| PMRA Submission Number {}                                     |                                                   |                                                                                  | EPA MRID Number 466955-19                                                                                 |  |  |
|---------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Data Requireme                                                | nt:                                               | PMRA DATA CODE<br>EPA DP Barcode<br>OECD Data Point<br>EPA MRID<br>EPA Guideline | {}<br>D325337<br>{}<br>466955-19<br>OPPTS 850.5400                                                        |  |  |
| Test material:                                                | -                                                 | 747 and Isoxadifen-ethyl S                                                       | Isoxadifen-ethyl: 18.1%.                                                                                  |  |  |
| Common name:<br>Chemical name:                                | IUPAC: 2-[2-ch<br>CAS name: Not<br>CAS No.: 335-3 | reported                                                                         | yl)<br>fluoroethoxy)methyl)benzoyl]cyclohexane-1,3-dione<br>; 163520-33-0 for Isoxadifen-ethyl SC 420+210 |  |  |
| Primary Review<br>Staff Scientist, I                          |                                                   | -                                                                                | Signature: Rebucca L. Bygan<br>Date: 4/18/06<br>Signature:<br>Date: 04/26/06                              |  |  |
| Secondary Revi<br>Staff Scientist, (                          |                                                   |                                                                                  | Signature:<br>Date: 04/26/06                                                                              |  |  |
| Primary Reviev<br>{EPA/OECD/Pl                                |                                                   | }                                                                                | Date:                                                                                                     |  |  |
| Secondary Reviewer(s): Jeannette Martinez<br>{EPA/OECD/PMRA}  |                                                   | tte Martinez                                                                     | Date: 7/14/06                                                                                             |  |  |
| Reference/Subn                                                | nission No.: {                                    | }                                                                                |                                                                                                           |  |  |
| Company Code<br>Active Code<br>Use Site Catego<br>EPA PC Code | {}                                                | [For PMRA]<br>[For PMRA]<br>[For PMRA]                                           |                                                                                                           |  |  |

Date Evaluation Completed: {dd-mm-yyyy}

<u>CITATION</u>: Dorgerioh, M. 2005. *Pseudokirchneriella subcapitata* Growth Inhibition Test with AE 0172747 and Isoxadifen-ethyl SC 420+210 (code: AE 0172747 02 SC52 A105). Unpublished study performed by Bayer CropScience AG, Research/Development, Department–Ecotoxicology, Monheim, Germany. Study No. EBAEP032/E 323 2838-9. Study sponsored by Bayer CropScience AG. The final report issued May 4, 2005.

**DISCLAIMER:** This document provides guidance for EPA and PMRA reviewers on how to complete a data evaluation record after reviewing a scientific study concerning the acute toxicity of a pesticide to aquatic nonvascular plants. It is not intended to prescribe conditions to any external party for conducting this study nor to establish absolute criteria regarding the assessment of whether the study is scientifically sound and whether the study satisfies any applicable data requirements. Reviewers are expected to review and to determine for each study, on a case-by-case basis, whether it is scientifically sound and provides sufficient information to satisfy applicable data requirements. Studies that fail to meet any of the conditions may be accepted, if appropriate; similarly, studies that meet all of the conditions may be rejected, if appropriate. In sum, the reviewer is to take into account the totality of factors related to the test methodology and results in determining the acceptability of the study.



PMRA Submission Number {.....}

EPA MRID Number 466955-19

#### **EXECUTIVE SUMMARY:**

In a 72-hour acute toxicity study, cultures of *Pseudokirchneriella subcapitata* were exposed to AE 0172747 02 SC52 A105 (formulation containing AE 0172747 and Isoxadifen-ethyl SC 420+210) at nominal concentrations of 0.868, 2.2, 5.4, 14, and 34 mg a.i./L with a negative control. The 72-hour mean measured concentrations were <0.1104 (<LOQ, negative control), 0.773, 1.92, 5.05, 12.4, and 29.1 mg a.i./L (86-93% of nominal) under static conditions. The 72-hour NOAEC was 0.773 mg a.i./L based on cell density and 1.92 mg a.i./L based on growth rate. The EC<sub>50</sub> was 2.7 mg a.i./L for cell density, the most sensitive endpoint. By 72-hours, cell density percent inhibition was -6.1, 13.1, 89.1, 96.4 and 97.6% at the mean-measured 0.773, 1.92, 5.05, 12.4, and 29.1 mg a.i./L treatment levels, respectively, compared to the control. The growth rate percent inhibition was -1.6, 3.9, 55.7, 89.0 and 93.2% at the mean-measured 0.773, 1.92, 5.05, 12.4, and 29.1 mg a.i./L treatment levels, respectively.

In the mean-measured 12.4 and 29.1 mg a.i./L treatment groups, cells were observed to be swollen.

This toxicity study is classified as scientifically sound but does not satisfy the guideline requirement for aquatic nonvascular plant toxicity study in order to be classified as Acceptable. This study was only conducted for 72 hours and, according to EPA guidelines, should be considered for Tier I screening purposes only. The study is classified SUPPLEMENTAL.

#### **Results Synopsis**

Test Organism: *Pseudokirchneriella subcapitata* Test Type (Flow-through, Static, Static Renewal): Static

 Cell density:
 95% C.I.: N/A

 EC<sub>05</sub>:
 2.7 mg a.i./L
 95% C.I.: N/A

 Probit Slope:
 2.70±0.513
 95% C.I.: 1.7-4.1 mg a.i./L

#### Growth rate:

 EC<sub>05</sub>:
 0.84 mg a.i./L

 EC<sub>50</sub>:
 4.5 mg a.i./L

 NOAEC:
 1.92 mg a.i./L

 Probit Slope:
 2.25±0.453

95% C.I.: 0.27-2.6 mg a.i./L 95% C.I.: 2.7-7.5 mg a.i./L

Area under the growth curve (biomass): Not determined

Endpoint(s) Affected: Cell density and growth rate. Most sensitive endpoint: Cell density

