old survivors - 14-day-old survivor body weight - signs of toxicity of hatchlings	Recommended endpoints measured include: • Eggs laid/pen • Eggs set/pen • Viable embryos/pen • Live 3-week embryos/pen • Normal hatchlings/pen • 14-day-old survivors/pen • Weights of 14-day-old • survivors (mean per pen) • Egg shell thickness • Food consumption (mean per pen) • Initial and final body weight (mean per pen)
Indicate if the test material was regurgitated	No indications of dietary regurgitation.	
Observation intervals (for various parameters)	Parental and hatchling mortality and signs of toxicity were recorded daily. Parental body weights were recorded at Weeks 0, 2, 4, 6, 8, 10, and 23. Offspring were weighed at hatch and at 14 days. Parental food consumption was measured weekly.	Body weights and food consumption should be measured at least biweekly
Were raw data included?	Yes	

II. RESULTS AND DISCUSSION:

A. MORTALITY:

No mortalities occurred in the control or treatment groups during the study.

Table 4: Effect of Propanil on Mortality of Mallard Duck.

		Observation Period									
Treatment Mean-Measured (and Nominal)	We	eek 8	We	ek 16	Week 23						
Concentrations	No. Dead Male Female		No. Male	Dead Female	No. Dead Male Female						
Control	0	0	0	0	0	0					
17 (20)	0	0	0	0	0	0					
46 (50)	0	0	0	0	0	0					
116 (125)	0	0	0	0	0	0					

B. REPRODUCTIVE AND OTHER ENDPOINTS:

<u>Abnormal Effects/Behavior</u>: The study author did not report clinical signs of toxicity or abnormal behaviors for the adults or hatchlings.

<u>Food Consumption</u>: There were no statistically-significant reductions in adult feed consumption when weekly average feed consumption was compared among groups. The calculated average daily doses for females averaged 0, 1.89, 4.71, and 11.8 mg ai/kg bw/day for the control, 20, 50, and 125 mg ai/kg diet levels, respectively. The calculated average daily doses for males averaged 0, 1.78, 4.34, and 10.8 mg ai/kg bw/day for the control, 20, 50, and 125 mg ai/kg diet levels, respectively.

<u>Body Weight</u>: No treatment-related effects on adult body weight were observed during the study, with no statistically-significant differences indicated for any observation interval.

<u>Necropsy</u>: Gross necropsies revealed scattered incidences of follicular, oviduct, testicular atresia across the control and treatment groups, as well as oral lesions, liver, gall bladder, and heart enlargement, kidney abnormalities, and abdominal airsacculitis. None of these findings appeared treatment-related.

Reproductive Effects: No statistically-significant differences were indicated for any reproductive or offspring parameter at any of the diet levels.

Table 5: Reproductive and Other Parameters (nominal concentrations; study author-reported).

Parameter	Control	20 mg/kg	50 mg/kg	125 mg/kg	NOAEC/ LOAEC
No. laying pairs	17	17	17	17	N/A
Eggs laid	1077	1064	1133	977	125 mg/kg >125 mg/kg
Eggs laid/hen/day	0.82	0.81	0.87	0.75	125 mg/kg >125 mg/kg
Eggs cracked	26	17	20	12	Not determined

Data Evaluation Record on the Reproductive Effects of Propanil on Mallard Duck (Anas platyrhynchos) PMRA Submission Number {......}

Parameter	Control	20 mg/kg	50 mg/kg	125 mg/kg	NOAEC/ LOAEC
Eggs cracked/eggs laid	NR	NR	NR	NR	N/A
Eggs set	958	967	1017	883	125 mg/kg >125 mg/kg
Eggs set/hen	NR	NR	NR	NR	Not determined
Eggs set/eggs laid	0.96	0.95	0.95	0.97	Not determined
Eggs viable/eggs fertile	NR	NR	NR	NR	NA
Shell thickness $(mm \pm SD)^{(a)}$	0.352±0.04	0.364±0.02	0.357±0.02	0.362±0.02	NA
Fertile eggs (viable embryos)	917	914	966	853	Not determined
Viable 3-week embryos	818	807	882	779	Not determined
Fertile eggs/eggs incubated	0.96	0.95	0.95	0.97	NA
Viable 3-week embryos/fertile eggs	0.89	0.88	0.91	0.91	NA
Hatchlings	686	658	776	702	Not determined
Hatchlings/viable embryos	0.84	0.82	0.88	0.90	NA
14-day old survivors	680	653	768	689	NA
14-day old survivors/hatchlings	0.99	0.99	0.99	0.98	NA
Hatchling weight	32.9	35.1	34.5	33.4	125 mg/kg >125 mg/kg
14-day old survivors weight $(g \pm SD)^{(a)}$	289.4 ±35.8	293.7±35.7	292.0±35.7	293.2±33.1	NA
Mean food consumption (g/bird/day)	100.9	103.2	103.5	102.1	125 mg/kg >125 mg/kg
Weight (g) of parent females at test initiation: at Week 10: at test termination:	1026 1024 1286.9	1037.7 1074.6 1300.7	1045.7 1069.6 1266.8	1072.8 1032.8 1231.5	125 mg/kg >125 mg/kg
Weight (g) of parent males at test initiation: at Week 10: at test termination:	1151.2 1164.9 1246.4	1148.8 1143.9 1222.2	1161.7 1187.6 1211.4	1185.7 1164.5 1200.7	125 mg/kg >125 mg/kg
Gross pathology					Not reported

PMRA Submission Number {.....}

EPA MRID Number 48327201

Parameter	Control	20 mg/kg	50 mg/kg	125 mg/kg	NOAEC/ LOAEC
Count of follicular atresia	2	3		3	
Count of oviduct atresia	1	3		5	
Count of testicular atresia		1		2	
Oral lesions/mucosal		1	2	2	
plaques					
Count of liver enlargement		1	1		
Kidney abnormalities			1	2	
Gall bladder enlargement		1			
Heart enlargement		1			
Abdominal airsacculitis				1	

NA – the reviewer could not determine what this abbreviation stood for; statistical tests were conducted for these parameters

C. REPORTED STATISTICS:

The following variables were statistically analyzed: adult body weight (male and female separately; Weeks 0, 2, 4, 6, 8, 10, and 25), weekly and overall adult feed consumption, eggs laid per hen per day, eggs cracked of eggs laid per hen, total eggs set per hen, viable embryos of eggs set per hen, surviving embryos of viable embryos per hen, hatchlings of surviving embryos per hen, 14-day old survivors of hatchlings per hen, hatchling body weight, 14-day old survivor weight, and egg shell thickness.

Datasets were first tested for normality using a Chi-Square Test and for homogeneity of variance using Levene's Test. Proportional data were arcsine transformed if data were >0 and <1, and the transformation resulted in a normal distribution. Data that passed both assumptions were analyzed using ANOVA with an appropriate pairwise mean comparison. Dunnett's Test and Williams' Test were used for data sets of equal replicates, and Bonferroni's t-Test was used for data set of unequal replicates. Data that failed the assumptions were analyzed using Steel's Many One-Rank (equal replicates) or Kruskal-Wallis' (unequal replicates) nonparametric tests. The unit of analysis was defined as the individual for adult body weights, and as the cage (adult pair) for all remaining endpoints. In cases where an adult pair did not produce values for a measurement interval, they were included in analysis for the last parameter that could be measured, but not subsequent analyses. All analyses were conducted at the p \leq 0.05 level of significance using TOXSTAT® statistical software (v. 3.5) and nominal concentrations.

D. VERIFICATION OF STATISTICAL RESULTS:

Statistical Method: Analysis was conducted using "chicks.sas" (Ver. 3; March 2002), a SAS program provided by EFED/OPP/USEPA. Data for all endpoints were examined graphically using box plots to determine if they exhibited a dose-dependent response, which was ultimately used to select the multiple comparison test to detect LOAEC and NOAEC. Data for each endpoint were tested to determine if their distributions were normal and if their variances were homogeneous using Shapiro-Wilk's and Levene's tests, respectively. Data that satisfied these assumptions were subjected to Dunnett's and William's tests and data that did not satisfy these assumptions were subjected to the non-parametric MannWhitney-U (with a Bonferroni adjustment) and Jonckheere's tests. Data for dead birds were excluded from the analyses. See Appendix I for output of reviewer's statistical verification and graphs for affected endpoints to support any reviewer-generated conclusions that may differ from those reported in the study.

PMRA Submission Number {.....}

EPA MRID Number 48327201

NOAEC: 46 mg ai/kg LOAEC: 116 mg ai/kg

Most Sensitive Endpoint(s): Male and female body weight gain

Table 6: Reproductive and Other Parameters (mean-measured concentrations; reviewer-reported).