SC 420+210 to Pseudokirchneriella subcapitata

PMRA Submission Number {.....}

EPA MRID Number 466955-19

#### **I. MATERIALS AND METHODS**

GUIDELINE FOLLOWED: The test protocol was based on the U.S. EPA Pesticide Assessment Guideline 123-2, OECD Guideline #201, and EU Guideline Annex C- Part C.3. The following deviations from U.S. Environmental Protection Agency Series 850-Ecological Effects Test Guidelines (*draft*), OPPTS Number 850.5400, *Algal Toxicity, Tiers I and II* were noted:

- 1. The dilution water characteristics of TOC, particulate matter, metals, pesticides, and chlorine content were not reported.
- 2. The physiochemical properties of the test material were not reported.
- 3. The pre-test health of the algae cultures was not reported.
- 4. The size of the test vessels (300 mL) was larger than recommended (250 mL).
- 5. The study was conducted for only 72 hours. Three-day OECD-guideline studies will be considered as Tier I screening data.

These deviations did not affect the validity of the study.

| COMPLIANCE: | Signed and dated GLP, Quality Assurance and <u>No</u> Data Confidentiality<br>statements were provided. The test was conducted according to the OECD<br>Principles of Good Laboratory Practice and the Principles of Good<br>Laboratory Practice according to Annex 1 of the German chemical law                                                                                       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | (ChemG). The study also met the requirements of U.S. EPA-FIFRA Good<br>Laboratory Practice Standards (40 CFR Part 160) as well as the GLP<br>standards of the Japanese Ministry of Agriculture, Forestry and Fisheries<br>(JMAFF, 11 Nou(g)san No. 6283), with the exception that recognized<br>differences exist between the GLP principles/standards of OECD and<br>FIFRA and JMAFF. |

#### A. MATERIALS:

| 1. Test material                                | AE0172747 02 SC52 A105 (Formulation containing Bayer AE 0172747<br>and lsoxadifen-ethyl SC 420+210 (safener))                                                                                                                                                                                                                                                  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description:                                    | Light Beige milky liquid                                                                                                                                                                                                                                                                                                                                       |
| Lot No./Batch No. :                             | EFIM000036 (Batch Number)                                                                                                                                                                                                                                                                                                                                      |
| Purity:                                         | AE 0172747: 33.9%; Isoxadifen-ethyl: 18.1%.                                                                                                                                                                                                                                                                                                                    |
| Stability of compound<br>under test conditions: | The stability of the test substance in the dilution water during the course of the study was demonstrated by analytical determinations at 0 and 72 hours. The mean recoveries at all treatment levels were 85-94% of nominal at 0 hour (except the nominal 33.9 mg a.i./L recovery of 35% due to a reported handling error) and 86-93% of nominal at 72 hours. |

(OECD recommends water solubility, stability in water and light, pKa, Pow, and vapor pressure of test compound)

SC 420+210 to Pseudokirchneriella subcapitata

PMRA Submission Number {......}

EPA MRID Number 466955-19

#### Storage conditions of

test chemicals:

Stored at room temperature.

| Parameter                | Values       | Comments |
|--------------------------|--------------|----------|
| Water solubility at 20°C | Not reported | ······   |
| Vapor pressure           | Not reported |          |
| UV absorption            | Not reported |          |
| рКа                      | Not reported |          |
| Kow                      | Not reported |          |
|                          | 1            | 1        |

#### Physicochemical properties of AE 0172747.

#### 2. Test organism:

Name:Pseudokirchneriella subcapitataEPA requires a nonvascular species: For tier 1 testing, only one species, S. capricornutum, to be<br/>tested; for tier 11 testing, S. costatum, A. flos-aquae, S. capricorntum, and a freshwater diatom is<br/>tested.

OECD suggests the following species are considered suitable: S. capricornutum, S. subspicatus, and C. vulgaris. If other species are used, the strain should be reported

| Strain:                | SAG 61.81                                                                  |
|------------------------|----------------------------------------------------------------------------|
| Source:                | Collection of Algal Cultures, Institute of Plant Physiology, University of |
|                        | Goettingen, Goettingen, Germany.                                           |
| Age of inoculum:       | 2-4 days old                                                               |
| Method of cultivation: | Nutrient medium                                                            |

#### **B. STUDY DESIGN:**

#### 1. Experimental Conditions

a. Range-finding Study: The definitive test concentrations were based on a pre-experiment, but the results were not reported.

PMRA Submission Number {......}

EPA MRID Number 466955-19

#### b. Definitive Study

| Parameter                                                                                                           | Details                                                                                                                  | Remarks                                                                                                                                                                                                                                                                                                                                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                     |                                                                                                                          | Criteria                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Acclimation period:<br>Culturing media and conditions:<br>(same as test or not)<br>Health: (any mortality observed) | Continuous culture; pre-culture<br>prepared 2-4 days prior to testing.<br>Nutrient medium; same as test.<br>Not reported | EPA recommends two-week acclimation<br>period.<br>OECD recommends an amount of algae<br>suitable for the inoculation of test<br>cultures and incubated under the<br>conditions of the test and used when still<br>exponentially growing, normally after<br>an incubation period of about 3 days.<br>When the algal cultures contain<br>deformed or abnormal cells, they must<br>be discarded. |  |
| <u>Test system</u><br>Static/static renewal<br>Renewal rate for static renewal                                      | Static<br>N/A                                                                                                            | EPA expects the test concentrations to<br>be renewed every 3 to 4 days (one<br>renewal for the 7 day test, 3-4 renewals<br>for the 14 day test).                                                                                                                                                                                                                                              |  |
| Incubation facility                                                                                                 | Growth incubator                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Duration of the test                                                                                                | 72 hours                                                                                                                 | EPA requires: 96-120 hours<br>OECD: 72 hours                                                                                                                                                                                                                                                                                                                                                  |  |
| <u>Test vessel</u><br>Material: (glass/stainless steel)<br>Size:<br>Fill volume:                                    | Erlenmeyer flasks<br>300 mL<br>150 mL                                                                                    | The size of the test vessels (300 mL)<br>was larger than recommended (250 mL).<br>OECD recommends 250 ml conical<br>flasks are suitable when the volume of<br>the test solution is 100 ml or use a<br>culturing apparatus.                                                                                                                                                                    |  |

#### Table 1: Experimental Parameters

.

PMRA Submission Number {......}

| Parameter                                                                                                                                              | Details                                                                   | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                        |                                                                           | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Details of growth medium name<br>pH at test initiation:<br>pH at test termination:<br>Chelator used:<br>Carbon source:<br>Salinity (for marine algae): | Nutrient medium<br>7.8-8.1<br>7.8-8.3<br>Yes<br>NaHCO <sub>3</sub><br>N/A | The nutrient medium was prepared<br>by dissolving analytical grade salts<br>in purified (Milli-Q-water).<br>OECD recommends the medium pH<br>after equilibration with air is ~8<br>with less than .001 mmol/l of<br>chelator if used.<br>EPA recommends 20X-AAP and<br>chelating agents (e.g. EDTA) in the<br>nutrient medium for optimum cell<br>growth. Lower concentrations of<br>chelating agents (down to one-third<br>of the normal concentration<br>recommended for AAP medium) may<br>be used in the nutrient medium used<br>for test solution preparation if it is<br>suspected that the chelator will<br>interact with the test material.<br>ASTM reference, E1415-91 and D<br>3978-80 (reapproved 1987). |
| If non-standard nutrient medium<br>was used, detailed composition<br>provided (Yes/No)                                                                 | N/A                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

SC 420+210 to Pseudokirchneriella subcapitata

PMRA Submission Number {......}

| Parameter                                                                                                                                                                                    | Details                                                                                                                                                                                 | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                              |                                                                                                                                                                                         | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Dilution water<br>source/type:<br>pH:<br>salinity (for marine algae):<br>water pretreatment (if any):<br>Total Organic Carbon:<br>particulate matter:<br>metals:<br>pesticides:<br>chlorine: | Purified (Milli-Q-water) water<br>7.8-8.3 (0-72-hours)<br>N/A<br>Sterilized and aerated<br>Not reported<br>Not reported<br>Not reported<br>Not reported<br>Not reported<br>Not reported | The dilution water characteristics of TOC, particulate matter, metals, pesticides, and chlorine content were not reported.<br>EPA pH: Skeletonema costatum = -8.0<br>Others = -7.5 from beginning to end of the test. EPA salinity: 30-35 ppt. EPA is against the use of dechlorinated water.<br>OECD: pH is measured at beginning of the test and at 72 hours, it should not normally deviate by more than one unit during the test. |  |
| Indicate how the test material is<br>added to the medium (added<br>directly or used stock solution)                                                                                          | Stock solutions                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Aeration or agitation                                                                                                                                                                        | Continuously agitated at 100 rpm.                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Initial cells density                                                                                                                                                                        | Approximately 10,000 cells/mL.                                                                                                                                                          | EPA requires an initial number of 3,000<br>- 10,000 cells/mL. For Anabaena flos-<br>aquae, cell counts on day 2 are not<br>required.<br>OECD recommends that the initial cell<br>concentration be approximately 10.000<br>cells/ml for <u>S</u> . <u>capricornutum</u> and <u>S</u> .<br><u>subspicatus</u> . When other species are<br>used the biomass should be<br>comparable.                                                     |  |

SC 420+210 to *Pseudokirchneriella subcapitata* PMRA Submission Number {......}

| Parameter                                                                  | Details                                                                                            | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                            |                                                                                                    | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>Number of replicates</u><br>Control:<br>Solvent control:<br>Treatments: | 6<br>N/A<br>3                                                                                      | EPA requires a negative and/or solvent<br>control with 3 or more replicates per<br>doses. <u>Navicula</u> sp.tests should be<br>conducted with four replicate.<br>OECD preferably three replicates at<br>each test concentration and ideally<br>twice that number of controls. When a<br>vehicle is used to solubilize the test<br>substance, additional controls<br>containing the vehicle at the highest<br>concentration used in the test.       |
| <u>Test concentrations</u><br>Nominal:                                     | 0 (negative control), 0.868, 2.2, 5.4, 14, and 34 mg a.i./L                                        | The nominal concentrations are equivalent to 2.56, 6.4, 16, 40, and 100 mg formulation/L.                                                                                                                                                                                                                                                                                                                                                           |
| Measured:                                                                  | <0.1104 ( <loq, control),<br="" negative="">0.773, 1.92, 5.05, 12.4, and 29.1 mg<br/>a.i./L</loq,> | The mean measured concentrations<br>were reviewer-calculated based on<br>0- and 72-hour mean concentrations.<br>For the highest treatment group, the<br>mean measured concentration is only<br>based on the 72-hour samples (0-<br>hour sample recoveries were<br>considered outliers due to a handling<br>error).                                                                                                                                  |
|                                                                            |                                                                                                    | EPA requires at least 5 test<br>concentrations, with each at least 60%<br>of the next higher one.<br>OECD recommends at least five<br>concentrations arranged in a geometric<br>series, with the lowest concentration<br>tested should have no observed effect on<br>the growth of the algae. The highest<br>concentration tested should inhibit<br>growth by at least 50% relatively to the<br>control and, preferably. stop growth<br>completely. |