Parameter	Control	17 mg ai/kg	46 mg ai/kg	116 mg ai/kg	NOAEC/ LOAEC
Eggs laid/pen	63.4	62.6	66.7	57.5	116 mg ai/kg >116 mg ai/kg
Eggs cracked/pen	1.5	1.0	1.2	0.71	116 mg ai/kg >116 mg ai/kg
Eggs not cracked/eggs laid (%)	97.6	98.4	98.2	98.8	116 mg ai/kg >116 mg ai/kg
Eggs set/pen	56.4	56.9	59.8	51.9	116 mg ai/kg >116 mg ai/kg
Shell thickness	0.36	0.36	0.36	0.36	116 mg ai/kg >116 mg ai/kg
Eggs set/eggs laid (%)	89.2	90.9	89.8	90.5	116 mg ai/kg >116 mg ai/kg
Viable embryos/pen	53.9	53.8	56.8	50.2	116 mg ai/kg >116 mg ai/kg
Viable embryos/eggs set (%)	95.5	94.5	95.1	96.4	116 mg ai/kg >116 mg ai/kg
Live embryos/pen	48.1	47.5	51.9	45.8	116 mg ai/kg >116 mg ai/kg
Live embryos/viable embryos (%)	88	87.2	91	91.8	116 mg ai/kg >116 mg ai/kg
No. of hatchlings/pen	40.4	38.7	45.7	41.3	116 mg ai/kg >116 mg ai/kg
No. of hatchlings/eggs laid (%)	63.3	61.7	68.1	72.3	116 mg ai/kg >116 mg ai/kg
No. of hatchlings/eggs set (%)	71.5	67.5	75.7	79.9	116 mg ai/kg >116 mg ai/kg
No. of hatchlings/live embryos (%)	83.2	78.7	87.2	90.1	116 mg ai/kg >116 mg ai/kg
Hatchling survival/pen	40.0	38.4	44.0	40.5	116 mg ai/kg >116 mg ai/kg

PMRA Submission Number {.....}

EPA MRID Number 48327201

Hatchling survival/eggs set (%)	70.9	67.1	73.3	78.6	116 mg ai/kg >116 mg ai/kg
Hatchling survival/no. of hatchlings (%)	99.2	99.4	97.1	98.1	116 mg ai/kg >116 mg ai/kg
Hatchling weight (g)	33.5	35.3	34.6	33.4	116 mg ai/kg >116 mg ai/kg
Survivor weight (g)	291.8	292.9	291.9	292.2	116 mg ai/kg >116 mg ai/kg
Mean food consumption (g/bird/day)	100.4	103.2	103.5	102.1	116 mg ai/kg >116 mg ai/kg
Male weight gain (g)	95.2	73.4	49.6	15.0*	46 mg ai/kg 116 mg ai/kg
Female weight gain (g)	260.9	262.9	221.1	158.7*	46 mg ai/kg 116 mg ai/kg

^{*} Statistically different from the control at p<0.01.

E. STUDY DEFICIENCIES:

Food was supplemented with antibiotics during the acclimation period; basal food was switched during the course of the experiment.

F. REVIEWER'S COMMENTS:

Results of the reviewer's statistical verification were not similar to the study author's. The reviewer's analysis detected statistically significant reductions at the highest test level for both male and female weight gain, whereas the study author's analysis indicated no statistically significant reductions for any adult parameter. The reviewer's results, based on mean-measured concentrations, are reported in the Executive Summary and Conclusions sections of the DER.

All validity requirements were met. Specifically, controls produced an average of forty (40) 14-day old survivors per hen, the egg shell thickness of control eggs was 0.352 mm (minimum of 0.19 mm for mallard duck), and adult control mortality was 0% (no more than 10% acceptable in controls).

All homogeneity, stability, and concentration verification samples were analyzed for propanil concentrations by EN-CAS Analytical Laboratories (Winston-Salem, NC). A comprehensive analytical report was provided as an appendix (Appendix 4, p. 86 of the study document). For both studies, analyses were performed using HPLC equipped with a UV detector (254 nm). The limit of quantification (LOQ) was 10 mg ai/kg diet.

Mean-measured concentrations in the treated feed were reviewer-calculated using data provided for homogeneity samples prepared at 20 and 125 mg ai/kg diet and for concentration verification samples prepared at 50 mg ai/kg diet level (see copy of associated Excel worksheet in Appendix II).

For homogeneity assessments, one sample was collected from the top left, top right, middle left, middle right, bottom left, and bottom right of the mixing tub for the diet mix. The samples were collected at four diet mix events (July 6, July 13, September 13, and November 11, 2004).

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mean overall food consumption was reviewer-calculated (see copy of associated Excel worksheet in Appendix III).

The study author referred to viable embryos as "fertile eggs", and referred to living 3-week embryos as viable embryos.

Experimental test dates were July 15, 2004 to January 31, 2005.

G. CONCLUSIONS:

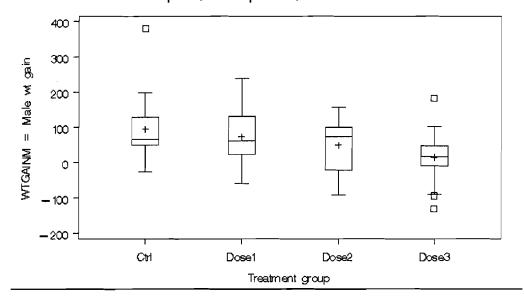
This study is scientifically sound and classified as supplemental because of the antibiotic supplement added to the food during the acclimation period and the change in basal diets mid-course in the experiment. These deviations add additional variation to the study and toxicity values should be used with caution. No notable treatment-related effects were observed upon any offspring parameter at any of the diet levels tested. At the 116 mg ai/kg diet level, treatment-related effects on adults were restricted to male and female weight gain.

NOAEC: 46 mg ai/kg diet (mean-measured) LOAEC: 116 mg ai/kg diet (mean-measured)

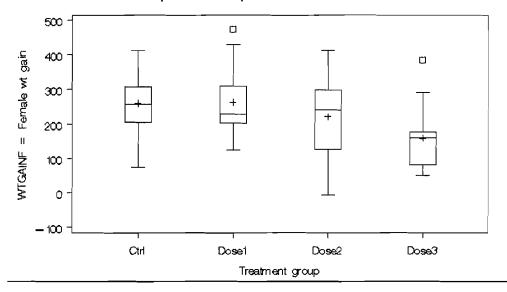
Endpoint(s) Affected: adult male and female weight gain

PMRA Submission Number {.....}

EPA MRID Number 48327201


III. REFERENCES:

- ASTM. 2002. Standard practice for conducting acute toxicity test with fishes, macroinvertebrates and amphibians. Standard E729-96. American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428.
- Organization for Economic Cooperation and Development. 1984. OECD Guidelines for Testing of Chemicals, 206, Avian Reproductive Toxicity Test. 10 pp.
- OECD. 1997. Good Laboratory Practice in the Testing of Chemicals. Paris, France.
- U.S. Environmental Protection Agency, 40 CFR, Part 158. Data Requirements for Registration. Federal Insecticide, Fungicide and Rodenticide Act. Office of the Federal Register, National Archives and Records Administration. U.S. Government Printing Office, Washington, DC.
- U.S. Environmental Protection Agency. 1982. Pesticide Assessment Guidelines, FIFRA Subdivision E, Hazard Evaluation: Wildlife and Aquatic Organisms, Subsection 71-4. U.S. EPA, Office of Pesticide Programs. October, 1982.
- U.S. Environmental Protection Agency. 1996. Office of Prevention, Pesticides and Toxic Substances. Ecological Effects Test Guidelines, OPPTS 850.2300. Avian Reproduction Test. "Public Draft". EPA 712-C-96-141. April 1996. U.S. Environmental Protection Agency, Washington, D.C.


West, Inc., and David D. Gulley. 1996. TOXSTAT, Release 3.5. University of Wyoming, Cheyenne, Wyoming.

APPENDIX I. OUTPUT OF REVIEWER'S STATISTICAL VERIFICATION:

Mallard repro, Propanil, MRID 48327201

Mallard repro, Propanil, MRID 48327201

PMRA Submission Number {.....}

PRINTOUT OF RAW DATA Obs TRT EL EC ENC_EL ES ES_EL VE VE_ES LE LE_VE NH NH_EL NH_ES 1 Ctrl 71 10 85.92 45 63.38 45 100.00 42 93.33 42 59.15 93.33 2 Ctrl 72 1 98.61 65 90.28 65 100.00 59 90.77 53 73.61 81.54 3 Ctrl 52 3 94.23 45 86.54 45 100.00 44 97.78 44 84.62 97.78 4 Ctrl 69 1 98.55 62 89.86 62 100.00 55 88.71 48 69.57 77.42 5 Ctrl 72 0 100.00 65 90.28 62 95.38 51 82.26 42 58.33 64.62 6 Ctrl 76 0 100.00 71 93.42 70 98.59 63 90.00 47 61.84 66.20 7 Ctrl 60 0 100.00 55 91.67 54 98.18 48 88.89 44 73.33 80.00 8 Ctrl 69 0 100.00 64 92.75 64 100.00 55 85.94 51 73.91 79.69 9 Ctrl 34 0 100.00 32 94.12 32 100.00 19 59.38 18 52.94 56.25 10 Ctrl 58 1 98.28 53 91.38 24 45.28 17 70.83 7 12.07 13.21 11 Ctrl 60 0 100.00 56 91.80 54 96.43 52 96.30 45 73.77 80.36 13 Ctrl 57 2 96.49 51 89.47 48 94.12 42 87.50 40 70.18 78.43			_		Propanil	, MR	ID 4832	7201						
1 Ctrl 71 10 85.92 45 63.38 45 100.00 42 93.33 42 59.15 93.33 2 Ctrl 72 1 98.61 65 90.28 65 100.00 59 90.77 53 73.61 81.54 3 Ctrl 52 3 94.23 45 86.54 45 100.00 44 97.78 44 84.62 97.78 4 Ctrl 69 1 98.55 62 89.86 62 100.00 55 88.71 48 69.57 77.42 5 Ctrl 72 0 100.00 65 90.28 62 95.38 51 82.26 42 58.33 64.62 6 Ctrl 76 0 100.00 71 93.42 70 98.59 63 90.00 47 61.84 66.20 7 Ctrl 60 0 100.00 55						ПО	DO DI	1717	UP DC	T 172	מע מו	NITI	NIII EI	NII EC
2 Ctrl 72 1 98.61 65 90.28 65 100.00 59 90.77 53 73.61 81.54 3 Ctrl 52 3 94.23 45 86.54 45 100.00 44 97.78 44 84.62 97.78 4 Ctrl 69 1 98.55 62 89.86 62 100.00 55 88.71 48 69.57 77.42 5 Ctrl 72 0 100.00 65 90.28 62 95.38 51 82.26 42 58.33 64.62 6 Ctrl 76 0 100.00 71 93.42 70 98.59 63 90.00 47 61.84 66.20 7 Ctrl 60 0 100.00 55 91.67 54 98.18 48 88.89 44 73.33 80.00 8 Ctrl 69 0 100.00 32					_		_		_		_		_	
3 Ctrl 52 3 94.23 45 86.54 45 100.00 44 97.78 44 84.62 97.78 4 Ctrl 69 1 98.55 62 89.86 62 100.00 55 88.71 48 69.57 77.42 5 Ctrl 72 0 100.00 65 90.28 62 95.38 51 82.26 42 58.33 64.62 6 Ctrl 76 0 100.00 71 93.42 70 98.59 63 90.00 47 61.84 66.20 7 Ctrl 60 0 100.00 55 91.67 54 98.18 48 88.89 44 73.33 80.00 8 Ctrl 69 0 100.00 32 94.12 32 100.00 55 85.94 51 73.91 79.69 9 Ctrl 34 0 100.00 32														
4 Ctrl 69 1 98.55 62 89.86 62 100.00 55 88.71 48 69.57 77.42 5 Ctrl 72 0 100.00 65 90.28 62 95.38 51 82.26 42 58.33 64.62 6 Ctrl 76 0 100.00 71 93.42 70 98.59 63 90.00 47 61.84 66.20 7 Ctrl 60 0 100.00 55 91.67 54 98.18 48 88.89 44 73.33 80.00 8 Ctrl 69 0 100.00 64 92.75 64 100.00 55 85.94 51 73.91 79.69 9 Ctrl 34 0 100.00 32 94.12 32 100.00 19 59.38 18 52.94 56.25 10 Ctrl 58 1 98.28 53														
5 Ctrl 72 0 100.00 65 90.28 62 95.38 51 82.26 42 58.33 64.62 6 Ctrl 76 0 100.00 71 93.42 70 98.59 63 90.00 47 61.84 66.20 7 Ctrl 60 0 100.00 55 91.67 54 98.18 48 88.89 44 73.33 80.00 8 Ctrl 69 0 100.00 64 92.75 64 100.00 55 85.94 51 73.91 79.69 9 Ctrl 34 0 100.00 32 94.12 32 100.00 19 59.38 18 52.94 56.25 10 Ctrl 58 1 98.28 53 91.38 24 45.28 17 70.83 7 12.07 13.21 11 Ctrl 60 0 100.00 57														
6 Ctrl 76 0 100.00 71 93.42 70 98.59 63 90.00 47 61.84 66.20 7 Ctrl 60 0 100.00 55 91.67 54 98.18 48 88.89 44 73.33 80.00 8 Ctrl 69 0 100.00 64 92.75 64 100.00 55 85.94 51 73.91 79.69 9 Ctrl 34 0 100.00 32 94.12 32 100.00 19 59.38 18 52.94 56.25 10 Ctrl 58 1 98.28 53 91.38 24 45.28 17 70.83 7 12.07 13.21 11 Ctrl 60 0 100.00 57 95.00 57 100.00 55 96.49 38 63.33 66.67 12 Ctrl 61 0 100.00 56 91.80 54 96.43 52 96.30 45 73.77 80.36 13 Ctrl 57 2 96.49 51 89.47 48 94.12 42 87.50 40 70.18 78.43														
7 Ctrl 60 0 100.00 55 91.67 54 98.18 48 88.89 44 73.33 80.00 8 Ctrl 69 0 100.00 64 92.75 64 100.00 55 85.94 51 73.91 79.69 9 Ctrl 34 0 100.00 32 94.12 32 100.00 19 59.38 18 52.94 56.25 10 Ctrl 58 1 98.28 53 91.38 24 45.28 17 70.83 7 12.07 13.21 11 Ctrl 60 0 100.00 57 95.00 57 100.00 55 96.49 38 63.33 66.67 12 Ctrl 61 0 100.00 56 91.80 54 96.43 52 96.30 45 73.77 80.36 13 Ctrl 57 2 96.49 51 89.47 48 94.12 42 87.50 40 70.18 78.43														
8 Ctrl 69 0 100.00 64 92.75 64 100.00 55 85.94 51 73.91 79.69 9 Ctrl 34 0 100.00 32 94.12 32 100.00 19 59.38 18 52.94 56.25 10 Ctrl 58 1 98.28 53 91.38 24 45.28 17 70.83 7 12.07 13.21 11 Ctrl 60 0 100.00 57 95.00 57 100.00 55 96.49 38 63.33 66.67 12 Ctrl 61 0 100.00 56 91.80 54 96.43 52 96.30 45 73.77 80.36 13 Ctrl 57 2 96.49 51 89.47 48 94.12 42 87.50 40 70.18 78.43														
9 Ctrl 34 0 100.00 32 94.12 32 100.00 19 59.38 18 52.94 56.25 10 Ctrl 58 1 98.28 53 91.38 24 45.28 17 70.83 7 12.07 13.21 11 Ctrl 60 0 100.00 57 95.00 57 100.00 55 96.49 38 63.33 66.67 12 Ctrl 61 0 100.00 56 91.80 54 96.43 52 96.30 45 73.77 80.36 13 Ctrl 57 2 96.49 51 89.47 48 94.12 42 87.50 40 70.18 78.43														
10 Ctrl 58 1 98.28 53 91.38 24 45.28 17 70.83 7 12.07 13.21 11 Ctrl 60 0 100.00 57 95.00 57 100.00 55 96.49 38 63.33 66.67 12 Ctrl 61 0 100.00 56 91.80 54 96.43 52 96.30 45 73.77 80.36 13 Ctrl 57 2 96.49 51 89.47 48 94.12 42 87.50 40 70.18 78.43														
11 Ctrl 60 0 100.00 57 95.00 57 100.00 55 96.49 38 63.33 66.67 12 Ctrl 61 0 100.00 56 91.80 54 96.43 52 96.30 45 73.77 80.36 13 Ctrl 57 2 96.49 51 89.47 48 94.12 42 87.50 40 70.18 78.43														
12 Ctrl 61 0 100.00 56 91.80 54 96.43 52 96.30 45 73.77 80.36 13 Ctrl 57 2 96.49 51 89.47 48 94.12 42 87.50 40 70.18 78.43														
13 Ctrl 57 2 96.49 51 89.47 48 94.12 42 87.50 40 70.18 78.43														
14 Ctrl 58 3 94.83 51 87.93 50 98.04 45 90.00 38 65.52 74.51														
15 Ctrl 76 0 100.00 70 92.11 70 100.00 68 97.14 56 73.68 80.00														
16 Ctrl 69 2 97.10 62 89.86 62 100.00 53 85.48 39 56.52 62.90														
17 Ctrl 63 3 95.24 54 85.71 53 98.15 50 94.34 34 53.97 62.96														
18 Dosel 68 3 95.59 60 88.24 60 100.00 56 93.33 51 75.00 85.00														
19 Dosel 60 1 98.33 56 93.33 55 98.21 49 89.09 44 73.33 78.57												44		
20 Dosel 71 3 95.77 62 87.32 49 79.03 39 79.59 11 15.49 17.74	20									39		11	15.49	
21 Dose1 59 0 100.00 55 93.22 54 98.18 47 87.04 43 72.88 78.18	21			0						47	87.04	43		
22 Dosel 60 0 100.00 55 91.67 54 98.18 26 48.15 9 15.00 16.36				0		55		54						
23 Dosel 63 1 98.41 57 90.48 57 100.00 55 96.49 36 57.14 63.16				1	98.41	57			100.00			36	57.14	
24 Dosel 55 0 100.00 47 85.45 31 65.96 16 51.61 11 20.00 23.40				0		47						11		
25 Dosel 66 0 100.00 61 92.42 59 96.72 56 94.92 51 77.27 83.61				0		61				56	94.92	51		
26 Dosel 57 2 96.49 52 91.23 49 94.23 43 87.76 36 63.16 69.23	26	Dose1	57	2	96.49	52	91.23	49	94.23	43	87.76	36	63.16	69.23
27 Dosel 51 0 100.00 47 92.16 47 100.00 45 95.74 38 74.51 80.85	27	Dosel	51	0	100.00	47	92.16	47	100.00	45	95.74	38	74.51	80.85
28 Dosel 77 0 100.00 71 92.21 60 84.51 58 96.67 56 72.73 78.87		Dosel	77	0	100.00	71	92.21	60	84.51	58	96.67	56		78.87
29 Dosel 65 0 100.00 59 90.77 59 100.00 56 94.92 49 75.38 83.05	29	Dose1	65	0	100.00	59	90.77	59	100.00	56	94.92	49	75.38	83.05
30 Dosel 69 0 100.00 64 92.75 64 100.00 58 90.63 51 73.91 79.69	30	Dose1	69	0	100.00	64	92.75	64	100.00	58	90.63	51	73.91	79.69
31 Dose1 60 5 91.67 53 88.33 49 92.45 46 93.88 39 65.00 73.58	31	Dose1	60	5	91.67	53	88.33	49	92.45	46	93.88	39	65.00	73.58
32 Dosel 65 1 98.46 59 90.77 58 98.31 52 89.66 47 72.31 79.66	32	Dose1	65	1	98.46	59	90.77	58	98.31	52	89.66	47	72.31	79.66
33 Dosel 61 0 100.00 57 93.44 57 100.00 56 98.25 51 83.61 89.47	33	Dose1	61	Ó	100.00	57	93.44	57	100.00	56	98.25	51	83.61	89.47
34 Dosel 57 1 98.25 52 91.23 52 100.00 49 94.23 35 61.40 67.31	34	Dose1	57	1	98.25	52	91.23	52	100.00	49	94.23	35	61.40	67.31
35 Dose2 52 1 98.08 45 86.54 43 95.56 37 86.05 33 63.46 73.33	35	Dose2	52	1	98.08	45	86.54	43	95.56	37	86.05	33	63.46	73.33
36 Dose2 66 0 100.00 61 92.42 60 98.36 45 75.00 21 31.82 34.43	36	Dose2	66	0	100.00	61	92.42	60	98.36	45	75.00	21	31.82	34.43
37 Dose2 70 4 94.29 60 85.71 59 98.33 50 84.75 41 58.57 68.33	37	Dose2	70	4	94.29	60	85.71	59	98.33	50	84.75	41	58.57	68.33
38 Dose2 66 8 87.88 53 80.30 53 100.00 46 86.79 29 43.94 54.72	38	Dose2	66	8	87.88	53	80.30	53	100.00	46	86.79	29	43.94	54.72
39 Dose2 75 1 98.67 68 90.67 67 98.53 65 97.01 65 86.67 95.59	39	Dose2	75	1	98.67	68	90.67	67	98.53	65	97.01	65	86.67	95.59
40 Dose2 68 2 97.06 60 88.24 60 100.00 53 88.33 50 73.53 83.33	40	Dose2	68	2	97.06	60	88.24	60	100.00	53	88.33	50	73.53	83.33
41 Dose2 55 0 100.00 51 92.73 50 98.04 45 90.00 39 70.91 76.47	41	Dose2	55	0	100.00	51	92.73	50	98.04	45	90.00	39	70.91	76.47
42 Dose2 72 0 100.00 66 91.67 64 96.97 64 100.00 60 83.33 90.91	42	Dose2	72	0	100.00	66	91.67	64	96.97	64	100.00	60	83.33	90.91
43 Dose2 69 0 100.00 64 92.75 62 96.88 60 96.77 56 81.16 87.50	43	Dose2	69	0	100.00	64	92.75	62	96.88	60	96.77	56	81.16	87.50
44 Dose2 61 2 96.72 55 90.16 53 96.36 48 90.57 44 72.13 80.00	44	Dose2	61	2	96.72	55	90.16	53	96.36	48	90.57	44	72.13	80.00
45 Dose2 61 0 100.00 57 93.44 51 89.47 45 88.24 42 68.85 73.68	45	Dose2	61	0	100.00	57	93.44	51	89.47	45	88.24	42	68.85	73.68
46 Dose2 64 0 100.00 58 90.63 58 100.00 51 87.93 44 68.75 75.86	46	Dose2	64	0	100.00		90.63	58		51	87.93	44	68.75	
47 Dose2 69 1 98.55 61 88.41 57 93.44 54 94.74 42 60.87 68.85	47			1										
48 Dose2 65 0 100.00 60 92.31 58 96.67 58 100.00 54 83.08 90.00		Dose2	65											
49 Dose2 74 1 98.65 66 89.19 64 96.97 63 98.44 61 82.43 92.42				1										
50 Dose2 70 0 100.00 62 88.57 40 64.52 36 90.00 35 50.00 56.45														
51 Dose2 76 0 100.00 70 92.11 67 95.71 62 92.54 60 78.95 85.71	51	Dose2	76	0	100.00	70	92.11	67		62	92.54	60	78.95	85.71