SC 420+210 to *Pseudokirchneriella subcapitata*PMRA Submission Number {......}

| Parameter                                                                              | Details                                                                                               | Remarks<br>Criteria                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Solvent (type, percentage, if used)                                                    | N/A                                                                                                   | Cinera                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Method and interval of analytical verification                                         | HPLC at 0 and 72 hours;<br>LOQ was 0.1104 mg a.i./L.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| <u>Test conditions</u><br>Temperature:<br>Photoperiod:<br>Light intensity and quality: | 22.2-23.4°C<br>Continuous<br>5730-7460 lux, cool-white<br>fluorescent lighting                        | EPA temperature: <u>Skeletonema</u> : 20°C,<br>Others: 24-25°C; EPA photoperiod: S.<br>costatum 14 hr light/10 hr dark,<br>Others: Continuous; EPA light:<br>Anabaena: 2.0 Klux (±15%), Others: 4 -<br>5 Klux (±15%)<br>OECD recommended the temperature in<br>the range of 21 to25°C maintained at ±<br>2°C and continuous uniform<br>illumination provided at approximately<br>8000 Lux measured with a spherical<br>collector. |  |
| <u>Reference chemical (if used)</u><br>name:<br>concentrations:                        | The algae strains were tested with 3,5-dichlorophenol or potassium dichromate (results not reported). |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Other parameters, if any                                                               | N/A                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

PMRA Submission Number {.....}

EPA MRID Number 466955-19

#### 2. Observations:

| Parameters                                                                  | Details                                                                                                                                                                                  | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                             |                                                                                                                                                                                          | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Parameters measured including the growth inhibition/other toxicity symptoms | Cell density, growth rate, and doubling time.                                                                                                                                            | EPA recommends the growth of the algae<br>expressed as the cell count per mL, biomass<br>per volume, or degree of growth as<br>determined by spectrophotometric means.                                                                                                                                                                                                                                                        |  |
| Measurement technique for cell<br>density and other end points              | Direct cell counting with a<br>microscope (average of two cell<br>counts).                                                                                                               | EPA recommends the measurement<br>technique of cell counts or chlorophyll a<br>OECD recommends the electronic particle<br>counter, microscope with counting<br>chamber, fluorimeter, spectrophotometer,<br>and colorimeter. (note: in order to provide<br>useful measurements at low cell<br>concentrations when using a<br>spectrophotometer, it may be necessary to<br>use cuvettes with a light path of at least 4<br>cm). |  |
| Observation intervals                                                       | At 24, 48, and 72 hours.                                                                                                                                                                 | EPA and OECD: every 24 hours.                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Other observations, if any                                                  | The pH was measured in each<br>treatment group and control at 0,<br>24, 48, and 72 hours. The<br>temperature was continuously<br>measured in an additional<br>incubated water replicate. |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Indicate whether there was an exponential growth in the control             | Yes, the dilution water control<br>cell density at test termination<br>was 54.6x greater than the<br>dilution water control cell<br>density at test initiation.                          | EPA requires control cell count at<br>termination to be 2X initial count or by a<br>factor of at least 16 during the test.<br>OECD: cell concentration in control<br>cultures should have increased by a factor<br>of at least 16 within three days.                                                                                                                                                                          |  |
| Were raw data included?                                                     | Yes, replicate data were provided.                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

#### Table 2: Observation parameters

Page 10 of 17

SC 420+210 to Pseudokirchneriella subcapitata

PMRA Submission Number {.....}

#### **II. RESULTS and DISCUSSION:**

#### A. INHIBITORY EFFECTS:

By 72-hours, cell density percent inhibition was -6.1, 13.1, 89.1, 96.4 and 97.6% at the nominal 0.868, 2.2, 5.4, 14, and 34 mg a.i./L treatment levels, respectively, compared to the control. The growth rate percent inhibition was -1.6, 3.9, 55.7, 89.0 and 93.2% at the mean-measured 0.868, 2.2, 5.4, 14, and 34 mg a.i./L treatment levels, respectively, compared to the control. Both cell density and growth rate were significantly reduced compared to the control at  $\geq$ 5.4 mg a.i./L treatment levels. The 72-hour NOAEC was 2.2 mg a.i./L based on cell density and growth rate.

In the nominal 14 and 34 mg a.i./L treatment groups, cells were observed to be swollen.

| Treatment                     | Initial cell | Cell density at |          |            |              |
|-------------------------------|--------------|-----------------|----------|------------|--------------|
| measured and (nominal)        | density      | 24 hours        | 48 hours | 72 hours   |              |
| concentrations<br>(mg a.i./L) |              |                 |          | cell count | % inhibition |
| Negative control              | 10,000       | 37,000          | 213,000  | 546,000    |              |
| 0.773 (0.868)                 | 10,000       | 77,000          | 197,000  | 582,000    | -6.1         |
| 1.92 (2.17)                   | 10,000       | 58,000          | 153,000  | 477,000    | 13.1         |
| 5.05 (5.42)                   | 10,000       | 45,000          | 47,000   | 60,000     | 89.1*        |
| 12.4 (13.6)                   | 10,000       | 10,000          | 38,000   | 20,000     | 96.4*        |
| 29.1 (33.9)                   | 10,000       | 10,000          | 10,000   | 13,000     | 97.6*        |

Table 3: Effect of AE 0172747 on algal growth (Pseudokirchneriella subcapitata)

<sup>a</sup> Negative percent inhibition indicates promoted growth. Percent inhibition was reviewer-calculated.

\* Statistically significant percent reduction compared to the control (Dunnett's multiple t-test,  $\alpha$ =0.05).

PMRA Submission Number {......}

EPA MRID Number 466955-19

| Treatment<br>measured and<br>(nominal)<br>concentrations | Initial cell<br>density | Mean Growt | h Rate (hours <sup>-1</sup> )   | Mean Area Under the Growth<br>Curve (cells/mL x hour) |                        |  |
|----------------------------------------------------------|-------------------------|------------|---------------------------------|-------------------------------------------------------|------------------------|--|
| concentrations<br>(mg a.i./L)                            |                         | 0-72 hours | Percent Inhibition <sup>a</sup> | 0-72 hours                                            | Percent<br>Inhibition* |  |
| Negative control                                         | 10,000                  | 1.333      |                                 | ND                                                    | ND                     |  |
| 0.773 (0.868)                                            | 10,000                  | 1.354      | -1.6                            | ND                                                    | ND                     |  |
| 1.92 (2.17)                                              | 10,000                  | 1.282      | 3.9                             | ND                                                    | ND                     |  |
| 5.05 (5.42)                                              | 10,000                  | 0.590      | 55.7*                           | ND                                                    | ND                     |  |
| 12.4 (13.6)                                              | 10,000                  | 0.147      | 89.0*                           | ND                                                    | ND                     |  |
| 29.1 (33.9)                                              | 10,000                  | 0.090      | 93.2*                           | ND                                                    | ND                     |  |

#### Table 4: Effect of AE 0172747 on algal growth (Pseudokirchneriella subcapitata)

\* Negative percent inhibition indicates promoted growth.