-	iyrnync	,		()								DA MOID		0005001
<u>PM.</u>	RA Subn	nission N	umber	<i>{}</i>			_				<u>b</u>	<u>EPA MRID</u>	Number 4	<u>8327201</u>
52	Dose3	48 1	97.	92 44	91.67	33	75	.00	32	96.97	27	56.25	61.36	
53	Dose3	59 1	98.	31 54	91.53	54	100	.00	54	100.00	52	88.14	96.30	
54	Dose3	47 0	100.	00 44	93.62	44	100	.00	43	97.73	41	87.23	93.18	
55	Dose3	65 0	100.	00 57	87.69	55	96	.49	51	92.73	44	67.69	77.19	
56	Dose3	51 0	100.	00 46	90.20	46	100	.00	42	91.30	40	78.43	86.96	
57	Dose3	47 1	97.	87 43	91.49	42	97	.67	38	90.48	38	80.85	88.37	
58	Dose3	58 0	100.	00 54	93.10	49	90	.74	44	89.80	40	68.97	74.07	
59	Dose3	64 0	100.	00 59	92.19	59	100	.00	54	91.53	49	76.56	83.05	
60	Dose3	69 6	91.	30 55	79.71	54	98	.18	46	85.19	45	65.22	81.82	
61	Dose3	38 0	100.	00 34	89.47	33	97	.06	31	93.94	29	76.32	85.29	
62	Dose3	53 1	98.	11 48	90.57	46	95	.83	40	86.96	27	50.94	56.25	
63	Dose3	60 2	96.	67 52	86.67	49	94	.23	48	97.96	44	73.33	84.62	
64	Dose3	59 0	100.	00 53	89.83	52	98	.11	47	90.38	46	77.97	86.79	
65	Dose3	75 0	100.	00 69	92.00	67	97	.10	50	74.63	39	52.00	56.52	
66	Dose3	75 0	100.	00 69	92.00	69	100	.00	65	94.20	58	77.33	84.06	
67	Dose3	60 0	100.	00 56	93.33	55	98	.21	50	90.91	46	76.67	82.14	
68	Dose3	49 0	100.	00 46	93.88	46	100	.00	44	95.65	37	75.51	80.43	
	lard re	epro, P			D 48327	201								
		_	_	(contin										
	TRT	NH LE	HS	HS_ES		н тн	ICK H	TWTA	SURV	JWT FO	OOD	WTGAINM	WTGAINF	
1	Ctrl	100.00		91.11			0.29	31			113	64	73	
2	Ctrl	89.83		80.00			0.35	30	2		95	55	221	
3	Ctrl	100.00		97.78			0.36	36		11	91	80	309	
4	Ctrl	87.27		75.81			0.37	32	28		L09	51	221	
5	Ctrl	82.35		64.62			0.34	32	3 (93	94	286	
6	Ctrl	74.60		66.20			0.36	31	25		96	381	196	
7	Ctrl	91.67		78.18			0.35	32	28		98	149	407	
8	Ctrl	92.73		79.69			0.36	32			101	-19	186	
9	Ctrl	94.74		56.25	100.0		0.36	34	26		90	25	204	
10	Ctrl	41.18		13.21			0.36	40	32		93	101	321	
11	Ctrl	69.09		66.67	100.0		0.40	35	29		L 0 0	67	373	
12	Ctrl	86.54		80.36	100.0		0.35	36	28		96	-26	253	
13	Ctrl	95.24		78.43			0.37	36	29		104	25	289	
14	Ctrl	84.44		74.51	100.0		0.38	33	3 (94	62	162	
15	Ctrl	82.35		78.57			0.35	29	2		124	128	413	
16	Ctrl	73.58		61.29			0.35	37	3(106	184	264	
17	Ctrl	68.00		62.96			0.36	34	3 (104	198	257	
18	Dose1	91.07		83.33			0.36	34	3 (113	136	183	
	Dose1		44	78.57	100.0		0.35	35			97	98	224	
20	Dose1			17.74			0.35	36	28		16	-14	330	
21	Dose1			78.18			0.37	37	28		L03	-28	275	
22	Dose1			16.36			0.37	36	3 (94	131	324	
23	Dose1			63.16			0.35	35	28		98	240	282	
24	Dose1			23.40			0.39	37			102	-60	207	
25	Dose1			83.61			0.41	35	2		12	21	276	
26	Dose1			69.23			0.36	37	31		111	165	429	
27	Dose1			80.85			0.38	36	29		126	79	198	
28	Dose1			76.06			0.35	34	30		97	24	124	
29	Dose1			83.05			0.36	34	29		95	74	229	
30	Dose1			76.56			0.37	36	31		17	51	474	
31	Dose1			73.58			0.32	33	29		93	182	228	
32	Dose1			79.66			0.36	36	29		103	46	310	
33	Dose1			89.47			0.36	36	30		93	62	202	
34	Dose1			67.31			0.39	34	25		87	41	175	
								~ -		-			- / -	

	RA Subn	nission Nu	mber	{}					Е	PA MRID	Number 48	327201
35	Dose2	89.19	33	73.33	100.00	0.37	37	305	93	51	298	
36	Dose2	46.67	21	34.43	100.00	0.37	35	278	115	85	77	
37	Dose2	82.00	40	66.67	97.56	0.34	34	286	117	-93	117	
38	Dose2	63.04	29	54.72	100.00	0.36	35	288	93	120	163	
39	Dose2	100.00	64	94.12	98.46	0.32	39	314	112	91	92	
40	Dose2	94.34	50	83.33	100.00	0.34	35	291	125	-21	- 7	
41	Dose2	86.67	39	76.47	100.00	0.36	40	301	88	112	218	
42	Dose2	93.75	60	90.91	100.00	0.36	32	285	108	75	261	
43	Dose2	93.33	56	87.50	100.00	0.38	33	278	101	85	245	
44	Dose2	91.67	44	80.00	100.00	0.35	34	283	97	-33	242	
45	Dose2	93.33	42	73.68	100.00	0.38	37	300	109	26	353	
46	Dose2	86.27	41	70.69	93.18	0.39	32	281	117	63	278	
47	Dose2	77.78	42	68.85	100.00	0.35	34	303	100	-41	232	
48	Dose2	93.10	54	90.00	100.00	0.36	34	316	94	-62	412	
49	Dose2	96.83	59	89.39	96.72	0.35	32	275	91	101	126	
50	Dose2	97.22	35	56.45	100.00	0.35	32	301	95	127	297	
51	Dose2	96.77	39	55.71	65.00	0.36	35	280	105	159	355	
52	Dose3	84.38	27	61.36	100.00	0.38	34	282	92	11	118	
53	Dose3	96.30	52	96.30	100.00	0.33	38	311	88	-90	146	
54	Dose3	95.35	41	93.18	100.00	0.41	36	282	97	9	240	
55	Dose3	86.27	44	77.19	100.00	0.37	30	297	97	-32	291	
56	Dose3	95.24	40	86.96	100.00	0.37	35	302	88	-132	163	
57	Dose3	100.00	38	88.37	100.00	0.35	33	305	114	93	386	
58	Dose3	90.91	32	59.26	80.00	0.35	33	269	100	63	250	
59	Dose3	90.74	49	83.05	100.00	0.38	37	304	98	-8	159	
60	Dose3	97.83	44	80.00	97.78	0.35	31	274	113	33	125	
61	Dose3	93.55	29	85.29	100.00	0.37	33	295	76	102	70	
62	Dose3	67.50	27	56.25	100.00	0.35	33	289	118	18	173	
63	Dose3	91.67	44	84.62	100.00	0.37	34	307	103	8	56	
64	Dose3	97.87	46	86.79	100.00	0.37	29	275	110	26	50	
65	Dose3	78.00	36	52.17	92.31	0.36	33	293	104	- 95	178	
66	Dose3	89.23	58	84.06	100.00	0.35	33	298	116	183	161	
67	Dose3	92.00	45	80.36	97.83	0.37	32	298	111	18	80	
68	Dose3	84.09	37	80.43	100.00	0.37	35	288	111	49	52	

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201 ANALYSIS RESULTS FOR VARIABLE EL $\,$ (Eggs Laid)

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Test Stat	P-value	Test Stat	P-value	
0.977	0.228	1.834	0.150	USE PARAMETRIC TESTS
*****	******	*****	******	*******
BASIC SUMMARY	STATISTICS			
Level N	Mean StdDev	StdErr	Coef of Var	95% Conf.Interval
Ctrl 17	63.35 10.43	2.53	16.46	57 99 68 71

Ctrl	17	63.35	10.43	2.53	16.46	57.99,	68.71
Dose1	17	62.59	6.43	1.56	10.28	59.28,	65.90
Dose2	17	66.65	6.61	1.60	9.92	63.25,	70.05
Dose3	17	57.47	10.27	2.49	17.86	52.19,	62.75
Level		Median	Min	Max	%of Control(means)	%Reduct	tion(means)
Ctrl		63.00	34.00	76.00			
		03.00	34.00	70.00	•	•	
Dose1		61.00	51.00	77.00	98.79	1.3	21
Dose1 Dose2						1.2 -5.2	

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests
Analysis of Variance (ANOVA) - overall F-test
Numerator df Denominator df F-stat P-value

Numerator df Denominator df F-stat P-value 3 64 3.27 0.027

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams		,	Tukey p-	values	
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5
Ctrl	63.35		64.20		0.994	0.685	0.205		
Dose1	62.59	0.648	64.20	0.699		0.524	0.319		
Dose2	66.65	0.974	64.20	0.734			0.015		•
Dose3	57.47	0.064	57.47	0.032	•			•	

SUMMARY NOEC LOEC

Dunnett Dose3 >highest dose
Williams Dose2 Dose3

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE NEG_EC (Eggs Cracked)

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

	t Stai .702	-	value	Test Stat 0.839		SE NON-PARAME	TRIC TESTS
*****	****	*****	******	*****	******	*****	*****
BASIC ST	JMMAR	Y STATIS	rics				
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.In	nterval
Ctrl	17	1.53	2.48	0.60	162.01	0.26,	2.80
Dose1	17	1.00	1.46	0.35	145.77	0.25,	1.75
Dose2	17	1.18	2.07	0.50	175.84	0.11,	2.24
Dose3	17	0.71	1.49	0.36	211.11	0.00,	1.47
Level		Median	Min	Max	%of Control(mean	ns) %Reduct:	ion(means)
Ctrl		1.00	0.00	10.00	•		
Dose1		0.00	0.00	5.00	65.38	34.62	2
Dose2		0,00	0.00	8.00	76.92	23.0	3

0.620

Dose3 0.00 0.00 6.00 46.15 53.85

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value

1.78

MannWhit(Bon) - testing each trt median signif. greater than control Jonckheere - test assumes dose-response relationship, testing positive trend

Level	Median	MannWh	it(Bon	adjust)p	-value .	Jonckh	eere p-value
Ctrl	1.00			•			•
Dose1	0.00			1.000			0.692
Dose2	0.00			1.000			0.700
Dose3	0.00			1.000			0.895
SUMMARY MannWhi Jonckhe	,		NOEC Dose3 Dose3		LOEC >highest >highest		

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE ENC EL ((EL-EC)/EL(%))

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.731	< .001	0.888	0.452	USE NON-PARAMETRIC TESTS

BASIC SU	JMMARY	STATIS	TICS			
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval
Ctrl	17	97.60	3.63	0.88	3.72	95.73, 99.47
Dose1	17	98.41	2.33	0.57	2.37	97.21, 99.61
Dose2	17	98.23	3.11	0.75	3.17	96.63, 99.83
Dose3	17	98.83	2.22	0.54	2.25	97.69, 99.98
Level		Median	Min	Max	%of Control(means)	%Reduction(means)
Ctrl		98.61	85.92	100.00	•	
Dose1		100.00	91.67	100.00	100.83	-0.83
Dose2		100.00	87.88	100.00	100.64	-0.64
Dose3		100.00	91.30	100.00	101.26	-1.26

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value

3 1.25 0.742

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon	adjust)p-value	Jonckheere p-value
Ctrl	98.61		•	
Dose1	100.00		1.000	0.684
Dose2	100.00		1.000	0.742
Dose3	100.00		1.000	0.866

SUMMARY NOEC LOEC

MannWhit (Bonf adjust) Dose3 >highest dose

Jonckheere Dose3 >highest dose

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201 ANALYSIS RESULTS FOR VARIABLE ES (Eggs Set)

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 $\,$

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses

Use parame	etric a	inalyse	s if neith	er test 1	rejected, ot	herwise	non-param	etric a	analyses.
Shapiro-	-Wilks	Shapi	ro-Wilks	Levenes	s Levenes	Conc	lusion		
Test S	Stat	P-v	alue	Test Sta	at P-value	9			
0.98	35	0.	563	1.704	0.175	USE	PARAMETRIC	TESTS	
******	*****	****	******	*****	******	*****	*****	*****	****
BASIC SUMM	ARY ST	'ATISTI	CS						
Level N	Me	an	StdDev	StdErr	Coef of	Var	95% Conf.I	nterval	L
Ctrl 17	7 56	.35	10.00	2.43	17.74		51.21,	61.49	
Dosel 17	7 56	.88	6.01	1.46	10.56		53.79,	59.97	
Dose2 17	7 59	.82	6.38	1.55	10.66		56.55,	63.10	
Dose3 17	7 51	94	9.04	2.19	17.40		47.29,	56.59	
Level	Med	lian	Min	Max	%of Control	(means)	%Reduct	ion(mea	ans)
Ctrl	56	.00	32.00	71.00	•			,	•
					100.94		-0.9	4	
					106.16		-6.1	.6	
Dose3	53	.00	34.00	69.00	92.17		7.8	3	
******	*****	*****	*****	*****	******	******	******	*****	****
					=0.05 for al				
			-			T CESTS			
-			ce (ANOVA)		ii r-test -stat	D *** 1			
Numer	anor c	11 17	enominator	(11 H'-	- 81 81	P-value			

Numerator df Denominator df F-stat P-value 3 64 2.78 0.048

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams	Tukey p-values				
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5
Ctrl	56.35		57.69		0.997	0.592	0.386	•	•
Dose1	56.88	0.814	57.69	0.771		0.711	0.287		
Dose2	59.82	0.982	57.69	0.804			0.029	•	•
Dose3	51.94	0.133	51.94	0.073	•	•	•	•	•
SUMMARY Dunne Willi	tt		NOEC Dose Dose	_	_	st dose st dose			

PMRA Submission Number {.....}

Dose3

EPA MRID Number 48327201

-1.54

Mallard repro, Propanil, MRID 48327201 ANALYSIS RESULTS FOR VARIABLE ES EL (EggsSet/EggsLaid (%))

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro- Test S		piro-Wilks -value	Levenes Test Sta		Conclusion
0.69		<.001	1.204		USE NON-PARAMETRIC TESTS
******	*****	******	******	*****	******
BASIC SUMM	ARY STATIS	TICS			
Level N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval
Ctrl 17	89.15	7.09	1.72	7.96	85.50, 92.80
Dosel 17	90.88	2.29	0.56	2.52	89.71, 92.06
Dose2 17	89.76	3.33	0.81	3.71	88.04, 91.47
Dose3 17	90.53	3.42	.0.83	3.78	88.77, 92.28
Level	Median	Min	Max	%of Control(me	ans) %Reduction(means)
Ctrl	90.28	63.38	95.00		
Dose1	91.23	85.45	93.44	101.94	-1.94
Dose2	90.63	80.30	93.44	100.68	-0.68
Dogos	01 52	70 71	03 00	101 54	1 54

101.54

93.88

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups Degrees of Freedom TestStat P-value

3 1.09

91.53 79.71

0.780

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon adjust)p-value	Jonckheere p-value
Ctrl	90.28		
Dose1	91.23	1.000	0.738
Dose2	90.63	1.000	0.388
Dose3	91.53	1.000	0.572

LOEC SUMMARY NOEC MannWhit (Bonf adjust) >highest dose Dose3 >highest dose Jonckheere Dose3

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE VE (Viable Embryo(d14))

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks Test Stat	Shapiro-Wilks P-value	Levenes Test Stat		Conclusion	
0.958	0.022	1.545	0.211	USE PARAMETRIC TESTS	
******	******	*****	*****	*****	* .