\* Statistically significant percent reduction compared to the control (Dunnett's multiple t-test,  $\alpha$ =0.05).

ND = Not determined

| Table 5: | Statistical | endpoint | values. |
|----------|-------------|----------|---------|
|          |             |          |         |

| Statistical Endpoint                                      | Cell density   | Growth rate    | Biomass        |
|-----------------------------------------------------------|----------------|----------------|----------------|
| NOAEC or EC <sub>05</sub> <sup>a</sup><br>(mg a.i./L)     | 2.2            | 2.2            | Not determined |
| $EC_{50} (mg a.i./L)^b$                                   | 3.35           | 5.21           | Not determined |
| EC <sub>50</sub> 95% C.1: (mg a.i./L) <sup>b</sup>        | 2.9-3.9        | 3.8-7.2        | Not determined |
| EC <sub>10</sub> (95% C.l.) (mg a.i./L)                   | 1.92 (1.5-2.2) | 2.34 (0.6-3.4) | Not determined |
| Reference chemical, if used<br>NOAEC<br>$1C_{50}/EC_{50}$ | Not reported   | Not reported   | Not reported   |

<sup>a</sup> Based on 72-hour mean measured concentrations.

<sup>b</sup> Based on nominal (mg a.i./L) concentrations corrected for the purity of the active ingredient (33.9%).

#### **B. REPORTED STATISTICS:**

The EC<sub>50</sub> values were calculated using probit analysis with the ToxRat Professional software. The NOAEC was verified using ANOVA and Dunnett's t-test. The study author's statistical calculations were performed using the nominal (mg form./L) concentrations; however, the reviewer corrected these values based on the purity of the active ingredient (33.9%) for the purposes of comparing these results to the reviewer's toxicity values.

PMRA Submission Number {.....}

EPA MRID Number 466955-19

#### C. VERIFICATION OF STATISTICAL RESULTS:

Statistical Method(s): Replicate data for cell density and growth rate were first tested for normality and homogeneity. These assumptions of ANOVA were not met; therefore, the NOAEC values were determined using the non-parametric Kruskal-Wallis test via Toxstat Statistical Software. The ECx values (with 95% C.I.) and probit slopes were determined using the probit analysis via Nuthatch Statistical Software. All toxicity values were determined using the mean-measured concentrations.

#### Cell density:

pe. 2.70±0.515

| Growth rate:       |                |  |  |  |  |  |  |  |
|--------------------|----------------|--|--|--|--|--|--|--|
| EC <sub>05</sub> : | 0.84 mg a.i./L |  |  |  |  |  |  |  |
| EC 50:             | 4.5 mg a.i./L  |  |  |  |  |  |  |  |
| NOAEC:             | 1.92 mg a.i./L |  |  |  |  |  |  |  |
| Probit Slope:      | 2.25±0.453     |  |  |  |  |  |  |  |

95% C.I.: 0.27-2.6 mg a.i./L 95% C.I.: 2.7-7.5 mg a.i./L

#### Area under the growth curve (biomass): Not determined

Endpoint(s) Affected: Cell density and growth rate. Most sensitive endpoint: Cell density

#### **D. STUDY DEFICIENCIES:**

The study was conducted for 72 hours. Three-day OECD tests will be considered as Tier I screening studies. Other than recommended guideline species was used.

#### E. REVIEWER'S COMMENTS:

The reviewer's results were based on mean-measured concentrations and the study author's results were based on nominal concentrations; therefore, the reviewer's results are reported in the Executive Summary and Conclusions sections of this DER.

The NOAEC values for cell density and growth rate (0.773 and 1.92 mg a.i./L) were determined visually based on the 13.1 and 55.7% reductions at the mean-measured 1.92 and 5.05 mg a.i./L treatment level, relative to the negative controls. The reviewer's analyses did not detect statistical differences from control and the reviewer attributes that to the use of the less sensitive, non-parametric Kruskal-Wallis test.

The percent recovery of the nominal 33.9 mg a.i./L concentration at Day 0 was 11.8 mg a.i./L (35% of nominal). The study author reported that this was most likely due to a handling error. Because concentrations remained stable throughout the definitive test (recoveries of 85-94% of nominal), the reviewer excluded the Day 0 measured value for the nominal 33.9 mg a.i./L concentration and only used the Day 3 measured value (29.1 mg a.i./L; 86% of nominal) for all analyses.

Page 13 of 17

PMRA Submission Number {.....}

EPA MRID Number 466955-19

The experiments started on January 13, 2005 and were completed on January 20, 2005.

#### **F. CONCLUSIONS:**

This study is scientifically sound but is classified as SUPPLEMENTAL because of shorter test duration and use of different algal species. Cell density was the most sensitive endpoint, with a 72-hour EC<sub>50</sub> of 2.7 mg a.i./L; the 72-hour NOAEC for cell density was 0.773 mg a.i./L.