BASIC ST	UMMARY	STATIS	TICS			
Level	N	Mean	StdDev	StdÉrr	Coef of Var	95% Conf.Interval
Ctrl	17	53.94	12.58	3.05	23.33	47.47, 60.41
Dose1	17	53.76	7.55	1.83	14.05	49.88, 57.65
Dose2	17	56.82	7.70	1.87	13.55	52.86, 60.78
Dose3	17	50.18	9.82	2.38	19.58	45.12, 55.23
Level		Median	Min	Max	%of Control(means)) %Reduction(means)
Ctrl		54.00	24.00	70.00	•	•
Dose1		55.00	31.00	64.00	99.67	0.33
Dose2		58.00	40.00	67.00	105.34	-5.34
Dose3		49.00	33.00	69.00	93.02	6.98

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test

Numerator df Denominator df F-stat P-value 3 64 1.36 0.264

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Mean	Dunnett	Isotonic	Williams	Tukey p-values					
	p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5	
53.94	•	54.84		1.000	0.819	0.667			
53.76	0.730	54.84	0.695		0.791	0.699	•	•	
56.82	0.952	54.84	0.730		•	0.194			
50.18	0.271	50.18	0.170			•	•	•	
tt ams									
	53.94 53.76 56.82 50.18	p-value 53.94 . 53.76 0.730 56.82 0.952 50.18 0.271	p-value mean 53.94 . 54.84 53.76 0.730 54.84 56.82 0.952 54.84 50.18 0.271 50.18 NOEC Dose	p-value mean p-value 53.94 . 54.84 . 53.76 0.730 54.84 0.695 56.82 0.952 54.84 0.730 50.18 0.271 50.18 0.170 NOEC Dose3	p-value mean p-value Dose1 53.94 . 54.84 . 1.000 53.76 0.730 54.84 0.695 . 56.82 0.952 54.84 0.730 . 50.18 0.271 50.18 0.170 . NOEC LOEC tt Dose3 >highe	p-value mean p-value Dose1 Dose2 53.94 . 54.84 . 1.000 0.819 53.76 0.730 54.84 0.695 . 0.791 56.82 0.952 54.84 0.730 . . 50.18 0.271 50.18 0.170 . . NOEC LOEC This phest dose	p-value mean p-value Dose1 Dose2 Dose3 53.94 . 54.84 . 1.000 0.819 0.667 53.76 0.730 54.84 0.695 . 0.791 0.699 56.82 0.952 54.84 0.730 . . 0.194 50.18 0.271 50.18 0.170 . . . NOEC LOEC tt Dose3 >highest dose	p-value mean p-value Dose1 Dose2 Dose3 Dose4 53.94 . 54.84 . 1.000 0.819 0.667 . 53.76 0.730 54.84 0.695 . 0.791 0.699 . 56.82 0.952 54.84 0.730 . . 0.194 . 50.18 0.271 50.18 0.170 NOEC LOEC tt Dose3 >highest dose	

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE VE_ES (ViableEmbryo/EggsSet (%))

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 $\,$

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

-	-	•		-	-
Shapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion	
Test Stat	P-value	Test Stat	P-value		
0.536	< .001	0.575	0.634	USE NON-PARAMETRIC	TESTS

BASIC S	UMMAR	Y STATIS	rics			
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval
Ctrl	17	95.54	13.08	3.17	13.69	88.82, 100.00
Dose1	17	94.46	9.45	2.29	10.01	89.60, 99.32
Dose2	17	95.05	8.28	2.01	8.72	90.79, 99.31
Dose3	17	96.39	6.05	1.47	6.27	93.28, 99.50
Level		Median	Min	Max	%of Control(means)	%Reduction(means)
Ctrl		100.00	45.28	100.00	•	
Dose1		98.21	65.96	100.00	98.87	1.13
Dose2		96.97	64.52	100.00	99.48	0.52
Dose3		98.11	75.00	100.00	100.89	-0.89