#### Cell density:

 EC<sub>05</sub>:
 <0.773 mg a.i./L</th>

 EC<sub>50</sub>:
 2.7 mg a.i./L

 NOAEC:
 0.773 mg a.i./L

 Probit Slope:
 2.70±0.513

95% C.I.: N/A 95% C.I.: 1.7-4.1 mg a.i./L

#### Growth rate:

| EC05:         | 0.84 mg a.i./L |
|---------------|----------------|
| EC 50:        | 4.5 mg a.i./L  |
| NOAEC:        | 1.92 mg a.i./L |
| Probit Slope: | 2.25±0.453     |

95% C.I.: 0.27-2.6 mg a.i./L 95% C.I.: 2.7-7.5 mg a.i./L

#### Area under the growth curve (biomass): Not determined

Endpoint(s) Affected: Cell density and growth rate. Most sensitive endpoint: Cell density

#### **III. REFERENCES:**

- Draft Proposal for Updating OECD Guideline 201: "Freshwater Alga and Cyanobacteria, Growth Inhibition Test" (Feb. 18, 2004)
- Statistical Software "ToxRat Professional", version 2.09, produced by ToxRat Solutions GmbH, 52477 Alsdorf, Germany (Feb 6, 2004)
- ToxRat Validation Document from ToxRat Solutions GmbH, valid for ToxRat Version 2.09 (released January 25, 2004)

SC 420+210 to Pseudokirchneriella subcapitata

PMRA Submission Number {......}

#### EPA MRID Number 466955-19

### APPENDIX I. OUTPUT OF REVIEWER'S STATISTICAL VERIFICATION: Cell density (x 10E+04/mL)

File: 5519cd Transform: NO TRANSFORMATION

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2

| GROUP | IDENTIFICATION | TRANSFORMED<br>MEAN | MEAN CALCULATED IN<br>ORIGINAL UNITS | RANK<br>SUM |
|-------|----------------|---------------------|--------------------------------------|-------------|
| 1     | neg control    | 54.833              | 54.833                               | 91.000      |
| 2     | 0.773          | 58.167              | 58.167                               | 54.000      |
| 3     | 1.92           | 47.667              | 47.667                               | 41.000      |
| 4     | 5.05           | 6.000               | 6.000                                | 24.000      |
| 5     | 12.4           | 2.000               | 2.000                                | 12.000      |
| 6     | 29.1           | 1.333               | 1.333                                | 9.000       |

Calculated H Value = 16.617 Critical H Value Table = 11.070 Since Calc H > Crit H REJECT Ho:All groups are equal.

Cell density (x 10E+04/mL) File: 5519cd Transform: NO TRANSFORMATION

DUNNS MULTIPLE COMPARISON - KRUSKAL-WALLIS - TABLE 2 OF 2 

|       |                | GROUP               |                  |   |   |   |   |   |        |
|-------|----------------|---------------------|------------------|---|---|---|---|---|--------|
| GROUP | IDENTIFICATION | TRANSFORMED<br>MEAN | ORIGINAL<br>MEAN |   |   |   |   |   | 0<br>2 |
|       |                |                     |                  | ~ | - | - | - | - | -      |
| 6     | . 29.1         | 1.333               | 1.333            | 1 |   |   |   |   |        |
| 5     | 12.4           | 2.000               | 2.000            |   | 1 |   |   |   |        |
| 4     | 5.05           | 6.000               | 6.000            |   |   | \ |   |   |        |
| 3     | 1.92           | 47.667              | 47.667           |   |   |   | \ |   |        |
| 1     | neg control    | 54.833              | 54.833           |   |   |   |   | \ |        |
| 2     | 0.773          | 58.167              |                  | * | • | • |   |   | X      |

Estimates of EC%

| Parameter | Estimate | 95% Bou | inds  | Std.Err. | Lower Bound |
|-----------|----------|---------|-------|----------|-------------|
|           |          | Lower   | Upper |          | /Estimate   |
| EC5       | 0.66     | 0.26    | 1.6   | 0.19     | 0.40        |
| EC10      | 0.89     | 0.40    | 2.0   | 0.17     | 0.45        |
| EC25      | 1.5      | 0.80    | 2.8   | 0.13     | 0.54        |
| EC50      | 2.7      | 1.7     | 4.1   | 0.091    | 0.64        |

Slope = 2.70 Std.Err. = 0.513

!!!Poor fit: p < 0.001 based on DF= 3.00</pre> 15.0 -----5519CD : Cell density (x 10E+04/mL) \_\_\_\_\_\_ Observed vs. Predicted Treatment Group Means