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value 3 3.39 0.335

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon	adjust)p-value	Jonckheere p-value
Ctrl	100.00		•	
Dose1	98.21		0.724	0.233
Dose2	96.97		0.106	0.043
Dose3	98.11		0.494	0.127
~~~~~~~~				

SUMMARY NOEC LOEC

MannWhit (Bonf adjust) Dose3 >highest dose

Jonckheere Dose3 >highest dose

PMRA Submission Number {.....}

Dose3

Jonckheere

EPA MRID Number 48327201

4.77

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE LE ( Live Embryo(d21) )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

	t Stat .931		-value 0.001	Test Sta 0.625		SE NON-PARAME	TRIC TESTS
*****	*****	*****	*****	*****	*****	*****	*****
BASIC S	JMMARY	STATIS	TICS				
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.I	nterval
Ctrl	17	48.12	13.34	3.23	27.72	41.26,	54.97
Dose1	17	47.47	11.58	2.81	24.40	41.52,	53.43
Dose2	17	51.88	9.10	2.21	17.53	47.21,	56.56
Dose3	17	45.82	8.31	2.02	18.13	41.55,	50.10
Level		Median	Min	Max	%of Control(mea	ns) %Reduct	ion(means)
Ctrl		51.00	17.00	68.00	,	•	
Dose1		49.00	16.00	58.00	98.66	1.3	4
Dose2		51.00	36.00	65.00	107.82	-7.8	2

**************

95.23

>highest dose

65.00

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value 3 4.10 0.250

31.00

46.00

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon	adjust)p-value	Jonckheere p-value
Ctrl	51.00			•
Dose1	49.00		1.000	0.514
Dose2	51.00		1.000	0.772
Dose3	46.00		0.265	0.165
SUMMARY		NOEC	LOEC	
MannWhit	: (Bonf	adjust) Dose3	>highest	dose

Dose3

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE LE_VE ( LiveEmbryo/ViableEmbryo (%) )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01  $\,$ 

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Snapiro-wilks	Snapiro-wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.779	< .001	2.023	0.119	USE NON-PARAMETRIC TESTS

************

BASIC SUMM	ARY STATIS	rics				
Level N	Mean	StdDev	StdErr	Coef of Var	95% Conf.	Interval
Ctrl 17	87.95	9.89	2.40	11.24	82.87,	93.03
Dosel 17	87.17	14.77	3.58	16.95	79.58,	94.77
Dose2 17	91.01	6.46	1.57	7.09	87.69,	94.33
Dose3 17	91.78	5.94	1.44	6.47	88.73,	94.84
Level	Median	Min	Max	%of Control(means)	%Reduct	tion(means)
Ctrl	90.00	59.38	97.78	•		
Dose1	93.33	48.15	98.25	99.12	0.8	38
Dose2	90.00	75.00	100.00	103.48	-3.4	48
Dose3	91.53	74.63	100.00	104.36	-4.3	36

***********************

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value
3 1.68 0.641

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon	adjust)p-value	Jonckheere p-value
Ctrl	90.00			•
Dose1	93.33		1.000	0.703
Dose2	90.00		1.000	0.763
Dose3	91.53		1.000	0.894

SUMMARY NOEC LOEC

MannWhit (Bonf adjust) Dose3 >highest dose
Jonckheere Dose3 >highest dose

PMRA Submission Number {.....}

Jonckheere

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201 ANALYSIS RESULTS FOR VARIABLE NH ( Number Hatched )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Tes	t Stat	. P-	value	Test Sta	t P-value		
C	.931	(	0.001	1.337	0.270	USE NON-PARAMETE	RIC TESTS
*****	****	*****	*****	******	*****	* * * * * * * * * * * * * * * * *	*****
BASIC S	UMMARY	Y STATIS	TICS				
Level	N	Mean	StdDev	StdErr	Coef of Va	r 95% Conf.Int	erval
Ctrl	17	40.35	12.09	2.93	29.97	34.14,	6.57
Dose1	. 17	38.71	14.94	3.62	38.60	31.02, 4	6.39
Dose2	17	45.65	12.43	3.02	27.24	39.25, 5	2.04
Dose3	17	41.29	8.38	2.03	20.29	36.99,	15.60
		24 21 -			0 - 5 - 6 1 /	0.70	
Level		Median	Min	Max	%of Control(m	eans) %Reduction	on(means)
Ctrl		42.00	7.00	56.00	•	•	
Dose1		43.00	9.00	56.00	95.92	4.08	
Dose2		44.00	21.00	65.00	113.12	-13.12	
Dose3		41.00	27.00	58.00	102.33	-2.33	

************************

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value
3 1.63 0.652

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon	adjust)p-value	Jonckheere p-value
Ctrl	42.00		•	•
Dose1	43.00		1.000	0.459
Dose2	44.00		1.000	0.832
Dose3	41.00		1.000	0.595
SUMMARY		NOEC	LOEC	
MannWhit	t (Bonf a	djust) Dose3	>highest	dose

Dose3

>highest dose

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201 ANALYSIS RESULTS FOR VARIABLE NH_EL ( NumberHatched/EggsLaid (%) )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

-	_			• •
Shapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.851	< .001	1.589	0.201	USE NON-PARAMETRIC TESTS

********************

BASIC S	UMMAR	Y STATIST	rics				
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.I	nterval
Ctrl	17	63.31	15.80	3.83	24.95	55.19,	71.44
Dose1	17	61.65	22.34	5.42	36.23	50.17,	73.14
Dose2	17	68.14	15.29	3.71	22.44	60.28,	76.01
Dose3	17	72.32	10.94	2.65	15.13	66.69,	77.94
Level		Median	Min	Max	%of Control(means)	%Reduct	ion(means)
Ctrl		65.52	12.07	84.62	•		
Dose1		72.73	15.00	83.61	97.38	2.6	2
Dose2		70.91	31.82	86.67	107.63	-7.6	3
Dose3		76.32	50.94	88.14	114.22	-14.2	2

****************

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value

4.81

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon	adjust)p-value	Jonckheere p-value
Ctrl	65.52		•	
Dosel	72.73		1.000	0.791
Dose2	70.91		1.000	0.868
Dose3	76.32		1.000	0.984

SUMMARY	NOEC	LOEC
MannWhit (Bonf adjust)	Dose3	>highest dose
Jonckheere	Dose3	>highest dose

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE NH ES ( NumberHatched/EggsSet (%) )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.852	<.001	1.579	0.203	USE NON-PARAMETRIC TESTS
******	*****	*****	*****	******

BASIC SU	JMMARY	STATIS	TICS				
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.I	nterval
Ctrl	17	71.52	18.58	4.51	25.99	61.97,	81.08
Dose1	17	67.51	24.01	5.82	35.57	55.17,	79.86
Dose2	17	75.74	15.92	3.86	21.01	67.56,	83.92
Dose3	17	79.91	11.71	2.84	14.65	73.89,	85.93
Level		Median	Min	Max	%of Control(means)	%Reduct	ion(means)
Ctrl		77.42	13.21	97.78	•		
Dose1		78.57	16.36	89.47	94.40	5.6	0
Dose2		76.47	34.43	95.59	105.90	-5.9	0
Dose3		83.05	56.25	96.30	111.72	-11.7	2

***********************

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value
3 4.91 0.178

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon	adjust)p-value	Jonckheere p-value
Ctrl	77.42			•
Dose1	78.57		1.000	0.595
Dose2	76.47		0.712	0.833
Dose3	83.05		1.000	0.983
SUMMARY MannWhit Jonckhee		NOEC adjust) Dose3	LOEC >highest >highest	

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE NH LE ( NumberHatched/LiveEmbryo (%) )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

_	-		•	<u> </u>
Shapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.813	<.001	2.341	0.082	USE NON-PARAMETRIC TESTS

**************************

BASIC S	UMMAR!	Y STATIS	TICS				
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.I	nterval
Ctrl	17	83.15	14.67	3.56	17.64	75.61,	90.70
Dose1	17	78.72	19.81	4.80	25.17	68.54,	88.91
Dose2	17	87.17	13.74	3.33	15.76	80.11,	94.24
Dose3	17	90.05	8.18	1.98	9.08	85.85,	94.26
Level		Median	Min	Max	%of Control(means)	%Reduct	ion(means)
Ctrl		86.54	41.18	100.00	•		
Dose1		87.50	28.21	96.55	94.67	5.3	3
Dose2		93.10	46.67	100.00	104.84	-4.8	4
Dose3		91.67	67.50	100.00	108.30	-8.3	0

***********************

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value

3 6.50 0.089

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon adjust)p-va	lue Jonckheere p-value
Ctrl	86.54		
Dose1	87.50	1.000	0.291
Dose2	93.10	1.000	0.904
Dose3	91.67	1.000	0.982
SUMMARY		NOEC LO	EC

SUMMARY			NOEC	LOEC	
MannWhit	(Bonf	adjust)	Dose3	>highest	dose
Jonckheer	re		Dose3	>highest	dose

PMRA Submission Number {.....}

EPA MRID Number 48327201

)

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE HS ( Hatching Survival(d14) )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Snapiro-Wilks	Snapiro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.937	0.002	0.908	0.442	USE NON-PARAMETRIC TESTS

Ctrl 17	40.00	11.90	2.89	29.74	33.88,	46.12
Dosel 17	38.41	14.65	3.55	38.15	30.88,	45.95
Dose2 17	44.00	11.73	2.84	26.65	37.97,	50.03
Dose3 17	40.53	8.68	2.11	21.42	36.07,	44.99
Level	Median	Min	Max	%of Control(means)	%Reduc	tion(means)
Ctrl	42.00	7.00	55.00			

Ctrl	42.00	7.00	55.00		
Dose1	43.00	9.00	54.00	96.03	3.97
Dose2	42.00	21.00	64.00	110.00	-10.00
Dose3	41.00	27.00	58.00	101.32	-1.32

************************

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value

3 0.84 0.840

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon adjust)p-value	Jonckheere p-value
Ctrl	42.00	•	•
Dosel	43.00	1.000	0.472
Dose2	42.00	1.000	0.736
Dose3	41.00	1.000	0.491

SUMMARY NOEC LOEC

MannWhit (Bonf adjust) Dose3 >highest dose
Jonckheere Dose3 >highest dose

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE HS_ES ( HatchingSurvival/EggsSet (%) )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks	Snapiro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.867	< .001	1.088	0.361	USE NON-PARAMETRIC TESTS

********************

BASIC SU	JMMARY	STATIS	TICS				
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Inte	erval
Ctrl	17	70.92	18.31	4.44	25.82	61.51, 80	).33
Dose1	17	67.07	23.77	5.77	35.45	54.84, 79	9.29
Dose2	17	73.31	16.12	3.91	21.99	65.02, 81	.60
Dose3	17	78.57	13.15	3.19	16.74	71.80, 85	5.33
Level		Median	Min	Max	%of Control(means)	%Reduction	n(means)
Ctrl		75.81	13.21	97.78	•	•	
Dose1		76.56	16.36	89.47	94.57	5.43	
Dose2		73.68	34.43	94.12	103.37	-3.37	
Dose3		83.05	52.17	96.30	110.78	-10.78	

*************************

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value 3 4.02 0.260

MannWhit (Bonf adjust)

Jonckheere

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon	adjust)p-valu	e Jonckheere p-value	
Ctrl	75.81		•		
Dose1	76.56		1.000	0.628	
Dose2	73.68		1.000	0.704	
Dose3	83.05		1.000	0.966	
SUMMARY		NOEC	LOEC		

Dose3

Dose3

>highest dose

>highest dose

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE HS_NH ( HatchingSurvival/NumberHatched (%) )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Shapiro-Wilks Shapiro-Wilks Levenes Conclusion

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Test Stat	P-value	Test Stat	P-value	
0.449	<.001	2.572	0.062	USE NON-PARAMETRIC TESTS
*****	******	*****	*****	********
BASIC SUMMARY	STATISTICS			
Level N	Mean StdDev	StdErr	Coef of Va	ar 95% Conf.Interval

re∧e⊺	N	Mean	Stabev	Stderr	Coef of Var	95% Conf.Interval
Ctrl	17	99.24	1.08	0.26	1.09	98.68, 99.79
Dose1	17	99.44	1.29	0.31	1.30	98.78, 100.00
Dose2	17	97.11	8.47	2.06	8.73	92.76, 100.00
Dose3	17	98.11	5.05	1.23	5.15	95.52, 100.00
Level		Median	Min	Max	%of Control (means)	) %Reduction(means)
Level Ctrl		Median 100.00	Min 97.44	Max 100.00	%of Control(means)	) %Reduction(means)
					,	%Reduction(means) -0.21
Ctrl		100.00	97.44	100.00		•
Ctrl Dosel		100.00	97.44 96.08	100.00		0.21

*************************

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat Payalue