Page 15 of 17

SC 420+210 to Pseudokirchneriella subcapitata

PMRA Submission Number {.....}

EPA MRID Number 466955-19

| Dose                                                                                                                        | #Reps.                                                                                                                                                        | Obs.<br>Mean                                                                                                                                | Pred.<br>Mean                                                                                                              | Obs.<br>-Pred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pred.<br>%Control                                                                                          | %Change                     |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------|
| 0 00                                                                                                                        | <                                                                                                                                                             |                                                                                                                                             |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |                             |
| 0.00                                                                                                                        | 6.00                                                                                                                                                          | 54.8                                                                                                                                        | 58.5                                                                                                                       | -3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.                                                                                                       | 0.00                        |
| 0.773                                                                                                                       | 3.00                                                                                                                                                          | 58.2                                                                                                                                        | 54.2                                                                                                                       | 3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92.7                                                                                                       | 7.32                        |
| 1.92                                                                                                                        | 3.00                                                                                                                                                          | 47.7                                                                                                                                        | 38.0                                                                                                                       | 9.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65.0                                                                                                       | 35.0                        |
| 5.05                                                                                                                        | 3.00                                                                                                                                                          | 6.00                                                                                                                                        | 13.2                                                                                                                       | -7.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.6                                                                                                       | 77.4                        |
| 12.4                                                                                                                        | 3.00                                                                                                                                                          | 2.00                                                                                                                                        | 2.08                                                                                                                       | -0.0761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.55                                                                                                       | 96.5                        |
| 29.1                                                                                                                        | 6.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00                                                                                                                  | 1.33                                                                                                                                        | 0.146                                                                                                                      | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.250                                                                                                      | 99.8                        |
| !!Warning:                                                                                                                  | EC5 not br                                                                                                                                                    | acketed b                                                                                                                                   | y doses ev                                                                                                                 | valuated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            |                             |
|                                                                                                                             | rate (0-72)<br>r Tr                                                                                                                                           |                                                                                                                                             | NO TRANSFO                                                                                                                 | DRMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                            |                             |
|                                                                                                                             | KRUSKAL-                                                                                                                                                      | WALLIS ANG                                                                                                                                  | OVA BY RAN                                                                                                                 | NKS - TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BLE 1 OF 2                                                                                                 |                             |
|                                                                                                                             | ENTIFICATIO                                                                                                                                                   | Ň                                                                                                                                           | MEAN                                                                                                                       | ORIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INAL UNITS                                                                                                 | IN RANK<br>SUM              |
|                                                                                                                             | neg con                                                                                                                                                       | trol                                                                                                                                        | 1.334                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.334                                                                                                      | 91 00                       |
| · •                                                                                                                         | 0                                                                                                                                                             | .773                                                                                                                                        | 1.354                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.354                                                                                                      | 54.00<br>41.00<br>24.00     |
| 3 .                                                                                                                         | •                                                                                                                                                             | 1 92                                                                                                                                        | 1 282                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 282                                                                                                      | 41 00                       |
| 4                                                                                                                           |                                                                                                                                                               | 5 05                                                                                                                                        | 0 590                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.202<br>0.500                                                                                             | 34.00                       |
| 5                                                                                                                           |                                                                                                                                                               | 5.05                                                                                                                                        | 0.390                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.390                                                                                                      | 24.00                       |
| 6                                                                                                                           |                                                                                                                                                               |                                                                                                                                             | 0.147                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.147                                                                                                      | 12.000                      |
| 0                                                                                                                           |                                                                                                                                                               | 29.1                                                                                                                                        | 0.090                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.090                                                                                                      | 9.00                        |
| Calculate<br>Șince Ca                                                                                                       | d H Value =<br>lc H > Crit                                                                                                                                    | 16.617<br>H REJEC                                                                                                                           | Cr<br>T Ho:All <u>c</u>                                                                                                    | ritical H<br>groups are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Value Table<br>equal.                                                                                      | e = 11.070                  |
| Since Ca<br>ell growth<br>ile: 5519g                                                                                        | lc H > Crit<br>rate (0-72)<br>r Tr                                                                                                                            | H REJEC<br>hours)<br>ansform: 1                                                                                                             | T HO:All <u>c</u><br>NO TRANSFO                                                                                            | proups are<br>DRMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | equal.                                                                                                     |                             |
| Since Ca<br>ell growth<br>ile: 5519g                                                                                        | lc H > Crit<br>rate (0-72)                                                                                                                                    | H REJEC<br>hours)<br>ansform: 1                                                                                                             | T HO:All <u>c</u><br>NO TRANSFO                                                                                            | proups are<br>DRMATION<br>LLIS - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | equal.<br>ABLE 2 OF 2                                                                                      |                             |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT                                                                          | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR                                                                                                             | H REJEC<br>hours)<br>ansform: !<br>ISON - Ki<br><br>TRANSFORMI                                                                              | I HO:All <u>c</u><br>NO TRANSFO<br>RUSKAL-WAI                                                                              | DRMATION<br>LLIS - T<br>GNAL 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0                                                                   |                             |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT                                                                          | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR                                                                                                             | H REJEC<br>hours)<br>ansform: !<br>ISON - Ki<br><br>TRANSFORMI                                                                              | I HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN                                                                | proups are<br>DRMATION<br>LLIS - T<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2                                                        |                             |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>ROUP IDEN<br>6                                                        | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1                                                                                       | H REJEC<br>hours)<br>ansform: !<br>ISON - KI<br>IRANSFORMI<br>MEAN                                                                          | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 C.                                                       | DRMATION<br>LLIS - T<br>GNAL 0 0<br>N 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2<br>                                                    |                             |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>ROUP IDEN<br>6<br>5                                                   | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1<br>12.4                                                                               | H REJEC<br>hours)<br>ansform: !<br>ISON - Ki<br>ISON - Ki<br>IRANSFORMI<br>MEAN<br>0.01                                                     | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.                                                       | DRMATION<br>LLIS - T<br>GNAL 0 0<br>N 6 5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2                                                        |                             |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>                                                                      | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1<br>12.4                                                                               | H REJEC<br>hours)<br>ansform: !<br>ISON - Ki<br>ISON - Ki<br>IRANSFORMI<br>MEAN<br>0.01                                                     | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.                                                       | DRMATION<br>LLIS - T<br>GNAL 0 0<br>N 6 5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2                                                        |                             |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>ROUP IDEN<br>6<br>5                                                   | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1<br>12.4                                                                               | H REJEC<br>hours)<br>ansform: !<br>ISON - Ki<br>ISON - Ki<br>IRANSFORMI<br>MEAN<br>0.01                                                     | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.                                                       | DRMATION<br>LLIS - T<br>GNAL 0 0<br>N 6 5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2                                                        |                             |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>COUP IDEN<br>6<br>5                                                   | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1<br>12.4                                                                               | H REJEC<br>hours)<br>ansform: !<br>ISON - Ki<br>ISON - Ki<br>IRANSFORMI<br>MEAN<br>0.01                                                     | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.                                                       | DRMATION<br>LLIS - T<br>GNAL 0 0<br>N 6 5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2                                                        |                             |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>COUP IDEN<br>6<br>5                                                   | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1<br>12.4                                                                               | H REJEC<br>hours)<br>ansform: !<br>ISON - Ki<br>ISON - Ki<br>IRANSFORMI<br>MEAN<br>0.01                                                     | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.                                                       | DRMATION<br>LLIS - T<br>GNAL 0 0<br>N 6 5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2                                                        |                             |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>                                                                      | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1                                                                                       | H REJEC<br>hours)<br>ansform: !<br>ISON - Ki<br>ISON - Ki<br>IRANSFORMI<br>MEAN<br>0.01                                                     | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.                                                       | DRMATION<br>LLIS - T<br>GNAL 0 0<br>N 6 5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2                                                        |                             |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>ROUP IDEN<br>6<br>5<br>4<br>3<br>1 n<br>2                             | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1<br>12.4<br>5.05<br>1.92<br>eg control<br>0.773                                        | H REJEC<br>hours)<br>ansform: !<br>ISON - KI<br>ISON - KI<br>TRANSFORMI<br>MEAN<br>0.02<br>0.14<br>0.55<br>1.26<br>1.33<br>1.33             | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.<br>47 0.<br>90 0.<br>47 0.<br>90 1.<br>34 1.<br>54 1. | CRMATION<br>LLIS - T<br>GNAL 0 0<br>N 6 5<br>090 \<br>147 . \<br>590 .<br>282 .<br>334 .<br>354 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2<br><br>\<br><br>                                       | capt differ                 |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>ROUP IDEN<br>6<br>5<br>4<br>3<br>1 n<br>2<br>= signifi                | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1<br>12.4                                                                               | H REJEC<br>hours)<br>ansform: !<br>ISON - KI<br>ISON - KI<br>MEAN<br>0.02<br>0.14<br>0.55<br>1.22<br>1.33<br>1.33<br>ence (p=0              | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.<br>47 0.<br>90 0.<br>47 0.<br>90 1.<br>34 1.<br>54 1. | CRMATION<br>LLIS - T<br>GNAL 0 0<br>N 6 5<br>090 \<br>147 . \<br>590 .<br>282 .<br>334 .<br>354 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2<br><br>\<br><br>                                       | capt differ                 |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>                                                                      | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1<br>12.4<br>5.05<br>1.92<br>eg control<br>0.773<br>cant differ<br>ue (0.05,6)<br>f EC% | H REJEC<br>hours)<br>ansform: 1<br>ISON - Ki<br>ISON - Ki<br>O.02<br>0.12<br>0.52<br>1.22<br>1.33<br>1.33<br>ence (p=0<br>= 2.93)           | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.<br>47 0.<br>90 0.<br>82 1.<br>34 1.<br>54 1.<br>54 1. | DRMATION<br>LLIS - T<br>GNAL 0 0<br>N 6 5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2<br><br>\<br><br><br>no signifi<br>reps - mul           | cant differ<br>tiple SE va  |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>                                                                      | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1<br>12.4<br>5.05<br>1.92<br>eg control<br>0.773<br>cant differ<br>ue (0.05,6)<br>f EC% | H REJEC<br>hours)<br>ansform: 1<br>ISON - Ki<br>ISON - Ki<br>O.02<br>0.12<br>0.5<br>1.22<br>1.33<br>1.33<br>ence (p=0<br>= 2.93)<br>95% Box | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.<br>47 0.<br>90 0.<br>82 1.<br>34 1.<br>54 1.<br>54 1. | CRMATION<br>LLIS - T<br>GNAL 0 0<br>NAL 0<br>NAL 0 0<br>NAL 0 0<br>NAL 0 0<br>NAL 0 0<br>NAL 0 0<br>NA | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2<br><br>\<br><br>no signifi<br>reps - mul<br>. Lower Bo | cant differ<br>tiple SE va  |
| Since Ca<br>ell growth<br>ile: 5519g<br>DUNNS MULT<br>6<br>5<br>4<br>3<br>1 n<br>2<br>= signifi<br>able q val<br>stimates o | lc H > Crit<br>rate (0-72)<br>r Tr<br>IPLE COMPAR<br>TIFICATION<br>29.1<br>12.4<br>5.05<br>1.92<br>eg control<br>0.773<br>cant differ<br>ue (0.05,6)<br>f EC% | H REJEC<br>hours)<br>ansform: 1<br>ISON - Ki<br>ISON - Ki<br>O.02<br>0.12<br>0.5<br>1.22<br>1.33<br>1.33<br>ence (p=0<br>= 2.93)<br>95% Box | T HO:All C<br>NO TRANSFO<br>RUSKAL-WAI<br>ED ORIGIN<br>MEAN<br>90 0.<br>47 0.<br>90 0.<br>82 1.<br>34 1.<br>54 1.<br>54 1. | CRMATION<br>LLIS - T<br>G<br>NAL 0 0<br>N 6 5<br>090 \<br>147 . \<br>590 .<br>282 .<br>334 .<br>282 .<br>334 .<br>Unequal<br>Std.Err                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | equal.<br>ABLE 2 OF 2<br>ROUP<br>0 0 0 0<br>4 3 1 2<br><br>\<br><br>no signifi<br>reps - mul               | cant differ<br>tiple SE va. |