Degrees of Freedom TestStat P-value
3 1.03 0.795

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon adjust	p-value Jonckheere p-value
Ctrl	100.00		
Dose1	100.00	1.000	0.818
Dose2	100.00	1.000	0.531
Dose3	100.00	1.000	0.570
SUMMARY		NOEC	LOEC
Man 1.7h	14 /DE	Danas	1-1-1

MannWhit (Bonf adjust) Dose3 >highest dose Jonckheere Dose3 >highest dose

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201 ANALYSIS RESULTS FOR VARIABLE THICK ( Eggshell thickness )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Shapiro-Wilks Shapiro-Wilks Levenes Conclusion

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Test Stat	P-value	Test Stat	P-value	
0.948	0.007	0.202	0.894	USE NON-PARAMETRIC TESTS
******	******	*****	*****	********

BASIC S	LAMMU	RY STATIST	ics				
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Inte	rval
Ctrl	17	0.36	0.02	0.01	6.17	0.34, 0	.37
Dose1	17	0.36	0.02	0.01	5.71	0.35, 0	.37
Dose2	17	0.36	0.02	0.00	4.60	0.35, 0	.37
Dose3	17	0.36	0.02	0.00	5.10	0.35, 0	.37
Level		Median	Min	Max	%of Control(means)	) %Reduction	(means)
Ctrl		0.36	0.29	0.40	•		
Dose1		0.36	0.32	0.41	102.40	-2.40	
Dose2		0.36	0.32	0.39	100.76	-0.76	
Dose3		0.37	0.33	0.41	102.25	-2.25	

***********************

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat P-value
3 2.29 0.514

MannWhit (Bonf adjust)

Jonckheere

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon	adjust)p-value	Jonckheere p-value
Ctrl	0.36			
Dose1	0.36		1.000	0.861
Dose2	0.36		1.000	0.586
Dose3	0.37		1.000	0.805
SUMMARY		NOEC	LOEC	

Dose3

Dose3

>highest dose

>highest dose

PMRA Submission Number {.....}

Test Stat

Jonckheere

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE HATWT ( Hatchling Weight )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

P-value

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Shapiro-Wilks Shapiro-Wilks Levenes Conclusion

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Test Stat P-value

0	.982	(	0.429	2.769	0.049 USE	NON-PARAMETRIC	FESTS
*****	****	*****	******	******	******	******	*****
BASIC S	UMMAR'	Y STATIST	rics				
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interva	al
Ctrl	17	33.45	2.74	0.66	8.19	32.04, 34.86	5
Dose1	17	35.29	1.23	0.30	3.49	34.66, 35.93	3
Dose2	17	34.61	2.37	0.57	6.84	33.40, 35.83	3
Dose3	17	33.35	2.22	0.54	6.65	32.21, 34.49	Ð
Level		Median	Min	Max	%of Control(means	) %Reduction(me	eans)
Ctrl		32.50	29.20	39.60			
Dose1		35.80	33.00	37.00	105.50	-5.50	
Dose2		34.20	31.80	39.70	103.46	-3.46	
Dose3		33.20	29.30	37.70	99.70	0.30	

*************************

NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Kruskal-Wallis test - equality among treatment groups

Degrees of Freedom TestStat Payalue

Degrees of Freedom TestStat P-value 9.96 0.019

MannWhit(Bon) - testing each trt median signif. less than control Jonckheere - test assumes dose-response relationship, testing negative trend

Level	Median	MannWhit(Bon	adjust)p-value	Jonckheere p-value
Ctrl	32.50			•
Dose1	35.80		1.000	0.990
Dose2	34.20		1.000	0.864
Dose3	33.20		1.000	0.270
SUMMARY		NOEC	LOEC	
MannWhit	(Bonf a	djust) Dose3	>highest	dose

Dose3

>highest dose

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE SURVWT ( Survivor Wt (d14) )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

-	-			_	
Shapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion	
Test Stat	P-value	Test Stat	P-value		
0 989	0.806	1 173	0 327	HEE DARAMETRIC	тī

0.989 0.806 1.173 0.327 USE PARAMETRIC TESTS

______

****						
BASIC SUMMA	RY STATIS	TICS				
Level N	Mean	StdDev	StdErr	Coef of Var	95% Conf.	Interval
Ctrl 17	291.78	18.71	4.54	6.41	282.16,	301.40
Dosel 17	292.94	13.76	3.34	4.70	285.87,	300.01
Dose2 17	291.94	13.06	3.17	4.47	285.22,	298.65
Dose3 17	292.21	12.46	3.02	4.27	285.80,	298.62
Level	Median	Min	Max	%of Control(means)	%Reduc	tion(means)
Ctrl	293.90	256.40	328.10			
Dose1	293,40	257.40	312.10	100.40	-0.	40
Dose2	288.20	275.00	316.20	100.05	-0.	05
Dose3	294.70	268.50	310.70	100.15	-0.	15

***********************

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Analysis of Variance (ANOVA) - overall F-test

Numerator df Denominator df F-stat P-value 3 64 0.02 0.996

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams	Tukey p-values					
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5	
_										
Ctrl	291.78	•	292.36	•	0.996	1.000	1.000			
Dose1	292.94	0.826	292.36	0.632		0.997	0.999	•	•	
Dose2	291.94	0.761	292.07	0.643		•	1.000	•	•	
Dose3	292.21	0.780	292.07	0.662	•	•		•		

SUMMARY	NOEC	LOEC
Dunnett	Dose3	>highest dose
Williams	Dose3	>highest dose

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201
ANALYSIS RESULTS FOR VARIABLE FOOD ( Food Consumption )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks	Shapiro-Wilks	Levenes	Levenes	Conclusion
Test Stat	P-value	Test Stat	P-value	
0.973	0.153	0.737	0.534	USE PARAMETRIC TESTS

*************************

BASIC SU	IMMA!	RY STATIST	rics			
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval
Ctrl	17	100.42	8.99	2.18	8.95	95.80, 105.04
Dosel	17	103.20	10.71	2.60	10.38	97.69, 108.71
Dose2	17	103.47	11.08	2.69	10.71	97.77, 109.17
Dose3	17	102.11	11.60	2.81	11.36	96.15, 108.07
Level		Median	Min	Max	%of Control(means)	%Reduction(means)
Ctrl		98.10	89.80	123.90	•	•
Dose1		101.90	86.50	125.90	102.77	-2.77
Dose2		100.60	87.80	125.30	103.04	-3.04
Dose3		103.40	76.40	117.80	101.69	-1.69

*************************

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests
Analysis of Variance (ANOVA) - overall F-test
Numerator df Denominator df F-stat P-value
3 64 0.29 0.834

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams	Tukey p-values					
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5	
Ctrl	100.42		102.36	•	0.871	0.837	0.967			
Dosel	103.20	0.939	102.36	0.787		1.000	0.991		•	
Dose2	103.47	0.948	102.36	0.819			0.982			
Dose3	102.11	0.886	102.11	0.815	•	•	•		•	
SUMMAR	Y		NOEC		LOEC					
Dunn	ett		Dose	3	>highe:	st dose				
Will	iams		Dose	3	>highe:	st dose				

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201 ANALYSIS RESULTS FOR VARIABLE WTGAINM ( Male wt gain )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-	Wilks	Shapiro-	Wilks Lev	enes Leve	enes Con	clusion	
Test S	Stat	P-valu	e Test	Stat P-va	ılue		
0.96	9	0.087	0.	204 0.8	93 USE	PARAMETRI	C TESTS
*****	*****	*****	*****	*****	*****	*****	*****
BASIC SUMM	ARY STA	ATISTICS					
Level N	Mea	an Std	Dev Std	Err Coef	of Var	95% Conf.	Interval
Ctrl 17	95.	.19 96	.11 23.	31 100.	97	45.78,	144.61
Dosel 17	73.	.43 78	.65 19.	08 107.	11	32.99,	113.87
Dose2 17	49.	.64 73	.97 17.	94 149.	03	11.60,	87.67
Dose3 17	15.	.01 76	.34 18.	51 508.	71	-24.24,	54.25
		•		0 - 5 - 0		)	l. ( ( )
Level	Medi		in Max	%of Cont	rol(means	) %Reduc	tion(means)
Ctrl	67.	30 -26	.00 380.	50 .		•	
Dose1	62.	.10 -59	.60 240.	00 77.	14	22.	86
Dose2	74.	80 -92	.60 158.	60 52.	14	47.	86
Dose3	17.	60 -131	.90 182.	60 15.	76	84.	24

*********************

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests

Analysis of Variance (ANOVA) - overall F-test

Numerator df Denominator df F-stat P-value 64 3 3.00 0.037

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams	Tukey p-values							
		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4	Dose5			
Ctrl	95.19		95.19		0.865	0.372	0.028					
Dose1	73.43	0.419	73.43	0.263		0.831	0.169	•				
Dose2	49.64	0.127	49.64	0.067		•	0.607					
Dose3	15.01	0.008	15.01	0.003	•	•		•	•			

SUMMARY NOEC LOEC Dunnett Dose2 Dose3 Williams Dose2 Dose3

PMRA Submission Number {.....}

EPA MRID Number 48327201

Mallard repro, Propanil, MRID 48327201 ANALYSIS RESULTS FOR VARIABLE WTGAINF ( Female wt gain )

TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS

Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01

Levenes test for homogeneity of variance(absolute residuals) -- alpha-level=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses.

Shapiro-Wilks Test Stat	Shapiro-Wilks P-value	Levenes Test Stat		Conclusion
0.987	0.725	0.568	0.638	USE PARAMETRIC TESTS
******	******	*****	*****	*****

BASIC SU	AMMC	RY STATIS	rics			
Level	N	Mean	StdDev	StdErr	Coef of Var	95% Conf.Interval
Ctrl	17	260.90	88.69	21.51	33.99	215.30, 306.50
Dose1	17	262.94	90.74	22.01	34.51	216.28, 309.59
Dose2	17	221.10	112.46	27.28	50.86	163.28, 278.92
Dose3	17	158.67	92.11	22.34	58.05	111.31, 206.03
Level		Median	Min	Max	%of Control(means)	%Reduction(means)
Ctrl		256.90	73.10	412.50	•	•
Dose1		228.70	124.40	474.30	100.78	-0.78
Dose2		241.60	-6.50	411.80	84.75	15.25
Dose3		158.80	49.90	386.30	60.82	39.18

************************

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests
Analysis of Variance (ANOVA) - overall F-test
Numerator df Denominator df F-stat P-value
3 64 4.35 0.008

Dunnett - testing each trt mean signif. less than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level	Mean	Dunnett	Isotonic	Williams	Tukey p-values					
		p-value	mean	p-value	Dosel	Dose2	Dose3	Dose4	Dose5	
Ctrl	260.90		261.92		1.000	0.627	0.015	•		
Dose1	262.94	0.772	261.92	0.596	•	0.589	0.013			
Dose2	221.10	0.249	221.10	0.148			0.244	•		
Dose3	158.67	0.004	158.67	0.002			•	•	•	
CLIMMA	v		NOEG		TOTAL					

SUMMARY	NOEC	LOEC
Dunnett	Dose2	Dose3
Williams	Dose2	Dose3

PMRA Submission Number {......}

EPA MRID Number 48327201

#### APPENDIX II. COPY OF EXCEL WORKSHEET DETERMINING MEAN-MEASURED CONCENTRATIONS:

Calculated mean-measured concentrations of propazine in a mallard duck reproduction study.

Nominal Concentration	Sample type		Mean Recovery		Overall Mean
mg ai/kg diet			%	mg ai/kg diet	mg ai/kg diet
20	) Homogeneity	1st analysis batch	90	17.9	)
		2nd analysis batch	84	16.7	
		3rd analysis batch	86	17.2	17
50	Verification	1st analysis batch	91	45.6	;
	Verification	2nd analysis batch	87	43.3	
	Verification	3rd analysis batch	97	48.8	46
125	Homogeneity	1st analysis batch	89	111.3	
	Homogeneity	2nd analysis batch	92	114.2	
	Homogeneity	3rd analysis batch	98	121.8	116

PMRA Submission Number {.....}

EPA MRID Number 48327201

#### APPENDIX III. COPY OF EXCEL WORKSHEET DETERMINING MEAN OVERALL FOOD CONSUMPTION:

Mean feed consumption

Feed Week	Control	20	50	125
1	82.5	76	87	77.5
2	76.9	77.8	86.9	84.3
3	63.8	61.5	70.6	63.3
4	74.5	74.4	75.1	71.9
5	66	63.4	67	66.2
6	66.1	66.2	68.9	62.9
7	72.8	73.4	73.6	71.9
8	68.3	69.4	71.1	64
9	78.5	80.6	80.4	77.4
10	78.4	81.1	80.3	75.3
11	80.9	75.2	75.1	68.5
12	111	109	107	109
13	131	131	128	128
14	131	131	126	128
15	129	131	129	128
16	132	130	134	135
17	128	133	124	136
18	131	136	135	140
19	125	135	132	132
20	126	135	132	128
21	126	137	133	133
22	127	133	131	136
23	115	133	133	131
Overall	100.9	103.2	103.5	102.1