Page 16 of 17

.

| PMRA Sub             | nission Number                       | {}                    |                                |                            | <u>l</u>                     | PA MRID N                    | umber 466955-19 |
|----------------------|--------------------------------------|-----------------------|--------------------------------|----------------------------|------------------------------|------------------------------|-----------------|
| EC10<br>EC25<br>EC50 | 2.3                                  | 0.45<br>1.1<br>2.7    | 4.8                            | 0.15                       | 0.47                         |                              |                 |
|                      | Slope = 2                            | 2.25 Std.E            | rr. =                          | 0.453                      |                              |                              |                 |
| Goodness             | of fit: p =                          | 0.35                  | based on                       | DF=                        | 3.0                          | 15.                          |                 |
| 5519GR :             | Cell growth r                        | ate (0-72h            |                                | *******                    |                              |                              | -               |
| Observed             | vs. Predicted                        | i Treatment           |                                |                            |                              |                              | -               |
| Dose                 | #Reps.                               |                       |                                | Obs.<br>-Pred.             |                              | %Change                      | -               |
|                      | 3.00<br>3.00<br>3.00<br>3.00<br>3.00 | 1.35<br>1.28<br>0.590 | 1.33<br>1.11<br>0.634<br>0,224 | 0.0223<br>0.172<br>-0.0443 | 95.8<br>79.8<br>45.6<br>16.1 | 4.21<br>20.2<br>54.4<br>83.9 |                 |